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Abstrakt 
T a t o práce popisuje průběh re fak tor ingu p rogramu mkfs.xfs za účelem zpřehlednění j e h o kódu 

a vyč iš těn í techn ického d luhu naakumulovaného za dvacet let existence t o h o t o p rog ramu, a 

následně j e h o s ta t i ckou analýzu. Použi té nástroje (CppCheck , Coveri ty, Codacy, GCC, Clang) 

jsou srovnány z hlediska poč tu i t y p u nalezených chyb. 

Abstract 
Th is work describes the processes o f re factor ing mkfs.xfs program for a purpose o f ref in ing its 

code and c leaning the technical deb t accumula ted over 20 years o f t he program's existence. 

T h e mkfs.xfs source code is then a subject t o s ta t ic analysis and the used too ls (CppCheck , 

Coveri ty, Codacy, GCC, Clang) are compared in te rms o f the number and type o f t he found 

defects. 
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Introduction 

In sof tware projects w i t h long life, even an in i t ia l ly clean codebase can become messy and 

comp l i ca ted . Moreso when we speak a b o u t open-source projects where the or iginal creators left 

yers ago and new people o f var ious capabi l i t ies and knowledge con t inue the deve lopment . 

In such projects, new func t iona l i t y is added t o the ex is t ing code w i t h m in ima l changes t o the 

rest o f t he project . Th is may s impl i fy the merg ing o f these changes, as any responsible person 

can easily understand w h a t the change does. B u t on the o ther side, in the long t e r m , i t t u rns 

the code in to a disordered chaos. 

T h e result is increasingly more d i f f i cu l t t o ma in ta in and test , and as a single func t iona l i t y can 

be spread over many por t ions o f t he project , any change requires more and more a t t e n t i o n and 

t i m e . 

xfsprogs, a package o f too ls for X F S f i lesystem, is such a project . W h i l e the f i lesystem i t 

self is subject t o careful sc ru t iny f r o m the L inux kernel commun i t y , t he too ls like mkfs.xfs 1, 
fsck.xfs 2 and o thers are not so publ ic ly exposed and get a lot less a t t e n t i o n . From our ex

perience w i t h w o r k i n g on th is project , i t happens t h a t on ly one or t w o persons o ther t h a n the 

au thor o f a patch may read i t , and miss some subt le side effect t he change has. Somet imes, 

the large set o f tests X F S mainta ins captures th is bug, somet imes i t does not and i t is not iced 

much later. 

On th is po in t , i t is i m p o r t a n t t o h igh l ight t h a t despite the n a m i n g convent ion , each mkfs t oo l 

is comple te ly independent project and , for example, mkfs.xfs and mkfs . e x t 4 do not share 

any code except system libraries. 

Some parts o f th is code are more t h a n 20 years old (see chapter 1 for a detai led history o f X F S ) 

and in need o f intensive c leaning. T h e test sui te (pro jec t x fs tests) main ta ins hundreds o f more 

or less complex tests, bu t these are l im i ted in w h a t they can detect as they usually work in th is 

way: make a f i lesystem, then test t h a t , so many errors in mkfs.xfs are d i f f i cu l t t o capture 

or not ice. X F S also uses an a u t o m a t i c s ta t ic analysis f r o m Coveri ty, wh ich is useful, bu t the 

project has no g o o d data on the rel iabi l i ty o f th is analysis. 

W i t h the approval o f Dav id Chinner, t hen the main ta iner o f X F S , we began the re factor ing o f 

mkfs.x fs , wh ich was overdue. T h e goal o f th is work is t o repay the technica l debt accumula ted 

over the years. T h a t means not on ly f i x ing some long-known issues and c leaning par t icu lar ly 

complex parts o f the code, bu t also m a k i n g s t ruc tu ra l changes t o min imize the a m o u n t o f code 

t h a t must be added or changed dur ing the regular deve lopment (add ing and remov ing features 

o f t he f i lesystem). These changes should slow the bu i ld -up o f the technica l debt in the fu tu re . 

A f t e r i m p l e m e n t i n g these changes, th is work should ver i fy how effect ive the cur ren t ly used tests 

and analysis are. Even i f some tes t ing and analysis methods can be used on ly on a part o f the 

code, the results, when compared w i t h o ther too ls , st i l l provides an es t imate a b o u t the soundess 

and completeness o f every used m e t h o d . 

f o r m a t s a par t i t ion as XFS. 
2 Usual ly checks and repairs errors in an exist ing f i lesystem. But for XFS it only tells the user w h a t other tools 

t o use. 

3/42 



CHAPTER 1 INTRODUCTION 

A t the same t i m e , th is work can also be seen as a review o f how well var ious analysis and 

ver i f ica t ion methods per form on real and in -p roduc t ion code. 

T h e re fac tor ing was done in t w o parts. One set o f changes was merged in to upst ream in June 

2016 (xfsprogs 4 . 7 3 ) , t he o ther set is, at t he t i m e o f w r i t i n g , st i l l in deve lopment . T h e versions 

o f xfsprogs a t d i f ferent stages o f th is work were: 

• Before the beg inn ing o f re factor ing - xfsprogs 4.6. 

• A f t e r merg ing the f i rs t par t - xfsprogs 4.7. 

• Before merg ing the second part - xfsprogs 4 .11 at t he t i m e o f w r i t i n g . 

• A f t e r app ly ing the second part - not yet merged, changes on ly in a local repository. 

Th is work is s t ruc tu red as fo l lows: First , i n fo rmat ion abou t X F S and mkfs.x fs are provided in 

the f i rs t chapter . In the fo l low ing , t h i r d chapter , we look a t t he re factor ing done and discuss the 

changes. A f t e r t h a t , another chapter is dedicated t o exp la in ing fo rma l analysis and ver i f i ca t ion , 

descr ib ing c o m m o n techniques, and we po in t o u t notable too ls , f r o m wh ich we select few t o use 

in the f i f t h and s ix th chapter , where the tes t ing env i ronmen t is described and results analysed. 

3 T h e releasing o f xfsprogs is t igh t l y coupled w i th releases o f XFS kernel module, which is part o f Linux. Thus , 

xfsprogs uses the same version number t h a t the respective XFS kernel module and Linux has. 
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XFS filesystem 

X F S is a j o u r n a l i n g f i lesystem created by SGI in 1993. T h e new f i lesystem, in tended as a 

powerfu l replacement o f EFS w i t h the expec ta t ion o f g r o w i n g a m o u n t o f data in the f u t u r e was 

f i rs t released in IRIX 5.3 in 1993 [30] . T h e L inux por t began in 1999 and since 2002 X F S has 

been accessible in the main l ine L inux Kernel [ 3 1 , Chap. 1.2, 1.3]. 

X F S is act ively developed for all its h istory since 1993, m a k i n g i t one o f t he oldest f i lesystems 

in act ive use on modern L inux machines [ , 40 :25 ] . 

ex t3 ex t4 X F S N T F S 

max fs size 1 E iB 16 T i B 16 E iB 256 T i B 

max fi le size 8 T i B 16 T i B 8 E iB 256 T i B 

max files 2 32 2 3 2 2 6 4 2 32 

date resolut ion 1 S 1 ns 1 ns 100 ns 

Table 2 . 1 : Compar ison o f var ious f i lesystems and the i r l imi ts . Sources: [29, 22, 2 1 , 20 , 16, 27 ] . 

Because o f its capabi l i t ies, X F S is used by well known ins t i tu t ions like C E R N and Fermi lab [16] 

for s to r ing large amoun ts o f da ta . Unl ike most o ther L inux f i lesystems, X F S is a 64b i t f i lesystem, 

mean ing i t provides far greater l imi ts for storage and fi le s ize 1 , bu t i ts a rch i tec ture also offer 

great scalabi l i ty in te rms o f parallel I / O . 

X F S as a who le is separated in to three main projects: First , there is the X F S f i lesystem itself, 

in the fo rm o f a dr iver. T h e n a set o f too ls in a package called xfsprogs is t i g h t l y connected 

w i t h X F S f i lesystem and conta ins programs useful or necessary for creat ion and man ipu la t ion 

o f t he f i lesystem. Among t he too ls inc luded are mkfs.xfs, on wh ich th is thesis is focused, but 

also o ther too l s : xf s_io, xf s_growf s, et cetera. A n d f inal ly, there are xfstests, wh ich is a test 

suite con ta in ing hundreds o f shell scr ipts used for ver i fy ing the behaviour o f ent i re X F S chain 

( f r o m mkfs t o the kernel code) . Th is project is also part ia l ly used by o ther f i lesystems. 

In add i t ion t o the xfstests tes t sui te, xfsprogs also uses an a u t o m a t i c s ta t ic analysis f r o m 

Cover i ty [ ] . However, t o see detai led in fo rmat ion and defects there, one must be approved 

by ex is t ing members o f t he project . 

2.11 XFS Architecture overview 

W h e n a X F S par t i t ion is f o r m a t e d , up t o three areas are created on the disk: Da ta sect ion 

is always present. A n op t iona l rea l - t ime sect ion is o m i t t e d by defau l t . T h e log sect ion must 

always exist, bu t can be placed on a d i f ferent device. T h e data part is then spl i t i n to mu l t ip le de 

fac to independent regions called A l l oca t i on Groups, wh ich handle space a l locat ion and al lows 

for higher paral le l ism, as most operat ions can be done on each A l l oca t i on Group independent ly 

on the others. T h e log sect ion may be internal t o one o f the A l l oca t i on Groups. 

*A t least matured ones. Newer fi lesystems, like Btr fs , are also 64bi t , but have not yet reached stabi l i ty required 

in business sector. 
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CHAPTER 2 XFS FILESYSTEM 

Superblock (one sector) x f s _ s b _ t 

AG f r e e block i n f o (one sector) x f s _ a g f _ t 

AG inode B+tree i n f o Cone sector} x f s _ a g i _ t 

AG i n t e r n a l f r e e l i s t (one sec t o r ) x f s _ a g f l _ t 

Root of inode B+tree {1 block) 
(1 block) 

Root of f r e e space B+tree (1 block) 
B+tree key i s block number 

Root of f r e e space B+tree (1 block) 
B+tree key i s block count 

Free l i s t (4 blocks) 

Inodes (64 inodes) 

x f s _ i nobt_block_t 

jtf s _ b t r e e _ s b l o c k _ t 

x f s btree sblock t 

x f s dinode t 

Remaining space f o r metadata and data 

Figure 2 . 1 : P r imary A G immed ia te ly a f ter mkfs [ , Ch . 3 ] . 

As each A l l oca t i on Group is a de fac to s tandalone region, each conta ins a superb lock as well as 

b lock and inode a l locat ion s t ruc tures, and the on ly global i n fo rmat ion main ta ined by the f i rst 

(p r imary ) A G is free space and to ta l inode counts across the who le f i lesystem as can be seen 

on Figure 2 . 1 . 

T h e X F S real - t ime sect ion is dedicated for files w i t h a rea l - t ime a t t r i b u t e bi t set, and operat ions 

w i t h these files should have predictable latencies [ ] . T h e log sect ion is used for me tada ta 

j ou rna l i ng , t o recover f r o m s i tuat ions like power fa i lure on the next m o u n t [33, 13]. 

W h e n created on s t r iped R A I D 2 , X F S can be in formed abou t the under ly ing storage geomet ry 

and al ign all a l locat ions and size t o the s t r ipe un i t t o max imize speed. 

As a nat ive Unix f i lesystem, X F S uses inodes as a data s t ruc tu re t o save in fo rmat ion a b o u t files 

and director ies. T h e f i rs t o f the three parts o f an inode (see Figure 2 .2) , core, conta ins the 

basic i n f o r m a t i o n , descr ib ing w h a t the inode represents. Some example o f t he data in th is f ield 

is the id o f t he user and g roup o w n i n g th is inode, size and mod i f i ca t ion t i m e . 

2 St r iped RAID is e.g. RAID 0, where logically sequential data are spl i t into a number o f physical blocks and 

wr i t ten on mul t ip le disks interleaved. For a R A I D 0 on two drives it means t h a t odd blocks are located on one 

drive and even blocks on the other. 
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CHAPTER 2 XFS FILESYSTEM 

xf s_di.no de _ t 

di_ _core (96 bytes) x f s_di no d e_co r e _ t 

di . _next_ _unlinked (4 bytes) 

di_ _u data fork 

_a extended attribute fork 

Figure 2.2: On-d isk inode [ , Ch . 4 ] . 

T h e second part , di_ u , or data fork , is for data for any specif ic t ype the inode can be; a directory, 

a symbo l ic l ink, a regular f i le, etc. For a directory, i t wi l l conta in the entr ies in the directory. 

A n d the t h i r d m e m b e r o f each inode, di_a, is reserved for extended a t t r i bu tes (abbrev iated 

xattr), wh ich are used for example by SELinux . 

2.2 mkfs.xfs 

Th is shor t chapter describes in a greater detai l t he mkfs.xfs program itself, located in fi le 

mkf s/mkf s_xf s . c , f r o m user po in t o f v iew. For i n fo rmat ion abou t its i m p l e m e n t a t i o n , see 

Sect ion 3.2. Th is too l creates a new X F S f i lesystem w i t h given propert ies. I t is, as is usual 

for core Unix ut i l i t ies, a non- in terac t ive program wh ich accepts mu l t ip le a rguments when called 

( the basic synopsis is shown in L is t ing 2.1) and pr ints o u t the propert ies o f t he newly created 

f i lesystem i f successful, or pr ints an error and usage help when an error occurs. 

L is t ing 2 . 1 : Synopsis o f mkfs.xfs u t i l i t y [12] . 

m k f s . x f s [ -b b l o c k _ s i z e ] [ -d d a t a _ s e c t i o n _ o p t i o n s ] [ - f ] 
[ - i i n o d e _ o p t i o n s ] [ -1 l o g _ s e c t i o n _ o p t i o n s ] [ -n n a m i n g _ o p t i o n s ] 
[ -p p r o t o f i l e ] [ -q ] [ - r r e a l - t i m e _ s e c t i o n _ o p t i o n s ] 
[ -s s e c t o r _ s i z e ] [ -L l a b e l ] [ -N ] [ -K ] d e v i c e 

A n example o f such usage is mkfs.xfs -f /dev/sdal. Th is s imple example creates a X F S 

f i lesystem on device /dev/sdal even i f a f i lesystem already existed there - thus the -f (as 

force) f lag . For the who le descr ip t ion o f mkfs.xfs usage i t is bet ter t o refer t o mkfs.xfs manual 

page. W h a t is i m p o r t a n t t o note here is t h a t parsing the inpu t a rguments and c o m p u t i n g inner 

values based on these inputs makes most o f t he circa 3 , 5 0 0 s lines o f code. 

