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Abstract

In this thesis, we develop a simple model describing inherent photon-

number noise in Rarity-Tapster type interferometers. This noise is caused

by generating photon pairs in the process of spontaneous parametric down-

conversion and adding a third photon by attenuating fundamental laser mode

to single-photon level. We experimentally verify our model and present result-

ing signal to noise ratios as well as obtained three-photon generation rates as

functions of various setup parameters. Subsequently we evaluate impact of this

particular source of noise on quantum teleportation which is a key quantum

information protocol using this interferometric con�guration. Finally, we test

our model on simple case of Hong-Ou-Mandel interference.
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1 Introduction

1.1 Quantum physics

During the 19th century, physicists observed phenomena which could not

be explained by means of classical physics (characteristic x-ray radiation, pho-

toelectric e�ect). This crysis of classical physics culminated at the beginnig

of the 20th century when Max Planck, in an e�ort to explain the black body

radiation, concluded that the spectrum can be clari�ed only if we assume that

the black body and electromagnetic �eld exchange energy in quanta [1]. Later,

the same assumption was used by Albert Einstein to explain the theory of

photoelectric e�ect [2]. The idea of non�continuous energy transfer led to a

revolution in physics and explanations of phenomena unsolvable by classical

physics. Since then, physicists began to build the most advanced theory we

know to this day, the quantum theory [3].

Key principles of the quantum theory are the superposition and the entan-

glement. Quantum superposition principle states that if two or more quantum

states are solutions to the Schrödinger equation then also any linear combina-

tion of the states is a solution. Quantum entanglement, or non-locality, occurs

when a pair or a group of particles is generated or interact in such way that

quantum state of individual particle can not be described independently of the

others [3]. Quantum entanglement in fact causes correlation, so for example

if one creates two photons simultaneously with one photon being polarized
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horizontally the other vertically and we can not tell them apart, they become

entangled and we can write the state of the system as

|ψ〉 = 1√
2
(|HV 〉 − |V H〉). (1.1)

Note that the state of the system can be expressed as a superposition of in-

dividual states. This means that if we do a measurement and we observe the

�rst photon being polarized horizontally, the other must be polarized vertically

and vice versa. So far, the classical interpretation allows to explain this type

of correlation. However, consider detecting (projecting) one of the photons in

a diagonal linear polarization state (|D〉 = 1√
2
(|H〉 + |V 〉). The other will be

found in an anti-diagonally polarized state (|A〉 = 1√
2
(|H〉 − |V 〉). Classical

physics fails to explain this e�ect.

Entanglement and superposition are the key components for quantum in-

formation processing including quantum computing and quantum communi-

cations. The advantages of the quantum way are for example faster algo-

rithms [4,5] enabling quantum computer to solve some calculations much faster

or quantum cryptography which is a method for secure information transfer

relying on quantum laws of nature [6, 7].

1.2 Motivation for our work

Quantum information processing (QIP) is a modern and perspective reaserch

discipline of information science [8�10]. One of the platforms suitable for QIP

are discrete photons manipulated using linear optics [11]. This platform is

particularly promising for quantum communications, because of fast and rel-

atively noiseless propagation of individual photons through open space or in

�bers [12,13].

Quantum teleportation [14,15] is a key ingredient for many quantum infor-
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mation protocols such as entanglement swapping [16], quantum relays [17] or

teleportation-based quantum computing [18]. On the platform of linear optics,

quantum teleportation is usually achieved in the so-called Rarity-Tapster in-

terferometer [19] (shown in Fig. 4.1). In this interferometer, one photon from

an entangled pair gets overlapped on a balanced beam splitter with an inde-

pendent photon [11]. The output ports of the beam splitter are then subjected

to suitable Bell-state projection.

Single�photon sources used in experimental quantum information process-

ing today are however imperfect and the number of photons generated per

pulse is random, given by the state's photopulse statistics (e.g. Bose-Einstein,

Poisson). While vacuum states can be �ltered out by suitable post-selection,

higher photon-number contributions can not always be recognized [20,21].

In this thesis, we develop a simple model describing inherent photon-

number noise in Rarity-Tapster type interferometers based on sources using

spontaneous parametric down conversion (SPDC) and attenuated coherent

state. These are currently predominant photon sources in experimental linear-

optical QIP [12, 22�27]. We have experimentally tested validity of our model

and established both theoretical and experimental relations between photon-

number noise and various setup parameters. Our goal was also to quantify the

e�ect of photon-number noise on teleportation �delity. Photon-number noise

does not originate from experimental imperfections but is rather an intrinsic

property of various photon sources. This fact even further stresses out the im-

portance of this investigation. To our best knowledge an article on this topic

have not yet been published and can be higly bene�cial to future research in

linear�optical QIP.
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2 Methods and tools

2.1 Quantization of the electromagnetic �eld

First of all we should describe the electromagnetic �eld by means of the

quantum theory. It will be usefull for subsequent description of quantum�

optical tools that we use in our experiment. We start from Maxwell's equations

for electromagnetic �eld in vacuum [28]

∇ · ~B = 0 (2.1)

∇ · ~D = 0 (2.2)

∇× ~E = −∂
~B

∂t
(2.3)

∇× ~H =
∂ ~D

∂t
, (2.4)

where ~B = µ0 ~H, ~D = ε0 ~E and µ0ε0 = 1/c2. Using the Coulomb gauge, the ~E

and ~B are then determined by the vector potential ~A

~B =∇× ~A (2.5)

~E = −∂
~A

∂t
, (2.6)

and with the Coulomb gauge condition

∇ · ~A = 0 (2.7)

one can express the wave equation for ~A as

∇2A(r, t) =
1

c2
∂2A(r, t)

∂2t
. (2.8)
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The function A(r, t) can be decomposed as

A(r, t) = −i
∞∑

k=1

√
~

2ωkε0
[uk(r)ak(t) + u∗k(r)a

∗
k(t)], (2.9)

solving the wave equation 2.8 gives us

ak(t) = ake
−iωkt. (2.10)

Now we have to �nd solution for uk(r). The solution can be either sinusoidal

(wave in optical cavity) or exponential (free wave). Considering periodic bound-

ary conditions

uk(r) = uk(r + Lx) = uk(r + Ly) = uk(r + Lz) (2.11)

one �nds that

uk(r) = εk
1√
V
eiknr, (2.12)

where V = L3 , kn = 2π/L and εk is polarization vector.

Therefore

A(r, t) = −i
∞∑

k=1

√
~

2ωkε0V
εk[ake

−iωkt+iknr + c.c.] (2.13)

E(r, t) =
∞∑

k=1

√
~ωk
2ε0V

εk[ake
−iωkt+iknr + c.c.] (2.14)

H(r, t) =
1

µ0

∞∑

k=1

√
~ωk
2ε0V

(kn× εk)[ake
−iωkt+iknr + c.c.], (2.15)

where normalization constant

E0 =

√
~ωk
2ε0V

(2.16)

is the electric �eld per photon.

