
BRNO UNIVERSITY OF TECHNOLOGY
V Y S O K É U Č E N Í T E C H N I C K É V B R N Ě

FACULTY OF INFORMATION TECHNOLOGY
F A K U L T A I N F O R M A Č N Í C H T E C H N O L O G I Í

DEPARTMENT OF INTELLIGENT SYSTEMS
Ú S T A V I N T E L I G E N T N Í C H S Y S T É M Ů

REFACTORING AND VERIFICATION OF THE CODE
OF MKFSXFS
REFAKTORING A VERIFIKACE KODU MKFS XFS

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc.JAN TULÁK

SUPERVISOR
VEDOUCÍ PRÁCE

prof. Ing. TOMÁŠ VOJNAR, Ph.D.

B R N O 2 0 1 7

Master's Thesis Specifícation/18791/2016/xtulakOO

Brno Univers i ty of Techno logy - Faculty of Information Technology

Depar tment of In te l l i gen t Systems A c a d e m i c y e a r 2 0 1 6 / 2 0 1 7

Master's Thesis Specification
For: f u l á k J a n , Be .

Branch of s t u d y : Mathemat ica l Methods in In format ion Technology

Ti t le . R e f a c t o r i n g a n d V e r i f i c a t i o n of t h e C o d e of m k f s xfs
Category: So f tware analysis and test ing

Inst ruct ions fo r p ro jec t w o r k :

1 . Get acqua in ted w i th the xfs journal l ing file system and with the code of mkfs xfs.

2. Study code analysis and ver i f icat ion techniques applicable on the code of mkfs xfs,
inc luding both l i gh t -we igh t approaches (e .g . , searching for error patterns) as well as
h e a v y - w e i g h t approaches (model checking).

3. Propose and i m p l e m e n t a refactor ing of the code of mkfs xfs with the aim of
enhanc ing its ma in ta inab i l i t y and testabi l i ty.

4 . Propose a comb ina t i on of l igh t -weight and heavy-weight techniques suitable for
analysis and ver i f ica t ion of the refactored code of mkfs xfs and apply it on the code.

5. Discuss t he ob ta ined results and propose possible future improvements of your work.

Basic re ferences:

• WiKi pages of p ro jec t XFS, h t tp : / /x fs .org / index.php/Main_Page.
• Křena, B., Vo jna r , T . : Au tomated Formal Analysis and Veri f icat ion: An Overview, I n :

I n te rna t i ona l Journal of General Systems, 42 (4) :335 -365 , Taylor and Francis, 2013.
• Beyer, D., Erkan Keremog lu , M.: CPAchecker: A Tool for Configurable Software

Ver i f i ca t ion , I n : Proc. of C A V ' l l , LNCS 6806, Springer-Verlag, 2 0 1 1 .

Requirements fo r t he semest ra l defense:
First t w o i t ems plus at least some init ial proposal of how to proceed with i tems 3 and 4.

Detailed f o r m a l speci f icat ions can be found at h t tp : / /www. f i t . vu tbr .cz / in fo /szz /

T h e M a s t e r ' s T h e s i s m u s t d e f i n e i t s p u r p o s e , d e s c r i b e a c u r r e n t s t a t e o f t h e a r t , i n t r o d u c e t h e t h e o r e t i c a l a n d

t e c h n i c a l b a c k g r o u n d r e l e v a n t t o t h e p r o b l e m s s o l v e d , a n d spec i f y w h a t p a r t s h a v e b e e n u s e d f r o m e a r l i e r

p r o j e c t s o r h a v e b e e n t a k e n o v e r f r o m o t h e r s o u r c e s .

Each s t u d e n t w i l l h a n d - i n p r i n t e d as w e l l as e l e c t r o n i c v e r s i o n s o f t h e t e c h n i c a l r e p o r t , an e l e c t r o n i c v e r s i o n o f

t h e c o m p l e t e p r o g r a m d o c u m e n t a t i o n , p r o g r a m s o u r c e f i l es , a n d a f u n c t i o n a l h a r d w a r e p r o t o t y p e s a m p l e if

d e s i r e d T h e i n f o r m a t i o n in e l e c t r o n i c f o r m wi l l be s t o r e d on a s t a n d a r d n o n - r e w r i t a b l e m e d i u m (C D - R , D V D - R ,

e t c .) in f o r m a t s c o m m o n a t t h e F I T . I n o r d e r t o a l l o w r e g u l a r h a n d l i n g , t h e m e d i u m wi l l be s e c u r e l y a t t a c h e d t o

t h e p r i n t e d r e p o r t .

Supervisor: V o j n a r T o m á š , p rof . I n g . , P h . D . , DITS FIT BUT

Beginning of w o r k : November 1 , 2016

Date of de l i ve ry : May 2 4 , 2017

VYSOKÉ UČENÍ TECHNICKÉ
FaKulta infoilm&nícj]
Ústav (nteUfferiTníc

Petr Hanáček

Associate Professor and Head of Department

http://xfs.org/index.php/Main_Page
http://www.fit.vutbr.cz/info/szz/

Abstrakt
T a t o práce popisuje průběh re fak tor ingu p rogramu mkfs.xfs za účelem zpřehlednění j e h o kódu

a vyč iš těn í techn ického d luhu naakumulovaného za dvacet let existence t o h o t o p rog ramu, a

následně j e h o s ta t i ckou analýzu. Použi té nástroje (CppCheck , Coveri ty, Codacy, GCC, Clang)

jsou srovnány z hlediska poč tu i t y p u nalezených chyb.

Abstract
Th is work describes the processes o f re factor ing mkfs.xfs program for a purpose o f ref in ing its

code and c leaning the technical deb t accumula ted over 20 years o f t he program's existence.

T h e mkfs.xfs source code is then a subject t o s ta t ic analysis and the used too ls (CppCheck ,

Coveri ty, Codacy, GCC, Clang) are compared in te rms o f the number and type o f t he found

defects.

Klíčová slova
X F S , re fak tor ing , f o rmá ln í analýza, f o r m á l n í ver i f ikace, Srovnání , Coveri ty, Codacy, GCC, Clang,

CppCheck

Keywords
X F S , re factor ing, fo rmal analysis, fo rma l ver i f i ca t ion , compar ison, Coveri ty, Codacy, GCC, Clang,

CppCheck

Citation
Jan T u l á k : Refac tor ing and Ver i f i ca t ion o f t he Code o f mkfs xfs, d ip lomová práce, B rno , F I T

V U T v Brně, 2017

Refactoring and Verification of the Code of mkfs xfs

Declaration
Hereby I declare t h a t I w r o t e th is work on my own and all used sources are s ta ted and correct ly

noted as c i ta t ions .

Jan T u l á k

M a y 23, 2017

Acknowledgement
I w a n t t o thanks t o my managers Eric Sandeen and Steven Wh i tehouse , m y colleagues at Red

Hat , t o Dav id Chinner, main ta iner o f X F S , and t o everyone in X F S c o m m u n i t y .

© Jan T u l á k , 2017.

This thesis was created as a school publication on Brno University of Technology, Faculty

of Information Technology. This publication is protected by copyright and its usage without

permission of its author is prohibited, except situations defined in law.

Contents

1 I n t r o d u c t i o n 3

2 X F S f i l e s y s t e m 5

2.1 X F S Arch i tec tu re overv iew 5

2.2 mkfs.xfs 7

2.3 xfstests 7

3 R e f a c t o r i n g o f m k f s . x f s 9

3.1 Deve lopment processes 9

3.2 Ini t ia l codebase 10

3.3 First patchset 12

3.3.1 T ime l ine and progress 14

3.3.2 Descr ip t ion o f i m p o r t a n t changes 14

3.4 Second patchset 17

3.4.1 T ime l ine and progress 19

3.5 S u m m a r y 19

4 F o r m a l A n a l y s i s a n d V e r i f i c a t i o n 2 0

4.1 S ta t i c Analysis 20

4 .1 .1 Error pat terns 2 1

4.1.2 Da ta f low analysis 22

4.1.3 A b s t r a c t in te rpre ta t ion 22

4.2 Mode l Check ing 23

4.3 T h e o r e m Prov ing 23

5 U s e d T e c h n i q u e s a n d p r o c e d u r e s 25

5.1 Tes t ing Env i ronmen t 25

5.1.1 CppCheck 26

5.1.2 Cover i ty 26

5.1.3 GCC 27

5.1.4 Clang 27

5.2 Results Processing 27

6 R e s u l t s 2 9

6.1 CppCheck 29

6.2 Codacy 3 1

6.3 GCC and Clang 32

6.3.1 Version 4.6.0 32

6.3.2 Revision a887c950 33

6.3.3 Version 4.7.0 34

6.4 Cover i ty 34

6.4.1 Onl ine Service 35

6.4.2 Local analysis 36

6.5 S u m m a r y 37

1/42

CONTENTS

7 C o n c l u s i o n 3 8

2/42

Introduction

In sof tware projects w i t h long life, even an in i t ia l ly clean codebase can become messy and

comp l i ca ted . Moreso when we speak a b o u t open-source projects where the or iginal creators left

yers ago and new people o f var ious capabi l i t ies and knowledge con t inue the deve lopment .

In such projects, new func t iona l i t y is added t o the ex is t ing code w i t h m in ima l changes t o the

rest o f t he project . Th is may s impl i fy the merg ing o f these changes, as any responsible person

can easily understand w h a t the change does. B u t on the o ther side, in the long t e r m , i t t u rns

the code in to a disordered chaos.

T h e result is increasingly more d i f f i cu l t t o ma in ta in and test , and as a single func t iona l i t y can

be spread over many por t ions o f t he project , any change requires more and more a t t e n t i o n and

t i m e .

xfsprogs, a package o f too ls for X F S f i lesystem, is such a project . W h i l e the f i lesystem i t

self is subject t o careful sc ru t iny f r o m the L inux kernel commun i t y , t he too ls like mkfs.xfs 1,
fsck.xfs 2 and o thers are not so publ ic ly exposed and get a lot less a t t e n t i o n . From our ex

perience w i t h w o r k i n g on th is project , i t happens t h a t on ly one or t w o persons o ther t h a n the

au thor o f a patch may read i t , and miss some subt le side effect t he change has. Somet imes,

the large set o f tests X F S mainta ins captures th is bug, somet imes i t does not and i t is not iced

much later.

On th is po in t , i t is i m p o r t a n t t o h igh l ight t h a t despite the n a m i n g convent ion , each mkfs t oo l

is comple te ly independent project and , for example, mkfs.xfs and mkfs . e x t 4 do not share

any code except system libraries.

Some parts o f th is code are more t h a n 20 years old (see chapter 1 for a detai led history o f X F S)

and in need o f intensive c leaning. T h e test sui te (pro jec t x fs tests) main ta ins hundreds o f more

or less complex tests, bu t these are l im i ted in w h a t they can detect as they usually work in th is

way: make a f i lesystem, then test t h a t , so many errors in mkfs.xfs are d i f f i cu l t t o capture

or not ice. X F S also uses an a u t o m a t i c s ta t ic analysis f r o m Coveri ty, wh ich is useful, bu t the

project has no g o o d data on the rel iabi l i ty o f th is analysis.

W i t h the approval o f Dav id Chinner, t hen the main ta iner o f X F S , we began the re factor ing o f

mkfs.x fs , wh ich was overdue. T h e goal o f th is work is t o repay the technica l debt accumula ted

over the years. T h a t means not on ly f i x ing some long-known issues and c leaning par t icu lar ly

complex parts o f the code, bu t also m a k i n g s t ruc tu ra l changes t o min imize the a m o u n t o f code

t h a t must be added or changed dur ing the regular deve lopment (add ing and remov ing features

o f t he f i lesystem). These changes should slow the bu i ld -up o f the technica l debt in the fu tu re .

A f t e r i m p l e m e n t i n g these changes, th is work should ver i fy how effect ive the cur ren t ly used tests

and analysis are. Even i f some tes t ing and analysis methods can be used on ly on a part o f the

code, the results, when compared w i t h o ther too ls , st i l l provides an es t imate a b o u t the soundess

and completeness o f every used m e t h o d .

f o r m a t s a par t i t ion as XFS.
2 Usual ly checks and repairs errors in an exist ing f i lesystem. But for XFS it only tells the user w h a t other tools

t o use.

3/42

CHAPTER 1 INTRODUCTION

A t the same t i m e , th is work can also be seen as a review o f how well var ious analysis and

ver i f ica t ion methods per form on real and in -p roduc t ion code.

T h e re fac tor ing was done in t w o parts. One set o f changes was merged in to upst ream in June

2016 (xfsprogs 4 . 7 3) , t he o ther set is, at t he t i m e o f w r i t i n g , st i l l in deve lopment . T h e versions

o f xfsprogs a t d i f ferent stages o f th is work were:

• Before the beg inn ing o f re factor ing - xfsprogs 4.6.

• A f t e r merg ing the f i rs t par t - xfsprogs 4.7.

• Before merg ing the second part - xfsprogs 4 .11 at t he t i m e o f w r i t i n g .

• A f t e r app ly ing the second part - not yet merged, changes on ly in a local repository.

Th is work is s t ruc tu red as fo l lows: First , i n fo rmat ion abou t X F S and mkfs.x fs are provided in

the f i rs t chapter . In the fo l low ing , t h i r d chapter , we look a t t he re factor ing done and discuss the

changes. A f t e r t h a t , another chapter is dedicated t o exp la in ing fo rma l analysis and ver i f i ca t ion ,

descr ib ing c o m m o n techniques, and we po in t o u t notable too ls , f r o m wh ich we select few t o use

in the f i f t h and s ix th chapter , where the tes t ing env i ronmen t is described and results analysed.

3 T h e releasing o f xfsprogs is t igh t l y coupled w i th releases o f XFS kernel module, which is part o f Linux. Thus ,

xfsprogs uses the same version number t h a t the respective XFS kernel module and Linux has.

4/42

XFS filesystem

X F S is a j o u r n a l i n g f i lesystem created by SGI in 1993. T h e new f i lesystem, in tended as a

powerfu l replacement o f EFS w i t h the expec ta t ion o f g r o w i n g a m o u n t o f data in the f u t u r e was

f i rs t released in IRIX 5.3 in 1993 [30] . T h e L inux por t began in 1999 and since 2002 X F S has

been accessible in the main l ine L inux Kernel [3 1 , Chap. 1.2, 1.3].

X F S is act ively developed for all its h istory since 1993, m a k i n g i t one o f t he oldest f i lesystems

in act ive use on modern L inux machines [, 40 :25] .

ex t3 ex t4 X F S N T F S

max fs size 1 E iB 16 T i B 16 E iB 256 T i B

max fi le size 8 T i B 16 T i B 8 E iB 256 T i B

max files 2 32 2 3 2 2 6 4 2 32

date resolut ion 1 S 1 ns 1 ns 100 ns

Table 2 . 1 : Compar ison o f var ious f i lesystems and the i r l imi ts . Sources: [29, 22, 2 1 , 20 , 16, 27] .

Because o f its capabi l i t ies, X F S is used by well known ins t i tu t ions like C E R N and Fermi lab [16]

for s to r ing large amoun ts o f da ta . Unl ike most o ther L inux f i lesystems, X F S is a 64b i t f i lesystem,

mean ing i t provides far greater l imi ts for storage and fi le s ize 1 , bu t i ts a rch i tec ture also offer

great scalabi l i ty in te rms o f parallel I / O .

X F S as a who le is separated in to three main projects: First , there is the X F S f i lesystem itself,

in the fo rm o f a dr iver. T h e n a set o f too ls in a package called xfsprogs is t i g h t l y connected

w i t h X F S f i lesystem and conta ins programs useful or necessary for creat ion and man ipu la t ion

o f t he f i lesystem. Among t he too ls inc luded are mkfs.xfs, on wh ich th is thesis is focused, but

also o ther too l s : xf s_io, xf s_growf s, et cetera. A n d f inal ly, there are xfstests, wh ich is a test

suite con ta in ing hundreds o f shell scr ipts used for ver i fy ing the behaviour o f ent i re X F S chain

(f r o m mkfs t o the kernel code) . Th is project is also part ia l ly used by o ther f i lesystems.