2.3 xfstests 

T h e project named xfstests, or also FSQA, is a f ramework and a col lect ion o f test suites w r i t t e n 

in Bash. M o s t o f the tests run some f i lesystem ut i l i t ies and e i ther val idates whe ther some part 

o f t he FS ecosystem behaves correct ly, or t r ies t o repl icate a specif ic known issue t o prevent 

regressions. 

T h e tests are g rouped in to mu l t ip le categories accord ing t o the tested f i lesystem: 

3 Before the merge o f the last part o f my changes. W i t h these changes, mkfs has over 4,000 lines. 
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CHAPTER 2 XFS FILESYSTEM 

b t r f s , c i f s , ext4, f2fs, generic, ocfs2, overlay, shared, udf, xfs 

A g roup ing o r thogona l t o these categories assigns each test in to one or more groups t h a t al lows 

for f iner t u n i n g o f wh ich tests should be r u n 4 

These tests do not analyse any program (e i ther its source code, or the compi led b inary) , but 

only the results o f runn ing these programs, i.e. pr in ted messages, f i lesystem behaviors, etc. 

Because xfstests do not employ any fo rma l techn ique and focus on comple te ly d i f ferent means 

o f tes t ing , i t is not compared w i t h o ther too ls in th is work . 

4An example o f the groups: mkfs, quick, a l l , dangerous, auto, quota, a t t r , symlink, 
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Refactoring of mkfs.xfs 

T h e pr imary goal o f t he changes described in th is work is t o rewr i te a complex and chaot ic code 

for parsing user inpu t w i t h a tab le t h a t holds values like m i n i m u m / m a x i m u m , defau l t values, 

conf l ic ts and others. T h u s , instead o f ad-hoc cond i t ions and opera t ions, there wi l l be j u s t one 

global s t ruc tu re , well documen ted and easily readable and extendable. Th is s t ruc tu re should 

hold also the user-entered values and l im i t code and variables dup l i ca t ion as much as possible. 

D u r i n g deve lopment , we had t o repeatedly solve conf l ic ts w i t h changes f r o m o ther developers 

t h a t go t merged in to xfsprogs whi le we were st i l l w o r k i n g on our changes. T h a t led me t o cu t 

the work in to mu l t ip le parts. T h a t way, o thers could benef i t f r o m changes t h a t were already 

done and we wou ld no t have t o ma in ta in so many patches at any given t i m e . There are t w o 

main patchsets wh ich are accompanied by several smal l and enclosed changes t h a t could be 

easily s u b m i t t e d independent ly . 

T h e n a m i n g convent ion used in th is work is the same as w h a t is in ternal ly used in xfsprogs: 

O p t i o n Can be referred as a sect ion. T h e highest- level a rgument o f mkfs, s ta r t i ng w i t h a dash. 

E.g. - b or - d . M o s t op t ions have a manda to ry a rgument consis t ing o f subopt ions . 

S u b o p t i o n Can be also referred as some sect ion 's o p t i o n . Consists o f one or more i tems in a 

f o r m a t name=value separated by a c o m m a , bu t no space. T h e value can be op t iona l , 

e.g. when the subop t ion is a boolean f lag. 

Look on the example in the L is t ing 3 . 1 . T h e c o m m a n d has t w o op t ions and t w o subopt ions . 

T h e opt ions are - f , wh ich does not have any a rgument and serves as a force f lag , so mkfs does 

overwr i te any ex is t ing f i lesystem on the ta rge t device. 

T h e second op t i on is - d , wh ich has a rguments for se t t i ng up non-defau l t values for data sect ion. 

There are t w o used subopt ions o f th is o p t i o n : f i l e is on ly a f lag , wh ich tel ls mkfs t h a t the 

ta rge t device is not a b lock device, bu t a regular f i le (and thus mkfs should not use d i rect 10, 

or c o m p u t e blocksize d i f fe ren t ly ) , size has its own a rgument and denotes the size o f t he data 

sect ion, 10 G B in th is case. Because no th ing else is speci f ied, the size o f o ther sect ions is 

c o m p u t e d au tomat ica l l y . 

L is t ing 3 . 1 : A n example o f mkfs.xfs invoca t ion , 

m k f s . x f s - f -d f i l e , s i z e = 1 0 G / f o o / b a r 

3.11 Development processes 
A t f i rs t we wi l l briefly describe the deve lopment processes and too ls used for xfsprogs, wh ich 

are simi lar as too ls and processes used for L inux Kernel deve lopment . 

M o s t o f t he c o m m u n i c a t i o n is happen ing on a mai l ing l i s t 1 wh i le IRC chat is used for some less 

i m p o r t a n t and more day t o day issues. T h e code is hosted in a Gi t repository, bu t on ly selected 

mainta iners have a w r i t e access. 

s p e c i f i c a l l y l inux-xfs@vger.kernel.org. 
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A n y c o m m i t an au thor wants t o get merged in to the code must be s u b m i t t e d as a patch t o the 

mai l ing list. There the patch awaits a review - t h a t is, some o ther developer must check the 

changes and append his or her s ignature t o th is pa tch . Once the patch is reviewed and i f there 

are no ob ject ions, the main ta iner wi l l merge it in a batch w i t h o ther changes ( for xfsprogs, th is 

usually occurs a b o u t tw ice a m o n t h ) . 

However, there are many unwr i t t en rules and cus toms, t h a t are not apparent a t f i rs t and a new 

developer f inds a b o u t t h e m usually on ly when she or he breaks such a rule. 

A n example o f such an unwr i t t en rule is the exact cod ing style and the use o f a code style 

check ing scr ip t checkpatch.pl wh ich or ig inated in Kernel c o m m u n i t y and is part o f L inux 

Kernel source. Such rules have the i r place, and helps t o keep a consis tent style t h r o u g h o u t 

xfsprogs, bu t the fac t t h a t they are not documen ted causes unnecessary issues and delays. 

3.2 Initial codebase 

A l m o s t all t he i m p o r t a n t code we were chang ing is located in mkfs/xfs_mkfs.c f i le. T h e code 

before the f i rs t patchset was merged can be accessed in the pro ject 's Gi t reposi tory as a version 

4.6. Gi t revision hash for th is version is 09033e35. In th is revision, the parsing o f user input 

works as fo l lows. 

In the main(int argc, char **argv) f unc t i on is a loop using a s tandard getopt f r o m 

unistd.h t o de tec t an op t i on like -d for data sect ion or - 1 for log sect ion. For op t ions 

t h a t have arguments , a nested loop uses cus tom func t ions t o parse specif ic subopt ions and the i r 

values. 

As an example, here is the beg inn ing o f a forement ioned loops, as i t is in the code, and some 

issues w i t h th is code. 

L is t ing 3.2: Par t o f op t ion-pars ing loop f r o m mkfs.xfs w i t h add i t iona l comments . 

w h i l e ( ( c = g e t o p t ( a r g c , argv , " b : d : i : 1: L : m : n : KNp : qr : s : Cf V " ) ) != EOF) { 
s w i t c h (c) { 
case ' C ' : 
case ' f ' : 

f o r c e _ o v e r w r i t e = 1; 
b r e a k ; 

case 'b ' : 
p = o p t a r g ; 
/* 
* This nested loop w i l l parse the argument of -b, which i s 
* a l i s t of suboptions separated by a comma, but not space. 
*/ 

w h i l e (*p != '\0') { 
char * v a l u e ; 

/ * 
* The getsubopt () function removes the f i r s t suboption 
* from the 'p' variable and returns a number 
* representing the s p e c i f i c suboption, while 

* saving i t s value ( i f any) to 'value'. 

*/ 

s w i t c h ( g e t s u b o p t ( f t p , ( c o n s t p p ) b o p t s , ftvalue)) { 

/* 
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* an example of how one suboption i s parsed. 

*/ 

case B_LOG: 
i f ( l v a l u e I I * v a l u e == ' \ 0 ' ) 

r e q v a K ' b ' , b o p t s , B_L0G); 
i f ( b l f l a g ) 

r e s p e c ( 'b ' , b o p t s , B_L0G) ; 
i f ( b s f l a g ) 

c o n f l i c t ( ' b ' , b o p t s , B_SIZE, 
B_L0G); 

b l o c k l o g = a t o i ( v a l u e ) ; 
i f ( b l o c k l o g <= 0 ) 

i l l e g a l ( v a l u e , " b u l o g " ) ; 
b l o c k s i z e = 1 << b l o c k l o g ; 
b l f l a g = 1 ; 

b r e a k ; 

W h i l e the - f op t i on is s imple, in case o f - b l o g = X X 2 we can see how the parsing can get 

complex. T h e code tests i f t he value is not e m p t y and if i t is, i t raises an error. T h e n i t tests 

whe the r th is specif ic op t i on was already used, because repeated speci f icat ion o f t he same op t ion 

is p r o h i b i t e d 3 mkfs.xfs al lows t o specify t he b lock size bo th as an expl ic i t size in bytes or in a 

logar i thmic scale, bu t on ly one o f these opt ions can be used a t a t i m e . So the code must also 

check if the o ther var iant was used and c o m p u t e bo th values. 

Some opt ions have a test d i rec t ly w i t h i n th is ass ignment for con f l i c t i ng op t ions , o thers s imply 

set up the value and test t he conf l ic ts later, a f ter t he g e t o p t loop. O t h e r op t ions use bo th o f 

these methods , depend ing on w h a t the au thor o f each change considered a bet te r so lu t ion , how 

it was required t o achieve a given func t iona l i t y or how th is part o f code was changed over t i m e . 

W e can see t h a t most o f t he work happen ing in th is part o f code is rather generic - all op t ions 

are checked for respeci f icat ion, whe the r a required value is present, or possibly whe the r the 

value is in a cer ta in range o f val id values. 

However, none o f these universal tasks is a u t o m a t e d - every single op t i on must re implement 

the same tests. Some op t ions have a lmost all logic in i t 's case s ta tement , where i t is a t leas in 

one place. B u t op t ions w i t h more complex dependencies and conf l ic ts have on ly part o f the i r 

logic there and the rest o f i t is in a sect ion o f code fo l l ow ing the main loop, in ad-hoc tests and 

c o m p u t a t i o n s . 

T o fu r the r compl i ca te s i t ua t i on , some parts o f mkfs.xfs are more t h a n 20 years o ld and the 

cod ing style and the general approach t o specif ic th ings changed since then , bu t the o ld code 

did not . If such old code needs a change, there is always a risk t h a t t he ed i t i ng p rogrammer 

assumes a d i f ferent behaviour s imi lar t o the one t h a t newer op t ions have, but t h a t assumpt ion 

is incorrect . 

Also the six variables specif ic for - b l o g are no t exp l ic i t ly t ied toge ther and because a lmost 

2 H e r e a n d in o t h e r p l a c e s , t h e b l o c k o p t i o n is used as a n e x a m p l e , b e c a u s e t h i s o p t i o n has o n l y t w o s u b o p t i o n s , 

so i t c a n b e s h o w n in f u l l i f n e e d e d . 
3 R e s p e c i f i c a t i o n is f o r b i d d e n f o r t h i s r e a s o n : c o n s i d e r , w h a t h a p p e n s i f a use r uses t h i s c o m b i n a t i o n o f o p t i o n s : 

-b s i z e = 4 k - d s i z e = 1 0 0 0 b -b s i z e = 5 1 2 , w h e r e t h e b s u f f i x in a n u m b e r d e n o t e s a b l o c k . A t f i r s t , b l o c k s i z e 

is s e t t o o n e v a l u e , a s ize o f d a t a s e c t i o n is c o m p u t e d b a s e d o n t h i s v a l u e a n d t h e n t h e b l o c k s i z e is c h a n g e d . 

T h u s , a n y f o l l o w i n g use o f b l o c k s i z e w i l l h a v e a v a l u e d i f f e r e n t t h a n w h a t w a s u s e d f o r t h e f i r s t c o m p u t a t i o n . 

T h i s c o u l d b e c o u n t e r e d b y c o m p u t i n g a l l v a l u e s a f t e r a l l o p t i o n s are p a r s e d , y e t i t w o u l d s t i l l b e a m b i g u o u s a n d 

m i g h t b e h a v e d i f f e r e n t l y t h a n t h e use r e x p e c t e d . F o r b i d d i n g i t is a c l e a n e r a n d s a f e r a p p r o a c h . 
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every o p t i o n has a s imi lar mix o f mu l t ip le variables, i t is d i f f i cu l t t o keep all t he i m p o r t a n t ones 

in a menta l image o f the code and always use the correct one. M a n y o f these variables are 

unnecessary or redun tan t , so in some cases, the values are copied f r o m one t o another and if 

a change is pu t i n to a w r o n g place, a specif ic cond i t ion may cause the changed value t o be 

ove rwr i t t en later on w i t h the o ld one, etc. 

It is easy t o see w h a t could go bad in th is : W h e n chang ing one o p t i o n , i t was possible t o forget 

t o change the o ther one. If a test was done af ter g e t o p t , any o ther op t i on t h a t wou ld mod i f y a 

v a l u e 4 , wh ich is used for a c o m p u t a t i o n in another o p t i o n , could overwr i te the value and cause 

a conf l i c t w i t h o u t a not ice. 

A n y new op t i on required a careful reading t h r o u g h the ex is t ing code and possibly the p lacement 

new checks in mu l t ip le places. T h u s it was d i f f i cu l t t o know when any value is checked and safe 

for use in f u r the r c o m p u t a t i o n s . 