Because the ak,a∗k folow the equations of motion of a harmonic oscillator,

the quantization can be easily obtained by replacing the complex numbers with

operators

a→ â (2.17)
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a∗ → â†, (2.18)

called the annihilation and creation operators. Their commutation relations

are

[âm, â
+
n ] = δmn (2.19)

[âm, ân] = 0 (2.20)

[â+m, â
+
n ] = 0. (2.21)

The Hamiltonian for the quantized electromagnetic �eld reads

H =

∞∑

k=1

~ωk(â+k âk + 1/2) (2.22)

or with the indroduction of number oparator

n̂k = â+k âk (2.23)

H =

∞∑

k=1

~ωk(n̂k + 1/2). (2.24)

2.2 Fock states

Fock states are eigenstates of the number oparator n̂k [29]

n̂k|nk〉 = nk|nk〉. (2.25)

The operators âk and â†k are known as the anihilation and creation operators

with subsequent properties

âk|nk〉 =
√
nk|nk − 1〉 (2.26)

â†k|nk〉 =
√
nk + 1|nk + 1〉, (2.27)

therefore

|nk〉 =
(â†k)

nk

(nk!)1/2
|0〉, (2.28)

with |0〉 being the vacuum state.
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2.3 Coherent state

Coherent state of a mode of elecromagnetic �eld is de�ned as eigenstate of

the annihilation oparator [30]

â|α〉 = α|α〉. (2.29)

Coherent state, just like any other state, can be expressed as a superposition

of Fock states

|α〉 =
∞∑

n=0

〈n|α〉|n〉, (2.30)

where |n〉 is the Fock state which satis�es the equation

|n〉 = 1√
n!
(â†)n|0〉. (2.31)

To evaluate the term 〈n|α〉, we need to take the Hermitian conjugate of the

Fock state and perform a scalar product with the coherent state |α〉. The

Eq.(2.30) then takes the form of

|α〉 =
∞∑

n=0

1√
n!
αn〈0|α〉|n〉, (2.32)

where the term 〈0|α〉 is yet to be determined. In regart to the fact that scalar

product 〈α|α〉 is one, the folowing equation is derived from normalization

|〈0|α〉|2 = e−|α|
2
. (2.33)

Let us choose the phase of the scalar product 〈0|α〉 to be zero, the expansion

of the coherent state into Fock basis then reads

|α〉 =
∞∑

n=0

1√
n!
αne−

|α|2
2 |n〉. (2.34)

Using the Eg. (2.34), we can easily derive the probability amplitude in the

form of

〈n|α〉 = 1√
n!
αne−

|α|2
2 , (2.35)

10



 

P
ro

b
ab

ili
ty

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

 

Number of photons
0 5 10 15 20

λ = 1
λ = 5
λ = 10

Figure 2.1: Graph shows several Poisson distributions where λ is the expected

number of occurrences.

then the probability of a coherent state to contain de�ned number of photons

n or energy E = hf(n+ 1/2) is

p(n) = |〈n|α〉|2 = 1

n!
|α|2ne−|α|2 . (2.36)

The derived probability distribution is known as Poisson distribution (see Fig.

2.1). It is obvious that electromagnetic �eld in coherent state does not have

exactly de�ned number of photons (energy). The result of an energy measure-

ment is a Poisson distribution function with mean value and variance equal to

the quadrature of complex number α.

2.4 Qubit

Qubit is a basic unit of information used in quantum computing. It's anal-

ogy in classical information science is a bit. Bit is a two state system which value

can be typically either 0 or 1. Qubit is in some way similar to the bit but in some

properties the two di�er. Just as the bit, the qubit is a two state system and

measurement on this system yields two possible outcomes usually 0 and 1. The
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di�erence is that whereas the bit can be only in the state 0 or 1 [31], the state

of the qubit can also be a superposition of both [e.g. 1/
√
13(3|0〉+ 2|1〉)] [32].

The term qubit was �rst mentioned by B. Schumacher [33].

Qubit is formally de�ned as normalized vector in a two-dimensional Hilbert

space. Let us denoteH the two-dimensional Hilber space with ortonormal basis

|0〉, |1〉, then element |ψ〉 ∈ H of the vector space with a unit size is the qubit.

Therefore qubit is a vector

|ψ〉 = α|0〉+ β|1〉, (2.37)

where α, β ∈ C are the coordinates of the vector in the basis |0〉, |1〉, The α

and β parameters are also called probability amplitudes, that must match the

normalization constraint |α|2 + |β|2 = 1. The quadratures of the probability

amplitudes are then interpreted as probabilities of �nding state |ψ〉 in the state

|0〉 or |1〉.

Qubit can be represented by any two�level quantum system such as an elec-

tron in the atom or the polarization of a photon. The photon can be prepared

in such way that its polarization is in superposition of basis states so it can

store quantum information [34�36]. It is useful to visualise polarization states

using the Bloch sphere (see Fig.2.2) where horizontal and vertical polarization

(logical state |0〉 and |1〉) sit on the poles, meanwhile their balanced super-

positions are situated on the equator. The advantage of photons is that they

are fast and resisitant to decoherence which makes them suitable for quantum

information processing (QIP).
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Figure 2.2: Bloch sphere allows easy visualization of polarization states. Po-

larisation states are labeled as follows: |H〉 � horizontal, |V 〉 � vertical, |D〉 �

diagonal, |A〉 � anti-diagonal, |R〉 � right-hand circular, |L〉 � left-hand circular.

2.5 Spontaneous parametric down-conversion

One possibility of how to produce entangled photon pairs is the spontaneous

parametric down conversion (SPDC) [37]. It is a process which occurs in a

non�linear optical media such as for example β�borium borate (BBO) crystal.

The incident photon (pump beam) enters the non�linear crystal where it gets

annihilated and one pair of photons is created instead. These photons, called

signal and idler, are correlated in time. Because the state of the non�linear

crystal is unchanged and the laws of energy and momentum conservation apply

(see Fig. 2.3), the sum of the signal and idler photon frequencies must be

equal to the frequency of the original pumping photon. The same applies to

the ~k vectors. This law de�nes the output vectors of the signal and the idler

photon. The condition mentioned above is often called the phase matching.

The condition can be ful�lled in an anizotropic media where the refractive
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Figure 2.3: Graphical implementation of conservation laws.

index depends on polarization, direction of propagation and frequency.

Let's assume, for simplicity, a negative uniaxial crystal, therefore ne < no.

Using the polarization of the interacting electromagnetic �elds, one can de�ne

two types of phase matching. During the Type I process, one photon with ex-

traordinary polarization (e) generates two photons with ordinary polarization

(o). On the other hand, in the Type II process one photon with e�polarization

generates pair of photons with mutually prependicular e, o�polarizations.

The SPDC process is in general non�collinear, however with suitable geo-

metrical setup the three photons can propagate in the same direction, therefore

in special case, the SPDC process can be collinear.

SPDC is stimulated by vacuum �uctuations in signal and idler mode, hence

the SPDC process generates photon pairs at random times. Also the conversion

e�ciency is in currently available media quite low. Only one photon pair out

of 1012 incident photons is created [38].

2.5.1 Type I

During the non-collinear SPDC process the generated photons can be found

on a surface of a cone whose axis is identical with pump beam [39]. The con-

dition on phase matching guarantees that the generated photons with same

frequencies are emitted from the crystal on the opposite sides of the cone sur-
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face (see Fig. 2.4). The polarization of the created photons is perpendicular to

the polarization of the pump beam, therefore, with only one Type I crystal,

we can not generate photons with polarization entanglement.

pump beam

BBO

signal

idler

Figure 2.4: The scheme for Type I SPDC process, the generated photons with

same frequencies are emitted from the crystal on the opposite sides of the cone

surface.

2.5.2 Type II

Type II SPDC process generates photon pairs with mutual prependicular

polarizations. The photons are emitted from the crystal into the surfaces of

two cones which can intersect in two, one or zero points in dependence on the

direction of the main axis of non�linear crystal toward the interface and the

direction of the pump beam (see Fig. 2.5) [39]. The generated photons are

entangled in polarization only in the intersections of the cones where one can

not distinguish single and idler photons apart.
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pump beam

BBO

vertically-polarized 
photons

horizontally-polarized 
photons

entangled 
photons

Figure 2.5: The scheme for Type II SPDC process the photons are emitted

from the crystal into the surfaces of two cones which can intersect in two, one

or zero points. Also the generated photons are entangled in plarization only in

the intersections of the cones.

2.5.3 The Kwiat source of entangled photons

Another method allowing to generate photons entangled in polarization is

the Kwiat source (also known as crystal cascade) which is made out of two Type

I crystals placed in a way that their main planes are mutually orthogonal [39,

40]. The main plane is de�ned by the direction of the ~k vector and the optical

axis. Using vertically polarized pump beam, the SPDC can only occur in the

�rst crystal so the produced cones will contain horizontally polarized photons.

Similarly, with horizontally polarized pump beam SPDC will occur only in the

second crystal producing identical cones only with vertically polarized photons

(see Fig. 2.6). For the pump beam with equal power in both the horizontal and
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pump beam

2xBBO

horizontally-polarized 
photons

vertically-polarized 
photons

Figure 2.6: The scheme for the Kwiat source of entangled photons.

vertical polarization modes, SPDC can occur in either of the crystals with the

same probability. Consequently, the photons will be created in the state |ψ〉 =

|HH〉+ eiφ|V V 〉. The φ is determined by the phase matching and pump beam

state. This way we can relatively easily tune the degree of entanglement. As

long as the crystals are thin the trajectories of the generated photons overlap,

therefore we can not tell in which crystal the photons originated. This way we

can directly prepare photons with polarization entanglement.

