
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČEŃI TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČŃICH TECHNOLOGÍI
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTŃICH SYSTÉMŮ

REFACTORING AND VERIFICATION OF THE CODEOF MKFS XFS
REFAKTORING A VERIFIKACE KÓDU MKFS XFS

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. JAN ŤULÁK
AUTOR PRÁCE
SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUĆI PRÁCE

BRNO 2017

Abstrakt

Tato práce popisuje pr̊uběh refaktoringu programu mkfs.xfs za účelem zp̌rehledněńı jeho kódu
a vyčǐstěńı technického dluhu naakumulovaného za dvacet let existence tohoto programu, a
následně jeho statickou analýzu. Použité nástroje (CppCheck, Coverity, Codacy, GCC, Clang)
jsou srovnány z hlediska počtu i typu nalezených chyb.

Abstract

This work describes the processes of refactoring mkfs.xfs program for a purpose of refining its
code and cleaning the technical debt accumulated over 20 years of the program’s existence.
The mkfs.xfs source code is then a subject to static analysis and the used tools (CppCheck,
Coverity, Codacy, GCC, Clang) are compared in terms of the number and type of the found
defects.

Kĺıčová slova

XFS, refaktoring, formálńı analýza, formálńı verifikace, Srovnáńı, Coverity, Codacy, GCC, Clang,
CppCheck

Keywords

XFS, refactoring, formal analysis, formal verification, comparison, Coverity, Codacy, GCC, Clang,
CppCheck

Citation

Jan Ťulák: Refactoring and Verification of the Code of mkfs xfs, diplomová práce, Brno, FIT
VUT v Brně, 2017

Refactoring and Verification of the Code of mkfs xfs

Declaration

Hereby I declare that I wrote this work on my own and all used sources are stated and correctly
noted as citations.

. .
Jan Ťulák

May 23, 2017

Acknowledgement

I want to thanks to my managers Eric Sandeen and Steven Whitehouse, my colleagues at Red
Hat, to David Chinner, maintainer of XFS, and to everyone in XFS community.

c© Jan Ťulák, 2017.
This thesis was created as a school publication on Brno University of Technology, Faculty
of Information Technology. This publication is protected by copyright and its usage without
permission of its author is prohibited, except situations defined in law.

Contents

1 Introduction 3

2 XFS filesystem 5
2.1 XFS Architecture overview . 5
2.2 mkfs.xfs . 7
2.3 xfstests . 7

3 Refactoring of mkfs.xfs 9
3.1 Development processes . 9
3.2 Initial codebase . 10
3.3 First patchset . 12

3.3.1 Timeline and progress . 14
3.3.2 Description of important changes . 14

3.4 Second patchset . 17
3.4.1 Timeline and progress . 19

3.5 Summary . 19

4 Formal Analysis and Verification 20
4.1 Static Analysis . 20

4.1.1 Error patterns . 21
4.1.2 Data flow analysis . 22
4.1.3 Abstract interpretation . 22

4.2 Model Checking . 23
4.3 Theorem Proving . 23

5 Used Techniques and procedures 25
5.1 Testing Environment . 25

5.1.1 CppCheck . 26
5.1.2 Coverity . 26
5.1.3 GCC . 27
5.1.4 Clang . 27

5.2 Results Processing . 27

6 Results 29
6.1 CppCheck . 29
6.2 Codacy . 31
6.3 GCC and Clang . 32

6.3.1 Version 4.6.0 . 32
6.3.2 Revision a887c950 . 33
6.3.3 Version 4.7.0 . 34

6.4 Coverity . 34
6.4.1 Online Service . 35
6.4.2 Local analysis . 36

6.5 Summary . 37

1/42

CONTENTS

7 Conclusion 38

2/42

1| Introduction

In software projects with long life, even an initially clean codebase can become messy and
complicated. Moreso when we speak about open-source projects where the original creators left
yers ago and new people of various capabilities and knowledge continue the development.

In such projects, new functionality is added to the existing code with minimal changes to the
rest of the project. This may simplify the merging of these changes, as any responsible person
can easily understand what the change does. But on the other side, in the long term, it turns
the code into a disordered chaos.

The result is increasingly more difficult to maintain and test, and as a single functionality can
be spread over many portions of the project, any change requires more and more attention and
time.

xfsprogs, a package of tools for XFS filesystem, is such a project. While the filesystem it-
self is subject to careful scrutiny from the Linux kernel community, the tools like mkfs.xfs1,
fsck.xfs2 and others are not so publicly exposed and get a lot less attention. From our ex-
perience with working on this project, it happens that only one or two persons other than the
author of a patch may read it, and miss some subtle side effect the change has. Sometimes,
the large set of tests XFS maintains captures this bug, sometimes it does not and it is noticed
much later.

On this point, it is important to highlight that despite the naming convention, each mkfs tool
is completely independent project and, for example, mkfs.xfs and mkfs.ext4 do not share
any code except system libraries.

Some parts of this code are more than 20 years old (see chapter 1 for a detailed history of XFS)
and in need of intensive cleaning. The test suite (project xfstests) maintains hundreds of more
or less complex tests, but these are limited in what they can detect as they usually work in this
way: make a filesystem, then test that, so many errors in mkfs.xfs are difficult to capture
or notice. XFS also uses an automatic static analysis from Coverity, which is useful, but the
project has no good data on the reliability of this analysis.

With the approval of David Chinner, then the maintainer of XFS, we began the refactoring of
mkfs.xfs, which was overdue. The goal of this work is to repay the technical debt accumulated
over the years. That means not only fixing some long-known issues and cleaning particularly
complex parts of the code, but also making structural changes to minimize the amount of code
that must be added or changed during the regular development (adding and removing features
of the filesystem). These changes should slow the build-up of the technical debt in the future.

After implementing these changes, this work should verify how effective the currently used tests
and analysis are. Even if some testing and analysis methods can be used only on a part of the
code, the results, when compared with other tools, still provides an estimate about the soundess
and completeness of every used method.

1Formats a partition as XFS.
2Usually checks and repairs errors in an existing filesystem. But for XFS it only tells the user what other tools

to use.

3/42

CHAPTER 1 INTRODUCTION

At the same time, this work can also be seen as a review of how well various analysis and
verification methods perform on real and in-production code.

The refactoring was done in two parts. One set of changes was merged into upstream in June
2016 (xfsprogs 4.73), the other set is, at the time of writing, still in development. The versions
of xfsprogs at different stages of this work were:

• Before the beginning of refactoring – xfsprogs 4.6.

• After merging the first part – xfsprogs 4.7.

• Before merging the second part – xfsprogs 4.11 at the time of writing.

• After applying the second part – not yet merged, changes only in a local repository.

This work is structured as follows: First, information about XFS and mkfs.xfs are provided in
the first chapter. In the following, third chapter, we look at the refactoring done and discuss the
changes. After that, another chapter is dedicated to explaining formal analysis and verification,
describing common techniques, and we point out notable tools, from which we select few to use
in the fifth and sixth chapter, where the testing environment is described and results analysed.

3The releasing of xfsprogs is tightly coupled with releases of XFS kernel module, which is part of Linux. Thus,
xfsprogs uses the same version number that the respective XFS kernel module and Linux has.

4/42

2| XFS filesystem

XFS is a journaling filesystem created by SGI in 1993. The new filesystem, intended as a
powerful replacement of EFS with the expectation of growing amount of data in the future was
first released in IRIX 5.3 in 1993 [30]. The Linux port began in 1999 and since 2002 XFS has
been accessible in the mainline Linux Kernel [31, Chap. 1.2, 1.3].

XFS is actively developed for all its history since 1993, making it one of the oldest filesystems
in active use on modern Linux machines [8, 40:25].

ext3 ext4 XFS NTFS

max fs size 1 EiB 16 TiB 16 EiB 256 TiB

max file size 8 TiB 16 TiB 8 EiB 256 TiB

max files 232 232 264 232

date resolution 1 s 1 ns 1 ns 100 ns

Table 2.1: Comparison of various filesystems and their limits. Sources: [29, 22, 21, 20, 16, 27].

Because of its capabilities, XFS is used by well known institutions like CERN and Fermilab [16]
for storing large amounts of data. Unlike most other Linux filesystems, XFS is a 64bit filesystem,
meaning it provides far greater limits for storage and file size1, but its architecture also offer
great scalability in terms of parallel I/O.

XFS as a whole is separated into three main projects: First, there is the XFS filesystem itself,
in the form of a driver. Then a set of tools in a package called xfsprogs is tightly connected
with XFS filesystem and contains programs useful or necessary for creation and manipulation
of the filesystem. Among the tools included are mkfs.xfs, on which this thesis is focused, but
also other tools: xfs io, xfs growfs, et cetera. And finally, there are xfstests, which is a test
suite containing hundreds of shell scripts used for verifying the behaviour of entire XFS chain
(from mkfs to the kernel code). This project is also partially used by other filesystems.

In addition to the xfstests test suite, xfsprogs also uses an automatic static analysis from
Coverity [14]. However, to see detailed information and defects there, one must be approved
by existing members of the project.

2.1| XFS Architecture overview

When a XFS partition is formated, up to three areas are created on the disk: Data section
is always present. An optional real-time section is omitted by default. The log section must
always exist, but can be placed on a different device. The data part is then split into multiple de
facto independent regions called Allocation Groups, which handle space allocation and allows
for higher parallelism, as most operations can be done on each Allocation Group independently
on the others. The log section may be internal to one of the Allocation Groups.

1At least matured ones. Newer filesystems, like Btrfs, are also 64bit, but have not yet reached stability required
in business sector.

5/42

CHAPTER 2 XFS FILESYSTEM

Figure 2.1: Primary AG immediately after mkfs [33, Ch. 3].

As each Allocation Group is a de facto standalone region, each contains a superblock as well as
block and inode allocation structures, and the only global information maintained by the first
(primary) AG is free space and total inode counts across the whole filesystem as can be seen
on Figure 2.1.

The XFS real-time section is dedicated for files with a real-time attribute bit set, and operations
with these files should have predictable latencies [32]. The log section is used for metadata
journaling, to recover from situations like power failure on the next mount [33, 13].

When created on striped RAID2, XFS can be informed about the underlying storage geometry
and align all allocations and size to the stripe unit to maximize speed.

As a native Unix filesystem, XFS uses inodes as a data structure to save information about files
and directories. The first of the three parts of an inode (see Figure 2.2), core, contains the
basic information, describing what the inode represents. Some example of the data in this field
is the id of the user and group owning this inode, size and modification time.

2Striped RAID is e.g. RAID 0, where logically sequential data are split into a number of physical blocks and
written on multiple disks interleaved. For a RAID 0 on two drives it means that odd blocks are located on one
drive and even blocks on the other.

6/42

CHAPTER 2 XFS FILESYSTEM

Figure 2.2: On-disk inode [33, Ch. 4].

The second part, di u, or data fork, is for data for any specific type the inode can be; a directory,
a symbolic link, a regular file, etc. For a directory, it will contain the entries in the directory.
And the third member of each inode, di a, is reserved for extended attributes (abbreviated
xattr), which are used for example by SELinux.

2.2| mkfs.xfs

This short chapter describes in a greater detail the mkfs.xfs program itself, located in file
mkfs/mkfs xfs.c, from user point of view. For information about its implementation, see
Section 3.2. This tool creates a new XFS filesystem with given properties. It is, as is usual
for core Unix utilities, a non-interactive program which accepts multiple arguments when called
(the basic synopsis is shown in Listing 2.1) and prints out the properties of the newly created
filesystem if successful, or prints an error and usage help when an error occurs.

