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Abstract 

The P h D . thesis is based on the research conducted by the author under a 
joint guidance and advice wi th in a French-Czech doctoral research project. 
The French part of the research was carried out at the Institut Francais 
de Mecanique Avancee in Clermont-Ferrand and was directed by Maurice 
Lemaire and Jean-Marc Bourinet . The Czech part of the work, guided by 
Zdenek Knes l , was elaborated at the Institute of Physics of Materials of the 
Academy of Sciences of the Czech Republ ic in Brno . 

Th is thesis is organised such as to provide the reader a balanced presen
tat ion of fracture, fatigue, computat ional mechanics and reliabil i ty analysis 
methods. Together w i th original developments in direct differentiation of the 
fatigue life equation, this constitutes the set of tools that was leveraged i n a 
novel architecture to develop a stochastic fatigue crack propagation analysis 
procedure meeting the requirements of robustness, speed and accuracy. 

The Czech part of the research was i n the field of computat ional fracture 
mechanics. It is given a detailed exposure i n an appendix not to break the 
continuity of the main text. It consisted i n a continuum mechanics based 
study of the stress field around the crack front of a through-thickness crack 
in two and three dimensions. The main question to be answered was whether 
the special type of singularity at the intersection of the crack front w i th the 
free surface can be one of the sources of abnormalities in the behaviour of 
cracks i n very th in foils. The theoretical bases of the concepts commonly 
used in fracture mechanics were reviewed to understand their applicabil i ty 
to problems wi th special geometries, such as the one of th in foils. A detailed 
numerical investigation of the stress conditions along and around the crack 
front was carried out. The carefully elaborated 3D finite element models of 
through cracks in th in foils exposed certain distinct trends i n the contours of 
the stress field as the sheet metal becomes thinner. B u t these findings could 
not offer an explanation for the abnormal behaviour observed i n fatigue tests 
on cracked th in foils. 

Despite the fact that the above hypothesis appeared ungrounded, this 
research helped to fully appreciate the assumptions behind two-dimensional 
fracture mechanics models as well as behind two-dimensional crack propa
gation models. 

The larger part of the thesis, which also brings an original contribution, 
deals w i th numerical model l ing and stochastic analysis of complex-geometry 
crack propagation problems. The use of numerical mechanical models for 
such analysis has so far been scarce because of prohibi t ively high computa
t ional effort. Th is thesis shows that through application of advanced com-
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putat ional mechanics and suitable rel iabil i ty analysis techniques, the task is 
tractable even on a personal computer. 

The basic choice when solving a stochastic problem is a choice of the re
l iabi l i ty analysis method. In this thesis, the Fi rs t Order Rel iab i l i ty Me thod 
( F O R M ) was employed. F r o m previous analyses of similar problems, it ap
peared that the problem i n hand showed no important non-linearity. F O R M 
also directly provides information on sensitivities. Further, F O R M proved 
to be very advantageous i n that it does not require the mechanical model 
to compute responses w i t h very low-probabil i ty realisations of the random 
variables. It may be quite difficult to ensure that the underlying computa
t ional model can deal w i th a l l low-probabil i ty configurations of the problem. 
Moreover, such configurations may result i n a different type of failure than 
the one of interest in the analysis. 

A n essential step in the F O R M analysis is to transform the reliabil i ty 
problem i n the physical space to a space of standard normal uncorrelated 
variables. A n intermediate step of the Nataf transformation employed here 
for this purpose is to solve an integral equation in order to calculate a 
correlation coefficient of a bi-variate normal dis t r ibut ion. W h i l e the usual 
approach is to use approximate solution formulae, it was solved i n this thesis 
by an optimisat ion procedure to achieve a higher accuracy. 

It was assumed that the crack propagation velocity obeys the Paris-
Erdogan crack growth equation. Its parameters were obtained from actual 
fatigue test results (the well-known V i r k l e r data). The fatigue life in simu
lations using statistic models based on these data was extremely sensitive to 
the correlation of the two parameters of the fatigue equation. Considerable 
attention was paid to choice of an appropriate statistic model. A bi-variate 
model of normal mult ipl ier and log-normal exponent of the equation gave 
satisfactory results. 

For problems involving crack-crack and crack-structure interactions, a 
solution of the underlying fracture mechanics problem by a numerical method 
becomes necessary. Classical finite element formulation requires updat ing 
the finite element mesh as the crack is growing. Remeshing introduces nu
merical noise which can hamper the convergence of the F O R M reliabil i ty 
algori thm. The accuracy achievable wi th the finite elements that is quite 
satisfactory for deterministic purposes may be insufficient for F O R M . 

O n the other hand, the Extended F in i te Element M e t h o d ( X F E M ) avoids 
remeshing and offers a good numerical stability. X F E M was used i n this 
thesis as a numerical solution method that is very well suited for reliabil
ity analysis of crack propagation problems. The method approximates the 
displacement field in the vic in i ty of the crack through a sum of several dis-
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continuous shape functions, which add up to uni ty at a l l points. The nodal 
coefficients for these functions are found by invoking the m i n i m u m energy 
principle. 

F O R M requires the computat ion of the derivatives of the response func
t ion, which is i n the present case the fatigue life integral. Numer ica l differ
entiation is t ime consuming and introduces numerical errors. Several useful 
direct differentiation formulae were therefore derived and used. They speed 
up the computat ion dramatically. In test examples, the numerical differ
entiation results appeared to approach the direct differentiation results as 
the differentiation step was refined. However, the response derivatives w i t h 
respect to certain variables could only be obtained by employing numerical 
differentiation by means of the finite difference method. 

A n important challenge is to treat variable-amplitude loading. Th is is 
mainly due to the effect of crack growth retardation after overload. F rom 
among the various approaches available, the choice was made to apply the 
so called P R E F F A S method, well accepted i n the French aerospace industry. 
In P R E F F A S , it is assumed that the loading consists of a repeated sequence 
of peaks and troughs, such as a standard design load sequence, and that the 
geometrical factor to the stress intensity equation changes only negligibly 
through a single application of the load sequence. The method is therefore 
applicable also to problems wi th mult iple and interacting cracks, since the 
changing geometry interactions do not enter into the load transformation. 
P R E F F A S transforms the variable-amplitude load sequence into a constant-
amplitude load sequence, operating on the load sequence only, without any 
consideration to the structure itself. 

The author also had the opportuni ty to use a cluster of personal com
puters running L i n u x operating system wi th the O p e n P B S distr ibuted com
put ing util i ty, which appeared to be perfectly suited and easy-to-use for 
reliabili ty analysis purposes. The dis t r ibut ion of the computations of the 
structural response brought a further acceleration of the reliabil i ty analysis 
procedure. 

The computat ional implementation leveraged available software. The 
reliabili ty analysis tools of the F E R U M code wri t ten i n Ma t l ab were em
ployed. The crack propagation procedures were also scripted in Mat l ab , 
ensuring seamless integration wi th F E R U M . The X F E M code developed by 
the L A M C O S institute i n L y o n was exploited to carry out fracture me
chanics analysis. W h i l e the M a t l a b code can be run under an arbitrary 
operating system, dis tr ibuted computing and the X F E M code need to be 
run on a L i n u x machine, which can be accessed through a network connec
t ion. Communica t ion between the codes is enabled by launching executable 
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scripts from Mat l ab , data exchange takes place v i a text files and several 
custom scripts i n P e r l are used to manage the computat ional jobs. 

T w o application examples are presented in the text. In the first, P R E F -
F A S load transformation was carried out separately prior to the analysis 
itself, in which the transformed constant-amplitude load was applied i n a 
deterministic manner. A l imi ted study of randomness i n the P R F E F A S 
model was conducted wi th in the first example. In the second example, the 
load transformation was an integral part of the overall stochastic analysis 
procedure and a material parameter of P R E F F A S was considered random. 
B o t h of the example problems had very low probabilities of failure. 

The implemented procedure appeared capable to analyse stochastic crack 
propagation problems, w i th a complexity at the level of industr ia l applica
tions, w i th robustness, accuracy and reasonable requirements on computa
t ional hardware and time. The procedure is ready to be applied on a wide 
range of complex-geometry two-dimensional crack propagation problems. 

A s the approach is based on the stress intensity factor and the Paris crack 
growth law, extension to three dimensions would require substantial changes 
in the methods used, despite the fact that X F E M has been developed for 
3D problems as well. 
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Abstrakt 

Tato disertace je výs ledkem práce , k t e r á vzn ik la v r á m c i d o k t o r s k é h o 
s tud i jn ího programu autora pod s p o l e č n ý m francouzsko-českým veden ím. 
F r a n c o u z s k ý m partnerem by l Institut Frangais de M é c a n i q u e Avancée v Cler
mont-Ferrand, kde autorovu p rác i vedli prof. Maur ice Lemaire a D r . Jean-
M a r c Bourinet . V České republice se na projektu podí le l Ustav fyziky ma
te r iá lů A V Č R Brno , kde autora vedl prof. R N D r . Zdeněk Knés l , CSc . 

Text disertace je s t r u k t u r o v á n tak, aby č t ená ř i poskyt l vyvážený p řeh led 
teore t ických východisek v oblasti lomové mechaniky, únavy , numer ických 
metod mechaniky tě les a metod ana lýzy spolehlivosti . Spolu s p ů v o d n í m 
odvozen ím p ř í m é derivace vztahu pro únavovou ž ivotnos t jsou p o p s a n é me
tody souborem n á s t r o j ů , na nichž je vys t avěn nový p ř í s t u p s tochas t ické 
ana lýzy š í ření únavových t rh l in , k t e r ý sp lňuje p o ž a d a v k y na robustnost, 
rychlost a p ře snos t výpoč tové metody. 

N a českém pracoviš t i U F M A V Č R se autor zabýva l p ř edevš ím výpoč
tovými metodami lomové mechaniky. Výs ledky t é t o p r á c e jsou p o d r o b n ě j i 
rozvedeny v př í loze s ohledem na plynulost h l avn ího textu. Je j ím cí lem bylo 
zkoumat z hlediska mechaniky těles v t r o j r o z m ě r n é m prostoru pole n a p ě t í 
v okolí čela t rh l iny procházej íc í m a t e r i á l e m . Ze jména mě la b ý t zodpovězena 
otázka , zda specifický typ singularity v p růseč íku čela t rh l iny s vo lným 
povrchem n e m ů ž e b ý t jednou z př íč in a n o m á l n í h o chován í t rh l in ve velmi 
t enkých kovových foliích. Teoret ické zák lady metod běžně použ ívaných v 
lomové mechanice byly p r o s t u d o v á n y z hlediska s p r á v n o s t i jejich aplikace 
na p r o b l é m y se specifickými geomet r i ckými aspekty, ze jména na p r o b l é m 
t enkých folií. B y l a provedena p o d r o b n á n u m e r i c k á ana lýza p ros to rového 
pole n a p ě t í v okolí čela trhliny. Pečl ivě m o d e l o v á n í t rh l iny procházej íc í 
tenkou kovovou folií p o m o c í metody konečných p r v k ů ukáza lo na u rč i t é 
charak te r i s t i cké jevy v p r o s t o r o v é m pol i n a p ě t í v závislost i na t loušťce folie. 
Ty to jevy se však zře jmě nejsou vysvě t l en ím pro a n o m á l n í chování , k t e ré 
bylo u t enkých kovových folií pozo rováno . 

P ře s tože se výše u v e d e n á h y p o t é z a t é t o čás t i v ý z k u m u nepotvrdi la , au
torovi tato p r á c e velmi př i spě la k d o b r é m u p o r o z u m ě n í p ř e d p o k l a d ů m , k te ré 
s to j í za běžně p o u ž í v a n ý m i r o v i n n ý m i řešeními v lomové mechanice, a p řed
p o k l a d ů m rov inných m o d e l ů š í ření únavových t rh l in . 

Vě t š í čás t disertace, v níž jsou rovněž p r ezen továny p ů v o d n í p ř í spěvky 
k řešené problematice, se z a b ý v á n u m e r i c k ý m m o d e l o v á n í m a stochastickou 
ana lýzou rov inných p r o b l é m ů š í ření únavových t rh l in se složitější geometr i í . 
Využ i t í numer i ckého m o d e l o v á n í p ř í s lušného p r o b l é m u mechaniky těles pro 
takovou stochastickou ana lýzu bylo dosud ř ídké z d ů v o d u n e p ř i m ě ř e n ě vysoké 
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výpoč tové ná ročnos t i . Tato disertace ukazuje, že d íky aplikaci pokroči lých 
numer ických metod mechaniky těles a v h o d n ý c h technik ve spoleh l ivos tn í 
ana lýze lze takovou ú lohu řeši t i na o s o b n í m počí tač i . 

Z á s a d n í m m e t o d i c k ý m r o z h o d n u t í m je př i řešení s tochas t i ckého p r o b l é m u 
volba spoleh l ivos tn í metody. V t é t o disertaci je v y u ž i t a a p r o x i m a č n í metoda 
F O R M . To bylo m o ž n é d íky zkušenos t i z p ředchozích ana lýz o b d o b n ý c h 
p rob l émů , v nichž funkce poruchy nevykazovala ž á d n o u v ý r a z n o u nelinear-
i tu . V m e t o d ě F O R M rovněž p ř í m o z í skáváme cenné informace o ci t l ivosti 
spoleh l ivos tn ího indexu na j edno t l i vé p r o m ě n n é a parametry. V ý r a z n o u 
v ý h o d o u se ukáza lo b ý t t a k é to, že n e n í t ř e b a , aby by l numer i cký mechan ický 
model schopen spoč í t a t odezvu t a k é pro všechny velmi m á l o p r a v d ě p o d o b n é 
realizace n á h o d n ý c h p r o m ě n n ý c h . Zajist i t takovou robustnost numer i ckého 
modelu m ů ž e b ý t nebýva le ob t ížné . Zmíněné n e p r a v d ě p o d o b n é konfigurace 
navíc mohou vést na j i n ý z p ů s o b poruchy, než k t e rý je p ř e d m ě t e m našeho 
zájmu. 

Z á k l a d n í m prvkem metody F O R M je transformace spoleh l ivos tn ího pro
b lému z fyzikálního prostoru p r o m ě n n ý c h do prostoru s t a n d a r d n ě n o r m á l n ě 
rozložených nekore lovaných p r o m ě n n ý c h . K tomu se v disertaci využ ívá 
Natafova transformace. J e d n í m z jejích k r o k ů je vyřešen í in teg rá ln í rovnice, 
jej ímž ř e šen ím je kore lační koeficient d v o j r o z m ě r n é h o n o r m á l n í h o rozložení. 
Za t ímco b ě ž n ý m p ř í s t u p e m je aplikace př ib l ižných vzorců , v t é t o disertaci 
byla řešení nalezeno s vysokou p ře snos t í apl ikací op t imal izačn ích metod. 

U rychlosti š í ření vycház í p r á c e z p ř e d p o k l a d u platnosti Parisova-Er-
doganova vztahu. Parametry jeho p r o m ě n n ý c h byly stanoveny z výs ledků 
reá lných únavových zkoušek (ze z n á m ý c h Virk lerových dat). Ú n a v o v á ži
votnost ve výpoč tech využívaj íc ích s ta t i s t i cké modely založené na těch to 
datech byla e x t r é m n ě ci t l ivá na korelaci obou p a r a m e t r ů Parisova vztahu. 
K volbě v h o d n é h o s t a t i s t i ckého modelu se proto p ř i s tupova lo s ná lež i tou 
péčí. D v o u r o z m ě r n ý model s n o r m á l n í m násob i t e l em a l og -no rmá ln ím ex
ponentem Parisova vztahu umožn i l reprodukovat realitu únavových t e s t ů 
s uspokojivou přesnos t í . 

P r o b l é m y šíření t rh l in , kde docház í ke vzá jemné interakci více t rh l in 
nebo k interakci t rh l in s p rvky konstrukce, kterou se t rh l iny šíří, vyžadu j í 
řešit p ř í s lušný p r o b l é m lomové mechaniky numericky. V klasické m e t o d ě 
konečných p r v k ů je t ř e b a neus t á l e aktualizovat sít konečných p r v k ů s t í m , 
jak se t rh l iny šíří. Z m ě n y sí tě jsou zdrojem numer i ckého š u m u , k t e r ý m ů ž e 
i znemožn i t konvergenci spoleh l ivos tn í metody F O R M . P ř e s n o s t metody 
konečných p r v k ů , k t e r á je zcela pos tačuj íc í pro de te rmin i s t i cké problémy, 
m ů ž e b ý t pro s tochas t i cké p ro b l émy řešené metodou F O R M n e d o s t a t e č n á . 

Nutnos t i aktualizace s í tě se lze vyhnout a numer ické stabil i ty d o s á h n o u t 
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n a s a z e n í m rozšířené metody konečných p r v k ů ( X F E M ) . P r o v ý h o d y t é t o 
metody př i řešení spolehl ivos tn ích p r o b l é m ů šíření t rh l in byla X F E M ap
l ikována v t é t o disertaci. V m e t o d ě se pole deformací v okolí t rh l iny aprox
imuje s o u č t e m několika nespo j i tých tva rových funkcí, jejichž součet je v kaž
d é m b o d ě j e d n o t k o v ý . Uzlové hodnoty každé z t ěch to funkcí se naleznou 
aplikací pr inc ipu m i n i m á l n í energie. 

Me toda F O R M je v p o d s t a t ě op t ima l i začn í metodou a vyžadu je proto 
výpoče t der ivací funkce odezvy, tj. v n a š e m p ř í p a d ě diferenciaci in t eg rá ln ího 
vztahu pro únavovou ž ivo tnos t . N u m e r i c k á derivace klade vysoké n á r o k y 
na v ý p o č t o v ý čas a je za t í žena chybou. V r á m c i t é t o d o k t o r s k é p r á c e proto 
bylo p ř í m o u der ivací in t eg rá ln í rovnice odvozeno několik velmi už i t ečných 
v z t a h ů . Jejich aplikace vede k d r a m a t i c k é m u snížení v ý p o č e t n í ná ročnos t i . 
S p r á v n o s t odvozených v z t a h ů byla ověřena s r o v n á n í m s numerickou derivací . 
Ukáza lo se, že výs ledky numer i cké diferenciace měly tendenci se blížit vý
s l e d k ů m odvozených v z t a h ů s t í m , jak se z jemňoval krok numer ické dife
renciace. P r o něk te ré p r o m ě n n é však nebylo možné derivaci funkce odezvy 
získat j inak než numerickou der ivací metodou konečných rozdí lů . 

Dů lež i t ým prvkem řešení p r o b l é m u š í ření t rh l in je uváž i t p roměnl ivos t 
zat ížení . T a se projevuje ze jména z p o m a l e n í m rychlosti r ů s t u t rh l iny po 
pře t ížení . Z r ů z n ý c h d o s t u p n ý c h p ř í s t u p ů byla zvolena metoda P R E F F A S , 
k t e r á je š i roce a k c e p t o v á n a ve f rancouzském le teckém p r ů m y s l u . Me toda 
vycház í z p ř e d p o k l a d u , že za t ížen í s e s t ává z opakovaných sekvencí m a x i m a 
m i n i m (nap ř ík l ad ze s t a n d a r d n í c h zatěžovacích profi lů) , a z p ř e d p o k l a d u , že 
v l iv změny geometrie trhliny, k níž dojde b ě h e m j ed iné aplikace zatěžovací 
sekvence, na součini te l intenzity n a p ě t í je z a n e d b a t e l n ý . P R E F F A S lze proto 
využ í t i pro řešení p r o b l é m ů s více vzá jemně se ovl ivňujícími t rh l inami , 
p ro tože měníc í se geomet r ické p o m ě r y n e m a j í v l iv na transformaci zat ížení . 
Me toda P R E F F A S transformuje zatěžovací sekvenci s p r o m ě n l i v ý m i am
pl i tudami za t ížen í na sekvenci s k o n s t a n t n í ampl i tudou zat ížení , a to bez 
p o t ř e b y jakékol iv informace o za těžované konstrukci. 

A u t o r mě l t a k é m o ž n o s t využ íva t cluster osobních poč í t ačů s o p e r a č n í m 
s y s t é m e m L i n u x a se s y s t é m e m O p e n P B D pro dis tr ibuci výpoče tn í ch úkolů , 
k t e rý se ukáza l b ý t v ý b o r n ý m a snadno p o u ž i t e l n ý m s y s t é m e m pro spo-
lehl ivostní analýzy. Distr ibuce v ý p o č t ů odezvy konstrukce př ines la dalš í 
zrychlení celé spo leh l ivos tn í analýzy. 

P ř i poč í tačové implementaci nav ržené metody se využi lo d o s t u p n é h o 
softwaru. P r o spo leh l ivos tn í ana lýzu se upla tni ly algoritmy s y s t é m u F E R U M 
n a p s a n é h o v jazyce Ma t l ab . Procedury simulace š í ření t rh l in byly rovněž 
n a p s á n y v M a t l a b u , což zajistilo snadnou integraci s k ó d e m F E R U M . A -
na lýza p r o b l é m u lomové mechaniky byla provedena metodou X F E M napro-

g 



gramovanou ú s t a v e m L A M C O S univerzity I N S A v Lyonu . Skr ipty v Ma t -
labu lze spustit na počí tač i s l ibovo lným o p e r a č n í m s y s t é m e m . Distr ibuce 
v ý p o č t ů a program X F E M běží pouze na poč í tač i se s y s t é m e m L i n u x , k 
němuž m ů ž e b ý t i vzdá l ený p ř í s t u p po sí t i . Komunikace mezi o b ě m a M a t -
labem a X F E M je z p r o s t ř e d k o v á n a s p u s t i t e l n ý m i skripty vo lanými z Ma t -
labu. V ý m ě n a dat p r o b í h á p r o s t ř e d n i c t v í m t ex tových s o u b o r ů a v ý p o č e t n í 
úkoly jsou sp ravovány několika skripty v jazyce Per l . 

V disertaci jsou p r e z e n t o v á n y dva p ř ík l ady aplikace navržené v ý p o č e t n í 
metody. V p r v n í m p ř í k l a d u je transformace za t ížen í metodou P R E F F A S 
provedena zvláš t p ř e d s p u š t ě n í m v l a s tn í analýzy, v níž pak bylo transfor
mované za t ížen í o k o n s t a n t n í a m p l i t u d ě ap l ikováno už jen deterministicky. 
V r á m c i p r v n í h o p ř í k l a d u tak byla okra jově provedena i ana lýza n á h o d n o s t i 
v modelu P R E F F A S . V d r u h é m p ř í k l a d u byla transformace za t ížení ned í lnou 
součás t í celkového postupu s tochas t i cké ana lýzy a ma te r i á lový parametr vs
tupu j í c í do algoritmu P R E F F A S b y l m o d e l o v á n jako n á h o d n á p r o m ě n n á . 
P r a v d ě p o d o b n o s t poruchy v obou p ř ík ladech byla velmi nízká. 

I m p l e m e n t o v a n ý postup se ukáza l b ý t dobrou metodou ana lýzy stocha
st ických p r o b l é m ů šíření t rh l in , jejichž geometrie dosahuje složitost i apl ikací 
v p r ů m y s l u , p ř ičemž vykazoval robustnost, p ře snos t a p ř i m ě ř e n o u ná ročnos t 
na v ý p o č e t n í p r o s t ř e d k y a čas . Postup lze snadno uplatnit na š irokou ř a d u 
rov inných p r o b l é m ů šíření t rh l in se složitou geometr i í . 

Vzhledem k tomu, že je v y v i n u t ý postup založen na použ i t í součini te le 
intenzity n a p ě t í a Parisova vztahu pro rychlost š íření t rh l in , by rozší ření 
na p ros to rové ú lohy vyžadovalo značné změny v použ ívaných p ř í s t upech , 
a to i p ře s to , že n u m e r i c k á metoda X F E M byla vyv inu ta i pro p ros to rové 
problémy. 
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Resume 

Cette these se basse sur l a recherche réalisée par l 'auteur sous direction 
conjointe de deux tuteurs dans le cadre d 'un doctorat en cotutelle franco-
tchěque . L a partie francaise de cette recherche a é té réalisée á l ' Institut 
Frangais de M é c a n i q u e Avancée á Clermont-Ferrand sous la direction de 
Maurice Lemaire et Jean-Marc Bourinet . L a partie t c h ě q u e du travail , 
guidée par Zdeněk Knésl , a é té m e n é e á l ' Institut de physique de m a t é r i a u x 
de 1'Académie des Sciences de la R é p u b l i q u e T c h ě q u e . 

L a these est organisée ď u n e m a n i ě r e á donner au lecteur une presentation 
équi l ibrée des m é t h o d e s de la m é c a n i q u e de rupture, de fatigue, de m é c a n i q u e 
n u m é r i q u e et de 1'analyse fiabiliste. Ces m é t h o d e s , ainsi que des déve loppe-
ments originaux en differentiation directe de 1'équation de la tenue en fa
tigue, r ep ré sen t en t la boite á outils qui a é té exploi tée dans une architecture 
originelle pour déve lopper une procedure ď a n a l y s e stochastique de la propa
gation de fissure, qui r é p o n d aux exigences de robustesse, vitesse et precision 
du calcul. 

L a partie t chěque da la recherche se situe dans le domaine de le m é c a n i q u e 
n u m é r i q u e de rupture. Ce travail est p résen té en detail dans 1'annexe afin 
de ne pas interrompre la con t inu i t é d u texte pr incipal . II consistait en une 
é tude , fondée sur l a m é c a n i q u e de mil ieux continus, du champ tr idimen-
sionnel de contraintes dans le voisinage du front ď u n e fissure passante á 
travers ď u n e plaque. L a question pr inc ipá le á r é p o n d r e é t a i t si le type par-
ticulier de s ingula r i t ě du champ á 1'intersection du front de la fissure avec 
la surface l ibře pourrai t - t - i l é t r e une des sources de comportement anormal 
de fissures dans des feuilles mé ta l l iques t rěs minces. Les bases théo r iques 
des approches couramment uti l isées dans la m é c a n i q u e de la rupture ont é té 
révisées afin de bien appréc ie r leur appl icabi l i té aux p rob lěmes p résen ten t 
des ca rac té r i s t iques géomét r iques par t i cu l iě res , par exemple au p rob l éme 
ď u n e plaque t rěs mince. Une é t u d e n u m é r i q u e détai l lée du champ de con-
trainte le long du front de la fissure é t a i t menée . Une modé l i sa t ion t r idimen-
sionnelle par elements finis soigneusement é laborée de fissure traversant une 
feuille mince a fait ressortir á certaines tendances des contours d u champ 
de contraintes en fonction de Pépaisseur diminuant de la feuille. Or , ces 
constatations ne constituent pas une explantation pour le comportement 
anormal observe dans des essaies en fatigue de feuilles minces fissurées. 

Malgré le fait que 1 'hypothěse ci-dessus n'etait pas confirmée, cette re
cherche a a idé á appréc ie r pleinement les hypotheses der r iě re les modě les á 
deux dimensions de la m é c a n i q u e de rupture, ainsi que der r iě re les modě les 
á deux dimensions de propagation de fissures par fatigue. 
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L a partie plus é t e n d u e de la these, qui apporte éga lement une contribu
t ion originale, traite de la modé l i sa t ion n u m é r i q u e et de ľ analyse stochas-
tique des p rob lěmes de propagation de fissures p r é s e n t a n t une geometrie 
complexe. Ľ u t i l i s a t i o n de modě les mécan iques n u m é r i q u e s pour une telle 
analyse a jusqu ' ic i é té l imitée par un effort de calcul trop élevé. Cette 
these d é m o n t r e que, par application des m é t h o d e s de m é c a n i q u e n u m é r i q u e 
avancées et des techniques ď analyse fiabiliste convenables, la t ä c h e est 
tractable merne sur un ordinateur personnel. 

Le choix fondamental lors de la resolution ď u n p r o b l é m e stochastique 
est le choix de la m é t h o d e ď analyse de fiabilité. Dans cette thése , ľ a p p r o x i -
mation de fiabilité de premier ordre ( F O R M ) a é té employee. D ' a p r é s anal
yses p récéden tes des p rob l émes similaires, i l est apparu que le p rob l éme 
en main n 'a m o n t r é aucune non- l inéa r i t é importante. Auss i , l a m é t h o d e 
F O R M fournit-elle directement les sensibi l i tés de ľ i n d e x de fiabilité ä des 
différents p a r a m é t r e s . E n outre, F O R M s'est avérée t r ě s avantageuse en 
ce qu'elle n'exige pas que le m o d é l e m é c a n i q u e soit capable de calculer la 
r éponse m é c a n i q u e pour toutes realisations des variables a léa to i res de t r ě s 
faible p robab i l i t é . II se peut avérer t r és difficile ď a s s u r e r que le modé le 
m é c a n i q u e n u m é r i q u e puisse traiter toutes les configurations de faible prob
abi l i té d u p rob l éme . D'autre part, ces configurations de faible p robab i l i t é 
peuvent entrainer un autre type de défai l lance que celui auquel on s ' intéresse 
dans ľ analyse. 