2.6 Beam splitter

The beam splitter has an irreplaceable role in quantum optics. It is a key

component for quantum gates [41].

Let us denote E1 and E2 the amplitudes of electromagnetic �elds that enter

the beam splitter and E3 and E4 amplitudes of �elds that exit it. Amplitude

E3 transforms according to E3 → tE1 + rE2, where t, r are the transmission

and re�ection coe�cients respectively. The coe�cients are complex numbers
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t = |t|eiθ and r = |r|eiφ [42]. Likewise, E4 → tE2 + rE1. The transformation

matrix than takes the form of

E3

E4


→


t r

r t




E1

E2


 . (2.38)

Let us assume that the beam splitter is lossless which is good approximation

for most applications. For lossless beam splitter, the transformation matrix A

is unitary. That means that

A−1A = A†A = 1⇒ A−1 = A†, (2.39)

the equation (2.38) implies that the transformation matrix must satisfy the

equation 
t r

r t




t
∗ r∗

r∗ t∗


 =


1 0

0 1


 , (2.40)

which gives the conditions

|t|2 + |r|2 = 1 (2.41)

r∗t+ rt∗ = 0. (2.42)

Let us set θ = 0, then Eq. (2.42) simpli�es to the form of 2rt cosφ = 0,

from which we can easily deduce that φ = π/2. For a 50/50 beam splitter the

transmission and re�ection coe�cients are 1/
√
2 and the trasformation matrix

is in the form of

A =
1√
2


1 i

i 1


 . (2.43)

Quantum theory replaces amplitudes by annihilation and creation operators

(â, â†). It can be shown that Eq. (2.39) holds and the operators are transformed

in a identical fashion. Let us denote âin, b̂in as the input modes and âout, b̂out

as the output modes (see Fig. 2.7). The lossless beam splitter is then described

by unitary transformation

18



ain

bin

aout

bout

Figure 2.7: The scheme of the beam splitter, that provides the unitary trasfor-

mation operation on the input modes.


â
†
out

b̂†out


 =


 t ir

ir t




â
†
in

b̂†in


 . (2.44)
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3 Theoretical model

Text in chapters 3 and 4 is adopted from V.Trávní£ek, K. Bartkiewicz,

A. �ernoch and K. Lemr, �Experimental characterization of photon-number

noise in Rarity-Tapster type interferometers,� submitted (2017), ArXiv:1704.07590.

Let us denote |ψs〉 the state of signal and idler modes of the SPDC gen-

erated photons (Nos. 1 and 2) and |α〉 the coherent state of the attenuated

fundamental laser mode (No. 3). We start with the Hamiltonian for SPDC

process in the form of [43]

ĤSPDC = γαpâ
†
1â
†
2 + h.c., (3.1)

where γ � 1 is an interaction constant, αp is a strong pumping amplitude of

frequency doubled laser beam and â†1, â
†
2 are creation operators of the idler

and signal photon modes respectively. The corresponding evolution operator

is then of the form of

Û = exp

(
i

~
Ĥt

)
. (3.2)

We can aproximate this evolution operator by �rst three terms of its Taylor

expansion

Û ≈ 1 +
iĤt

~
+
( it
~

)2 Ĥ2

2
. (3.3)

The state of the signal and idler modes is obtained by applying the Û operator

to the initial vacuum state

|ψs〉 ∝ |00〉+
it

~
γαp|11〉+

(itγαp)
2

2~2
|22〉. (3.4)
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BBO SHG Laser

Signal

Idler

detector detector

detector

beam spliter

1

2

3

Figure 3.1: Scheme of the experiment, 1 � idler mode, 2 � signal mode, 3

� attenuated fundamental laser mode, SHG � second harmonics generation,

Laser � Ti-sapphire fs laser (central wavelength of 826 nm, FWHM of 11 nm),

BBO � a β-BaB2O4 crystal for SPDC.

Let us introduce a substitution variable

κ =
it

~
γαp, (3.5)

so we can express the state |ψs〉 in a compact form

|ψs〉 ∝ |00〉+ κ|11〉+ κ2

2
|22〉. (3.6)

The term |00〉 can be omitted because the �rst photon works as a herald

which means that if it does not get detected the measurment will not succeed.

Furthermore, we have to take into account probability of coupling the photons

from SPDC into optical �bers. Let us denote t1 and t2 the amplitude coupling

e�ciency of idler and signal modes respectively. The state of the �rst and
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second photon then reads

|ψs〉 ∝ 2κt1t2|11〉+ 2κt1

√
1− t22|10〉+

+ κ2t1

√
1− t21t22|12〉+ κ2t21t

2
2|22〉, (3.7)

where again we have excluded the terms corresponding to the �rst mode being

in a vacuum state. Moreover, the last term in Eq. (3.7) can be neglected with

respect to the third term since in typical experimental setups t1,2 � 1.

Next, we can express the coherent state of attenuated fundamental laser

mode in Fock basis and limit the expansion to �rst four terms

|α〉 ≈ |0〉+ α|1〉+ α2

√
2
|2〉+ α3

√
6
|3〉. (3.8)

Any �ltering or coupling e�ciency do not change the nature of the attenuated

laser mode which remains in a coherent state with amplitude α already includ-

ing all possible losses. Thus we do not need to consider its coupling e�ciency

like in the SPDC modes.

If the source were to be perfect, there should be precisely one photon in

each of the three modes. Simultaneous detection of these photons corresponds

to genuine coincidences denoted CCg. In reality, SPDC-based sources yield also

higer-photon-number contributions. On the beam splitter, these photons may

split leading to three-photon detection even if there were no photons in the

attenuated laser mode [see the third term in Eq. (3.7)]. These detections de-

noted CCs contribute to added noise. Similar source of noise are higer photon-

number contributions from the fundamental laser mode that again can split on

the beam splitter resulting in parasitic detections CCf . Using Eqs. (3.7) and

(3.8), we can identify the generation probabilities of the genuine coincidences

as well as of the two parasitic contributions

CCg ∝ |κ|2|α|2t21t22, (3.9)
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CCs ∝ t21t42
|κ|4
4
, (3.10)

CCf ∝ |κ|2t21
( |α|4

2
+
|α|6
6

)
. (3.11)

Note that in Eq. (3.10), we have assumed 1−t21 ≈ 1 and in Eq. (3.11) 1−t22 ≈ 1.

These approximation are valid especially when one considers a linear�optical

setup fed by the source which strongly diminishes the transmisivity due to

technological losses (back�scattering, �ber coupling etc.)

The goal now is to maximize the signal-to-noise ratio de�ned as

SNR ≡ CCg
CCs + CCf

=
12|α|2t22

3|κ|2t42 + 6|α|4 + 2|α|6 . (3.12)

In a typical setup as depicted in Fig. 4.1, there are two parameters that can

easily be tuned: (i) amplitude of the attenuated fundamental laser mode α and

(ii) SPDC pumping amplitude αp. In subsequent analysis, we investigate the

dependency of SNR on these two parameters.

First we look at SNR as function of α, which translates to the observed

ratio R between coincidence rates CCf and CCs

R ≡ CCf
CCs

=
2|α|4
|κ|2t42

+
2|α|6
3|κ|2t42

≈ 2|α|4
|κ|2t42

. (3.13)

We have omitted the second expansion term from CCf because for typical

levels of attenuation to single-photon level |α| � 1. The signal-to-noise ratio

can now be expressed as function of the parameter R

SNR ≈ 2
√
2R

|κ|(R+ 1)
. (3.14)

One can now �nd optimal value of R by searching for maximum of this function.

When |α| � 1 holds, the optimal value of R is 1. For larger values of |α|

the optimal R shifts to slightly lower values because the approximation in Eq.