Listing 2.1: Synopsis of mkfs.xfs utility [12].

mkfs.xfs [-b block_size] [-d data_section_options] [-f]

[-i inode_options] [-l log_section_options] [-n naming_options]

[-p protofile] [-q] [-r real -time_section_options]

[-s sector_size] [-L label] [-N] [-K] device

An example of such usage is mkfs.xfs -f /dev/sda1. This simple example creates a XFS
filesystem on device /dev/sda1 even if a filesystem already existed there – thus the -f (as
force) flag. For the whole description of mkfs.xfs usage it is better to refer to mkfs.xfs manual
page. What is important to note here is that parsing the input arguments and computing inner
values based on these inputs makes most of the circa 3,5003 lines of code.

2.3| xfstests

The project named xfstests, or also FSQA, is a framework and a collection of test suites written
in Bash. Most of the tests run some filesystem utilities and either validates whether some part
of the FS ecosystem behaves correctly, or tries to replicate a specific known issue to prevent
regressions.

The tests are grouped into multiple categories according to the tested filesystem:

3Before the merge of the last part of my changes. With these changes, mkfs has over 4,000 lines.

7/42

CHAPTER 2 XFS FILESYSTEM

btrfs, cifs, ext4, f2fs, generic, ocfs2, overlay, shared, udf, xfs

A grouping orthogonal to these categories assigns each test into one or more groups that allows
for finer tuning of which tests should be run4

These tests do not analyse any program (either its source code, or the compiled binary), but
only the results of running these programs, i.e. printed messages, filesystem behaviors, etc.
Because xfstests do not employ any formal technique and focus on completely different means
of testing, it is not compared with other tools in this work.

4An example of the groups: mkfs, quick, all, dangerous, auto, quota, attr, symlink,

8/42

3| Refactoring of mkfs.xfs

The primary goal of the changes described in this work is to rewrite a complex and chaotic code
for parsing user input with a table that holds values like minimum/maximum, default values,
conflicts and others. Thus, instead of ad-hoc conditions and operations, there will be just one
global structure, well documented and easily readable and extendable. This structure should
hold also the user-entered values and limit code and variables duplication as much as possible.

During development, we had to repeatedly solve conflicts with changes from other developers
that got merged into xfsprogs while we were still working on our changes. That led me to cut
the work into multiple parts. That way, others could benefit from changes that were already
done and we would not have to maintain so many patches at any given time. There are two
main patchsets which are accompanied by several small and enclosed changes that could be
easily submitted independently.

The naming convention used in this work is the same as what is internally used in xfsprogs:

Option Can be referred as a section. The highest-level argument of mkfs, starting with a dash.
E.g. -b or -d . Most options have a mandatory argument consisting of suboptions.

Suboption Can be also referred as some section’s option. Consists of one or more items in a
format name=value separated by a comma, but no space. The value can be optional,
e.g. when the suboption is a boolean flag.

Look on the example in the Listing 3.1. The command has two options and two suboptions.
The options are -f, which does not have any argument and serves as a force flag, so mkfs does
overwrite any existing filesystem on the target device.

The second option is -d, which has arguments for setting up non-default values for data section.
There are two used suboptions of this option: file is only a flag, which tells mkfs that the
target device is not a block device, but a regular file (and thus mkfs should not use direct IO,
or compute blocksize differently). size has its own argument and denotes the size of the data
section, 10 GB in this case. Because nothing else is specified, the size of other sections is
computed automatically.

Listing 3.1: An example of mkfs.xfs invocation.

mkfs.xfs -f -d file ,size =10G /foo/bar

3.1| Development processes

At first we will briefly describe the development processes and tools used for xfsprogs, which
are similar as tools and processes used for Linux Kernel development.

Most of the communication is happening on a mailing list1 while IRC chat is used for some less
important and more day to day issues. The code is hosted in a Git repository, but only selected
maintainers have a write access.

1Specifically linux-xfs@vger.kernel.org.

9/42

CHAPTER 3 REFACTORING OF MKFS.XFS

Any commit an author wants to get merged into the code must be submitted as a patch to the
mailing list. There the patch awaits a review – that is, some other developer must check the
changes and append his or her signature to this patch. Once the patch is reviewed and if there
are no objections, the maintainer will merge it in a batch with other changes (for xfsprogs, this
usually occurs about twice a month).

However, there are many unwritten rules and customs, that are not apparent at first and a new
developer finds about them usually only when she or he breaks such a rule.

An example of such an unwritten rule is the exact coding style and the use of a code style
checking script checkpatch.pl which originated in Kernel community and is part of Linux
Kernel source. Such rules have their place, and helps to keep a consistent style throughout
xfsprogs, but the fact that they are not documented causes unnecessary issues and delays.

3.2| Initial codebase

Almost all the important code we were changing is located in mkfs/xfs mkfs.c file. The code
before the first patchset was merged can be accessed in the project’s Git repository as a version
4.6. Git revision hash for this version is 09033e35. In this revision, the parsing of user input
works as follows.

In the main(int argc, char **argv) function is a loop using a standard getopt from
unistd.h to detect an option like -d for data section or -l for log section. For options
that have arguments, a nested loop uses custom functions to parse specific suboptions and their
values.

As an example, here is the beginning of aforementioned loops, as it is in the code, and some
issues with this code.

Listing 3.2: Part of option-parsing loop from mkfs.xfs with additional comments.

while ((c = getopt(argc , argv , "b:d:i:l:L:m:n:KNp:qr:s:CfV")) != EOF) {

switch (c) {

case ’C’:

case ’f’:

force_overwrite = 1;

break;

case ’b’:

p = optarg;

/*

* This nested loop will parse the argument of -b, which is

* a list of suboptions separated by a comma , but not space.

*/

while (*p != ’\0’) {

char *value;

/*

* The getsubopt () function removes the first suboption

* from the ’p’ variable and returns a number

* representing the specific suboption , while

* saving its value (if any) to ’value ’.

*/

switch (getsubopt (&p, (constpp)bopts , &value)) {

/*

10/42

CHAPTER 3 REFACTORING OF MKFS.XFS

* an example of how one suboption is parsed.

*/

case B_LOG:

if (!value || *value == ’\0’)

reqval(’b’, bopts , B_LOG);

if (blflag)

respec(’b’, bopts , B_LOG);

if (bsflag)

conflict(’b’, bopts , B_SIZE ,

B_LOG);

blocklog = atoi(value);

if (blocklog <= 0)

illegal(value , "b log");

blocksize = 1 << blocklog;

blflag = 1;

break;

While the -f option is simple, in case of -b log=XX2 we can see how the parsing can get
complex. The code tests if the value is not empty and if it is, it raises an error. Then it tests
whether this specific option was already used, because repeated specification of the same option
is prohibited3 mkfs.xfs allows to specify the block size both as an explicit size in bytes or in a
logarithmic scale, but only one of these options can be used at a time. So the code must also
check if the other variant was used and compute both values.

Some options have a test directly within this assignment for conflicting options, others simply
set up the value and test the conflicts later, after the getopt loop. Other options use both of
these methods, depending on what the author of each change considered a better solution, how
it was required to achieve a given functionality or how this part of code was changed over time.

We can see that most of the work happening in this part of code is rather generic – all options
are checked for respecification, whether a required value is present, or possibly whether the
value is in a certain range of valid values.

However, none of these universal tasks is automated – every single option must reimplement
the same tests. Some options have almost all logic in it’s case statement, where it is at leas in
one place. But options with more complex dependencies and conflicts have only part of their
logic there and the rest of it is in a section of code following the main loop, in ad-hoc tests and
computations.

To further complicate situation, some parts of mkfs.xfs are more than 20 years old and the
coding style and the general approach to specific things changed since then, but the old code
did not. If such old code needs a change, there is always a risk that the editing programmer
assumes a different behaviour similar to the one that newer options have, but that assumption
is incorrect.

Also the six variables specific for -b log are not explicitly tied together and because almost

2Here and in other places, the block option is used as an example, because this option has only two suboptions,
so it can be shown in full if needed.

3Respecification is forbidden for this reason: consider, what happens if a user uses this combination of options:
-b size=4k -d size=1000b -b size=512, where the b suffix in a number denotes a block. At first, blocksize
is set to one value, a size of data section is computed based on this value and then the blocksize is changed.
Thus, any following use of blocksize will have a value different than what was used for the first computation.
This could be countered by computing all values after all options are parsed, yet it would still be ambiguous and
might behave differently than the user expected. Forbidding it is a cleaner and safer approach.

11/42

CHAPTER 3 REFACTORING OF MKFS.XFS

every option has a similar mix of multiple variables, it is difficult to keep all the important ones
in a mental image of the code and always use the correct one. Many of these variables are
unnecessary or reduntant, so in some cases, the values are copied from one to another and if
a change is put into a wrong place, a specific condition may cause the changed value to be
overwritten later on with the old one, etc.

It is easy to see what could go bad in this: When changing one option, it was possible to forget
to change the other one. If a test was done after getopt, any other option that would modify a
value4, which is used for a computation in another option, could overwrite the value and cause
a conflict without a notice.

Any new option required a careful reading through the existing code and possibly the placement
new checks in multiple places. Thus it was difficult to know when any value is checked and safe
for use in further computations.

HERE

The consequence of these issues is that mkfs.xfs did a bad job of validating user input from
the command line. Even if an issue was detected and the specific error fixed, the minimal code
reuse meant that other options could still be susceptible to the same or similar issue.

3.3| First patchset

As is shown Section 3.2, the situation was not ideal and the state of the code led to many
known issues. David Chinner, then maintainer of XFS, presented a set of patches as an RFC5

in November 2013 [7] in an attempt to raise a discussion. However, nobody joined him and
David Chinner himself did not continue in pressing this matter for few years. Here is an excerpt
from his RFC:

This is still a work in progress, but is complete enough to get feedback on the
general structure. The problem being solved here is that mkfs does a terrible job of
input validation from the command line, has huge amounts of repeated code in the
sub options processing loops and has many, many unnecessary variable for tracking
simply things like whether a parameter was specified.

This patchset introduces a parameter table structure that is used to define the
parameters and their constraints. Things like minimum and maximum valid values,
default values, conflicting options, etc are all contained within the table, so all the

”
policy“ is found in a single place.

. . .

The flow on effect of this is that we can remove the many, many individual variables
and start passing the option structures to functions rather than avoiding using
functions because passing so many variables is messy and nasty. IOWs, it lays the
groundwork for factoring xfs mkfs.c into something more than a bunch of spagetti...

4See -i size=x and -i log=y. In the code, both options modify the same variables and differs only in
accepted values. size expects a number of bytes while log expects a base two logarithm value.

5Request for comment - signalling, that the presented patches are not meant to be merged, but the author
wants to hear other people’s thoughts about these changes.

12/42

CHAPTER 3 REFACTORING OF MKFS.XFS

When we joined the XFS team and began with the refactoring in 2015 [36], we picked up this
patchset and brought it up to date with the codebase that in some parts changed substantially
in the preceeding two years. Once the patches were applicable for the current code, we began
fixing functional issues and adding further changes.

This lasted until May 2016, when this patchset was merged into the upstream repository [37, 9].
These changes implemented the core parts from the desired state. The implementation of the
basic table made the mkfs xfs.c file more readable, even if it was possible to remove only
basic checks. It also brought a much more strict input validation, so few of the existing tests in
xfstests had to be updated and a new test was created, with the goal to watch only for input
validation, whether mkfs.xfs correctly accepts or refuses any given combination of options and
values.