H E R E 

T h e consequence o f these issues is t h a t mkfs.xfs d id a bad j o b o f va l ida t ing user inpu t f r o m 

the c o m m a n d line. Even i f an issue was detected and the specif ic error f ixed, the min ima l code 

reuse meant t h a t o ther op t ions could st i l l be susceptible t o the same or s imi lar issue. 

3.3 First patchset 

As is shown Sect ion 3.2, t he s i tua t ion was no t ideal and the s ta te o f the code led t o many 

known issues. Dav id Chinner, then main ta iner o f X F S , presented a set o f patches as an R F C 5 

in November 2013 [ ] in an a t t e m p t t o raise a discussion. However, nobody jo ined him and 

David Chinner himsel f did not con t inue in pressing th is m a t t e r for few years. Here is an excerpt 

f r om his RFC: 

Th is is st i l l a work in progress, bu t is comple te enough t o get feedback on the 

general s t ruc tu re . T h e problem being solved here is t h a t mkfs does a ter r ib le j o b o f 

input va l ida t ion f r o m the c o m m a n d line, has huge a m o u n t s o f repeated code in the 

sub op t ions processing loops and has many, many unnecessary var iable for t r ack ing 

s imply th ings like whe the r a parameter was speci f ied. 

Th is patchset in t roduces a parameter tab le s t ruc tu re t h a t is used t o define the 

parameters and the i r const ra in ts . T h i n g s like m i n i m u m and m a x i m u m val id values, 

defau l t values, con f l i c t i ng op t ions , etc are all conta ined w i t h i n the tab le, so all the 

„ p o l i c y " is f ound in a single place. 

T h e f low on effect o f th is is t h a t we can remove the many, many indiv idual variables 

and s tar t passing the op t i on s t ruc tures t o func t ions rather t h a n avo id ing using 

func t ions because passing so many variables is messy and nasty. l O W s , i t lays the 

g roundwork for f ac to r i ng x fs .mk fs .c in to someth ing more than a bunch o f spaget t i . . . 

See - i s i z e = x and - i l o g = y . In the code, both opt ions modi fy the same variables and differs only in 

accepted values, s i z e expects a number o f bytes while l o g expects a base two logar i thm value. 

'Request for comment - signall ing, t h a t the presented patches are not meant to be merged, but the author 

wants t o hear other people's thoughts about these changes. 
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W h e n we jo ined the X F S team and began w i t h t he re factor ing in 2015 [ ] , we picked up th is 

patchset and brought i t up t o date w i t h t he codebase t h a t in some parts changed substant ia l ly 

in t he preceeding t w o years. Once the patches were appl icable for the cur ren t code, we began 

f i x ing func t iona l issues and add ing fu r the r changes. 

Th is lasted unt i l M a y 2016, when th is patchset was merged in to the upst ream reposi tory [37, 9 ] . 

These changes imp lemented the core parts f r o m the desired s tate. T h e i m p l e m e n t a t i o n o f the 

basic tab le made the mkfs_xfs .c f i le more readable, even i f i t was possible t o remove only 

basic checks. It also b rought a much more s t r i c t i npu t va l ida t ion , so few o f the ex is t ing tests in 

xfstests had t o be updated and a new test was created, w i t h t he goal t o wa tch on ly for input 

va l ida t ion , whe the r mkf s .xf s correct ly accepts or refuses any given c o m b i n a t i o n o f op t ions and 

values. 

Size and c o m m i t s o f th is patchset are described in L is t ing 3.3. I t is 19 patches t h a t are grouped 

by the in i t ia l au thor , in th is case Dav id Chinner and Jan T u l á k . 

L is t ing 3.3: Gi t s tat is t ics for the f i rs t patchset [ ] . No te : Gi t a t t r i bu tes changes on ly t o the 

f i rs t au thor o f each c o m m i t . 

Dave C h i n n e r ( 1 5 ) : 
x f s p r o g s : use common code f o r m u l t i - d i s k d e t e c t i o n 
mkfs: s a n i t i s e f t y p e p a r a m e t e r v a l u e s . 
mkfs: S a n i t i s e t h e s u p e r b l o c k f e a t u r e macros 
mkfs: v a l i d a t e a l l i n p u t v a l u e s 
mkfs: f a c t o r b o o l e a n o p t i o n p a r s i n g 
mkfs: v a l i d a t e l o g a r i t h m i c p a r a m e t e r s s a n e l y 
mkfs: s t r u c t i f y i n p u t p a r a m e t e r p a s s i n g 
mkfs: g e t b o o l i s r e d u n d a n t 
mkfs: use getnum_checked f o r a l l r a n g e d p a r a m e t e r s 
mkfs: add r e s p e c i f i c a t i o n d e t e c t i o n t o g e n e r i c p a r s i n g 
mkfs: t a b l e b a s e d p a r s i n g f o r c o n v e r t e d p a r a m e t e r s 
mkfs: merge getnum 
mkfs: encode c o n f l i c t s i n t o p a r s i n g t a b l e 
mkfs: add s t r i n g o p t i o n s t o g e n e r i c p a r s i n g 
mkfs: don't t r e a t f i l e s as though t h e y a r e b l o c k d e v i c e s 

Jan T u l a k (4) : 
mkfs: move s p i n o d e s c r c check 
mkfs: u n i t c o n v e r s i o n s a r e case i n s e n s i t i v e 
mkfs: add o p t i o n a l ' r e a s o n ' f o r i l l e g a l _ o p t i o n 
mkfs: c o n f l i c t i n g v a l u e s 

i n c l u d e / M a k e f i l e I 
i n c l u d e / x f s _ m u l t i d i s k . h I 
l i b x f s / i n i t . c I 
l i b x f s / l i n u x . c I 
man/man8/mkfs.xfs.8 I 
m k f s / M a k e f i l e I 
m k f s / m a x t r r e s . c I 
mkf s / p r o t o . c I 
m k f s / x f s _ m k f s . c I 
m k f s / x f s _ m k f s . h I 
r e p a i r / x f s _ r e p a i r . c I 
11 f i l e s changed, 1417 i n s e r t i o n s ( + ) , 901 d e l e t i o n s ( -
c r e a t e mode 100644 i n c l u d e / x f s _ m u l t i d i s k . h 
d e l e t e mode 100644 m k f s / x f s _ m k f s . h 

w i t h d i s a b l e d c r c s h o u l d f a i l 

5 +-
73 ++ 
6 + 

11 +-
45 +-
2 +-
2 +-

58 +-
1983 +++++++++++++++++++++++++ 

89 
44 +-
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3.3.11 T i m e l i n e a n d p r o g r e s s 

• November 2013 - Dave Chinner submi ts his RFC. 

• May 2015 - W e are beg inn ing the work on th is patchset . 

• June 2015- T h e f i rs t publ ished version. I t conta ins on ly minor changes except upda t i ng 

and f i x ing the most serious errors. W e are g e t t i n g the f i rs t feedback. 

• March 2016- A n o t h e r version s u b m i t t e d , th is t i m e w i t h more cus tom changes. 

• April 2016 - Fur ther big changes. Some patches are reverted t o older versions, whi le a 

new patch is added. 

• May 2016 - Changes are made on ly in specif ic patches, no new version o f the who le set 

is s u b m i t t e d . 

• June 2016- T h e patchset is accepted and merged in to the repository. 

3.3.21 D e s c r i p t i o n o f i m p o r t a n t c h a n g e s 

T h e key part o f th is patchset is the creat ion o f opt_params tab le , shown on L is t ing 3.4. It 

is a s t ruc tu re t h a t is holds all t he i m p o r t a n t values for a specif ic op t i on in one place, easily 

accessible and consistent across the who le f i le. 

L is t ing 3.4: Def in i t ion o f t he table. 

s t r u c t opt_params { 
c o n s t char name; 

c o n s t char *subopts[MAX_SUBOPTS]; 

s t r u c t subopt_param { i n t i n d e x ; 
b o o l seen; 
b o o l s t r _ s e e n ; 
b o o l c o n v e r t ; 
b o o l i s _ p o w e r _ 2 ; 
i n t c o n f l i c t s [ M A X _ C O N F L I C T S ] ; 
l o n g l o n g m i n v a l ; 
l o n g l o n g maxval; 
l o n g l o n g d e f a u l t v a l ; 

} subopt_params[MAX_SUBOPTS]; 
} ; 

T h e mean ing o f t he specif ic f ields is th is : 

n a m e MANDATORY Name is a single char, e.g., for ' -d f i le ' , name i s ' d ' . 

s u b o p t s /W/4/VD/4"TO/?YSubopts is a list o f st r ings n a m i n g subopt ions . In the example above, 

it wou ld conta in „ f i l e " . T h e last en t ry o f th is list must be N U L L . 

s u b o p t - p a r a m s MANDATORY Th is is a list o f s t ruc ts t ied w i t h subopts . For each en t ry in 

subopts , a cor responding en t ry must be def ined. 

T h e subopt_param has the fo l l ow ing members . T h e displayed descr ipt ions are part o f t he code: 

i n d e x MANDATORY Th is number , s ta r t i ng f r o m zero, denotes wh ich i tem in subopt_params 
i t is. T h e index must be the same as is the order in subopts list, so we can access the 

r ight i tem bo th in subopt_params and subopts . 
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seen INTERNAL Do not set th is f lag when def in ing a subopt. I t is used t o remember t h a t 

th is subopt was already seen, for example for conf l ic ts de tec t ion . 

s t r_seen INTERNAL Do not set. It is used in ternal ly for respeci f icat ion, when some opt ions 

must be parsed tw ice - a t f i rs t as a s t r ing , then later as a number . 

c o n v e r t OPTIONAL A f lag s ignal l ing whe ther t he user-given value can use suff ixes. I f you 

w a n t t o al low the use o f user-fr iendly values like 13k, 42G, set i t t o t rue . 

is_power_2 OPTIONAL A n opt iona l f lag for subopts where the given value must be a power 

o f two . 

c o n f l i c t s MANDATORY I f your subop t is in a conf l i c t w i t h some o ther o p t i o n , specify i t . 

Accepts the . index values o f the con f l i c t ing subopts and the last member o f th is list must 

be LAST.CONFLICT. 

m i n v a l , m a x v a l OPTIONAL These opt ions are used for a u t o m a t i c range check ing and they 

have t o be always used toge ther in a pair. I f you do not w a n t t o l imi t t he max value, 

use s o m e t h i n g like UINT_MAX. If no value is g iven, then you must e i ther supply your own 

va l ida t ion , or refuse any value in the 'case X_SOMETHING' b lock. I f you forget t o define 

the min and max value, bu t call a s tandard func t i on for va l i da t ing user's value, i t wi l l 

cause an error message no t i f y ing you a b o u t th is issue. 

(Said in another way, you can not have minval and maxval bo th equal t o zero. B u t if 

one value is d i f ferent : minval=0 and maxval=l, then i t is O K . ) 

d e f a u l t v a l MANDATORY T h e value used i f user specifies t he subop t , bu t no value. If the 

subop t accepts some values ( - d f i l e = [ 1 1 0 ] ) , then th is sets w h a t is used w i t h simple 

speci fy ing the subop t (-d f i le ) . A special SUBOPT_NEEDS_VAL can be used t o require a 

user-given value in any case. 

It was later revealed t h a t t he name o f th is f ield is confus ing and can be mistaken for a 

defau l t value in the sense o f „user d id no t specify a n y t h i n g . " As th is led t o an incorrect 

con f igura t ion for an op t i on (a lbe i t semi- in terna l one, used on ly by developers for tes t ing 

purposes), we proposed a name change t o f lagval. Th is change is a part o f the next 

set. 

opt.params is ins tan t ia ted for every op t i on category, e.g. L is t ing 3.5 shows ins tan t ia t ion for 

-b. 

Lis t ing 3.5: Ins tan t ia t ion o f the tab le for block op t ions . 

s t r u c t opt_params b o p t s = { 
.name = 'b', 
.subopt s = { 

# d e f i n e B_L0G 0 

" l o g " , 
# d e f i n e B_SIZE 1 

" s i z e " , 
NULL 

} , 
.subopt_params = { 

{ . i n d e x = B_L0G, 
. c o n f l i c t s = { B_SIZE , 

LAST_C0NFLICT }, 
.m i n v a l = XFS_MIN_BL0CKSIZE_L0G, 
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.maxval = XFS_MAX_BLOCKSIZE_LOG, 

. d e f a u l t v a l = SUBOPT_NEEDS_VAL, 
} , 

•C . i n d e x = B_SIZE , 
. c o n v e r t = t r u e , 
.is_power_2 = t r u e , 
. c o n f l i c t s = { B_L0G , 

LAST_CONFLICT }, 
. m i n v a l = XFS_MIN_BLOCKSIZE , 
.maxval = XFS_MAX_BLOCKSIZE, 
. d e f a u l t v a l = SUBOPT_NEEDS_VAL, 

} , 
}, 

} ; 

W i t h th is s t ruc tu re , many func t ions had t o be comple te ly rewr i t ten or added, bu t the result was 

t h a t t he op t i on parsing loop could be great ly s impl i f ied . For compar ison, here is the nested loop 

f rom 3.2 code example a f ter th is patchset was appl ied. You can see t h a t t he sect ion for B_L0G 

is now much cleaner (no branch ing, on ly few assignments) and the generic logic was moved 

away in to a func t i on shared w i t h o ther op t ions as can be seen in L is t ing 3.6. 

L is t ing 3.6: Part o f op t ion-pars ing loop f r o m mkfs.xfs af ter the f i rs t patch set. 

case 'b': 
p = o p t a r g ; 
w h i l e O p != '\0') { 

char * * s u b o p t s = ( c h a r * * ) b o p t s . s u b o p t s ; 
char * v a l u e ; 

s w i t c h ( g e t s u b o p t ( f t p , ( c o n s t p p ) s u b o p t s , 
fcvalue)) { 

case B_L0G: 
b l o c k l o g = g e t n u m ( v a l u e , ftbopts, B_L0G) ; 
b l o c k s i z e = 1 << b l o c k l o g ; 
b l f l a g = 1; 
b r e a k ; 

A n o t h e r i m p o r t a n t issue f ixed in th is set was the behaviour di f ference when mkfs.xfs is run t o 

create a f i lesystem on a b lock device vs. in a f i le on another f i lesystem. 