(3.13) does not longer apply. In an experiment, one should thus seek to balance

the false coincidence rates from SPDC and from attenuated fundamental mode.
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In the subsequent analysis, we assume that |α| � 1 holds and �x the

parameter R at its optimal value of 1. The Eq. (3.14) then simpli�es into the

form

SNR =
2
√
2

|κ| , (3.15)

which can, with the help of Eqs. (3.9) and (3.13), be expressed in terms of the

genuine coincidence rate CCg

SNR ∝ 3

√
16t21t

4
2

CCg
. (3.16)

One can now make two important conclusions towards the performance of the

interferometer. Firstly, the SNR can only be increased by decreasing the value

of |κ| which means by lowering the SPDC pumping strength |αP |. Secondly, the

obtained coincidence rate depends on the coupling e�ciency of the signal and

idler SPDC modes. Especially, it scales with the fourth power of the amplitude

transmissvity of the signal mode (or second power of intensity transmissivity).

For any given pumping strength, one can improve the overall coincidence rate

by improving the coupling e�ciencies. The SNR, however, can not be improved

by this adjustment.

25



26



4 Experiment

We have subjected our model and the resulting conclusions to an exper-

imental test. Our experimental setup is depicted in Fig. 4.1. The attenuated

fundamental laser mode (mode No. 3) is obtained by splitting a small portion

from the femtosecond pumping laser beam (Coherent Mira at 826 nm). It then

passes through a neutral density �lter (NDF3) and 3nm-wide interference �lter

(IF3) before been coupled into single-mode �ber.

The main laser beam enters second harmonics generation unit (SHG),

where its wavelength becomes 413 nm. The beam then passes through a neutral

density �lter (NDF1) and enters a Type I cut BBO crystal (0,64mm thick)

which due to SPDC generates idler and signal photons (Nos. 1 and 2) respec-

tively. The photons in signal mode then pass through a 3nm-wide interference

�lter (IF2). The photons in idler mode pass through a 10nm-wide interference

�lter (IF1). The two SPDC modes are then coupled into single-mode �bers,

idler mode is directly lead to a single-photon detector unlike the modes 2 and

3 that are mixed in a 50:50 �ber coupler before being detected. The avalanche

photodiode detectors with suitable electronics record three-fold coincidence

detections. Coincidence detection window was set to 5 ns, less than the laser

repetition period of approximately 12,5 ns. We set the temporal displacement

between photons 2 and 3, so they do not overlap in the �ber coupler. Thus we

prevent the e�ect of two-photon interference.

In our experiment, we performed all the testing measurements in three
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1
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Figure 4.1: Setup of the experiment, 1 � idler mode, 2 � signal mode, 3 �

attenuated fundamental laser mode, IF(1-3) � interference �lters (3 nm in

FWHM), NDF(1,3) � neutral density �lter, S(2,3) � shutters, SHG � second

harmonics generation, Mira � Ti-sapphire fs laser (central wavelength of 826

nm, FWHM of 11 nm), BBO � a β-BaB2O4 crystal for SPDC.

steps: (i) with the shutters S2 and S3 open we detect all three-fold coincidences

CCa which include CCg and parasitic contributions from signal and attenuated

fundamental laser mode CCs and CCf

CCa = CCg + CCf + CCs. (4.1)

(ii) then we close shutter S3 and obtain three-fold coincedences only if there is

more than one photon in signal mode, thus we measure parasitic coincidence

rate CCs. (iii) �nally we close shutter S2, open S3 and therefore obtain three-

fold coincedences only if there is more than one photon in attenuated funda-

mental laser mode � parasitic coincidence rate CCf . Note that CCg is obtained
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from Eq. (4.1) simply by subtracting CCf and CCs from CCa. Each step took

about 100 s and the entire three-step procedure was reapeted multiple times,

thus we have avioded a bias caused by long-term laser power �uctuations.

First, we have experientially veri�ed the dependence of SNR on α, hence

as a function of R [see Eq. (3.14)]. The experiment consisted of measuring

the coincidence rates for various values of R using the above-mentioned three

steps. The parameter R was changed by modifying transmissivity of NDF3.

Experimentally obtained values are summarized in Tab. 4.1 and visualized in

Fig. 4.2 together with the theoretical �ts based on Eq. (3.14). The dashed line

shows a �t in which we limited the expansion in Eq. (3.8) to the �rst three

terms, however it turns out that the model is not accurate enough for R→ 10

(see Fig. 4.2). With growing contribution of parasitic coincidences from the

attenuated fundamental laser mode CCf , and thus also growing ratio R, higher

terms in Eq. (3.8) can no longer be neglected and the approximation in Eq.

(3.13) does no longer hold. The solid line which represents a model where we

used the �rst four terms of the expansion, is accurate enough throughout the

entire measured range of R. We went a step further and expended our model

(represented in Fig. 4.2 by dash-dot line) to include the �rst �ve terms of the

expansion. There is a slight but unsubstantial improvement to the previous

case and thus we �nd the four-term expansion to be the optimum compromise

between accuracy and complexity. To simplify the following experiments, we

have set the attenuated laser beam power so that the approximation in Eq.

(3.13) holds. This means setting R ∈ [0.2;1] which also coincides with the SNR

maximum.

As the next test, we have measured the dependence of SNR on the pumping

amplitude αp, which also translates into the dependence of SNR on the genuine

coincidence rate CCg [see Eqs. (3.15) and (3.16)]. We maintained the ratio R
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SNR [dB] parameter R

-6.222 ± 0.740 0.013 ± 0.004

-4.440 ± 0.432 0.030 ± 0.004

-3.010 ± 0.440 0.040 ± 0.006

-1.105 ± 0.388 0.080 ± 0.008

-0.530 ± 0.442 0.340 ± 0.021

-0.086 ± 0.392 1.130 ± 0.052

-2.201 ± 0.241 1.510 ± 0.057

-3.502 ± 0.667 3.290 ± 0.290

-6.434 ± 0.727 7.180 ± 0.680

Table 4.1: Experimentaly observed data and their respective errors when in-

vestigating the dependence of SNR on the parameter R

SN
R

 [
dB

]

−8

−7

−6

−5

−4

−3

−2

−1

0

1

parameter R
0,01 0,1 1 10

N = 2
N = 3
N = 4

Figure 4.2: Dependence of SNR on parameter R. Points visualize experimen-

tally observed results. Lines correspond to various levels of expension in Eq.

(3.8): to 2 (green dashed line), 3 (black solid line), 4 (magneta dashed-dot line)

terms.
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SNR [dB] CCg per 100 s Pp ∝ |αp|2 [mW]

9.91 ± 1.274 2.91 ± 0.111 13 ± 2

7.50 ± 0.787 7.23 ± 0.217 25 ± 2

6.23 ± 0.714 19.88 ± 0.613 50 ± 2

5.17 ± 0.559 51.59 ± 1.384 104 ± 3

3.33 ± 0.577 135.28 ± 4.392 190 ± 3

Table 4.2: Experimentally observed data and their respective errors when in-

vestigating the dependence of SNR on the CCg and CCg on the αp.

close to its optimum discovered in previous test (R ≈ 0.35 ± 0.04) and were

changing αp by changing transmissivity of NDF1. So for every measured value

of SNR, we have adjusted both the NDF1 (in�uencing αp) and NDF3 (to

maintain constant R). The measurement procedure was also realised in the

previously mentioned three acquisition steps. Experimentally obtained values

are summarized in Tab. 4.2 and visualized in Fig. 4.3 together with a theoretical

�t based on Eq. (3.15). The Fiq. 4.3 proves that our four-term model matches

well the experimental data. We have also investigated dependence of CCg on

pumping power Pp which is proportional to pumping amplitude |αp|2.