In add i t ion t o the xfstests tes t sui te, xfsprogs also uses an a u t o m a t i c s ta t ic analysis f r o m

Cover i ty [] . However, t o see detai led in fo rmat ion and defects there, one must be approved

by ex is t ing members o f t he project .

2.11 XFS Architecture overview

W h e n a X F S par t i t ion is f o r m a t e d , up t o three areas are created on the disk: Da ta sect ion

is always present. A n op t iona l rea l - t ime sect ion is o m i t t e d by defau l t . T h e log sect ion must

always exist, bu t can be placed on a d i f ferent device. T h e data part is then spl i t i n to mu l t ip le de

fac to independent regions called A l l oca t i on Groups, wh ich handle space a l locat ion and al lows

for higher paral le l ism, as most operat ions can be done on each A l l oca t i on Group independent ly

on the others. T h e log sect ion may be internal t o one o f the A l l oca t i on Groups.

*A t least matured ones. Newer fi lesystems, like Btr fs , are also 64bi t , but have not yet reached stabi l i ty required

in business sector.

5/42

CHAPTER 2 XFS FILESYSTEM

Superblock (one sector) x f s _ s b _ t

AG f r e e block i n f o (one sector) x f s _ a g f _ t

AG inode B+tree i n f o Cone sector} x f s _ a g i _ t

AG i n t e r n a l f r e e l i s t (one sec t o r) x f s _ a g f l _ t

Root of inode B+tree {1 block)
(1 block)

Root of f r e e space B+tree (1 block)
B+tree key i s block number

Root of f r e e space B+tree (1 block)
B+tree key i s block count

Free l i s t (4 blocks)

Inodes (64 inodes)

x f s _ i nobt_block_t

jtf s _ b t r e e _ s b l o c k _ t

x f s btree sblock t

x f s dinode t

Remaining space f o r metadata and data

Figure 2 . 1 : P r imary A G immed ia te ly a f ter mkfs [, Ch . 3] .

As each A l l oca t i on Group is a de fac to s tandalone region, each conta ins a superb lock as well as

b lock and inode a l locat ion s t ruc tures, and the on ly global i n fo rmat ion main ta ined by the f i rst

(p r imary) A G is free space and to ta l inode counts across the who le f i lesystem as can be seen

on Figure 2 . 1 .

T h e X F S real - t ime sect ion is dedicated for files w i t h a rea l - t ime a t t r i b u t e bi t set, and operat ions

w i t h these files should have predictable latencies [] . T h e log sect ion is used for me tada ta

j ou rna l i ng , t o recover f r o m s i tuat ions like power fa i lure on the next m o u n t [33, 13].

W h e n created on s t r iped R A I D 2 , X F S can be in formed abou t the under ly ing storage geomet ry

and al ign all a l locat ions and size t o the s t r ipe un i t t o max imize speed.

As a nat ive Unix f i lesystem, X F S uses inodes as a data s t ruc tu re t o save in fo rmat ion a b o u t files

and director ies. T h e f i rs t o f the three parts o f an inode (see Figure 2 .2) , core, conta ins the

basic i n f o r m a t i o n , descr ib ing w h a t the inode represents. Some example o f t he data in th is f ield

is the id o f t he user and g roup o w n i n g th is inode, size and mod i f i ca t ion t i m e .

2 St r iped RAID is e.g. RAID 0, where logically sequential data are spl i t into a number o f physical blocks and

wr i t ten on mul t ip le disks interleaved. For a R A I D 0 on two drives it means t h a t odd blocks are located on one

drive and even blocks on the other.

6/42

CHAPTER 2 XFS FILESYSTEM

xf s_di.no de _ t

di_ _core (96 bytes) x f s_di no d e_co r e _ t

di . _next_ _unlinked (4 bytes)

di_ _u data fork

_a extended attribute fork

Figure 2.2: On-d isk inode [, Ch . 4] .

T h e second part , di_ u , or data fork , is for data for any specif ic t ype the inode can be; a directory,

a symbo l ic l ink, a regular f i le, etc. For a directory, i t wi l l conta in the entr ies in the directory.

A n d the t h i r d m e m b e r o f each inode, di_a, is reserved for extended a t t r i bu tes (abbrev iated

xattr), wh ich are used for example by SELinux .

2.2 mkfs.xfs

Th is shor t chapter describes in a greater detai l t he mkfs.xfs program itself, located in fi le

mkf s/mkf s_xf s . c , f r o m user po in t o f v iew. For i n fo rmat ion abou t its i m p l e m e n t a t i o n , see

Sect ion 3.2. Th is too l creates a new X F S f i lesystem w i t h given propert ies. I t is, as is usual

for core Unix ut i l i t ies, a non- in terac t ive program wh ich accepts mu l t ip le a rguments when called

(the basic synopsis is shown in L is t ing 2.1) and pr ints o u t the propert ies o f t he newly created

f i lesystem i f successful, or pr ints an error and usage help when an error occurs.

L is t ing 2 . 1 : Synopsis o f mkfs.xfs u t i l i t y [12] .

m k f s . x f s [-b b l o c k _ s i z e] [-d d a t a _ s e c t i o n _ o p t i o n s] [- f]
[- i i n o d e _ o p t i o n s] [-1 l o g _ s e c t i o n _ o p t i o n s] [-n n a m i n g _ o p t i o n s]
[-p p r o t o f i l e] [-q] [- r r e a l - t i m e _ s e c t i o n _ o p t i o n s]
[-s s e c t o r _ s i z e] [-L l a b e l] [-N] [-K] d e v i c e

A n example o f such usage is mkfs.xfs -f /dev/sdal. Th is s imple example creates a X F S

f i lesystem on device /dev/sdal even i f a f i lesystem already existed there - thus the -f (as

force) f lag . For the who le descr ip t ion o f mkfs.xfs usage i t is bet ter t o refer t o mkfs.xfs manual

page. W h a t is i m p o r t a n t t o note here is t h a t parsing the inpu t a rguments and c o m p u t i n g inner

values based on these inputs makes most o f t he circa 3 , 5 0 0 s lines o f code.

2.3 xfstests

T h e project named xfstests, or also FSQA, is a f ramework and a col lect ion o f test suites w r i t t e n

in Bash. M o s t o f the tests run some f i lesystem ut i l i t ies and e i ther val idates whe ther some part

o f t he FS ecosystem behaves correct ly, or t r ies t o repl icate a specif ic known issue t o prevent

regressions.

T h e tests are g rouped in to mu l t ip le categories accord ing t o the tested f i lesystem:

3 Before the merge o f the last part o f my changes. W i t h these changes, mkfs has over 4,000 lines.

7/42

http://s_di.no

CHAPTER 2 XFS FILESYSTEM

b t r f s , c i f s , ext4, f2fs, generic, ocfs2, overlay, shared, udf, xfs

A g roup ing o r thogona l t o these categories assigns each test in to one or more groups t h a t al lows

for f iner t u n i n g o f wh ich tests should be r u n 4

These tests do not analyse any program (e i ther its source code, or the compi led b inary) , but

only the results o f runn ing these programs, i.e. pr in ted messages, f i lesystem behaviors, etc.

Because xfstests do not employ any fo rma l techn ique and focus on comple te ly d i f ferent means

o f tes t ing , i t is not compared w i t h o ther too ls in th is work .

4An example o f the groups: mkfs, quick, a l l , dangerous, auto, quota, a t t r , symlink,

8/42

Refactoring of mkfs.xfs

T h e pr imary goal o f t he changes described in th is work is t o rewr i te a complex and chaot ic code

for parsing user inpu t w i t h a tab le t h a t holds values like m i n i m u m / m a x i m u m , defau l t values,

conf l ic ts and others. T h u s , instead o f ad-hoc cond i t ions and opera t ions, there wi l l be j u s t one

global s t ruc tu re , well documen ted and easily readable and extendable. Th is s t ruc tu re should

hold also the user-entered values and l im i t code and variables dup l i ca t ion as much as possible.

D u r i n g deve lopment , we had t o repeatedly solve conf l ic ts w i t h changes f r o m o ther developers

t h a t go t merged in to xfsprogs whi le we were st i l l w o r k i n g on our changes. T h a t led me t o cu t

the work in to mu l t ip le parts. T h a t way, o thers could benef i t f r o m changes t h a t were already

done and we wou ld no t have t o ma in ta in so many patches at any given t i m e . There are t w o

main patchsets wh ich are accompanied by several smal l and enclosed changes t h a t could be

easily s u b m i t t e d independent ly .

T h e n a m i n g convent ion used in th is work is the same as w h a t is in ternal ly used in xfsprogs:

O p t i o n Can be referred as a sect ion. T h e highest- level a rgument o f mkfs, s ta r t i ng w i t h a dash.

E.g. - b or - d . M o s t op t ions have a manda to ry a rgument consis t ing o f subopt ions .

S u b o p t i o n Can be also referred as some sect ion 's o p t i o n . Consists o f one or more i tems in a

f o r m a t name=value separated by a c o m m a , bu t no space. T h e value can be op t iona l ,

e.g. when the subop t ion is a boolean f lag.

Look on the example in the L is t ing 3 . 1 . T h e c o m m a n d has t w o op t ions and t w o subopt ions .

T h e opt ions are - f , wh ich does not have any a rgument and serves as a force f lag , so mkfs does

overwr i te any ex is t ing f i lesystem on the ta rge t device.

T h e second op t i on is - d , wh ich has a rguments for se t t i ng up non-defau l t values for data sect ion.

There are t w o used subopt ions o f th is o p t i o n : f i l e is on ly a f lag , wh ich tel ls mkfs t h a t the

ta rge t device is not a b lock device, bu t a regular f i le (and thus mkfs should not use d i rect 10,

or c o m p u t e blocksize d i f fe ren t ly) , size has its own a rgument and denotes the size o f t he data

sect ion, 10 G B in th is case. Because no th ing else is speci f ied, the size o f o ther sect ions is

c o m p u t e d au tomat ica l l y .

L is t ing 3 . 1 : A n example o f mkfs.xfs invoca t ion ,

m k f s . x f s - f -d f i l e , s i z e = 1 0 G / f o o / b a r

3.11 Development processes
A t f i rs t we wi l l briefly describe the deve lopment processes and too ls used for xfsprogs, wh ich

are simi lar as too ls and processes used for L inux Kernel deve lopment .

M o s t o f t he c o m m u n i c a t i o n is happen ing on a mai l ing l i s t 1 wh i le IRC chat is used for some less

i m p o r t a n t and more day t o day issues. T h e code is hosted in a Gi t repository, bu t on ly selected

mainta iners have a w r i t e access.

s p e c i f i c a l l y l inux-xfs@vger.kernel.org.

9/42

mailto:linux-xfs@vger.kernel.org

CHAPTER 3 REFACTORING OF MKFS.XFS

A n y c o m m i t an au thor wants t o get merged in to the code must be s u b m i t t e d as a patch t o the

mai l ing list. There the patch awaits a review - t h a t is, some o ther developer must check the

changes and append his or her s ignature t o th is pa tch . Once the patch is reviewed and i f there

are no ob ject ions, the main ta iner wi l l merge it in a batch w i t h o ther changes (for xfsprogs, th is

usually occurs a b o u t tw ice a m o n t h) .

However, there are many unwr i t t en rules and cus toms, t h a t are not apparent a t f i rs t and a new

developer f inds a b o u t t h e m usually on ly when she or he breaks such a rule.

A n example o f such an unwr i t t en rule is the exact cod ing style and the use o f a code style

check ing scr ip t checkpatch.pl wh ich or ig inated in Kernel c o m m u n i t y and is part o f L inux

Kernel source. Such rules have the i r place, and helps t o keep a consis tent style t h r o u g h o u t

xfsprogs, bu t the fac t t h a t they are not documen ted causes unnecessary issues and delays.

3.2 Initial codebase

A l m o s t all t he i m p o r t a n t code we were chang ing is located in mkfs/xfs_mkfs.c f i le. T h e code

before the f i rs t patchset was merged can be accessed in the pro ject 's Gi t reposi tory as a version

4.6. Gi t revision hash for th is version is 09033e35. In th is revision, the parsing o f user input

works as fo l lows.

In the main(int argc, char **argv) f unc t i on is a loop using a s tandard getopt f r o m

unistd.h t o de tec t an op t i on like -d for data sect ion or - 1 for log sect ion. For op t ions

t h a t have arguments , a nested loop uses cus tom func t ions t o parse specif ic subopt ions and the i r

values.

As an example, here is the beg inn ing o f a forement ioned loops, as i t is in the code, and some

issues w i t h th is code.

L is t ing 3.2: Par t o f op t ion-pars ing loop f r o m mkfs.xfs w i t h add i t iona l comments .

w h i l e ((c = g e t o p t (a r g c , argv , " b : d : i : 1: L : m : n : KNp : qr : s : Cf V ")) != EOF) {
s w i t c h (c) {
case ' C ' :
case ' f ' :

f o r c e _ o v e r w r i t e = 1;
b r e a k ;

case 'b ' :
p = o p t a r g ;
/*
* This nested loop w i l l parse the argument of -b, which i s
* a l i s t of suboptions separated by a comma, but not space.
*/

w h i l e (*p != '\0') {
char * v a l u e ;

/ *
* The getsubopt () function removes the f i r s t suboption
* from the 'p' variable and returns a number
* representing the s p e c i f i c suboption, while

* saving i t s value (i f any) to 'value'.

*/

s w i t c h (g e t s u b o p t (f t p , (c o n s t p p) b o p t s , ftvalue)) {

/*

10/42

http://checkpatch.pl

CHAPTER 3 REFACTORING OF MKFS.XFS

* an example of how one suboption i s parsed.

*/

case B_LOG:
i f (l v a l u e I I * v a l u e == ' \ 0 ')

r e q v a K ' b ' , b o p t s , B_L0G);
i f (b l f l a g)

r e s p e c ('b ' , b o p t s , B_L0G) ;
i f (b s f l a g)

c o n f l i c t (' b ' , b o p t s , B_SIZE,
B_L0G);

b l o c k l o g = a t o i (v a l u e) ;
i f (b l o c k l o g <= 0)

i l l e g a l (v a l u e , " b u l o g ") ;
b l o c k s i z e = 1 << b l o c k l o g ;
b l f l a g = 1 ;

b r e a k ;

W h i l e the - f op t i on is s imple, in case o f - b l o g = X X 2 we can see how the parsing can get

complex. T h e code tests i f t he value is not e m p t y and if i t is, i t raises an error. T h e n i t tests

whe the r th is specif ic op t i on was already used, because repeated speci f icat ion o f t he same op t ion

is p r o h i b i t e d 3 mkfs.xfs al lows t o specify t he b lock size bo th as an expl ic i t size in bytes or in a

logar i thmic scale, bu t on ly one o f these opt ions can be used a t a t i m e . So the code must also

check if the o ther var iant was used and c o m p u t e bo th values.

Some opt ions have a test d i rec t ly w i t h i n th is ass ignment for con f l i c t i ng op t ions , o thers s imply

set up the value and test t he conf l ic ts later, a f ter t he g e t o p t loop. O t h e r op t ions use bo th o f

these methods , depend ing on w h a t the au thor o f each change considered a bet te r so lu t ion , how

it was required t o achieve a given func t iona l i t y or how th is part o f code was changed over t i m e .

W e can see t h a t most o f t he work happen ing in th is part o f code is rather generic - all op t ions

are checked for respeci f icat ion, whe the r a required value is present, or possibly whe the r the

value is in a cer ta in range o f val id values.

However, none o f these universal tasks is a u t o m a t e d - every single op t i on must re implement

the same tests. Some op t ions have a lmost all logic in i t 's case s ta tement , where i t is a t leas in

one place. B u t op t ions w i t h more complex dependencies and conf l ic ts have on ly part o f the i r

logic there and the rest o f i t is in a sect ion o f code fo l l ow ing the main loop, in ad-hoc tests and

c o m p u t a t i o n s .

T o fu r the r compl i ca te s i t ua t i on , some parts o f mkfs.xfs are more t h a n 20 years o ld and the

cod ing style and the general approach t o specif ic th ings changed since then , bu t the o ld code

did not . If such old code needs a change, there is always a risk t h a t t he ed i t i ng p rogrammer

assumes a d i f ferent behaviour s imi lar t o the one t h a t newer op t ions have, but t h a t assumpt ion

is incorrect .