Size and commits of this patchset are described in Listing 3.3. It is 19 patches that are grouped
by the initial author, in this case David Chinner and Jan Ťulák.

Listing 3.3: Git statistics for the first patchset [37]. Note: Git attributes changes only to the
first author of each commit.

Dave Chinner (15):

xfsprogs: use common code for multi -disk detection

mkfs: sanitise ftype parameter values.

mkfs: Sanitise the superblock feature macros

mkfs: validate all input values

mkfs: factor boolean option parsing

mkfs: validate logarithmic parameters sanely

mkfs: structify input parameter passing

mkfs: getbool is redundant

mkfs: use getnum_checked for all ranged parameters

mkfs: add respecification detection to generic parsing

mkfs: table based parsing for converted parameters

mkfs: merge getnum

mkfs: encode conflicts into parsing table

mkfs: add string options to generic parsing

mkfs: don ’t treat files as though they are block devices

Jan Tulak (4):

mkfs: move spinodes crc check

mkfs: unit conversions are case insensitive

mkfs: add optional ’reason ’ for illegal_option

mkfs: conflicting values with disabled crc should fail

include/Makefile | 5 +-

include/xfs_multidisk.h | 73 ++

libxfs/init.c | 6 +

libxfs/linux.c | 11 +-

man/man8/mkfs.xfs.8 | 45 +-

mkfs/Makefile | 2 +-

mkfs/maxtrres.c | 2 +-

mkfs/proto.c | 58 +-

mkfs/xfs_mkfs.c | 1983 +++++++++++++++++++++++++++++------------------

mkfs/xfs_mkfs.h | 89 ---

repair/xfs_repair.c | 44 +-

11 files changed , 1417 insertions (+), 901 deletions (-)

create mode 100644 include/xfs_multidisk.h

delete mode 100644 mkfs/xfs_mkfs.h

13/42

CHAPTER 3 REFACTORING OF MKFS.XFS

3.3.1| Timeline and progress

• November 2013 – Dave Chinner submits his RFC.

• May 2015 – We are beginning the work on this patchset.

• June 2015 – The first published version. It contains only minor changes except updating
and fixing the most serious errors. We are getting the first feedback.

• March 2016 – Another version submitted, this time with more custom changes.

• April 2016 – Further big changes. Some patches are reverted to older versions, while a
new patch is added.

• May 2016 – Changes are made only in specific patches, no new version of the whole set
is submitted.

• June 2016 – The patchset is accepted and merged into the repository.

3.3.2| Description of important changes

The key part of this patchset is the creation of opt params table, shown on Listing 3.4. It
is a structure that is holds all the important values for a specific option in one place, easily
accessible and consistent across the whole file.

Listing 3.4: Definition of the table.

struct opt_params {

const char name;

const char *subopts[MAX_SUBOPTS];

struct subopt_param {

int index;

bool seen;

bool str_seen;

bool convert;

bool is_power_2;

int conflicts[MAX_CONFLICTS];

long long minval;

long long maxval;

long long defaultval;

} subopt_params[MAX_SUBOPTS];

};

The meaning of the specific fields is this:

name MANDATORY Name is a single char, e.g., for ’-d file’, name is ’d’.

subopts MANDATORY Subopts is a list of strings naming suboptions. In the example above,
it would contain

”
file“. The last entry of this list must be NULL.

subopt params MANDATORY This is a list of structs tied with subopts. For each entry in
subopts, a corresponding entry must be defined.

The subopt param has the following members. The displayed descriptions are part of the code:

index MANDATORY This number, starting from zero, denotes which item in subopt params

it is. The index must be the same as is the order in subopts list, so we can access the
right item both in subopt params and subopts.

14/42

CHAPTER 3 REFACTORING OF MKFS.XFS

seen INTERNAL Do not set this flag when defining a subopt. It is used to remember that
this subopt was already seen, for example for conflicts detection.

str seen INTERNAL Do not set. It is used internally for respecification, when some options
must be parsed twice - at first as a string, then later as a number.

convert OPTIONAL A flag signalling whether the user-given value can use suffixes. If you
want to allow the use of user-friendly values like 13k, 42G, set it to true.

is power 2 OPTIONAL An optional flag for subopts where the given value must be a power
of two.

conflicts MANDATORY If your subopt is in a conflict with some other option, specify it.
Accepts the .index values of the conflicting subopts and the last member of this list must
be LAST CONFLICT.

minval, maxval OPTIONAL These options are used for automatic range checking and they
have to be always used together in a pair. If you do not want to limit the max value,
use something like UINT MAX. If no value is given, then you must either supply your own
validation, or refuse any value in the ’case X SOMETHING’ block. If you forget to define
the min and max value, but call a standard function for validating user’s value, it will
cause an error message notifying you about this issue.

(Said in another way, you can not have minval and maxval both equal to zero. But if
one value is different: minval=0 and maxval=1, then it is OK.)

defaultval MANDATORY The value used if user specifies the subopt, but no value. If the
subopt accepts some values (-d file=[1|0]), then this sets what is used with simple
specifying the subopt (-d file). A special SUBOPT NEEDS VAL can be used to require a
user-given value in any case.

It was later revealed that the name of this field is confusing and can be mistaken for a
default value in the sense of

”
user did not specify anything.“ As this led to an incorrect

configuration for an option (albeit semi-internal one, used only by developers for testing
purposes), we proposed a name change to flagval. This change is a part of the next
set.

opt params is instantiated for every option category, e.g. Listing 3.5 shows instantiation for
-b.

Listing 3.5: Instantiation of the table for block options.

struct opt_params bopts = {

.name = ’b’,

.subopts = {

#define B_LOG 0

"log",

#define B_SIZE 1

"size",

NULL

},

.subopt_params = {

{ .index = B_LOG ,

.conflicts = { B_SIZE ,

LAST_CONFLICT },

.minval = XFS_MIN_BLOCKSIZE_LOG ,

15/42

CHAPTER 3 REFACTORING OF MKFS.XFS

.maxval = XFS_MAX_BLOCKSIZE_LOG ,

.defaultval = SUBOPT_NEEDS_VAL ,

},

{ .index = B_SIZE ,

.convert = true ,

.is_power_2 = true ,

.conflicts = { B_LOG ,

LAST_CONFLICT },

.minval = XFS_MIN_BLOCKSIZE ,

.maxval = XFS_MAX_BLOCKSIZE ,

.defaultval = SUBOPT_NEEDS_VAL ,

},

},

};

With this structure, many functions had to be completely rewritten or added, but the result was
that the option parsing loop could be greatly simplified. For comparison, here is the nested loop
from 3.2 code example after this patchset was applied. You can see that the section for B LOG

is now much cleaner (no branching, only few assignments) and the generic logic was moved
away into a function shared with other options as can be seen in Listing 3.6.

Listing 3.6: Part of option-parsing loop from mkfs.xfs after the first patch set.

case ’b’:

p = optarg;

while (*p != ’\0’) {

char ** subopts = (char **) bopts.subopts;

char *value;

switch (getsubopt (&p, (constpp)subopts ,

&value)) {

case B_LOG:

blocklog = getnum(value , &bopts , B_LOG);

blocksize = 1 << blocklog;

blflag = 1;

break;

Another important issue fixed in this set was the behaviour difference when mkfs.xfs is run to
create a filesystem on a block device vs. in a file on another filesystem.

The issue was that if the target was a file, but -d file is not specified, mkfs behaved as if
the target is a block device. That meant, however, that if the underlying block device had e.g.
sector size 512B, on which a filesystem with sector size 4kB existed, then, when creating a new
filesystem in a file, mkfs used the (incorrect) 512B size of the physical device and ignored the
value used in the intermediate layers.

This was mitigated by automatic detection of whether the target is a regular file or a block
device, and by changing the flow of the program on various places where the difference between
file and device was important.

However, there were still many issues that were not addressed. The conflicting options were only
enumerated, without any additional information, and thus the field was usable only for always
conflicting options, like -b log|size – it did not help with conditional conflicts. For example,
checksums for metadata, enabled with -m crc, works only on newer version of metadata format:
-m crc -i attr=1 is conflicting, but -i attr=2 is not. Such tests still had to be done as
before. Also, it was possible to specify conflicts only between suboptions of a single option.

16/42

CHAPTER 3 REFACTORING OF MKFS.XFS

3.4| Second patchset

Once this change was merged and provided a stable point so we did not have to keep so much
code in our own local repository up to date with upstream, we began to work on the second set
of changes. We submitted an RFC of these changes in December 2016 [38]. Such a big and
complex change is something that most of the developers postpone, so it is usually reviewed
only by the maintainer when nobody else starts it. In this case, however, the maintainer changed
in late December – Eric Sandeen took this position instead of David Chinner.

Size of this patchset in the first RFC is 22 patches and the patches can be seen in Listing 3.7.

Listing 3.7: Git statistics for the second patchset [38].

Jan Tulak (22):

mkfs: remove intermediate getstr followed by getnum

mkfs: merge tables for opts parsing into one table

mkfs: extend opt_params with a value field

mkfs: change conflicts array into a table capable of cross -option

addressing

mkfs: add a check for conflicting values

mkfs: add cross -section conflict checks

mkfs: Move opts related #define to one place

mkfs: move conflicts into the table

mkfs: change conflict checks to utilize the new conflict structure

mkfs: change when to mark an option as seen

mkfs: add test_default_value into conflict struct

mkfs: expand conflicts declarations to named declaration

mkfs: remove zeroed items from conflicts declaration

mkfs: rename defaultval to flagval in opts

mkfs: replace SUBOPT_NEEDS_VAL for a flag

mkfs: Change all value fields in opt structures into unions

mkfs: use old variables as pointers to the new opts struct values

mkfs: prevent sector/blocksize to be specified as a number of blocks

mkfs: subopt flags should be saved as bool

mkfs: move uuid empty string test to getstr ()

mkfs: remove duplicit checks

mkfs: prevent multiple specifications of a single option

mkfs/xfs_mkfs.c | 2952 +++++++++++++++++++++++++++++++++++--------------------

1 file changed , 1864 insertions (+), 1088 deletions(-)

Together, these two issues caused that despite our urging, there was not much reaction until
March. In March we submitted another version, this time intentionally not as an RFC. We also
mentioned to few people that this is part of our thesis.

The review of the second set revealed many disputable points and it become certain that these
patches will need further changes. The second part of our changes is focused mostly on conflict
detection and allows for almost all checks to be removed from the code as ad-hoc solutions, as
the new structures and functions take care of them automatically. Any programmer making a
change only must correctly specify values in a struct opt params, write in a list of conflicting
options, and the validation of the new option is guaranteed to work correctly and seamlessly.

To make the process faster, we decided to split this patchset into multiple smaller ones, which
can get fixed, reviewed and merged faster. The first group focused on extending the options
table not only for encoding validity range and basic conflicts, but also for user input.

Most notable changes are functions parse|get|set conf val – a set of functions to ma-

17/42

CHAPTER 3 REFACTORING OF MKFS.XFS

nipulate the user input values. This is a key difference from the RFC. There the values were
manipulated as pointers to the table, but other developers raised objections. Most notably Dave
Chinner, who rebutted our worries about the use of setters and getters in a reply to our e-mail
where we suggested them as another option [41, 6]

Compare code examples 3.8 and 3.9. The first example with aliases keeps a lot of seemingly
unconnected variables in the code where the programmer does not know where exactly the
pointer leads to. And even if he finds the first assignment, it is possible to mistakenly override
the target address. In the second example, with setters and getters, it is apparent at first
glance, where the value is to be written or read. And it is impossible to mistakenly alter the
target address. The disadvantage of using setters is that it is no longer possible to do in-situ
increments/decrements (e.g. i++;), however this is only a minor issue.