T h e issue was t h a t i f t he ta rge t was a f i le, bu t - d f i l e is not speci f ied, mkfs behaved as if 

t he ta rge t is a block device. T h a t meant , however, t h a t i f t he under ly ing b lock device had e.g. 

sector size 5 1 2 B , on wh ich a f i lesystem w i t h sector size 4 k B existed, t hen , when c reat ing a new 

f i lesystem in a f i le, mkfs used the ( incor rec t ) 5 1 2 B size o f t he physical device and ignored the 

value used in the in te rmed ia te layers. 

Th is was mi t iga ted by a u t o m a t i c detec t ion o f whe the r the ta rge t is a regular f i le or a block 

device, and by chang ing the f low o f t he program on various places where the dif ference between 

file and device was i m p o r t a n t . 

However, there were st i l l many issues t h a t were not addressed. T h e con f l i c t i ng op t ions were on ly 

enumera ted , w i t h o u t any add i t iona l i n fo rma t ion , and thus the f ield was usable on ly for always 

con f l i c t i ng op t ions , like - b l o g I s i z e - it did not help w i t h cond i t iona l conf l ic ts . For example, 

checksums for me tada ta , enabled w i t h -m crc, works on ly on newer version o f metada ta f o r m a t : 

-m crc - i a t t r = l is con f l i c t ing , bu t - i attr = 2 is not . Such tests st i l l had t o be done as 

before. A lso , i t was possible t o specify conf l ic ts on ly between subopt ions o f a single o p t i o n . 
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3.4 Second patchset 

Once th is change was merged and provided a stable po in t so we did not have t o keep so much 

code in our own local reposi tory up t o date w i t h ups t ream, we began t o work on the second set 

o f changes. W e s u b m i t t e d an RFC o f these changes in December 2016 [ ] . Such a big and 

complex change is someth ing t h a t most o f the developers postpone, so i t is usually reviewed 

only by the main ta iner when nobody else star ts i t . In th is case, however, t he main ta iner changed 

in late December - Eric Sandeen t o o k th is posi t ion instead o f Dav id Chinner. 

Size o f th is patchset in the f i rs t RFC is 22 patches and the patches can be seen in L is t ing 3.7. 

L is t ing 3.7: Gi t s tat is t ics for the second patchset [38] . 

Jan T u l a k ( 2 2 ) : 
mkfs: remove i n t e r m e d i a t e g e t s t r f o l l o w e d by getnum 
mkfs: merge t a b l e s f o r o p t s p a r s i n g i n t o one t a b l e 
mkfs: e x t e n d opt_params w i t h a v a l u e f i e l d 
mkfs: change c o n f l i c t s a r r a y i n t o a t a b l e c a p a b l e of c r o s s - o p t i o n 

a d d r e s s i n g 
mkfs: add a check f o r c o n f l i c t i n g v a l u e s 
mkfs: add c r o s s - s e c t i o n c o n f l i c t c h e cks 
mkfs: Move op t s r e l a t e d #define to one place 
mkfs: move c o n f l i c t s i n t o t h e t a b l e 
mkfs: change c o n f l i c t c h e cks t o u t i l i z e t h e new c o n f l i c t s t r u c t u r e 
mkfs: change when t o mark an o p t i o n as seen 
mkfs: add t e s t _ d e f a u l t _ v a l u e i n t o c o n f l i c t s t r u c t 
mkfs: expand c o n f l i c t s d e c l a r a t i o n s t o named d e c l a r a t i o n 
mkfs: remove z e r o e d items from c o n f l i c t s d e c l a r a t i o n 
mkfs: rename d e f a u l t v a l t o f l a g v a l i n o p t s 
mkfs: r e p l a c e SUBOPT_NEEDS_VAL f o r a f l a g 
mkfs: Change a l l v a l u e f i e l d s i n opt s t r u c t u r e s i n t o u n i o n s 
mkfs: use o l d v a r i a b l e s as p o i n t e r s t o the new opt s s t r u c t v a l u e s 
mkfs: p r e v e n t s e c t o r / b l o c k s i z e t o be s p e c i f i e d as a number of b l o c k s 
mkfs: subopt f l a g s s h o u l d be saved as b o o l 
mkfs: move u u i d empty s t r i n g t e s t t o g e t s t r ( ) 
mkfs: remove d u p l i c i t c h e cks 
mkfs: p r e v e n t m u l t i p l e s p e c i f i c a t i o n s of a s i n g l e o p t i o n 

m k f s / x f s _ m k f s . c I 2952 +++++++++++++++++++++++++++++++++++ 
1 f i l e changed, 1864 i n s e r t i o n s ( + ) , 1088 d e l e t i o n s ( - ) 

Together , these t w o issues caused t h a t despite our urg ing, there was not much react ion unt i l 

M a r c h . In March we s u b m i t t e d another version, th is t i m e in ten t iona l ly not as an RFC. W e also 

ment ioned t o few people t h a t th is is part o f our thesis. 

T h e review o f the second set revealed many d isputab le po ints and i t become cer ta in t h a t these 

patches wi l l need fu r the r changes. T h e second part o f ou r changes is focused most ly on conf l ic t 

de tec t ion and al lows for a lmost all checks t o be removed f r o m the code as ad-hoc so lut ions, as 

the new s t ruc tures and func t ions take care o f t h e m automat ica l ly . A n y p rogrammer m a k i n g a 

change on ly must correct ly specify values in a struct opt_params, w r i t e in a list o f con f l i c t ing 

opt ions, and the va l ida t ion o f the new op t i on is guaranteed t o work correct ly and seamlessly. 

To make the process faster, we decided t o spl i t th is patchset in to mu l t ip le smal ler ones, wh ich 

can get f ixed, reviewed and merged faster. T h e f i rs t g roup focused on ex tend ing the op t ions 

tab le not on ly for encod ing va l id i ty range and basic conf l ic ts , but also for user input . 

M o s t notable changes are func t ions parse I get I set_conf _val - a set o f func t ions t o ma-
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nipu la te the user i npu t values. Th is is a key dif ference f r o m the RFC. There the values were 

man ipu la ted as pointers t o the tab le , bu t o ther developers raised ob jec t ions. M o s t no tab ly Dave 

Chinner, w h o rebut ted ou r worr ies a b o u t t he use o f setters and get ters in a reply t o our e-mai l 

where we suggested t h e m as another o p t i o n [ 4 1 , 6] 

Compare code examples 3.8 and 3.9. T h e f i rs t example w i t h aliases keeps a lot o f seemingly 

unconnected variables in the code where the p rogrammer does not know where exact ly the 

po in ter leads t o . A n d even i f he f inds the f i rs t ass ignment , i t is possible t o mistakenly overr ide 

the ta rge t address. In the second example, w i t h setters and get ters , i t is apparent at f i rst 

glance, where the value is t o be w r i t t e n or read. A n d it is impossible t o mistakenly al ter the 

ta rge t address. T h e d isadvantage o f using setters is t h a t i t is no longer possible t o do in-si tu 

i nc rements /dec rements (e .g. i + + ; ) , however th is is on ly a minor issue. 

L is t ing 3.8: Pointer aliases in RFC o f the second set. 

l o n g l o n g * a g c o u n t = & op t s [ 0PT_D]. subopt_params [D_AGC0UNT].value; 

// ... l i n e s skipped 
* a g c o u n t = f o o ( b a r ) ; 

// ... l i n e s skipped 
i f O a g c o u n t < S0ME_C0NSTANT) 

// do something 

Lis t ing 3.9: Setters and get ters in later version o f t he second set. 

s e t . c o n f _ v a l ( 0 P T _ D , D_AGC0UNT, f o o ( b a r ) ) ; 

// ... l i n e s skipped 

i f ( g e t _ c o n f _ v a l ( 0 P T _ D , D_AGCOUNT) < S0ME_C0NSTANT) 
// do something 

Fur thermore , th is approach al lows for a ver i f icat ion o f all values saved in to the tab le for the 

who le run o f t he p rogram. However, a f ter a t t e m p t i n g t o imp lemen t th is feature , we found 

ou t th is is not possible t o add at th is m o m e n t . W h i l e we know val id bounds for user input 

values, some o f these values are then recomputed and can get o u t o f these bounds, whi le st i l l 

being va l id . A n example o f th is is L J 3 U N I T 6 , wh ich is specif ied as a number o f 512-by te blocks. 

However, i t is later mul t ip l ied by the 512, at wh ich m o m e n t i t can get o u t o f t he val id bounds 

specif ied for input . 

T h e proposed bu t not yet imp lemented so lu t ion is t o ut i l ize the ex is t ing in f ras t ruc tu re and create 

a new pseudo op t i on for the tab le , wh ich wou ld not be visible t o the end user, bu t wou ld hold 

all t he internal variables for wh ich the bound range (or any o ther cond i t i on , like be ing power 

o f 2) can be appl ied. Th is t op i c was briefly discussed in replies t o one o f the patches in th is 

set [28], because one o f the o ther developers, Luis R. Rodr iguez, has a work in progress t h a t 

requires such in f ras t ruc tu re t o be imp lemen ted . 

Because even th is smal ler set was not fu l ly accepted by the end o f A p r i l , and addressing the 

issues o ther developers raised required t o o much t i m e , we fu r the r focused on the next part o f 

th is work and did not use the second patchset in fo rma l analysis. 

Size o f t he smal ler set can be seen in L is t ing 3.10. 

6L_SUNIT specifies the alignment of log writes. 
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Lis t ing 3.10: Gi t s tat is t ics for the f i rs t par t o f the second set a f ter its breaking in to smaller 

parts [40]. 
Jan T u l a k (12) : 

mkfs: Save raw u s e r i n p u t f i e l d t o the opt s s t r u c t 
mkfs: rename d e f a u l t v a l t o f l a g v a l i n o p t s 
mkfs: remove i n t e r m e d i a t e g e t s t r f o l l o w e d by getnum 
mkfs: merge t a b l e s f o r o p t s p a r s i n g i n t o one t a b l e 
mkfs: e x t e n d opt_params w i t h a v a l u e f i e l d 
mkfs: c r e a t e g e t / s e t f u n c t i o n s f o r o p t s t a b l e 
mkfs: save u s e r i n p u t v a l u e s i n t o o p t s 
mkfs: r e p l a c e v a r i a b l e s w i t h o p t s t a b l e : -b, d, s o p t i o n s 
mkfs: r e p l a c e v a r i a b l e s w i t h o p t s t a b l e : - i o p t i o n s 
mkfs: r e p l a c e v a r i a b l e s w i t h o p t s t a b l e : -1 o p t i o n s 
mkfs: r e p l a c e v a r i a b l e s w i t h o p t s t a b l e : -n o p t i o n s 
mkfs: r e p l a c e v a r i a b l e s w i t h o p t s t a b l e : - r o p t i o n s 

mkf s / x f s _ m k f s . c I 2457 ++++++++++++++++++++++++++++++++ 
1 f i l e changed, 1420 i n s e r t i o n s ( + ) , 1037 d e l e t i o n s ( - ) 

3.4.11 T i m e l i n e a n d p r o g r e s s 

• June 2016- T h e f i rs t patchset is accepted and merged in to the repository, beg inn ing o f 

the work on the second set. 

• August 2016 - First d ra f t o f changes o f the second set [39] . 

• December 2016 - RFC o f the ful l second set. T h i s gained j u s t a l i t t le a t t e n t i o n . 

• March 2017 - Second set w i t h o u t the RFC. Th is version a t t rac ted enough a t t e n t i o n t o 

be useful, and provided valuable feedback. 

• March 2017- V a u l t conference in Bos ton . W e met some o ther developers personal ly and 

debated some o f the changes. Th is helped t o raise some a t t e n t i o n towards our patches. 

• April 2017 - resubmi t t i ng on ly part o f the second set w i t h requested changes and setter

s /ge t te rs as an add i t i on . Th is generated a lot o f feedback. 

3.51 Summary 
Part o f the changes was successfully merged in to t he project in t i m e . However, some o ther 

patches gained the necessary a t t e n t i o n t o o late and all t he found issues could not be f ixed or 

changed before the deadl ine for th is work . These changes wi l l get merged eventual ly. 

T h e di f f icul t ies were analysed in an a t t e m p t t o avoid these delays in the fu tu re . O u r hypothesis 

is t h a t t he set as a who le was t o o b ig and complex, an effect wh ich was mul t ip l ied by un in ten

t iona l l y not adher ing t o unwr i t t en standards. A proposed process change for f u r the r i terat ions 

is t o send few smal ler patches more o f ten and w a i t w i t h o ther changes depend ing on those 

s u b m i t t e d unt i l they are accepted. 

T h e higher ac t i v i t y on the last patchset , wh ich was j u s t a subset o f the second big set, seems 

t o con f i rm th is hypothesis, however, more i tera t ions are needed. 
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As the role o f compute rs in human society is g r o w i n g in ever faster pace, the consequences o f 

any error are g r o w i n g t o o . Consider, for example, the speed w i t h wh ich smar tphones seized 

our pockets. T h e y cer ta in ly br ing many benefi ts, bu t as we become dependent on the smar t -

phones, any ma l func t ion or error in t h e m can affect our life. From not hav ing access t o an 

i m p o r t a n t i n fo rmat ion t o a d i rect danger, such as in the case o f motor is ts s t randed by the i r 

mobi le nav igat ion in the midd le o f t he wi lderness [24] . 

O r consider the recent advances in the area o f a u t o n o m o u s vehicles. W h e r e an error in smar t -

phones can on ly deprive us o f i n f o r m a t i o n , an error in a se l f -dr iv ing car can cause i t t o swerve 

in to a wal l w i t h dire consequences for the passengers. 

C o m m o n tes t ing techniques, despite advances in th is f ie ld, are st i l l most ly react ive and can 

detec t on ly known errors, for wh ich a test was w r i t t e n , and can not provide a guarantee o f 

correctness. T h a t is, they can tel l t h a t „ n o n e o f these specif ied errors happened , " bu t can not 

te l l whe ther the system is really free o f errors w i t h respect t o a spec i f ica t ion. 