Une etape essentielle dans ľ analyse F O R M consiste ä transformer le 
p rob l éme de fiabilité de ľ e s p a c e physique ä un espace de variables normales 
standards non-corré lées . Une etape in t e rméd ia i r e de la transformation Nataf 
employee ic i pour cet objectif est de r é soud re une equation integrale afin de 
calculer un coefficient de correlation d'une dis t r ibut ion normale bi-variée. 
Alors que l 'approche habituelle consiste ä se servir de formules approxima
tives, ľ é q u a t i o n integrale a é té résolue dans cette these par une procedure 
d 'optimisation pour atteindre une precision plus élevé. 

II é t a i t suppose que la vitesse de propagation de fissure obéissai t ľ é q u a 
t ion de Par is-Erdogan. Ses p a r a m é t r e s ont é té obtenus ä part i r des r é s u l t a t s 
des essaies reelles en fatigue (les données bien connues des V i rk l e r ) . L a tenue 
en fatigue dans les simulations utilisant les modé les statistiques basées sur 
ces données a é té e x t r é m e m e n t sensible ä l a correlation des deux p a r a m é t r e s 
de ľ é q u a t i o n de Par is-Erdogan. O n a p r é t é une attention soigneuse au 
choix ď u n modé le statistique a p p r o p r i é . U n modé le bi-varié de mul t ip l i -
cateur normal et exposant log-normale de ľ é q u a t i o n a donne des r é su l t a t s 
satisfaisants. 

Pour des p rob lémes p r é s e n t a n t des interactions entre des fissures ou 
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des interactions d'une fissure avec la structure, une solution du probleme 
de mecanique de rupture sous-jacent par une methode numerique devient 
indispensable. L a formulation classique de la methode des elements finis 
necessite la mise ä jour du maillage des elements finis chaque fois que la 
fissure s'accroit. L e remaillage introduit un brui t numerique qui peut nuire 
ä l a convergence de l 'algorithme d 'opt imisat ion de calcul de fiabilite. L a 
precision realisable avec les elements finis, qui est tout ä fait satisfaisant ä 
des fins deterministes, peut etre insuffisante pour F O R M . 

Or , l a methode des elements finis etendue ( X F E M ) evite le remaillage et 
offre une bonne stabilite numerique. X F E M etait utilisee dans cette these en 
tant qu'une methode de solution numerique tres bien adaptee pour l 'analyse 
fiabiliste des problemes de propagation de fissure. L a methode construit 
une approximation du champ de deplacement en proximite de la fissure par 
une somme de plusieurs fonctions de forme discontinues, dont la somme et 
Turnte ä tous points. Les coefficients nodaux de ces fonctions sont trouves 
en invoquant le principe d'energie minimale. 

F O R M necessite le calcul des derives de la fonction de reponse, qui est, 
dans le cas present, l ' integral de la tenue en fatigue. L a differentiation 
numerique prend trop de temps et introduit des erreurs numeriques. P l u 
sieurs formules tres utiles ont done ete derivees par differentiation directe de 
l 'equation integrale. Elles accelerent le calcul consider ab lement. Dans des 
exemples d'essaie, les resultats de differentiation numerique semblaient ap-
procher les resultats de differentiation directe avec le raffinement du pas de 
differentiation. Toutefois, les derives de l a reponse par rapport ä certaines 
variables ne pouvaient etre obtenus que en employant la differentiation 
numerique au moyen de la methode de differences finies. 

U n defi important consiste ä traiter le chargement d 'ampli tude vari
able. II s'agit principalement de l'effet de retard de croissance de la fissure 
apres une surcharge. P a r m i les diverses approches disponibles, le choix a 
ete fait d 'appliquer l a methode P R E F F A S , bien acceptee dans l ' industrie 
aeronautique franchise. Dans P R E F F A S , i l est suppose que le chargement 
consiste en une sequence repetee de pics et vallees, comme par exemple 
les sequences de chargement de conception standards, et que le facteur 
geometrique de l 'equation d'intensite de contrainte soit perturbe d'une faqon 
negligeable lors d'une seule application de l a sequence de chargement. Cette 
methode est done applicable egalement ä des problemes de multiples fissures 
en interaction, car les interactions geometriques changeantes n'entrent pas 
dans la transformation de chargement. P R E F F A S transforme la sequence 
de chargement d 'ampli tude variable en une sequence de chargement d 'am
plitude constante, operant seulement sur la sequence de chargement, sans 
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aucune consideration ä la structure e l le-méme. 
L 'auteur avait aussi l 'occasion d'utiliser un cluster de P C executant le 

sys t éme d 'exploitat ion L i n u x avec ľ o u t i l de calcul d i s t r i bué O p e n P B S , qui 
semblait é t r e parfaitement a d a p t é et facile ä utiliser pour des fins de ľ analyse 
flabiliste. L a dis t r ibut ion des calculs de la r éponse m é c a n i q u e a a p p o r t é une 
acceleration s u p p l é m e n t a i r e de la procedure ď a n a l y s e de fiabilité. Dans la 
mise en ceuvre informatique, on exploitait les logiciels disponibles. Les outils 
ď a n a l y s e fiabiliste du code F E R U M écr i ts dans M A T L A B é ta ien t employes. 
Les procedures de propagation de fissure ont é té éga lement écri tes au format 
de scripts de M A T L A B , assurant une integration avec F E R U M sans inter-
facer. Le code X F E M déve loppé par le laboratoire L A M C O S de I N S A de 
L y o n a é té explo i té pour mener les analyses de m é c a n i q u e de rupture. Alors 
que le code M A T L A B peut é t r e execute sous u n sys t éme d 'exploitat ion arbi
trage, le calcul d i s t r i b u é et le code X F E M doit é t r e execute sur un ordinateur 
sous L i n u x , auquel on peut accéder éga lement par le biais d'une connexion 
réseau. L a communicat ion entre les codes est réalisée en lancant des scripts 
exécutab les ä part i r de M A T L A B . Ľ é c h a n g e de données s'effectue par des 
fichiers texte et plusieurs scripts écr i ts en Pe r l sont utilises pour gérer les 
t äches de calcul. 

Deux exemples d 'applicat ion sont p résen tés dans le texte. Dans le pre
mier, la transformation de chargement P R E F F A S a é té effectuée s épa rémen t 
avant ľ analyse el le-méme, dans laquelle ľ a m p l i t u d e constante du charge
ment t r a n s f o r m é a é té app l iquée dans une maniere d é t e r m i n i s t e . Une etude 
l imitée du ca rac t ě re a léa to i re du modele de P R E F F A S a é té m e n é e au sein du 
premier exemple. Dans le deux i éme exemple, l a transformation du charge
ment faisait une partie in tegrá le de la procedure ď a n a l y s e stochastique et 
le parametre de m a t é r i a u de P R E F F A S é ta i t considéré a léa to i re . Tous les 
deux p rob lěmes ď e x e m p l e p résen ta i en t une probabil i ta de défail lance t rés 
faible. 

L a procedure p roposée semblait capable ď a n a l y s e r des p rob lěmes stochas-
tiques de propagation de fissure ď u n e complex i t é au niveau des applications 
industrielles, avec robustesse et precision, en ne posant que des exigences 
raisonnables sur le materiel informatique et le temps de calcul . L a procedure 
est p r é t e ä é t r e app l iquée sur un large éventa i l de p rob lěmes de propagation 
de fissure ä deux dimensions de geometrie complexe. 

Ľ a p p r o c h e est fondée sur ľ u t i l i s a t i o n du facteur ď i n t e n s i t é de contrainte 
et la loi de Paris de propagation de fissure. Pour cela, une extension ä trois 
dimensions nécess i te ra i t des changements substantiels dans les m é t h o d e s 
utilises, ma lg ré le fait que le code X F E M a é té déve loppé ainsi pour les 
p rob lěmes 3D. 
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Chapter 1 

Introduction 

This P h D . thesis is based on the research conducted by the author under a 
joint guidance and advice wi th in a French-Czech doctoral research project. 
The French part of the research was carried out at the Institut Francais 
de Mecanique Avancee i n Clermont-Ferrand and was directed by Maurice 
Lemaire and Jean-Marc Bourinet . The Czech part of the work, guided by 
Zdenek Knes l , was elaborated at the Institute of Physics of Materials of the 
Academy of Sciences of the Czech Republ ic i n Brno . 

Accordingly, the presentation in this thesis evolves along two major axes. 
The Czech contr ibution consists i n a cont inuum mechanics based study of 
the stress field around the crack front of a through-thickness crack i n two 
and three dimensions. The main question to be answered was whether the 
special type of singularity at the intersection of the crack front w i th the free 
surface can be one of the sources of abnormalities i n the behaviour of cracks 
i n very th in foils. Th is part of the research was motivated by the efforts to 
identify the possible causes of the mentioned abnormal behaviour observed 
i n experiments [37]. 

The theoretical background established by the above research helps to 
understand some of the issues involved in the fracture mechanics based mod
elling of crack propagation, which is the subject of the French part of the 
research. 

It is also this latter part of the work where a majori ty of the original 
contributions of this thesis are put forward. The most significant result is a 
proposal, implementation and demonstration of an efficient approach for a 
reliabil i ty analysis of complex fatigue crack propagation problems. The com
plexity here involves both complex 2D structural configurations requiring a 
finite element analysis and complex loading conditions. The inevitable con-
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sequence of including of these comprehensive considerations i n the analysis 
results i n the formulation of a computat ional task wi th formidable demands 
on computer resources. Th is barrier of excessive computer t ime has so far 
discouraged researchers and engineers from embarking onto a rel iabil i ty anal
ysis of crack propagation wi th finite element modell ing. The contr ibution 
of this research is then the proposed efficient approach rendering this com
prehensive analysis computat ional ly tractable. 

1.1 The Crack Propagation Problem 

This section briefly outlines the general background for the engineering prob
lem of interest i n this thesis. The development of cracks is an important 
phenomenon i n many engineering materials subjected to fatigue loading. 
The fatigue problem entered the field of engineering vigorously together 
w i t h the expansion of railway transportation. Broek [15] reports how in
credibly frequently serious fatigue failures occurred on the Br i t i sh railway 
i n m i d 1 9 t h century. In 1850's, Wholer pioneered fatigue testing on rai l 
vehicle axles. He developed the concept of stress level - fatigue life curves, 
which has ever since been the design principle widely used by the engineers. 

In 1920's, Griff i th [36] studied the material fracture itself. Three decades 
later, the description of the crack t ip stress field [42], [97] la id the basis for 
a study of the current velocity of propagation of an actual crack. Paris [73] 
was the first to propose that the propagation velocity may be related to the 
general elastic state of stress at the crack t ip . A s a matter of fact, Paris 
thereby la id down the fundamentals for an engineering discipline concerned 
w i t h the prediction of propagation of existing cracks, which is the field of 
interest of this thesis. 

1.1.1 Domains of Application 

Model l ing of crack propagation is needed i n industr ia l problems where we 
are interested in the remaining life under propagation of actually existing 
cracks. Expl ic i t e ly said, we admit that the structure i n operation does con
ta in cracks, but we continue operating it despite this knowledge. Such daring 
decision is only admissible for structures that are subject to periodic inspec
tions. Often, this is not the case and modell ing of crack propagation than 
makes no sense. However, in some sectors, namely in air and naval traffic, 
inspections are obligatory and model l ing of crack propagation becomes an 
important tool i n inspection scheduling and in verification of repair designs. 
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1.1.2 Objectives 

The objectives of this thesis can be formulated as follows: 

• review various crack propagation approaches: 

• propose an efficient approach allowing for stochastic crack propagation 
analysis w i th a finite element mechanical model: 

• develop and implement a full crack propagation procedure based on 
the proposed approach: 

• demonstrate the feasibility and u t i l i ty of the developed procedure on a 
reliabili ty problem of a complexity relevant to industr ia l applications. 

1.2 Organisation of the Thesis 

The significant contr ibution of this thesis consists i n proposing a compre
hensive approach to perform an efficient rel iabil i ty analysis of fatigue crack 
propagation using finite element stress analysis. Rather than developing 
completely new methods, the approach is based on put t ing together pieces 
of available methods i n efficient ways and in performing certain numerical 
operations in a more thoughtful manner than what would be an initial-choice 
engineering approach. 

In line w i th this, the thesis is organised in two parts. Par t I presents the 
theory fundamentals as a basis for choosing the most appropriate method 
for the problem of interest. The presentation is developed to a greater detail 
when it comes to the analysis of stresses around the crack front, which was 
the area of concern of the Czech part of the research of the author, as 
mentioned above. Technical details of the presentation have mostly been 
moved to the appendices to keep the text concise. 

Readers familiar w i th the theory of fracture mechanics and fatigue 
(Chapter 2), crack front stress field analysis (Chapter 2.3), finite element, 
meshless and extended finite element methods (Chapter 3) or w i th reliabil i ty 
analysis (Chapter 4) may only quickly sk im through the respective chapters 
of this part of the thesis. 

Based on the theory review presented in Par t I, the second part of the 
thesis identifies the challenges of proper and efficient crack propagation mod
elling. Then , the proposed crack propagation reliabil i ty analysis approach is 
developed. This includes statist ical modell ing and reliabil i ty analysis meth
ods (Chapter 6), the actual crack growth simulation and integration algo
r i t hm (Chapter 7) and distr ibuted computing techniques used to further 
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accelerate the computations (Chapter 8). The val idi ty of some of the pro
posed techniques is then verified by a comparison wi th a purely numerical 
approach. Final ly , an application of the developed approach is demonstrated 
on a full-scope crack propagation rel iabil i ty analysis example. 



Part I 

Deterministic and Stochastic 
Crack Propagation Theory 

and Methods 
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Chapter 2 

Fracture Mechanics and 
Fatigue 

2.1 Introduction 

Prac t ica l model l ing of fatigue crack propagation relies on engineering ap
proaches that have been successfully used for decades, but that involve a 
number of simplifications. To put these models in contrast w i th the phys
ical reality, the physical mechanisms of crack propagation and fracture are 
described first i n Section 2.2.1. The crack propagation and fracture mod
els that are s t i l l i n use today were established in times when electron m i 
croscopy was not available and the developments were driven by a need for 
easily deployable crack propagation models. A s a matter of fact, tractable 
engineering models of crack growth based on ab initio principles do not seem 
to be available. 

Section 2.3 reviews the theory of lienar elastic fracture mechanics as a 
prerequisite for comprehension of the crack propagation models. 

The crack propagation models that have proven efficient in use relate the 
propagation velocity or the fatigue life to the (general) level of stress. The 
objective is to present these practical crack propagation modell ing methods. 
In Sections 2.5, 2.6 and 2.7, we review the deterministic models. Then , we 
w i l l study in Section 2.8 the approaches allowing to take into account the 
inherent randomness in crack propagation. 

7 
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2.2 The Physics of Cracking and Fracture 

Before one starts discussing the modell ing of crack propagation and fracture, 
it is useful to describe, albeit very briefly, the physical mechanisms behind 
crack nucleation, crack growth and fracture. The discussion here is l imited 
to mechanisms relevant to metals. Moreover, certain processes that are not 
the subject of this thesis, such as thermal fatigue or stress corrosion fatigue, 
are left aside i n the discussion. 

2.2 .1 Mechanisms of Crack Nucleation and Propagation by 
Fatigue 

O f a part icular relevance to this thesis is the physics of fatigue damage, 
which occurs under cyclic loading of a magnitude a single application of 
which would not be sufficient to cause failure. W o o d [99] proposed the 
following concept. A n application of a tensile stress results i n a slip along 
the shear plane i n a material grain whose crystallographic orientation w i t h 
respect to the applied stress is favourable for a sl ip. The slip occurs first 
in those favourably oriented grains that are subject to increased stresses, or 
micro-defects and surface roughness, which act as local stress concentrators. 

Hardening on the slip planes results on the one hand in a slight shift of 
the plane along which the next slip upon stress reversal is going to take place, 
and on the other hand, it locks the movement of dislocations. Th is in turns 
gives rise to a formation of the so called slip bands oriented i n the direction 
of the slip, through which the dislocations can move easily. In addit ion, 
reversing slips along parallel planes form intrusions and extrusion on the 
material surface. These two features mark the onset of crack ini t ia t ion. 
Damaged grains contained wi th in the material are not cr i t ical i n terms of 
crack ini t ia t ion, w i th fatigue being essentially a surface effect [15]. 

In the first phase, the cracking takes place i n Mode II along the slip bands 
direction, which is inclined about 45 ° from the surface. Due to hardening 
in the surface grains, the sl ipping may cross the grain boundary to spread 
into the neighbouring grains. A s the size of the crack increases, its tendency 
to follow the shear plane direction weakens and the crack turns towards the 
direction perpendicular to the applied stress. Cracks experiencing relatively 
higher stresses propagate faster and become what is often termed the leading 
crack. 

A mechanism of propagation i n the second phase, when the crack tends 
to grow perpendicularly to the m a x i m u m tensile stress, was suggested by 
Forsyth [31]. The t ip of the existing crack causes large stress concentrations. 
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A slip may then occur, start ing from the crack front, along a slip plane 
inclined from the crack face and more or less matching the shear stress 
direction. Ac t iva t ion of other parallel and perpendicular slip planes results 
i n an extention of the crack as well as i n blunt ing of the crack t ip . Stress 
reversal, or alone the compressive stresses persisting due to an action of the 
surrounding elastic material on the plastified region around the crack t ip, 
w i l l close the crack again and re-sharpen the crack t ip. 

Over the load history, the successive crack t ips and blunted crack faces 
create a pattern of the so called striation. These are well apparent on crack 
surfaces of materials exhibi t ing a manifold of possible slip planes to accom
modate yielding along the usually curved crack front. In other crystallo-
graphic structures, cleavage may come into play and the yielding-induced 
striation is less apparent. Nevertheless, the essential mechanism of crack 
propagation is l inked to local yielding at the crack t ip, i.e. to a slip. How
ever, slip can occur only along the slip planes of the grains. Depending 
on the local grain orientation and size, the crack advances on many and 
variably oriented mini-crack-fronts through the thickness of the specimen. 
Locally, the crack extension direction may deviate considerably from the 
overall crack growth direction. 

Fatigue crack evolution also depends largely on the residual compressive 
stresses existing around the crack t ip due to overloads or due to the rough
ness of the crack surface, which also makes the crack faces come into contact. 
Once the crack lips are separated, their surfaces w i l l never match again per
fectly, as the fractal theory explains. Th is effect is more pronounced i n 
coarser grained materials. 

Other local effects may also intervene to alter the crack propagation 
direction. Inclusions from material phases contained i n the material that 
cannot easily deform plastically as well as microcracks represent local stress 
concentrators, acting as crack attractors. Some second-phase particles can
not be traversed by the crack, which is forced to bypass them. This results i n 
crack defection and Mode II propagation, and effectively into slowing down 
of the growth rate. Macroscopic geometrical boundaries, such as openings, 
corners and nearby cracks, also act as stress concentrators and crack attrac
tors. 

It is also known that commonly used engineering materials, including 
a lumin ium alloy sheets finding wide application i n the aerospace industry, 
are anisotropic w i th respect to their strength, fatigue and fracture proper
ties. Specimens of these materials exhibit different crack propagation speeds 
in fatigue tests, depending on whether the crack propagates i n parallel or 
perpendicular to the rol l ing or extrusion direction of their manufacturing 
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process. 
The above notes suggest that the actual direction of crack propagation 

is on the one hand prevalently governed by the surrounding stress field, 
but on the other hand, it has also a random component, depending on a 
random dis t r ibut ion of inclusions and second phase particles, on random 
cryst alio graphic orientation wi th in the grains, and on the size of the grains. 

2 . 2 . 2 Fracture Mechanisms 

Under extreme stresses occurring due to extreme loads or i n structures where 
cracks have largely propagated by fatigue, fracture failure occurs. It is 
recognised that there are two major mechanisms of fracture, namely ductile 
and bri t t le fracture, depending on the crystalline properties of the material 
of concern and on the temperature [32], [15]. 

In certain materials, like austenitic steel or a lumin ium alloys, many ma
terial grains are oriented such that their crystallographic planes are aligned 
w i t h the direction of the shearing stresses, allowing for easy plastic defor
mation by sl iding along the dense atomic planes. Fracture is i n such cases 
preceeded by apparent plastic deformation and one speaks of a ductile frac
ture. In highly pure materials, s l iding on conjugate slip planes gradually 
leads to necking down of the specimen to just a few percent of its in i t ia l 
section size. However, engineering materials contain inclusions that are in 
capable of much plastic deformation. In presence of high stresses due to 
deformations of the neighbouring alloy crystals, the inclusions tend to yield 
by cleaving apart, forming thus a large cavity i n the material , which in
creases the stresses locally. Meanwhile, smaller particles cannot take the 
same plastic deformation as the surrounding matr ix and de-bond from the 
alloy. The material between the voids necks down by slip un t i l the voids 
ul t imately coalesce to to form a macroscopic crack. 

The crystallographic nature of certain other materials, including ferritic 
steel, makes them susceptible to cleavage of the material grains, rather than 
sl iding along the dense atomic planes. In many other materials, low temper
ature favours the occurrence of this bri t t le type of facture. Fracture than 
occurs by separation of crystallographic planes by breaking of atomic bonds. 
A s the effective section of the material is weakened by the ruptured grains, 
the remaining grains are subject to an increased stress. The microcracks i n 
grains whose cleavage plane is favourably oriented (perpendicular) w i th re
spect to the applied tension may then propagate to the neighbouring grains, 
ul t imately provoking a bri t t le fracture failure. Th is mechanism is termed 
transgranular fracture. The grain boundary phase of some materials, such 
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as cementite i n iron, is par t icular ly weak and bri t t le . In such situation, it 
is easier for the crack to travel along the grain boundary than through the 
grain. The so called inter-granular fracture occurs. 

It remains to note that from the engineering point of view, ductile and 
bri t t le fracture are distinguished based not on the microscopic fracture mech
anism, but rather on the amount of plastic deformation occurring before 
fracture, which accompanies the above described ductile fracture mecha
nism. However, the plasticity may be confined to a smal l volume and the 
overall plastic deformation remains relatively small . Then, the fracture is 
considered bri t t le i n the engineering sense. 

2.3 Crack T ip Stress Field 

2.3.1 Introduction 

The parameters used i n crack propagation theory largely derive from the 
theory of linear elastic fracture mechanics ( L E F M ) . In this Chapter , we 
show how the energy based description of fracture relates to the description 
bui ld ing on the knowledge of the stress field around the crack t ip . We w i l l 
formally introduce the stress intensity factor (SIF) K that appears in the 
empirical crack growth laws reviewed i n Section 2.5. It is of course not the 
a im of the presentation herein to give a complete review of these theoretical 
concepts. The scope w i l l be l imi ted to aspects relevant to this thesis. 

In Section 2.3.5, we w i l l also study the behaviour of the stresses as they 
change along the crack front in three dimensions (3D). A numerical investi
gation relating to this topic is presented i n Append ix A . 3 . The conclusions of 
this study have a direct bearing on the extensibility of the crack propagation 
modell ing approaches to 3D problems. 

Th i s chapter has been compiled based on the theoretical studies and 
numerical simulations carried out by the author as that part of his doctoral 
thesis research, which was conducted in Brno , Czech Republ ic . 

2.3.2 Griffith's Energy-Based Approach 

The fundamentals of bri t t le fracture theory were la id down by Griff i th i n 
his 1921 paper [36]. His reasoning was that in a plate stretched by a fixed 
displacement, the energy needed to fracture the material and thus extend 
the crack comes from a release of elastic energy in the material . 

Considering also the work of external forces, the energy balance of an 
extension of the crack by da i n the elastic body reads (neglecting the kinetic 
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energy): 

8 ^ ( 2 , ) 

where is the work done by the external forces, Wei is the elastic energy 
contained in the plate, and Wsep is the energy needed to separate the crack 
faces over a length da (assuming a unit thickness of the plate traversed by 
the crack). In words, the work delivered by the external forces is consumed 
by 1) augmenting of the elastic energy of the material , and i n 2) separating 
of the crack faces. Griff i th defined 7 to be bonding energy per unit surface. 
Then , for two crack lips i n a plate of a unit thickness, Wsep = 27 da. Th i s 
separation energy per unit crack extension defines the energy release rate G: 

G = dWsep = (Wext - Wel) . (2.2) 

The criterion for crack growth is then G > 27. 
Consider now a plate (domain fi) wi th t ract ion Tf prescribed over a 

part 8£IT of its boundary d£l and displacements uf prescribed over d£lu, 
such that d£lTf)d£lu = dQ, and <9f2r|J<9f2u = 0. 8£IT includes also the 
crack faces T, which are however considered traction free. The change i n 
the elastic energy is: 

d f 1 , d f 1 , 1 f / dui dTi\ , . . 
—— / -ansa duj = — / -TiUids = - / [Ti— h m—— as, (2.3) 
8a Jn 2 l J l J da Jdn 2 2 J d n \ 1 da da J 1 K ' 

and the change in the work of the external forces is: 

dWext f ^du 
Tf-^ds. (2.4) 

da JdaT da 

Note that duf/da = 0 on d£lu and dTf/da = 0 on <9f2y. Equa t ion 2.2 then 
reads: 

G = U U ^ - ^ d s . (2.5) 
2 Jdn \ da da , 

2.3.3 Irwin's Relation between G and K 

The energy release rate G defined i n Section 2.3.2 and the stress intensity 
factor K to be introduced i n Section 2.3.6 were related to each other by 
Irwin [42]. 

Irwin's approach to relate the two quantities was based on the idea that 
the work expended i n separating the crack lips over a length Aa is equal 
to the work done by a crack-face tract ion necessary to close the separated 
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crack faces over the length A a . In fact, the atomic bond forces in the non-
separated material are equated wi th the crack face tract ion on the separated 
crack faces and work is done by the bond forces on the displacements of 
closing or opening of the crack. 

A derivation of Irwin's relation using the stress and displacement for
mulae deduced by Wi l l i ams (see Append ix A ) was shown in [48] or [16]. If 
you are interested, read the detailed derivation in A p p e n d i x A , Section A . l . 
The important result is: 

where 1 and 2 denote a state before and after the crack has extended by 
A a , respectively. T stands for traction, u are displacements, and Kj, KJJ 
and Km are the stress intensity factors for the respective fracture modes. 
The interesting aspect of E q . 2.6 is that G depends only on the intensity of 
the crack-tip stress field (see A p p e n d i x A , Section A . 2 ) . 

2.3.4 The Elastostatic Problem 

For purposes of crack propagation modell ing, the essential result of the frac
ture mechanics theory is the knowledge of the crack t ip stress field. The two-
dimensional (2D) linear elastic solution includes a magnitude factor termed 
the stress intensity factor (SIF) and denoted K. K is the parameter most ex
tensively used as the crack propagation driver i n the empirical crack growth 
laws, see Section 2.5. 

The understanding of the crack t ip stress field solution is useful for sev
eral reasons. Firs t ly , it is s imply good to understand where the S IF one uses 
i n crack propagation modell ing comes from and what it means. Secondly, it 
is always advisable to be aware of the specific assumptions impl ic i t ly made 
in crack propagation modell ing. Also , the definition of the S IF w i l l shed 
light on the question of possible extension of the procedures developed i n 
2D to three dimensional (3D) problems. 

The front of a crack is considered ideally sharp, which gives rise to 
stresses exceeding the elastic l imi t . However, as long as the crack-front 
plastic zone is contained wi th in a smal l volume, an assumption of linear 
elasticity may be val id. In addit ion, the elasto-plastic fracture mechanics 
theories have been developed as an extension of the linear elastic fracture 
mechanics ( L E F M ) . Static L E F M is discussed i n this section. 

The problem we w i l l seek to solve is to find the displacement field and 
stress field i n an elastic body containing a notch or a crack. The body 

(2.6) 
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is subject to a remotely applied static loading and al l other surfaces are 
stress-free, including the faces of the notch or crack. 

In general, the solution to such three dimensional problem can be sought 
by representing it in terms of harmonic potentials. Th is leads to three part ia l 
differential equations for the three displacement components. However, such 
approach is very difficult and can provide a solution for a single specific 
geometry only. 

A more tractable approach is to apply variational calculus. A variational 
method using a special numerical discretisation was applied to solve the 
problem by Bazant & Estenssoro [7] - see Section 2.3.5. 

The 3D problem can of course also be solved numerically by the finite 
element method ( F E M ) or the boundary element method. F E M was used 
in this thesis to study the shape of the stress field i n the vic ini ty of the crack 
front in 3D. 

Final ly , for certain problems, such as through cracks in relatively th in 
plates, we can simplify the problem by reducing it to two dimensions. Then, 
solutions by means of complex potentials or A i r y ' s stress function become 
available. The latter solution is presented in A p p e n d i x A . 2 . Important 
results are summarised i n Section 2.3.6. 