Listing 3.8: Pointer aliases in RFC of the second set.

long long *agcount = &opts[OPT_D]. subopt_params[D_AGCOUNT].value;

// ... lines skipped

*agcount = foo(bar);

// ... lines skipped

if (* agcount < SOME_CONSTANT)

// do something

Listing 3.9: Setters and getters in later version of the second set.

set_conf_val(OPT_D , D_AGCOUNT , foo(bar));

// ... lines skipped

if (get_conf_val(OPT_D , D_AGCOUNT) < SOME_CONSTANT)

// do something

Furthermore, this approach allows for a verification of all values saved into the table for the
whole run of the program. However, after attempting to implement this feature, we found
out this is not possible to add at this moment. While we know valid bounds for user input
values, some of these values are then recomputed and can get out of these bounds, while still
being valid. An example of this is L SUNIT6, which is specified as a number of 512-byte blocks.
However, it is later multiplied by the 512, at which moment it can get out of the valid bounds
specified for input.

The proposed but not yet implemented solution is to utilize the existing infrastructure and create
a new pseudo option for the table, which would not be visible to the end user, but would hold
all the internal variables for which the bound range (or any other condition, like being power
of 2) can be applied. This topic was briefly discussed in replies to one of the patches in this
set [28], because one of the other developers, Luis R. Rodriguez, has a work in progress that
requires such infrastructure to be implemented.

Because even this smaller set was not fully accepted by the end of April, and addressing the
issues other developers raised required too much time, we further focused on the next part of
this work and did not use the second patchset in formal analysis.

Size of the smaller set can be seen in Listing 3.10.

6L SUNIT specifies the alignment of log writes.

18/42

CHAPTER 3 REFACTORING OF MKFS.XFS

Listing 3.10: Git statistics for the first part of the second set after its breaking into smaller
parts [40].

Jan Tulak (12):

mkfs: Save raw user input field to the opts struct

mkfs: rename defaultval to flagval in opts

mkfs: remove intermediate getstr followed by getnum

mkfs: merge tables for opts parsing into one table

mkfs: extend opt_params with a value field

mkfs: create get/set functions for opts table

mkfs: save user input values into opts

mkfs: replace variables with opts table: -b,d,s options

mkfs: replace variables with opts table: -i options

mkfs: replace variables with opts table: -l options

mkfs: replace variables with opts table: -n options

mkfs: replace variables with opts table: -r options

mkfs/xfs_mkfs.c | 2457 ++++++++++++++++++++++++++++++++-----------------------

1 file changed , 1420 insertions (+), 1037 deletions(-)

3.4.1| Timeline and progress

• June 2016 – The first patchset is accepted and merged into the repository, beginning of
the work on the second set.

• August 2016 – First draft of changes of the second set [39].

• December 2016 – RFC of the full second set. This gained just a little attention.

• March 2017 – Second set without the RFC. This version attracted enough attention to
be useful, and provided valuable feedback.

• March 2017 – Vault conference in Boston. We met some other developers personally and
debated some of the changes. This helped to raise some attention towards our patches.

• April 2017 – resubmitting only part of the second set with requested changes and setter-
s/getters as an addition. This generated a lot of feedback.

3.5| Summary

Part of the changes was successfully merged into the project in time. However, some other
patches gained the necessary attention too late and all the found issues could not be fixed or
changed before the deadline for this work. These changes will get merged eventually.

The difficulties were analysed in an attempt to avoid these delays in the future. Our hypothesis
is that the set as a whole was too big and complex, an effect which was multiplied by uninten-
tionally not adhering to unwritten standards. A proposed process change for further iterations
is to send few smaller patches more often and wait with other changes depending on those
submitted until they are accepted.

The higher activity on the last patchset, which was just a subset of the second big set, seems
to confirm this hypothesis, however, more iterations are needed.

19/42

4| Formal Analysis and Verification

As the role of computers in human society is growing in ever faster pace, the consequences of
any error are growing too. Consider, for example, the speed with which smartphones seized
our pockets. They certainly bring many benefits, but as we become dependent on the smart-
phones, any malfunction or error in them can affect our life. From not having access to an
important information to a direct danger, such as in the case of motorists stranded by their
mobile navigation in the middle of the wilderness [24].

Or consider the recent advances in the area of autonomous vehicles. Where an error in smart-
phones can only deprive us of information, an error in a self-driving car can cause it to swerve
into a wall with dire consequences for the passengers.

Common testing techniques, despite advances in this field, are still mostly reactive and can
detect only known errors, for which a test was written, and can not provide a guarantee of
correctness. That is, they can tell that

”
none of these specified errors happened,“ but can not

tell whether the system is really free of errors with respect to a specification.

Formal methods, with roots in mathematical areas like theorem proving, on the other side
frequently have the power to verify correctness. But unlike the common testing techniques, and
despite an interest in the industry, they are not yet widely used. A notable exception to this is
static analysis, which, in some of its weaker forms, is becoming a part of integrated development
environments (IDE) like Xcode or Eclipse [4].

One reason for the small adoption of formal methods is their complexity. They either require
advanced user knowledge, like human-driven deductions in theorem proving, require excessive
modelling of the environment for the system like model checking, or are simply unable to cope
with the size of the code and the size of its state space.

By the term formal analysis, we describe methods for answering questions other than whether
the tested system is free of errors with respect to some specification. That is, it includes
questions like whether the program is guaranteed to always terminate if a buffer size is bound
and so on.

Formal verification then denotes methods capable of proving that the given system is error free
with respect to a correctness specification. Completeness of a method is a property guaranteeing
that it will not raise a false alarm, while if a method that is sound terminates and tells that
there are no errors, the system is indeed correct.

In the following parts of this work, we will first discuss some of the formal techniques (the rest of
this chapter) and then also their usefulness on a real, production codebase in the chapter Used
Techniques and procedures. We will look not only at their result, but also at the cost of using
them, both in time and expertise necessary for their correct use.

4.1| Static Analysis

A rather broad, but commonly used definition of static analysis is that it is an analysis that
collects some information about the behaviour of a system without actually executing it under

20/42

CHAPTER 4 FORMAL ANALYSIS AND VERIFICATION

its original semantics [17, Chap. 2.2]. It can manage very large systems in a reasonable time and
is highly automated, but can suffer false positives and is generally weaker than other methods
(it is difficult to express some problems for static analysis). This category includes methods:

Abstract interpretation, in which an abstract overrepresentation of the statements of the pro-
gram is evaluated in an abstract machine for all possible inputs at once and we exchange
completeness for speed or even the possibility to analyse the system.

Data flow analysis tracks how a given set of properties propagates through the program without
directly executing it.

Error patterns then denote the most common method used in various lightweight implementa-
tions already present in various IDEs, in Lint and Cppcheck software, and others. As the name
itself explains, these methods attempt to detect commonly occurring patterns that programmers
make, but which lead to an error. A simple example may be a missing break statement, or
missing boundary checks before accessing an array.

Let us now look more in detail at each of these methods and at their implementations, but bear
in mind that in many cases, the tools we will see are not clearly distinguished and can be placed
into more than one category. Thus, the tools are categorised according to the most important
principles in their implementation.

4.1.1| Error patterns

Tools using it: Lint [17] (and it’s followers), cppcheck1

Error patterns detection is a rather wide array of different techniques and methods with a
common goal: To detect more or less frequent types of errors. The great advantage of this
class of methods is that they usually does not require any deeper knowledge, are fully automated
and can be very fast. Their disadvantages are that they are limited to a very specific kind of
errors2 and suffer from false positives.

An example of the approaches used in this class of static analysis is a detection of matching
pairs of functions. For example, any open() call should be later followed with one close()

in every possible path. Or a state machine can be used to detect missing delimiter between
statements or a missing break in a switch [18].

4.1.1.1| Lint

Lint was originally created in the 70’s for the early C language [17, Chap. 2.2] and since then,
multiple new tools for various languages were inspired by it: splint, cpplint, JSLint, Pylint, etc.
It searches for patterns that are likely to be bugs, to be non-portable, or to be wasteful [26].
Many of the follower implementations are open-source.

4.1.1.2| CppCheck

1We are not sure about this and did not found it cited anywhere, but from its code, it looks like they search
for error patterns.

2Basically, every error pattern needs its own filter and only some kinds of error patterns are generic enough
to be shipped within the tool. Consider a support for usage of a library. It makes sense to watch for patterns
in usage of stdlib.h, but how it should know patterns in a custom library? And even if the specific library
is publicly available, including everything is impossible. Many tools allow for providing of custom definitions of
these patterns, but from a personal experience, they are rarely used.

21/42

CHAPTER 4 FORMAL ANALYSIS AND VERIFICATION

An open-source tool for C/C++ languages. It can only a very simple control flow analysis,
where it expects that all statements can be always either true or false and thus all statements
should be always reachable [19].

4.1.2| Data flow analysis

Tools using it: Coverity [17], CodeSonar [17], TruePath [17], FindBugs [17]

These methods, in industrial tools frequently combined with error patterns, track how so-called
data flow facts propagate within a control flow graph between its nodes. These nodes represent
basic blocks in the original code, each block having only one entry point and one exit point3,
which simplifies the analysis.

The analysis can be either forward, where the state at the exit of one basic block is used as the
input of the following block and which starts at the beginning of the program. Or backwards
analysis, where the algorithm starts in an end state and attempts to find a path to a start
state. This second approach can be useful to determine whether a particular end configuration
is reachable.

4.1.2.1| Coverity

A proprietary tool (and company) providing a free service for open-source projects (http:
//scan.coverity.com). Uses restricted formal verification, but getting to specific details is
hard or impossible. Supports languages Java, C/C++, C#, JavaScript, Ruby, and Python.

4.1.2.2| FindBugs

FindBugs is an open-source code analyser for Java language with plugins for many Java IDEs.

4.1.3| Abstract interpretation

Tools using it: Astrée [23, 17], PolySpace [17]

Abstract interpretation shares a blurry border with model checking and it may be difficult to
determine where a specific method is. The basic way in which abstract interpretation works is to
run a symbolic execution of the program. On every statement, it transforms specific values into
an abstract context and widen (over-approximate) or narrow to refine the result after widening.

The widening and narrowing is usually implemented by using a pair of monotone functions:
Abstraction denoted α and concretization denoted γ forms a Galois connection.

These methods can be sound, but not every abstract interpretation is, as they can range from
a simple syntax analyser to full model checking.

4.1.3.1| Astrée

A tool for analysing applications written in C language. It is a proprietary tool used for safety-
critical applications, for example by Airbus [17]. It provides a sound static analysis. False
positives are considered a reasonable price for the soundness [23].

3One entry point means that in no case can any instruction inside of the block other than the first one be a
target of a jump. One exit point means that if there is a branching, only the last instruction of a block can cause
it and jump to multiple different target instructions.

22/42

http://scan.coverity.com
http://scan.coverity.com

CHAPTER 4 FORMAL ANALYSIS AND VERIFICATION

4.1.3.2| PolySpace

A proprietary tool for C, C++, and Ada languages.