Also the six variables specif ic for - b l o g are no t exp l ic i t ly t ied toge ther and because a lmost

2 H e r e a n d in o t h e r p l a c e s , t h e b l o c k o p t i o n is used as a n e x a m p l e , b e c a u s e t h i s o p t i o n has o n l y t w o s u b o p t i o n s ,

so i t c a n b e s h o w n in f u l l i f n e e d e d .
3 R e s p e c i f i c a t i o n is f o r b i d d e n f o r t h i s r e a s o n : c o n s i d e r , w h a t h a p p e n s i f a use r uses t h i s c o m b i n a t i o n o f o p t i o n s :

-b s i z e = 4 k - d s i z e = 1 0 0 0 b -b s i z e = 5 1 2 , w h e r e t h e b s u f f i x in a n u m b e r d e n o t e s a b l o c k . A t f i r s t , b l o c k s i z e

is s e t t o o n e v a l u e , a s ize o f d a t a s e c t i o n is c o m p u t e d b a s e d o n t h i s v a l u e a n d t h e n t h e b l o c k s i z e is c h a n g e d .

T h u s , a n y f o l l o w i n g use o f b l o c k s i z e w i l l h a v e a v a l u e d i f f e r e n t t h a n w h a t w a s u s e d f o r t h e f i r s t c o m p u t a t i o n .

T h i s c o u l d b e c o u n t e r e d b y c o m p u t i n g a l l v a l u e s a f t e r a l l o p t i o n s are p a r s e d , y e t i t w o u l d s t i l l b e a m b i g u o u s a n d

m i g h t b e h a v e d i f f e r e n t l y t h a n t h e use r e x p e c t e d . F o r b i d d i n g i t is a c l e a n e r a n d s a f e r a p p r o a c h .

11/42

CHAPTER 3 REFACTORING OF MKFS.XFS

every o p t i o n has a s imi lar mix o f mu l t ip le variables, i t is d i f f i cu l t t o keep all t he i m p o r t a n t ones

in a menta l image o f the code and always use the correct one. M a n y o f these variables are

unnecessary or redun tan t , so in some cases, the values are copied f r o m one t o another and if

a change is pu t i n to a w r o n g place, a specif ic cond i t ion may cause the changed value t o be

ove rwr i t t en later on w i t h the o ld one, etc.

It is easy t o see w h a t could go bad in th is : W h e n chang ing one o p t i o n , i t was possible t o forget

t o change the o ther one. If a test was done af ter g e t o p t , any o ther op t i on t h a t wou ld mod i f y a

v a l u e 4 , wh ich is used for a c o m p u t a t i o n in another o p t i o n , could overwr i te the value and cause

a conf l i c t w i t h o u t a not ice.

A n y new op t i on required a careful reading t h r o u g h the ex is t ing code and possibly the p lacement

new checks in mu l t ip le places. T h u s it was d i f f i cu l t t o know when any value is checked and safe

for use in f u r the r c o m p u t a t i o n s .

H E R E

T h e consequence o f these issues is t h a t mkfs.xfs d id a bad j o b o f va l ida t ing user inpu t f r o m

the c o m m a n d line. Even i f an issue was detected and the specif ic error f ixed, the min ima l code

reuse meant t h a t o ther op t ions could st i l l be susceptible t o the same or s imi lar issue.

3.3 First patchset

As is shown Sect ion 3.2, t he s i tua t ion was no t ideal and the s ta te o f the code led t o many

known issues. Dav id Chinner, then main ta iner o f X F S , presented a set o f patches as an R F C 5

in November 2013 [] in an a t t e m p t t o raise a discussion. However, nobody jo ined him and

David Chinner himsel f did not con t inue in pressing th is m a t t e r for few years. Here is an excerpt

f r om his RFC:

Th is is st i l l a work in progress, bu t is comple te enough t o get feedback on the

general s t ruc tu re . T h e problem being solved here is t h a t mkfs does a ter r ib le j o b o f

input va l ida t ion f r o m the c o m m a n d line, has huge a m o u n t s o f repeated code in the

sub op t ions processing loops and has many, many unnecessary var iable for t r ack ing

s imply th ings like whe the r a parameter was speci f ied.

Th is patchset in t roduces a parameter tab le s t ruc tu re t h a t is used t o define the

parameters and the i r const ra in ts . T h i n g s like m i n i m u m and m a x i m u m val id values,

defau l t values, con f l i c t i ng op t ions , etc are all conta ined w i t h i n the tab le, so all the

„ p o l i c y " is f ound in a single place.

T h e f low on effect o f th is is t h a t we can remove the many, many indiv idual variables

and s tar t passing the op t i on s t ruc tures t o func t ions rather t h a n avo id ing using

func t ions because passing so many variables is messy and nasty. l O W s , i t lays the

g roundwork for f ac to r i ng x fs .mk fs .c in to someth ing more than a bunch o f spaget t i . . .

See - i s i z e = x and - i l o g = y . In the code, both opt ions modi fy the same variables and differs only in

accepted values, s i z e expects a number o f bytes while l o g expects a base two logar i thm value.

'Request for comment - signall ing, t h a t the presented patches are not meant to be merged, but the author

wants t o hear other people's thoughts about these changes.

12/42

CHAPTER 3 REFACTORING OF MKFS.XFS

W h e n we jo ined the X F S team and began w i t h t he re factor ing in 2015 [] , we picked up th is

patchset and brought i t up t o date w i t h t he codebase t h a t in some parts changed substant ia l ly

in t he preceeding t w o years. Once the patches were appl icable for the cur ren t code, we began

f i x ing func t iona l issues and add ing fu r the r changes.

Th is lasted unt i l M a y 2016, when th is patchset was merged in to the upst ream reposi tory [37, 9] .

These changes imp lemented the core parts f r o m the desired s tate. T h e i m p l e m e n t a t i o n o f the

basic tab le made the mkfs_xfs .c f i le more readable, even i f i t was possible t o remove only

basic checks. It also b rought a much more s t r i c t i npu t va l ida t ion , so few o f the ex is t ing tests in

xfstests had t o be updated and a new test was created, w i t h t he goal t o wa tch on ly for input

va l ida t ion , whe the r mkf s .xf s correct ly accepts or refuses any given c o m b i n a t i o n o f op t ions and

values.

Size and c o m m i t s o f th is patchset are described in L is t ing 3.3. I t is 19 patches t h a t are grouped

by the in i t ia l au thor , in th is case Dav id Chinner and Jan T u l á k .

L is t ing 3.3: Gi t s tat is t ics for the f i rs t patchset [] . No te : Gi t a t t r i bu tes changes on ly t o the

f i rs t au thor o f each c o m m i t .

Dave C h i n n e r (1 5) :
x f s p r o g s : use common code f o r m u l t i - d i s k d e t e c t i o n
mkfs: s a n i t i s e f t y p e p a r a m e t e r v a l u e s .
mkfs: S a n i t i s e t h e s u p e r b l o c k f e a t u r e macros
mkfs: v a l i d a t e a l l i n p u t v a l u e s
mkfs: f a c t o r b o o l e a n o p t i o n p a r s i n g
mkfs: v a l i d a t e l o g a r i t h m i c p a r a m e t e r s s a n e l y
mkfs: s t r u c t i f y i n p u t p a r a m e t e r p a s s i n g
mkfs: g e t b o o l i s r e d u n d a n t
mkfs: use getnum_checked f o r a l l r a n g e d p a r a m e t e r s
mkfs: add r e s p e c i f i c a t i o n d e t e c t i o n t o g e n e r i c p a r s i n g
mkfs: t a b l e b a s e d p a r s i n g f o r c o n v e r t e d p a r a m e t e r s
mkfs: merge getnum
mkfs: encode c o n f l i c t s i n t o p a r s i n g t a b l e
mkfs: add s t r i n g o p t i o n s t o g e n e r i c p a r s i n g
mkfs: don't t r e a t f i l e s as though t h e y a r e b l o c k d e v i c e s

Jan T u l a k (4) :
mkfs: move s p i n o d e s c r c check
mkfs: u n i t c o n v e r s i o n s a r e case i n s e n s i t i v e
mkfs: add o p t i o n a l ' r e a s o n ' f o r i l l e g a l _ o p t i o n
mkfs: c o n f l i c t i n g v a l u e s

i n c l u d e / M a k e f i l e I
i n c l u d e / x f s _ m u l t i d i s k . h I
l i b x f s / i n i t . c I
l i b x f s / l i n u x . c I
man/man8/mkfs.xfs.8 I
m k f s / M a k e f i l e I
m k f s / m a x t r r e s . c I
mkf s / p r o t o . c I
m k f s / x f s _ m k f s . c I
m k f s / x f s _ m k f s . h I
r e p a i r / x f s _ r e p a i r . c I
11 f i l e s changed, 1417 i n s e r t i o n s (+) , 901 d e l e t i o n s (-
c r e a t e mode 100644 i n c l u d e / x f s _ m u l t i d i s k . h
d e l e t e mode 100644 m k f s / x f s _ m k f s . h

w i t h d i s a b l e d c r c s h o u l d f a i l

5 +-
73 ++
6 +

11 +-
45 +-
2 +-
2 +-

58 +-
1983 +++++++++++++++++++++++++

89
44 +-

13/42

CHAPTER 3 REFACTORING OF MKFS.XFS

3.3.11 T i m e l i n e a n d p r o g r e s s

• November 2013 - Dave Chinner submi ts his RFC.

• May 2015 - W e are beg inn ing the work on th is patchset .

• June 2015- T h e f i rs t publ ished version. I t conta ins on ly minor changes except upda t i ng

and f i x ing the most serious errors. W e are g e t t i n g the f i rs t feedback.

• March 2016- A n o t h e r version s u b m i t t e d , th is t i m e w i t h more cus tom changes.

• April 2016 - Fur ther big changes. Some patches are reverted t o older versions, whi le a

new patch is added.

• May 2016 - Changes are made on ly in specif ic patches, no new version o f the who le set

is s u b m i t t e d .

• June 2016- T h e patchset is accepted and merged in to the repository.

3.3.21 D e s c r i p t i o n o f i m p o r t a n t c h a n g e s

T h e key part o f th is patchset is the creat ion o f opt_params tab le , shown on L is t ing 3.4. It

is a s t ruc tu re t h a t is holds all t he i m p o r t a n t values for a specif ic op t i on in one place, easily

accessible and consistent across the who le f i le.

L is t ing 3.4: Def in i t ion o f t he table.

s t r u c t opt_params {
c o n s t char name;

c o n s t char *subopts[MAX_SUBOPTS];

s t r u c t subopt_param { i n t i n d e x ;
b o o l seen;
b o o l s t r _ s e e n ;
b o o l c o n v e r t ;
b o o l i s _ p o w e r _ 2 ;
i n t c o n f l i c t s [M A X _ C O N F L I C T S] ;
l o n g l o n g m i n v a l ;
l o n g l o n g maxval;
l o n g l o n g d e f a u l t v a l ;

} subopt_params[MAX_SUBOPTS];
} ;

T h e mean ing o f t he specif ic f ields is th is :

n a m e MANDATORY Name is a single char, e.g., for ' -d f i le ' , name i s ' d ' .

s u b o p t s /W/4/VD/4"TO/?YSubopts is a list o f st r ings n a m i n g subopt ions . In the example above,

it wou ld conta in „ f i l e " . T h e last en t ry o f th is list must be N U L L .

s u b o p t - p a r a m s MANDATORY Th is is a list o f s t ruc ts t ied w i t h subopts . For each en t ry in

subopts , a cor responding en t ry must be def ined.

T h e subopt_param has the fo l l ow ing members . T h e displayed descr ipt ions are part o f t he code:

i n d e x MANDATORY Th is number , s ta r t i ng f r o m zero, denotes wh ich i tem in subopt_params
i t is. T h e index must be the same as is the order in subopts list, so we can access the

r ight i tem bo th in subopt_params and subopts .

14/42

CHAPTER 3 REFACTORING OF MKFS.XFS

seen INTERNAL Do not set th is f lag when def in ing a subopt. I t is used t o remember t h a t

th is subopt was already seen, for example for conf l ic ts de tec t ion .

s t r_seen INTERNAL Do not set. It is used in ternal ly for respeci f icat ion, when some opt ions

must be parsed tw ice - a t f i rs t as a s t r ing , then later as a number .

c o n v e r t OPTIONAL A f lag s ignal l ing whe ther t he user-given value can use suff ixes. I f you

w a n t t o al low the use o f user-fr iendly values like 13k, 42G, set i t t o t rue .

is_power_2 OPTIONAL A n opt iona l f lag for subopts where the given value must be a power

o f two .

c o n f l i c t s MANDATORY I f your subop t is in a conf l i c t w i t h some o ther o p t i o n , specify i t .

Accepts the . index values o f the con f l i c t ing subopts and the last member o f th is list must

be LAST.CONFLICT.

m i n v a l , m a x v a l OPTIONAL These opt ions are used for a u t o m a t i c range check ing and they

have t o be always used toge ther in a pair. I f you do not w a n t t o l imi t t he max value,

use s o m e t h i n g like UINT_MAX. If no value is g iven, then you must e i ther supply your own

va l ida t ion , or refuse any value in the 'case X_SOMETHING' b lock. I f you forget t o define

the min and max value, bu t call a s tandard func t i on for va l i da t ing user's value, i t wi l l

cause an error message no t i f y ing you a b o u t th is issue.

(Said in another way, you can not have minval and maxval bo th equal t o zero. B u t if

one value is d i f ferent : minval=0 and maxval=l, then i t is O K .)

d e f a u l t v a l MANDATORY T h e value used i f user specifies t he subop t , bu t no value. If the

subop t accepts some values (- d f i l e = [1 1 0]) , then th is sets w h a t is used w i t h simple

speci fy ing the subop t (-d f i le) . A special SUBOPT_NEEDS_VAL can be used t o require a

user-given value in any case.

It was later revealed t h a t t he name o f th is f ield is confus ing and can be mistaken for a

defau l t value in the sense o f „user d id no t specify a n y t h i n g . " As th is led t o an incorrect

con f igura t ion for an op t i on (a lbe i t semi- in terna l one, used on ly by developers for tes t ing

purposes), we proposed a name change t o f lagval. Th is change is a part o f the next

set.

opt.params is ins tan t ia ted for every op t i on category, e.g. L is t ing 3.5 shows ins tan t ia t ion for

-b.

Lis t ing 3.5: Ins tan t ia t ion o f the tab le for block op t ions .

s t r u c t opt_params b o p t s = {
.name = 'b',
.subopt s = {

d e f i n e B_L0G 0

" l o g " ,
d e f i n e B_SIZE 1

" s i z e " ,
NULL

} ,
.subopt_params = {

{ . i n d e x = B_L0G,
. c o n f l i c t s = { B_SIZE ,

LAST_C0NFLICT },
.m i n v a l = XFS_MIN_BL0CKSIZE_L0G,

15/42

CHAPTER 3 REFACTORING OF MKFS.XFS

.maxval = XFS_MAX_BLOCKSIZE_LOG,

. d e f a u l t v a l = SUBOPT_NEEDS_VAL,
} ,

•C . i n d e x = B_SIZE ,
. c o n v e r t = t r u e ,
.is_power_2 = t r u e ,
. c o n f l i c t s = { B_L0G ,

LAST_CONFLICT },
. m i n v a l = XFS_MIN_BLOCKSIZE ,
.maxval = XFS_MAX_BLOCKSIZE,
. d e f a u l t v a l = SUBOPT_NEEDS_VAL,

} ,
},

} ;

W i t h th is s t ruc tu re , many func t ions had t o be comple te ly rewr i t ten or added, bu t the result was

t h a t t he op t i on parsing loop could be great ly s impl i f ied . For compar ison, here is the nested loop

f rom 3.2 code example a f ter th is patchset was appl ied. You can see t h a t t he sect ion for B_L0G

is now much cleaner (no branch ing, on ly few assignments) and the generic logic was moved

away in to a func t i on shared w i t h o ther op t ions as can be seen in L is t ing 3.6.