2.3.5 3D Elastic Crack Front Field 

The assumption made in the stress analysis of cracks is that the crack front 
in 3D or crack t ip in 2D are perfectly sharp. In elasticity, this results i n a 
singularity in terms of infinite stresses at the crack front or crack t ip . Stress 
singularity exists also at the t ip or front of a V-notch , but it is of a different 
order than i n the case of a crack. Note that a notch is a dent manufactured 
into the plate, not showing any fatigue damage. B u t from a mathematical 
point of view, a crack may be regarded as a special case of a notch, having 
a notch opening angle a = 0. 

The above dist inct ion between two- and three-dimensional analysis and 
between crack t ip and crack front is not an end in self. For most problems 
of plate fracture wi th through cracks, 2D modell ing is a valid assumption. 
However, for surface cracks and i n a rigorous 3D continuum analysis of 
through cracks, the effect of the intersection of the crack front and the 
body surface, which is termed the crack corner or crack vertex, needs to be 
considered. 

Dauge ([19],[20]) considers both the edge singularity and the corner sin
gularity. In [20], it is shown how a combined edge-and-corner expansion of 
the stress field can be derived mathematically. The expansion consists of 
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both the edge singularity related stress intensity factor together w i th the 
respective shape functions (see A p p e n d i x A ) , and the analogous coefficient 
of the corner expansion wi th a remainder of the respective shape functions. 
The cyl indr ica l coordinate system of the edge expansion and the spherical 
coordinate system of the corner expansion are shown in F i g . 2.1. 

A number of researchers have been looking at the problem of the corner 
of a through crack, at tempting to find an analyt ical solution for the stress 
field. Some authors ([29],[17]) accounted in their developments for the effect 
of the free surface, but d id not expl ici t ly include the corner singularity i n 
their considerations. The i r results disagree wi th the works, in which the 
corner singularity was explicitely considered ([10],[7]). 

It appears that a purely analyt ical solution to the crack vertex-edge 
problem is yet to be devised. Pook [75] even makes a remark that "the 
derivation of exact analytical solution does not appear to be possible". 

Of a part icular interest is the paper of B a ž a n t & Estenssoro [7]. The 
authors represented the stress field around the crack as follows: 

u = px r1'2 /(«£, 9), v = pX r1'2 g(cf>, 9), w = px r1'2 h(cf>, 9), (2.7) 

where u, v and w were the displacements i n the directions p, <p and 9, 
respectively, of a spherical coordinate system wi th origin at the corner point 
and 0 = 0 being the direction of the crack front (cf. F i g . 2.1). However, 
only the (9, 0)-space was discretised by the finite element method. Then , the 
m i n i u m energy principle was invoked. The relevant solution in the (9, <fi)-
space depends on the exponent A on the t h i rd coordinate p, and A was 
obtained as an eigensolution of the finite element problem. 

The results obtained i n [7] show that value of A depends on the Poisson 
ratio v and the local geometry, defined by the crack front termination angle 
(3 (measured from the edge formed by the intersection of the crack face and 

crack front 

Figure 2.1: Spherical and cylindrical coordinates 
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the free surface) and the crack plane incl inat ion angle 7 to the free surface. 
For v = 0.3 and 7 = TT/2, the authors obtained values of A (characterising 
the behaviour of the displacements) decreasing wi th (3 becoming smaller. For 
0 = 7r/2 (crack front perpendicular to the free surface), A can be read from 
the plot in [7] to be about 0.547, i.e. A > 1/2. The value A = 1/2 corresponds 
in the cited results to an angle /3 of about 101°. This is i n agreement w i t h 
the results actually observed in fatigue tests on thicker specimens: the crack 
corners tend to t ra i l beyond the mid-thickness region of the crack front. 

Behaviour of the Stress Fie ld along the Crack Front 

The author has carried out a linear elastic finite element study of the stress 
field behaviour along the crack front. Since this level of investigation would 
be a l i t t le disruptive for the coherence of this concise theoretical background, 
the study is presented in Append ix A . 3 . The important result that can be 
learnt from this study is an evidence that the stresses around the crack front 
show a t ru ly three-dimensional behaviour, see F i g . 2.2. 

S t r e s s y - y [Pa] 

Figure 2.2: Variation of stresses perpendicular to the crack face in the vicin
ity of the crack front 

Consequences can be drawn for thick plate-like specimens and cracked 
bodies of a pronounced 3D nature, and to some extent also for very t h in 
foils. In both cases, the stress dis t r ibut ion is influenced by the presence of 
the corner point singularity discussed above. However, i n the latter case, it 
is a question whether a continuous mechanics investigation can give answers 
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to real-world phenomena, since i n very th in foils, the microstructure effects 
may become prevalent. 

2.3.6 2D Elastic Crack T i p Field 

The classical fracture mechanics and crack propagation theory has been de
veloped around a solution of the stress field in the vic in i ty of the crack 
that was made possible by a reduction of the problem to a two-dimensional 
domain. Once the problem is postulated in a plane, effective mathemati
cal tools become available for its solution. A m o n g them are the theory of 
complex potentials [62] and A i r y ' s stress function. 

A rather complete derivation of the 2D solution using A i r y ' s stress func
t ion is exposed i n A p p e n d i x A . 2 . In this theoretical background overview, it 
w i l l be sufficient to just outline the solution method and present the resulting 
solution. 

In 1957, Wi l l i ams published a paper [97] in which he showed that the 
stress field has a singularity of the type 1/y/r at the crack t ip , where r is 
the distance from the crack t ip . He proposed a solution for the governing 
biharmonic equation 

V 2 V 2 $ = 0 (2.8) 

w i th $ being A i r y ' s stress function: 

_ d 2 $ _ d2§ _ d 2 $ 
a x x ~ W axy~~d^,' a y v ~ d ^ > { ' 

in a factorised form wi th the polar coordinates r and 9 consti tuting mul t i 
plicative terms i n the solution, together w i th a proport ionali ty factor K§: 

$ = K^r2~sf(9). (2.10) 

Note that s w i l l determine the order of singularity of the solution. Using 
the power 2 — s ensures that r can be factored out from E q . (2.8) when 
we substitute E q . (2.10) i n i t . W h a t results is a homogeneous ordinary 
differential equation wi th 9 being the only variable. Symmetr ic loading 
conditions (Mode I, Mode II and Mode III) are then considered and the 
solution function f{9) is sought in the space of trigonometric functions. 

To determine the value of s, boundary conditions (stress-free crack faces) 
are applied. Th is leads to an eigenvalue problem and the complete solution 
is an eigenexpansion. The first eigenvalue determines the order of the sin
gularity, which depends on the in i t i a l notch opening angle a. 
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For a crack, where a = 0, there exists also an eigenvalue equal to zero. 
This results i n a constant stress term, called the T-stress. It has been 
shown [45] that accounting for the T-stress improves the prediction of crack 
propagation, especially for certain geometries of the problem. 

W h e n the eigenexpansion is truncated after the first term (the remain
der w i l l thus include also the T-stress), the stress components in the polar 
coordinate system for the crack opening fracture Mode I are: 

Kj / 5 9 1 39 
a r r = , - cos cos — 

V2^\4: 2 4 2 

Ki (1 9 1 39 
— cos - + - cos — 

A / 2 ^ V 4 2 4 2 

Ki (\ . 9 1 . 30 \ 
vre = - 7 = = f i s m - + i s m T ) . (2.11) 

2.3.7 Conclusions 

Next to shedding light onto the meaning of the stress intensity factor and the 
assumptions under which it is defined, the discussion above brings forward 
the three dimensional character of the crack front stress field. 

Notwithstanding the above, two dimensional modell ing of fracture and 
fatigue is appropriate in most problems of a prevalently two dimensional 
nature. After al l , experience has shown that 2D modell ing can provide very 
useful results. Stress intensity factor (SIF) based crack propagation laws 
have turned out to be effective tools to predict crack growth. They appear 
to be a good operative means of relating the crack growth rate to the state 
of stress i n the structure. A n d we have seen in Section 2.3.6 that it is indeed 
the stress intensity factor K which characterises the magnitude of stresses 
at the crack t ip . 

However, care must be taken when using K. It has been defined as 
the proport ionali ty factor in a solution for a 2D problem. We have also 
established a relation between K and the energy release rate G. Sure, G 
does have a sense as the energy to separate the crack faces over a certain 
area, which is a three dimensional description. B u t when its equivalence 
w i t h the two-dimensional K is established, we impl ic i t ly assume that the 
area reduces to a distance of crack extension. A self-similar extension takes 
place everywhere along the crack front. 

The stress intensity factor has a sense as a global variable that can govern 
the advance of the crack front as a whole. W h e n we use some analogy to 
calculate S IF at various points along the crack length, we are actually using a 
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theory developed under 2D assumptions for another problem. (Admit tedly, 
this is exactly what is done in the numerical simulations i n A p p e n d i x A . 3 ) . 

Various methods have been developed to calculate S IF varying along the 
crack front - their brief overview can be found in Section 3.7. These methods 
have been applied in crack propagation simulations. B u t perhaps due to the 
i l l assumption on the direct extensibility of S IF to three dimensions, the 
val idi ty of such methods is disputable. 

Th is has a direct bearing also on the extensibility of the stochastic crack 
propagation procedure developed i n this thesis to three dimensions. It is 
based on S IF driven crack growth. A l though the numerical method used has 
been successfully applied to 3D problems, the same cannot be said about 
the prediction of crack growth. 

2.4 Fatigue Life Phases 

The lifetime of structures subjected to fatigue loading consists of three dis
t inct phases, in which different physical processes are taking place and which 
can therefore be analysed separately. These three phases are crack ini t ia t ion, 
crack propagation and residual fracture strength. 

2.4.1 Crack Initiation 

Under high-cycle fatigue conditions, a vast majori ty of the fatigue life of 
structures is spent in the crack ini t ia t ion phase. This fact permits to 
carry out an engineering assessment of the entire fatigue life un t i l failure of 
the structure without modell ing the crack propagation and fracture failure 
phases explicitely. Such engineering approaches have proven quite efficient 
i n characterising the fatigue strength of structures. A s a matter of fact, 
the actual physical mechanisms involved in crack ini t ia t ion, as discussed i n 
Chapter 2.2, are difficult to model and a simpler engineering approach is 
thus desirable. 

A r o u n d 1850's, Wohler [98] pioneered fatigue testing in his investigations 
why railway axles fail. Wohler conceived ingenious machines using which 
he subjected specimens to cyclic loading wi th par t ia l or full load relaxation. 
He showed that the fatigue life of the specimens depended on the level of 
maximal stress and on the min ima l to max ima l stress ratio. The plot of 
stress S against the number of cycles iV known as the Wohler curve or the 
S — N curve conveniently describes the high-cycle fatigue data and remains 
in use in engineering fatigue practice unt i l today. 
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S [MPa] 

log N [log of cycles] 

Figure 2.3: A illustration of an S-N curve. 

Figure 2.3 shows an i l lustrat ion of a stress-life curve. The so called 
runout lives, at which the tested specimens fail, are often plotted in log 
scale since lives in the order of magnitude of 10 7 cycles are often needed to 
break engineering test specimens. Obta in ing a useful S — N curve thus also 
requires a considerable number of very long fatigue tests. 

The S — N curves are constructed for sinusoidal loading varying w i t h 
a constant amplitude. In general, the loading is a t ime history wi th vary
ing amplitudes. In such case, one usually employs a convenient counting 
method. The Rainflow counting [57] is the most widely used one. The 
counting procedure transforms the complex loading history into k blocks 
of monotonous loading of rij cycles each. If iVj is the fatigue life given for 
the amplitude of the block considered, the damage of the structure can be 
accumulated using Miner ' s [60] linear damage accumulation hypothesis: 

The structure is considered failed if D > 1. 
The important issues in this methodology are test result censoring and 

including the test statistics (scatter) in the design for fatigue. R i c h literature 
exists on these topics, but is not reviewed here since the S — N approach, 
although important , is not the subject of interest for the purposes of this 
thesis. 

A: 

(2.12) 
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2.4.2 Crack Propagation 

The crack propagation phase of the total fatigue life is the very focus of 
this thesis. W h i l e the physical mechanism of crack propagation was briefly 
described in Chapter 2.2, deterministic crack propagation models are pre
sented i n Sections 2.5 and 2.6, and stochastic crack propagation modell ing 
is the subject of Section 2.8. 

2.4.3 Residual Strength 

In a si tuation of high cycle fatigue, where a very large number of fatigue load 
cycles is necessary before a failure occurs, the growth of the crack starts to 
accelerate after a certain t ime spent i n the propagation phase. This growth 
rate acceleration is a sign of a different crack advance mechanism staring 
to gain ground, i n part icular the mechanism of fracture. In physical terms, 
it has been described i n Section 2.2.2. For the purposes of the reliabil i ty 
analysis carried out in this thesis, the onset of fracture w i l l be considered 
as the event of failure. It w i l l be assumed that this event occurs when the 
stress intensity factor attains the value of the fracture toughness Kc. 

Str ic t ly speaking, fracture failure does not automatically happen when 
Kc is reached. Especial ly under plane stress conditions and wi th ductile ma
terials, the fracture resistance, defined as the energy release rate required 
to extend the crack, increases after an in i t i a l advance of the crack. De
pending on how much addit ional load is supplied, the crack, propagating 
now already by fracture, may stop growing, progress i n a stable manner or 
depart for a final unstable fracture. The fracture resistance is characterised 
by the so called "R-curves". For their discussion, the reader is referred to 
any standard fracture mechanics textbook, e.g. [15] or [2]. 

2.5 Empirical Crack Growth Laws 

In 1961, Paris et al. [74] were the first to propose that the velocity of crack 
growth was controlled by the stress intensity factor K. A t that time, the 
response to this assertion was rejective. In his historical reflection, Paris 
[72] notes: 

We l l , that paper was very prompt ly rejected by three of the 
world's leading journals. A l l of the reviewers s imply stated that 
'no elastic parameter, e.g. K, could possibly correlate fatigue 
cracking rates because plasticity was a dominant feature'. They 
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proceeded to somehow total ly disregard the facts clearly demon
strated by the data! 

Indeed, using the stress intensity factor K characterising the stress field i n 
the vic in i ty of the crack appears to be a suitable way of l ink ing the crack 
propagation velocity to the stresses in the body, which are easy to determine. 
It is by fitt ing the crack growth equation parameters to actual crack growth 
data that one obtains a plausible model for engineering prediction of crack 
propagation in components and structures. In this way, one can abstract 
from the actual physical mechanisms of cracking. The determination of the 
crack growth law parameters is the subject of Section 6.2. 

logdK 

Figure 2.4: The range of validity of the Paris-Erdogan law 

W h i l e the model of Paris & Erdogan is a well-performing engineering 
tool , it should be noted that: 

• it is not based on the actual fatigue crack extension mechanism, which 
is a plastic slip, 

• the exponential form of the law allows for a good fit to the actual crack 
propagation data (see F i g . 6.1). B u t the parameters of the law are 
merely fitt ing coefficients without a clear physical meaning. Moreover, 
due to the exponential form of the law, their physical dimensions for 
the given specimen change wi th the op t imum fit. 

Nevertheless, the so called Par is-Erdogan law [73] (called in the following 
just the "Paris law" for brevity) remains the most widely accepted crack 
propagation model. It is necessary to note that it is suitable for describing 
the medium range of the crack growth history (Phase II), while it fails to 
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capture the phases of crack in i t ia t ion and short crack growth (Phase I) as 
well as the near-critical crack propagation phase, as K approaches its cr i t ical 
value, where the crack growth happens by fracture (Phase III), see F i g . 2.4. 
It is also recognised that the crack growth rate changes wi th the min ima l 
to max ima l stress ratio. Various modifications of the Paris law have been 
proposed to include the above effects, among which the Forman equation. 

It is also important to accentuate that we consider so far only a monoto
nous cyclic loading wi th a constant amplitude and constant maximum, such 
as a sinusoidal load history. 

The Paris law has a very simple form: 

^ = C ( A J O m , (2.13) 

where the growth rate da/dN is expressed i n terms of the increment of crack 
length da per an increment i n the number of load cycles d iV. AK is the 
stress intensity factor range and C and m are coefficients to be fitted from 
experimental data. 

Forman et al. [30] modified the Paris law to account for the acceleration 
of crack growth as K approaches the value of the fracture toughness KC and 
for the effect of the stress ratio R = c r m u i / ( 7 m a x : 

da = C{AK)M

 = C{AK)M

 ( 2 . 

dN (1 - R)KC - A K (1 - R) (KC - KMAX) ' 1 " ' 

where K m a x is the stress intensity value at the load peak. Equa t ion (2.14) 
can be further extended ([82], [77]) to give a zero crack growth when the 
stress intensity factor range AK is below its threshold value AKQ: 

da = C (AK - A K 0 ) M 

dN (1 - R) (KC - KMAX) • { - ' 

For steels and a lumin ium alloys, equation (2.15) gives satisfactory results. 
The widely used crack growth software N A S G R O utilises the equation 

developed by Newman [67], [68]: 

^ - = C ( A K e S r ) A K ° « ( q , (2.16) 
Olv I -y K m i 

where AKeg is the effective stress intensity factor range between the crack 
opening stress CTQ (see E q . 2.23) and the max ima l applied stress c r m a x . p 
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and q are material constants that characterise the crack growth behaviour 
near the threshold AKQ and the fracture toughness K C , respectively. The 
model extends the val idi ty of the crack growth equation to these regions, 
but requires more material parameters to be determined. 

2.6 Propagation under Variable Ampli tude Load
ing 

In Section 2.5, we have assumed that the structure in which the crack prop
agates experiences a loading that oscillates periodically between some fixed 
m i n i m u m and m a x i m u m values. Th is may be the reality for structures sub
ject to periodic loading due to machines and mechanisms attached to them 
or applied i n a controlled fatigue test. 

However, a second important class of structures is one that experiences 
fatigue loading wi th peaks and troughs of varying amplitudes. Th is type 
of loading covers both a realisation of a random loading process as well as 
any deterministic complex loading spectra, such as typical loading sequences 
applied i n the analysis of aircraft structures. 

The pitfal l i n variable amplitude stressing is that the rate of crack prop
agation depends not only on the current elastic stresses in the body, but 
also on the loading history and the related history of plastic stresses in the 
vic in i ty of the crack t ip. 

In 1970's E lbe r [24], [25], introduced an important concept of plasticity 
induced crack closure. Th is concept served as the basis for the development 
of several different models and procedures to take into account namely the 
retardation i n crack growth occurring after an overload in the stressing se
quence. These approaches are described below. 

The consequences of variable amplitude or "complex" loading are 
twofold. O n the one hand, neglecting overloads may lead to an excessive 
overdesign of structures for fatigue. O n the other hand, a structure that ex
periences dur ing its actual service life loading less severe i n overloads than 
has been predicted may fail prematurely. 

In this Section, we review the various models that have been proposed 
to take account of variable ampli tude loading. We briefly sketch the ap
proaches based on the plastic zone size, which appeared i n 1960's. Next , 
we introduce the concept of plasticity induced crack closure developed by 
E lbe r and discuss the methods based on the concept. Special attention is 
paid to the so called P R E F F A S model, which is the one that was actually 
chosen as the method to address variable ampli tude loading wi th in the crack 
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propagation rel iabil i ty analysis framework proposed i n this thesis. 

2.6.1 Models Based on Plastic Zone Size 

The first analyt ical approaches proposed to deal w i t h the issue of crack 
growth retardation after overloads recognise the role of the plastic zone 
developed at the crack t ip. 

rpo 

Figure 2.5: Wheeler crack growth retardation model 

Specifically, Wheeler [94] considers the size of the plastic zone due to an 
overload of KQ occurring at length oo: 

K2 

rPo = cv^- (2.17) 
°~ys 

and the theoretical plastic zone size at a length <n to which the crack has 
propagated after the overload: 

K2 

rpi = cp^-. (2.18) 
°~ys 

In the above equations, ays is the yield stress, K is the elastic stress intensity 
factor and cp is a factor applied to obtain a plastic zone size, which can be 
based on a simplified analyt ical model . The retarded crack growth rate 
is then obtained by mul t ip ly ing the pure K-based crack growth rate by a 
correction factor corresponding to the ratio of rpi to the distance from a, 
up to the l imi t of the plastic zone ahead of the crack t ip created by the 
preceeding overload: 

da ( rpi \ q da 
dNretarded \aQ + VpQ — a% / d N l i n e a r 

(2.19) 
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The power q is to be determined experimentally. 
Wi l lenborg et al. [96] looked at the same si tuation of the overload and 

the current plastic zones from a somewhat different angle and sought the Ki 
that would make rpi extend to the l imi t of the overload plastic zone ahead 
of the crack t ip . Thus, they first determined KitTeq, which is the Ki that 
would hypo the t i ca l ^ be necessary to produce the same propagation velocity 
as before the overload. KijTeq can be obtained from 

K r e 

cp ^ r e q = a 0 + rp0 - a,i. (2.20) 
ays 

Look ing for the way to use the information provided by i*Q, r eq, Wi l lenborg 
et al. chose to use i n the crack advance calculation a stress intensity factor 
range AKeg, which is the current stress intensity factor range AKi reduced 
by an amount of KTed = KijTeq — Kmax^. Us ing the Paris law (Eq . (2.13)), 
the retarded crack propagation rate is then given by: 

= C ( l - ReS)K™s, (2.21) 
C U V retard 

in which 

^ f f = K ^ K ~ A ' ( } 

' ' m a s , ! -''•red 

2.6.2 Elber's Crack Closure Concept 

A far more popular concept in determining the retarded propagation rate is 
the one proposed by E lbe r [24], [25]. A s a matter of fact, E lbe r observed i n 
his crack propagation tests that the crack lips get separated only starting 
from a certain tensile load stress, denoted and termed the crack opening 
stress. S imi lar ly as Wheeler and Wi l lenborg et al, E lbe r considered that 
the plastic zone created by the previous stress peak closes the crack by an 
action on the s t i l l elastic material surrounding the plastic zone. 

The opening stress level oo,i of a load cycle i can be calculated from the 
peak c r m a X j j and the valley am\n^ of the given cycle as follows: 

0o , j = crmax,i - URJ ( c r m a X j j - c r m m j j ) , URJ = auR + bu (2.23) 

wi th au + bu = 1, i n which by is a material dependent parameter determined 
by specific fatigue tests. 

Elber ' s crack closure concept is the basis of the P R E F F A S model, see 
Section 2.6.3 below. 
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2.6.3 The P R E F F A S Mode l 

In his 1985 P h D . thesis [21], D a v y proposed an approach to deal w i t h 
variable amplitude fatigue loading i n crack propagation, which gained a 
wide acceptance in the French aerospace industry. It is known under the 
acronym P R E F F A S , which stands for "Prevision de la fissuration en fatigue 
aerospatiale". Th i s method relies on a transformation of the variable ampli
tude time history of applied stress into a constant amplitude, sinusoidally 
varying stresses, making use of Elber ' s crack closure concept. 

The increment A a of the crack length over an applied load sequence wi th 
N cycles can be calculated using the Paris law as follows: 

N 

Aa = C {AKi)m , (2.24) 
i=l 

where Ki is the stress intensity factor occurring in the given load cycle and C 
and m are material parameters entering the Paris law, considered constant 
throughout the structure. 

In general, K depends on the current crack length through some geom
etry function F(a): 

Ki = F{ai)ai (2.25) 

In addit ion, P R E F F A S is based on Elber ' s concept of opening stress (see 
Section 2.6.2), whereby only a part of AK is effective i n making the crack 
t ip advance. P u l l i n g together the above, we can rewrite E q . (2.24) as: 

N 

Aa = Y , CFm(ai) ( a m a X i i - a0A)m , (2.26) 
i=l 

P R E F F A S makes two major assumptions: 

1. the load sequence results in a crack growth that is smal l enough to 
consider that the relation between the crack length and the stress 
intensity factor remains unchanged: 

2. the crack opening stress is determined by the previous loading history 
and does not disappear w i t h time. 

Note that when the first of the assumptions i n satisfied, the use of the 
method can be extended to high-cycle fatigue problems with multiple and 
interfering cracks. 

Indeed, crack interference results i n a change of the geometry factor 
relating the the crack t ip stresses to the remotely applied stress. 
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PREFFAS operates at the level of the remotely applied stress. It trans
forms the variable-amplitude load sequence into a constant-amplitude load 
sequence to be applied on the structure a single time. The assumption taken 
in P R E F F A S is that this single application of the load sequence brings about 
only a negligible change in the geometry of the problem. 

The geometry factor accounts for crack interaction wi th a l l discontinu
ities. It needs to be updated every time that a significant change i n the 
geometry of the problem takes place. B u t when the first assumption is sat
isfied, this cannot happen dur ing a single application of the load sequence. 
Therefore, crack interaction considerations do not enter into the stress trans
formation by P R E F F A S . 

A s the geometry factor F(a) does not change throughout the load se
quence, it can be separated out of the sum i n E q (2.26): 

N 

Aa = CFm(a) £ (amax4 - a^)m , (2.27) 
i=l 

We see that the sum 
N 

Es = ^ ( c m a x , i — CO,*)™- (2.28) 
i=l 

in E q . (2.27) does not depend on a. Thus, under the above assumptions, we 
can calculate a stress sequence effect Es without any regard to the cracked 
structure itself. 

The P R E F F A S algori thm processes the remote applied stress history. It 
calculates the stress sequence effect on the basis of Elber ' s crack opening 
stress and on some significant history values of cycle peaks and valleys. The 
details are given in A p p e n d i x A . 4 . 

The P R E F F A S method can be used to obtain for a chosen number of 
equivalent load cycles Neq an equivalent load level aeq that w i l l cause the 
same damage as the actual load sequence. 

The remarkable point about P R E F F A S is that a computer simulation of 
crack propagation using P R E F F A S can reproduce surprisingly well actual 
variable-amplitude fatigue tests. 

2.6.4 Randomness in P R E F F A S 

E q . (2.23) involves a material parameter bjj. D a v y [21] suggests to determine 
its value from two fatigue tests, one wi th a monotonous loading and one w i t h 
an overload every 1000 cycles. For a value of crack length retardation rate 
TR observed and known m, one can read bjj from a graphical chart. 
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We w i l l follow this approach, setting up a two dimensional gr id of discrete 
values of by and m. For each pair of values, we w i l l calculate the crack length 
retardation rate as TR = Esnooverload/Esoverload using E q . (2.28), applying 
the correct opening stresses calculated from E q . (2.23). 

The numerical map thus constructed can be inverted to obtain by for 
any pair of values T r and m. Then , assuming that the statistics of T r and 
m are known from experiments, Monte Car lo simulation ( M C S ) can be used 
to produce a sample of by and estimate its statistics. 

Note that the simulated scatter in by captures only the randomness due 
to considering only the material properties T r and m as random, while the 
uncertainty about the P R E F F A S model itself is completely disregarded. 

2.6.5 Strip Yie ld Mode l 

In Section 2.6.3 above, we noted that the transformation of the loading 
history to a constant amplitude loading by the P R E F F A S method takes 
place under the explicit assumption that the geometry factor to the stress 
intensity range does not change. It is thus applicable only to load sequences 
that are quite short w i th respect to the total fatigue crack propagation life 
of the structure. 

O n the other hand, i n the so called St r ip Y i e l d method [87], it is i n 
principle possible to take the s t ructural geometry explicitely into account. 

Similar ly as P R E F F A S , the St r ip Y i e l d model relies on Elber ' s crack 
closure concept and the related crack opening stress. The essential difference 
is i n the way the opening stress magnitude is calculated. Instead of using a 
very simple analyt ical formula as in P R E F F A S , Str ip Y i e l d takes advantage 
of a mechanical model. 

In this model, the material around the crack t ip is idealised as narrow 
plastic-rigid bars. The unbroken bars in front of the crack t ip carry load 
both i n tension, when they can undergo permanent plastic deformation, 
and in compression, under which they are considered r igid . The bars in the 
wake of the crack act only in compression and retain their permanent plastic 
deformation from the t ime they were s t i l l i n front of the crack. Th i s bar 
model is employed to calculate the crack opening stresses. 

F rom the computat ional point of view, the advantage of the Str ip Y i e l d 
model is that the stresses and deformations i n the hypothetic bars can be 
found from an elastic cont inuum model by superposing the elastic solutions 
of two problems. In each of them appears a crack wi th a length increased 
by the size of the plastic zone. The first problem has loading by the remote 
applied stress. In the second case, the part of the crack face corresponding 
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to the plastic zone is loaded in compression by the yield stress. In general, 
the solution method can also be a numerical one to account for complex 
geometrical configurations. 