4.2| Model Checking

Tools using it: RuleBase [17], Incisive Verifier [17], Magellan [17], JasperGold Formal Prop-
erty Verification App [17], Questa Formal Verification [17],CPAchecker [17], Wolverine [17],
CBMC [17], LLBMC [17]

Model checking is an algorithmic means of checking whether the given system is correct with
regards to any given property through systematic exploring of the state space of this system.
The properties are usually specified in some temporal logic like LTL, CTL, CTL* or µ-calculus.

The advantages of model checking are that it can be fully automated, is rather universal, does
not require a deep knowledge for usage and if it finds an error, it can generate a path leading
to the case, which is useful for repairs.

However, it also has two big disadvantages. It requires a model of the environment for the
system and suffers state space explosion. The number of reachable space grows exponentially –
consider a 32bit variable, which has 232 possible values, which equals states. That means that
n of such variables equals 232×n states. The result is that any attempt in a practical use of
model checking has to cope with this state space explosion.

Figure 4.1: Symmetries and the dining philoso-
phers [17].

The methods used for this include symme-
try reduction in cases where it is not impor-
tant which specific entity (if there are more
entities of the same type in a specific state).
See Figure 4.1 for an example of symmetry
in the well known dining philosophers prob-
lem.

Other solutions can be to use only one
of many possible paths for the ordering of
concurrent actions that are independent of
each other and compress the size of states
by using pointers to the previous state for
values that did not change. Or the tool
can evaluate the properties at the same time when a new state is generated, and stop immedi-
ately once it is clear that this prefix cannot be accepted by the automata denoting correctness
specification.

4.2.0.1| CPAChecker

An open-source tool and a framework for an analysis of programs in C language. It is based
on the idea of configurable program analysis [5], which uses user configuration to perform a
reachability analysis.

4.3| Theorem Proving

Tools using it: VCC [17], ESC/Java2 [17], VS3 [17]

23/42

CHAPTER 4 FORMAL ANALYSIS AND VERIFICATION

Theorem proving is similar to mathematical deduction, where we get a proof from an initial set of
axioms. It also shares advantages and disadvantages with its purely mathematical counterpart.
On the one side, it is really universal, but on the other side, it can not provide a counterexample
(a path to an error), but just says yes/no, and is only semiautomatic. The tools can correctly
apply inference rules, but their choice is up to the user. Thus, an insufficiently skilled user may
not be able to prove that the system is correct even if there are no errors in the system.

24/42

5| Used Techniques and procedures

In this chapter, we discuss which techniques and models of formal analysis and verification are
useful for the code of mkfs.xfs. Let us at first define important constraints that are limiting
or directing our choice.

We are analysing a single-threaded application. This greatly reduces the state space and means
that we also can use methods that do not allow for concurrency. On the other side, given that
the program accepts user input, some variables have an infinite number of potential values and
any method based on state space checks must cope with this fact.

A comparison that could be interesting for further research is to experiment with tools that
use neural networks and deep learning as an integral part of their algorithms if such tools exist.
Examples of the use of those technologies are a heuristic to drive the selection of inference
rules in theorem proving, or spotting error patterns 1 However, these approaches are even
more complex and experimental than the traditional approaches and would probably deserve a
standalone work on their own.

List of tools that were used in this work (in no particular order): Coverity, CppCheck and the
analysis in GCC and Clang compilers.

5.1| Testing Environment

The tools were run in a Docker container2 based on Fedora Linux 25. The use of containers
ensures a clean and identical environment for every tool and every run. Image with the compilers
and CppCheck are published in Docker Hub and all the recipes to build and use them are provided
with this work. Image with Coverity could not be published because it contains confidential
information3.

Every image has its own starting script for easier manipulation – run.sh. This script creates a
container from the image and mounts the directory with xfsprogs (or any other directory which
is passed to it). Then, if necessary, it can pass few options to the script started in the container.

run-test.sh is the script started by Docker after creating the container. This script copies
xfsprogs from the mounted directory to another one, so it does not change the original repository
in any way. In this copied directory the script then starts whatever tool it is prepared for.

Users can, if they wish to do so, enter an interactive shell in the container instead of starting
the tool. Also, it is possible to skip the copying or to run make clean. For an automated run
described in Section 5.2, neither of this is necessary, but these options are useful for manual
experiments.

1Some attempts in modelling a code are hinted in On the Naturalness of Software by Abram Hindle: http:

//dl.acm.org/citation.cfm?id=2902362.
2Simply stated, a container is an image that has been started, similar to the difference between a running virtual

machine and its on-disk virtual HDD image. Unlike virtualization, containers are only processes isolated from the
rest of the system using kernel capabilities, like cgroups and chroot. Docker is a specific implementation [15] of
containers.

3Jan Ťulák had an access to Red Hat Coverity license server as a Red Hat employee. However, the server
information and some tools Red Hat provided with Coverity are considered confidential.

25/42

http://dl.acm.org/citation.cfm?id=2902362
http://dl.acm.org/citation.cfm?id=2902362

CHAPTER 5 USED TECHNIQUES AND PROCEDURES

Coverity, GCC and Clang are run using csbuild, a tool to plug static analyzers into the build
process [2]. Because csbuild attempts to use all supported analyzers it finds, the images for
each tool we are testing are modified to contain only the single specific tool we need, but no
other.

5.1.1| CppCheck

Docker image: jtulak/cppcheck [35]

CppCheck is also used in Codacy, an automated code review application with Github integration.
Results from Codacy are included for comparison.

Because CppCheck does not need preprocessed code, it was reasonable to use it for every commit
in our changes.

When running this tool, default configuration was used, and all types of messages were enabled.
No custom rules were used and the invocation of CppCheck on whole xfsprogs/mkfs/ directory
was:

cppcheck --enable=all mkfs/

5.1.2| Coverity

Coverity was used both manually in a Docker container, and automatically using the public
Coverity service for open source projects which is part of the standard xfsprogs development
process, to compare the results between those two instances.

Furthermore, in the local analysis, four levels of analysis aggressiveness were tested: low (default
settings), medium, high and custom (all). The different results are compared in Section 6.4,
where were look at a summary of what these levels enabled. With a higher level, Coverity makes
more aggressive assumptions during the analysis, which means more defects being reported and
longer analysis time [34].

Coverity manual claims false positive rate for all checkers that are not parse warnings increases
approximately by 50% for medium and by 70% for high. It does not have an effect on parse
warnings checkers.

All levels have enabled everything that a previous, lower level has, plus some additional checks.
The medium level uses low level plus enables some other checks, including parse warnings, infinite
loops, some resource leaks checks, etc. The high level then adds e.g. integer overflow detections
and more checks for infinite loops. A special, level enabled by --all flag for cov-analysis,
then enables almost all checkers, with only a few minor exceptions. For the full (rather long)
list of what checkers are enabled on every level, consult the cov-analysis manual [34].

The Figure 5.1 describes the steps happening in Coverity container. Where other tools are
only a single step, taking source code on one side and producing an output on the other side,
Coverity has three standalone steps. First, it builds the source code using its own parser and
produces an analyzable data.

The second step, cov-analyze application, does the analysis itself. Here it is possible to set
up the aggressiveness level and where the license is required. The last step then takes the raw
output from the analyser and converts it into one of the selected formats. The scripts in the
container generate all three variants. Due to the size of the HTML output, it is not included in
the digital attachment to this work.

26/42

CHAPTER 5 USED TECHNIQUES AND PROCEDURES

foo.c JSON

bar.c cov-build cov-analyze cov-format-errors HTML

bar.h Text

Figure 5.1: Process steps for coverity analysis.

5.1.3| GCC

The GNU project C and C++ compiler is used for compiling xfsprogs and it has some static
analysis capabilities because it must understand the code to compile it. The only difference in
its use from standard configuration is to use the most strict reporting.

5.1.4| Clang

Clang is another C/C++ compiler. It was founded by Apple and LLVM communities in 2007
as an alternative to GCC, which did not work well for Apple’s needs. It is designed to be highly
compatible with GCC for C-based languages (C, C++, ObjC), but does not have the desire to
replace it completely [25].

It is not used by xfsprogs but can compile the code as well, so we can compare it with GCC and
other analysis tools. Even if it has its analyzing part as a standalone application [10], the easiest
way to use it and to make it the most comparable with GCC was to rename clang binary to GCC
and let xfsprogs behave as if it was GCC, rather than modify Autotools configuration. According
to Clang’s scan-build description, the tool replaces certain environmental variables to achieve
the same result. However, from the nature of tool-specific containers used for the tests, binary
replacement avoids uncertainty about whether the environmental variables were correctly taken
into the account in this specific Autotools configuration without the usual consequences of
manipulating with system files without the knowledge of a package manager.

5.2| Results Processing

The outputs of these tools have different syntax and verbosity, but we had to find a way, how
to compare them, both between the tools and across revisions, despite some of the tools finding
a lot of issues. A set of scripts to help both with automating the tests and with analysing
was created. The Figure 5.2 shows how these scripts are connected with what happens in the
containers.

First, there is tool parse.py, which can automatically run all the tools across specified revisions.
It takes care of changing the revisions, starting every docker container again and finally, it
organises the outputs in a logical way: in a specified directory, it creates a subdirectory for every
revision (using the revision’s short hash as the directory name) and each such directory then
contains log files with outputs from each tool.

The output files are not modified in the first step, but to simplify their parsing, it is useful to
preprocess some of those files (namely from GCC and / Clang) with script format-outputs.sh,

27/42

CHAPTER 5 USED TECHNIQUES AND PROCEDURES

source code output files format-outputs.sh parse.py

copy to container analyze move the results
out of the container

tests.py

Figure 5.2: Process steps for testing.

to remove color formatting escape sequences and unnecessary compiler outputs. Such data may
be useful for some further analysis, but for the next step, it would only make the parsing more
complex.

In the last step, script parse.py, when supplied with the output directory, translates the
different syntaxes into a single inner representation, which can be then used to simply compute
deltas between different revisions.

The algorithms to complete these deltas has one known issue: if there are multiple issues with
the same message (e.g. because variable with name foo was declared, but not used, in multiple
functions) and later some of these issues are fixed, the number of issues is correct, but the
indicated lines may be incorrect. This is because the script must cope with changing code; an
issue on line X in one revision can be on line Y in another one, and that would require employing
much more complex algorithms that would use information from git and understand which lines
moved where. Thus, in such cases, the behaviour selecting specific instances of the same kind
of issue is undefined.

Finally, while it is possible to find differences between revisions within the results of a single
tool, albeit with the small instability in case of multiple similar entries mentioned above, doing
this between tools on a single revision proved a much more complex task. Every tool describes
the same issue with different words, so to be able to automatically compute any differences,
such an algorithm would have to understand the issue in all details. Thus, cross-tool differences
are not computed automatically, but manually for the cases where it is reasonable given to the
number of issues that must be analysed. Standard Unix tools like diff and grep were used in
these cases.

28/42

6| Results

In this chapter, the results of every tool are compared and analysed. If not stated otherwise,
the number of issues is for mkfs-specific files, i.e., for files in mkfs/ directory. Every tool has its
own section in which its performance is analysed across of multiple revisions of mkfs in detail.

Table 6.1 offers an overview of how many issues did every tool find on various revisions. These
revisions are stored in the project’s git repository and they are identified by their hash, so this
table also shows which revision follows which. Selected revisions (annotated with total issues)
shows the number of outstanding issues on this specific point of development.

For the remaining revisions, the table shows new/fixed issues: +x denotes the number of new
issues found, −x denotes the number of issues fixed between this and the previously tested
revision. For example, revision a887c950 has a value +1/−3 for Coverity. That means that,
according to Coverity, one new issue appeared in this revision, while 3 others were fixed. A zero,
in this case, means no change. A — dash means that the tool was not used in this specific
revision. The numbers of issues were gained with every tool set up to the strictest analysis.