Formal methods , w i t h roots in ma themat i ca l areas like theorem prov ing, on the o ther side 

f requent ly have the power t o ver i fy correctness. B u t unlike the c o m m o n tes t ing techniques, and 

despite an interest in the industry, they are no t yet w ide ly used. A notable except ion t o th is is 

static analysis, w h i c h , in some o f its weaker fo rms, is becoming a part o f in tegra ted deve lopment 

env i ronments ( I D E ) like X c o d e or Eclipse [ ] . 

One reason for the smal l adop t ion o f fo rma l methods is the i r complex i ty . T h e y e i ther require 

advanced user knowledge, like human-dr iven deduct ions in theorem proving, require excessive 

mode l l ing o f t he env i ronment for the system like model checking, or are s imply unable t o cope 

w i t h the size o f t he code and the size o f its s ta te space. 

By the t e r m formal analysis, we describe methods for answer ing quest ions o ther t h a n whe ther 

the tested system is free o f errors w i t h respect t o some spec i f ica t ion. T h a t is, i t includes 

quest ions like whe ther the program is guaranteed t o always t e r m i n a t e i f a buffer size is bound 

and so o n . 

Formal verification then denotes methods capable o f prov ing t h a t the given system is error free 

w i t h respect t o a correctness spec i f ica t ion. Completeness of a m e t h o d is a proper ty guarantee ing 

t h a t it wi l l not raise a false a la rm, whi le i f a m e t h o d t h a t is sound t e rmina tes and tel ls t h a t 

there are no errors, t he system is indeed correct . 

In the fo l l ow ing parts o f th is work , we wi l l f i rs t discuss some o f the fo rma l techniques ( the rest o f 

th is chap te r ) and then also the i r usefulness on a real, p roduc t ion codebase in the chapter Used 

Techniques and procedures. W e wi l l look not on ly at the i r result, bu t also a t t he cost o f using 

t h e m , bo th in t i m e and expert ise necessary for the i r correct use. 

4.11 Static Analysis 
A ra ther broad, bu t c o m m o n l y used def in i t ion o f static analysis is t h a t i t is an analysis t h a t 

col lects some in fo rmat ion a b o u t the behaviour o f a system w i t h o u t ac tua l ly execut ing i t under 
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its or iginal semant ics [ , Chap. 2.2] . I t can manage very large systems in a reasonable t i m e and 

is highly a u t o m a t e d , bu t can suffer false posit ives and is general ly weaker t h a n o ther methods 

( i t is d i f f i cu l t t o express some problems for static analysis). Th is category includes methods : 

Abstract interpretation, in wh ich an abs t rac t overrepresentat ion o f t he s ta tements o f t he pro

gram is evaluated in an abs t rac t machine for all possible inputs a t once and we exchange 

completeness for speed or even the possibi l i ty t o analyse the system. 

Data flow analysis t racks how a given set o f propert ies propagates t h r o u g h the program w i t h o u t 

d i rec t ly execut ing i t . 

Error patterns then denote the most c o m m o n m e t h o d used in var ious l igh twe ight imp lemen ta 

t ions already present in var ious IDEs, in L in t and Cppcheck sof tware, and others. As the name 

i tself explains, these methods a t t e m p t t o detec t c o m m o n l y occu r r i ng pat terns t h a t p rogrammers 

make, bu t wh ich lead t o an error. A s imple example may be a missing break s ta tement , or 

missing boundary checks before accessing an array. 

Let us now look more in detai l a t each o f these methods and at the i r imp lementa t ions , bu t bear 

in mind t h a t in many cases, t he too ls we wi l l see are no t clearly d ist inguished and can be placed 

in to more t h a n one category. T h u s , t he too ls are categorised accord ing t o the most i m p o r t a n t 

principles in the i r i m p l e m e n t a t i o n . 

4 . 1 . 1 E r r o r p a t t e r n s 

Tools using i t : L in t [ ] (and i t 's fo l lowers) , c p p c h e c k 1 

Error patterns de tec t ion is a rather w ide array o f d i f ferent techniques and methods w i t h a 

c o m m o n goal : To detect more or less f requent types o f errors. T h e great advantage o f th is 

class o f methods is t h a t they usually does not require any deeper knowledge, are fu l ly a u t o m a t e d 

and can be very fast . T h e i r d isadvantages are t h a t they are l im i ted t o a very specif ic k ind o f 

e r ro rs 2 and suffer f r o m false posit ives. 

A n example o f t he approaches used in th is class o f s ta t ic analysis is a de tec t ion o f m a t c h i n g 

pairs o f func t ions . For example, any open() call should be later fo l lowed w i t h one close() 
in every possible pa th . O r a s ta te machine can be used t o detec t missing de l imi te r between 

s ta tements or a missing break in a switch [18] . 

4 . 1 . 1 . 1 L i n t 

Lin t was or ig inal ly created in the 70's for the early C language [ , Chap. 2.2] and since t h e n , 

mu l t ip le new too ls for var ious languages were inspired by i t : sp l in t , cpp l in t , JSL in t , Py l in t , etc. 

It searches for pat terns t h a t are likely t o be bugs, t o be non-por tab le , or t o be wastefu l [26] . 

M a n y o f t he fo l lower imp lementa t ions are open-source. 

4.1 .1 .2 C p p C h e c k 

1 W e are not sure about this and did not found it ci ted anywhere, but f rom its code, it looks like they search 

for error patterns. 
2 Basical ly, every error pat tern needs its own f i l ter and only some kinds o f error patterns are generic enough 

to be shipped w i th in the too l . Consider a support for usage o f a library. I t makes sense to watch for patterns 

in usage o f s t d l i b . h , but how it should know patterns in a custom library? A n d even if the specific l ibrary 

is publicly available, including everyth ing is impossible. Many tools allow for providing o f custom def ini t ions of 

these patterns, but f rom a personal experience, they are rarely used. 

21/42 



CHAPTER 4 FORMAL ANALYSIS AND VERIFICATION 

A n open-source t o o l for C / C + + languages. It can on ly a very s imple control flow analysis, 

where it expects t h a t all s ta tements can be always e i ther t r ue or false and thus all s ta tements 

should be always reachable [19] . 

4 . 1 . 2 | D a t a f l o w a n a l y s i s 

Tools using i t : Cover i ty [17] , CodeSonar [17] , T r u e P a t h [ ] , F indBugs [17] 

These methods , in industr ia l too ls f requent ly combined w i t h error patterns, t r ack how so-called 

data flow facts propagate w i t h i n a control flow graph between its nodes. These nodes represent 

basic blocks in the or ig inal code, each b lock having on ly one en t ry po in t and one exi t p o i n t 3 , 

wh ich simpl i f ies the analysis. 

T h e analysis can be ei ther forward, where the s ta te a t the exi t o f one basic b lock is used as the 

inpu t o f t he fo l l ow ing b lock and wh ich s tar ts a t t he beginn ing o f t he p rogram. O r backwards 

analysis, where the a lgor i thm star ts in an end s ta te and a t t e m p t s t o f ind a path t o a s tar t 

s tate. Th is second approach can be useful t o de te rmine whe ther a part icular end conf igura t ion 

is reachable. 

4 .1 . 2 . 1 C o v e r i t y 

A propr ietary too l (and c o m p a n y ) prov id ing a free service for open-source projects (http: 
//scan.coverity.com). Uses restr ic ted fo rma l ver i f i ca t ion , bu t g e t t i n g t o specif ic detai ls is 

hard or impossible. Suppor ts languages Java, C / C + + , C # , JavaScr ip t , Ruby, and P y t h o n . 

4.1 .2.2 F i n d B u g s 

FindBugs is an open-source code analyser for Java language w i t h plugins for many Java IDEs. 

A b s t r a c t i n t e r p r e t a t i o n 

Tools using i t : Ast ree [23, 17] , PolySpace [17] 

Abstract interpretation shares a b lur ry border w i t h model checking and i t may be d i f f i cu l t t o 

de termine where a specif ic m e t h o d is. T h e basic way in wh ich abst rac t in te rpre ta t ion works is t o 

run a symbo l ic execut ion o f t he program. O n every s ta tement , i t t rans fo rms specif ic values in to 

an abs t rac t con tex t and widen (over -approx imate ) or narrow t o refine the result a f ter w iden ing . 

T h e w iden ing and nar rowing is usually imp lemented by using a pair o f m o n o t o n e func t ions : 

Abstraction denoted a and concretization denoted 7 fo rms a Galois connec t ion . 

These methods can be sound, bu t not every abst rac t in te rp re ta t ion is, as they can range f r o m 

a s imple syntax analyser t o ful l model check ing. 

4 . 1 . 3 . 1 A s t r e e 

A too l for analys ing appl icat ions w r i t t e n in C language. It is a propr ietary too l used for safety-

cr i t ica l appl icat ions, for example by A i r b u s [17] . I t provides a sound s ta t ic analysis. False 

posit ives are considered a reasonable price for the soundness [23] . 

3 O n e entry point means t h a t in no case can any instruct ion inside o f the block other than the f i rst one be a 

target o f a j u m p . One exit po int means t h a t if there is a branching, only the last instruct ion o f a block can cause 

it and j u m p to mul t ip le di f ferent target instruct ions. 
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4 . 1 . 3 . 2 P o l y S p a c e 

A propr ietary t o o l for C, C + + , and Ada languages. 

Model Checking 

Tools using i t : RuleBase [ ] , Incisive Ver i f ier [ ] , Magel lan [ 7 ] , JasperGold Formal Prop

er ty Ver i f i ca t ion A p p [17], Questa Formal Ver i f i ca t ion [ ] ,CPAchecker [ ] , Wo lver ine [17] , 

C B M C [17] , L L B M C [17] 

Model checking is an a lgor i thmic means o f check ing whe the r the given system is correct w i t h 

regards t o any given proper ty t h r o u g h sys temat ic exp lor ing o f the s ta te space o f th is sys tem. 

T h e propert ies are usually specif ied in some tempora l logic like L T L , C T L , C T L * or / / -ca lcu lus. 

T h e advantages o f model checking are t h a t it can be fu l ly a u t o m a t e d , is ra ther universal, does 

not require a deep knowledge for usage and i f i t f inds an error, i t can generate a path leading 

t o the case, wh ich is useful for repairs. 

However, it also has t w o big d isadvantages. It requires a model o f t he env i ronmen t for the 

system and suffers state space explosion. T h e number o f reachable space grows exponent ia l ly -

consider a 32b i t var iable, wh ich has 2 3 2 possible values, wh ich equals states. T h a t means t h a t 

n o f such variables equals 2 3 2 x n states. T h e result is t h a t any a t t e m p t in a pract ical use o f 

model checking has t o cope w i t h th is s ta te space explosion. 

eat 

think think 

think 

think think 

T h e methods used for th is include symme

try reduction in cases where i t is no t impor 

t a n t wh ich specif ic en t i t y ( i f there are more 

ent i t ies o f t he same type in a specif ic s ta te ) . 

See Figure 4 .1 for an example o f s y m m e t r y 

in the well known d in ing phi losophers prob

lem. 

O t h e r so lut ions can be t o use on ly one 

o f many possible paths for the order ing o f 

concur ren t act ions t h a t are independent o f Figure 4 . 1 : Symmet r ies and the d in ing phi loso-

each o ther and compress the size o f states phers [17] . 

by using pointers t o the previous s ta te for 

values t h a t did not change. Or the too l 

can evaluate the propert ies a t t he same t i m e when a new s ta te is generated, and s top i m m e d i 

ate ly once i t is clear t h a t th is prefix cannot be accepted by the a u t o m a t a deno t ing correctness 

speci f icat ion. 

4 . 2 . 0 . 1 C P A C h e c k e r 

A n open-source too l and a f ramework for an analysis o f programs in C language. It is based 

on the idea o f configurable program analysis [ ] , wh ich uses user con f igu ra t ion t o per form a 

reachabi l i ty analysis. 

Theorem Proving 

Tools using i t : V C C [ ] , E S C / J a v a 2 [17] , V S 3 [17] 
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Theorem proving'is s imi lar t o ma themat i ca l deduc t ion , where we get a p roo f f r o m an in i t ia l set o f 

ax ioms. It also shares advantages and disadvantages w i t h its purely ma themat i ca l coun te rpar t . 

On the one side, i t is really universal, bu t on the o ther side, i t can not provide a counterexample 

(a path t o an er ror ) , bu t j u s t says yes /no , and is on ly semiau tomat i c . T h e too ls can correct ly 

apply inference rules, bu t the i r choice is up t o the user. T h u s , an insuf f ic ient ly ski l led user may 

not be able t o prove t h a t the system is correct even if there are no errors in the system. 
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Used Techniques and procedures 

In th is chapter , we discuss wh ich techniques and models o f fo rma l analysis and ver i f icat ion are 

useful for the code o f mkfs.xfs. Let us a t f i rs t define i m p o r t a n t const ra in ts t h a t are l im i t i ng 

or d i rec t ing our choice. 

W e are analysing a s ingle- threaded app l i ca t ion . Th is great ly reduces the s ta te space and means 

t h a t we also can use methods t h a t do not a l low for concurrency. O n the o ther side, given t h a t 

the program accepts user inpu t , some variables have an in f in i te number o f po ten t ia l values and 

any m e t h o d based on s ta te space checks must cope w i t h th is fac t . 

A compar ison t h a t could be in terest ing for f u r the r research is t o exper iment w i t h too ls t h a t 

use neural networks and deep learning as an integral par t o f the i r a lgor i thms i f such too ls exist. 

Examples o f t he use o f those technologies are a heurist ic t o dr ive the select ion o f inference 

rules in theorem prov ing, or s p o t t i n g error pat terns 1 However, these approaches are even 

more complex and exper imenta l t han the t rad i t i ona l approaches and wou ld probably deserve a 

s tandalone work on the i r o w n . 

List o f too ls t h a t were used in th is work ( in no par t icu lar o rder ) : Coveri ty, CppCheck and the 

analysis in GCC and Clang compi lers. 

5.11 Testing Environment 
T h e too ls were run in a Docker c o n t a i n e r 2 based on Fedora L inux 25. T h e use o f conta iners 

ensures a clean and ident ical env i ronmen t for every too l and every run . Image w i t h the compi lers 

and CppCheck are publ ished in Docker Hub and all t he recipes t o bui ld and use t h e m are provided 

w i t h th is work . Image w i t h Cover i ty could not be publ ished because i t conta ins conf ident ia l 

i n f o r m a t i o n 3 . 