2.6.6 Note on Full Numerical Calculation 

A further step towards realistic model l ing of crack propagation is to employ 
a finite element model including plastic and contact capabilities to solve the 
mechanical problem at each increment of the crack length. Such full numer
ical calculation requires advanced solution techniques. Elguedj et al. [26] 
have presented developments a iming at the implementation of such crack 
propagation simulation using the Extended F in i te Element M e t h o d w i t h 
plasticity and contact. Al izadeh et al. [1] have proposed a method to cal
culate crack growth rates based on crack closure analysis i n the context of 
cassical finite elements, relying on releasing of nodes as the crack propagates. 

2.7 Propagation Direction 

A n important part of model l ing of crack propagation is to determine the 
direction i n which the crack w i l l next propagate. It this thesis, we are inter
ested in two-dimensional problems. The direction of propagation depends 
on the stress field surrounding the crack t ip . In terms of the fracture me
chanics theory, it depends on the mutua l proport ion of the stress intensity 
factors for Modes I, II and III of crack propagation. 

The three most widely used criteria to determine the current crack 
growth propagation direction are the following: 

• the m a x i m u m hoop stress criterion [27]: 

• the m a x i m u m potential energy release rate criterion [40]: 

• the m i n i m u m strain energy density criterion [80]. 

It was shown i n [11] that the three criteria provide practically the same 
results. We w i l l thus detail only the first of the above criteria, which is also 
practical for application i n that it provides a closed-form solution. 

The m a x i m u m hoop stress criterion assumes that the crack extension w i l l 
occur in the direction that maximises the circumferential stress i n the region 
close to the crack t ip . In polar coordinate system r, 9, the circumferential 
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stress o~e and the shear stress are are given by 

, cos -
^ 7 r f 2 

cos^ -KJJ sin 0 

1 
aRQ = — cos - [Kj sin 0 + KJJ(3cos 6> — 1)] 

2V27rr 2 
(2.29) 

The stress OQ w i l l be a pr incipal stress if oRQ = 0. Th is leads to the condit ion 

JRT/sin(9 + J R : / / ( 3 c o s ( 9 - l ) = 0 . (2.30) 

Solving for 9, the crack propagation direction reads: 

1 / Ki 
9 = 2 arctan 

4 K n 

(2-31) 

Equa t ion (2.31) contains a ± sign. O f the two values of 9 given by the 
equation, the one resulting i n the higher hoop stress OQ is taken as the 
direction of crack propagation. 

2.8 Stochastic Nature of Fatigue Crack Propaga
tion 

A s discussed in Section 2.2, the velocity of fatigue crack propagation de
pends on a number of local circumstances of a random character, including 
the crystallographic structure, material impuri ty, presence of second-phase 
particles and grain size. In addit ion, the overload effect (see Section 2.6) 
comes into play under variable-amplitude loading, and many structures sub
ject to fatigue loading experience random load histories. The modell ing of 
these random aspects of crack propagation is the subject of this Section. 

Before a crack extends to a size provoking a failure of the structure by 
fracture, crack in i t ia t ion and crack propagation take place. In high-cycle 
fatigue settings w i t h low levels of the applied stress, the structure of con
cern may spend a significant part of its lifetime before failure in the crack 
ini t ia t ion phase. In general, there are two major model l ing approaches. In 
the S — N curve approach (see Section 2.4.1), crack in i t ia t ion is included i n 
the total fatigue lifetime. Alternatively, crack in i t ia t ion is modelled statis
t ical ly by considering a random life un t i l the ini t ia t ion of a macro-crack of 
a given size or a random length of an in i t i a l macro-crack at a given time. 
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cycles 

Figure 2.6: The Virkler crack growth data [89] 

The propagation phase of the ini t iated crack is then modelled by fracture 
mechanics techniques (see Section 2.5). 

Fatigue tests ([89],[34]) reveal randomness of crack propagation both in 
terms of differences from specimen to specimen, as well as w i th in a single 
specimen. In a rigorous analysis, bo th the inter-specimen and the intra-
specimen scatter should be taken into account by the crack propagation 
model. However, i f we are interested in an estimation of the lifetime of a 
component rather than i n the exploration of the variabil i ty of crack prop
agation dur ing the lifetime, considering only the specimen-to-specimen dis
persion should generally suffice. 

For completeness of presentation, we shall formally include also the intra-
specimen variabil i ty i n the following discussion. In general, the stochastic 
crack growth equation can be wri t ten as follows: 

^ = Q(t,AK), (2.32) 

where we consider that the crack growth rate depends not only on the stress 
intensity factor range, but it is a stochastic process in time. Some authors, 
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e.g. [82], write down the equation (2.32) i n a factored form: 

^=X(t)Q(AK) , (2.33) 

where X(t) is a positive-valued random process and Q is a (deterministic) 
crack growth law. In addit ion to the stress intensity factor range AK, Q may 
involve also other factors. A n example of Q is the Paris law (2.13). Assuming 
that Q is a known deterministic function and that X(t) is a constant mean 
value plus a Gaussian white noise, Sobczyk & Spencer [82] have derived a 
dis t r ibut ion of the crack size at a given t ime and the fatigue propagation 
life dis tr ibut ion. 

It was noted i n [51] that the correlation structure of the process X(t) de
termines the statistical dispersion of the t ime at which a given crack length 
a is reached. In two extreme cases, X(t) can be considered as totally uncor
rec ted , leading to the smallest dispersion, and as total ly correlated at al l 
times, resulting i n the highest scatter. The latter extreme correlation case 
is equivalent to replacing the stochastic process X(t) by a random variable 
X. 

The following sections present various approaches that have been applied 
i n stochastic modell ing of the fatigue crack propagation process. 

2.8.1 Stochastic Differential Equations 

A natural way to include uncertainties in the crack propagation analysis is 
to randomise the crack growth law used as the model for the crack advance. 
Considering the Paris law (2.13), its parameters C and m are taken as 
random variables. The stress intensity factor range AK is considered to 
be determined by the given deterministic loading history and structural 
configuration in time. The integration l imits may also be random. The 
Paris law thus turns into a stochastic differential equation. 

It is i n general very difficult to find an explicit solution to such nonlinear 
stochastic differential equation. To circumvent this difficulty, one usually 
postulates a rel iabil i ty problem by taking a certain l imi t in terms of max
imal allowable crack length or min ima l required service life. In terms of 
solution methods, one usually resorts to Monte Car lo integration or reliabil
i ty approximation techniques. Th is approach is discussed below. 
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R a n d o m Variable Approach 

The number of cycles to failure can be expressed using the randomised Paris 
law as follows: 

where X{OJ) indicates a variable in the probabil i ty space and x(a) indicates 
a variable that is a function of the crack length. 

Given the uncertainty in crack detection and uncertainty about the ac
curacy of the measurement of the in i t i a l crack length ao, it is natural that 
ao is considered random. 

The random or deterministic nature of the final crack length a/ depends 
on its definition. We may fix a certain deterministic crack length l imi t that 
we do not allow to be exceeded. Alternatively, we may define a,f for example 
as the crack length attained at the instant when the leading crack reaches 
a certain cr i t ical size. The cr i t ical size may be the crack length at which 
the stress intensity factor (SIF) reaches the fracture toughness. Fracture 
toughness tests show some scatter and the value of S IF may depend not 
only on the current crack size, but also on a random in i t i a l geometry and 
the resulting interaction of propagating cracks. Thus, af is in general also 
random. 

Special care needs to be taken to estimate the statistics of the parameters 
C and m from crack propagation test data. A correlation between C and m 
is an important issue, see Section 6.2. 

If we require the structure to survive Ng load cycles without failure, the 
reliabil i ty problem can be formulated wi th the following l imi t state function: 

The problem is then to determine the probabil i ty of failure or the reliabil
i ty index. It is amenable to solution through Monte Car lo simulation or 
reliabil i ty approximation methods, see Chapter 4. 

Note that once the realisations of the random variables including the 
random in i t i a l geometry are known, the crack propagation is completely 
deterministic. Thus , the random variable approach is capable of taking into 
account only the specimen-to-specimen scatter, but not the intra-specimen 
scatter. 

(2.34) 

G = N R - N S . (2.35) 
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2.8.2 Stochastic Process Approach 

The stochastic nature of fatigue crack propagation has lead researchers to 
renounce on empir ical crack growth equations and regard the crack prop
agation as a stochastic process. Two essential types of stochastic process 
approaches to random crack growth are briefly outl ined below. 

M a r k o v C h a i n Models 

Markov processes constitute a special class of stochastic processes. A process 
is said to be Markov ian if its future evolution is determined only by its 
present state and independent of how the process arrived to the present 
state. Here, we describe the discrete-time and discrete-state Markov chain 
modell ing approach as put forward by Bogdanoff et al. [12]. The discrete 
t ime points are the ends of duty cycles, which are repetitive periods of loading 
histories. It is assumed that the damage can at tain discrete states 1 . . . n. 

The in i t i a l state of damage is described by the in i t i a l probabil i ty density 
P o = [TTI , 7T2,. . . , 7rn], where 7Tj is the probabil i ty that the damage is in i t ia l ly 
in state i. The elements {Pij} of the transit ion mat r ix P are the probabilities 
that the damage w i l l be i n state j after the duty cycle given that in was i n 
state i before the duty cycle. 

The state of damage at t ime t is described by the probabil i ty density 
P ( = [-Pt(l), - f*(2) , . . . , Pt(n)], where Pt(i) is the probabil i ty that the damage 
is i n state i at t ime t. Pt can be calculated as follows 

We note that the estimation of {Pij} is a difficult and laborious task. 

Cumulat ive J u m p Stochastic Processes 

The cumulative j u m p approach, proposed i n [83], models fatigue crack prop
agation by random sums of random crack increments: 

N(t) 

where ao is the in i t i a l crack length, which may be a random variable, Yi(u) 
are the random crack increments and N(t) is a stochastic counting process 
such as the Poisson process or a b i r th process. 

It is shown in [82] how the distributions of the crack size at a given time 
and that of the fatigue life can be derived. 

P * — P 0 P 1 P 2 • • • P<-iP< • (2.36) 

(2.37) 
i=l 
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The parameters of the model (the intensity of the Poisson process and 
the parameters of Yi(w)) need to be estimated from crack propagation test 
data. In [82], it is suggested to take the Poisson process intensity as the 
average number of max ima i n the load history. In the cited monograph, 
it is further proposed to relate the parameters of Yi(u>) to the Par is law 
parameters by minimis ing the mean-square difference between the prediction 
of the stochastic process model and the prediction of the Paris law. 

General Note on Parameter Est imation 

We can make a generally val id observation that the estimated parameters of 
the crack propagation stochastic process account for the material effects, for 
the crack and structure geometry, and for loading. Thus, they need to be 
estimated anew every t ime the crack trajectory, the structural configuration 
or the loading changes. 

O n the other hand, the parameters of empirical crack growth equations 
capture only the material effect. The geometry and loading effects are ac
counted for through the stress intensity factor range. The latter may be 
given by an analyt ical formula or obtained from a numerical solution. 

2.9 Conclusions 

In this Chapter, we have reviewed the elastic theory of the crack t ip stress 
field and saw the nature of the related assumptions that are inherent to the 
classical crack propagation models. 

We also discussed some of the most common methods in deterministic 
and stochastic fatigue crack propagation modell ing. A s a matter of fact, two 
general classes of stochastic crack propagation modell ing approaches can be 
discerned. 

The first class relies on cont inuum mechanics modell ing of the underly
ing mechanical problem. The random nature of crack growth is accounted 
for through a randomisation of the material-dependent parameters of the 
empirical crack growth laws. Load ing is represented by a t ime-domain load 
history and load interaction effects are modelled by means of simplified me
chanical models, such as the P R E F F A S method, or the strip yield model. 

The other class of approaches is inspired by the fact that fatigue crack 
propagation is a highly random phenomenon. These approaches therefore 
renounce on any mechanical model l ing and consider the crack growth as a 
stochastic process. They are able to describe the scatter of crack growth 
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wi th in the specimen. B u t next to this, the process has to adequately cap
ture a l l of the load history, material and geometrical aspects. The somewhat 
wanting propositions how to model curvil inear crack growth [84] or load in
teraction effects [82] reveal about the difficulty of stochastic process models 
to account for these aspects. Certainly, the process parameters can be esti
mated for part icular geometrical configurations and loading processes. Bu t 
the use of stochastic processes to predict crack growth appears to be trou
blesome. 

In summary, stochastic process based modell ing can directly provide 
mathematically elegant answers as to the dis t r ibut ion of fatigue life or crack 
length at a given instant. B u t for predictive purposes, mechanistic models 
seem to have the edge on stochastic processes precisely i n that they dispose 
of the mechanical model . A s we w i l l see i n Par t II of this thesis, this is at 
the expense of immense computat ion effort and precautions that necessarily 
need to be taken in the implementation. 

A final note is made about the abi l i ty to capture the scatter in crack 
growth wi th in a specimen or just the random variabil i ty from specimen to 
specimen. In engineering application, it is often the total life under fatigue 
crack propagation that is of interest. Therefore, for the purposes of this 
thesis, the random variable approach, where the parameters of the empirical 
crack growth laws are random variables w i th a single realisation applicable 
to the entire specimen, is considered sufficient and appropriate. 
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Chapter 3 

Solution Methods for Elastic 
Continuum Problems 

3.1 Introduction 

In Chapter 2.3, we have investigated the nature of the stress field around 
the crack front when the problem is analysed i n three dimensions. In many 
practical applications, simplification of the problem to two dimensions has 
been shown to provide very useful results. 

In Section 2.3.6 (and A p p e n d i x A .2 ) , the solution for the problem of 
a single two-dimensional crack in an infinite 2D body has been presented. 
Ana ly t i c a l solutions can also be derived for various configurations involving 
mult iple cracks. However, pract ical crack propagation prediction problems 
give rise to complicated structural geometries that require numerical analy
sis. 

In certain predictive applications, such as the design and assessment 
of repair and crack arrest interventions or inspection scheduling, a correct 
calculation of stresses i n the vic in i ty of the crack t ip in complex structural 
configurations is a crucial component of the analysis. 

Th is chapter reviews several numerical methods suitable for the solution 
of complex-geometry crack problems. The objective is to prepare grounds 
for choosing a numerical method to use i n stochastic crack propagation 
analysis. 

39 
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3.2 Variational Methods 

In Section 2.3.6, we sought a solution (i.e. the stress and displacement field) 
to the boundary value problem ( B V P ) of a crack i n an infinite plate. We 
were looking for solutions satisfying the governing biharmonic equation and 
the boundary conditions. 

A n alternative solution approach is based on the m i n i m u m energy pr in
ciple. Instead of seeking a solution to the governing differential equation 
satisfying the boundary conditions, we look for solutions minimis ing the 
potential energy of deformation or the so called complementary energy. 

This approach lends itself to various approximations of the sought func
t ion. W i t h the approximation, the energy w i l l be somewhat higher than the 
m i n i m u m (that is why finite element models are "stiffer" than the reality), 
but the minimisat ion can be used to find the parameters of the approximat
ing functions. 

We shall consider a loading varying in time. B u t at the same time, we w i l l 
always assume that the rates of change of the loading and the displacements 
involved are such that inert ia forces are negligibly smaller as compared to the 
applied loads and the elastic forces. We shall therefore l imi t our attention 
to solution methods for static problems. 

3.2.1 The M i n i m u m Potential Energy Principle 

In the process of elastic deformation, the energies involved are the work W 
done by the external (surface and body) forces and the strain energy. The 
strain energy U stored i n a volume f2 can be quantified as: 

Let us suppose that a body f2 is i n equi l ibr ium under the action of given 
surface forces T and body forces X. The surface forces T are prescribed 
over a por t ion Ft of the surface, while on the remaining part of the surface 
Fu, the displacements are known. The displacements of the equi l ibr ium 
state are denoted u. Now, consider arbitrary virtual displacements u+5u 
wi th Su vanishing over Fu. The work done by the external forces T and X 
through the v i r tua l displacements Su is: 

or, in tensor notation: 
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The strain energy U is equal to the work done by the external forces i n 
deforming the body. Thus: 

m = s(^J eredft - J TudF - J X « d f i j = 0 , (3.3) 

or, i n an abbreviated notation: 

5U = S(U- W) = 0 . (3.4) 

E q . 3.4 above indicates that the potential energy has an extremum at equi
l ib r ium. For a stable equi l ibr ium, it can be shown that for any v i r tua l 
displacement, the change in the potential energy is positive. Therefore, the 
state of stable equi l ibr ium corresponds to a min imum. This is formulated 
i n the Minimum Potential Energy Principle, stating: 

Of a l l displacements satisfying the given boundary conditions, 
the displacements satisfying the equi l ibr ium conditions make the 
potential energy an absolute min imum. 

3.2.2 The M i n i m u m Complementary Energy Principle 

W h e n the body and the external forces are at equi l ibr ium, we may vary the 
stresses instead of varying the displacements. In addit ion to the equi l ibr ium 
and the boundary conditions that must be fulfilled, the stresses must also 
fulfil the compatibi l i ty conditions, i.e. for two dimensional problems: 

92^xx _j_ 92eyy _ d2exy 

Qy2 gx2 dxdy 

The stress variations 5cr satisfy the equi l ibr ium conditions wi th in £1 

ddoxx d5axy _ d5ayy d5axy 

ox oy oy ox 

as well as the boundary conditions i n terms of prescribed stresses on FT 

n\5axx + n2Saxy = 0 , n25ayy + n\boxy = 0 , (3.7) 

where n i , n2 are the outward normals to FT, but they give rise to variations 
5T i n boundary surface forces on Fu. Let us not require that the stress 
variations 5cr satisfy the compatibi l i ty conditions (3.5). 

If we define the complementary energy as 

n* = U- f TudF, (3.8) 
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it can be shown (see e.g. [91]) that 

6IL* = 5 (u - J Tu&T^j = 0 . (3.9) 

E q . (3.9) proves the Minimum Complementary Energy Principle: 

W i t h the stresses satisfying the equi l ibr ium conditions in Q, the 
boundary conditions on T and the compatibil i ty, the complemen
tary energy functional II* attains an absolute min imum. 

3.2.3 The Ritz Method 

The above m i n i m u m energy principles can be used to derive the differential 
equations for specific problems (see e.g. [85]). More importantly, they can 
be employed to construct series of functions converging to the solution of 
the respective differential equation. The latter use of these principles was 
exploited by R i t z [78] and his method is exposed below. 

Recal l from E q . (3.3) that the potential energy of deformation is 

n = - f aedfl- f TudF- f Xudtt. (3.10) 
2 Jn Jr Jn 

If one substitutes a certain set of functions, e.g. i n two dimensions Uk(x, y) = 
Ylk=i aWk{x, y), satisfying the boundary conditions, into E q . (3.10), the 
unknown parameters a^ can be determined from a system of k equations 

<9n , , 
— = 0 , fc = ( l , 2 , . . . , n ) . (3.11) 
oak 

W i t h such function v,k{x,y) substituted, the energy functional w i l l yield 
some value II (u) that w i l l be different from the min ima l energy value THE = 
H(u) corresponding to the exact solution u(x,y). If the set of functions 
constructed by increasing the number of parameters k is relatively complete, 
then 

l i m n(u) = m i n l l and l i m Uk{x,y) = u{x,y). (3-12) 
k—>oo k—>oo 

3.2.4 The Galerkin Method 

In 1915, Ga le rk in [33] proposed a solution method, which can be shown 
to be equivalent to the R i t z method i n the case of problems of linear self-
adjoint differential equations, but which is more general, since it does not 
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require to formulate the energy functional. Moreover, it can be shown that 
the Gale rk in method gives the best approximation of the actual solution. 

The method is based on the following consideration: If the sought solu
t ion u to the differential equation L(u) = 0 is represented i n terms of a series 
un = Yl?=i aifi w i th suitable properties, then the orthogonality conditions: 

are equivalent to L(u) = 0. If the series un has n terms, E q . (3.13) provides 
a set of n simultaneous equations to determine the coefficients a%. 

The equivalence postulated above tells us why i n the formulation of finite 
element equations we mul t ip ly the governing differential equations wi th the 
trial functions to obtain the set of simultaneous equations. Natural ly, the 
t r i a l and test functions must posses certain properties for the orthogonality 
property to hold. In the finite element and related methods, these properties 
are enforced by applying the partition of unity principle - see Section 3.3. 

We w i l l end the discussion here, having presented the principles of the 
energy methods. Readers who want to dwell into more detail of the theory 
can continue reading i n Append ix B . l , where a simple example is presented 
that illustrates the application of the m i n i m u m energy principle and of the 
Galerk in method. 

In Section 3.2.4 above, we introduced the Gale rk in method, which is the 
mathematical foundation for the finite element method ( F E M ) as well as 
for its generalisations going by the names of the Extended F in i te Element 
M e t h o d ( X F E M ) and meshless methods. In this Section, we briefly outline 
the formulation and the resulting static equations of the F E M . The F E M 
theory is well known and a detailed presentation in the main text is thus 
not considered necessary. For interested readers, there is more detail i n 
Append ix B .2 . 

F rom a historical perspective, the rise of the finite element method as 
a tool to solve a wide variety of engineering problems was triggered by the 
1956 paper of Turner et al. [88]. A n earlier (1943) paper of Courant [18] d id 
not awake that much attention due to the fact that the extensive computa
t ional means that make the finite element method convenient were not yet 
available. However, the paper presented the basis of the modern finite ele-

as n DC (3.13) 

3.3 The Finite Element Method 
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merit method. Courant used a variational formulation wi th piecewise linear 
approximation over the domain decomposed into tr iangular elements. 

Once the potential of the F E M was recognised, huge development efforts 
were devoted to the method. A m o n g the milestones, let us mention the 
1965 paper [102] of Zienkiewicz & Cheung, where F E M was first applied 
to other than structural problems. In his 1972 book, Oden [71] introduced 
nonlinear finite element analysis. A comprehensive bibliography on finite 
element developments up to 1975 can be found in [95]. 

3.3.1 The Boundary Value Problem 

The static equi l ibr ium equation reads: 

D e r + / + T = 0, (3.14) 

where D is the gradient operator matr ix , er= E e is the stress tensor, 
e= D • u is the strain tensor, / are the body forces and T = n<x are the 
boundary tractions satisfying the natural boundary conditions. 

Equa t ion (3.14) is called the strong form equi l ibr ium equation, since it 
requires that equi l ibr ium be satisfied at each point. We relax this strong 
requirement by demanding that equi l ibr ium be satisfied in a weaker, integral 
sense: 

f D - e r d f t + f fdn+ [ T d r 4 = 0. (3.15) 
Jn Jn JTt 

This is called the weak form of the equi l ibr ium equation. A p p l y i n g the 
Galerk in method, we approximate the solution by functions u i n the t r ia l 
functions space, satisfying the essential boundary conditions, and mul t ip ly 
E q . (3.15) by variations v from the test function space: 

f e ( v ) - E e ( u ) d O + f « • / d f i + [ v TdTt = 0 . (3.16) 
Jn Jn JTt 

3.3.2 Finite Element Approximation 

U p to now, the only assumption made about the t r i a l and test functions 
was that they are of a form fulfilling Galerkin 's orthogonality condit ion, see 
E q . (3.13). Th is condi t ion is assured i n finite elements by requiring that 
the base functions satisfy the partition of unity principle. It states that 
the displacement at a material point £ is the sum of contributions from the 
shape functions whose support domain includes the point £. The concept 
can be expressed as follows: 
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- The domain is covered by overlapping sub-domains fij. 

- Each sub-domain fij is the support of a shape function iVj. 

- iVj 7̂  0 only wi th in its support domain: £ £ fij. 

- The shape functions fij verify: 

In F E M , the domain f2 is broken up into ind iv idua l elements, on which 
the displacement field is approximated by base functions called the shape 
functions w i th a support domain (i.e. the domain where the shape func
tions have a non-zero value) consisting of the elements sharing the node 
to which the shape function belongs. The F E M approximation uh of the 
displacements is expressed for any displacement component as: 

I 

u h ( x ) = J ^ « i J V i ( x ) J (3.17) 
i=i 

where Ui are the nodal values of the displacement component and iV, are 
the shape functions. Note that the derivative of the displacement w.r.t . to 
a coordinate direction Xj is then 

Expressing the t r i a l and test functions i n E q . (3.16) i n terms of the F E M 
shape functions, we obtain: 

0 T / B T E B dfl U + 0 T / N T f dn + @T [NTT d r = 0, (3.19) 
Jn Jn Jr 

where B is the matr ix of shape function derivatives and U is a vector of 
nodal displacements. Invoking the arbitrariness of the variations, the nodal 
displacements 0 of the test functions disappear from the equations. Intro
ducing the following notation: 

Stiffsness matr ix : K = / B T E B df2, 
Jn 

B o d y force vector : F s = / N T f d f 2 , 

Tract ion force vector : F* = / N T T d r 
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we arrive at the familiar static finite element equation: 

K U = F s + F* . (3.20) 

Note that due to the support domain of the shape functions being l imited to 
the elements surrounding the given node, the stiffness matr ix K is banded, 
provided that an appropriate node numbering is used. 

3.4 The Extended Finite Element Method 

Researchers realised that next to the finite element shape functions, there 
were other ways to approximate the displacements that conform to the part i
t ion of uni ty concept and that may indeed be more advantageous for certain 
problems involving evolving discontinuities such as cracks and interfaces. 

The earliest numerical method that was not based on element-wise ap
proximation was the so called smooth particle hydrodynamics [35], which 
is best suited for model l ing the interaction of a large number of particles. 
A field approximation method that has been successfully applied i n solid 
mechanics is the moving least squares ( M L S ) approximation proposed by 
Lancaster & Salkauskas [47]. Nayroles et al. [65] were the first to employ 
M L S in a Galerk in method. The approach was popularised under the name 
of Element Free Gale rk in M e t h o d ( E F G M ) or "meshless" method by Be-
lytschko et al. [9]. The meshless methods are discussed in Section 3.5. 

Of interest here is another approach to approximate the displacement 
proposed by Moes et al. [61]. Basing themselves on the par t i t ion of uni ty 
finite element method put forward by Melenk & Babuska [4], they enriched 
the finite element approximation space locally w i th problem-specific shape 
functions. 

3.4.1 X F E M Equations 

X F E M is an extension of the finite element method and as such, it is derived 
i n much the same way by the Galerkin 's method, see Section 3.2.4. Thus, 
we can take also here E q . (3.16) as the point of departure. The difference 
is that we substitute for displacements into the equation the displacements 
approximated by functions corresponding to the known shape of the dis
placement field. In the case of a crack in a linear-elastic 2D body under 
plane strain or plane stress, the approximation reads: 

m nj nK / 4 \ 
u h ( x ) = ^ ^ i V l ( x ) + ^ 6 J i V J ( x ) J F / ( x ) + ^ i V f c ( x ) £ V f c F , ( x ) , (3.21) 

i = l j=l k=l \l=l / 
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Figure 3.1: Crack tip enrichment function r sin ö 

where Ui are the classical finite element nodal displacements, bj and are 
addi t ional nodal parameters related to the enriching shape functions, nj 
and HK are the sets of enriched nodes along the crack and around the crack 
t ip , respectively, H(x) is a j ump function of the discontinuity enrichment 
having the value 1 "above" and -1 "below" the crack, and there are four 
crack t ip enrichment functions used, defined as: 

{Fi(r,9)} 'r cos • 'r sin • IT sm V sin • IT sm V cos • (3.22) 

where (r, 9) are the local polar coordinates at the crack t ip . T h e functions i n 
E q . (3.22) span the crack-tip displacement field. Note that by mul t ip ly ing 
the enrichment functions H(x) and Fi(r,9) w i th the finite element shape 
functions in E q . 3.21, the enrichment is effectively localised to the region 
around the crack; at the same time, the par t i t ion of uni ty is enforced. 

3.4.2 Integration and Solution 

Note that the j u m p function H(x) and the tip-enrichment function y 7 ^ s in | 
are discontinuous across the crack, while the remaining functions i n F[(r, 9) 
are not smooth across the crack. B u t the Gauss integration routinely used 
in finite element solutions only performs well w i th continuous and smooth 
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Figure 3.2: Generalised Heaviside function H(x) used for enrichment along 
the crack 

functions. Therefore, each element intersected by a crack must be subdi
vided into sub-triangles as shown in F i g . 3.3, except for cases where the 
area of the parent element cut off by the crack is negligibly small . Note 
that such part i t ioning is for integration purposes only and no new nodes 
or elements are created, as the displacements are s t i l l interpolated over the 
parent elements. 

In a static analysis, the variat ional calculus on weak form yields the 
familiar finite element equations K u = f, i n which appear the addit ional 
nodal degrees of freedom due to the enrichment. In particular, the enriched 
element contributions to the stiffness matr ix K and the external force vector 
f are: 

where b and c denote the enrichment degrees of freedom, cf. E q . 3.21, and 
the sub-matrices appearing in E q . 3.23 are: 

(3.23) 

(3.24) 

(3.25) 
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In E q . 3.25 above, E is the elasticity matr ix and B " , B^ , and B? are the 
matrices of shape function derivatives given by: 

B " 

B 

B -

B^ 

N 0 
0 iV, 

Ni,y N h 

(NiH)jX 0 

0 (NiH) 

(NiH)iy (NiH) 

[Bf B f B f B f ] , 

0 (Ntf) (I = 1,2,3,4) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

W h i l e the part of the stiffness matr ix constructed using E q . (3.26) remains 
invariant throughout the crack growth analysis, new enrichment degrees of 
freedom and/or integration points are added to the remaining parts of K 
whenever the crack advances. Therefore, K has to be re-factorised each 
time. 