L is t ing 3.6: Part o f op t ion-pars ing loop f r o m mkfs.xfs af ter the f i rs t patch set.

case 'b':
p = o p t a r g ;
w h i l e O p != '\0') {

char * * s u b o p t s = (c h a r * *) b o p t s . s u b o p t s ;
char * v a l u e ;

s w i t c h (g e t s u b o p t (f t p , (c o n s t p p) s u b o p t s ,
fcvalue)) {

case B_L0G:
b l o c k l o g = g e t n u m (v a l u e , ftbopts, B_L0G) ;
b l o c k s i z e = 1 << b l o c k l o g ;
b l f l a g = 1;
b r e a k ;

A n o t h e r i m p o r t a n t issue f ixed in th is set was the behaviour di f ference when mkfs.xfs is run t o

create a f i lesystem on a b lock device vs. in a f i le on another f i lesystem.

T h e issue was t h a t i f t he ta rge t was a f i le, bu t - d f i l e is not speci f ied, mkfs behaved as if

t he ta rge t is a block device. T h a t meant , however, t h a t i f t he under ly ing b lock device had e.g.

sector size 5 1 2 B , on wh ich a f i lesystem w i t h sector size 4 k B existed, t hen , when c reat ing a new

f i lesystem in a f i le, mkfs used the (incor rec t) 5 1 2 B size o f t he physical device and ignored the

value used in the in te rmed ia te layers.

Th is was mi t iga ted by a u t o m a t i c detec t ion o f whe the r the ta rge t is a regular f i le or a block

device, and by chang ing the f low o f t he program on various places where the dif ference between

file and device was i m p o r t a n t .

However, there were st i l l many issues t h a t were not addressed. T h e con f l i c t i ng op t ions were on ly

enumera ted , w i t h o u t any add i t iona l i n fo rma t ion , and thus the f ield was usable on ly for always

con f l i c t i ng op t ions , like - b l o g I s i z e - it did not help w i t h cond i t iona l conf l ic ts . For example,

checksums for me tada ta , enabled w i t h -m crc, works on ly on newer version o f metada ta f o r m a t :

-m crc - i a t t r = l is con f l i c t ing , bu t - i attr = 2 is not . Such tests st i l l had t o be done as

before. A lso , i t was possible t o specify conf l ic ts on ly between subopt ions o f a single o p t i o n .

16/42

CHAPTER 3 REFACTORING OF MKFS.XFS

3.4 Second patchset

Once th is change was merged and provided a stable po in t so we did not have t o keep so much

code in our own local reposi tory up t o date w i t h ups t ream, we began t o work on the second set

o f changes. W e s u b m i t t e d an RFC o f these changes in December 2016 [] . Such a big and

complex change is someth ing t h a t most o f the developers postpone, so i t is usually reviewed

only by the main ta iner when nobody else star ts i t . In th is case, however, t he main ta iner changed

in late December - Eric Sandeen t o o k th is posi t ion instead o f Dav id Chinner.

Size o f th is patchset in the f i rs t RFC is 22 patches and the patches can be seen in L is t ing 3.7.

L is t ing 3.7: Gi t s tat is t ics for the second patchset [38] .

Jan T u l a k (2 2) :
mkfs: remove i n t e r m e d i a t e g e t s t r f o l l o w e d by getnum
mkfs: merge t a b l e s f o r o p t s p a r s i n g i n t o one t a b l e
mkfs: e x t e n d opt_params w i t h a v a l u e f i e l d
mkfs: change c o n f l i c t s a r r a y i n t o a t a b l e c a p a b l e of c r o s s - o p t i o n

a d d r e s s i n g
mkfs: add a check f o r c o n f l i c t i n g v a l u e s
mkfs: add c r o s s - s e c t i o n c o n f l i c t c h e cks
mkfs: Move op t s r e l a t e d #define to one place
mkfs: move c o n f l i c t s i n t o t h e t a b l e
mkfs: change c o n f l i c t c h e cks t o u t i l i z e t h e new c o n f l i c t s t r u c t u r e
mkfs: change when t o mark an o p t i o n as seen
mkfs: add t e s t _ d e f a u l t _ v a l u e i n t o c o n f l i c t s t r u c t
mkfs: expand c o n f l i c t s d e c l a r a t i o n s t o named d e c l a r a t i o n
mkfs: remove z e r o e d items from c o n f l i c t s d e c l a r a t i o n
mkfs: rename d e f a u l t v a l t o f l a g v a l i n o p t s
mkfs: r e p l a c e SUBOPT_NEEDS_VAL f o r a f l a g
mkfs: Change a l l v a l u e f i e l d s i n opt s t r u c t u r e s i n t o u n i o n s
mkfs: use o l d v a r i a b l e s as p o i n t e r s t o the new opt s s t r u c t v a l u e s
mkfs: p r e v e n t s e c t o r / b l o c k s i z e t o be s p e c i f i e d as a number of b l o c k s
mkfs: subopt f l a g s s h o u l d be saved as b o o l
mkfs: move u u i d empty s t r i n g t e s t t o g e t s t r ()
mkfs: remove d u p l i c i t c h e cks
mkfs: p r e v e n t m u l t i p l e s p e c i f i c a t i o n s of a s i n g l e o p t i o n

m k f s / x f s _ m k f s . c I 2952 +++++++++++++++++++++++++++++++++++
1 f i l e changed, 1864 i n s e r t i o n s (+) , 1088 d e l e t i o n s (-)

Together , these t w o issues caused t h a t despite our urg ing, there was not much react ion unt i l

M a r c h . In March we s u b m i t t e d another version, th is t i m e in ten t iona l ly not as an RFC. W e also

ment ioned t o few people t h a t th is is part o f our thesis.

T h e review o f the second set revealed many d isputab le po ints and i t become cer ta in t h a t these

patches wi l l need fu r the r changes. T h e second part o f ou r changes is focused most ly on conf l ic t

de tec t ion and al lows for a lmost all checks t o be removed f r o m the code as ad-hoc so lut ions, as

the new s t ruc tures and func t ions take care o f t h e m automat ica l ly . A n y p rogrammer m a k i n g a

change on ly must correct ly specify values in a struct opt_params, w r i t e in a list o f con f l i c t ing

opt ions, and the va l ida t ion o f the new op t i on is guaranteed t o work correct ly and seamlessly.

To make the process faster, we decided t o spl i t th is patchset in to mu l t ip le smal ler ones, wh ich

can get f ixed, reviewed and merged faster. T h e f i rs t g roup focused on ex tend ing the op t ions

tab le not on ly for encod ing va l id i ty range and basic conf l ic ts , but also for user input .

M o s t notable changes are func t ions parse I get I set_conf _val - a set o f func t ions t o ma-

17/42

CHAPTER 3 REFACTORING OF MKFS.XFS

nipu la te the user i npu t values. Th is is a key dif ference f r o m the RFC. There the values were

man ipu la ted as pointers t o the tab le , bu t o ther developers raised ob jec t ions. M o s t no tab ly Dave

Chinner, w h o rebut ted ou r worr ies a b o u t t he use o f setters and get ters in a reply t o our e-mai l

where we suggested t h e m as another o p t i o n [4 1 , 6]

Compare code examples 3.8 and 3.9. T h e f i rs t example w i t h aliases keeps a lot o f seemingly

unconnected variables in the code where the p rogrammer does not know where exact ly the

po in ter leads t o . A n d even i f he f inds the f i rs t ass ignment , i t is possible t o mistakenly overr ide

the ta rge t address. In the second example, w i t h setters and get ters , i t is apparent at f i rst

glance, where the value is t o be w r i t t e n or read. A n d it is impossible t o mistakenly al ter the

ta rge t address. T h e d isadvantage o f using setters is t h a t i t is no longer possible t o do in-si tu

i nc rements /dec rements (e .g. i + + ;) , however th is is on ly a minor issue.

L is t ing 3.8: Pointer aliases in RFC o f the second set.

l o n g l o n g * a g c o u n t = & op t s [0PT_D]. subopt_params [D_AGC0UNT].value;

// ... l i n e s skipped
* a g c o u n t = f o o (b a r) ;

// ... l i n e s skipped
i f O a g c o u n t < S0ME_C0NSTANT)

// do something

Lis t ing 3.9: Setters and get ters in later version o f t he second set.

s e t . c o n f _ v a l (0 P T _ D , D_AGC0UNT, f o o (b a r)) ;

// ... l i n e s skipped

i f (g e t _ c o n f _ v a l (0 P T _ D , D_AGCOUNT) < S0ME_C0NSTANT)
// do something

Fur thermore , th is approach al lows for a ver i f icat ion o f all values saved in to the tab le for the

who le run o f t he p rogram. However, a f ter a t t e m p t i n g t o imp lemen t th is feature , we found

ou t th is is not possible t o add at th is m o m e n t . W h i l e we know val id bounds for user input

values, some o f these values are then recomputed and can get o u t o f these bounds, whi le st i l l

being va l id . A n example o f th is is L J 3 U N I T 6 , wh ich is specif ied as a number o f 512-by te blocks.

However, i t is later mul t ip l ied by the 512, at wh ich m o m e n t i t can get o u t o f t he val id bounds

specif ied for input .

T h e proposed bu t not yet imp lemented so lu t ion is t o ut i l ize the ex is t ing in f ras t ruc tu re and create

a new pseudo op t i on for the tab le , wh ich wou ld not be visible t o the end user, bu t wou ld hold

all t he internal variables for wh ich the bound range (or any o ther cond i t i on , like be ing power

o f 2) can be appl ied. Th is t op i c was briefly discussed in replies t o one o f the patches in th is

set [28], because one o f the o ther developers, Luis R. Rodr iguez, has a work in progress t h a t

requires such in f ras t ruc tu re t o be imp lemen ted .

Because even th is smal ler set was not fu l ly accepted by the end o f A p r i l , and addressing the

issues o ther developers raised required t o o much t i m e , we fu r the r focused on the next part o f

th is work and did not use the second patchset in fo rma l analysis.

Size o f t he smal ler set can be seen in L is t ing 3.10.

6L_SUNIT specifies the alignment of log writes.

18/42

CHAPTER 3 REFACTORING OF MKFS.XFS

Lis t ing 3.10: Gi t s tat is t ics for the f i rs t par t o f the second set a f ter its breaking in to smaller

parts [40].
Jan T u l a k (12) :

mkfs: Save raw u s e r i n p u t f i e l d t o the opt s s t r u c t
mkfs: rename d e f a u l t v a l t o f l a g v a l i n o p t s
mkfs: remove i n t e r m e d i a t e g e t s t r f o l l o w e d by getnum
mkfs: merge t a b l e s f o r o p t s p a r s i n g i n t o one t a b l e
mkfs: e x t e n d opt_params w i t h a v a l u e f i e l d
mkfs: c r e a t e g e t / s e t f u n c t i o n s f o r o p t s t a b l e
mkfs: save u s e r i n p u t v a l u e s i n t o o p t s
mkfs: r e p l a c e v a r i a b l e s w i t h o p t s t a b l e : -b, d, s o p t i o n s
mkfs: r e p l a c e v a r i a b l e s w i t h o p t s t a b l e : - i o p t i o n s
mkfs: r e p l a c e v a r i a b l e s w i t h o p t s t a b l e : -1 o p t i o n s
mkfs: r e p l a c e v a r i a b l e s w i t h o p t s t a b l e : -n o p t i o n s
mkfs: r e p l a c e v a r i a b l e s w i t h o p t s t a b l e : - r o p t i o n s

mkf s / x f s _ m k f s . c I 2457 ++++++++++++++++++++++++++++++++
1 f i l e changed, 1420 i n s e r t i o n s (+) , 1037 d e l e t i o n s (-)

3.4.11 T i m e l i n e a n d p r o g r e s s

• June 2016- T h e f i rs t patchset is accepted and merged in to the repository, beg inn ing o f

the work on the second set.

• August 2016 - First d ra f t o f changes o f the second set [39] .

• December 2016 - RFC o f the ful l second set. T h i s gained j u s t a l i t t le a t t e n t i o n .

• March 2017 - Second set w i t h o u t the RFC. Th is version a t t rac ted enough a t t e n t i o n t o

be useful, and provided valuable feedback.

• March 2017- V a u l t conference in Bos ton . W e met some o ther developers personal ly and

debated some o f the changes. Th is helped t o raise some a t t e n t i o n towards our patches.

• April 2017 - resubmi t t i ng on ly part o f the second set w i t h requested changes and setter

s /ge t te rs as an add i t i on . Th is generated a lot o f feedback.

3.51 Summary
Part o f the changes was successfully merged in to t he project in t i m e . However, some o ther

patches gained the necessary a t t e n t i o n t o o late and all t he found issues could not be f ixed or

changed before the deadl ine for th is work . These changes wi l l get merged eventual ly.

T h e di f f icul t ies were analysed in an a t t e m p t t o avoid these delays in the fu tu re . O u r hypothesis

is t h a t t he set as a who le was t o o b ig and complex, an effect wh ich was mul t ip l ied by un in ten

t iona l l y not adher ing t o unwr i t t en standards. A proposed process change for f u r the r i terat ions

is t o send few smal ler patches more o f ten and w a i t w i t h o ther changes depend ing on those

s u b m i t t e d unt i l they are accepted.

T h e higher ac t i v i t y on the last patchset , wh ich was j u s t a subset o f the second big set, seems

t o con f i rm th is hypothesis, however, more i tera t ions are needed.

19/42

Formal Analysis and Verification

As the role o f compute rs in human society is g r o w i n g in ever faster pace, the consequences o f

any error are g r o w i n g t o o . Consider, for example, the speed w i t h wh ich smar tphones seized

our pockets. T h e y cer ta in ly br ing many benefi ts, bu t as we become dependent on the smar t -

phones, any ma l func t ion or error in t h e m can affect our life. From not hav ing access t o an

i m p o r t a n t i n fo rmat ion t o a d i rect danger, such as in the case o f motor is ts s t randed by the i r

mobi le nav igat ion in the midd le o f t he wi lderness [24] .

O r consider the recent advances in the area o f a u t o n o m o u s vehicles. W h e r e an error in smar t -

phones can on ly deprive us o f i n f o r m a t i o n , an error in a se l f -dr iv ing car can cause i t t o swerve

in to a wal l w i t h dire consequences for the passengers.

C o m m o n tes t ing techniques, despite advances in th is f ie ld, are st i l l most ly react ive and can

detec t on ly known errors, for wh ich a test was w r i t t e n , and can not provide a guarantee o f

correctness. T h a t is, they can tel l t h a t „ n o n e o f these specif ied errors happened , " bu t can not

te l l whe ther the system is really free o f errors w i t h respect t o a spec i f ica t ion.

Formal methods , w i t h roots in ma themat i ca l areas like theorem prov ing, on the o ther side

f requent ly have the power t o ver i fy correctness. B u t unlike the c o m m o n tes t ing techniques, and

despite an interest in the industry, they are no t yet w ide ly used. A notable except ion t o th is is

static analysis, w h i c h , in some o f its weaker fo rms, is becoming a part o f in tegra ted deve lopment

env i ronments (I D E) like X c o d e or Eclipse [] .

One reason for the smal l adop t ion o f fo rma l methods is the i r complex i ty . T h e y e i ther require

advanced user knowledge, like human-dr iven deduct ions in theorem proving, require excessive

mode l l ing o f t he env i ronment for the system like model checking, or are s imply unable t o cope

w i t h the size o f t he code and the size o f its s ta te space.

By the t e r m formal analysis, we describe methods for answer ing quest ions o ther t h a n whe ther

the tested system is free o f errors w i t h respect t o some spec i f ica t ion. T h a t is, i t includes

quest ions like whe ther the program is guaranteed t o always t e r m i n a t e i f a buffer size is bound

and so o n .

Formal verification then denotes methods capable o f prov ing t h a t the given system is error free

w i t h respect t o a correctness spec i f ica t ion. Completeness of a m e t h o d is a proper ty guarantee ing

t h a t it wi l l not raise a false a la rm, whi le i f a m e t h o d t h a t is sound t e rmina tes and tel ls t h a t

there are no errors, t he system is indeed correct .