Every image has its own s ta r t i ng scr ip t for easier man ipu la t ion - run.sh. T h i s scr ip t creates a 

conta iner f r o m the image and moun ts the d i rec tory w i t h xfsprogs (or any o ther d i rectory wh ich 

is passed t o i t ) . T h e n , i f necessary, i t can pass few op t ions t o the scr ip t s tar ted in the conta iner . 

run-test, sh is t he scr ip t s tar ted by Docker af ter c reat ing the conta iner . Th is scr ip t copies 

xfsprogs f r o m the m o u n t e d d i rec tory t o another one, so i t does no t change the or ig inal reposi tory 

in any way. In th is copied d i rec tory the scr ip t then star ts whatever too l i t is prepared for. 

Users can, i f they wish t o do so, enter an in teract ive shell in the conta iner instead o f s ta r t i ng 

the t o o l . A lso, it is possible t o skip the copy ing or t o run make clean. For an a u t o m a t e d run 

described in Sect ion 5.2, nei ther o f th is is necessary, bu t these opt ions are useful for manual 

exper iments . 

'Some a t tempts in model l ing a code are hinted in On the Naturalness of Software by Ab ram Hindle: http: 
//dl.acm.org/citation.cfm?id=2902362. 

2 S i m p l y stated, a container is an image t h a t has been star ted, similar t o the difference between a running v i r tual 

machine and its on-disk v i r tual H D D image. Unlike v i r tual izat ion, containers are only processes isolated f rom the 

rest o f the system using kernel capabil i t ies, like cgroups and chroot. Docker is a specific implementat ion [15] of 

containers. 
3 J a n Tu lák had an access to Red Hat Coveri ty license server as a Red Hat employee. However, the server 

in format ion and some tools Red Hat provided w i th Coverity are considered conf ident ia l . 
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Coveri ty, GCC and Clang are run using csbuild, a too l t o p lug s ta t ic analyzers in to the bui ld 

process [ ] . Because csbui ld a t t e m p t s t o use all suppor ted analyzers i t f inds, t he images for 

each too l we are tes t ing are modi f ied t o con ta in on ly the single specif ic t oo l we need, bu t no 

other . 

5.1.11 C p p C h e c k 

Docker image: jtulak/cppcheck [35] 

CppCheck is also used in Codacy, an a u t o m a t e d code review app l ica t ion w i t h G i thub in tegra t ion . 

Results f r o m Codacy are included for compar ison. 

Because CppCheck does no t need preprocessed code, it was reasonable t o use i t for every c o m m i t 

in our changes. 

W h e n runn ing th is t o o l , defau l t con f igura t ion was used, and all types o f messages were enabled. 

No cus tom rules were used and the invocat ion o f CppCheck on who le xf sprogs/mkf s/ d i rectory 

was: 

cppcheck —enable=all mkfs/ 

5.1.21 C o v e r i t y 

Cover i ty was used bo th manual ly in a Docker conta iner , and au tomat i ca l l y using the publ ic 

Cover i ty service for open source projects wh ich is part o f the s tandard xfsprogs deve lopment 

process, t o compare the results between those t w o instances. 

Fur thermore , in the local analysis, four levels o f analysis aggressiveness were tes ted : low (defau l t 

se t t ings) , m e d i u m , high and cus tom (a l l ) . T h e di f ferent results are compared in Sect ion 6.4, 

where were look a t a s u m m a r y o f w h a t these levels enabled. W i t h a higher level, Cover i ty makes 

more aggressive assumpt ions du r ing the analysis, wh ich means more defects being reported and 

longer analysis t i m e [34] . 

Cover i ty manual c la ims false posi t ive rate for all checkers t h a t are not parse warnings increases 

approx imate ly by 5 0 % for med ium and by 7 0 % for h igh. I t does not have an ef fect on parse 

warn ings checkers. 

A l l levels have enabled every th ing t h a t a previous, lower level has, plus some add i t iona l checks. 

T h e med ium level uses low level plus enables some o ther checks, inc lud ing parse warn ings, in f in i te 

loops, some resource leaks checks, etc. T h e high level then adds e.g. integer over f low detect ions 

and more checks for in f in i te loops. A special , level enabled by — a l l f lag for c o v-analysis, 
then enables a lmost all checkers, w i t h on ly a few minor except ions. For the ful l ( ra ther long) 

list o f w h a t checkers are enabled on every level, consul t the c o v-analysis manual [34] . 

T h e Figure 5.1 describes the steps happen ing in Cover i ty conta iner . W h e r e o ther too ls are 

only a single step, t a k i n g source code on one side and p roduc ing an o u t p u t on the o ther side, 

Cover i ty has three s tandalone steps. First , i t bui lds the source code using its own parser and 

produces an analyzable da ta . 

T h e second step, cov-analyze app l ica t ion , does the analysis itself. Here i t is possible t o set 

up the aggressiveness level and where the license is required. T h e last step then takes the raw 

o u t p u t f r o m the analyser and conver ts i t in to one o f the selected fo rmats . T h e scr ipts in the 

conta iner generate all th ree var iants . Due t o the size o f t he H T M L o u t p u t , i t is no t inc luded in 

the d ig i ta l a t t a c h m e n t t o th is work . 
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: foo.c : JSON 

bar.c : •> cov-build cov-analyze cov-format-errors • »• HTML I 

bar.h : Text i 

Figure 5 . 1 : Process steps for cover i ty analysis. 

5 . 1 . 3 | G C C 

T h e GNU project C and C++ compiler is used for comp i l i ng xfsprogs and i t has some s ta t ic 

analysis capabi l i t ies because i t must understand the code t o compi le i t . T h e on ly di f ference in 

its use f r o m standard con f igura t ion is t o use the most s t r i c t repor t ing . 

5 . 1 . 4 | Clang 

Clang is another C / C + + compi ler . It was founded by App le and L L V M commun i t i es in 2007 

as an a l ternat ive t o GCC, wh ich did not work well for App le 's needs. It is designed t o be highly 

compat ib le w i t h GCC for C-based languages (C , C + + , O b j C ) , bu t does not have the desire t o 

replace it comple te ly [25] . 

It is no t used by xfsprogs bu t can compi le the code as wel l , so we can compare i t w i t h GCC and 

o ther analysis too ls . Even i f i t has its ana lyz ing part as a s tandalone app l ica t ion [10], t he easiest 

way t o use i t and t o make i t t he most comparable w i t h GCC was t o rename c lang binary t o GCC 

and let xfsprogs behave as i f i t was GCC, rather t h a n mod i f y A u t o t o o l s con f igu ra t ion . Acco rd ing 

t o Clang's scan-build descr ip t ion, the too l replaces cer ta in env i ronmenta l variables t o achieve 

the same result. However, f r o m the nature o f too l -spec i f ic conta iners used for the tests, binary 

replacement avoids uncer ta in ty a b o u t whe ther the env i ronmenta l variables were correct ly taken 

in to the account in th is specif ic A u t o t o o l s con f igu ra t ion w i t h o u t the usual consequences o f 

m a n i p u l a t i n g w i t h system files w i t h o u t the knowledge o f a package manager. 

Results Processing 

T h e o u t p u t s o f these too ls have d i f ferent syntax and verbosi ty, bu t we had t o f ind a way, how 

t o compare t h e m , bo th between the too ls and across revisions, despite some o f the too ls f i nd ing 

a lot o f issues. A set o f scr ipts t o help bo th w i t h a u t o m a t i n g the tests and w i t h analysing 

was created. T h e Figure 5.2 shows how these scr ipts are connected w i t h w h a t happens in the 

conta iners. 

First, there is t oo l parse .py, wh ich can au tomat i ca l l y run all t he too ls across specif ied revisions. 

It takes care o f chang ing the revisions, s ta r t i ng every docker conta iner again and f inal ly, i t 

organises the o u t p u t s in a logical way: in a specif ied directory, it creates a subd i rec tory for every 

revision (us ing the revision's shor t hash as the d i rectory name) and each such d i rec tory then 

conta ins log files w i t h o u t p u t s f r o m each t o o l . 

T h e o u t p u t files are not modi f ied in the f i rs t s tep, bu t t o s impl i fy the i r parsing, i t is useful t o 

preprocess some o f those files (namely f r o m GCC and / C lang) w i t h scr ip t format-outputs, sh, 
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source code 

copy to container 

output files • format-outputs.sh parse, py format-outputs.sh parse, py 

analyze analyze 
move the results 

out of the container 

tests, py 

Figure 5.2: Process steps for tes t ing . 

t o remove color f o r m a t t i n g escape sequences and unnecessary compi ler o u t p u t s . Such data may 

be useful for some fu r the r analysis, bu t for the next step, i t wou ld on ly make the parsing more 

complex. 

In the last step, scr ip t parse.py, when suppl ied w i t h the o u t p u t directory, t ranslates the 

d i f ferent syntaxes in to a single inner representat ion, wh ich can be then used t o s imply c o m p u t e 

deltas between d i f ferent revisions. 

T h e a lgor i thms t o comple te these deltas has one known issue: i f there are mu l t ip le issues w i t h 

the same message (e.g. because var iable w i t h name f o o was declared, bu t not used, in mul t ip le 

func t ions) and later some o f these issues are f ixed, t he number o f issues is correct , but the 

indicated lines may be incorrect . Th is is because the scr ip t must cope w i t h chang ing code; an 

issue on line X in one revision can be on line Y in another one, and t h a t wou ld require emp loy ing 

much more complex a lgor i thms t h a t wou ld use in fo rmat ion f r o m g i t and unders tand wh ich lines 

moved where. T h u s , in such cases, the behaviour select ing specif ic instances o f t he same kind 

o f issue is undef ined. 

Finally, whi le i t is possible t o f ind dif ferences between revisions w i t h i n the results o f a single 

t o o l , a lbei t w i t h the smal l ins tab i l i ty in case o f mu l t ip le s imi lar entr ies ment ioned above, do ing 

th is between too ls on a single revision proved a much more complex task. Every too l describes 

the same issue w i t h d i f ferent words, so t o be able t o au tomat i ca l l y c o m p u t e any dif ferences, 

such an a lgo r i t hm wou ld have t o unders tand the issue in all detai ls. T h u s , cross-tool dif ferences 

are not c o m p u t e d au tomat ica l l y , bu t manual ly for the cases where i t is reasonable given t o the 

number o f issues t h a t must be analysed. Standard Unix too ls like d i f f and grep were used in 

these cases. 
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Results 

In th is chapter , t he results o f every t o o l are compared and analysed. I f not s ta ted otherwise, 

the number o f issues is for mkfs-speci f ic files, i.e., for files in mkf s/ d i rectory. Every too l has its 

own sect ion in wh ich i ts per formance is analysed across o f mu l t ip le revisions o f mkfs in deta i l . 

Table 6.1 offers an overv iew o f how many issues d id every too l f ind on various revisions. These 

revisions are stored in the project 's g i t reposi tory and they are ident i f ied by the i r hash, so th is 

tab le also shows wh ich revision fo l lows w h i c h . Selected revisions (anno ta ted w i t h total issues) 

shows the number o f o u t s t a n d i n g issues on th is specif ic po in t o f deve lopment . 

For the remain ing revisions, t he tab le shows n e w / f i x e d issues: +x denotes the number o f new 

issues f o u n d , — x denotes the number o f issues f ixed between th is and the previously tested 

revision. For example, revision a887c950 has a value + 1 / — 3 for Coveri ty. T h a t means t h a t , 

accord ing t o Coveri ty, one new issue appeared in th is revision, whi le 3 o thers were f ixed. A zero, 

in th is case, means no change. A — dash means t h a t t he too l was not used in th is specif ic 

revision. T h e numbers o f issues were gained w i t h every too l set up t o the st r ic test analysis. 

It is apparent f r o m the tab le , even on the f i rs t glance, t h a t t he per formance o f t he too ls varies 

widely. N o t on ly in absolute numbers o f reported issues ( o f wh ich some are false posi t ives) , but 

also in de tec t ing specif ic issues. For example, revision a9dad670 f ixed 54 issues accord ing t o 

GCC, bu t accord ing t o Coveri ty, i t caused 4 new and did not f ix any th ing . 

Below, we have bo th a s imple s ta t is t ica l analysis o f w h a t each too l found and a more detai led 

look a t some specif ic issues and revisions, especial ly where the too ls have seriously d i f ferent 

results. 

6.1 CppCheck 

CppCheck (and Codacy, wh ich is using i t ) f ound fewer issues t h a n o ther too ls . W h e n the kind 

o f issues found is analysed, it becomes apparent t h a t th is t o o l is great ly l im i ted . St i l l , th is t oo l 

is t he easiest t o use and it is open source, wh ich can make i t a useful en t ry po in t for projects 

t h a t do not use any o ther fo rm o f analysis. 

T h e on ly t w o revisions we ment ion here are v4.6.0 and 4.7.0, before and af ter our patches. T h e 

differences between o ther revisions are negligible. 

In version 4.6 .0 , 5 issues were found in mkfs-speci f ic fi les, and 460 issues in who le xfsprogs. 

From these, 100 issues were not sty l ist ic. 

T h e issues found in mkfs are: 

1. mkfs/xfs_mkfs.c: 1067: Checking if unsigned variable 'blocksize' is less than zero. 

2. mkfs/xfs_mkfs.c: 1698: Checking if unsigned variable 'sectorsize' is less than zero. 

3. mkf s/xf s_mkfs. c: 1225: Checking if unsigned variable 'sectorsize' is less than zero. 