The �nal two tests of our model involved verifying the dependence of gen-

uine coincidence rate CCg on the coupling e�ciencies (i) t1 and (ii) t2 as

predicted in Eq. (3.16). During each of the two tests, the parameter R and

the pumping power were kept constant resulting in constant SNR. During the

�rst test the value of SNR was (4,7± 1,6) dB. In the second test the SNR

was (5,0± 1,3) dB. In order to test the dependence on idler and signal mode

transmissivities t1 and t2, we have acquired the coincidences in the usual three

steps for various levels of attenuation by closing a diaphragm on the idler and
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Figure 4.3: (a) Dependence of SNR on genuine coincidence rate CCg. Points

visualize experimentally observed results, the solid violet line depicts �tted

experimental data with theoretical dependence based on Eq. (3.15). (b) De-

pendence of CCg on Pp. The solid green line depicts �tted experimental data

with theoretical dependence based on Eq. (3.9)

signal mode �ber couplers respectively. When the signal mode attenuation was

set, the NDF3 in the attenuated fundamental laser mode was readjusted to

maintain a constant R. This was not necessary when closing the idler mode

diaphragm. For better readability of our results, we introduce the idler and

signal mode intensity attenuation factors A1 and A2 so that the modes' trans-

missivities become t2j → t2j/Aj for j = 1, 2. Experimentally observed values are

summarized in Tab. 4.3 and visualized in Fig. 4.4. Fig. 4.4 demonstrates that

with constant SNR CCg dependents on modes' transmissivities t21 and t22 as

functions 1
x and 1

x2
respectively as predicted in Eq.(3.16).
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idler attenuation (t1) signal attenuation (t2)

A1 CCg per 100 s A2 CCg per 100 s

1 41.2 ± 3.2 1 44.8 ± 2.5

1.4 27.2 ± 1.7 1.3 22.2 ± 1.5

2 19.0 ± 1.7 1.9 10.0 ± 1

2.7 14.3 ± 1.8 2.8 6.2 ± 1

4 10.0 ± 1.7 3.8 2.3 ± 0.3

Table 4.3: Experimentally observed data and their respective errors when in-

vestigating the dependence of CCg on the attenuation factors A1 and A2.
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Figure 4.4: (a) Dependence of CCg on attenuation factor A1. Points visualize

experimentally observed results, the solid blue�green line depicts �tted experi-

mental data with theoretical �t based on Eq. (3.16). (b) Dependence of CCg on

attenuation factor A2. The solid orange line depicts �tted experimental data

with theoretical dependence based on Eq. (3.16).

4.1 Impact of the noise on teleportation �delity

We now investigate the impact of the above analyzed noise on quantum

teleportation. Since quantum teleportation is a key ingredient in many quan-
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tum information protocols, it is essential to asses the in�uence of inherent noise

of various photon sources on its performance. In quantum circuits, including

teleporation, one often uses �delity as a measure of the circuits quality. As-

suming a pure input qubit state |ψ〉in and the resulting teleported state ρ̂out,

�delity can be calculated using the formula

F = |〈ψin|ρ̂|ψin〉|. (4.2)

Note that when teleportation is replaced by classical �measure and recreate�

protocol, the �delity can not exceed its classical limit of 2
3 [44]. Even though

it is impossible to reach perfect �delity F = 1 in realistic conditions, one still

targets to maximize its value.

In our analysis we have calculated the dependence of average �delity 〈F 〉

on the signal-to-noise ratio (SNR). If we �x the parameter R to its optimum

value (R ≈ 0.35) the �delity 〈F 〉 is than a function that depends on CCg and

only one of the CCs or CCf since these two are bound by �xed parameter R.

As a result the �delity is a function of SNR. We have calculated the average

�delity using the formula

〈F 〉 =
PCCgFg + PCCsFs + PCCfFf

PCCg + PCCs + PCCs
, (4.3)

where

PCCg =
CCg
4f

, PCCs =
CCs
4f

, PCCf =
CCf
4f

, (4.4)

are the probabilities of the coincidence events. f stands for the repetition rate

of the pumping laser and Fg, Fs, Ff are the teleportation �delities if the coinci-

dence CCg, CCs or CCf occur respectively. The value of teleportation �delity

Fg = 1 because from the de�nition there is one photon in each mode so the

teleportation succeeds perfectly, at least in principle. On the other hand, the

teleportation �delities Fs and Ff have values of 1
2 . First one because the two
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�delity F �delity uncertainty interval SNR [dB]

0.96 〈0.93, 0.98〉 9.91 ± 1.27

0.94 〈0.90, 0.96〉 7.50 ± 0.79

0.92 〈0.86, 0.95〉 6.23 ± 0.71

0.89 〈0.85, 0.91〉 5.17 ± 0.56

0.85 〈0.83, 0.86〉 3.29 ± 0.58

Table 4.4: Calculated data and their respective errors when investigating the

dependence of average �delity F on the SNR.

photons in signal mode are randomly projected onto Bell states uncorrelated

with the teleported photon which is missing. The later because the two pho-

tons in attenuated laser mode are not correlated with the idler mode which is

thus a mixed state.

Calculated values are summarized in Tab. 4.4 and visualized in Fig. 4.5. We

observe that the average �delity drops only slightly with decreasing SNR, so the

average �delity is above 80% for SNR around 3 dB. However this does not take

into account other experimental imperfections (such as two�photon overlap,

polarization adjustments etc.) that combining with photon-number noise can

lead to such a low �delity that the protocol fails. The �delity uncertainty

intervals were calculated using a Monte�Carlo simulation based on poisson

distribution of detected coincidences.
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culated results from experimentally observed SNRs. The solid violet line cor-

responds to our theoretical model, the dotted red line is the classical protocol

limit (F = 2/3) [44] and the dashed green line indicates the secure teleporta-

tion, i.e., F = 5/6 cloning threshold see [45].
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5 Hong-Ou-Mandel interference

One example where we can make use of our model is the Hong�Ou�Mandel

interference [41] which is a vital component for quantum information processing

with light. In this phenomenon, two photons are mixed on a beam splitter and

if they are indistinguishable in all degrees of freedom, they interfere leaving the

beam splitter together by one output mode. In the previous experiments, we

intentionally made sure that the photons from signal and fundamental mode

will not arrive to the beam splitter at the same time because the interference

o�ect will obstruct coincidence measurments. In this measurment however, we

wanted them to overlap resulting in dip in coincidence counts.

First, we had to �nd the position overlap, that was done by lengthening the

distance of the fundamental mode coupler and measuring the number of three-

fold coincidences as a function of the coupler's position. When the coupler

position matches the photons overlap on the beam splitter, the number of

coincidences drops (HOM dip).

Fig. 5.1 shows a naive approach in which we did not optimize anything

like if we were not aware of our model for photon�number noise. The pump

power was at 100% (190mW), the false coincidences constitute 44% of all the

three�fold detections. We used a 10 nm interference �lter in the idler mode.

Visibility as a metric of quality is de�ned as

V =
M −m
M +m

, (5.1)
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Figure 5.1: Dependence of coincidence counts on motor position. Points visu-

alize experimentally observed results, the solid blue line depicts �tted experi-

mental data with Gaussian function. VIS stands for visibility, FWHM is Full

Width at Half Maximum.

where M is the maximum number of coincidences and in the opposite m is

de�ned as the minimum number of coincidences. In this case the visibility was

a mere 37%.

In the next measurment, we set the ratio of fundamental�mode and SPDC�

mode based false coincidences R to its optimum value. The pump power was

again at 100% (190mW), the false coincidences droped to 28%. In the Fig.5.2

we can see better results as the visibility reaches 45%.

The model tells us that for higher visibility we should lower the pump power

while maintaning R on its optimum. The power was thus set to 33% (63mW),

the false coincidences dropped to 17%. Also we used 3 nm interference �lter

in the idler mode. This way we can further reduce false coincidences from

fundamental mode. The Fig.5.3 shows the results with visibility of 72%.