3.5 Meshless Methods 

Meshless methods were the first among the numerical methods success
fully applied to evolving boundary value problems which the finite element 
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method does not treat very efficiently due to a need for remeshing. The 
pioneering works on meshless methods were cited in Section 3.4. A rather 
comprehensive treatise of meshless methods can be found in a monograph 
by G . - R . L i u [52]. A good review of meshless methods can be found i n 
Belytschko et al. [8]. 

In meshless methods, displacement approximation is constructed from 
values at discrete nodes. However, a background mesh is s t i l l usually used 
to evaluate the underlying integrals. B u t the discontinuities can stretch 
arbi t rar i ly among the nodes. 

In this brief presentation of the meshless methods, we w i l l focus on the 
Element Free Gale rk in M e t h o d ( E F G M ) [9] using the moving least squares 
( M L S ) approximation [47]. 

3.5.1 Moving Least Squares Approximation 

Similar ly as in the case of the extended finite element method, the main 
difference in the formulation of the E F G M as compared to F E M is in the 
method of approximation of the displacement field. 

Let us come back to the finite element approximation. The support 
domain of a finite element shape function is defined as the domain delimited 
by the elements sharing the node to which the shape function belongs. Thus, 
each element is covered by a number of overlapping domains equal to the 
number of the element's nodes. 

In M L S , the discretised domain is also covered by overlapping support 
domains belonging to ind iv idua l discrete nodes. The value of the displace
ment field component at any given point is influenced by the values at al l 
nodes whose support domain contains the point. To evaluate the integrals 
in E q . (3.16), we are interested in the values of the M L S shape functions 
and their derivatives at the integration points. 

A complete derivation of the M L S approximation is exposed i n A p 
pendix B . 3 . It is shown there that the M L S shape functions can be con
densed to the form 

uh(x) = * / ( £ , x)uj, (3.30) 

much resembling the form finite element approximation and nothing pre
vents us from using it as the t r ia l and test functions i n a Gale rk in method. 
In the above equation, £ is the integration point for which the approximation 
is constructed and uj is the nodal value. 
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3.5.2 Treatment of Discontinuities 

It has been said above that i n E F G M , cracks can pass arbi trar i ly among the 
nodes. Let us then briefly look how discontinuities are treated i n E F G M . 
A common approach is the vis ibi l i ty method, i l lustrated in Figure 3.4. 
Figure 3.4 depicts a discontinuity line, E F G M nodes, a point, marked wi th 

Figure 3.4: Treatment of discontinuities in EFGM. 

a cross, for which the M L S approximation is constructed, and two support 
domains of two distinct nodes. We see that the support domains are cut 
off by the discontinuity by applying the criterion of vis ibi l i ty of the support 
domain points from the respective node. Thus, while the node whose sup
port domain is delimited by the dashed-line w i l l be taken into consideration 
i n constructing the M L S approximation for the point of interest, the node 
of the dotted-line support domain w i l l not. The nodes hidden behind the 
discontinuity have no influence on the field value at the point of interest. 

3.5.3 Note on Computational Effort 

Equations (B.58) and (B.59) give the formulae to construct the shape func
t ion and its derivative, respectively. Remember that i n the M L S approxima
tion, the shape functions need to be constructed anew for each integration 
point. 

Th is is a key issue for the difference in computat ional t ime required for 
the F E M and X F E M methods on the one hand and the E F G M on the other 
hand. In F E M and X F E M , the shape functions are known beforehand, i n 
E F G M , they are not and need to be constructed for each of the integra
t ion points. It can be seen from Equations (B.58) and (B.59) that a mat r ix 
inversion and a number of matr ix mult ipl icat ions are involved in their con
struction. Notwi ths tanding the smal l size of the matrices, this s t i l l adds a 
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significant computat ional burden. 

3.6 The Finite Element Alternating Method 

A boundary value problem solution method that is applicable to crack 
propagation problems is the analytical-numerical finite element alternat
ing method ( F E A M ) , used for the multi-site damage problem by Nish-
ioka & A t l u r i [70], Wang et al.[92], among others. A n example of F E A M 
application i n a stochastic crack propagation problem can be found i n [66]. 

The algori thm of F E A M alternates iteratively between an F E solution 
for a finite body without cracks, and an analyt ical solution for stresses i n an 
infinite body due to t ract ion on the faces of cracks contained i n this body. 
The underlying principle of F E A M is the following concept: by subtracting 
the stresses in the analyt ical solution from the stresses i n the F E solution, 
one obtains the stress field of the finite body wi th cracks. 

Assuming a linear behaviour: 

T = ApE tFE , ta = AAN T, (3.31) 

where T is the crack face traction, tFE is the stress applied on the boundaries 
of the F E model, ta are the resulting stresses at the locations of the finite 
model boundary, obtained i n the analyt ical solution, and AFE and AAN are 
linear operators. Th is is i l lustrated in F i g . 3.5. 

ta 
. A A J A i l 114 ii_A_A_ 

T 
A A I I Ü A A 

K,A 

c) 

Figure 3.5: Constructing the solution for a finite body with cracks from 
solutions for a finite body without cracks, and for stresses in an infinite body 
due to crack face traction. 

The same tractions T are applied on the crack faces both i n the analytical 
and the F E solution. T h e stress on the boundary of the body have to be 
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equal to the applied stresses tQ. The stress tpE for which tQ = tFE — ta can 
be calculated by iteration. The iteration step is broken into the F E and the 
analyt ical solution: 

T1 = KpEto, 

ta = KANT1 = tr , 

Ti+1 = K F E t F E = KFE (t0 + i) , (3.32) 

where i denotes the current i teration step and t\ the residual stress or the 
difference between tQ and tFE — ta, which approaches zero wi th the i teration 
and which occurs due to the crack face traction: t\ = tFE — t0 = tl

a. It is seen 
in E q . 3.32 that the i teration takes the form of a Neumann series expansion, 
although other methods, such as relaxation methods, would certainly also 
apply here. A t k iterations, t^ w i l l be smal l enough to be neglected and the 
stresses on the finite body boundary w i l l be ^ tFE = to + ^2 tl

a-

3.6.1 Analytical Solution for Embedded Straight Cracks 

The analyt ical solution for F E A M used i n this paper is based on Muskhe l -
ishvili 's [62] solution for stresses acting on a straight cut i n an elastic plane. 
A solution for a single crack is used together w i th superposition of traction 
to construct the solution for n cracks. 

The stresses are obtained from a complex potential function, which in
volves an improper integral evaluated along the crack path. Wang et al . [92] 
presented an explicit solution to this integral, approximating the distr ibu
t ion of the crack face traction by a sum of piecewise constant and piecewise 
linear base functions. Th is solution was implemented also for the purposes 
of the the present paper. 

The tractions Tj on the face of a part icular crack j give rise to stresses 
also at the locations of an other crack i. The residual stresses T j i r = AANJTJ 
have to be removed. The stress field is determined by linear operators, hence 
by means of influence coefficients one can find a dis t r ibut ion of stresses X 
such that on each crack face this stress X and the residual stress due to 
t ract ion on other crack faces add up to the crack face tract ion T of the F E 
solution (see also [92]). 

3.7 Stress Intensity Factor Calculation 

The stress intensity factor is the magnitude factor of first term of the crack 
t ip stress field expansion, see Section 2.3.6. A s such, it characterises much 
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of the properties of the crack t ip stress filed. The stress intensity factor 
is therefore the variable that is most often used to predict crack growth 
velocity and direction. 

W h e n a numerical mechanical model is used, we need only a few char
acteristic values to provide the connection between the numerical model of 
the current crack configuration and the crack propagation simulation model. 
The stress intensity facor is a suitable characteristic to bu i ld this bridge. 

It is obvious that a reliable and accurate method of computat ion of the 
stress intensity factor is central to any crack propagation approach using 
a numerical mechanical model . A number of methods to evaluate stress 
intensity factors and strain energy release rates from numerical results have 
been proposed i n the literature ([63], [81], [41], [69], [79]). We w i l l briefly 
review a few of them in this section. 

3.7.1 Stress and Displacement Fitt ing 

A method that is eminent when looking to find the S IF is fi t t ing the SIF as 
a parameter of the theoretical stress dis t r ibut ion from the numerical results. 
The stress data in planes perpendicular to the crack front are compared w i t h 
W i l l i a m ' s [97] 2D solution, which is in stresses. One only needs to choose 
the interval i n terms of distance from the crack t ip , i n which the fitt ing to 
the numerical data is performed, such that this region is S IF dominated and 
that the numerical errors in the vic in i ty of the crack t ip are avoided. Note 
that the resulting S IF depends to some extent on the choice of such interval. 

SIF can also be fitted from the displacements obtained from a numerical 
solution. In this case, however, one needs to assume either plane strain or 
plane stress to relate the displacements to the stress solution of [97]. A 
method employed by the post-processing routines of some F E M packages 
(e.g. [86]) is based on fitt ing S IF from the displacements of three points 
on the crack face. Ingraffea & M a n u [41] used the property of quarter-
point elements [5] that the displacements on the element behave as ^J~p. 
They expressed the crack opening displacement in terms of the quarter-
point element shape functions and compared the leading order terms w i t h 
the theoretical formula for displacements under plane strain or plane stress. 
The S IF can thus be obtained as a function of the quarter-point element 
nodal displacements only. 
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3.7.2 Global Energy Approach 

In the well-known global energy approach, the strain energy release rate G 
(and corresponding SIF) may be obtained by performing two analyses w i t h 
the original crack length and a crack length grown by a smal l amount. The 
strain energy is i n such case obtained from the work of the loads acting 
on the displacements at the corresponding load action points. The strain 
energy release rate G then represents a global quantity, giving no indicat ion 
of its variation along the crack front. 

3.7.3 Local Energy Approach 

One is tempted to adopt an analogy to 2D also here and t ry to use the 
J-integral on contours ly ing i n successive planes perpendicular to the crack 
face. However, when this was attempted and an integration path distant 
enough from the crack front was used to avoid high solution gradients, the 
J-integral showed no significant variat ion along the crack front of energy 
flow to the crack t ip region. Th is suggests significant 3D effects in the 
corner region. 

More rigorous domain integral formulations for three dimensions were 
proposed by Nikishkov & A t l u r i [69] and Wen et al. [93]. 

Another approach to calculate strain energy release rate G is Irwin's 
crack closure integral. The concept is based on the idea the energy absorbed 
by fracturing over a smal l length is equal to the work necessary for closing 
the crack again by the same length. R y b i c k i & Kann inen [79] modified 
the method by considering the stresses in i n front of the crack front and the 
displacements behind the crack front, avoiding thus the need to perform two 
numerical analyses. It was shown i n [79] that the accuracy of this modified 
crack closure integral ( M C C I ) method is good. In the F E M formulation, 
M C C I calculates w i th nodal forces, obtained from stresses using the element 
shape functions. Implementations of M C C I for specific element types were 
then developed, see e.g. Ramamur thy et al. [76] and Narayana et al. [63]. 
Singh [81] proposed a M C C I method independent of the numerical method 
by which the stresses and displacements were obtained. 

3.7.4 The Interaction Integral 

A method of calculation of S IF that is par t icular ly well adapted for finite 
element post-processing is the method of the interaction integral [100], which 
is equivalent to S IF calculation using the independently developed "G-6>" 
method [59]. 
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The well known Rice's contour integral is defined as: 

dm. 
J Will — Cijllj 

Ox dr. (3.33) 

Its value is related to the Mode I and Mode II stress intensity factors: 

K2 K2 

j = 4 L + £ y i , (3.34) E ' 

where 

E 
E for plane stress 

for plane strain 

wi th E being the Young's modulus and v the Poisson's ratio. 
T w o states of the cracked body considered: 

the actual state (1): 

an auxi l iary state (2): 

(i) (i) (i) 4 ' Hi ' ui 

a{2) e(2) u(2) 

such that u~f\x,y) = vf?\x,—y) and a^\x,y) = a^\x,—y), i.e. asymp

totic Mode I field is chosen such that K (2) 
1 - 1 and KP = 0. The J-integral 

(3.35) 

for the sum of the two states is 

j ( l + 2 ) = j ( l ) + j ( 2 ) + j ( l + 2 ) 
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where / ( 1 + 2 ) is the interaction integral 

rijdT (3.36) 

and V F ( 1 + 2 ) is the interaction strain energy 

(3.37) 

M u l t i p l y i n g the integrand in E q . (3.36) by a weighting function q that equals 
a uni ty on the inner integration contour and vanishes on the outer integration 
contour (cf. F i g . 3.6), and by vir tue of the divergence theorem, the contour 
integral is converted to an area integral: 

W i t h the state 2 chosen as the asymptotic field for Mode I, we have: 

Kjj may be calculated i n an analogical way by choosing the state 2 to be 
an asymptotic field for Mode II. 

B y conveniently choosing the function q, the integration area can be 
made to coincide wi th a band of elements forming a r ing around the crack 
t ip - see F i g . 3.6. 

3.7.5 SIF in the Finite Element Alternating Method 

In the F in i te Element Al te rna t ing M e t h o d outlined i n Section 3.6, the stress 
intensity factor comes directly from the analyt ical part of the solution. Thus, 
no finite element post processing is necessary and the accuracy of the cal
culated S IF is very good. 

3.8 Conclusions 

In this Chapter, we have reviewed several numerical methods that have 
been applied i n the analysis of fracture mechanics problems. The discussion 

(3.38) 

(3.39) 
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F E M X F E M Meshless F E A M 
geometry remeshing, au base function reconstruction through 
update tomated algo enrichment, of approxima analyt ical 

r i thms exist automated t ion, automated model 
general yes yes yes no 
geometry 
compu high in addi t ional high i n recon iterations 
tat ional remeshing D O F struction of ap
effort proximation 
stability, mesh depen good good good 
accuracy dent 

Table 3.1: Summary of important features of the finite element (FEM), 
extended finite element (XFEM), meshless and finite element alternating 
method (FEAM). 

has revealed some of the advantages and disadvantages of the ind iv idua l 
methods. Table 3.1 attempts to summarise the features and the pros and 
cons of the methods in the view of crack propagation modell ing applications. 

The important properties for crack propagation model l ing of the indi 
v idua l methods follow from the strategy that each method uses to track 
the geometry of the evolving crack. The finite element method relies on 
remeshing, while the remaining methods reviewed do not. Remeshing intro
duces numerical noise, which is the cause of the deficiency of F E M i n terms 
of stabil i ty of results. Though highly performing remeshing algorithms are 
nowadays available, they are available only as a part of expensive software 
systems and the remeshing process consumes a significant computer time. 

O n the contrary, the X F E M and meshless methods liberate the analyst 
from the remeshing work. Geometry update to follow the crack is carried 
out through enrichment of the base function space in the case of X F E M and 
through reconstruction of the meshless approximation of the displacement 
field in the case of the meshless method. In both cases, these procedures are 
usually integrated i n the overall analysis algorithm. 

W h i l e enrichment increases the number of D O F and thus the size of the 
matr ix to be factorised every t ime the crack advances, reconstruction of the 
field approximation is by far more costly in terms of computer t ime. This 
represents an advantage of X F E M over the meshless methods. 

A significant drawback of the finite element alternating method is that 
the analyt ical solution must be known for a crack wi th an arbitrary shape 
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and arbi trary crack face loading. This makes an automation of the method 
difficult, if it should be capable of application to arbi trary geometries. 
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Chapter 4 

Reliability Analysis 

4.1 Introduction 

Due to uncertainties in the inputs, which include material , geometrical and 
loading uncertainties, the response of s tructural models is also uncertain. 
The scatter i n the input variables is conveniently characterised by statis
t ica l modell ing. The available information on the statistical dispersion is 
summarised by means of random variables. A n d where spatial variabil i ty is 
of concern, random fields can be used. In this thesis, the attention is l imited 
to reliabil i ty models involving random variables only. 

Given the statistical models of the input variables, the objective of prob
abilistic analysis is to determine the statistics of the response (sensitivity 
analysis) and/or the probabil i ty of failure (reliability analysis). The meth
ods to achieve this, including Monte Car lo simulation, advanced simulation 
techniques and rel iabil i ty approximation methods, are described i n the sec
tions to follow. 

Note that there is also an uncertainty about the accuracy of the models 
used. However, this concerns the question how well does the model represent 
the actual physics of the problem. Most often, one can expect a systematic 
bias or l imi ted applicabil i ty of the model rather than a randomness in its 
performance. 

4.2 Probability Transformation 

A classical approach in reliabil i ty analysis is to transform the problem from 
the physical domain to the so called standard normal space, i n which uncor
rected Gaussian variables w i th zero mean and unit variance U correspond 

61 
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to the variables A having their actual distributions in the physical space. 
The transformation is termed the probability transformation because the 

corresponding pairs of values of the variables x <-> u i n the transformation 
have the same probabilities of occurrence. 

A s we w i l l see i n Section 4.3, this transformation is indispensable for 
the rel iabil i ty approximation methods. It w i l l also prove useful in sampling 
from correlated distributions. 

4.2.1 Independent Variables 

W h e n the variables are independent, each variable A j can be transformed 
independently of the remaining variables. We invoke the principle of equal 
probabilities in the physical and the standard normal space Fx^Xi) = $(ttj), 
where Fxt is the cumulative density function of the variable A j and $ is the 
standard normal cumulative density function. The transformation is then: 

x i Z u i = Q-1(Fxi(xi)) • (4.1) 

W h e n the variable A j is normal, the transformation is simply: 

ut = X-l^, (4.2) 

w i t h and oxi the mean and the standard deviation of A j , respectively. 
For lognormal A j , the transformation becomes: 

I n A j - A 
Ui = wi th (, H l + V ) , A = l n M X i - l c 2 - (4-3) 2 

If the inverse of Fxt exists, the inverse transformation back to the physical 
space reads: 

m T ^ X i = F£ (*(ui)) • (4.4) 

F rom the principle of equal probabilities, it follows that the origin of the 
normal space corresponds to the joint median of the physical variables, not 
to their mean. 

4.2.2 Nataf Transformation 

Various transformations have been proposed and successfully applied for the 
probabil i ty transformation of correlated variables. The reader is referred to 
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[49] for a comprehensive review of the various methods. The presentation 
here w i l l be l imi ted to the Nata f transformation. 

The Nataf transformation, proposed i n [23], requires the knowledge of 
only the means pxt and the standard deviations axt of the marginal distr i
butions, and of the correlation matr ix pij. 

The authors [23] made use a transformation originally developed by 
Nataf [64]. The joint probabil i ty density of two physical-space variables 
X j and Xj w i th a correlation coefficient p^ can be expressed i n terms of two 
joint-normally dis tr ibuted variables Ui and Uj w i th a correlation coefficient 
Po,ij-

JXi,Xj {xi, XJ) = (t>2 [Ui, Uj,p0,ij) p , p , , (4.5) 
(p [Ui) (p \Uj) 

where 4>2 (ui,iij, Po,ij) is a bivariate normal probabil i ty density. The corre
lat ion coefficient po,ij must be found such that 

f°° f°° Xj - pXi Xj - PXj A fXi (Xj) fXj (Xj) 
Pij= / -4>2{ui,Uj,po^j)———f^—. (4.6) 

J . o o J . o o <JXi CrXj (f>[Ui)(t>[Uj) 

For any couple of variables Xi and Xj, the Nataf-modified correlation coeffi
cient pojj can be found numerically by a minimisat ion procedure, p^ can be 
used as the point of departure, for which the integral (4.6) w i l l yield a value 
~p~ij. The optimisat ion then consists in finding the m i n i m u m of the absolute 
value of the error \pij — ~Pi~j\. 

The components of the full Nataf-modified correlation mat r ix R o are 
the one-to-one correlation coefficients obtained from E q . (4.6). The Nataf 
transformation reads: 

^ T o , ^ " 1 (FXj(xj)) , (4.7) 

where To is the inverse of the lower tr iangular mat r ix of Cholesky decom
posit ion Lo of the Nataf-modified correlation matr ix R o . The cases where 
the fictive correlation matr ix R o is not positive definite are rather rare i n 
physical problems [49] and the decomposition can thus usually be performed. 

In summary, the transformation of the variables is performed i n the 
following steps: 

- compute the modified the correlation mat r ix R Q using E q . (4.6): 

- compute Cholesky decomposition of R Q : R Q = L o L ^ : 



64 CHAPTER 4. RELIABILITY ANALYSIS 

- transform the variables Xi to centred, unit-variance, but correlated 
variables Ui by E q . (4.1): 

- de-correlate the variables by applying the following formula: 

U = r 0 U . (4.8) 

4.2.3 Sampling from Correlated Distributions 

W h e n performing a Monte Car lo Simulat ion, in which the random variables 
are correlated, it is necessary to sample from a joint dis t r ibut ion function, 
or i n the Nataf sense, from correlated distributions. 

W h i l e alternative approaches exist, it is possible to use the Nataf trans
formation described in Sec. 4.2.2. We sample an uncorrelated vector U i n 
the standard normal space and transform it to a correlated, centred and 
reduced (unit-variance) vector U: 

U = L 0 U . (4.9) 

The variables Xi are obtained using E q . (4.4): 

XI = F~i mui)). 

4.3 Approximation Methods 

The state of failure of a structure is defined through a deterministic l imit 
state function G. A n evaluation of G may involve a possibly computat ional ly 
demanding numerical analysis. G is a function of a part icular realisation of 
the problem random variables x . B y convention, a negative or zero value of 
G defines the failure domain: 

G ( x ) =G(xl,x2,...,xn) < 0 . (4.10) 

Each combination of the random variables, i.e. each point in the n-dimen-
sional space wi th the coordinates x\, X2, • • •, xn, is assigned a probabil i ty 
density. The probabil i ty of failure is then given by the n-dimensional integral 

pf = P\X.\G(X) <0]= f / x ( x ) d x , (4.11) 
JG(x)<0 

where / x ( x ) is the joint probabil i ty density function of the variables X . A n 
example of the joint probabil i ty density function wi th an indicat ion of the 
failure domain Df is shown i n Figure 4.1. 
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f(x\,x2) 

0 

Figure 4.1: Probability mass in the failure domain 

A closed form integration of E q . (4.11) is possible only i n exceptional 
cases. In most cases, the integral in E q . (4.11) has to be resolved by means 
of numerical methods such as the Monte Car lo Simulat ion or through the 
reliabil i ty approximation methods, which are the subject of this Section. 

In the standard normal space, the Fi rs t Order Rel iab i l i ty Me thod 
( F O R M ) and Second Order Rel iab i l i ty M e t h o d ( S O R M ) approximate the 
l imi t state function G by a linear or quadratic function, respectively, at the 
so called design point and provide an estimation of the integral (4.11). A 
linearisation (in F O R M ) of G(x) about the design point w i l l be denoted 
G(x) and is i l lustrated i n Figure 4.2. 

If a l l the variables were normal , the integral would be calculated exactly 
for a linear l imi t state function. In other cases, the basic variables X need to 
be transformed [38] to the standard normal space of uncorrelated Gaussian 
variables, see Section 4.2. 

The design point x* is the point on the l imi t state function having the 
highest probabil i ty density in the standard normal space 

A s a consequence, i n the standard normal space, the transformed coordinates 
of the design point u* give the point on the transformed l imi t state function 
G (u(x)) = 0 that is the closest to the origin of the standard normal space. 
This distance is a measure of reliabil i ty and is termed the Hasofer-Lind 
reliabil i ty index (5HL [38]. 

x* : x £ x : G(x) = 0 A / x(x*) = max (/x(x)) . (4.12) 
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U2 

ä ( u ) = o 
S2 

g(u) = 0 

Figure 4.2: Limit state function linearisation in FORM 

The fact that u* is the l imi t state function point ly ing closest to the 
origin means that it can be found through constrained minimisat ion: 

Having found u*, the F O R M approximation of the probabil i ty of failure 
is easily determined using the dis t r ibut ion function $ of standard normal 
dis t r ibut ion 

A very instructive overview of optimisat ion algorithms suitable for the 
present problem can be found in [49]. A n essential procedure on which 
these methods rely is the calculation of the response function derivatives, 
or sensitivities. The following Section 4.4 briefly discusses the respective 
computat ional approaches. 

4.4 Sensitivity of the Response Function 

In computat ional rel iabil i ty analysis by the approximation methods, the 
calculation of the sensitivities of the response is indeed cr i t ical . O n the one 
hand, the sensitivities are required to be computed wi th high accuracy. A n d 
on the other hand, the computat ional t ime spent in their calculation may 
be excessively high. Methods allowing for an accurate and fast computat ion 
of sensitivities are therefore of a great value. 

u* = arg m i n { u|| | G ( u ( x ) ) = 0} (4.13) 

(4.14) 
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This is also one of the concerns of this thesis: to improve the computa
t ional efficiency, accuracy and stabil i ty i n the calculation of the sensitivities 
of the life under fatigue crack propagation governed by an empirical crack 
growth law. 

In principle, the sensitivity of the response to a certain variable or pa
rameter can be calculated i n two ways. The first class of methods are various 
finite difference methods ( F D M ) , such as the forward finite difference ( F F D ) 
method or the central difference method, which differ from each other by 
their respective level of accuracy and computat ional performance. 

In the direct differentiation method, the response derivatives are not ob
tained numerically as i n F D M , but by differentiating the underlying equa
tions. 

4.4.1 Direct Differentiation Method 

This section discusses briefly i n Subsection 4.4.1 the direct differentiation 
method. The details would encumber the continuity of the presentation. 
B u t the reader is encouraged to read A p p e n d i x C or the original reference 
[39]. 

W h e n the mechanical response is obtained using a finite element model, 
many of the response sensitivities can be calculated together wi th the re
sponse itself by implementing in the finite element code the Direct Differen
t ia t ion M e t h o d ( D D M ) . 

The bases of D D M were la id down i n [3]. Its extension to geometrically 
nonlinear problems is presented i n [53]. A very instructive and complete 
presentation of D D M and its extension to material nonlinearities can be 
found in [39]. In Append ing C , the techniques of D D M are set out i n a rather 
detailed manner, but s t i l l as just a specialisation of the formulas found e.g. i n 
[39] for the static linear-elastic case. Th is is, however, considered sufficient 
for expounding the ideas of the method and the reader is referred for further 
details to the cited literature. 

For purposes of rel iabil i ty analysis and optimisat ion of problems involv
ing crack propagation, one is interested i n the sensitivity of the fatigue prop
agation life NR to the variables involved. The direct differentiation method 
was developed as a method to calculate sensitivity of finite element results 
to finite element model loads, geometry and material parameters. 

D D M can for example be employed to calculate the sensitivity of the 
current stress intensity factor at the crack t ip to the current crack length. 
However, the sensitivity of the fatigue propagation life to e.g. a previous 
crack length can only be determined based on the crack growth law, which 
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governs the crack propagation and which is completely external to any finite 
element procedures. 

In Sections 7.4.1 through 7.4.4, equations for the sensitivities of the fa
tigue propagation life to certain variables w i l l be derived. B y differentiating 
the fatigue life integral formula, and sometimes taking certain simplifying 
assumptions, straightforward sensitivity equations w i l l be derived. In some 
cases, such as the case of sensitivity to the in i t i a l crack length, the assump
tions taken that w i l l lead to part icularly simple sensitivity formulas. Th i s 
may be regarded as a specific contr ibution of this thesis. 

4.5 Sensitivity of the Reliability Index 

W i t h i n the reliabil i ty approximation method, the sensitivities of the relia
bi l i ty index to each of the random variables, to their dis t r ibut ion parameters 
and to the parameters of the l imi t state function can be obtained i n a rather 
straightforward way. The presentation here is l imi ted to the sensitivity to 
the random variables. Sensitivities to the above mentioned parameters are 
discussed e.g. in [49]. 

4.5.1 Sensitivity in the Standard Normal Space 

The F O R M the l imi t state function is linearised about the design point: 

where we used the fact that G(u*) = 0 and scaled the l imi t state function 
by the norm of its gradient V G ( u * ) , calculated at the design point. Note 
that a are the direction cosines of the gradient vector VG. 

From the above E q . (4.15) 

G(u ) G(u*) + V G ( u * ) T ( u - u * ) 

(4.15) 

PHL = - a T u => 
df3HL (4.16) 

Ou 
= —Qt . 

u* 

This shows that the direction cosines a express the sensitivities of the relia
bi l i ty index (3HL to the ind iv idua l variables u in the standard-normal space. 
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4.5.2 Sensitivity to the Physical Variables 

W h e n the variables x are statistically independent, the direction cosines 
in the standard normal space express correctly the sensitivity of (3HL also 
to the corresponding physical variables. However, when x are dependent, 
the importance of the variables i n the physical space differs from a due 
to the (nonlinear) probabil i ty transformation between the physical and the 
standard normal space. The sensitivities to the physical variables can be 
obtained as follows (based on [22] and [49]). 