It is apparent from the table, even on the first glance, that the performance of the tools varies
widely. Not only in absolute numbers of reported issues (of which some are false positives), but
also in detecting specific issues. For example, revision a9dad670 fixed 54 issues according to
GCC, but according to Coverity, it caused 4 new and did not fix anything.

Below, we have both a simple statistical analysis of what each tool found and a more detailed
look at some specific issues and revisions, especially where the tools have seriously different
results.

6.1| CppCheck

CppCheck (and Codacy, which is using it) found fewer issues than other tools. When the kind
of issues found is analysed, it becomes apparent that this tool is greatly limited. Still, this tool
is the easiest to use and it is open source, which can make it a useful entry point for projects
that do not use any other form of analysis.

The only two revisions we mention here are v4.6.0 and 4.7.0, before and after our patches. The
differences between other revisions are negligible.

In version 4.6.0, 5 issues were found in mkfs-specific files, and 460 issues in whole xfsprogs.
From these, 100 issues were not stylistic.

The issues found in mkfs are:

1. mkfs/xfs mkfs.c:1067: Checking if unsigned variable ’blocksize’ is less than zero.

2. mkfs/xfs mkfs.c:1698: Checking if unsigned variable ’sectorsize’ is less than zero.

3. mkfs/xfs mkfs.c:1225: Checking if unsigned variable ’sectorsize’ is less than zero.

4. mkfs/xfs mkfs.c:2487: Condition ’0’ is always false

5. mkfs/xfs mkfs.c:2733: The scope of the variable ’bucket’ can be reduced.

29/42

CHAPTER 6 RESULTS

Commit CppCheck Codacy Coverity GCC Clang

Total issues

(tag: v4.11.0-rc1) 07a3e793 1 3 119 30 34

(tag: v4.7.0) d7e1f5f1 1 4 119 30 28

Changes

[Last of our set] 2aca16d6 0 0 0 0 0

aa3034d4 0 0 +2/−2 0 0

6de2e6c0 0 0 +5 0 0

ddc3b2da 0 0 0 0 0

06ac92fd 0 0 +12/−3 +1 +1

27ae3a59 0 0 +1 0 0

3ec1956a 0 0 +1/−3 0 0

6c855628 0 0 +2/−2 −2 −2
627e74fd −3 −2 0 +2 +2

9090e187 0 0 +2 0 0

1974d3f1 0 0 0 −1 0

56e4d368 0 0 −3 0 0

a9dad670 0 0 +4 −54 −54
147e0f31 0 0 +3 0 0

c81c8460 0 0 0 −50 −50
a887c950 0 0 +1/−3 +13 +12

5f1a2100 0 0 0 0 0

ff21c709 0 0 0 +1 +1

[First of our set] 4a32b9e9 −1 −1 0 0 0

Total issues

[Before our set] 6aa32b47 5 6 111 121 117

(4.6.0) 09033e35 5 6 111 121 117

Table 6.1: An overview of issues found by the tested tools on specific revisions in mkfs-only
files.

All these issues were present for multiple years. Precise dating is difficult, however, because e.g.
issue 1 is blamed to a commit 16 years old. But at that time, the variable was signed. Thus,
the issue appeared some time later, when the specific variable was turned to unsigned, but not
every use was fully converted.

Neither of these issues is of any seriousness. Every found check of an unsigned variable being
less than zero is, in fact, a less-or-equal check. Listing 6.1 shows the specific code for both cases
of offending sectorsize. Thus, unsigned variable <= 0 may be misleading, but functionally
is equivalent to unsigned variable == 0. And the condition ’0’ being always false is a value
intentionally passed to a macro.

Other tools do not report this case of unsigned variable comparison, likely because the lower-than
symbol, in this case, does not have any effect.

Listing 6.1: Condition in which unsigned sectorsize is tested to be less than zero.

if (sectorsize <= 0 || !ispow2(sectorsize))

// do something

30/42

CHAPTER 6 RESULTS

The patches we wrote removed most of the offending code, so only 1 issue was found in mkfs-
specific files in version 4.7.0. In that version in the whole xfsprogs, 440 issues were found, from
which 100 issues were not style issues.

The issue found in mkfs is:
mkfs/xfs mkfs.c:2918: The scope of the variable ’bucket’ can be reduced.

When compared with Codacy, CppCheck reports one issue twice: Checking if an unsigned
variable is less than zero. This happens in two places, but Codacy ignores the second occurrence.
On the other side, CppCheck did not find any issue in mkfs/proto.c file, where Codacy did.

These differences might be caused by a different configuration of CppCheck, because we used
the default configuration, but do not know what changes Codacy did.

Despite this, the results of those two tools are very similar when compared to others, so we
use only CppCheck in further comparison with other tools. CppCheck is selected because we
have greater control over it, unlike cloud service Codacy, and on this sample produced no false
positives, although the usefulness of some reports is arguable.

The low number of issues found can be attributed to the detailed review of all patches submitted
to the project. If most issues are usually spotted during the development of the patches and fixed
before they are merged into the code, it leaves space for only more complex and not so obvious
issues, which CppCheck analysis is not capable of finding and a stronger tool is necessary.

6.2| Codacy

Codacy shows only per-commit and total issues for a branch. That is, a developer can view
whether a specific commit fixed or caused an issue, and can see what are the issues for the top
of the repository, but checking the complete state at a particular point in the history requires
creating a new branch, which is uncomfortable, but manageable for a private1 repository. In a
repository with many contributors, it can be confusing.

Codacy provides some rating on the project’s page [1], which considers xfsprogs as a quality
project (A-grade), but the weight of this rating is unclear and rather informal. Also, it is not
clear without checking every issue, what metrics Codacy uses to assess the type, whether it is
style, error or security issue.

In mkfs-specific files in version 4.6.0, 6 issues were found. Whole xfsprogs had 839 issues, from
which 809 were code style issue and 30 were potential errors.

Codacy found most of the same issues as CppCheck with few exceptions. It reported these two
issues:

1. mkfs/proto.c:49: The function ’setup proto’ is never used.

2. mkfs/proto.c:601: The function ’parse proto’ is never used.

However, these functions are used in mkfs/xfs mkfs.c file, thus they are false positives. Also,
CppCheck found two places on which sectorize is checked to be less than zero, but Codacy
reports it only once. Curiously, the same issue appears in two places not far away, and in both
cases, it is in this exact condition as can be seen in Listing 6.1 in Section 6.1, just inside of

1In the sense of being the only user, not in terms of visibility.

31/42

CHAPTER 6 RESULTS

different blocks, but still in the same function and path to both places is possible. Why Codacy
reports only one of those issues is unclear.

In version 4.7.0 in mkfs-specific files, 4 issues were found. Whole xfsprogs had 749 issues, from
which 719 were code style issue and 30 were potential errors.

The four issues found in this version are similar to what can be seen for the 4.6.0:

1. mkfs/xfs mkfs.c:2918: The scope of the variable bucket can be reduced.

2. mkfs/maxtrres.c:31: The function max trans res is never used.

3. mkfs/proto.c:49: The function setup proto is never used.

4. mkfs/proto.c:601: The function parse proto is never used.

Also in this case, the supposedly unused function max trans res is in fact used in another file.

In total, Codacy results are similar to CppCheck itself, but with more of false positives. The
only advantage it offers is automated integration with GitHub. With a correct set-up, it can
ensure that every push into the repository is tested.

6.3| GCC and Clang

Despite being developed independently, GCC and Clang are very similar in what they found,
with GCC finding a few more issues. In this section, we describe some of the notable differences
between those two tools and compare them to others where it is reasonable.

6.3.1| Version 4.6.0

Table 6.2 compares GCC and Clang in this revision, and we specifically look at the differences
between these two tools and Codacy. Other issues are not listed here due to their amount, but
the reader can find them on an attached optical disc, or replicate them using the tools attached
to this work.

Tool mkfs/xfs mkfs.c mkfs/proto.c Whole xfsprogs

GCC 121 2 2013

Clang 113 4 2597

Table 6.2: Comparison of the number of issues reported by GCC and Clang in version 4.6.0.

As is shown in Section 6.2, Codacy found two issues in the proto.c file too. Curiously, Codacy
found two unused functions, while GCC found these issues:

1. mkfs/proto.c:270: comparison between signed and unsigned integer expressions

2. mkfs/proto.c:332: unused parameter ’mp’

These issues are not in the two functions found by Codacy. However, they are inside of functions
called from the ones marked as unused by Codacy. It is possible that they were not reported
because of this, but given that the mentioned Codacy issues are false positives and that Codacy
did not found many other issues, it is likely that Codacy simply did not notice them, while GCC
did.

32/42

CHAPTER 6 RESULTS

In addition to the two issues found by GCC in mkfs/proto.c, Clang found two other issues
(both of the same kind):

1. mkfs/proto.c:130: missing field ’tr logcount’ initializer

2. mkfs/proto.c:631: missing field ’tr logcount’ initializer

These two new issues, complaining about a missing field, are probably false positives because,
on these lines, a structure with all members zeroed is created, as can be seen in Listing 6.2.

Listing 6.2: One of the two lines on which Clang reports a missing field in structure initialization.

struct xfs_trans_res tres = {0};

The difference between GCC and Clang in mkfs xfs.c file is 8 issues in absolute numbers, and
the real difference is not much bigger; GCC reports more cases of a comparison between signed
and unsigned integer than Clang does. Clang, on the other hand, reports few cases of this issue:

mkfs/xfs mkfs.c:2906: cast from ’char *’ to ’xfs alloc rec t *’ (aka ’struct xfs alloc re c *’)
increases required alignment from 1 to 4

Other than that, they report the same issues.

6.3.2| Revision a887c950

GCC detected 13 new issues in mkfs/xfs mkfs.c. These 13 issues are only of two kinds:

1. mkfs/xfs mkfs.c:1487: comparison is always false due to limited range of data type

2. mkfs/xfs mkfs.c multiple occurences: passing argument 2 of ’illegal’ discards ’const’
qualifier from pointer target type

Clang detected all the 12 occurrences of the second issue but missed the first comparison issue.
The offending line for the missed issue is shown in Listing 6.3. A closer look on this line
reveals that there is an explicit type casting. The new type is a signed integer. However, the
variable logagno is declared with type xfs agnumber t and this type is declared as an alias to
uint32 t in file libxfs/xfs types.h.

According to the standard of C language, the type casting has a precedence over comparison [3,
A.2.1], so Clang, when evaluating this line, sees an integer. That is technically correct, but in
a wider context, it is also clear that the possible values are still limited by the original type, and
so this comparison will be always false. Which is what GCC noticed and also correctly reported.
No other tool reported this issue.

Listing 6.3: Line on which GCC found the comparison issue.

if ((__int64_t)logagno < 0)

// do something

The other issues are similar to what Clang found but appears to suffer the instability in parsing
mentioned in Section 5.2. All these issues are caused by passing a constant string to a function
which does not has the const keyword for an argument: illegal(value,

’’
b log‘‘);. The

file xfs mkfs.c contains 44 such calls, but only some of them were added in this revision. Thus,
we correctly detected these issues, but some of the line numbers we see had this issue before.
If we would want to see exactly which lines were added, the easiest way is to look to look at
changes in this specific commit.