In the fo l l ow ing parts o f th is work , we wi l l f i rs t discuss some o f the fo rma l techniques (the rest o f

th is chap te r) and then also the i r usefulness on a real, p roduc t ion codebase in the chapter Used

Techniques and procedures. W e wi l l look not on ly at the i r result, bu t also a t t he cost o f using

t h e m , bo th in t i m e and expert ise necessary for the i r correct use.

4.11 Static Analysis
A ra ther broad, bu t c o m m o n l y used def in i t ion o f static analysis is t h a t i t is an analysis t h a t

col lects some in fo rmat ion a b o u t the behaviour o f a system w i t h o u t ac tua l ly execut ing i t under

20/42

CHAPTER 4 FORMAL ANALYSIS AND VERIFICATION

its or iginal semant ics [, Chap. 2.2] . I t can manage very large systems in a reasonable t i m e and

is highly a u t o m a t e d , bu t can suffer false posit ives and is general ly weaker t h a n o ther methods

(i t is d i f f i cu l t t o express some problems for static analysis). Th is category includes methods :

Abstract interpretation, in wh ich an abs t rac t overrepresentat ion o f t he s ta tements o f t he pro

gram is evaluated in an abs t rac t machine for all possible inputs a t once and we exchange

completeness for speed or even the possibi l i ty t o analyse the system.

Data flow analysis t racks how a given set o f propert ies propagates t h r o u g h the program w i t h o u t

d i rec t ly execut ing i t .

Error patterns then denote the most c o m m o n m e t h o d used in var ious l igh twe ight imp lemen ta

t ions already present in var ious IDEs, in L in t and Cppcheck sof tware, and others. As the name

i tself explains, these methods a t t e m p t t o detec t c o m m o n l y occu r r i ng pat terns t h a t p rogrammers

make, bu t wh ich lead t o an error. A s imple example may be a missing break s ta tement , or

missing boundary checks before accessing an array.

Let us now look more in detai l a t each o f these methods and at the i r imp lementa t ions , bu t bear

in mind t h a t in many cases, t he too ls we wi l l see are no t clearly d ist inguished and can be placed

in to more t h a n one category. T h u s , t he too ls are categorised accord ing t o the most i m p o r t a n t

principles in the i r i m p l e m e n t a t i o n .

4 . 1 . 1 E r r o r p a t t e r n s

Tools using i t : L in t [] (and i t 's fo l lowers) , c p p c h e c k 1

Error patterns de tec t ion is a rather w ide array o f d i f ferent techniques and methods w i t h a

c o m m o n goal : To detect more or less f requent types o f errors. T h e great advantage o f th is

class o f methods is t h a t they usually does not require any deeper knowledge, are fu l ly a u t o m a t e d

and can be very fast . T h e i r d isadvantages are t h a t they are l im i ted t o a very specif ic k ind o f

e r ro rs 2 and suffer f r o m false posit ives.

A n example o f t he approaches used in th is class o f s ta t ic analysis is a de tec t ion o f m a t c h i n g

pairs o f func t ions . For example, any open() call should be later fo l lowed w i t h one close()
in every possible pa th . O r a s ta te machine can be used t o detec t missing de l imi te r between

s ta tements or a missing break in a switch [18] .

4 . 1 . 1 . 1 L i n t

Lin t was or ig inal ly created in the 70's for the early C language [, Chap. 2.2] and since t h e n ,

mu l t ip le new too ls for var ious languages were inspired by i t : sp l in t , cpp l in t , JSL in t , Py l in t , etc.

It searches for pat terns t h a t are likely t o be bugs, t o be non-por tab le , or t o be wastefu l [26] .

M a n y o f t he fo l lower imp lementa t ions are open-source.

4.1 .1 .2 C p p C h e c k

1 W e are not sure about this and did not found it ci ted anywhere, but f rom its code, it looks like they search

for error patterns.
2 Basical ly, every error pat tern needs its own f i l ter and only some kinds o f error patterns are generic enough

to be shipped w i th in the too l . Consider a support for usage o f a library. I t makes sense to watch for patterns

in usage o f s t d l i b . h , but how it should know patterns in a custom library? A n d even if the specific l ibrary

is publicly available, including everyth ing is impossible. Many tools allow for providing o f custom def ini t ions of

these patterns, but f rom a personal experience, they are rarely used.

21/42

CHAPTER 4 FORMAL ANALYSIS AND VERIFICATION

A n open-source t o o l for C / C + + languages. It can on ly a very s imple control flow analysis,

where it expects t h a t all s ta tements can be always e i ther t r ue or false and thus all s ta tements

should be always reachable [19] .

4 . 1 . 2 | D a t a f l o w a n a l y s i s

Tools using i t : Cover i ty [17] , CodeSonar [17] , T r u e P a t h [] , F indBugs [17]

These methods , in industr ia l too ls f requent ly combined w i t h error patterns, t r ack how so-called

data flow facts propagate w i t h i n a control flow graph between its nodes. These nodes represent

basic blocks in the or ig inal code, each b lock having on ly one en t ry po in t and one exi t p o i n t 3 ,

wh ich simpl i f ies the analysis.

T h e analysis can be ei ther forward, where the s ta te a t the exi t o f one basic b lock is used as the

inpu t o f t he fo l l ow ing b lock and wh ich s tar ts a t t he beginn ing o f t he p rogram. O r backwards

analysis, where the a lgor i thm star ts in an end s ta te and a t t e m p t s t o f ind a path t o a s tar t

s tate. Th is second approach can be useful t o de te rmine whe ther a part icular end conf igura t ion

is reachable.

4 .1 . 2 . 1 C o v e r i t y

A propr ietary too l (and c o m p a n y) prov id ing a free service for open-source projects (http:
//scan.coverity.com). Uses restr ic ted fo rma l ver i f i ca t ion , bu t g e t t i n g t o specif ic detai ls is

hard or impossible. Suppor ts languages Java, C / C + + , C # , JavaScr ip t , Ruby, and P y t h o n .

4.1 .2.2 F i n d B u g s

FindBugs is an open-source code analyser for Java language w i t h plugins for many Java IDEs.

A b s t r a c t i n t e r p r e t a t i o n

Tools using i t : Ast ree [23, 17] , PolySpace [17]

Abstract interpretation shares a b lur ry border w i t h model checking and i t may be d i f f i cu l t t o

de termine where a specif ic m e t h o d is. T h e basic way in wh ich abst rac t in te rpre ta t ion works is t o

run a symbo l ic execut ion o f t he program. O n every s ta tement , i t t rans fo rms specif ic values in to

an abs t rac t con tex t and widen (over -approx imate) or narrow t o refine the result a f ter w iden ing .

T h e w iden ing and nar rowing is usually imp lemented by using a pair o f m o n o t o n e func t ions :

Abstraction denoted a and concretization denoted 7 fo rms a Galois connec t ion .

These methods can be sound, bu t not every abst rac t in te rp re ta t ion is, as they can range f r o m

a s imple syntax analyser t o ful l model check ing.

4 . 1 . 3 . 1 A s t r e e

A too l for analys ing appl icat ions w r i t t e n in C language. It is a propr ietary too l used for safety-

cr i t ica l appl icat ions, for example by A i r b u s [17] . I t provides a sound s ta t ic analysis. False

posit ives are considered a reasonable price for the soundness [23] .

3 O n e entry point means t h a t in no case can any instruct ion inside o f the block other than the f i rst one be a

target o f a j u m p . One exit po int means t h a t if there is a branching, only the last instruct ion o f a block can cause

it and j u m p to mul t ip le di f ferent target instruct ions.

22/42

CHAPTER 4 FORMAL ANALYSIS AND VERIFICATION

4 . 1 . 3 . 2 P o l y S p a c e

A propr ietary t o o l for C, C + + , and Ada languages.

Model Checking

Tools using i t : RuleBase [] , Incisive Ver i f ier [] , Magel lan [7] , JasperGold Formal Prop

er ty Ver i f i ca t ion A p p [17], Questa Formal Ver i f i ca t ion [] ,CPAchecker [] , Wo lver ine [17] ,

C B M C [17] , L L B M C [17]

Model checking is an a lgor i thmic means o f check ing whe the r the given system is correct w i t h

regards t o any given proper ty t h r o u g h sys temat ic exp lor ing o f the s ta te space o f th is sys tem.

T h e propert ies are usually specif ied in some tempora l logic like L T L , C T L , C T L * or / / -ca lcu lus.

T h e advantages o f model checking are t h a t it can be fu l ly a u t o m a t e d , is ra ther universal, does

not require a deep knowledge for usage and i f i t f inds an error, i t can generate a path leading

t o the case, wh ich is useful for repairs.

However, it also has t w o big d isadvantages. It requires a model o f t he env i ronmen t for the

system and suffers state space explosion. T h e number o f reachable space grows exponent ia l ly -

consider a 32b i t var iable, wh ich has 2 3 2 possible values, wh ich equals states. T h a t means t h a t

n o f such variables equals 2 3 2 x n states. T h e result is t h a t any a t t e m p t in a pract ical use o f

model checking has t o cope w i t h th is s ta te space explosion.

eat

think think

think

think think

T h e methods used for th is include symme

try reduction in cases where i t is no t impor

t a n t wh ich specif ic en t i t y (i f there are more

ent i t ies o f t he same type in a specif ic s ta te) .

See Figure 4 .1 for an example o f s y m m e t r y

in the well known d in ing phi losophers prob

lem.

O t h e r so lut ions can be t o use on ly one

o f many possible paths for the order ing o f

concur ren t act ions t h a t are independent o f Figure 4 . 1 : Symmet r ies and the d in ing phi loso-

each o ther and compress the size o f states phers [17] .

by using pointers t o the previous s ta te for

values t h a t did not change. Or the too l

can evaluate the propert ies a t t he same t i m e when a new s ta te is generated, and s top i m m e d i

ate ly once i t is clear t h a t th is prefix cannot be accepted by the a u t o m a t a deno t ing correctness

speci f icat ion.

4 . 2 . 0 . 1 C P A C h e c k e r

A n open-source too l and a f ramework for an analysis o f programs in C language. It is based

on the idea o f configurable program analysis [] , wh ich uses user con f igu ra t ion t o per form a

reachabi l i ty analysis.

Theorem Proving

Tools using i t : V C C [] , E S C / J a v a 2 [17] , V S 3 [17]

23/42

CHAPTER 4 FORMAL ANALYSIS AND VERIFICATION

Theorem proving'is s imi lar t o ma themat i ca l deduc t ion , where we get a p roo f f r o m an in i t ia l set o f

ax ioms. It also shares advantages and disadvantages w i t h its purely ma themat i ca l coun te rpar t .

On the one side, i t is really universal, bu t on the o ther side, i t can not provide a counterexample

(a path t o an er ror) , bu t j u s t says yes /no , and is on ly semiau tomat i c . T h e too ls can correct ly

apply inference rules, bu t the i r choice is up t o the user. T h u s , an insuf f ic ient ly ski l led user may

not be able t o prove t h a t the system is correct even if there are no errors in the system.

24/42

Used Techniques and procedures

In th is chapter , we discuss wh ich techniques and models o f fo rma l analysis and ver i f icat ion are

useful for the code o f mkfs.xfs. Let us a t f i rs t define i m p o r t a n t const ra in ts t h a t are l im i t i ng

or d i rec t ing our choice.

W e are analysing a s ingle- threaded app l i ca t ion . Th is great ly reduces the s ta te space and means

t h a t we also can use methods t h a t do not a l low for concurrency. O n the o ther side, given t h a t

the program accepts user inpu t , some variables have an in f in i te number o f po ten t ia l values and

any m e t h o d based on s ta te space checks must cope w i t h th is fac t .

A compar ison t h a t could be in terest ing for f u r the r research is t o exper iment w i t h too ls t h a t

use neural networks and deep learning as an integral par t o f the i r a lgor i thms i f such too ls exist.

Examples o f t he use o f those technologies are a heurist ic t o dr ive the select ion o f inference

rules in theorem prov ing, or s p o t t i n g error pat terns 1 However, these approaches are even

more complex and exper imenta l t han the t rad i t i ona l approaches and wou ld probably deserve a

s tandalone work on the i r o w n .

List o f too ls t h a t were used in th is work (in no par t icu lar o rder) : Coveri ty, CppCheck and the

analysis in GCC and Clang compi lers.

5.11 Testing Environment
T h e too ls were run in a Docker c o n t a i n e r 2 based on Fedora L inux 25. T h e use o f conta iners

ensures a clean and ident ical env i ronmen t for every too l and every run . Image w i t h the compi lers

and CppCheck are publ ished in Docker Hub and all t he recipes t o bui ld and use t h e m are provided

w i t h th is work . Image w i t h Cover i ty could not be publ ished because i t conta ins conf ident ia l

i n f o r m a t i o n 3 .

Every image has its own s ta r t i ng scr ip t for easier man ipu la t ion - run.sh. T h i s scr ip t creates a

conta iner f r o m the image and moun ts the d i rec tory w i t h xfsprogs (or any o ther d i rectory wh ich

is passed t o i t) . T h e n , i f necessary, i t can pass few op t ions t o the scr ip t s tar ted in the conta iner .

run-test, sh is t he scr ip t s tar ted by Docker af ter c reat ing the conta iner . Th is scr ip t copies

xfsprogs f r o m the m o u n t e d d i rec tory t o another one, so i t does no t change the or ig inal reposi tory

in any way. In th is copied d i rec tory the scr ip t then star ts whatever too l i t is prepared for.

Users can, i f they wish t o do so, enter an in teract ive shell in the conta iner instead o f s ta r t i ng

the t o o l . A lso, it is possible t o skip the copy ing or t o run make clean. For an a u t o m a t e d run

described in Sect ion 5.2, nei ther o f th is is necessary, bu t these opt ions are useful for manual

exper iments .

'Some a t tempts in model l ing a code are hinted in On the Naturalness of Software by Ab ram Hindle: http:
//dl.acm.org/citation.cfm?id=2902362.

2 S i m p l y stated, a container is an image t h a t has been star ted, similar t o the difference between a running v i r tual

machine and its on-disk v i r tual H D D image. Unlike v i r tual izat ion, containers are only processes isolated f rom the

rest o f the system using kernel capabil i t ies, like cgroups and chroot. Docker is a specific implementat ion [15] of

containers.
3 J a n Tu lák had an access to Red Hat Coveri ty license server as a Red Hat employee. However, the server

in format ion and some tools Red Hat provided w i th Coverity are considered conf ident ia l .

25/42

CHAPTER 5 USED TECHNIQUES AND PROCEDURES

Coveri ty, GCC and Clang are run using csbuild, a too l t o p lug s ta t ic analyzers in to the bui ld

process [] . Because csbui ld a t t e m p t s t o use all suppor ted analyzers i t f inds, t he images for

each too l we are tes t ing are modi f ied t o con ta in on ly the single specif ic t oo l we need, bu t no

other .

5.1.11 C p p C h e c k

Docker image: jtulak/cppcheck [35]

CppCheck is also used in Codacy, an a u t o m a t e d code review app l ica t ion w i t h G i thub in tegra t ion .

Results f r o m Codacy are included for compar ison.

Because CppCheck does no t need preprocessed code, it was reasonable t o use i t for every c o m m i t

in our changes.

W h e n runn ing th is t o o l , defau l t con f igura t ion was used, and all types o f messages were enabled.

No cus tom rules were used and the invocat ion o f CppCheck on who le xf sprogs/mkf s/ d i rectory

was:

cppcheck —enable=all mkfs/

5.1.21 C o v e r i t y

Cover i ty was used bo th manual ly in a Docker conta iner , and au tomat i ca l l y using the publ ic

Cover i ty service for open source projects wh ich is part o f the s tandard xfsprogs deve lopment

process, t o compare the results between those t w o instances.

Fur thermore , in the local analysis, four levels o f analysis aggressiveness were tes ted : low (defau l t

se t t ings) , m e d i u m , high and cus tom (a l l) . T h e di f ferent results are compared in Sect ion 6.4,

where were look a t a s u m m a r y o f w h a t these levels enabled. W i t h a higher level, Cover i ty makes

more aggressive assumpt ions du r ing the analysis, wh ich means more defects being reported and

longer analysis t i m e [34] .

Cover i ty manual c la ims false posi t ive rate for all checkers t h a t are not parse warnings increases

approx imate ly by 5 0 % for med ium and by 7 0 % for h igh. I t does not have an ef fect on parse

warn ings checkers.