The probabil i ty transformation is linearised at at the design point 

u « u * + J u , x ( x - x * ) (4.17) 

where J u x is the Jacobian of the probabil i ty transformation at the design 
point 

02i(x) 
J u,: 

dxj 
(4.18) 

X* 
Separating out x, E q . (4.17) can be rewrit ten as 

X ~ J u ,x(u - O + X* 

or x = J~x(u - u*) + x* . (4.19) 

The variables x* for which the equality sign holds i n E q . (4.19) differ some
what from x. B u t more importantly, they are given by a linear function of 
u and are therefore joint normally distr ibuted, wi th the mean vector and 
variance matr ix given by 

/^X — x — J u , x u 

S = Ju,x (Ju,!c) T • (4-20) 

In terms of these variables x*, the linearised probabil i ty transformation 
(4.17) reads: 

u = u* + J u , x (x - x*). (4.21) 

Subst i tut ing the latter relation into the linearised l imi t state function (4.15), 
we obtain 

G(u) = c*J u , x (x-x*). (4.22) 

The mean and variance of G are 

..TT t - 1 = ~ a J u , x J u , x u * = ßHL 

o> = Q ! T J U i X S J ^ x Q ! = 1. (4.23) 
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The variance of G involves both variances and covariances of x. To isolate 
the contributions from the ind iv idua l variances, the covariance mat r ix E is 
decomposed as follows: 

E = a ± a ± + E - a ± a ± , (4.24) 

where e r x is a diagonal matr ix of the standard deviations of X . Expand ing 
E q . (4.23) through this decomposition, it comes out that 

OQ = £*TJu,x<'"x<'"xJu,xQ + flTJu,x ( e — C x ^ x ) ^u,xa = 1 • (4-25) 

The first member in the above equation is identified as the contr ibution of 
the ind iv idua l variables x. The first member itself is no longer equal to 
unity. If we consider not the square term but only cxT JUX(T^ and normalise 
it, we finally obtain a vector 7 expressing the sensitivities to x: 

7T = "I3"*** . (4.26) 

«u,x""xll 

4.6 Monte Carlo Simulation 

A n alternative way to evaluate the probabil i ty of failure integral in E q . (4.11) 
is to use the so called Monte Car lo integration, more often referred to as 
Monte Car lo simulation ( M C S ) . 

Instead of integrating just over the failure domain, i n M C S , we integrate 
E q . (4.11) over the entire domain, but mul t ip ly the integrand by an indi 
cator function 7(G(x)) which returns 0 if the integration point is i n the 
safe domain (G(x) > 0) and returns 1 if it belongs to the failure domain 
(G(x) < 0): 

P / = jTj(G(x))/x(x)dx. (4.27) 

It is clear that (4.27) is the expected value of I (G(x)). Thus, from statistics, 

1 N 

P / « ^ M C = ^ E J ( G ( X ) ) • ( 4- 2 8) 
i = l 

where Xj is the i - th of the total of realisations of the random vector x 
sampled from /x(x). 

Since G ( X ) is a random variable i n X , / ( G ( X ) ) is also a random variable. 
Considering the sum i n E q . (4.28) and invoking the central l imi t theorem, 
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it follows that 3MC approaches a normal dis t r ibut ion as N —> oo. The mean 
of 3MC is thus estimated by 

N 1 
W m c = E [3MC] = [/ ( G ( X ) ) ] = E [/ ( G ( X ) ) ] , (4.29) 

i=i 

which is equal to J M C - B y the same token, the variance of JMC is estimated 
by 

alMC = E [OMC - MMC)\ = £ ^ v a r [/ (G(X) ) ] = . (4.30) 
i=i 

It is seen that the standard deviation of 3MC is inversely proport ional to the 
square root of the number of simulations o~iMC oc and proport ional to 
the standard deviation of the indicator function oyMC oc cr^c^x))-

It follows that there are two ways to improve the accuracy of the M C S 
estimate of the integral (4.11): increase the number of simulations, or, more 
efficiently, reduce the variance of I(G(X)). One of the variance reduction 
strategies is the so-called importance sampling technique, discussed briefly 
below. Other techniques have been developed and are described in reliabil i ty 
monographes, e.g. [49]. 

4.6.1 Importance Sampling 

A way to reduce variance in / ( G ( X ) ) is to l imi t the simulations to the region 
of interest, which is essentially the region around the design point [13]. This 
is achieved by doing the following manipulat ion on E q . (4.27): 

pf = J /(G(x))gg/ i s(x)dx, (4.31) 

where / i s ( x ) is termed the sampling density function. The integral (4.31) 
is now an expectation on I (G(x)) • A n estimate of the probabil i ty of 
failure is then 

i=i 

Note that the sampling is now from the sampling density hs (x) . The choice 
of hs (x) controls the variance i n 3JS • A good choice can significantly reduce 
the variance, while a poor choice may increase it . 
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4.6.2 Latin Hypercube Sampling 

L a t i n Hypercube Sampl ing (LHS) is a simulation method that has proven 
effective for problems where only a smal l number of simulations is compu
tat ionally affordable [58]. 

The domain of definition of the marginal dis t r ibut ion of each of the n 
variables is part i t ioned into N intervals wi th equal probabil i ty content. A 
representative sample is then chosen from each of the NN intervals. Simu
lat ion is carried out not by sampling from a distr ibut ion, but by randomly 
combining the intervals. The resulting samples w i l l show some correlation, 
which is different from the correlation between the variables. A method 
based on simulated annealing has been proposed [90] to introduce the de
sired correlation. 

A n addit ional indicator function Wij is introduced that returns 1 if the 
interval j of the random variable i belongs to the random sample, and 0 
otherwise. The estimator for the failure probabil i ty than reeds: 

where summation is done over a l l of the intervals. 

4.6.3 Estimation of a Variable's Importance 

In the approximation methods, the sensitivity of the probabil i ty of failure 
to each of the random variables, or i n other words the importance of each 
variable, was directly related to the coordinates of the design point. In 
the context of Monte Car lo simulation, such information is in general not 
available. 

However, rough estimates of the variables' importance can be made based 
on correlation between the sampled realisations of a random variable and 
the corresponding values of the l imi t state function. 

4.7 Conclusions 

In this Chapter , we have reviewed the essentials of basic s tructural rel iabil i ty 
methods, which represent the means to work wi th the uncertainties inherent 
to fatigue crack propagation, the problem i n the focus of this thesis. Note 
that there are certain issues that arise in part icular in the analysis of crack 
propagation problems. These include: 

(4.33) 
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• accuracy of calculation of the l imi t state function value and of its 
derivatives, which is key to the convergence of the deign point search 
algotithm, 

• low-probabil i ty configurations in Monte Car lo Simulat ion, 

• heavy computat ional effort. 

The above issues are discussed i n the following Chapter 5, where they are 
addressed together wi th other challenges faced when analysing complex fa
tigue crack growth problems. 



CHAPTER 4. RELIABILITY ANALYSIS 



Part II 

Stochastic Crack 
Propagation Model 

75 





Chapter 5 

Challenges 
Strategies 

and Coping 

5.1 Challenges in Crack Propagation Modell ing 

The phenomenon of propagation of an existing crack can be viewed and ap
proached from several perspectives, including microstructural , phenomeno-
logical or engineering considerations. In a rel iabil i ty analysis of crack prop
agation problems, the life un t i l failure is of interest. The purpose of this 
Chapter is to identify the challenges faced when designing a numerical model 
to calculate this failure life. Where appropriate, various possible approaches 
to deal w i th these challenges are also discussed. In Section 5.2, the strategies 
to appropriately include the key issues in the model l ing w i l l be formulated. 

5.1.1 Scatter in Crack Initiation 

Point of crack initiation 

It was argued i n Section 2.2.1 that cracks initiate i n material grains favou
rably oriented for slip and experiencing increased stresses due to notches, 
indents or surface roughness. Then , cracks finding themselves i n regions 
w i t h generally higher stresses take on the role of the leading cracks. In an 
ab initio approach, the analysis would depart from local effects, the random 
dis t r ibut ion of which would be discussed more appropriately as a material-
related one. However, considering just the leading cracks, it is reasonable to 
model cracks in i t ia t ing from known points of major stress concentrations, 
such as notches, corners and holes, and to alter the respective in i t ia t ion 
point by a random distance to account for the presence of randomly located 

77 
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micro-defects favouring crack ini t ia t ion. 

Initial crack size 

Except for controlled laboratory tests, the size of an existing macro-crack at 
a given instant is uncertain. Therefore, a probabil i ty dis t r ibut ion is consid
ered for the crack size at the instant when the propagation simulation starts. 
A n alternative approach is sometimes adopted, which consist i n considering 
a randomly distr ibuted number of load cycles at which a macro-crack of a 
given size occurs. 

5.1.2 Scatter in Crack Propagation 

The statistical dispersion i n crack propagation can be seen to have two 
components: the dispersion i n the propagation velocity and the uncertain 
direction of propagation at any given instant. 

Crack growth rate 

The rate or velocity of crack growth depends on mult iple factors, among 
which the material properties. It was noted i n Section 2.5 that empirical 
crack growth laws constitute a useful model to represent crack propagation, 
whereby the model coefficients can be fitted to actual fatigue test results. 
Th is approach is adopted also here. 

A possible way to take into account the scatter inherent to crack prop
agation velocity is to introduce into the crack growth equation a random 
process as suggested by equation 2.32, or to s imply "randomise" the crack 
growth law by modell ing its parameters as random variables. The crack 
propagation model adopted i n this thesis uses the latter approach. 

Let us return to the Par is-Erdogan crack growth law defined in equa
t ion (2.13). B o t h its parameters C and m are considered to be random 
variables. Thei r parameters can be estimated from fatigue crack propaga
t ion experiments. 

In the present approach, the scatter and dependence of C and m was 
modelled by considering normally dis tr ibuted correlated random variables 
I n C and m, the statistical parameters of which were established from the 
V i r k l e r data [89]. Taking the exact values of the estimated statistical pa
rameters, Vi rk le r ' s results were reproduced w i t h certain accuracy. Section 
6.2 studies also various other statist ical models for C and m. It appears 
that the extremely high sensitivity of the calculated failure probabil i ty to 
the correlation of I n C and m is a weak point of the model as it requires 
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extreme precision i n the prescribed correlation coefficient as well as in the 
sampling from the correlated dis tr ibut ion. 

W h e n the fatigue life is so much sensitive to the accuracy of the statis
t ica l model , the question of accuracy of the mechanical model also arises. 
Reference [14] shows how the correct failure probabil i ty can be calculated 
through introducing a random model error w i th appropriate statistical pa
rameters. 

B u t i n particular, it shows how the issue of high sensitivity to correlation 
can be circumvented by reformulating the statistical model . The modified 
statistical model had two uncorrelated variables and employed a formula 
derived from the regression analysis. The stringency of using only a single 
random variable and having the other functionally dependent was elegantly 
overcome by considering as the second random variable just the difference 
~inC between I n C and the expectation on I n C coming from the regresion. 
E i n C and m appeared to be uncorrelated and the sensitivity to their corre
lat ion of was negligible. 

A combination of this decorrelation of the random variables and the 
model error seems to be the best model l ing approach. However, for the 
purposes of this thesis, we w i l l satisfy ourselves w i th the statistical model 
considering I n C and m normal ly distributed, together w i th the accurate 
correlation coefficient. We w i l l also renounce on introducing the random 
model error. 

Direction of Crack Propagation 

The direction of crack extension is essentially governed by the surrounding 
stress field; various cri teria to choose the crack extension angle have been 
described i n Section 2.7. However, as fatigue tests reveal, the actual crack 
path is far from being smooth and the directions of the crack extentions at 
the ind iv idua l load cycles are seen to have some random component. 

In Section 2.2.1, it was argued that the crack extension direction may 
change due to the effect of microstructural features, the dis t r ibut ion of which 
can be considered random. In addit ion, the randomness in mul t i -axia l load
ing also leads to random crack paths. It is useful to recall at this point 
that a crack path in two dimensions is an idealisation and that the actual 
fatigue crack surface w i l l be knurled over its area. Thus, we seek a model 
to describe the observed crack deflection from its 2D path rather than to 
relate the crack path to complicated three-dimensional microstructural fea
tures. In [54], the crack extension angle was determined by the governing 
deterministic criterion combined wi th a randomly distr ibuted direction vari-



80 CHAPTER 5. CHALLENGES AND COPING STRATEGIES 

able, which had a joint probabil i ty density function wi th the length of the 
crack extension. Th is corresponds to the expected behaviour that the crack 
deflection over a short distance can be greater. 

O n the other hand, in [84], the authors considered a random length of 
crack increment uncorrelated wi th a random deflection angle at each step of 
crack growth. 

No systematic experimental results are available that would allow for 
estimation of the random crack deflection characteristics and the predictions 
of the above cited models cannot be verified in the light of experimental 
evidence. 

In the present approach, the randomness in crack growth direction is 
neglected and the direction is governed only by fracture mechanics consid
erations. 

Elastic Material Constants 

W i t h i n the framework of linear elastic fracture mechanics, the stress and 
strain field that governs the crack propagation velocity and direction de
pends on the elastic constants of the material , i.e. on Young's modulus E 
and Poisson's ratio v. Because of inherent material inhomogeneity, the elas
tic constants may be considered to vary wi th the posit ion i n the material as a 
random field, or may be considered as random variables representing a char
acteristic value applicable to the whole body. However, it can be reasonably 
assumed that the effect of local stress concentrators is more important than 
the spatial variabil i ty of the elastic constants. A n d when we d id not take 
account of the local material inhomogeneities, it would not be consistent to 
consider the less important variabil i ty of the elastic constants. 

5.1.3 Complexity and Randomness of the Loading 

In a number of engineering applications, the cyclic loading experienced by 
cracked structures is not only complex, but often includes a random com
ponent. The complexity is usually accommodated by considering standard 
t ime records of loading for the application i n question and including the 
effect of retardation after overloads in the model (see Section 2.6). Th is ap
proach, which corresponds to the industr ia l practice, was adopted also wi th in 
the analysis procedure proposed in this thesis. Randomness of the loading 
can be conveniently represented by modell ing the loading as a stochastic 
process. In this thesis, this is not done, as measured loading data are not 
available to the author. It would be interesting to evaluate the importance 
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of randomness in the loading. The fact that this randomness is neglected i n 
the analysis should be kept i n m i n d when interpreting the calculated proba-
bl i l i ty of failure. O n the other hand, the loads can hardly be controlled and 
the importance factor for loading can therefore not serve to the operator as 
a guidance where to direct resorces in orther to improve reliability. 

5.1.4 Remeshing 

A major difficulty i n numerical model l ing of crack propagation stems from 
the necessity to update the crack geometry. Two major axes of development 
can be identified today. The first one focuses on the remeshing process 
itself. Very powerful remeshing algorithms have now become commercially 
available. 

It is however necessary to note that removing the burden of remeshing 
does not mean that a l l problems have been solved. Keeping in m i n d that the 
response of finite element models is mesh dependent, remeshing inevitably 
leads to noise in the calculated response. This has troublesome connotations 
in a l l applications when response sensitivity is of interest, including relia
bi l i ty analysis. Response derivatives need in many cases to be evaluated by 
finite difference methods. The change i n the response is then not only due 
to a perturbation of the geometry, but also due to remeshing noise. 

Numer ica l noise i n the calculation of the life under crack propagation 
often leads to a failure of the design point search procedure to converge. 
Computational accuracies that are quite satisfactory in determin
istic analysis may prove insufficient in reliability analysis. 

The competing approach goes to the root cause of the difficulty and seeks 
to replace classical remeshing by other techniques. The various techniques 
have been described in Chapter 3. The novelty of the modell ing approach 
adopted i n this thesis is to combine the Extended F in i te Element M e t h 
ods wi th reliabil i ty methods to present an efficient approach for stochastic 
analysis of crack propagation wi th a numerical mechanical model. 

5.1.5 Structural interactions 

Engineering crack propagation problems often involve complex geometries or 
interaction of cracks. Examples include the model l ing of wide-spread fatigue 
damage or of crack propagation i n aircraft fuselage. For such problems, 
analyt ical expressions for calculation of fracture parameters are inadequate 
and numerical models of the underlying real structure are required. 

The fundamental concept determining the crack propagation modell ing 
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approach adopted i n this thesis is that the evolving crack geometries in the 
process of crack propagation are important because the geometries of various 
cracks may influence the velocity of crack growth as well as the severity of 
the accumulated damage i n terms of the crack length. These two effects 
have the following consequences: 

- the crack propagation velocity, 

- the cr i t ical crack size, and 

- the current direction of crack propagation 

al l depend on the pa th (geometry) of the respective crack itself as well as 
on the size and path of any other cracks. Consequently, crack propagation 
models considering only the size of the leading crack, as presented namely 
in Section 2.8, may be inadequate given the above considerations. 

5.1.6 Accuracy in F O R M 

Mechanical Model Response 

A s it has been already noted above, an implementation of a crack prop
agation model relying on a numerical (finite element based) prediction of 
fracture parameters, namely the stress intensity factors, brings up the is
sue of numerical accuracy, which is par t icular ly relevant in the context of 
reliabil i ty analysis. 

The (in)accuracy of the mechanical model can be assessed at two levels. 
Fi rs t , there is the question of how t ru ly does the model represent the actual 
physics. The other dimension of model accuracy is important when one 
needs to evaluate the sensitivity of the response. The desirable property of 
the model is that the calculated response correctly and consistently reflects 
small changes i n the input parameters, including the geometry. P robab ly the 
best way to achieve this is to analyt ical ly differentiate the equations of the 
numerical model . Th is approach has been termed the Direct Differentiation 
M e t h o d and is outl ined in Section 4.4.1. 

However, such direct differentiation may i n some cases be rather difficult 
and finite difference methods become the most pract ical solution. It then 
matters very much that the calculated difference i n the response correctly 
translates nothing but the perturbation in the variable wi th respect to which 
the sensitivity is calculated. Where the response difference contains a signif
icant por t ion of numerical noise, convergence of the First Order Reliability 
Method (i.e. the design point search, see Section 4.3) can be lost. 
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Crack Propagation Life Integration 

Another source of inaccuracy, which occurs regardless of whether one uses 
F O R M or Monte Car lo Simulat ion, is the numerical integration of life under 
fatigue crack propagation from the in i t i a l to the cr i t ical crack size. The 
crack growth law has the form of a differential equation. To calculate the 
fatigue crack propagation life, the equation is inverted and integrated, w i th 
the integration l imits being the in i t i a l and the final crack length. Two factors 
come into play as concerns the integration accuracy: 

• Integration step size. The integrand of the propagation life integral 
depends on the stress intensity factor (SIF) , which is calculated in the 
present approach by a numerical mechanical model. For pract ical rea
sons, S IF is evaluated only at discrete increments of the crack length. 
Obviously, there is a trade off between the accuracy and the compu
tat ional effort, which both come hand in hand wi th a finer integration 
step size. Not only does a small step size require a higher number of 
SIF computations, but it usually also necessitates a finer mesh. 

• Integration method. 

— A quadrature rule is the standard numerical integration method. 
In crack propagation context, a quadrature rule for non-uniform 
interval lengths must be used. It can be easily developed e.g. 
based on Lagrange polynomials. A s the integrated curve of life 
spent i n propagating the crack over a unit length is highly non
linear, only higher order quadratures can perform successfully. 

— Analytical integration of a curve fitted to the data can prove ad
vantageous, in part icular when the numerical method used to 
evaluate S IF is unstable i n the prediction of the SIF . A n y outlier 
points on the plot of the S IF versus the crack length can result 
in gross errors in quadrature based integration. However, fitting 
a conveniently chosen function to this curve and integrating the 
function analytically has proven to be a stable and accurate in 
tegration method, also in cases of rather smooth S IF curves. 

5.1.7 Low-probability Configurations in Monte Carlo Simu
lation 

Notwiths tanding that Monte Car lo Simulat ion is known to be a rather robust 
probabil i ty integration method, it is also known to have some drawbacks. 
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Variance reduction methods and L a t i n Hypercube Sampl ing have done away 
wi th the extremely high numbers of simulations needed i n reliabil i ty analysis 
of low-probabil i ty failure scenarios. 

A less often discussed problem of simulation methods is that they require 
the underlying mechanical model to calculate the response at extremely 
low-probabil i ty realisations of the random variables. Note that w i th the 
reliabil i ty approximation methods, the response is generally evaluated i n 
the region surrounding the mean and the most probable failure point. 

Numer ica l mechanical models are commonly buil t wi th the usual geomet
rical configurations in mind . W i t h common values of the variables involved, 
the mechanical models behave as expected and the specific mode of fail
ure that one wants to analyse then also occurs. Such models may however 
fail to compute the response for low-probabil i ty geometries, mainly because 
a different mode of failure occurs that the one considered i n the analysis. 
The mechanical model may then fail to compute the response for numeri
cal reasons. Examples may include cracks growing i n unexpected directions, 
arr iving at cold spots where their propagation is halted, intersecting or merg
ing wi th other cracks, or growing through the entire ligament without the 
failure condit ion (e.g. fracture toughness or overall plastic collapse of the 
structure) being reached. To be used in Monte Car lo Simulat ion, the model 
must be developed such as to provide a correct response in a l l such geomet
rical configurations. In some cases, such robust models may be difficult to 
construct. A n d what is also important to note is that we then start solving 
a different rel iabil i ty problem than the one wi th which we started. 

5.1.8 Heavy computational effort 

Computa t iona l rel iabil i ty analysis i n general, and Monte Car lo Simulat ion 
in particular, require a large number of evaluations of the structural re
sponse. W i t h crack propagation simulation, the si tuation is yet more ag
gravated: mult iple numerical mechanical model responses (SIF calculations) 
are needed to evaluate a single response i n terms of the life under fatigue 
crack propagation that is of interest. Th is adds up to an extraordinary 
computat ional effort that has so far discouraged many researchers and engi
neers from pursuing the path of stochastic crack propagation analysis using 
a numerical mechanical model. 
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5.2 Coping Strategies and Objectives 

In the above, we have discussed the difficulties and challenges of the reliabil
i ty analysis of crack propagation problems. Some approaches to face these 
challenges were also outlined. Th is section highlights the most important 
strategies used in this thesis to develop an efficient and robust rel iabil i ty tool 
for crack propagation problems, being aware of the issues identified above. 

The proposed method can be seen as a part icular development of the 
fundamental concept of integration of mechanical and probabilistic 
models, which was put forward already i n 1970's, see e.g. [50]. A s a matter 
of fact, extremely high computat ional effort has been preventing researchers 
and i n part icular the engineers in the industry to exploit numerical mechan
ical models i n a stochastic analysis of crack propagation problems. This 
thesis hopefully shows that by choosing appropriate numerical methods and 
computat ional techniques, a feasible procedure can be developed to leverage 
the benefits of bo th a numerical mechanical model offering clear physical 
interpretations, and of the use of the available statistical information, i n 
order to provide a basis for better informed and better grounded decisions 
on real industr ia l problems involving propagation. 

5.2.1 Reliability Analysis 

W h e n analysing crack propagation, one is confronted wi th an extraordinary 
amount of dispersion i n crack in i t ia t ion times and crack propagation rates, 
even under well controlled conditions. A t the same time, experimental evi
dence has show that this scatter is very well described by statistical models. 

W i t h increasing level of randomness, it becomes increasingly less justified 
to use deterministic models, even i f these have a relation to the statistics of 
the random variables involved, e.g. through par t ia l safety factors. 

Stochastic analysis makes it possible to rigorously account for the dis
persion i n the underlying variables and, using the mechanical model, to 
learn about the actual dispersion of the response, the true probabil i ty of 
failure and the importance of each of the variables. Compared to taking 
a large safety factor, such richer information allows the engineer to better 
understand the problem and make better informed decisions. 

5.2.2 Equivalent Monotonous Spectrum Loading 

The length of life under fatigue crack propagation is heavily influenced by 
specific features of the time history of the applied load. More than on the 
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statistical properties of the loading process, the fatigue life depends on the 
sequence of peaks and valleys i n the load history. 

Fatigue life evaluation therefore cannot make use of statistical or spec
t ra l methods and has to work i n the t ime domain. Simple models have 
been developed to account for the effects of overloads and underloads. A 
method that has gained much acceptance i n the aeronautical industry is 
the P R E F F A S method, [21] which is remarkable for its abil i ty to reproduce 
actual fatigue test results. P R E F F A S is used also in the developments of 
this thesis. 

5.2.3 Numerical Methods without Remeshing 

A computat ional method that is to accommodate arbitrary geometries in 
volving mult iple cracks cannot do without a numerical mechanical model. A 
vast majority of the computat ional t ime in the rel iabil i ty analysis of crack 
propagation problems using a numerical mechanical model is spent in the 
calculation of the structural response upon al l updates of the crack geome
try. The efficiency of this computat ion is thus of paramount importance. In 
addit ion, the accuracy of the calculated response affects the stabil i ty of the 
fatigue life calculation. 

The computat ion of the static s t ructural response (e.g. of stress intensity 
factors) comprises the following major operations: 

• geometry update, 

• assembling of the stiffness matr ix , 

• mat r ix factorisation, 

• post-processing. 

A factorisation of the stiffness mat r ix invariably needs to be carried out every 
t ime a new geometry is analysed, regardless of the features of the part icular 
numerical method used. Post-processing of the numerical analysis results to 
calculate the response of interest is also similar using any of the numerical 
methods - none of the methods offers any part icular advantages that could 
expedite the response calculation. 

Some improvement i n efficiency could be attained by rebuilding just the 
part of the stiffness matr ix that is concerned by the geometry change. 

The strength of the meshless and extended finite element ( X F E M ) ap
proximations comes forth in the update of geometry in the numerical model. 
In contrast to classical finite elements, which rely on automated or guided 
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remeshing to ensure that the mesh aligns w i t h the discontinuities, i n the 
meshless and X F E M methods, discontinuities can pass independently of the 
discretisation. Th is both avoids remeshing and improves the stability, since 
numerical noise due to remeshing is also reduced. 

These improvements are at the expense of addit ional computat ional ef
fort that is necessary to search for the nodes i n the neighbourhood of the 
geometry change (e.g. a crack t ip) . Depending of the efficiency of the search 
algorithm, this operation may take a considerable amount of time. O n the 
other hand, it can be and usually is fully automated and reliable. 

A s compared to X F E M , the shape functions are a priori unknown i n 
meshless methods and need to be reconstructed for each integration point. 
A s far as computat ional effort is concerned, this represents a major drawback 
of meshless approximations. 

In the application part of this thesis, the structural response is calculated 
and post-processing to evaluate the stress intensity factors is carried out 
wi th in an X F E M package, developed at the L A M C O S laboratory of I N S A 
de L y o n . 

5.2.4 Direct Differentiation Method 

In a l l applications requiring the evaluation of sensitivities of the structural 
response (optimisation, rel iabil i ty) , the efficiency and accuracy of computa
t ion of the par t ia l derivatives of the response is a key issue. 

In applications where the response of interest for the reliabil i ty or opti
misation analysis is directly obtained from a numerical mechanical model, 
there are i n general two methods to calculate the response sensitivity. The 
better of them, termed the Direct Differentiation M e t h o d ( D D M ) [39], con
sists in differentiating the equations of the discretised mechanical model 
w i th respect to the variable of interest. The advantage of D D M is that 
that the calculation of sensitivities is much faster and always consistent (the 
derivatives are found as a solution of the differentiated equations). 

D D M can be qualified as an "intrusive" method i n that it requires mod
ifying the finite element or other code. W h e n one wishes to use a standard 
(commercial) finite element software, one needs to put up wi th a finite dif
ference scheme to calculate the sensitivities. However, i n case of the crack 
propagation problems, sensitivities to the variables entering just the crack 
propagation life integral and not the numerical mechanical model can be 
calculated by "non-intrusive methods", see below. This fact is exploited i n 
this thesis and simple sensitivity equations are derived, which improve the 
accuracy and speed of computat ion of the sensitivities. 
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Fini te difference methods are known to lack computat ional speed (mul
tiple evaluations of the response are necessary) and accuracy. The latter 
depends on the finite difference step size. It may be too smal l such that the 
difference i n the response is more due to numerical noise than due to the per
turbat ion of the variable of interest. It may also be too large, which leads 
to inaccuracy resulting from a failure to correctly capture the non-linear 
character of the response. 

Sensitivity of Crack Propagation Life 

In the present work, we are interested i n the sensitivity of the life under 
fatigue crack propagation. Numer ica l mechanical model is used here to 
calculate the s t ructural response at discrete points of the crack length unt i l 
the cr i t ical crack size at the t ime of failure, which is the variable of interest 
in the reliabil i ty analysis. 