33/42

CHAPTER 6 RESULTS

6.3.3| Version 4.7.0

Clang found 3 more issues in this revision than GCC did in file mkfs/proto.c, as is shown in
the comparison in Table 6.3. Two of them already appeared in the description of revision 4.6
in Section 6.3.1 and were not fixed, the third issue is of the same kind and was introduced by
some other patch other than which are part of this work.

Tool mkfs/xfs mkfs.c mkfs/proto.c Whole xfsprogs

GCC 28 2 2013

Clang 23 5 2511

Table 6.3: Comparison of the number of issues reported by GCC and Clang in version 4.7.0.

Almost all issues found in mkfs/xfs mkfs.c are about a comparison, with only two exceptions:

1. mkfs/xfs mkfs.c:728: unused parameter ’lsectsz’

2. mkfs/xfs mkfs.c:1896: passing argument 2 of ’unknown’ discards ’const’ qualifier from
pointer target type

Most issues in Clang are also about a comparison, with multiple versions of wording, because
where GCC uses only one universal message, Clang uses a template into which it substitutes
specific types. This makes the analysis of the results more challenging but does not have any
effect on the results. In this revision, Clang does not report any new kind of issues against
version 4.6.0.

6.4| Coverity

Coverity, when it is run manually in the docker container, found a comparable number of issues
as GCC and Clang in mkfs-specific files. On the other hand, the online version did not find
any issues in mkfs on a recent (4.11) version [14], compared to 111 found on a manual run
with the highest level of aggressiveness. What effect the aggressiveness level has can be seen in
Table 6.4. The numbers in this table are for mkfs-specific files. The tested revision is 07a3e793
(v4.11.0-rc1). From the results, it is probable that the service is using configuration similar to
the low aggressiveness. Especially when numbers for the whole xfsprogs are compared.

online low medium high custom

Issues reported 0 0 36 97 111

Table 6.4: Comparison of issues found by Coverity online service and Coverity run locally with
different levels of aggressiveness.

In most of this section, we focus on results gained from the custom (highest) level. The online
service is briefly described and some interesting statistics comparing xfsprogs with other open-
source projects (in an aggregated manner) are provided only in Section 6.4.1.

The reasons for selecting the custom level aggressiveness as the level on which our analysis
focusses is that for other tools we used the strictest settings available, thus, analysing relaxed
approach on any other level is not comparable to other tools.

Unlike CppCheck or the compilers, Coverity can also show examples of the data flow for which
a defect can appear. E.g. tracking multiple conditions and noting if true or false branch was

34/42

CHAPTER 6 RESULTS

0 5 10 15

null pointer dereference
control flow issues

error handling issues
integer handling issues

program hangs
uninitialized variables

memory corruptions
memory illegal access

API usage errors
insecure data handling
concurent data access

Outstanding defects

Medium impact
High impact

Figure 6.1: Outstanding defects per category for whole xfsprogs.

taken. This is especially useful when the case is not clear and the path includes a longer chain of
conditions over a larger part of the code. Both the online service and the locally-run application
provides this information. However, it is not particularly useful in our comparison of what issues
were found.

6.4.1| Online Service

The online service available at https://scan.coverity.com/projects/xfsprogs provides
various statistics in addition to reported issues. The online service found no issues in mkfs. In
whole xfsprogs, it reported 71 issues, which is similar to what the manual execution on the low
level found (77 issues). The service also provides a view on specific categories, as can be seen
in Figure 6.1

This service is used since 2013 and since xfsprogs was first analysed, a total number of 273
issues was found. Of these, 176 were fixed and 26 dismissed as intentional or false positives.
The average defect density according to this analysis is currently 0.52 issues per 1,000 lines,
with 135,302 lines analysed.

When xfsprogs was analysed for the first time by this service, 139 issues were found, but many
were fixed shortly afterwards and the number of outstanding defects is not changing much,
averaging between 60 and 70 issues at any specific revision. When compared with other open-
source projects of similar size2 analysed by this service, xfsprogs oscillates around the average
value, which is 0.5.

It is also useful to note that the defects are not distributed equally in the whole xfsprogs. When
we look at the defects rate per component, seen in Table 6.5, we can see that the tools used
by developers for e.g. debugging, or by advanced users (xfs copy, xfs logprint) have a
higher rate than the tools intended for a general use, like mkfs. The high rate in libxcmd and
libhandle is caused by the small size of these two components. Both has only a single issue,
but as libhandle has under 500 lines, the average per 1000 lines makes it look worse.

2100,000 to 400,000 lines of code.

35/42

https://scan.coverity.com/projects/xfsprogs

CHAPTER 6 RESULTS

libxfs libxlog xfs repair xfs db xfs copy xfs fsr xfs io

Lines of code 43,770 1,165 22,620 18,508 1,043 1,354 6,970

Defect density 0.80 0.86 0.44 0.49 2.88 0.74 0.00

xfs logprint xfs quota mkfs xfs xfs growfs libhandle libxcmd other

Lines of code 2,616 4,037 3,540 408 493 1,338 27,539

Defect density 1.15 0.50 0.00 0.00 2.03 1.38 0.15

Table 6.5: Defect density per component as reported by Coverity online service.

6.4.2| Local analysis

This section analyses the results from the local execution of Coverity on the highest level of
aggressiveness.

In mkfs-specific files in version 4.6.0, 111 issues were found, while whole xfsprogs had 3309
issues. From the issues reported for mkfs, 60 is a complaint about dereferencing a pointer that
might be null in printf or fprintf call.

An example of a line with such a warning is in Listing 6.4. The issue lies with Gettext3. The
macro is translated as a dcgettext call and it is the result of this function that Coverity can’t
verify. And because there is no check of the return value for null before it is passed to printf,
Coverity makes an aggressive assumption and raise a warning.

Listing 6.4: xfs mkfs.c:1713: Line which is reportedly dereferencing a potentially null pointer
with Gettext

printf(_("%s version %s\n"), progname , VERSION);

These issues can probably be considered false positives, or at least intentional. A brief search in
Gettext implementation suggests that if Gettext cannot allocate memory for a translated string,
it simply returns the original one. For example, see file /gettext-runtime/intl/dcigettext.c,
line 391 in Gettext source code [11].

Only 10 of the dereferencing issues are related to something else than dcgettext and might be
useful. An example of such issue is Listing 6.5. In this case, memory is allocated with a malloc

call. The returned value is not tested, so it is possible that null is passed to the read call.

Listing 6.5: proto.c:66: Line which is reportedly dereferencing a potentially null pointer - no
malloc check.

buf = malloc(size + 1);

if (read(fd, buf , size) < size) {

// do something ...

These two issues also illustrate the difference between the aggressiveness level. The Gettext-
related issue is reported only on high or custom level, but the malloc issue is reported also on
medium level.

When compared to GCC or Clang, Coverity finds different issues than the other tools. While
GCC reports a lot of comparison between signed and unsigned integers or discarding const

3Gettext is a tool/library for translation of programs. It generates a list of marked string from a program.
These string can be translated and packaged with the compiled program. When the program is run, Gettext
selects the correct language based on system configuration.

36/42

CHAPTER 6 RESULTS

qualifier, Coverity finds a lot of potential null pointer dereferences and numeric types overflows
when 32bit and 64bit arithmetics are mixed.

6.5| Summary

As we have seen, the results of the tools vary widely, both in types of issues the tools report and
in their amount. The mediocre results of CppCheck and Codacy can be probably attributed to
the fact that we tested it on a production code which already passed a certain quality assurance
and thus, the kinds of issues these tools are best capable of finding were already fixed.

Coverity and both compilers were capable of finding less obvious defects, but the price for a
too high sensitivity was a lot of reported issues with only a minimal, if any, effect, like the
comparisons between signed and unsigned integers from GCC.

In any case, this work shows that on a relatively error-free code, there is only a minimum of
defects that would be reported by multiple tools. This makes it apparent that it is useful to use
as many diverse methods in the analysis as possible.

The most helpful tool from the tested ones was Coverity, not least because of its ability to show
the flow of the program in which the defect can appear. However, the free analysis for open
source projects is limited to more obvious defects and for non-open source projects, or for a
detailed analysis, it requires a paid license.

This analysis was done after the first patches were written and merged, but found minor issues
only, which speaks well for the quality of mkfs, at least in terms of correctness with respect to
the language standard. Whether the code is well structured or not, or if it does what is expected
from it on a higher level, is not possible to assess with these tools.

Our patches reduced the number of issues found by all tools except Coverity. Coverity saw a
small growth on higher levels of aggressiveness4. On the other hand, GCC, Clang and CppCheck
saw a fall to roughly about one quarter. Codacy, after subtracting false positives, shows the
same trend, although the only tool from the tested ones, which was used during the development
of these patches, is the online Coverity service.

4On the low level, Coverity found no defect both before and after the patches.

37/42

7| Conclusion

As we have found, the accumulation of technical debt in long-living projects can impair the
understanding of the code and grow as a snowball, with each change requiring more ad-hoc
adjustments and edits than the previous one. When this happens, it is important to devote
some effort to clean the code, even if it can take a long time, because otherwise, the situation
will only grow worse.

As Chapter 3 shows, we have begun this work and successfully merged the first set of changes.
Because the development process continues at a slower pace than we expected, not all of the
desired changes were merged before this work was published. This does not change our plan
for merging them. Rather, we only have to find better processes that will limit long delays and
speed up the merging of the changes into the project. Some of these possible changes were
discussed in Section 3.5.

We also compared the online Coverity service xfsprogs is using with few other tools, to see how
effective the current reviews and tests are. The results in the Chapter 6 speak rather well. All
the found issues in mkfs.xfs were only of a minor importance, even though different tools found
different kinds of issues. With higher sensitivity, the tools were reporting more of those issues,
but with diminishing importance and growing amount of false positives. Also, we found out
that our patches lowered the number of issues found in mkfs by most of the tools.

While it might be useful to incorporate the other tools and let the tools use more aggressive
assumptions, it is uncertain if the return of investment into fixing a large amount of minor
and stylistic issues is positive, or if the effort is better spent on keeping the XFS filesystem
competitive with other modern and much younger filesystems.

38/42

Bibliography

[1] Codacy: jtulak/xfsprogs results.
https://www.codacy.com/app/jtulak/xfsprogs-dev/dashboard. [Online; visited
29. Apr. 2017].

[2] CSBUILD MAN PAGE. https://www.mankier.com/1/csbuild. [Online; visited 1.
May 2017].

[3] C language standard – committee draft, iso 9899:tc3. 2007.

[4] Apple. Debugging with Xcode.
https://developer.apple.com/library/content/documentation/

DeveloperTools/Conceptual/debugging_with_xcode/chapters/static_

analyzer.html#//apple_ref/doc/uid/TP40015022-CH11-DontLinkElementID_16,
2016. [Online, visited at 01. Jan. 2017].

[5] D. Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. Proc. of CAV’11, 2011.

[6] Dave Chinner. Re: [RFC PATCH 1/2] mkfs: unify numeric types of main variables in
main(). https://www.spinics.net/lists/linux-xfs/msg05750.html, 2017.
[Online, visited at 9. Apr. 2017].

[7] David Chinner. [RFC, PATCH 00/15] mkfs: sanitise input parameters.
http://oss.sgi.com/archives/xfs/2013-11/msg00833.html, 2013. [Online, visited
at 01. Jan. 2017].

[8] David Chinner. Linux Filesystems: Where did they come from?
https://www.youtube.com/watch?v=DxZzSifuV4Q&index=2&list=WL, 2014. [Video
of a presentation; visited 1. May 2017].