4. mkf s/xf s_mkfs. c : 2487: Condition '0' is always false 

5. mkf s/xf s_mkfs. c : 2733: The scope of the variable 'bucket' can be reduced. 
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C o m m i t CppCheck Codacy Cover i ty GCC Clang 

To ta l issues 

( t a g : v 4 . 1 1 . 0 - r c l ) 0 7 a 3 e 7 9 3 1 3 119 30 34 
( t a g : v4 .7 .0) d 7 e l f 5 f 1 1 4 119 30 28 

Changes 

[Last of our set] 2 a c a l 6 d 6 0 0 0 0 0 

a a 3 0 3 4 d 4 0 0 + 2 / - 2 0 0 

6 d e 2 e 6 c 0 0 0 +5 0 0 

d d c 3 b 2 d a 0 0 0 0 0 

0 6 a c 9 2 f d 0 0 +12/-3 +1 +1 
2 7 a e 3 a 5 9 0 0 +1 0 0 

3 e c l 9 5 6 a 0 0 +1/-3 0 0 

6c855628 0 0 + 2 / - 2 -2 -2 
6 2 7 e 7 4 f d -3 -2 0 +2 +2 
9 0 9 0 e l 8 7 0 0 +2 0 0 

1 9 7 4 d 3 f1 0 0 0 -1 0 

5 6 e 4 d 3 6 8 0 0 -3 0 0 

a 9 d a d 6 7 0 0 0 +4 -54 -54 
1 4 7 e 0 f 3 1 0 0 +3 0 0 

c 8 1 c 8 4 6 0 0 0 0 -50 -50 
a 8 8 7 c 9 5 0 0 0 +1/-3 +13 +12 
5fla2100 0 0 0 0 0 

f f 2 1 c 7 0 9 0 0 0 +1 +1 
[First of our set] 4 a 3 2 b 9 e 9 -1 -1 0 0 0 

To ta l issues 

[Before our set] 6 a a 3 2 b 4 7 5 6 111 121 117 
(4 .6 .0) 0 9 0 3 3 e 3 5 5 6 111 121 117 

Table 6 . 1 : A n overv iew o f issues found by the tested too ls on specif ic revisions in mkfs-on ly 

files. 

A l l these issues were present for mu l t ip le years. Precise d a t i n g is d i f f icu l t , however, because e.g. 

issue 1 is b lamed t o a c o m m i t 16 years o ld . B u t a t t h a t t i m e , the var iable was signed. T h u s , 

the issue appeared some t i m e later, when the specif ic var iable was tu rned t o unsigned, bu t not 

every use was fu l ly conver ted . 

Nei ther o f these issues is o f any seriousness. Every found check o f an unsigned var iable being 

less t h a n zero is, in fac t , a less-or-equal check. L is t ing 6.1 shows the specif ic code for bo th cases 

o f o f fend ing sectorsize. T h u s , unsigned_variable <= 0 may be misleading, bu t func t iona l l y 

is equiva lent t o unsigned_variable == 0. A n d the cond i t ion ' 0 ' being always false is a value 

in ten t iona l ly passed t o a macro. 

O t h e r too ls do not repor t th is case o f unsigned var iable compar ison, l ikely because the lower- than 

symbo l , in th is case, does not have any effect. 

L is t ing 6 . 1 : Cond i t ion in wh ich unsigned sectorsize is tested t o be less t h a n zero. 

i f ( s e c t o r s i z e <= 0 I I ! i s p o w 2 ( s e c t o r s i z e ) ) 
// do something 
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T h e patches we w r o t e removed most o f t he o f fend ing code, so on ly 1 issue was found in mkfs-

specif ic fi les in version 4.7 .0 . In t h a t version in the who le xfsprogs, 440 issues were f o u n d , f r o m 

wh ich 100 issues were no t style issues. 

T h e issue found in mkfs is: 

mkf s/xf s_mkf s. c : 2 9 1 8 : The scope of the variable 'bucket' can be reduced. 

W h e n compared w i t h Codacy, CppCheck reports one issue tw ice : Check ing if an unsigned 

var iable is less t h a n zero. T h i s happens in t w o places, bu t Codacy ignores the second occurrence. 

On the o ther side, CppCheck did not f ind any issue in mkf s/proto . c f i le, where Codacy d id . 

These differences m i g h t be caused by a d i f ferent con f igura t ion o f CppCheck, because we used 

the defau l t con f igu ra t ion , bu t do not know w h a t changes Codacy d id . 

Despite th is , t he results o f those t w o too ls are very s imi lar when compared t o o thers, so we 

use on ly CppCheck in f u r the r compar ison w i t h o ther too ls . CppCheck is selected because we 

have greater con t ro l over i t , unl ike c loud service Codacy, and on th is sample produced no false 

posit ives, a l though the usefulness o f some reports is arguable. 

T h e low number o f issues found can be a t t r i b u t e d t o the detai led review o f all patches submi t t ed 

t o the project . I f most issues are usually spo t ted du r ing the deve lopment o f t he patches and f ixed 

before they are merged in to the code, it leaves space for on ly more complex and not so obvious 

issues, wh ich CppCheck analysis is no t capable o f f i nd ing and a s t ronger too l is necessary. 

6.2 Codacy 

Codacy shows on ly p e r - c o m m i t and to ta l issues for a branch. T h a t is, a developer can v iew 

whe the r a specif ic c o m m i t f ixed or caused an issue, and can see w h a t are the issues for the t o p 

o f the repository, bu t check ing the comple te s ta te a t a par t icu lar po in t in the history requires 

c rea t ing a new branch, wh ich is uncomfor tab le , bu t manageable for a p r i v a t e 1 repository. In a 

reposi tory w i t h many con t r ibu to rs , i t can be confus ing. 

Codacy provides some ra t ing on the pro ject 's page [ ] , wh ich considers xfsprogs as a qua l i ty 

project ( A - g r a d e ) , bu t the we igh t o f th is ra t ing is unclear and rather in fo rma l . A lso, i t is not 

clear w i t h o u t check ing every issue, w h a t metr ics Codacy uses t o assess the type , whe ther i t is 

style, error or secur i ty issue. 

In mkfs-speci f ic fi les in version 4.6 .0 , 6 issues were f o u n d . W h o l e xfsprogs had 839 issues, f r o m 

wh ich 809 were code style issue and 30 were po ten t ia l errors. 

Codacy found most o f t he same issues as CppCheck w i t h few except ions. It reported these t w o 

issues: 

1. mkf s/proto. c : 4 9 : The function 'setup-proto' is never used. 

2. mkf s/proto. c : 6 0 1 : The function 'parse-proto' is never used. 

However, these func t ions are used in mkf s/xf s_mkfs. c f i le, thus they are false posit ives. A lso, 

CppCheck found t w o places on wh ich sectorize is checked t o be less t h a n zero, bu t Codacy 

reports i t on ly once. Curiously, the same issue appears in t w o places not far away, and in bo th 

cases, i t is in th is exact cond i t ion as can be seen in L is t ing 6.1 in Sect ion 6 . 1 , j u s t inside o f 

1\n the sense o f being the only user, not in terms o f visibil i ty. 
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di f ferent b locks, bu t st i l l in the same func t i on and path t o bo th places is possible. W h y Codacy 

reports on ly one o f those issues is unclear. 

In version 4.7.0 in mkfs-speci f ic fi les, 4 issues were f o u n d . W h o l e xfsprogs had 749 issues, f r o m 

wh ich 719 were code style issue and 30 were po ten t ia l errors. 

T h e four issues found in th is version are s imi lar t o w h a t can be seen for the 4.6.0: 

1. m k f s / x f s _ m k f s . c : 2 9 1 8 : The scope of the variable bucket can be reduced. 

2. m k f s / m a x t r r e s . c : 3 1 : The function max_trans.res is never used. 

3. m k f s / p r o t o . c : 4 9 : The function setup-proto is never used. 

4. m k f s / p r o t o . c : 6 0 1 : The function parse-proto is never used. 

Also in th is case, t he supposedly unused func t ion m a x _ t r a n s _ r e s is in fac t used in another f i le. 

In t o t a l , Codacy results are simi lar t o CppCheck itself, bu t w i t h more o f false posit ives. T h e 

only advantage i t offers is a u t o m a t e d in tegra t ion w i t h G i t H u b . W i t h a correct set -up, i t can 

ensure t h a t every push in to the reposi tory is tes ted. 

GCC and Clang 

Despite be ing developed independent ly , GCC and Clang are very simi lar in w h a t they f o u n d , 

w i t h GCC f i nd ing a few more issues. In th is sect ion, we describe some o f the notable differences 

between those t w o too ls and compare t h e m t o others where i t is reasonable. 

6 . 3 . 1 | V e r s i o n 4 . 6 . 0 

Table 6.2 compares GCC and Clang in th is revision, and we specif ical ly look at t he differences 

between these t w o too ls and Codacy. O t h e r issues are not l isted here due t o the i r a m o u n t , but 

the reader can f ind t h e m on an a t tached opt ica l disc, or repl icate t h e m using the too ls a t tached 

t o th is work . 

Too l m k f s / x f s _ m k f s . c m k f s / p r o t o . c W h o l e xfsprogs 

GCC 121 2 2013 

Clang 113 4 2597 

Table 6.2: Compar ison o f t he number o f issues reported by GCC and Clang in version 4.6.0. 

As is shown in Sect ion 6.2, Codacy found t w o issues in the p r o t o . c f i le t o o . Curiously, Codacy 

found t w o unused func t ions , wh i le GCC found these issues: 

1. m k f s / p r o t o . c : 270 : comparison between signed and unsigned integer expressions 

2. m k f s / p r o t o . c : 332 : unused parameter 'mp' 

These issues are no t in the t w o func t ions found by Codacy. However, they are inside o f func t ions 

called f r o m the ones marked as unused by Codacy. It is possible t h a t they were not reported 

because o f th is , but given t h a t t he ment ioned Codacy issues are false posit ives and t h a t Codacy 

d id not found many o ther issues, it is l ikely t h a t Codacy s imply d id not not ice t h e m , whi le GCC 

d id . 
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In add i t ion t o the t w o issues found by GCC in mkfs/proto .c, C lang found t w o o ther issues 

( b o t h o f t he same k ind ) : 

1. mkfs/proto. c: 130: missing field'trJogcount'initializer 

2. mkf s/proto. c: 631: missing field'trJogcount'initializer 

These t w o new issues, comp la in ing a b o u t a missing f ie ld, are probably false posit ives because, 

on these lines, a s t ruc tu re w i t h all members zeroed is created, as can be seen in L is t ing 6.2. 

Lis t ing 6.2: One o f the t w o lines on wh ich Clang reports a missing f ield in s t ruc tu re in i t ia l i za t ion , 

s t r u c t x f s _ t r a n s _ r e s t r e s = {0}; 

T h e dif ference between GCC and Clang in mkfs_xfs .c f i le is 8 issues in absolute numbers , and 

the real di f ference is no t much bigger; GCC reports more cases o f a compar ison between signed 

and unsigned integer t h a n Clang does. Clang, on the o ther hand, reports few cases o f th is issue: 

mkf s/xfs_mkfs. c: 2906: cast from 'char *' to 'xfs-alloc-rec-t *' (aka 'struct xfs-alloc-re c *') 

increases required alignment from 1 to 4 

O t h e r t h a n t h a t , they report t he same issues. 

6 . 3 . 2 | R e v i s i o n a 8 8 7 c 9 5 0 

GCC detected 13 new issues in mkfs/xfs_mkfs.c. These 13 issues are on ly o f t w o kinds: 

1. mkf s/xfs_mkfs. c: 1487: comparison is always false due to limited range of data type 

2. mkfs/xfs_mkfs.c mu l t ip le occurences: passing argument 2 of 'illegal' discards 'const' 

qualifier from pointer target type 

Clang detected all t he 12 occurrences o f the second issue bu t missed the f i rs t compar ison issue. 

T h e o f fend ing line for the missed issue is shown in L is t ing 6.3. A closer look on th is line 

reveals t h a t there is an expl ic i t t ype cast ing. T h e new type is a signed integer. However, the 

var iable logagno is declared w i t h t ype xf s_agnumber_t and th is t ype is declared as an alias t o 

__uint32_t in f i le libxfs/xfs_types . h . 

Acco rd ing t o the s tandard o f C language, the t ype cast ing has a precedence over compar ison [3, 

A.2.1], so Clang, when eva lua t ing th is line, sees an integer. T h a t is techn ica l ly correct , bu t in 

a wider con tex t , i t is also clear t h a t t he possible values are sti l l l imi ted by the or ig inal t ype , and 

so th is compar ison wi l l be always false. W h i c h is w h a t GCC not iced and also correct ly repor ted. 

No o ther too l reported th is issue. 

L is t ing 6.3: Line on wh ich GCC found the compar ison issue. 

i f ( ( _ _ i n t 6 4 _ t ) l o g a g n o < 0) 
// do something 

T h e o ther issues are simi lar t o w h a t C lang found bu t appears t o suffer t he ins tab i l i ty in parsing 

ment ioned in Sect ion 5.2. A l l these issues are caused by passing a cons tan t s t r i ng t o a func t ion 

wh ich does not has the const keyword for an a rgument : i l l e g a l (value, , ,b log'');. T h e 

file xf s_mkf s . c conta ins 44 such calls, bu t on ly some o f t h e m were added in th is revision. T h u s , 

we correct ly detected these issues, but some o f the line numbers we see had th is issue before. 

If we wou ld w a n t t o see exact ly wh ich lines were added, the easiest way is t o look t o look at 

changes in th is specif ic c o m m i t . 
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6 . 3 . 3 | V e r s i o n 4 . 7 . 0 

Clang found 3 more issues in th is revision t h a n GCC did in f i le mk f s / p r o t o . c, as is shown in 

the compar ison in Table 6.3. T w o o f t h e m already appeared in the descr ip t ion o f revision 4.6 

in Sect ion 6.3.1 and were not f ixed, the t h i r d issue is o f t he same kind and was in t roduced by 

some o ther patch o ther t h a n wh ich are part o f th is work . 

Too l m k f s / x f s _ m k f s . c m k f s / p r o t o . c W h o l e xfsprogs 

GCC 28 2 2013 

Clang 23 5 2511 

Table 6.3: Compar ison o f t he number o f issues reported by GCC and Clang in version 4.7.0. 