The fatigue life is then calculated using the numerical model responses 
at the discrete crack length by integrating the inverse crack growth rate over 
the crack length. Sensit ivity to many of the random variables of interest can 
be calculated by differentiating the integral formula. Sensitivity equations 
are derived i n this way in Sections 7.4.1 through 7.4.4. 

Th is approach is thereby "non-intrusive" to the numerical code, as far 
as the calculation of the sensitivity of interest does not involve a derivative 
wi th respect to the stress intensity factor. 

5.2.5 Distributed Computing 

Rel iabi l i ty analysis is a typical example of computat ional task that is suit
able for distr ibuted computing. The mechanical models of many rel iabil i ty 
problems can today be solved on inexpensive personal computers. W h a t 
makes reliabil i ty analysis computat ional ly non affordable is the necessity to 
evaluate the response many times. Ei ther , this is due to a large number of 
simulations needed to analyse the rel iabil i ty of problems wi th low probabil i ty 
of failure by Monte Car lo Simulat ion. Or , the mult iple response evaluations 
come wi th the need to calculate the response and its derivatives at each 
step of the design point search i n the reliabil i ty approximation methods (see 
Section 4.3). 

Dis t r ibu t ion of computing in reliabil i ty analysis (and for that matter also 
i n optimisation) of problems modelled by numerical mechanical models, a 
single solution of which is not part icularly computat ionally intensive, is made 
simpler and cheaper by the fact that the computer architecture can be buil t 
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as a cluster of relatively inexpensive personal computers. 

5.3 Conclusions 

In this chapter, we have reviewed the major challenges faced when devel
oping an efficient procedure for the rel iabil i ty analysis of crack propagation 
problems. The strategies to cope wi th these issues that can be identified as 
the feasible ones can be summarised in the following points. 

• C a r r y out a stochastic analysis to account for the extraordinary 
amount of dispersion i n crack propagation and provide for better in 
formed engineering decisions. 

• Use a numerical s t ructural model to capture the geometrical interac
tions inherent to complex crack propagation problems. 

• Improve the efficiency, ease and accuracy of s t ructural response eval
uation by using the Extended F in i t e Element Method . 

• A p p l y an accurate and stable integration procedure for the calculation 
of the life under fatigue crack propagation. 

• Employ the direct differentiation approach to evaluate the sensitivities 
of the crack propagation life w i th respect to most of the variables 
entering the crack growth law. 

• Make use of a cluster of P C s available at I F M A Clermont-Ferrand to 
enhance the computat ional speed of the reliabil i ty analysis. 

The rest of the thesis w i l l be concerned wi th the development, implemen
tat ion and application of a computat ional approach based on the above 
strategies. 
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Chapter 6 

Statistical 
Reliability 

Modelling and 
Analysis 

6.1 Introduction 

This Chapter deals w i t h the statistical and reliabil i ty modell ing used for 
purposes of the analysis of the stochastic crack propagation problem. The 
choice of appropriate statistical distributions and the estimation of their 
parameters is a crucial point. Rel iab i l i ty analysis only makes sense when we 
have a knowledge about the statistical properties of the underlying variables. 
O n l y then can rel iabil i ty methods be used to provide valuable information 
about the statistics of the structural response. 

Section 6.2 focuses on the estimation of the two material dependent 
parameters of the Paris law. This issue has attracted considerable attention, 
in part icular as concerns the correlation of the two parameters and the 
appropriate statistical model to be used. 

In the remaining sections of this Chapter, we w i l l define the failure model 
and make a choice of a rel iabil i ty method to suit the needs of crack propa
gation analysis. 

6.2 Estimation of the Paris Law Parameters 

The most commonly used models to predict the rate of crack propagation 
are based on the Paris law [73] 

rn (6.1) 

91 
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which models the crack propagation rate ^ as a function of the stress 
intensity factor range AK. Its val idi ty is l imited to the crack propagation 
stage from a t ime when the crack has already been well ini t ia ted unt i l the 
t ime when the crack growth accelerates before fracture failure occurs. 
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Figure 6.1: ^ (AK) plot based on the Virkler data [89] 

It is interesting to examine the general shape or trend of the 4^ (AK) 
curves. To do this, we need the corresponding data. The well known Vi rk le r 
[89] fatigue data set was used for this purpose. V i r k l e r performed his tests by 
measuring the number of load cycles iV at predetermined crack lengths a on 
68 identical central crack tension ( C C T ) specimens, for which an analytical 
expression giving the stress intensity factor is known. V i r k e l took good care 
to ensure that the test conditions be identical in a l l of the tests. 

Firs t , the crack propagation velocity or the slope of the N(a) curve is 
determined at each crack length by numerical differentiation. Rather than 
finding the slope between two consecutive crack lengths, a straight line is 
fitted through five consecutive pairs of the [a, N] values observed by Vi rk le r . 
The stress intensity factor at each of the predetermined lengths is calculated 
using the analyt ical formula for C C T . The resulting pairs of AK and 4^?, 
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connected into lines, are plotted i n F i g . 6.1. 
Note that the numerical differentiation and the use of the analytical 

equation both constitute a part of a model that we chose for processing of 
the fatigue data. The errors of these modell ing approaches w i l l be inherent 
to any results that we w i l l obtain. 

It can be seen i n F i g . 6.1 that despite the averaging of the slope over five 
points, as described above, the curves are quite misbehaved. However, one 
may observe a general exponential trend of the ^ (AK) function. Th i s is 
consistent w i th Paris and Erdogan's [73] choice to model the dependence of 
the crack growth rate on the stress intensity factor by the exponential form 
of their law. 

It is thereby important to note that the Paris law is a satisfactory model 
for the V i rk l e r data wi th in Phase II of crack propagation (after crack in-
ni t ia t ion and before the onset of unstable fracture). A s it can be seen i n 
F i g . 6.2, the domain of the crack growth physics into which the V i rk l e r data 
fall is indeed the linear domain. 
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Figure 6.2: A log-log plot of ^ (AK) based on the Virkler data [89] 

Taking a logari thm of an exponential function, we get a linear relation. 
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Plo t t ing the same ( A K ) data in log-log scales, one gets the picture as i n 
F i g . 6.2. The data points for just a single specimen are shown in F i g . 6.4. 
The straight line i n the latter Figure is the line In ̂  = I n C + mln(AK). 

Randomisation of the Paris Law 

We can now proceed to estimate the parameters C and m of the Paris 
law, E q . (6.1). Th is implies that we consider the parameters to behave as 
random, a property evidenced by the crack propagation test results. 

We w i l l perform the statistical estimation on data obtained by a linear 
regression on the Paris law using all points of the 4^ (AK) curve for the 
given specimen, determined as described above (averaging over 5 points, use 
of anlyt ical formula to calculate K). Th is w i l l give us a single value of C and 
a single value of m for the specimen. The Paris law curve C{AK)m is plotted 
in F i g . 6.3 using the two values C and m for the respective specimen. The 
Figure shows also the data points from which the two values were estimated. 
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Figure 6.3: A plot of the ^ (A-KT) data points and the fitting curve for a 
single CCT specimen. [89] 

Note that we are thus considering only the average crack growth velocity 
on the given specimen. The variabil i ty of crack growth rate thus determined 
w i l l therefore account only for variabil i ty of the average crack growth rates 
on the ind iv idua l specimens. In this approach, we are loosing some of the 
information contained in the V i r k l e r data, i n part icular the information on 
the variabi l i ty within the specimen. 



6.2. ESTIMATION OF THE PARIS LAW PARAMETERS 95 

In A K 

Figure 6.4: A log-log plot of the 4^ (AK) data points and fitting curve for 
a single CCT specimen. [89] 

To be able to model and estimate this intra-specimen variability, the 
crack growth wi th in the specimen would need to be viewed as a random 
process. However, it is a question whether the extra effort in carrying along 
this richer information pays off i n terms of any increased precision of the 
estimation of the total lifetime of a specimen under propagation of cracks. 

Here, we are i n fact questioning the accuracy of the Paris crack growth 
law model. W h i l e the exponential model appears feasible, one can see e.g. 
on the example of the crack growth rate i n a single specimen shown i n 
F i g . 6.3 and F i g . 6.4 that the experimental data deviates from the fitted 
curve. W h a t we are witnessing here is a model error. 

A plausible approach to address this model error issue is to explicitely 
introduce the model error into the model by means of a random variable, like 
it has been done in Reference [14]. In the context of the overall crack prop
agation analysis, this addit ional random variable may capture well enough 
the discrepancy between the Paris model and the reality, without the neces
sity to make recourse to random process. Indeed, the results in [14] show 
that this approach can provide accurate probabli l i ty of failure. 

6.2.1 Parameter Estimation 

Linear Regression 

We see that the points in F i g . 6.2 lie roughly on a line. Th i s leads us to 
estimate the parameters C and m of the Paris law by making a straight line 
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pass through the points i n the log-log scale, see F i g . 6.4. Th is approach, 
making possible the use of linear regression, is the natural way any analyst 
would take to tackle the task, and is thus the common method to estimate 
C and m of the given specimen. 

Before we proceed to the regression analysis, let us make one important 
comment. Regression coefficients are always correlated. In particular, linear 
regression consists in solving a linear problem, so a high correlation of the 
determined coefficients must be expected, no matter what the form of the 
fitted curve is. The correlation is also bound to increase wi th the number 
of regression coefficients decreasing. In the present case, the coefficients to 
fit are merely two, since we are fitting a straight line y = ax + 6. Imagine a 
cloud of points we want to fit the line through. If we change the intercept 
b, the slope a cannot change independently of b - the line s t i l l needs to pass 
through the cloud of points. The correlation is negative. More concretely, 
if I n C increases, m w i l l decease, and vice versa. 

The linear regression on In C and m to fit the straight line 

l n ^ r = l n C + m l n ( A K ) (6.2) 

through al l the points of each single specimen separately gives us 68 pairs 
of C and m values. The estimators of the sample mean, standard deviation 
and correlation are listed i n Table. 6.1. 

I n C m 
mean -26.0564 2.8553 
standard deviat ion 0.9302 0.1658 
correlation -0.99795 

Table 6.1: Estimates of the In C^m sample statistics. 

We were prepared to expect a high correlation between In C and m , but 
the correlation coefficient p\ncm = —0.99795 differs from minus uni ty by 
about 2%o only. Notwiths tanding the fact that this correlation is due to 
the regression method used to estimate I n C and m, this high correlation 
motivates us to reduce the number of random variables by one and consider 
I n C as a function of m or vice-versa. However, as we w i l l see later, this 
solution does not yield satisfactory results. 

Non-linear Regression 

Before we test any such models, let us renounce for a while on the use 
of the log-log scale in the regression to see what comes out i f we perform 
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a non-linear regression on the equation ^ = CAKM to estimate C and 
m directly, using a numerical minimisat ion of the least-square error. The 

C m I n C calculated 
mean 9 .0401- lCr 1 2 2.8560 -26.0329 
standard deviation 1 .6657- lCr 1 1 0.1672 0.9451 
pcm from non-linear regression -0.75313 

PinCm calculated -0.99770 

Table 6.2: Estimates of the C^m sample statistics. 

estimators of the sample mean, standard deviation and correlation of C and 
m are listed in Table. 6.2. In addit ion, the Table gives the estimates for In C , 
where In C was computed by s imply taking the logari thm of the C obtained 
from the non-linear regression. W h i l e the correlation between C and m is 
only moderate, we can see that the coefficient of correlation between I n C 
and m thus estimated does not differ much from the one coming from the 
linear regression. 

Suppressing the Dimensional Dependence 

To expore another possible reason for the correlation, we examine also the 
dimensional dependence between C and m, since, by the Paris law, the units 
of C depend on those of m. For this purpose, we modify the Paris law as 
follows 

^ = c ' { i r ^ w „ - 1 ) > ^ x i - * ) * 0 . <^> 

In the above equation, KQ is a normalising stress intensity factor. It may be 
for example the threshold value below which there is no crack propagation, 
which is ensured by subtracting a uni ty from the ratio AK /{I — R)KQ. Note 
that since AK and KQ have the same dimension, the term w^^^o is a di-
mensionless normalised magnitude of the stress intensity factor. Therefore, 
the dimension of C does not change when m' changes. The primes are used 
on C and m' to mark their difference from the Paris law constants. 

Table. 6.3 shows the estimators of the sample mean, standard deviation 
and correlation of these pr imed variables C and m'. It can be seen that the 
suppression of the dimensional dependence between In C' and m' leads to 
no significant reduction i n the magnitude of the correlation coefficient. 
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l n C " m' 
mean -14.6404 2.5945 
standard deviation 0.0959 0.1503 
correlation -0.97993 

Table 6.3: Estimates of the InC'^m' sample statistics with the dimensional 
dependence between In C' and m' suppressed. 

It can thus be said that while having parameters w i th unclear and chang
ing physical dimensions is generally undesirable, the dimensional dependence 
of C and m was shown not to be the source of the correlation. 

6.2.2 Statistical Models 

Distribution Types of C and m 

Withou t presenting detailed hypothesis testing results, it can be said that 
the parameter m is appropriately modelled as a normal random variable and 
the parameter C as a lognormal random variable. Th is holds also for the 
statistical models of the variables l n C " and m', the dimensional dependence 
of which has been suppressed - see above. Figure 6.5 is presented as an 

Figure 6.5: Goodness of fit illustration for lognormal C (left) and normal m 
(right). 

i l lustrat ion of the goodness of fit of lognormal C and normal m. 
Thus, i n the following, we w i l l consider only statistical models randomis

ing the Paris law that w i l l involve lognormal C and normal m. 
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Goodness of a Model 

Having tried various meaningful approaches to estimate C and m, we can 
now propose and test various statistic models of the random variables C and 
m. A s the testing criterion, we w i l l take the mean and the scatter of the 
final fatigue life observed in the original Vi rk le r ' s tests, listed i n Table 6.4. 

mean standard deviation 
total fatigue life 2.5716-10 5 1.8447-104 

Table 6.4: The sample statistics of fatigue life of the original Virkler tests. 

These reference values w i l l be compared wi th the statistics of simulated 
fatigue lives. Each simulated life is obtained by generating a pair of C and m 
realisations from the underlying statistical model considered and integrating 
the Paris law from the in i t ia l to the final crack length using AK values given 
by an analyt ical model for the centre crack tension ( C C T ) specimen. Note 
that such result involves any error as a discrepancy between the analystical 
formula and the reality. 

Bivariate Normal I n C and m 

Firs t , let's consider a statist ical model of a bivariate normal dis t r ibut ion of 
In C and m w i th the sample statistics and correlation coefficient as indicated 
in Table 6.1 above. 

mean standard deviat ion 
total fatigue life 2.5030-10 5 1 . 6 1 0 M 0 4 

error -2.5% -12.7% 

Table 6.5: The statistics of fatigue life simulation using a joint normal model 
for In C and m. 

Table 6.5 gives the statistics of the simulated lifetime. It can be seen 
that the model reproduces the observed fatigue lives fairly good in terms of 
both mean and scatter. A discussion in Section 6.2.3, elaborating on the 
results of [14], sheds more light on the agreement between the expriment and 
the reality, showing that it is not quite satisfactory. A s a matter of fact, the 
scatter is underestimated by some 13%. This suggests that by neglecting 
the intraspecimen error and model l ing all of the complex physics of crack 
propagation wi th in the specimen through the rigour of the Paris formula 
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allowing only two random parameters, one may perhaps be oversimplifying 
the reality. 

Correlated Lognormal C and Normal m 

The next model evaluated here is a statistical model involving a lognormal 
dis t r ibut ion of C and a normal dis t r ibut ion of m, w i th the two random 
variables being correlated. The parameters of these distributions have been 
estimated i n Table 6.2. In particular, the correlation coefficient was -0.75313. 

Note that the correlation coefficient of -0.75313 has been estimated from 
data fi t t ing using a minimisat ion procedure. It may thus bear some impre
cision. In addit ion, this magnitude of correlation is on the verge of what is 
numerically attainable when the realisations of the variables are generated 
as described i n Section 4.2.2. A s a consequence, the generated realisations 
of the correlated variables may not be fully correct. 

mean standard deviation 
total fatigue life 3.0103-10 5 9.6144-10 4 

error +17.0% +521.2% 

Table 6.6: The statistics of fatigue life simulation using correlated lognormal 
C and normal m. 

The statistics of the total fatigue life simulated using the statistical model 
considered here are shown in Table 6.6. It can be seen that the scatter has 
dramatical ly increased. Perhaps, this gross error i n the dispersion of the 
fatigue life is attr ibutable to the inaccuracies in the estimation of sample 
statistics and i n the generation of variables from the correlated distributions. 
A s we w i l l see later, the dispersion of the total fatigue life is extremely 
sensitive to the correlation coefficient. 

m a Function of Normally Distributed In C 

Let us now consider a model that one is tempted to use seeing the extremely 
high correlation of In C and m. Consistently w i th the bivariate normal model 
above, a normal dis t r ibut ion is used for I n C , but m is now a linear function 
of I n C . The mean and standard variat ion of I n C are again those listed i n 
Table 6.1. 

A s it can be seen i n Table 6.7, the standard deviation i n the total fatigue 
life simulated using the above statistical model is markedly reduced. Taking 
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mean standard deviation 
total fatigue life 2.4985-10 5 2.9115-10 3 

error -2.8% -84.2% 

Table 6.7: The statistics of fatigue life simulation using normal I n C and m 
a linear function o / l n C . 

a linear function instead of a correlation of -0.99795, the dispersion drops 
by 85%. This shows an extreme sensitivity to the correlation coefficient. 

In C a Function of Normally Distributed m 

Let us examine the same approach changed-round, wi th m being the random 
variable and In C the dependent variable. The statistics of the total fatigue 
life simulated based on this statistical model are given i n Table 6.8. The 
underestimation of the standard deviation is as serious as before. 

mean standard deviation 
total fatigue life 2.4986-10 5 3.9139-10 3 

error -2.8% -78.8% 

Table 6.8: The statistics of fatigue life simulation using normal m and I n C 
a linear function of m. 

6.2.3 The Correlation of C and m 
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Figure 6.6: A plot of the C^m data and the InC^m data. 

We have seen that whether we use a linear or a non-linear regression, 
we observe an extremely high correlation of the estimated I n C and m. We 

3.1 - " . 

2.7 -

2.6 -

2.5 -

2.4 -



102 CHAPTER 6. STATISTICAL MODEL & RELIABILITY 

have also proven that this is not due to the dimensional dependence. A t the 
same time, the correlation of C and m is only moderate - indeed, the values 
in the left-hand chart of F i g . 6.6 do not lie on a line. 

We were t ry ing to estimate the parameters of a mathematical model that 
had been put forward as one that can represent well the dependence of the 
crack growth rate on the range of the stress intensity factor. E m p i r i c a l data 
verify the correctness on the model to a certain extent. Note, however, that 
the two parameters of the model do not have a clear physical interpretation. 
This make also the interpretation of their correlation difficult. 

Most of the correlation is probably attr ibutable to the fact that C and 
m are obtained by regression as the parameters of the exponential model. 
C and m are bound together by the vir tue of being two parameters of a 
single exponential curve. However, we have seen that replacing the strong 
correlation by an explicite linear dependence of m on In C leads to a great 
underestimation of the standard deviation in the simulated fatigue life. 

So it appears that the effect of C and m deviating from the relation tying 
them together is extremely important . A s a matter of fact, generating m a s a 
random variable correlated to In C results i n just a slightly higher standard 
deviation i n m as compared to m t ied to a random I n C by a function. 
B u t the crack growth rate given by the Paris law should be expected to be 
highly sensitive to m, the exponent on the stress intensity factor range. In 
addit ion, the effect of this slightly more dispersed m builds up through the 
integration of the fatigue life over the crack length. Th is can be a physical 
interpretation of how the sensitivity of the fatigue life to the correlation of 
I n C and m arises - the dispersion is magnified by being i n the exponent 
and through integration. 

Model Error and Decorrelation 

Bourinet and Lemaire [14] have carried out a detailed study of the Vi rk le r 
[89] data, proposing an accurate method to calculate sensitivity to correla
t ion and investigating the accuracy of fatigue life prediction wi th respect to 
the real experiment. 

F rom their analysis, it appeared that a simulation employing the model, 
which involved a statistical model of bivariate normal m and I n C and a 
use of the Paris carck growth law together w i th an anlyt ical formula for 
the stress intensity factor to calculate fatigue life, misclassified seven of 
the specimens that actually survived as specimens failing, and misclassified 
one actually surviving specimen as failed. The line between the safe and 
the failure domain was thereby drawn between the experimental specimens 
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having the 7 and 8 shortest life, respectively. 
The authors turned their interest to the difference between the fatigue 

life prediction through the simulation model and the actual fatigue life i n 
the experiment. Th is difference was then explicitely introduced into the 
simulation model as a random variable. W i t h this, the previously misclassi-
fied experiments were already correcly placed wi th in the safe and the failure 
domain, and the probabil i ty of failure corresponded very well to the ex
perimental data. A l though it can be argued that the bias of the model is 
perhaps more systematic than random, the correct classification of a l l of the 
experimental specimens as failed or surviving by the simulation proves the 
feasibility of this apprach. 

We have seen above that a statistical model having only one random 
variable and the other one functinally related results in a gross underesti
mation of the scatter. To overcome this problem and to avoid the extreme 
sensitivity to the correlation at the same time, the authors took the follow
ing approach. Instead of considering In C as a random variable, they chose 
a model which considers only the difference between the value of In C and 
the expectation £7[ lnC|m] on I n C coming from regresion analysis. Th is dif
ference, denoted £\nc thus became uncorrelated to m. The sensitivity to 
the correlation of E\nc a n d m was close to zero. 

6.3 Crack Initiation 

The physical mechanisms behind the in i t ia t ion and the propagation of cracks 
were described i n Section 2.2.1. Crack ini t ia t ion could thus be defined as 
the occurrence of a crack that grows already by the mechanisms present i n 
the crack propagation phase. 

For the purposes of our crack propagation simulation, we w i l l assume 
that crack ini t ia t ion has already taken place at known or supposed locations 
and the existing cracks have such sizes that they already follow the Paris 
law. The size of the crack at a given instant or the t ime at which a crack 
w i l l at tain a given size is uncertain. 

We w i l l therefore not engage into any phenomenological or damage ac
cumulat ion based modell ing of crack ini t ia t ion. We w i l l instead treat crack 
ini t ia t ion statistically. 

There are basically two approaches to statistical model l ing of crack in i 
t ia t ion. Ei ther , one can consider a random number of load cycles to the 
ini t ia t ion of a crack of a given size. O r the crack length at a given t ime is 
taken as random. 
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The latter approach is retained in this thesis. The reason is that it finds 
application in Bayesian updat ing of the crack length based on inspection 
results. 

In this thesis, no such relation to actual inspection data is made. The 
parameters of the statistical dis t r ibut ion of the in i t i a l crack length are s imply 
assumed. This is undoubtedly a shortcoming when one attempts to present 
a complex crack propagation modell ing approach. However, the focus of the 
thesis is on the propagation phase. Bayesian updat ing of the crack length 
has been described abundantly i n the literature, i n part icular in the context 
of inspection planning [55], [56], [43]. 

R a n d o m in i t i a l crack lengths are often modelled by exponential or log-
normal distributions. 

6.4 Failure Mode l 

In Section 2.4, we have defined for the purposes of this thesis the physical 
failure as the state when the value of the stress intensity factor characterising 
the stress field around the t ip of the crack reaches the fracture toughness. 

Duct i le structures may also fail by plastic collapse. The ligament to 
which the grown cracks have reduced the material resisting the load may 
plastify completely and fail . W h e n the two failure modes, i.e. fracture and 
plastic failure, compete, the so called R 6 criterion [44] may be used. 

However, empir ical computat ional experience has shown that for the 
type of problems considered here, the fracture failure mode almost always 
prevails. Therefore, we w i l l s imply compare the stress intensity factor to the 
fracture toughness to see whether structural failure has yet occurred: 

structural failure if Keq > Kjc . (6-4) 

In the above equation, Kjc is the Mode I fracture toughness of the material 
and Keq is the Mode I-equivalent stress intensity factor that w i l l be defined 
in Chapter 7. 

E q . (6.4) defines the event of s tructural failure. In our crack propagation 
problem, failure for the purposes of reliability analysis w i l l be defined to 
occur i f E q . (6.4) becomes satisfied at a sustained crack propagation life NR 
that is less than the required life under crack propagation N$: 

reliabili ty failure if NR < N$ • (6-5) 

The life w i l l be measured i n load cycles. Other units could be used, including 
duty-cycles or number of aircraft flights. Th is thesis relies on the use of 
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characteristic load sequences specified for structures or machines of a given 
type to capture the complexity of loading. These are essentially sequences 
of peak and valleys, i.e. of load cycles w i th varying amplitude. Moreover, 
in rel iabil i ty analysis w i th approximation methods, it is desirable that the 
response be a continuous variable rather than a discrete one. Therefore, we 
w i l l measure life under crack propagation in cycles wi th in the given load 
sequence rather than in multiples of the load sequences. 

The rel iabil i ty analysis works w i th the failure criterion rewritten as the 
performance function. Based on equation (6.5), we w i l l define the perfor
mance function as follows: 

where x is the vector of random variables. The logarithmic form of the per
formance function was chosen for its advantages in optimisat ion numerics. 
It is preferable that the value of the performance function is a small rather 
than large number. 

L o a d carrying engineering structures are required to have very low probabil
ities of failure. We thus need a reliabil i ty method that is capable of dealing 
wi th low-probabil i ty events. 

In Chapter 4, we have seen that we can essentially choose between two 
major reliabil i ty analysis approaches: approximation methods or Monte 
Car lo simulation ( M C S ) . To analyse low-probabil i ty failure events, M C S re
quires a large number of simulations. W i t h growing number of simulations, 
there w i l l be more samples of the random variables taken from the tails of 
their respective distributions. In Section 5.1.7, we have raised the issue of 
low-probabili ty s tructural configurations. These require a part icularly ro
bust mechanical model, capable of calculating the response of configurations 
that are far from the usual features of the problem. 

For these reasons, the approximations methods are used in this thesis. 
B y applying the F i rs t Order Rel iab i l i ty M e t h o d ( F O R M ) , we w i l l also take 
advantage of the straightforward computat ion of sensitivities of the reliabil
i ty index wi th in the method, see Section 4.3. 

F O R M appears appropriate for the present problem of crack propagation 
life. We w i l l see that the solution algori thm converges. It also appears that 
we are dealing wi th a single design point only. 

(6.6) 

6.5 Reliability Methods Used 
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To evaluate some of the derivatives of the response needed at each step 
of the design point search, we w i l l apply the sensitivity equations derived 
by direct differentiation i n Sections 7.4.1 through 7.4.4. The remaining 
derivatives w i l l be computed by the forward finite difference method. 

6.6 Conclusions 

The statistical analysis of the crack propagation data in Section 6.2 exposed 
the importance of correct statistical modell ing of the random variables. U n 
justified assumptions introduced i n the statistical model may lead to a gross 
error in the response of the model. 

It was shown that for the parameters of the Paris law, the bivariate nor
mal model of In C and m allows for a reproduction of the crack propagation 
data based on which the statistics of the parameters were estimated. The 
extremely high correlation of the two variables is mostly due to obtaining 
the In C—m couples as the parameters of the exponential Paris model by 
regression on the 4^ ( A / Í ) data. In addit ion, the life under fatigue crack 
propagation is extremely sensitive to the value of the correlation coefficient. 
Th is is due to a magnification of the amount of dispersion of the parameters 
by m being i n the exponent of the Paris law and by integration. 

In contrast to the careful statistical analysis of the crack propagation 
data, the crack ini t ia t ion model was only assumed, using an exponential 
model for the in i t i a l crack size, which is a common approach. This model 
allows for Bayesian updat ing based on actual inspection results, but this 
procedure is not carried out w i th in the scope of this thesis. 

A simple failure model is used. The "resistance" is the total life under 
crack propagation NR, which ends when the stress intensity factor attains 
fracture toughness. The "load" is then the required life Ng. 

Approx imat ion methods w i l l be used in reliabil i ty analysis because they 
do not require the mechanical model to provide response for low-probabil i ty 
s tructural configurations and allow for a straightforward computat ion of 
sensitivities of the rel iabil i ty index. 
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CHAPTER 7. CRACK PROPAGATION PROCEDURE 

C U r r — £ (&curr)\/&curr 

postprocessing =>Ke, eqk 

integrate failure life NR = J X i \C'+1 l^da 

Figure 7.1: T/ie cracA: propagation simulation procedure 
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7.1 Introduction 

This Chapter describes the crack propagation procedure developed based on 
the strategies put forward in Chapter 5. This procedure is used to calculate 
the total life NR under fatigue crack propagation. The value of NR enters 
the performance function (6.6) i n the reliabil i ty analysis. 