A l l levels have enabled every th ing t h a t a previous, lower level has, plus some add i t iona l checks.

T h e med ium level uses low level plus enables some o ther checks, inc lud ing parse warn ings, in f in i te

loops, some resource leaks checks, etc. T h e high level then adds e.g. integer over f low detect ions

and more checks for in f in i te loops. A special , level enabled by — a l l f lag for c o v-analysis,
then enables a lmost all checkers, w i t h on ly a few minor except ions. For the ful l (ra ther long)

list o f w h a t checkers are enabled on every level, consul t the c o v-analysis manual [34] .

T h e Figure 5.1 describes the steps happen ing in Cover i ty conta iner . W h e r e o ther too ls are

only a single step, t a k i n g source code on one side and p roduc ing an o u t p u t on the o ther side,

Cover i ty has three s tandalone steps. First , i t bui lds the source code using its own parser and

produces an analyzable da ta .

T h e second step, cov-analyze app l ica t ion , does the analysis itself. Here i t is possible t o set

up the aggressiveness level and where the license is required. T h e last step then takes the raw

o u t p u t f r o m the analyser and conver ts i t in to one o f the selected fo rmats . T h e scr ipts in the

conta iner generate all th ree var iants . Due t o the size o f t he H T M L o u t p u t , i t is no t inc luded in

the d ig i ta l a t t a c h m e n t t o th is work .

26/42

CHAPTER 5 USED TECHNIQUES AND PROCEDURES

: foo.c : JSON

bar.c : •> cov-build cov-analyze cov-format-errors • »• HTML I

bar.h : Text i

Figure 5 . 1 : Process steps for cover i ty analysis.

5 . 1 . 3 | G C C

T h e GNU project C and C++ compiler is used for comp i l i ng xfsprogs and i t has some s ta t ic

analysis capabi l i t ies because i t must understand the code t o compi le i t . T h e on ly di f ference in

its use f r o m standard con f igura t ion is t o use the most s t r i c t repor t ing .

5 . 1 . 4 | Clang

Clang is another C / C + + compi ler . It was founded by App le and L L V M commun i t i es in 2007

as an a l ternat ive t o GCC, wh ich did not work well for App le 's needs. It is designed t o be highly

compat ib le w i t h GCC for C-based languages (C , C + + , O b j C) , bu t does not have the desire t o

replace it comple te ly [25] .

It is no t used by xfsprogs bu t can compi le the code as wel l , so we can compare i t w i t h GCC and

o ther analysis too ls . Even i f i t has its ana lyz ing part as a s tandalone app l ica t ion [10], t he easiest

way t o use i t and t o make i t t he most comparable w i t h GCC was t o rename c lang binary t o GCC

and let xfsprogs behave as i f i t was GCC, rather t h a n mod i f y A u t o t o o l s con f igu ra t ion . Acco rd ing

t o Clang's scan-build descr ip t ion, the too l replaces cer ta in env i ronmenta l variables t o achieve

the same result. However, f r o m the nature o f too l -spec i f ic conta iners used for the tests, binary

replacement avoids uncer ta in ty a b o u t whe ther the env i ronmenta l variables were correct ly taken

in to the account in th is specif ic A u t o t o o l s con f igu ra t ion w i t h o u t the usual consequences o f

m a n i p u l a t i n g w i t h system files w i t h o u t the knowledge o f a package manager.

Results Processing

T h e o u t p u t s o f these too ls have d i f ferent syntax and verbosi ty, bu t we had t o f ind a way, how

t o compare t h e m , bo th between the too ls and across revisions, despite some o f the too ls f i nd ing

a lot o f issues. A set o f scr ipts t o help bo th w i t h a u t o m a t i n g the tests and w i t h analysing

was created. T h e Figure 5.2 shows how these scr ipts are connected w i t h w h a t happens in the

conta iners.

First, there is t oo l parse .py, wh ich can au tomat i ca l l y run all t he too ls across specif ied revisions.

It takes care o f chang ing the revisions, s ta r t i ng every docker conta iner again and f inal ly, i t

organises the o u t p u t s in a logical way: in a specif ied directory, it creates a subd i rec tory for every

revision (us ing the revision's shor t hash as the d i rectory name) and each such d i rec tory then

conta ins log files w i t h o u t p u t s f r o m each t o o l .

T h e o u t p u t files are not modi f ied in the f i rs t s tep, bu t t o s impl i fy the i r parsing, i t is useful t o

preprocess some o f those files (namely f r o m GCC and / C lang) w i t h scr ip t format-outputs, sh,

27/42

CHAPTER 5 USED TECHNIQUES AND PROCEDURES

source code

copy to container

output files • format-outputs.sh parse, py format-outputs.sh parse, py

analyze analyze
move the results

out of the container

tests, py

Figure 5.2: Process steps for tes t ing .

t o remove color f o r m a t t i n g escape sequences and unnecessary compi ler o u t p u t s . Such data may

be useful for some fu r the r analysis, bu t for the next step, i t wou ld on ly make the parsing more

complex.

In the last step, scr ip t parse.py, when suppl ied w i t h the o u t p u t directory, t ranslates the

d i f ferent syntaxes in to a single inner representat ion, wh ich can be then used t o s imply c o m p u t e

deltas between d i f ferent revisions.

T h e a lgor i thms t o comple te these deltas has one known issue: i f there are mu l t ip le issues w i t h

the same message (e.g. because var iable w i t h name f o o was declared, bu t not used, in mul t ip le

func t ions) and later some o f these issues are f ixed, t he number o f issues is correct , but the

indicated lines may be incorrect . Th is is because the scr ip t must cope w i t h chang ing code; an

issue on line X in one revision can be on line Y in another one, and t h a t wou ld require emp loy ing

much more complex a lgor i thms t h a t wou ld use in fo rmat ion f r o m g i t and unders tand wh ich lines

moved where. T h u s , in such cases, the behaviour select ing specif ic instances o f t he same kind

o f issue is undef ined.

Finally, whi le i t is possible t o f ind dif ferences between revisions w i t h i n the results o f a single

t o o l , a lbei t w i t h the smal l ins tab i l i ty in case o f mu l t ip le s imi lar entr ies ment ioned above, do ing

th is between too ls on a single revision proved a much more complex task. Every too l describes

the same issue w i t h d i f ferent words, so t o be able t o au tomat i ca l l y c o m p u t e any dif ferences,

such an a lgo r i t hm wou ld have t o unders tand the issue in all detai ls. T h u s , cross-tool dif ferences

are not c o m p u t e d au tomat ica l l y , bu t manual ly for the cases where i t is reasonable given t o the

number o f issues t h a t must be analysed. Standard Unix too ls like d i f f and grep were used in

these cases.

28/42

Results

In th is chapter , t he results o f every t o o l are compared and analysed. I f not s ta ted otherwise,

the number o f issues is for mkfs-speci f ic files, i.e., for files in mkf s/ d i rectory. Every too l has its

own sect ion in wh ich i ts per formance is analysed across o f mu l t ip le revisions o f mkfs in deta i l .

Table 6.1 offers an overv iew o f how many issues d id every too l f ind on various revisions. These

revisions are stored in the project 's g i t reposi tory and they are ident i f ied by the i r hash, so th is

tab le also shows wh ich revision fo l lows w h i c h . Selected revisions (anno ta ted w i t h total issues)

shows the number o f o u t s t a n d i n g issues on th is specif ic po in t o f deve lopment .

For the remain ing revisions, t he tab le shows n e w / f i x e d issues: +x denotes the number o f new

issues f o u n d , — x denotes the number o f issues f ixed between th is and the previously tested

revision. For example, revision a887c950 has a value + 1 / — 3 for Coveri ty. T h a t means t h a t ,

accord ing t o Coveri ty, one new issue appeared in th is revision, whi le 3 o thers were f ixed. A zero,

in th is case, means no change. A — dash means t h a t t he too l was not used in th is specif ic

revision. T h e numbers o f issues were gained w i t h every too l set up t o the st r ic test analysis.

It is apparent f r o m the tab le , even on the f i rs t glance, t h a t t he per formance o f t he too ls varies

widely. N o t on ly in absolute numbers o f reported issues (o f wh ich some are false posi t ives) , but

also in de tec t ing specif ic issues. For example, revision a9dad670 f ixed 54 issues accord ing t o

GCC, bu t accord ing t o Coveri ty, i t caused 4 new and did not f ix any th ing .

Below, we have bo th a s imple s ta t is t ica l analysis o f w h a t each too l found and a more detai led

look a t some specif ic issues and revisions, especial ly where the too ls have seriously d i f ferent

results.

6.1 CppCheck

CppCheck (and Codacy, wh ich is using i t) f ound fewer issues t h a n o ther too ls . W h e n the kind

o f issues found is analysed, it becomes apparent t h a t th is t o o l is great ly l im i ted . St i l l , th is t oo l

is t he easiest t o use and it is open source, wh ich can make i t a useful en t ry po in t for projects

t h a t do not use any o ther fo rm o f analysis.

T h e on ly t w o revisions we ment ion here are v4.6.0 and 4.7.0, before and af ter our patches. T h e

differences between o ther revisions are negligible.

In version 4.6 .0 , 5 issues were found in mkfs-speci f ic fi les, and 460 issues in who le xfsprogs.

From these, 100 issues were not sty l ist ic.

T h e issues found in mkfs are:

1. mkfs/xfs_mkfs.c: 1067: Checking if unsigned variable 'blocksize' is less than zero.

2. mkfs/xfs_mkfs.c: 1698: Checking if unsigned variable 'sectorsize' is less than zero.

3. mkf s/xf s_mkfs. c: 1225: Checking if unsigned variable 'sectorsize' is less than zero.

4. mkf s/xf s_mkfs. c : 2487: Condition '0' is always false

5. mkf s/xf s_mkfs. c : 2733: The scope of the variable 'bucket' can be reduced.

29/42

CHAPTER 6 RESULTS

C o m m i t CppCheck Codacy Cover i ty GCC Clang

To ta l issues

(t a g : v 4 . 1 1 . 0 - r c l) 0 7 a 3 e 7 9 3 1 3 119 30 34
(t a g : v4 .7 .0) d 7 e l f 5 f 1 1 4 119 30 28

Changes

[Last of our set] 2 a c a l 6 d 6 0 0 0 0 0

a a 3 0 3 4 d 4 0 0 + 2 / - 2 0 0

6 d e 2 e 6 c 0 0 0 +5 0 0

d d c 3 b 2 d a 0 0 0 0 0

0 6 a c 9 2 f d 0 0 +12/-3 +1 +1
2 7 a e 3 a 5 9 0 0 +1 0 0

3 e c l 9 5 6 a 0 0 +1/-3 0 0

6c855628 0 0 + 2 / - 2 -2 -2
6 2 7 e 7 4 f d -3 -2 0 +2 +2
9 0 9 0 e l 8 7 0 0 +2 0 0

1 9 7 4 d 3 f1 0 0 0 -1 0

5 6 e 4 d 3 6 8 0 0 -3 0 0

a 9 d a d 6 7 0 0 0 +4 -54 -54
1 4 7 e 0 f 3 1 0 0 +3 0 0

c 8 1 c 8 4 6 0 0 0 0 -50 -50
a 8 8 7 c 9 5 0 0 0 +1/-3 +13 +12
5fla2100 0 0 0 0 0

f f 2 1 c 7 0 9 0 0 0 +1 +1
[First of our set] 4 a 3 2 b 9 e 9 -1 -1 0 0 0

To ta l issues

[Before our set] 6 a a 3 2 b 4 7 5 6 111 121 117
(4 .6 .0) 0 9 0 3 3 e 3 5 5 6 111 121 117

Table 6 . 1 : A n overv iew o f issues found by the tested too ls on specif ic revisions in mkfs-on ly

files.

A l l these issues were present for mu l t ip le years. Precise d a t i n g is d i f f icu l t , however, because e.g.

issue 1 is b lamed t o a c o m m i t 16 years o ld . B u t a t t h a t t i m e , the var iable was signed. T h u s ,

the issue appeared some t i m e later, when the specif ic var iable was tu rned t o unsigned, bu t not

every use was fu l ly conver ted .

Nei ther o f these issues is o f any seriousness. Every found check o f an unsigned var iable being

less t h a n zero is, in fac t , a less-or-equal check. L is t ing 6.1 shows the specif ic code for bo th cases

o f o f fend ing sectorsize. T h u s , unsigned_variable <= 0 may be misleading, bu t func t iona l l y

is equiva lent t o unsigned_variable == 0. A n d the cond i t ion ' 0 ' being always false is a value

in ten t iona l ly passed t o a macro.

O t h e r too ls do not repor t th is case o f unsigned var iable compar ison, l ikely because the lower- than

symbo l , in th is case, does not have any effect.

L is t ing 6 . 1 : Cond i t ion in wh ich unsigned sectorsize is tested t o be less t h a n zero.

i f (s e c t o r s i z e <= 0 I I ! i s p o w 2 (s e c t o r s i z e))
// do something

30/42

CHAPTER 6 RESULTS

T h e patches we w r o t e removed most o f t he o f fend ing code, so on ly 1 issue was found in mkfs-

specif ic fi les in version 4.7 .0 . In t h a t version in the who le xfsprogs, 440 issues were f o u n d , f r o m

wh ich 100 issues were no t style issues.

T h e issue found in mkfs is:

mkf s/xf s_mkf s. c : 2 9 1 8 : The scope of the variable 'bucket' can be reduced.

W h e n compared w i t h Codacy, CppCheck reports one issue tw ice : Check ing if an unsigned

var iable is less t h a n zero. T h i s happens in t w o places, bu t Codacy ignores the second occurrence.

On the o ther side, CppCheck did not f ind any issue in mkf s/proto . c f i le, where Codacy d id .

These differences m i g h t be caused by a d i f ferent con f igura t ion o f CppCheck, because we used

the defau l t con f igu ra t ion , bu t do not know w h a t changes Codacy d id .

Despite th is , t he results o f those t w o too ls are very s imi lar when compared t o o thers, so we

use on ly CppCheck in f u r the r compar ison w i t h o ther too ls . CppCheck is selected because we

have greater con t ro l over i t , unl ike c loud service Codacy, and on th is sample produced no false

posit ives, a l though the usefulness o f some reports is arguable.

T h e low number o f issues found can be a t t r i b u t e d t o the detai led review o f all patches submi t t ed

t o the project . I f most issues are usually spo t ted du r ing the deve lopment o f t he patches and f ixed

before they are merged in to the code, it leaves space for on ly more complex and not so obvious

issues, wh ich CppCheck analysis is no t capable o f f i nd ing and a s t ronger too l is necessary.

6.2 Codacy

Codacy shows on ly p e r - c o m m i t and to ta l issues for a branch. T h a t is, a developer can v iew

whe the r a specif ic c o m m i t f ixed or caused an issue, and can see w h a t are the issues for the t o p

o f the repository, bu t check ing the comple te s ta te a t a par t icu lar po in t in the history requires

c rea t ing a new branch, wh ich is uncomfor tab le , bu t manageable for a p r i v a t e 1 repository. In a

reposi tory w i t h many con t r ibu to rs , i t can be confus ing.

Codacy provides some ra t ing on the pro ject 's page [] , wh ich considers xfsprogs as a qua l i ty

project (A - g r a d e) , bu t the we igh t o f th is ra t ing is unclear and rather in fo rma l . A lso, i t is not

clear w i t h o u t check ing every issue, w h a t metr ics Codacy uses t o assess the type , whe ther i t is

style, error or secur i ty issue.

In mkfs-speci f ic fi les in version 4.6 .0 , 6 issues were f o u n d . W h o l e xfsprogs had 839 issues, f r o m

wh ich 809 were code style issue and 30 were po ten t ia l errors.

Codacy found most o f t he same issues as CppCheck w i t h few except ions. It reported these t w o

issues:

1. mkf s/proto. c : 4 9 : The function 'setup-proto' is never used.

2. mkf s/proto. c : 6 0 1 : The function 'parse-proto' is never used.