In the Fig.5.4 yet another measurment is depicted. The pump power was at

25% (48mW) and the false coincidences at 12% resulting in highest observed
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visibility of 74%. There is also a downside, by lowering the pump power the

three�fold coincidences are scarce which is a problem for parctical usage. Note

that while in the �rst case, we observed about 22 coincidences per minute, in

the case of highest visibility there was only abou 4.5 coincidences per minute
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6 Conclusions

In conclusion, we have shown that our model �ts the experimental data very

well. We have demonstrated the role of the ratio R between the SPDC-based

and attenuated fundamental-based false coincidences. We have also con�rmed

its optimal value being close to 1 depending on the pumping strength. In the

next step, we have veri�ed that SNR (when optimal R) can only be increased

by decreasing the SPDC pumping strength. Our data �ts well both the SNR

as a function of genuine coincidence rate, and also the predicted coincidence

rate as a function of pumping strength. Finally, we have successfully tested the

genuine coincidence rates as functions of coupling e�ciencies while maintaining

constant SNR. Our model and the obtained conclusions drawn from it can be

useful for experimentalist when constructing a similar three-photon source and

using it for teleportation-like protocols. With respect to that, we have made

a prediction of the impact of this noise to teleportation �delity. While �delity

drops smoothly with decreasing SNR, in conjunction with other experimen-

tal imperfections it may fall below the classical threshold. The results of the

Hong�Ou�Mandel interference prove that our model works properly and can

signi�cantly improve the set up for QIP measurements.
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In this paper, we develop a simple model describing inherent photon-number noise in Rarity-
Tapster type interferometers. This noise is caused by generating photon pairs in the process of
spontaneous parametric down-conversion and adding a third photon by attenuating fundamental
laser mode to single-photon level. We experimentally verify our model and present resulting signal
to noise ratios as well as obtained three-photon generation rates as functions of various setup param-
eters. Subsequently we evaluate impact of this particular source of noise on quantum teleportation
which is a key quantum information protocol using this interferometric configuration.

I. INTRODUCTION

Quantum information processing (QIP) is a modern
and perspective reaserch discipline of information science
[1–3]. One of the platforms suitable for QIP are dis-
crete photons manipulated using linear optics [4]. This
platform is particularly promising for quantum commu-
nications, because of fast and relatively noiseless prop-
agation of individual photons through open space or in
fibers [5, 6].

Quantum teleportation [7, 8] is a key ingredient for
many quantum information protocols such as entangle-
ment swapping [9], quantum relays [10] or teleportation-
based quantum computing [11]. On the platform of lin-
ear optics, quantum teleportation is usually achieved in
the so-called Rarity-Tapster interferometer [12] (shown
in Fig. 1). In this interferometer, one photon from an
entangled pair gets overlapped on a balanced beam split-
ter with an independent photon [4]. The output ports of
the beam splitter are then subjected to suitable Bell-state
projection. Mulitphoton inteferometers have also a num-
ber of potential applications that go beyond quantum
teleportation (for a review see Ref. [13]). For example,
they can be also used for engineering cluster states [14].

Single–photon sources used in experimental quantum
information processing today are however imperfect and
the number of photons generated per pulse is random,
given by the state’s photopulse statistics (e.g. Bose-
Einstein, Poisson). While vacuum states can be filtered
out by suitable post-selection, higher photon-number
contributions can not always be recognized [15, 16].

In 1988, Ou and Mandel predicted that visibility of
two-photon bunching with classical beams is limited to
50% due to their photon-number statistics [17]. This
research was further generalized to interaction between

∗Electronic address: vojtech.travnicek01@upol.cz
†Electronic address: bartkiewicz@jointlab.upol.cz
‡Electronic address: antonin.cernoch@upol.cz
§Electronic address: k.lemr@upol.cz

classical beam and ideal single-photon source [12]. Sub-
sequently, researchers have managed to considerably in-
crease visibility in Rarity-Tapster interferometers by op-
timizing spectral properties of interacting beams [18–
20]. Independently, several research groups have investi-
gated two-photon bunching between two heralded single-
photon sources [21–23].

In this paper, we present a simple and practi-
cal model describing inherent photon-number noise in
Rarity-Tapster type interferometers based on sources us-
ing spontaneous parametric down conversion (SPDC)
and attenuated coherent state. These are currently pre-
dominant photon sources in experimental linear-optical
QIP [5, 24–29]. We have experimentally tested validity
of our model and established both theoretical and ex-
perimental relations between photon-number noise and
various setup parameters. Our goal was to investigate
the effect of photon–number noise originating directly in
photon sources. To our best knowledge no article provid-
ing such analysis has yet been published. The influence of
transmission noise on the fidelity and security of quantum
teleportation of qubits was analyzed in Ref. [30]. Photon-
number noise does not originate from experimental im-
perfections but is rather an intrinsic property of various
photon sources (having their photon-number statistics).
This fact even further stresses out the importance of this
investigation.

The paper is organized as follows: In Sec. II we develop
a theoretical model describing dependency of signal–to–
noise ratio on the main parameters of the experimental
setup. In Sec. III we present experimnetal data verif-
ing our model. In Sec. IV we investigate the impact
of the photon–number noise on teleporation fidelity. We
conclude in Sec. V.

II. THEORETICAL MODEL

Here, we assume that the pairs of photons are gener-
ated in the process of degenerate parametric down con-
version. The generated optical fields are not strictly
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FIG. 1: Setup of the experiment, 1 – idler mode, 2 – signal
mode, 3 – attenuated fundamental laser mode, IF(1-3) – inter-
ference filters (3 nm in FWHM), NDF(1,3) – neutral density
filter, S(2,3) – shutters, SHG – second harmonics generation,
Mira – Ti-sapphire fs laser (central wavelength of 826 nm,
FWHM of 11 nm), BBO – a β-BaB2O4 crystal for SPDC.

monochromatic, but for each wavelength from their spec-
trum the following reasoning holds. Let us denote |ψs〉
the state of signal and idler modes of the SPDC gener-
ated photons (Nos. 1 and 2) and |α〉 the coherent state
of the attenuated fundamental laser mode (No. 3). We
start with the Hamiltonian for SPDC process in the form
of [31]

ĤSPDC = γαpâ
†
1â
†
2 + h.c., (1)

where γ � 1 is an interaction constant, αp is a strong
pumping amplitude of frequency doubled laser beam and
â†1, â

†
2 are creation operators of the idler and signal pho-

ton modes respectively. The corresponding evolution op-
erator is then of the form of

Û = exp

(
i

~
Ĥt

)
. (2)

The state of the signal and idler modes is obtained by
applying the Û operator to the initial vacuum state

|ψs〉 ∝ |00〉+
it

~
γαp|11〉+

(itγαp)
2

2~2
|22〉+ ... (3)

We can express this state as

|ψs〉 ∝ |00〉+ κ|11〉+ κ2

2
|22〉, (4)

for |κ| � 1 and

κ =
it

~
γαp. (5)

The term |00〉 in Eq. (4), can be omitted because the
first photon works as a herald which means that if it
does not get detected the measurement will not succeed.
This is under the assumption of negligible dark counts.

Furthermore, we have to take into account probability of
coupling the photons from SPDC into optical fibers. Let
us denote t1 and t2 the amplitude coupling efficiency of
idler and signal modes respectively. The state of the first
and second photon then reads

|ψs〉 ∝ 2κt1t2|11〉+ 2κt1

√
1− t22|10〉+

+ κ2t1

√
1− t21t22|12〉+ κ2t21t

2
2|22〉, (6)

where again we have excluded the terms corresponding
to the first mode being in a vacuum state. Moreover, the
last term in Eq. (6) can be neglected with respect to the
third term since in typical experimental setups t1,2 � 1.

Next, we can express the coherent state of attenuated
fundamental laser mode of the same wavelength as the
generated photon pairs in Fock basis and limit the ex-
pansion to first N terms

|α〉 ≈
N∑

n=0

αn

√
n!
|n〉. (7)

Any filtering or coupling efficiency do not change the na-
ture of the attenuated laser mode which remains in a co-
herent state with amplitude α already including all pos-
sible losses. Thus we do not need to consider its coupling
efficiency like in the SPDC modes.