A l m o s t all issues found in m k f s / x f s _ m k f s . c are a b o u t a compar ison, w i t h on ly t w o except ions: 

1. m k f s / x f s _ m k f s . c : 728 : unused parameter'Isectsz' 

2. m k f s / x f s _ m k f s . c : 1896: passing argument 2 of unknown' discards 'const' qualifier from 

pointer target type 

M o s t issues in Clang are also abou t a compar ison, w i t h mu l t ip le versions o f wo rd ing , because 

where GCC uses on ly one universal message, C lang uses a t e m p l a t e in to wh ich i t subst i tu tes 

specif ic types. Th is makes the analysis o f t he results more chal lenging bu t does not have any 

effect on the results. In th is revision, C lang does not report any new kind o f issues against 

version 4 .6 .0 . 

Coverity 

Coveri ty, when it is run manual ly in the docker conta iner , found a comparab le number o f issues 

as GCC and Clang in mkfs-speci f ic fi les. O n the o ther hand, the onl ine version d id not f ind 

any issues in mkfs on a recent (4 .11) version [ ] , compared t o 111 found on a manual run 

w i t h the highest level o f aggressiveness. W h a t ef fect t he aggressiveness level has can be seen in 

Table 6.4. T h e numbers in th is tab le are for mkfs-speci f ic fi les. T h e tested revision is 0 7 a 3 e 7 9 3 

( v 4 . 1 1 . 0 - r c l ) . From the results, i t is probable t h a t the service is using con f igura t ion s imi lar t o 

the low aggressiveness. Especial ly when numbers for the who le xfsprogs are compared. 

onl ine low med ium high cus tom 

Issues reported 0 0 36 97 111 

Table 6.4: Compar ison o f issues found by Cover i ty onl ine service and Cover i ty run local ly w i t h 

d i f ferent levels o f aggressiveness. 

In most o f th is sect ion, we focus on results gained f r o m the cus tom (h ighest ) level. T h e onl ine 

service is briefly described and some in terest ing s tat is t ics compar ing xfsprogs w i t h o ther open-

source projects ( in an aggregated manner ) are provided on ly in Sect ion 6 . 4 . 1 . 

T h e reasons for select ing the cus tom level aggressiveness as the level on wh ich ou r analysis 

focusses is t h a t for o ther too ls we used the s t r ic test set t ings avai lable, thus , analys ing relaxed 

approach on any o ther level is no t comparab le t o o ther too ls . 

Unl ike CppCheck or the compi lers, Cover i ty can also show examples o f the data f low for wh ich 

a defect can appear. E.g. t r a c k i n g mu l t ip le cond i t ions and no t ing i f t r ue or false branch was 
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concurent data access 

insecure data handl ing 

A P I usage errors 

memory illegal access 

memory cor rupt ions 

unin i t ia l ized variables 

program hangs 

integer hand l ing issues 

error hand l ing issues 

cont ro l f low issues 

null po in ter dereference 

0 5 10 15 
O u t s t a n d i n g defects 

Figure 6 . 1 : O u t s t a n d i n g defects per category for who le xfsprogs. 

taken . Th is is especial ly useful when the case is not clear and the path includes a longer chain o f 

cond i t ions over a larger part o f t he code. B o t h the onl ine service and the local ly- run appl icat ion 

provides th is i n fo rma t ion . However, i t is not par t icu lar ly useful in our compar ison o f w h a t issues 

were f o u n d . 

6.4.11 O n l i n e S e r v i c e 

T h e onl ine service avai lable a t https://scan.coverity.com/projects/xfsprogs provides 

var ious stat is t ics in add i t ion t o reported issues. T h e onl ine service found no issues in mkfs . In 

who le xfsprogs, i t reported 7 1 issues, wh ich is s imi lar t o w h a t t he manual execut ion on the low 

level f ound (77 issues). T h e service also provides a v iew on specif ic categories, as can be seen 

in Figure 6.1 

Th is service is used since 2013 and since xfsprogs was f i rs t analysed, a t o t a l number o f 273 

issues was f o u n d . O f these, 176 were f ixed and 26 dismissed as in ten t iona l or false posit ives. 

T h e average defect density accord ing t o th is analysis is cur ren t ly 0.52 issues per 1,000 lines, 

w i t h 135,302 lines analysed. 

W h e n xfsprogs was analysed for the f i rs t t i m e by th is service, 139 issues were f o u n d , bu t many 

were f ixed shor t ly a f terwards and the number o f o u t s t a n d i n g defects is not chang ing m u c h , 

averaging between 60 and 70 issues a t any specif ic revision. W h e n compared w i t h o ther open-

source projects o f s imi lar s ize 2 analysed by th is service, xfsprogs osci l lates around the average 

value, wh ich is 0.5. 

It is also useful t o note t h a t t he defects are not d is t r ibu ted equal ly in the who le xfsprogs. W h e n 

we look a t t he defects rate per c o m p o n e n t , seen in Table 6.5, we can see t h a t t he too ls used 

by developers for e.g. debugg ing , or by advanced users ( x f s _ c o p y , x f s _ l o g p r i n t ) have a 

higher rate than the too ls in tended for a general use, like m k f s . T h e high rate in l i b x c m d and 

l i b h a n d l e is caused by the smal l size o f these t w o componen ts . B o t h has on ly a single issue, 

bu t as l i b h a n d l e has under 500 lines, t he average per 1000 lines makes it look worse. 

2 100 ,000 to 400,000 lines o f code. 

H3 M e d i u m impac t 

M H igh impac t 
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l ibxfs l ibxlog x fs . repai r xfs_d b x fs .copy xfs_fsr x f s J o 

Lines o f code 43,770 1,165 22,620 18,508 1,043 1,354 6,970 

Defect density 0.80 0.86 0.44 0.49 2.88 0.74 0.00 

x f s J o g p r i n t xfs_q uota m kfs_xfs xfs_growfs l ibhandle l ibxcmd o ther 

Lines o f code 2,616 4,037 3,540 408 493 1,338 27,539 

Defect density 1.15 0.50 0.00 0.00 2.03 1.38 0.15 

Table 6.5: Defect density per c o m p o n e n t as reported by Cover i ty onl ine service. 

6 . 4 . 2 | L o c a l a n a l y s i s 

Th is sect ion analyses the results f r o m the local execut ion o f Cover i ty on the highest level o f 

aggressiveness. 

In mkfs-speci f ic files in version 4.6 .0 , 111 issues were f o u n d , whi le who le xfsprogs had 3309 

issues. From the issues reported for mkfs, 60 is a comp la in t a b o u t dereferencing a po in ter t h a t 

m i g h t be null in p r i n t f or f p r i n t f cal l . 

A n example o f a line w i t h such a warn ing is in L is t ing 6.4. T h e issue lies w i t h G e t t e x t 3 . T h e _ 

macro is t rans la ted as a dcgettext call and i t is the result o f th is f unc t i on t h a t Cover i ty can ' t 

verify. A n d because there is no check o f t he return value for null before i t is passed t o printf, 
Cover i ty makes an aggressive assumpt ion and raise a warn ing . 

L is t ing 6.4: xf s_mkf s . c : 1713: Line wh ich is repor ted ly dereferencing a po ten t ia l l y null po in ter 

w i t h Get tex t 

p r i n t f (_( " 7 . s u v e r s i o n u 7 . s \ n " ) , progname , VERSION); 

These issues can probably be considered false posit ives, or a t least in ten t iona l . A brief search in 

Ge t tex t imp lemen ta t i on suggests t h a t if Ge t tex t canno t a l locate memory for a t rans la ted s t r ing , 

it s imply returns the or iginal one. For example, see fi le /gettext-runtime/intl/dcigettext . c, 

line 391 in Get tex t source code [11] . 

On ly 10 o f the dereferencing issues are related t o s o m e t h i n g else than dcgettext and m i g h t be 

useful. A n example o f such issue is L is t ing 6.5. In th is case, memory is a l located w i t h a malloc 
cal l . T h e returned value is not tes ted , so it is possible t h a t null is passed t o the read cal l . 

L is t ing 6.5: p r o t o . c : 6 6 : Line wh ich is repor ted ly dereferencing a po ten t ia l l y null po in ter - no 

mal loc check. 

buf = m a l l o c ( s i z e + 1); 
i f ( r e a d ( f d , b u f , s i z e ) < s i z e ) { 

// do something... 

These t w o issues also i l lus t rate the dif ference between the aggressiveness level. T h e Get tex t -

related issue is reported on ly on high or cus tom level, bu t the mal loc issue is reported also on 

med ium level. 

W h e n compared t o GCC or Clang, Cover i ty f inds d i f ferent issues than the o ther too ls . W h i l e 

GCC reports a lot o f compar ison between signed and unsigned integers or d iscard ing const 
3 G e t t e x t is a too l / l i b ra ry for t ranslat ion o f programs. It generates a list o f marked st r ing f rom a program. 

These s t r ing can be translated and packaged w i t h the compi led program. When the program is run, Gettext 

selects the correct language based on system conf igurat ion. 
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qual i f ier , Cover i ty f inds a lot o f po tent ia l null po in ter dereferences and numer ic types overf lows 

when 32b i t and 64b i t a r i thmet ics are mixed. 

6.5 Summary 

As we have seen, the results o f t he too ls vary widely, bo th in types o f issues the too ls report and 

in the i r a m o u n t . T h e mediocre results o f CppCheck and Codacy can be probably a t t r i b u t e d t o 

the fac t t h a t we tested i t on a p roduc t ion code wh ich already passed a cer ta in qua l i ty assurance 

and thus , the kinds o f issues these too ls are best capable o f f i nd ing were already f ixed. 

Cover i ty and bo th compi lers were capable o f f i nd ing less obvious defects, bu t the price for a 

t o o high sensi t iv i ty was a lot o f reported issues w i t h on ly a m in ima l , i f any, effect, like the 

compar isons between signed and unsigned integers f r o m GCC. 

In any case, th is work shows t h a t on a relat ively error- f ree code, there is on ly a m i n i m u m o f 

defects t h a t wou ld be reported by mu l t ip le too ls . T h i s makes i t apparent t h a t i t is useful t o use 

as many diverse methods in the analysis as possible. 

T h e most helpful t oo l f r o m the tested ones was Coveri ty, not least because o f its ab i l i ty t o show 

the f low o f the program in wh ich the defect can appear. However, the free analysis for open 

source projects is l imi ted t o more obvious defects and for non-open source projects, or for a 

detai led analysis, i t requires a paid license. 

Th is analysis was done af ter the f i rs t patches were w r i t t e n and merged, bu t f ound minor issues 

only, wh ich speaks well for t he qua l i ty o f mkfs, a t least in te rms o f correctness w i t h respect t o 

the language s tandard . W h e t h e r the code is well s t ruc tu red or not , or if i t does w h a t is expected 

f rom it on a higher level, is not possible t o assess w i t h these too ls . 

Ou r patches reduced the number o f issues found by all too ls except Coveri ty. Cover i ty saw a 

small g r o w t h on higher levels o f aggressiveness 4 . O n the o ther hand, GCC, Clang and CppCheck 

saw a fal l t o roughly a b o u t one quar ter . Codacy, a f ter s u b t r a c t i n g false posit ives, shows the 

same t r e n d , a l though the on ly too l f r o m the tested ones, wh ich was used du r ing the deve lopment 

o f these patches, is the onl ine Cover i ty service. 

4 O n the low level, Coverity found no defect both before and after the patches. 
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Conclusion 

As we have f o u n d , the accumu la t ion o f technica l debt in long- l iv ing projects can impa i r the 

unders tand ing o f t he code and g row as a snowbal l , w i t h each change requi r ing more ad-hoc 

ad jus tments and edi ts t han the previous one. W h e n th is happens, i t is i m p o r t a n t t o devote 

some ef for t t o clean the code, even i f i t can take a long t i m e , because otherwise, the s i tua t ion 

wi l l on ly g row worse. 

As Chapter 3 shows, we have begun th is work and successfully merged the f i rs t set o f changes. 

Because the deve lopment process cont inues at a slower pace than we expected, not all o f the 

desired changes were merged before th is work was publ ished. T h i s does not change our plan 

for merg ing t h e m . Rather, we on ly have t o f ind bet te r processes t h a t wi l l l im i t long delays and 

speed up the merg ing o f t he changes in to the project . Some o f these possible changes were 

discussed in Sect ion 3.5. 

W e also compared the onl ine Cover i ty service xfsprogs is using w i t h few o ther too ls , t o see how 

effect ive the cur ren t reviews and tests are. T h e results in the Chapter 6 speak rather wel l . A l l 

t he found issues in mkfs.x fs were on ly o f a minor impor tance , even t h o u g h d i f ferent too ls found 

d i f ferent kinds o f issues. W i t h higher sensit iv i ty, t he too ls were repor t ing more o f those issues, 

bu t w i t h d im in ish ing impor tance and g r o w i n g a m o u n t o f false posit ives. A lso, we found ou t 

t h a t ou r patches lowered the number o f issues found in mkfs by most o f t he too ls . 

W h i l e i t m i g h t be useful t o incorporate the o ther too ls and let t he too ls use more aggressive 

assumpt ions, i t is uncer ta in i f t he re turn o f inves tment in to f i x ing a large a m o u n t o f minor 

and styl ist ic issues is posi t ive, or i f t he ef for t is be t te r spent on keeping the X F S f i lesystem 

c o m p e t i t i v e w i t h o ther modern and much younger f i lesystems. 
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Appendices 

T h e a t tached opt ica l med ium has th is con ten t : 

• docker/ - T h e d i rectory w i t h the conta iners and used scr ipts. 

• tex/ - Latex source code, and data used in th is work in results subdi rectory. 

• xf sprogs-dev/ - T h e d i rec tory w i t h xfsprogs g i t repository. Includes also the changes 

t h a t were not yet merged in c o n f l i c t s branch. 

T h e docker/ d i rec tory conta ins subdirector ies for every conta iner , plus these scr ipts, wh ich are 

described in Chapter 5: 

• prepare. sh - A scr ip t t h a t wi l l down load sources for the docker conta iners. N o t necessary 

when the director ies already exists. 

• tests.py - A scr ip t t h a t runs all t he tests. 

• format-outputs. sh - A scr ip t t o preprocess the o u t p u t o f t he used too ls for later 

analysis. 

• parse.py - A s imple analysis o f t he o u t p u t s , capable o f p r in t ing differences between 

revisions. 

• README.md - A n example o f how t o use these scr ipts. 

42/42 