[9] David Chinner. ANNOUNCE] xfsprogs: master branch updated to c5d584c.
http://oss.sgi.com/archives/xfs/2016-05/msg00230.html, 2016. [Online, visited
at 01. Jan. 2017].

[10] Clang community. Clang Static Analyzer. https://clang-analyzer.llvm.org/.
[Online; visited 12. May. 2017].

[11] GNU community. Gettext Git repository.
http://git.savannah.gnu.org/cgit/gettext.git. [Online; visited 12. May. 2017].

[12] XFS community. mkfs.xfs manual page. XFS man page. [Current version at 01. Jan.
2017].

[13] XFS community. XFS manual page. XFS man page. [Current version at 01. Jan. 2017].

[14] Coverity. Coverity Scan: xfsprogs. https://scan.coverity.com/projects/xfsprogs.
[Online; visited 01. Jan. 2017].

[15] Docker. What are containers. https://www.docker.com/what-container. [Online;
visited 29. Apr. 2017].

39/42

https://www.codacy.com/app/jtulak/xfsprogs-dev/dashboard
https://www.mankier.com/1/csbuild
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/debugging_with_xcode/chapters/static_analyzer.html#//apple_ref/doc/uid/TP40015022-CH11-DontLinkElementID_16
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/debugging_with_xcode/chapters/static_analyzer.html#//apple_ref/doc/uid/TP40015022-CH11-DontLinkElementID_16
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/debugging_with_xcode/chapters/static_analyzer.html#//apple_ref/doc/uid/TP40015022-CH11-DontLinkElementID_16
https://www.spinics.net/lists/linux-xfs/msg05750.html
http://oss.sgi.com/archives/xfs/2013-11/msg00833.html
https://www.youtube.com/watch?v=DxZzSifuV4Q&index=2&list=WL
http://oss.sgi.com/archives/xfs/2016-05/msg00230.html
https://clang-analyzer.llvm.org/
http://git.savannah.gnu.org/cgit/gettext.git
https://scan.coverity.com/projects/xfsprogs
https://www.docker.com/what-container

BIBLIOGRAPHY

[16] Christopher Hellwig. XFS: The big storage file system for Linux.
http://oss.sgi.com/projects/xfs/papers/hellwig.pdf. [Online; visited 01. Jan.
2017].

[17] Bohuslav Křena and Tomáš Vojnar. Automated Formal Analysis and Verification: An
Overview. International Journal of General Systems, 42(4):335–365, 2013.

[18] Benjamin Livshits and Thomas Zimmermann. Dynamine: Finding common error patterns
by mining software revision histories. ESEC-FSE’05, September 5–9, 2005.

[19] Daniel Marjamäki. Cppcheck Design. http://sourceforge.net/projects/

cppcheck/files/Articles/cppcheck-design-2010.pdf/download, 2010. [Online,
visited at 01. Jan. 2017].

[20] Microsoft. FILETIME structure. https://msdn.microsoft.com/en-us/library/

windows/desktop/ms724284(v=vs.85).aspx. [Online; visited 01. Jan. 2017].

[21] Microsoft. How NTFS Works.
https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx,
2013. [Online; visited 01. Jan. 2017].

[22] Microsoft. NTFS Overview.
https://technet.microsoft.com/en-us/library/dn466522(v=ws.11).aspx,
2016. [Online; visited 01. Jan. 2017].

[23] Antoine Miné, Laurent Mauborgne, Xavier Rival, Jerome Feret, Patrick Cousot, and et al.
Taking static analysis to the next level: Proving the absence of run-time errors and data
races with astrée. 8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), 2016.

[24] Steven Musil. Australia police discourage use of Apple maps app after rescues.
https://www.cnet.com/news/

australia-police-discourage-use-of-apple-maps-app-after-rescues/, 2012.
[Online, visited at 01. Jan. 2017].

[25] Steve Naroff. New LLVM C Front-end.
http://llvm.org/devmtg/2007-05/09-Naroff-CFE.pdf. [Online; visited 12. May.
2017].

[26] Jochen Pohl. Lint manual page. http://www.unix.com/man-page/FreeBSD/1/lint.
[Current version at 01. Jan. 2017].

[27] Inc. Red Hat. What are the file and file system size limitations for Red Hat Enterprise
Linux? https://access.redhat.com/solutions/1532, [Online; visited 19. May
2017].

[28] Luis R. Rodriguez. Re: [PATCH 08/12] mkfs: replace variables with opts table: -b,d,s
options. https://www.spinics.net/lists/linux-xfs/msg06273.html, 2017.
[Online, visited at 26. Apr. 2017].

[29] Eric Sandeen. What is the maximum number of inodes in Linux filesystems?
https://www.quora.com/

What-is-the-maximum-number-of-inodes-in-Linux-filesystems-I-found-suggestion-that-for-Ext4-it-is-4-billion-files-32-bit-number-Is-it-true-for-XFS-and-or-BtrFS,
2014. [Online; visited 01. Jan. 2017].

40/42

http://oss.sgi.com/projects/xfs/papers/hellwig.pdf
http://sourceforge.net/projects/cppcheck/files/Articles/cppcheck-design-2010.pdf/download
http://sourceforge.net/projects/cppcheck/files/Articles/cppcheck-design-2010.pdf/download
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724284(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724284(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/dn466522(v=ws.11).aspx
https://www.cnet.com/news/australia-police-discourage-use-of-apple-maps-app-after-rescues/
https://www.cnet.com/news/australia-police-discourage-use-of-apple-maps-app-after-rescues/
http://llvm.org/devmtg/2007-05/09-Naroff-CFE.pdf
http://www.unix.com/man-page/FreeBSD/1/lint
https://access.redhat.com/solutions/1532
https://www.spinics.net/lists/linux-xfs/msg06273.html
https://www.quora.com/What-is-the-maximum-number-of-inodes-in-Linux-filesystems-I-found-suggestion-that-for-Ext4-it-is-4-billion-files-32-bit-number-Is-it-true-for-XFS-and-or-BtrFS
https://www.quora.com/What-is-the-maximum-number-of-inodes-in-Linux-filesystems-I-found-suggestion-that-for-Ext4-it-is-4-billion-files-32-bit-number-Is-it-true-for-XFS-and-or-BtrFS

BIBLIOGRAPHY

[30] SGI. Original XFS Documentation.
http://oss.sgi.com/projects/xfs/design_docs/xfsdocs93_pdf/. [Online; visited
1. May 2017].

[31] SGI. XFS Documentation, ch. 1: XFS Background. http://xfs.org/docs/

xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/xfs-background.html.
[Online; visited 01. Jan. 2017].

[32] SGI. XFS Documentation, ch. 4.9: mkfs - Realtime. http://xfs.org/docs/

xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/ch04s09.html. [Online;
visited 01. Jan. 2017].

[33] SGI. XFS Filesystem Structure. http://xfs.org/docs/xfsdocs-xml-dev/XFS_

Filesystem_Structure//tmp/en-US/html/index.html. [Online; visited 01. Jan.
2017].

[34] Inc. Synopsys. Coverity 8.7.1 Command and Ant Task Reference. Bundled with Coverity
installation., 2017.

[35] Jan Ťulák. Docker Hub: jtulak/cppcheck.
https://hub.docker.com/r/jtulak/cppcheck/. [Docker image].

[36] Jan Ťulák. [RFC, PATCH 00/17] mkfs: sanitise input parameters.
http://oss.sgi.com/archives/xfs/2015-06/msg00309.html, 2015. [Online, visited
at 01. Jan. 2017].

[37] Jan Ťulák. [PATCH 00/19 v2] mkfs cleaning.
http://oss.sgi.com/archives/xfs/2016-04/msg00542.html, 2016. [Online, visited
at 01. Jan. 2017].

[38] Jan Ťulák. [RFC PATCH 00/22] mkfs.xfs: Make stronger conflict checks.
https://www.spinics.net/lists/linux-xfs/msg02728.html, 2016. [Online, visited
at 01. Jan. 2017].

[39] Jan Ťulák. [RFC PATCH 0/8] mkfs: centralised conflict detection.
https://www.spinics.net/lists/xfs/msg41336.html, 2016. [Online, visited at 02.
Aug. 2016].

[40] Jan Ťulák. [PATCH 00/12] mkfs: save user input into opts table.
https://www.spinics.net/lists/linux-xfs/msg06158.html, 2017. [Online, visited
at 23. Apr. 2017].

[41] Jan Ťulák. Re: [RFC PATCH 1/2] mkfs: unify numeric types of main variables in main().
https://www.spinics.net/lists/linux-xfs/msg05696.html, 2017. [Online, visited
at 7. Apr. 2017].

41/42

http://oss.sgi.com/projects/xfs/design_docs/xfsdocs93_pdf/
http://xfs.org/docs/xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/xfs-background.html
http://xfs.org/docs/xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/xfs-background.html
http://xfs.org/docs/xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/ch04s09.html
http://xfs.org/docs/xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/ch04s09.html
http://xfs.org/docs/xfsdocs-xml-dev/XFS_Filesystem_Structure//tmp/en-US/html/index.html
http://xfs.org/docs/xfsdocs-xml-dev/XFS_Filesystem_Structure//tmp/en-US/html/index.html
https://hub.docker.com/r/jtulak/cppcheck/
http://oss.sgi.com/archives/xfs/2015-06/msg00309.html
http://oss.sgi.com/archives/xfs/2016-04/msg00542.html
https://www.spinics.net/lists/linux-xfs/msg02728.html
https://www.spinics.net/lists/xfs/msg41336.html
https://www.spinics.net/lists/linux-xfs/msg06158.html
https://www.spinics.net/lists/linux-xfs/msg05696.html

Appendices

The attached optical medium has this content:

• docker/ – The directory with the containers and used scripts.

• tex/ – Latex source code, and data used in this work in results subdirectory.

• xfsprogs-dev/ – The directory with xfsprogs git repository. Includes also the changes
that were not yet merged in conflicts branch.

The docker/ directory contains subdirectories for every container, plus these scripts, which are
described in Chapter 5:

• prepare.sh – A script that will download sources for the docker containers. Not necessary
when the directories already exists.

• tests.py – A script that runs all the tests.

• format-outputs.sh – A script to preprocess the output of the used tools for later
analysis.

• parse.py – A simple analysis of the outputs, capable of printing differences between
revisions.

• README.md – An example of how to use these scripts.

42/42

	Introduction
	XFS filesystem
	2.1 XFS Architecture overview
	2.2 mkfs.xfs
	2.3 xfstests

	Refactoring of mkfs.xfs
	3.1 Development processes
	3.2 Initial codebase
	3.3 First patchset
	3.3.1 Timeline and progress
	3.3.2 Description of important changes

	3.4 Second patchset
	3.4.1 Timeline and progress

	3.5 Summary

	Formal Analysis and Verification
	4.1 Static Analysis
	4.1.1 Error patterns
	4.1.2 Data flow analysis
	4.1.3 Abstract interpretation

	4.2 Model Checking
	4.3 Theorem Proving

	Used Techniques and procedures
	5.1 Testing Environment
	5.1.1 CppCheck
	5.1.2 Coverity
	5.1.3 GCC
	5.1.4 Clang

	5.2 Results Processing

	Results
	6.1 CppCheck
	6.2 Codacy
	6.3 GCC and Clang
	6.3.1 Version 4.6.0
	6.3.2 Revision a887c950
	6.3.3 Version 4.7.0

	6.4 Coverity
	6.4.1 Online Service
	6.4.2 Local analysis

	6.5 Summary

	Conclusion