If the source were to be perfect, there should be pre-
cisely one photon in each of the three modes. Simultane-
ous detection of these photons corresponds to genuine co-
incidences denoted CCg. In reality, SPDC-based sources
yield also higer-photon-number contributions. On the
beam splitter, these photons may split leading to three-
photon detection even if there were no photons in the
attenuated laser mode [see the third term in Eq. (6)].
These detections denoted CCs contribute to added noise.
Similar source of noise are higer photon-number contri-
butions from the fundamental laser mode that again can
split on the beam splitter resulting in parasitic detections
CCf . Using Eqs. (6) and (7) for N = 3, we can identify
the generation probabilities of the genuine coincidences
as well as of the two parasitic contributions

CCg ∝ |κ|2|α|2t21t22, (8)

CCs ∝ t21t42
|κ|4
4
, (9)

CCf ∝ |κ|2t21
( |α|4

2
+
|α|6
6

)
. (10)

Note that in Eq. (9), we have assumed 1− t21 ≈ 1 and in
Eq. (10) 1− t22 ≈ 1. These approximation are valid espe-
cially when one considers a linear–optical setup fed by the
source which strongly diminishes the transmisivity due to
technological losses (back–scattering, fiber coupling etc.)
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The goal now is to maximize the signal-to-noise ratio
defined as

SNR ≡ CCg

CCs + CCf
=

12|α|2t22
3|κ|2t42 + 6|α|4 + 2|α|6 . (11)

In a typical setup as depicted in Fig. 1, there are two
parameters that can easily be tuned: (i) amplitude of
the attenuated fundamental laser mode α and (ii) SPDC
pumping amplitude αp. In subsequent analysis, we inves-
tigate the dependency of SNR on these two parameters.

First we look at SNR as function of α, which translates
to the observed ratio R between coincidence rates CCf

and CCs

R ≡ CCf

CCs
=

2|α|4
|κ|2t42

+
2|α|6
3|κ|2t42

≈ 2|α|4
|κ|2t42

. (12)

We have omitted the second expansion term from CCf

because for typical levels of attenuation to single-photon
level |α| � 1. The signal-to-noise ratio can now be ap-
proximated as function of the parameter R

SNR ≈ 2
√
2R

|κ|(R+ 1)
. (13)

One can now find optimal value of R by searching for
maximum of this function. When |α| � 1 holds, the op-
timal value of R is 1. For larger values of |α| the optimal
R shifts to slightly lower values because the approxima-
tion in Eq. (12) does not longer apply. In an experiment,
one should thus seek to balance the false coincidence rates
from SPDC and from attenuated fundamental mode.

In the subsequent analysis, we assume that |α| � 1
holds and fix the parameter R at its optimal value of 1.
The Eq. (13) then simplifies into the form

SNR =
2
√
2

|κ| , (14)

which can, with the help of Eqs. (8) and (12), be ex-
pressed in terms of the genuine coincidence rate CCg

SNR ∝ 3

√
16t21t

4
2

CCg
. (15)

One can now make two important conclusions towards
the performance of the interferometer. Firstly, the SNR
can only be increased by decreasing the value of |κ|
which means by lowering the SPDC pumping strength
|αP |. Secondly, the obtained coincidence rate depends
on the coupling efficiency of the signal and idler SPDC
modes. Especially, it scales with the fourth power of the
amplitude transmissvity of the signal mode (or second
power of intensity transmissivity). For any given pump-
ing strength, one can improve the overall coincidence rate
by improving the coupling efficiencies. The SNR, how-
ever, can not be improved by this adjustment.

III. EXPERIMENTAL IMPLEMENTATION

We have subjected our model and the resulting conclu-
sions to an experimental test. Our experimental setup is
depicted in Fig. 1. The attenuated fundamental laser
mode (mode No. 3) is obtained by splitting a small por-
tion from the femtosecond pumping laser beam (Coherent
Mira at 826 nm). It then passes through a neutral den-
sity filter (NDF3) and 3nm-wide interference filter (IF3)
before been coupled into single-mode fiber.

The main laser beam enters second harmonics genera-
tion unit (SHG), where its wavelength becomes 413 nm.
The beam then passes through a neutral density filter
(NDF1) and enters a Type I cut BBO crystal (0.64mm
thick) which due to SPDC generates idler and signal pho-
tons (Nos. 1 and 2) respectively. The photons in signal
mode then pass through a 3nm-wide interference filter
(IF2). The photons in idler mode pass through a 10nm-
wide interference filter (IF1). The two SPDC modes are
then coupled into single-mode fibers, idler mode is di-
rectly lead to a single-photon detector unlike the modes
2 and 3 that are mixed in a 50:50 fiber coupler before be-
ing detected. The avalanche photodiode detectors with
suitable electronics record three-fold coincidence detec-
tions. Coincidence detection window was set to 5 ns, less
than the laser repetition period of approximately 12.5 ns.
We set the temporal displacement between photons 2 and
3, so they do not overlap in the fiber coupler. Thus we
prevent the effect of two-photon interference.

In our experiment, we performed all the testing mea-
surements in three steps: (i) with the shutters S2 and
S3 open we detect all three-fold coincidences CCa which
include CCg and parasitic contributions from signal and
attenuated fundamental laser mode CCs and CCf

CCa = CCg + CCf + CCs. (16)

(ii) then we close shutter S3 and obtain three-fold coince-
dences only if there is more than one photon in signal
mode, thus we measure parasitic coincidence rate CCs.
(iii) finally we close shutter S2, open S3 and therefore
obtain three-fold coincedences only if there is more than
one photon in attenuated fundamental laser mode – par-
asitic coincidence rate CCf . Note that CCg is obtained
from Eq. (16) simply by subtracting CCf and CCs from
CCa. Each step took about 100 s and the entire three-
step procedure was reapeted multiple times, thus we have
avioded a bias caused by long-term laser power fluctua-
tions.

First, we have experientially verified the dependence
of SNR on α, hence as a function of R [see Eq. (13)].
The experiment consisted of measuring the coincidence
rates for various values of R using the above-mentioned
three steps. The parameter R was changed by modifying
transmissivity of NDF3. Experimentally obtained values
are summarized in Tab. I and visualized in Fig. 2 to-
gether with the theoretical fit based on Eq. (13). The
dashed line shows a fit in which we limited the expan-
sion in Eq. (7) to the first three terms, however it turns
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SNR [dB] parameter R

-6.222 ± 0.740 0.013 ± 0.004
-4.440 ± 0.432 0.030 ± 0.004
-3.010 ± 0.440 0.040 ± 0.006
-1.105 ± 0.388 0.080 ± 0.008
-0.530 ± 0.442 0.340 ± 0.021
-0.086 ± 0.392 1.130 ± 0.052
-2.201 ± 0.241 1.510 ± 0.057
-3.502 ± 0.667 3.290 ± 0.290
-6.434 ± 0.727 7.180 ± 0.680

TABLE I: Experimentaly observed data and their respective
errors when investigating the dependence of SNR on the pa-
rameter R

out that the model is not accurate enough for R → 10
(see Fig. 2). With growing contribution of parasitic co-
incidences from the attenuated fundamental laser mode
CCf , and thus also growing ratio R, higher terms in Eq.
(7) can no longer be neglected and the approximation in
Eq. (12) does no longer hold. The solid line which rep-
resents a model where we used the first four terms of the
expansion, is accurate enough throughout the entire mea-
sured range of R. We went a step further and expended
our model (represented in Fig. 2 by dash-dot line) to
include the first five terms of the expansion. There is
a slight but unsubstantial improvement to the previous
case and thus we find the four-term expansion to be the
optimum compromise between accuracy and complexity.
To simplify the following experiments, we have set the
attenuated laser beam power so that the approximation
in Eq. (12) holds. This means setting R ∈ [0.2; 1] which
also coincides with the SNR maximum.

SN
R

 [
dB

]

−8
−7
−6
−5
−4
−3
−2
−1

0
1

parameter R
0,01 0,1 1 10

N = 2
N = 3
N = 4

FIG. 2: Dependence of SNR on parameter R. Points visualize
experimentally observed results. Lines correspond to various
levels of expension in Eq. (7): to 2 (green dashed line), 3
(black solid line) and 4 (magneta dashed–dot line) terms.