However, these func t ions are used in mkf s/xf s_mkfs. c f i le, thus they are false posit ives. A lso,

CppCheck found t w o places on wh ich sectorize is checked t o be less t h a n zero, bu t Codacy

reports i t on ly once. Curiously, the same issue appears in t w o places not far away, and in bo th

cases, i t is in th is exact cond i t ion as can be seen in L is t ing 6.1 in Sect ion 6 . 1 , j u s t inside o f

1\n the sense o f being the only user, not in terms o f visibil i ty.

31/42

CHAPTER 6 RESULTS

di f ferent b locks, bu t st i l l in the same func t i on and path t o bo th places is possible. W h y Codacy

reports on ly one o f those issues is unclear.

In version 4.7.0 in mkfs-speci f ic fi les, 4 issues were f o u n d . W h o l e xfsprogs had 749 issues, f r o m

wh ich 719 were code style issue and 30 were po ten t ia l errors.

T h e four issues found in th is version are s imi lar t o w h a t can be seen for the 4.6.0:

1. m k f s / x f s _ m k f s . c : 2 9 1 8 : The scope of the variable bucket can be reduced.

2. m k f s / m a x t r r e s . c : 3 1 : The function max_trans.res is never used.

3. m k f s / p r o t o . c : 4 9 : The function setup-proto is never used.

4. m k f s / p r o t o . c : 6 0 1 : The function parse-proto is never used.

Also in th is case, t he supposedly unused func t ion m a x _ t r a n s _ r e s is in fac t used in another f i le.

In t o t a l , Codacy results are simi lar t o CppCheck itself, bu t w i t h more o f false posit ives. T h e

only advantage i t offers is a u t o m a t e d in tegra t ion w i t h G i t H u b . W i t h a correct set -up, i t can

ensure t h a t every push in to the reposi tory is tes ted.

GCC and Clang

Despite be ing developed independent ly , GCC and Clang are very simi lar in w h a t they f o u n d ,

w i t h GCC f i nd ing a few more issues. In th is sect ion, we describe some o f the notable differences

between those t w o too ls and compare t h e m t o others where i t is reasonable.

6 . 3 . 1 | V e r s i o n 4 . 6 . 0

Table 6.2 compares GCC and Clang in th is revision, and we specif ical ly look at t he differences

between these t w o too ls and Codacy. O t h e r issues are not l isted here due t o the i r a m o u n t , but

the reader can f ind t h e m on an a t tached opt ica l disc, or repl icate t h e m using the too ls a t tached

t o th is work .

Too l m k f s / x f s _ m k f s . c m k f s / p r o t o . c W h o l e xfsprogs

GCC 121 2 2013

Clang 113 4 2597

Table 6.2: Compar ison o f t he number o f issues reported by GCC and Clang in version 4.6.0.

As is shown in Sect ion 6.2, Codacy found t w o issues in the p r o t o . c f i le t o o . Curiously, Codacy

found t w o unused func t ions , wh i le GCC found these issues:

1. m k f s / p r o t o . c : 270 : comparison between signed and unsigned integer expressions

2. m k f s / p r o t o . c : 332 : unused parameter 'mp'

These issues are no t in the t w o func t ions found by Codacy. However, they are inside o f func t ions

called f r o m the ones marked as unused by Codacy. It is possible t h a t they were not reported

because o f th is , but given t h a t t he ment ioned Codacy issues are false posit ives and t h a t Codacy

d id not found many o ther issues, it is l ikely t h a t Codacy s imply d id not not ice t h e m , whi le GCC

d id .

32/42

CHAPTER 6 RESULTS

In add i t ion t o the t w o issues found by GCC in mkfs/proto .c, C lang found t w o o ther issues

(b o t h o f t he same k ind) :

1. mkfs/proto. c: 130: missing field'trJogcount'initializer

2. mkf s/proto. c: 631: missing field'trJogcount'initializer

These t w o new issues, comp la in ing a b o u t a missing f ie ld, are probably false posit ives because,

on these lines, a s t ruc tu re w i t h all members zeroed is created, as can be seen in L is t ing 6.2.

Lis t ing 6.2: One o f the t w o lines on wh ich Clang reports a missing f ield in s t ruc tu re in i t ia l i za t ion ,

s t r u c t x f s _ t r a n s _ r e s t r e s = {0};

T h e dif ference between GCC and Clang in mkfs_xfs .c f i le is 8 issues in absolute numbers , and

the real di f ference is no t much bigger; GCC reports more cases o f a compar ison between signed

and unsigned integer t h a n Clang does. Clang, on the o ther hand, reports few cases o f th is issue:

mkf s/xfs_mkfs. c: 2906: cast from 'char *' to 'xfs-alloc-rec-t *' (aka 'struct xfs-alloc-re c *')

increases required alignment from 1 to 4

O t h e r t h a n t h a t , they report t he same issues.

6 . 3 . 2 | R e v i s i o n a 8 8 7 c 9 5 0

GCC detected 13 new issues in mkfs/xfs_mkfs.c. These 13 issues are on ly o f t w o kinds:

1. mkf s/xfs_mkfs. c: 1487: comparison is always false due to limited range of data type

2. mkfs/xfs_mkfs.c mu l t ip le occurences: passing argument 2 of 'illegal' discards 'const'

qualifier from pointer target type

Clang detected all t he 12 occurrences o f the second issue bu t missed the f i rs t compar ison issue.

T h e o f fend ing line for the missed issue is shown in L is t ing 6.3. A closer look on th is line

reveals t h a t there is an expl ic i t t ype cast ing. T h e new type is a signed integer. However, the

var iable logagno is declared w i t h t ype xf s_agnumber_t and th is t ype is declared as an alias t o

__uint32_t in f i le libxfs/xfs_types . h .

Acco rd ing t o the s tandard o f C language, the t ype cast ing has a precedence over compar ison [3,

A.2.1], so Clang, when eva lua t ing th is line, sees an integer. T h a t is techn ica l ly correct , bu t in

a wider con tex t , i t is also clear t h a t t he possible values are sti l l l imi ted by the or ig inal t ype , and

so th is compar ison wi l l be always false. W h i c h is w h a t GCC not iced and also correct ly repor ted.

No o ther too l reported th is issue.

L is t ing 6.3: Line on wh ich GCC found the compar ison issue.

i f ((_ _ i n t 6 4 _ t) l o g a g n o < 0)
// do something

T h e o ther issues are simi lar t o w h a t C lang found bu t appears t o suffer t he ins tab i l i ty in parsing

ment ioned in Sect ion 5.2. A l l these issues are caused by passing a cons tan t s t r i ng t o a func t ion

wh ich does not has the const keyword for an a rgument : i l l e g a l (value, , ,b log'');. T h e

file xf s_mkf s . c conta ins 44 such calls, bu t on ly some o f t h e m were added in th is revision. T h u s ,

we correct ly detected these issues, but some o f the line numbers we see had th is issue before.

If we wou ld w a n t t o see exact ly wh ich lines were added, the easiest way is t o look t o look at

changes in th is specif ic c o m m i t .

33/42

CHAPTER 6 RESULTS

6 . 3 . 3 | V e r s i o n 4 . 7 . 0

Clang found 3 more issues in th is revision t h a n GCC did in f i le mk f s / p r o t o . c, as is shown in

the compar ison in Table 6.3. T w o o f t h e m already appeared in the descr ip t ion o f revision 4.6

in Sect ion 6.3.1 and were not f ixed, the t h i r d issue is o f t he same kind and was in t roduced by

some o ther patch o ther t h a n wh ich are part o f th is work .

Too l m k f s / x f s _ m k f s . c m k f s / p r o t o . c W h o l e xfsprogs

GCC 28 2 2013

Clang 23 5 2511

Table 6.3: Compar ison o f t he number o f issues reported by GCC and Clang in version 4.7.0.

A l m o s t all issues found in m k f s / x f s _ m k f s . c are a b o u t a compar ison, w i t h on ly t w o except ions:

1. m k f s / x f s _ m k f s . c : 728 : unused parameter'Isectsz'

2. m k f s / x f s _ m k f s . c : 1896: passing argument 2 of unknown' discards 'const' qualifier from

pointer target type

M o s t issues in Clang are also abou t a compar ison, w i t h mu l t ip le versions o f wo rd ing , because

where GCC uses on ly one universal message, C lang uses a t e m p l a t e in to wh ich i t subst i tu tes

specif ic types. Th is makes the analysis o f t he results more chal lenging bu t does not have any

effect on the results. In th is revision, C lang does not report any new kind o f issues against

version 4 .6 .0 .

Coverity

Coveri ty, when it is run manual ly in the docker conta iner , found a comparab le number o f issues

as GCC and Clang in mkfs-speci f ic fi les. O n the o ther hand, the onl ine version d id not f ind

any issues in mkfs on a recent (4 .11) version [] , compared t o 111 found on a manual run

w i t h the highest level o f aggressiveness. W h a t ef fect t he aggressiveness level has can be seen in

Table 6.4. T h e numbers in th is tab le are for mkfs-speci f ic fi les. T h e tested revision is 0 7 a 3 e 7 9 3

(v 4 . 1 1 . 0 - r c l) . From the results, i t is probable t h a t the service is using con f igura t ion s imi lar t o

the low aggressiveness. Especial ly when numbers for the who le xfsprogs are compared.

onl ine low med ium high cus tom

Issues reported 0 0 36 97 111

Table 6.4: Compar ison o f issues found by Cover i ty onl ine service and Cover i ty run local ly w i t h

d i f ferent levels o f aggressiveness.

In most o f th is sect ion, we focus on results gained f r o m the cus tom (h ighest) level. T h e onl ine

service is briefly described and some in terest ing s tat is t ics compar ing xfsprogs w i t h o ther open-

source projects (in an aggregated manner) are provided on ly in Sect ion 6 . 4 . 1 .

T h e reasons for select ing the cus tom level aggressiveness as the level on wh ich ou r analysis

focusses is t h a t for o ther too ls we used the s t r ic test set t ings avai lable, thus , analys ing relaxed

approach on any o ther level is no t comparab le t o o ther too ls .

Unl ike CppCheck or the compi lers, Cover i ty can also show examples o f the data f low for wh ich

a defect can appear. E.g. t r a c k i n g mu l t ip le cond i t ions and no t ing i f t r ue or false branch was

34/42

CHAPTER 6 RESULTS

concurent data access

insecure data handl ing

A P I usage errors

memory illegal access

memory cor rupt ions

unin i t ia l ized variables

program hangs

integer hand l ing issues

error hand l ing issues

cont ro l f low issues

null po in ter dereference

0 5 10 15
O u t s t a n d i n g defects

Figure 6 . 1 : O u t s t a n d i n g defects per category for who le xfsprogs.

taken . Th is is especial ly useful when the case is not clear and the path includes a longer chain o f

cond i t ions over a larger part o f t he code. B o t h the onl ine service and the local ly- run appl icat ion

provides th is i n fo rma t ion . However, i t is not par t icu lar ly useful in our compar ison o f w h a t issues

were f o u n d .

6.4.11 O n l i n e S e r v i c e

T h e onl ine service avai lable a t https://scan.coverity.com/projects/xfsprogs provides

var ious stat is t ics in add i t ion t o reported issues. T h e onl ine service found no issues in mkfs . In

who le xfsprogs, i t reported 7 1 issues, wh ich is s imi lar t o w h a t t he manual execut ion on the low

level f ound (77 issues). T h e service also provides a v iew on specif ic categories, as can be seen

in Figure 6.1

Th is service is used since 2013 and since xfsprogs was f i rs t analysed, a t o t a l number o f 273

issues was f o u n d . O f these, 176 were f ixed and 26 dismissed as in ten t iona l or false posit ives.

T h e average defect density accord ing t o th is analysis is cur ren t ly 0.52 issues per 1,000 lines,

w i t h 135,302 lines analysed.

W h e n xfsprogs was analysed for the f i rs t t i m e by th is service, 139 issues were f o u n d , bu t many

were f ixed shor t ly a f terwards and the number o f o u t s t a n d i n g defects is not chang ing m u c h ,

averaging between 60 and 70 issues a t any specif ic revision. W h e n compared w i t h o ther open-

source projects o f s imi lar s ize 2 analysed by th is service, xfsprogs osci l lates around the average

value, wh ich is 0.5.

It is also useful t o note t h a t t he defects are not d is t r ibu ted equal ly in the who le xfsprogs. W h e n

we look a t t he defects rate per c o m p o n e n t , seen in Table 6.5, we can see t h a t t he too ls used

by developers for e.g. debugg ing , or by advanced users (x f s _ c o p y , x f s _ l o g p r i n t) have a

higher rate than the too ls in tended for a general use, like m k f s . T h e high rate in l i b x c m d and

l i b h a n d l e is caused by the smal l size o f these t w o componen ts . B o t h has on ly a single issue,

bu t as l i b h a n d l e has under 500 lines, t he average per 1000 lines makes it look worse.

2 100 ,000 to 400,000 lines o f code.

H3 M e d i u m impac t

M H igh impac t

35/42

https://scan.coverity.com/projects/xfsprogs

CHAPTER 6 RESULTS

l ibxfs l ibxlog x fs . repai r xfs_d b x fs .copy xfs_fsr x f s J o

Lines o f code 43,770 1,165 22,620 18,508 1,043 1,354 6,970

Defect density 0.80 0.86 0.44 0.49 2.88 0.74 0.00

x f s J o g p r i n t xfs_q uota m kfs_xfs xfs_growfs l ibhandle l ibxcmd o ther

Lines o f code 2,616 4,037 3,540 408 493 1,338 27,539

Defect density 1.15 0.50 0.00 0.00 2.03 1.38 0.15

Table 6.5: Defect density per c o m p o n e n t as reported by Cover i ty onl ine service.

6 . 4 . 2 | L o c a l a n a l y s i s

Th is sect ion analyses the results f r o m the local execut ion o f Cover i ty on the highest level o f

aggressiveness.

In mkfs-speci f ic files in version 4.6 .0 , 111 issues were f o u n d , whi le who le xfsprogs had 3309

issues. From the issues reported for mkfs, 60 is a comp la in t a b o u t dereferencing a po in ter t h a t

m i g h t be null in p r i n t f or f p r i n t f cal l .

A n example o f a line w i t h such a warn ing is in L is t ing 6.4. T h e issue lies w i t h G e t t e x t 3 . T h e _

macro is t rans la ted as a dcgettext call and i t is the result o f th is f unc t i on t h a t Cover i ty can ' t

verify. A n d because there is no check o f t he return value for null before i t is passed t o printf,
Cover i ty makes an aggressive assumpt ion and raise a warn ing .

L is t ing 6.4: xf s_mkf s . c : 1713: Line wh ich is repor ted ly dereferencing a po ten t ia l l y null po in ter

w i t h Get tex t

p r i n t f (_(" 7 . s u v e r s i o n u 7 . s \ n ") , progname , VERSION);

These issues can probably be considered false posit ives, or a t least in ten t iona l . A brief search in

Ge t tex t imp lemen ta t i on suggests t h a t if Ge t tex t canno t a l locate memory for a t rans la ted s t r ing ,

it s imply returns the or iginal one. For example, see fi le /gettext-runtime/intl/dcigettext . c,

line 391 in Get tex t source code [11] .

On ly 10 o f the dereferencing issues are related t o s o m e t h i n g else than dcgettext and m i g h t be

useful. A n example o f such issue is L is t ing 6.5. In th is case, memory is a l located w i t h a malloc
cal l . T h e returned value is not tes ted , so it is possible t h a t null is passed t o the read cal l .

L is t ing 6.5: p r o t o . c : 6 6 : Line wh ich is repor ted ly dereferencing a po ten t ia l l y null po in ter - no

mal loc check.

buf = m a l l o c (s i z e + 1);
i f (r e a d (f d , b u f , s i z e) < s i z e) {

// do something...

These t w o issues also i l lus t rate the dif ference between the aggressiveness level. T h e Get tex t -

related issue is reported on ly on high or cus tom level, bu t the mal loc issue is reported also on

med ium level.

W h e n compared t o GCC or Clang, Cover i ty f inds d i f ferent issues than the o ther too ls . W h i l e

GCC reports a lot o f compar ison between signed and unsigned integers or d iscard ing const
3 G e t t e x t is a too l / l i b ra ry for t ranslat ion o f programs. It generates a list o f marked st r ing f rom a program.