As the next test, we have measured the dependence of
SNR on the pumping amplitude αp, which also translates
into the dependence of SNR on the genuine coincidence
rate CCg [see Eqs. (14) and (15)]. We maintained the
ratio R close to its optimum discovered in previous test
(R ≈ 0.35 ± 0.04) and were changing αp by changing

SNR [dB] CCg per 100 s Pp ∝ |αp|2 [mW]

9.91 ± 1.274 2.91 ± 0.111 13 ± 2
7.50 ± 0.787 7.23 ± 0.217 25 ± 2
6.23 ± 0.714 19.88 ± 0.613 50 ± 2
5.17 ± 0.559 51.59 ± 1.384 104 ± 3
3.33 ± 0.577 135.28 ± 4.392 190 ± 3

TABLE II: Experimentally observed data and their respective
errors when investigating the dependence of SNR on the CCg

and CCg on the αp.

transmissivity of NDF1. So for every measured value of
SNR, we have adjusted both the NDF1 (influencing αp)
and NDF3 (to maintain constant R). The measurement
procedure was also realised in the previously mentioned
three acquisition steps. Experimentally obtained values
are summarized in Tab. II and visualized in Fig. 3 to-
gether with a theoretical fit based on Eq. (14). The Fiq.
3 proves that our four-term model matches well the ex-
perimental data. We have also investigated dependence
of CCg on pumping power Pp which is proportional to
pumping amplitude |αp|2.

S
N

R
 [

d
B

]

2

4

6

8

10

12

P
p 

[m
W

]

0

50

100

150

200

250

CCg per 100 s
0 20 40 60 80 100 120 140 160

(a)

(b)

FIG. 3: (a) Dependence of SNR on genuine coincidence rate
CCg. Points visualize experimentally observed results, the
solid violet line depicts fitted experimental data with theoret-
ical dependence based on Eq. (14). (b) Dependence of CCg

on Pp. The solid green line depicts fitted experimental data
with theoretical dependence based on Eq. (8).

The final two tests of our model involved verifying the
dependence of genuine coincidence rate CCg on the cou-
pling efficiencies (i) t1 and (ii) t2 as predicted in Eq.
(15). During each of the two tests, the parameter R
and the pumping power were kept constant resulting in
constant SNR. During the first test the value of SNR
was (4.7± 1.6) dB. In the second test the SNR was
(5.0± 1.3) dB. In order to test the dependence on idler
and signal mode transmissivities t1 and t2, we have ac-
quired the coincidences in the usual three steps for vari-
ous levels of attenuation by closing a diaphragm on the
idler and signal mode fiber couplers respectively. When
the signal mode attenuation was set, the NDF3 in the
attenuated fundamental laser mode was readjusted to
maintain a constant R. This was not necessary when
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idler attenuation (t1) signal attenuation (t2)
A1 CCg per 100 s A2 CCg per 100 s

1 41.2 ± 3.2 1 44.8 ± 2.5
1.4 27.2 ± 1.7 1.3 22.2 ± 1.5
2 19.0 ± 1.7 1.9 10.0 ± 1
2.7 14.3 ± 1.8 2.8 6.2 ± 1
4 10.0 ± 1.7 3.8 2.3 ± 0.3

TABLE III: Experimentally observed data and their respec-
tive errors when investigating the dependence of CCg on the
attenuation factors A1 and A2.

closing the idler mode diaphragm. For better readability
of our results, we introduce the idler and signal mode in-
tensity attenuation factors A1 and A2 so that the modes’
transmissivities become t2j → t2j/Aj for j = 1, 2. Experi-
mentally observed values are summarized in Tab. III and
visualized in Fig. 4. Fig. 4 demonstrates that with con-
stant SNR CCg dependents on modes’ transmissivities t21
and t22 as functions 1

x and 1
x2 respectively as predicted in

Eq.(15).
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FIG. 4: (a) Dependence of CCg on attenuation factor A1.
Points visualize experimentally observed results, the solid
blue–green line depicts fitted experimental data with theo-
retical fit based on Eq. (15). (b) Dependence of CCg on
attenuation factor A2. The solid orange line depicts fitted
experimental data with theoretical dependence based on Eq.
(15).

IV. IMPACT OF THE NOISE ON
TELEPORTATION FIDELITY

We now investigate the impact of the above analyzed
noise on quantum teleportation. Since quantum telepor-
tation is a key ingredient in many quantum information
protocols, it is essential to asses the influence of inherent
noise of various photon sources on its performance. In
quantum circuits, including teleporation, one often uses
fidelity as a measure of the circuits quality. Assuming a
pure input qubit state |ψ〉in and the resulting teleported

state ρ̂out, fidelity can be calculated using the formula

F = |〈ψin|ρ̂|ψin〉|. (17)

Note that when teleportation is replaced by classical
“measure and recreate” protocol, the fidelity can not ex-
ceed its classical limit of 2

3 [32]. Even though it is impos-
sible to reach perfect fidelity F = 1 in realistic conditions,
one still targets to maximize its value.

In our analysis we have calculated the dependence of
average fidelity 〈F 〉 on the signal-to-noise ratio (SNR). If
we fix the parameter R to its optimum value (R ≈ 0.35)
the fidelity 〈F 〉 is than a function that depends on CCg

and only one of the CCs or CCf since these two are
bound by fixed parameter R. As a result the fidelity is a
function of SNR. We have calculated the average fidelity
using the formula

〈F 〉 = PCCg
Fg + PCCs

Fs + PCCf
Ff

PCCg
+ PCCs

+ PCCs

, (18)

where

PCCg =
CCg

4f
, PCCs =

CCs

4f
, PCCf

=
CCf

4f
, (19)

are the probabilities of the coincidence events. f stands
for the repetition rate of the pumping laser and Fg, Fs,
Ff are the teleportation fidelities if the coincidence CCg,
CCs or CCf occur respectively. The value of teleporta-
tion fidelity Fg = 1 because from the definition there is
one photon in each mode so the teleportation succeeds
perfectly, at least in principle. On the other hand, the
teleportation fidelities Fs and Ff have values of 1

2 . First
one because the two photons in signal mode are ran-
domly projected onto Bell states uncorrelated with the
teleported photon which is missing. The later because
the two photons in attenuated laser mode are not corre-
lated with the idler mode which is thus a mixed state.

Calculated values are summarized in Tab. IV and vi-
sualized in Fig. 5. We observe that the average fidelity
drops only slightly with decreasing SNR, so the average
fidelity is above 80% for SNR around 3 dB. However this
does not take into account other experimental imperfec-
tions (such as two–photon overlap, polarization adjust-
ments etc.) that combining with photon-number noise
can lead to such a low fidelity that the protocol fails.
The fidelity uncertainty intervals were calculated using a
Monte–Carlo simulation based on poisson distribution of
detected coincidences.

V. CONCLUSIONS

In conclusion, we have shown that our model fits the
experimental data very well. We have demonstrated the
role of the ratio R between the SPDC-based and attenu-
ated fundamental-based false coincidences. We have also
confirmed its optimal value being close to 1 depending
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fidelity F fidelity uncertainty interval SNR [dB]

0.96 〈0.93, 0.98〉 9.91 ± 1.27
0.94 〈0.90, 0.96〉 7.50 ± 0.79
0.92 〈0.86, 0.95〉 6.23 ± 0.71
0.89 〈0.85, 0.91〉 5.17 ± 0.56
0.85 〈0.83, 0.86〉 3.29 ± 0.58

TABLE IV: Calculated data and their respective errors when
investigating the dependence of average fidelity F on the
SNR.
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5 10

FIG. 5: Dependence of average fidelity 〈F 〉 on SNR. Points vi-
sualize calculated results from experimentally observed SNRs.
The solid violet line corresponds to our theoretical model, the
dotted red line is the classical protocol limit (F = 2/3)[32] and
the dashed green line indicates the secure teleportation, i.e.,
F = 5/6 cloning threshold see [30].

on the pumping strength. In the next step, we have ver-
ified that SNR (when optimal R) can only be increased
by decreasing the SPDC pumping strength. Our data fit
well both the SNR as a function of genuine coincidence
rate, and also the predicted coincidence rate as a func-
tion of pumping strength. Finally, we have successfully
tested the genuine coincidence rates as functions of cou-
pling efficiencies while maintaining constant SNR. Our
model and the obtained conclusions drawn from it can
be useful for experimentalist when constructing a simi-
lar three-photon source and using it for teleportation-like
protocols. With respect to that, we have made a predic-
tion of the impact of this noise to teleportation fidelity.
While fidelity drops smoothly with decreasing SNR, in
conjunction with other experimental imperfections may
lead to fidelity below the classical threshold.
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