These s t r ing can be translated and packaged w i t h the compi led program. When the program is run, Gettext

selects the correct language based on system conf igurat ion.

36/42

CHAPTER 6 RESULTS

qual i f ier , Cover i ty f inds a lot o f po tent ia l null po in ter dereferences and numer ic types overf lows

when 32b i t and 64b i t a r i thmet ics are mixed.

6.5 Summary

As we have seen, the results o f t he too ls vary widely, bo th in types o f issues the too ls report and

in the i r a m o u n t . T h e mediocre results o f CppCheck and Codacy can be probably a t t r i b u t e d t o

the fac t t h a t we tested i t on a p roduc t ion code wh ich already passed a cer ta in qua l i ty assurance

and thus , the kinds o f issues these too ls are best capable o f f i nd ing were already f ixed.

Cover i ty and bo th compi lers were capable o f f i nd ing less obvious defects, bu t the price for a

t o o high sensi t iv i ty was a lot o f reported issues w i t h on ly a m in ima l , i f any, effect, like the

compar isons between signed and unsigned integers f r o m GCC.

In any case, th is work shows t h a t on a relat ively error- f ree code, there is on ly a m i n i m u m o f

defects t h a t wou ld be reported by mu l t ip le too ls . T h i s makes i t apparent t h a t i t is useful t o use

as many diverse methods in the analysis as possible.

T h e most helpful t oo l f r o m the tested ones was Coveri ty, not least because o f its ab i l i ty t o show

the f low o f the program in wh ich the defect can appear. However, the free analysis for open

source projects is l imi ted t o more obvious defects and for non-open source projects, or for a

detai led analysis, i t requires a paid license.

Th is analysis was done af ter the f i rs t patches were w r i t t e n and merged, bu t f ound minor issues

only, wh ich speaks well for t he qua l i ty o f mkfs, a t least in te rms o f correctness w i t h respect t o

the language s tandard . W h e t h e r the code is well s t ruc tu red or not , or if i t does w h a t is expected

f rom it on a higher level, is not possible t o assess w i t h these too ls .

Ou r patches reduced the number o f issues found by all too ls except Coveri ty. Cover i ty saw a

small g r o w t h on higher levels o f aggressiveness 4 . O n the o ther hand, GCC, Clang and CppCheck

saw a fal l t o roughly a b o u t one quar ter . Codacy, a f ter s u b t r a c t i n g false posit ives, shows the

same t r e n d , a l though the on ly too l f r o m the tested ones, wh ich was used du r ing the deve lopment

o f these patches, is the onl ine Cover i ty service.

4 O n the low level, Coverity found no defect both before and after the patches.

37/42

Conclusion

As we have f o u n d , the accumu la t ion o f technica l debt in long- l iv ing projects can impa i r the

unders tand ing o f t he code and g row as a snowbal l , w i t h each change requi r ing more ad-hoc

ad jus tments and edi ts t han the previous one. W h e n th is happens, i t is i m p o r t a n t t o devote

some ef for t t o clean the code, even i f i t can take a long t i m e , because otherwise, the s i tua t ion

wi l l on ly g row worse.

As Chapter 3 shows, we have begun th is work and successfully merged the f i rs t set o f changes.

Because the deve lopment process cont inues at a slower pace than we expected, not all o f the

desired changes were merged before th is work was publ ished. T h i s does not change our plan

for merg ing t h e m . Rather, we on ly have t o f ind bet te r processes t h a t wi l l l im i t long delays and

speed up the merg ing o f t he changes in to the project . Some o f these possible changes were

discussed in Sect ion 3.5.

W e also compared the onl ine Cover i ty service xfsprogs is using w i t h few o ther too ls , t o see how

effect ive the cur ren t reviews and tests are. T h e results in the Chapter 6 speak rather wel l . A l l

t he found issues in mkfs.x fs were on ly o f a minor impor tance , even t h o u g h d i f ferent too ls found

d i f ferent kinds o f issues. W i t h higher sensit iv i ty, t he too ls were repor t ing more o f those issues,

bu t w i t h d im in ish ing impor tance and g r o w i n g a m o u n t o f false posit ives. A lso, we found ou t

t h a t ou r patches lowered the number o f issues found in mkfs by most o f t he too ls .

W h i l e i t m i g h t be useful t o incorporate the o ther too ls and let t he too ls use more aggressive

assumpt ions, i t is uncer ta in i f t he re turn o f inves tment in to f i x ing a large a m o u n t o f minor

and styl ist ic issues is posi t ive, or i f t he ef for t is be t te r spent on keeping the X F S f i lesystem

c o m p e t i t i v e w i t h o ther modern and much younger f i lesystems.

38/42

Bibliography

[1] Codacy: jtulak/xfsprogs results.

https://www.codacy.com/app/jtulak/xfsprogs-dev/dashboard. [Onl ine; vis i ted

29. Apr . 2017] .

[2] CSBUILD MAN PAGE, https://www.mankier.eom/l/csbuild. [Onl ine; vis i ted 1.

M a y 2017] .

[3] C language s tandard - c o m m i t t e e d ra f t , iso 9899: tc3 . 2007.

[4] App le . Debugging with Xcode.

https://developer.apple.com/library/content/documentation/
DeveloperTools/Conceptual/debugging_with_xcode/chapters/static_
analyzer.html#//apple_ref/doc/uid/TP40015022-CHll-DontLinkElemeiitID_16,
2016. [Onl ine, v is i ted a t 0 1 . Jan . 2017] .

[5] D. Beyer and M . Erkan Keremog lu . CPAchecker: A T o o l for Conf igurable Sof tware

Ver i f i ca t ion . Proc. ofCAV'11, 2 0 1 1 .

[6] Dave Chinner. Re: [RFC PATCH 1/2] mkfs: unify numeric types of main variables in

main(). https://www.spinics.net/lists/linux-xfs/msg05750.html, 2017.

[Onl ine, vis i ted a t 9. Apr . 2017] .

[7] Dav id Chinner. [RFC, PATCH 00/15] mkfs: sanitise input parameters.

http://oss.sgi.com/archives/xfs/2013-ll/msg00833.html, 2013. [Onl ine, v is i ted

at 0 1 . Jan . 2017] .

[8] Dav id Chinner. Linux Filesystems: Where did they come from?

https://www.youtube.com/watch?v=DxZzSifuV4Q&index=2&list=WL, 2014. [Video

of a presentat ion; vis i ted 1. M a y 2017] .

[9] Dav id Chinner. ANNOUNCE] xfsprogs: master branch updated to c5d584c.

http://oss.sgi.com/archives/xfs/2016-05/msg00230.html, 2016. [Onl ine, v is i ted

at 0 1 . Jan . 2017] .

[10] C lang commun i t y . Clang Static Analyzer, https://clang-analyzer.llvm.org/.
[Onl ine; vis i ted 12. May. 2017] .

[11] G N U c o m m u n i t y . Gettext Git repository.

http://git.savannah.gnu.org/cgit/gettext.git. [Onl ine; v is i ted 12. May. 2017] .

[12] X F S commun i t y , mkfs.xfs manual page. X F S man page. [Cur ren t version at 0 1 . Jan .

2017] .

[13] X F S commun i t y . XFS manual page. X F S man page. [Cur ren t version at 0 1 . Jan . 2017] .

[14] Coveri ty. Coverity Scan: xfsprogs. https://scan.coverity.com/projects/xfsprogs.
[Onl ine; vis i ted 0 1 . Jan . 2017] .

[15] Docker . What are containers, https://www.docker.com/what-container. [Onl ine;

vis i ted 29. Apr . 2017] .

39/42

https://www.codacy.com/app/jtulak/xfsprogs-dev/dashboard
https://www.mankier.eom/l/csbuild
https://developer.apple.com/library/content/documentation/
https://www.spinics.net/lists/linux-xfs/msg05750.html
http://oss.sgi.com/archives/xfs/2013-ll/msg00833.html
https://www.youtube.com/watch?v=DxZzSifuV4Q&index=2&list=WL
http://oss.sgi.com/archives/xfs/2016-05/msg00230.html
https://clang-analyzer.llvm.org/
http://git.savannah.gnu.org/cgit/gettext.git
https://scan.coverity.com/projects/xfsprogs
https://www.docker.com/what-container

BIBLIOGRAPHY

[16] Chr is topher He l lw ig . XFS: The big storage file system for Linux.

http://oss.sgi.com/projects/xfs/papers/hellwig.pdf. [Onl ine; v is i ted 0 1 . Jan.

2017] .

[17] Bohuslav Krena and Tomas Vojnar . A u t o m a t e d Formal Analysis and Ver i f i ca t ion : A n

Overv iew. International Journal of General Systems, 4 2 (4) : 3 3 5 - 3 6 5 , 2013.

[18] Ben jamin Livshi ts and T h o m a s Z i m m e r m a n n . Dynamine : F ind ing c o m m o n error pat terns

by m i n i n g sof tware revision histories. ESEC-FSE'05, September 5-9, 2005.

[19] Daniel M a r j a m a k i . Cppcheck Design, http://sourceforge.net/projects/
cppcheck/files/Articles/cppcheck-design-2010.pdf/download, 2010. [Onl ine,

vis i ted a t 0 1 . Jan . 2017] .

[20] M ic roso f t . FILETIME structure, https://msdn.microsoft.com/en-us/library/
windows/desktop/ms724284(v=vs.85).aspx. [Onl ine; v is i ted 0 1 . Jan . 2017] .

[21] M ic roso f t . How NTFS Works.

https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx,
2013. [Onl ine; v is i ted 0 1 . Jan . 2017] .

[22] M ic roso f t . NTFS Overview.

https://technet.microsoft.com/en-us/library/dn466522(v=ws.11).aspx,
2016. [Onl ine; v is i ted 0 1 . Jan . 2017] .

[23] A n t o i n e M ine , Laurent Mauborgne , Xav ier Rival , Jerome Feret, Pa t r i ck Cousot , and et a l .

T a k i n g s ta t ic analysis t o the next level: P rov ing the absence o f run - t ime errors and data

races w i t h astree. 8th European Congress on Embedded Real Time Software and Systems

(ERTS 2016), 2016.

[24] Steven Mus i I. Australia police discourage use of Apple maps app after rescues.

https://www.cnet.com/news/
australia-police-discourage-use-of-apple-maps-app-after-rescues/, 2012.

[Onl ine, vis i ted a t 0 1 . Jan. 2017] .

[25] Steve Naroff . New LLVM C Front-end.

http://llvm.org/devrntg/2007-05/09-Naroff-CFE.pdf. [Onl ine; vis i ted 12. May.

2017] .

[26] Jochen Pohl . Lint manual page. http://www.unix.eom/man-page/FreeBSD/l/lint.
[Current version a t 0 1 . Jan . 2017] .

[27] Inc. Red Hat . What are the file and file system size limitations for Red Hat Enterprise

Linux? https://access.redhat.com/solutions/1532, [Onl ine; vis i ted 19. May

2017] .

[28] Luis R. Rodr iguez. Re: [PATCH 08/12] mkfs: replace variables with opts table: -b,d,s

options, https://www.spinics.net/lists/linux-xfs/msg06273.html, 2017.

[Onl ine, vis i ted a t 26. Apr . 2017] .

[29] Eric Sandeen. What is the maximum number of modes in Linux filesystems?

https://www.quora.com/
What-is-the-maximum-number-of-inodes-in-Linux-filesystems-I-found-suggestion-that-for-I
2014. [Onl ine; v is i ted 0 1 . Jan . 2017] .

40/42

http://oss.sgi.com/projects/xfs/papers/hellwig.pdf
http://sourceforge.net/projects/
https://msdn.microsoft.com/en-us/library/
https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/dn466522(v=ws.11).aspx
https://www.cnet.com/news/
http://llvm.org/devrntg/2007-05/09-Naroff-CFE.pdf
http://www.unix.eom/man-page/FreeBSD/l/lint
https://access.redhat.com/solutions/1532
https://www.spinics.net/lists/linux-xfs/msg06273.html
https://www.quora.com/

BIBLIOGRAPHY

[30] SGI. Original XFS Documentation.

http: //oss. sgi.com/projects/xf s/design_docs/xf sdocs93_pdf/. [Onl ine; v is i ted

1. M a y 2017].

[31] SGI. XFS Documentation, ch. 1: XFS Background, http://xfs.org/docs/
xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/xfs-background.html.
[Onl ine; vis i ted 01. Jan . 2017].

[32] SGI. XFS Documentation, ch. 4.9: mkfs - Realtime, http://xfs.org/docs/
xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/ch04s09.html. [Onl ine;

v is i ted 01. Jan . 2017].

[33] SGI. XFS Filesystem Structure. http://xfs.org/docs/xfsdocs-xml-dev/XFS_
Filesystem_Structure//tmp/en-US/html/index.html. [Onl ine; vis i ted 01. Jan .

2017].

[34] Inc. Synopsys. Coverity 8.7.1 Command and Ant Task Reference. Bund led w i t h Cover i ty

ins ta l la t ion. , 2017.

[35] Jan T u l á k . Docker Hub: jtulak/cppcheck.

https://hub.docker.eom/r/jtulak/cppcheck/. [Docker image] .

[36] Jan T u l á k . [RFC, PATCH 00/17] mkfs: sanitise input parameters.

http://oss.sgi.com/archives/xfs/2015-06/msg00309.html, 2015. [Onl ine, v is i ted

at 01. Jan . 2017].

[37] Jan T u l á k . [PATCH 00/19 v2] mkfs cleaning.

http://oss.sgi.com/archives/xfs/2016-04/msg00542.html, 2016. [Onl ine, v is i ted

at 01. Jan . 2017].

[38] Jan T u l á k . [RFC PATCH 00/22] mkfs.xfs: Make stronger conflict checks.

https://www.spinics.net/lists/linux-xfs/msg02728.html, 2016. [Onl ine, vis i ted

at 01. Jan . 2017].

[39] Jan T u l á k . [RFC PATCH 0/8] mkfs: centralised conflict detection.

https://www.spinics.net/lists/xfs/msg41336.html, 2016. [Onl ine, v is i ted at 02.
A u g . 2016].

[40] Jan T u l á k . [PATCH 00/12] mkfs: save user input into opts table.

https://www.spinics.net/lists/linux-xfs/msg06158.html, 2017. [Onl ine, vis i ted

at 23. Apr . 2017].

[41] Jan T u l á k . Re: [RFC PATCH 1/2] mkfs: unify numeric types of main variables in main().

https://www.spinics.net/lists/linux-xfs/msg05696.html, 2017. [Onl ine, vis i ted

at 7. Apr . 2017].

41/42

http://xfs.org/docs/
http://xfs.org/docs/
http://xfs.org/docs/xfsdocs-xml-dev/XFS_
https://hub.docker.eom/r/jtulak/cppcheck/
http://oss.sgi.com/archives/xfs/2015-06/msg00309.html
http://oss.sgi.com/archives/xfs/2016-04/msg00542.html
https://www.spinics.net/lists/linux-xfs/msg02728.html
https://www.spinics.net/lists/xfs/msg41336.html
https://www.spinics.net/lists/linux-xfs/msg06158.html
https://www.spinics.net/lists/linux-xfs/msg05696.html

Appendices

T h e a t tached opt ica l med ium has th is con ten t :

• docker/ - T h e d i rectory w i t h the conta iners and used scr ipts.

• tex/ - Latex source code, and data used in th is work in results subdi rectory.

• xf sprogs-dev/ - T h e d i rec tory w i t h xfsprogs g i t repository. Includes also the changes

t h a t were not yet merged in c o n f l i c t s branch.

T h e docker/ d i rec tory conta ins subdirector ies for every conta iner , plus these scr ipts, wh ich are

described in Chapter 5:

• prepare. sh - A scr ip t t h a t wi l l down load sources for the docker conta iners. N o t necessary

when the director ies already exists.

• tests.py - A scr ip t t h a t runs all t he tests.

• format-outputs. sh - A scr ip t t o preprocess the o u t p u t o f t he used too ls for later

analysis.

• parse.py - A s imple analysis o f t he o u t p u t s , capable o f p r in t ing differences between

revisions.

• README.md - A n example o f how t o use these scr ipts.

42/42