The crack propagation procedure consists of three phases: 

1. L o a d sequence preprocessing by P R E F F A S . 

2. Simulat ion of crack propagation as the mult iple cracks follow their 
paths. The propagation velocity is governed by the Paris law, the d i 
rection by the max ima l hoop stress criterion, E q . (2.31). The stress 
intensity factors are regularly updated by solving the numerical me
chanical model wi th the current geometry. 

3. Fatigue propagation life integration. 

The P R E F F A S method has been described i n Section 2.6. The crack propa
gation simulation and fatigue life integration procedures are described below. 

7.2 Simulation of Propagation of Mul t ip le Cracks 

The lifetime under fatigue crack propagation NR entering the performance 
function (Eq . (6.6)) is obtained by a numerical s imulation of crack propaga
t ion involving structural analyses by the Extended F in i te Element Me thod 
( X F E M ) to compute the stress intensity factors (SIF). 

The following assumptions are made. The cracks, which can be sev
eral, propagate i n a linear elastic, isotropic, homogeneous body idealised 
as a two-dimensional plate. The propagation takes place i n the plane of 
the plate under mixed mode conditions, and may thus be curvil inear. In 
the modelling, the curvilinear crack trajectory is replaced by a piece-wise 
linear shape. The plate may have an arbitrary geometry, including various 
openings i n it. 

A l l sequence and overload effects are assumed to have been accounted for 
through the P R E F F A S method. Thus, it suffices to use a linear-elastic me
chanical model describing a quasi-static crack propagation under constant-
ampli tude loading. 

Given that the crack growth rate is modelled by the Paris law, NR is 
obtained as: 

(7.1) 
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C and m are the parameters of the Paris law and R the stress ratio. The 
term 1 / C [(1 - R)Keq]m w i l l be denoted ^ i n the following. 

The lower integration l imi t aj is of course the in i t i a l crack size, an im
portant variable in terms of reliabil i ty analysis. The final crack length a / is 
defined as the crack length at which the equivalent Mode I stress intensity 
factor Keq [15] attains the fracture toughness Kjc: 

KIc = Keq ee Ki cos 3 °- - 3Kn cos 2 °- sin °- , (7.2) 

where Kj and KJJ are the Mode I and Mode II stress intensity factors, 
respectively, and 9 is the crack propagation angle determined based on the 
max ima l circumferential stress criterion, see E q . (2.31). 

If mult iple cracks are present, NR corresponds to the lifetime when the 
criterion 6.5 is first fulfilled at the t ip of any of the cracks. 

7.2.1 The Simulation Procedure 

A s there may be mult iple mutual ly interfering cracks, each of which propa
gates w i th a different rate governed by the intensity of the stress field around 
its t ip , it is not a priori known at which crack the cr i t ical stress intensity 
Kjc w i l l be attained first and at which crack length a,f this w i l l happen. 

This precludes a prior discretisation of the integration domain between 
en and a,f and requires that the actual evolution of the cracks and the 
stress intensity factors at their tips be tracked along the loading 
history. 

Using the random variable approach (see Section 2.8.1), the crack prop
agation smulation procedure starts from a set of current realisation of the 
random variables, cf. F i g . 7.1 on page 108. W i t h these variable values, 
including those determining the crack lengths, a first numerical mechanical 
analysis by X F E M is carried out to establish the stress field and the corre-
spoding crack t ip stress intensities and crack propagation directions at the 
beginning of the crack propagation history. 

The cracks are then assumed to propagate obeying to the Paris law. 
The Paris equation is the central node of the crack propagation procedure 
(Fig. 7.1) and determines the crack length increment: 

Aa = C (AKeq)m AN = C [(1 - R)Keq]m AN (7.3) 

The load cycle increment A i V is taken equal to a single cycle: A i V = 1. 
Where the crack increment per cycle is negligeble, the load cycle increment 
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can be taken as different number given by a convenient function of the 
current inverse crack propagation rate ^ p . 

The length of each crack i has now grown by an increment of A d j . We 
could go back to the numerical mechanical model and update the stress 
filed. However, it would be inefficient and could lead to numerical problems 
in X F E M to calculate Keq by a numerical analysis at very similar crack 
lengths after each load cycle (increment). Therefore, S IF are obtained by 
X F E M post-processing only every t ime an increment of the length of any 
of the cracks exceeds a predetermined user-defined value of A O F E - Th i s 
is chosen w i t h due consideration of the mesh size. For numerical stabil i ty 
in X F E M , the crack t ip should advance beyond the area of a single finite 
element. 

A t intermediate crack lengths, Keq is extrapolated from previous values, 
cf. Figure 7.1. The extrapolation is carried out as follows. It is assumed 
that the equivalent stress intensity factor for each crack can be as a linear 
function of the square root of the crack length a: 

The linear factor q here accounts for a l l load and geometry effects, safe for 
the crack length itself. Separating out <j from (7.4), we can calculate it for 
two previous X F E M update points at and a ^ - i , and extrapolate it based on 
the crack lenthts a& and a^-i to the current crack length a c u r r . Keq at the 
current crack length o c u r r is obtained by s imply inserting the extrapolated 
<j and the current a c u r r into equation (7.4). 

Linear extrapolation usually suffices. In case that numerical noise would 
occur and one of the last update points would be ly ing somewhat off the 
Keq(a) curve, higher order extrapolation could amplify the extrapolation 
error. It is important to note that the extrapolation is used only to determine 
the discretisation and approximate trajectory of the crack between a% and 
df for integration purposes. Keq entering E q . (7.3) is obtained from X F E M 
analysis. 

A t the X F E M update point, the crack direction may change, being de
termined from E q . (2.31). 

The criterion (7.2) is checked at every load cycle of the above procedure. 
W h e n it becomes fulfilled, the procedure is continued un t i l Aa is attained 
by the increment of any of the cracks, and then stopped. Thus, we have 
available addit ional numerical analysis results for a point beyond the failure 
point. We w i l l see in Section 7.3 how this w i l l be useful. 

The simulation procedure is thus very simple. We increment the length 
of each crack by Acij based on the Paris law and the load cycle incrememt 

(7.4) 
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AN. T h e n we update the stress intensity factors by either X F E M or ex-
ptrapolation, and recycle to increment the crack lengths. W h e n updat ing 
by X F E M , new crack propagation direction is determined. This is repeated 
unt i l the toughness value is attained by the stress intensity factor ant any 
of the crack tips. 

7.2.2 Simulation Output 

A s an output of the simulation, we have for each crack a set of n pairs of 
equivalent stress intensity factors Keq and crack lengths a, at which the Keq 

were calculated by X F E M . 
The final point of crack propagation is determined for the leading crack 

(at which the failure actually occurred) by interpolating between the last few 
points of the Keq(a) history to obtain a / at which the value Kjc was actually 
attained. For the t ra i l ing cracks, Keq is not yet equal to Kjc at the instant 
of failure at the leading crack. Therefore, for each crack, say the j - t h crack, 
a quadratic least-square fit of the curve a,j (acr) is constructed, expressing 
the relation between the length of the j - t h crack a3- and the leading crack 
length acr. a / for the j-th crack can then be calculated by interpolation 
using the value of a / obtained for the leading crack. 

B y the Paris law, Keq are easily converted to We thus obtain the 
discrete points of the ^ ( o ) curve. Integrating this curve, we can calculate 
the life under crack propagation. 

7.2.3 Numerical Aspects 

W h i l e crack propagation has been successfully modelled using X F E M , an 
application of this numerical model in a probabilist ic analysis is a novel 
approach. X F E M has effectively eliminated tedious remeshing to update 
the crack length as well as some numerical noise due to changing mesh. 
However, certain recommendations specific to X F E M need to be kept i n 
mind . 

In particular, the t ime stepping i n the calculation of S IF should be such 
that the crack t ip i n the next step along the crack line polygon should lie 
wi th in another element, otherwise numerical issues arise. Considering the 
algori thm described above, special care needs to be taken i n this respect i n 
problems wi th mult iple crack where some cracks may propagate faster than 
others. 

A second remark concerns the interaction between the crack line and 
the mesh. Remember that in X F E M , cracks can pass arbi trar i ly across the 
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elements. If the angle between the crack and an element edge is very acute, 
extremely pointed integration triangles are created, which leads to numerical 
problems that may affect the accuracy of calculation of the SIF . 

This issue may be circumvented by choosing the integration zone for SIF 
computat ion (cf. Section 3.7.4) further away from the crack t ip . Experience 
has shown that the S IF values calculated by integrating i n a band made up 
from the th i rd row of elements around the crack t ip were less than 2% lower 
than the SIF integrated over the second row of elements. Th is is considered 
a fully acceptable trade-off in the interest of better stabil i ty of the results. 

Elimination of Noisy Values 

A n y possible out ly ing points on the ^nr(a) curve can result in a grossly in 
correct integration result. In X F E M , such outlier points were observed only 
i n cases of the acute angles of element edge-crack trajectory intersections 
mentioned above. W i t h wider S IF integration bands, the ^nr(a) curve was 
quite smooth. 

In general, if such outlier points occur due to numerical problems arising 
in any numerical methods used to calculate the structural response, it might 
be a good idea to use the integration based on curve fitting as proposed i n 
Section 7.3 below, instead of a classical quadrature rule. In addit ion, the 
following procedure was tested and proved efficient in el iminating the outlier 
points. 

Outliers are first considered wi th respect to the curve Keq{a). In the first 
step, the monotonous increase of Keq w i th growing a is checked. In general, 
Keq may also drop w i t h increasing a, but i n many problems, Keq can be 
assumed monotonously r ising as the crack propagates. If this is the case, 
a l l points at which Keq is lower than at the previous crack length should be 
removed. 

Next , it is checked whether the first and last of the discrete values are 
outliers. The reference value is taken as the value of life t ime under fatigue 
crack propagation evaluated numerically using the formula (7.5) wi th the 
actual in i t ia l and final crack size as the integration bounds, but considering 
only the internal discrete points of the history. If, after evaluating the 
formula (7.5) considering also the first and the last point of the ^ p history, 
respectively, the value of the integrated life t ime changes by more than 1% 
w i t h respect to the reference value, the respective extreme point is rejected 
as an outlier. 

Final ly , the internal points are checked for out lying. A s a reference value, 
the life time is integrated using a l l of the ^ p points not removed so far, using 
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a quadrature whereby a second order Lagrange interpolation polynomia l is 
passed through three consecutive points. The integration wi th Lagrange 
interpolation is then repeated w i t h one of the internal points removed at 
a t ime. If the resulting life t ime differs by more than 1% from the above 
reference value, the respective extreme point is rejected as an outlier. 

Note that "jackknife" resampling statistics of the integral i n (7.5) ap
peared to be powerless i n removing the outliers in this application. 

7.3 Fatigue Propagation Life Integration 

For each crack, we have n discrete points of the ^p(a) curve available from 
the simulation described above. A n accurate integration of this curve is 
needed to obtain accurate values of the l imi t state function and the gradients. 
A failure to integrate accurately may hamper the convergence to the design 
point i n the reliabil i ty approximation methods. 

Note that the intervals of discretisation of each crack are i n general not 
of uniform length. Th is is because the discretisation points (at which K E Q 

was calculated) are set at times when the length increment of the leading 
crack reaches ACIFE, while different cracks may be leading at different times. 

The integration of (7.1) is carried out interval by interval, i.e.: 

where at and at+i are the lower and upper l imi t of the fc-th interval, respec
tively. In the last interval, the upper l imi t an = a / , where a / is obtained 
for the loading and t ra i l ing cracks, respectively, as described above. 

To integrate the fatigue life from the discrete, non-equidistant 4^ points, 
we need an accurate integration procedure. We could use an integration 
quadrature or fit a curve to the discrete points. 

A quadrature rule can be constructed as follows. A second-order L a 
grange polynomia l is passed through the three points of two neighbouring 
intervals between and Xj+i . The integral over the two intervals reads: 

(7.5) 

(7.6) 
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where Lj is the second-order Lagrange polynomia l for xy. 

_ (X - Xj) (x - Xj+l) 
Lr_ 

(Xj-l - Xj) (Xj-l - xj + 1) 

_ (X - Xj-!) (X - Xj+l)  
3~% (Xj - Xj-!) (Xj - Xj+l) 

(x — Xj-l) (x — Xj) 

(Xj+l - Xj) (Xj+l - Xj-l) 
Lj=i+i = — ZTT7Z 1 \ • {'•') 

The integral of L(j) is easily found. Note that this integration scheme for 
non-equidistant intervals corresponds to the Simpson formula for equidistant 
intervals. 

If one of the point \jj deviates from the general trend due to numerical 
error, the above quadrature scheme w i l l yield an erroneous value of the 
integral over the intervals i n question. It appears judicious to take into 
account the information also from the neighbouring interval. 

Rather than making a Lagrange polynomia l pass through the points, we 
shall fit a curve of a suitable form through al l of the points considered. The 
equation of this curve can be integrated analytically. 

In the current application, we deal wi th the 4^ curve. Considering its 
relation to the underlying variables, we w i l l fit the integrand of (7.5) using 
the following form: 

diV _2/m 2 (m 

—— = ctio ' + otia + 0 3 0 + 0 4 . 
da 

The coefficients ai to 04 are fit i n the least square sense to the discrete 
points of the curve. Us ing four points of the discrete ^nr(a) history that lie 
the closest to the k-th interval lead to an integration scheme that was both 
accurate and stable. 

7.4 Calculation of Sensitivities 

We have seen i n Section 7.3 that the total life under fatigue crack propaga
t ion, entering the performance function of the reliabil i ty analysis, is calcu
lated by integrating the inverse crack propagation rate ^j- from the in i t i a l to 
the final crack length. W h i l e the values are derived from finite element 
results, the integration is a procedure independent of the numerical solution 
method. 

The classical Direct Differentiation M e t h o d [39] deals w i th the calcula
t ion of derivatives of finite element responses. B u t i n the crack propagation 
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context, the fact that the fatigue life is calculated by integration over the 
finite element results makes the computat ional procedure part icular ly suit
able for an easy application of direct differentiation. 

In Sections 7.4.1 through 7.4.4, the integral equation (7.1) giving the 
life under fatigue crack propagation is differentiated w i t h respect to various 
variables entering the equation to provide explicite formulae for the calcula
t ion of sensitivities of the fatigue life. In some cases, the derived sensitivity 
equations are very simple. 

In the stochastic crack propagation analysis procedure developed i n 
this thesis, these sensitivity equations are advantageously used to improve 
the speed, accuracy and stabil i ty in the reliabil i ty approximation method. 
Where the fatigue life integral cannot be directly differentiated wi th respect 
to a part icular variable, or where the variable is a function of the numerical 
model response, the respective sensitivity is calculated by the forward finite 
difference method. 

We are thus mix ing two approaches to calculate sensitivities: direct dif
ferentiation and finite differences. However, it is probably better to be accu
rate where possible, rather than to be consistently inaccurate. To this point, 
it can be noted that one is inevitably inconsistent also when calculating the 
derivatives purely by finite differences. Th is is because the step forward, 
taken to calculate the difference, can hardly be chosen consistently for al l 
variables given the varying units and statistics of the variables i n the phys
ical space. A s a matter of fact, the calculation of derivatives through direct 
differentiation is consistent w i t h the way the response itself is calculated. 

B y using the direct differentiation formulas, the reliabil i ty approximation 
method becomes faster and more stable. 

7.4.1 Sensitivities in the Paris Equation 

Assuming that the fatigue crack propagation obeys the Par is law, see equa
t ion (2.13), the number of cycles at failure NR is evaluated from the E q . (7.1), 
which is shown also here for convenience: 

In the above equation, C and m are the Paris law parameters for the given 
material , oo is the in i t i a l crack length from which the propagation is consid
ered to start, cif is the crack length at failure, R is the min ima l to maximal 
stress ratio and Keq is the Mode I-equivalent stress intensity factor (SIF). 

(7.9) 
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In general, Keq could be the effective SIF , considering the plasticity at 
the crack t ip to account for retardation (see Sec. 2.6). However, we w i l l 
assume i n the following that Keq is a function of nothing else but the crack 
length, the remote applied stress and geometry. 

In this Chapter , we w i l l consider the sensitivities of NR which can be 
obtained by differentiating the above E q . 7.9 wi th respect to the parameter 
of interest. These parameters include, w i th the notation introduced above, 
ao (Sec. 7.4.2), C, m, R and the remotely applied stress aapp (Sec. 7.4.3). 

7.4.2 Sensitivity to Initial Crack Length 

The in i t i a l crack length ao appears to be one of the most cr i t ical factors 
influencing NR. In pract ical problems, ao may be uncertain, given that 
it comes from measurements w i th uncertain accuracy and that some of the 
existing cracks may be overlooked i n the inspection. This leads us to consider 
ao as random. Consequently, the sensitivity w i th respect to the in i t i a l crack 
length 5 ^ is of major interest for rel iabil i ty analysis. 

In line w i th the procedure described in Section 7.2, the number of load 
cycles at failure NR is obtained by summing up the cycles numerically inte
grated on each of the intervals 1 . . . k ... n along the crack length: 

N R = Y1 
k=l 

1 "A: 
• da or Nk = i Y f c _ ! + 

x C(AK)' 
• da 

(7.10) 
where the shorthand notation AK = (1 — R)Keq has been used. Note that 
a-k-i = ao on the first interval and a& = a j on the last interval. 

In the same spirit , the derivative ^p 2 - can be expanded it by the chain 
rule: 

dNR = dNR  

düQ ON, 

dN, n—k 

n—1 dN n—k—l 

dNi 
da0 

(7.11) 

Since the fatigue life over a single interval It = (N^ — N^-i) is an integral 
quantity, 9 ® I h is a derivative of an integral functional w i th respect to the 
lower integration l imi t . Consider a general case of an integral w i t h respect 
to t that is a function of another variable x and has variable integration 
l imits a(x) and b(x): 

y(x) 
b(x) 

a(x) 
f(x,t)dt. (7.12) 



118 CHAPTER 7. CRACK PROPAGATION PROCEDURE 

A derivative of such integral w i th respect to x is given by [6]: 

<9x <9x <9x Ja(z) ^ 

A p p l y i n g this result to the integral of iVj, we have: 

Oft I 
da 

c 'í \ /v y » x C ( A K ) m <9afc_i 9 a f c _ i 

<9afc 1 5 a f c _ i 1 

9 a f c _ ! C (AK(ak))m da^ C ( A ř ( a n ) ) m  

+ Í" J - f ^ U l d a (7.14) 
. x 5 a f c _ ! \ C ( A i f ) 

A t this point, we make an important assumption. Th is assumption is 
that neither the path of the crack nor the final crack length af depend on the 
in i t ia l crack length OQ. In a structure wi th a single crack, this is rather obvi
ous. W i t h mult iple cracks, the interaction of other cracks could compromise 
the assumption. However, since we are concerned in differentiation wi th an 
infinitesimal change in ao, the assumption remains val id . It also corresponds 
to s tudying the sensitivity to the in i t i a l crack length, w i t h everything else 
unchanged. 

Then , we can consider the interval-end crack lengths a\... a& . . . af fixed 
when differentiating E q . (7.10), w i th only ao varying (infinitesimally). Th i s 
has several useful consequences that simplify the calculation. 

Firs t , the quantities I<i... Ik • • • In w i l l not change and thus the deriva
tives i 9 ^ V " ~ f c - i n E q . (7.11) w i l l be equal to one. 

Second, the derivative of AK in E q . (7.14) w i th respect to a^-i is zero. 
Thus, the last term in E q . (7.14) vanishes. 

A n d by the same token, = Q. Thus, a l l that is left of E q . (7.14) is 

the second term: 

d a f c _ ! C ( A K ( a f c _ ! ) ) m - { ' - ° j 

Summaris ing the above, we obtain the result: 

dNR 1 

da0 C(AK(a0)y 
(7.16) 

A s a matter of fact, E q . (7.16) allows to enumerate the sensitivity of NR 
to the in i t i a l crack as a function of the Paris law parameters and the stress 
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intensity factor at ao, even before the crack propagation simulation has 
started. 

The surprisingly simple formula of E q . (7.16) is due to the above as
sumption of invariabil i ty of crack path and final length. This assumption 
is equivalent to counting the propagation cycles along the same crack path, 
but start ing a bit later - at the infinitesimally increased in i t ia l length. 

Verification of the Sensitivity Equation for Initial Crack Length 

The sensitivity equation (7.16) is verified here by comparing the results 
w i th sensitivities obtained by the forward finite differences ( F F D ) method. 
The F F D as a numerical differentiation technique consists in evaluating the 
response quantity V, in perturbing one input variable at a t ime by a 
small step size hk, i n evaluating V at the perturbed point i n the space of 
the input variables X ( m and obtaining the sensitivity as: 

Th is numerical evaluation of the sensitivities w i l l inevitably show some de
pendence on the step size h^. 

The performance of the simple analyt ical formula i n E q . (7.16) in evaluat
ing the sensitivity w.r.t . the in i t i a l crack length was tested on two examples. 
Fi rs t , a centre crack tension ( C C T ) specimen was considered, which has a 
single crack. 

Analytical Mechanical Model For a C C T , an analyt ical expression pro
v id ing the stress intensity factor for a given crack length is known. We can 
thus directly use E q . (7.9) to calculate the fatigue life, wi th Keq supplied by 
the analyt ical equation. The integral i n E q . (7.9) is evaluated numerically 
using n integration intervals. 

The perturbat ion of the in i t i a l crack length was introduced i n one nu
merical study only to the in i t i a l crack length itself, w i th a l l other integration 
interval ends being unchanged w.r.t. the reference configuration. In another 
study, the positions of a l l interval ends were augmented by the perturbation, 
except for the final crack length. 

Figure 7.2 shows the calculated F F D sensitivities to the in i t i a l crack 
length as a function of the chosen in i t i a l crack length perturbation size. 
The horizontal line indicates the value calculated by direct differentiation 
( D D M ) , while the two sloping lines are the F F D values calculated consid
ering the two integration interval end perturbation approaches described 

dv _ y(x, f c)-y(x) 
XYfe) — X\, • • • , Xk + /ifc, • • • , xn (7.17) 



120 CHAPTER 7. CRACK PROPAGATION PROCEDURE 

-28000 

-29000 

o -30000 

e 

^ -31000 

-32000 

-33000 

-34000 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

perturbation 

Figure 7.2: FFD results for sensitivity to initial crack length as a function 

of the perturbation size. 

above. It can be seen that for smal l perturbations, the values obtained by 
F F D and by D D M are similar. 

Figure 7.3 illustrates the dependence of the calculated sensitivity on 
the number of integration intervals, into which the crack length is divided. 
W i t h the number of intervals increasing, the discrepancy between the direct 
differentiation value and the finite difference results becomes small . The 
D D M value thereby appears as the l imi t ing value that the F F D results seem 
to approach. 

Numerical Mechanical Model The above results could encourage us 
to use E q . (7.16) indiscriminately for the prediction of sensitivity of fatigue 
propagation life to the in i t i a l crack length. Let us, however, consider a 
somewhat more complex example, in part icular a specimen containing two 
cracks. Here, the equivalent stress intensity factor Keq entering E q . (7.9) w i l l 
be calculated by a numerical mechanical model - the full fatigue propagation 
life calculation procedure as described in Chapter 7 w i l l be used. 

Figure 7.4 shows the evolution of the sensitivities calculated by F F D 
w i t h the perturbation size for the leading crack, i.e. for the crack at the 
t ip of which the stress intensity factor first reached the fracture toughness. 
Th is is how failure has been defined. 

In the Figure, the F F D values seem to approach the D D M value for 
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Figure 7.3: FFD results for sensitivity to initial crack length as a function 
of the number of integration intervals. 

reasonable sizes of the in i t i a l crack length perturbation. The asymptotic line 
seems to correspond to a weaker sensitivity than the one obtained by direct 
differentiation. Th is might suggest that the computat ion of the sensitivity 
to the in i t i a l crack length by F F D is influenced by and sensitive to the 
domain discretisation and the errors bui ld ing up in the integration of the 
stress intensity factors. 

Yet, a discrepancy of about 20% should not incite us to reject the sen
si t ivi ty equation (7.16) as inval id. It can be seen i n the figures referred to 
previously that the choice of perturbat ion size and integration step size leads 
to even higher differences in the sensitivities predicted by F F D . 

The picture changes dramatical ly when the same results are plotted for 
the trailing crack, i.e. the other crack than the one at the t ip of which the 
failure event occurred. The comparison of sensitivity to in i t i a l crack length 
calculated by F F D and by D D M is presented in Figure 7.5. 

It can be seen in the Figure that this t ime the D D M prediction is com
pletely off the range of the F F D results. The reason is clear. We are s tudying 
the sensitivity of failure life to the in i t i a l length of the t ra i l ing crack, but 
the fatigue propagation lifetime is controlled by the leading crack. 

Remember that we made the assumption in deriving the D D M formula 
for the sensitivity to the in i t i a l crack length that neither the path nor the 
final crack length change. However, the stress intensity factor at t ip of the 
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Figure 7.4: FFD results for sensitivity to initial crack length for the leading 
crack. 

t ra i l ing crack does not reach toughness. Over the propagation lifetime of 
the leading crack, the t ra i l ing crack w i l l thus grow beyond the final length 
af of the reference configuration when the in i t ia l length is increased. Thus, 
the assumption made above is violated. 

We observe i n Figure 7.5 that the sensitivities calculated by F F D are 
much weaker than the sensitivity predicted by D D M . In fact, we are studying 
here an influence of the in i t i a l length of a crack on a failure event that 
occurred somewhere else in the structure. The sensitivity of this failure 
event to the in i t i a l length of the t ra i l ing crack considered must as a matter 
of fact be expected to be much lower than in a case where failure would 
actually occur at this crack. 

Limited Applicability of the Sensitivity Equation It can be con
cluded that the applicabil i ty of E q . (7.16) to compute the sensitivity to the 
in i t ia l crack length is l imi ted to the leading crack. In complex structural 
configurations, it is difficult to predict which crack w i l l in fact be leading. 
B u t once the crack propagation simulation has been carried through, it is 
known which crack is the leading one. Sensit ivity of fatigue propagation 
lifetime to the in i t i a l length of this crack can be computed using E q . (7.16), 
while the sensitivities to the in i t i a l lengths of a l l remaining cracks need to 
be evaluated by a finite difference calculation. 
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Figure 7.5: FFD results for sensitivity to initial crack length for the trailing 
crack. 

7.4.3 Sensitivity to Paris Law Parameters, the Appl ied 
Stress and the Stress Ratio 

E q . (7.9) can also be differentiated w.r.t. the Paris law parameters C and 
m , the remote applied stress c r a p p and the stress ratio R. Reca l l that the 
calculated fatigue propagation life NR is composed of contributions from 
indiv idua l intervals over the crack length, evaluated from E q . (7.10). The 
propagation life on a single interval k is: 

h 
1 

^ C K l - R ) ^ 
• da (7.18) 

Consistently w i th the propagation simulation procedure described i n Section 
7.2, the term 1 /C[(1 — R)KEQ]M is considered to be given by a formula, 
which is a suitable function of the crack length a, the coefficients of which 
are fit by the least squares method to finite element results for K E Q . Reca l l 
that the curve fitt ing formula E q . (7.8) used to integrate E q . (7.18) is: 

1 

C [(1 - R ) K E Q \ 

diV —2/m 2 (i-r -\ r\\ 
"—« a\a ' + aid + 0 3 0 + 0 4 , Í 7.19) 

da 

Invoking the rule of differentiation under the integral sign when the l imits 
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Figure 7.6: FFD results for sensitivity to the Paris law multiplier C. 

are not functions of x: 

0_ 
Ox 

f(x) dx 
df(x) 

Ox 
dx. (7.20) 

we see that the derivatives of NR (Eq . (7.10)) w i l l also be composed of con
tributions from ind iv idua l intervals. W h e n we use E q . (7.20) to differentiate 
E q . (7.18), we obtain for the sensitivity to C: 

Oh 
OC ak-l 

1 1 

c 2 [(i - R ) K e q r d a c I k 
(7.21) 

Thus, once the fatigue life has been integrated, the its sensitivity w i t h re
spect to C is obtained very s imply using the above E q . (7.21) without any 
addi t ional integration being necessary. 

Differentiating E q . (7.18) wi th respect to m, the resulting sensitivity 
formula reads: 

0 h = y°* In [(1 - R)Keq] 

dm 
• da (7.22) 

l a h _ x [{l-R)Keq\ 

Here, an addit ional logar i thm appears and the following equation is used 
to approximate the integrand, wi th its coefficients fit also here by the least 
squares method to finite element results for Keq: 

In [(1 - R)Keq] = dN 

" [(1 - R)Keq]m da 
ot\ In a + 0120? + 03a + 04 . (7.23) 
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For completeness, the integral of E q . (7.23) is: 

——da « a i a m a — a\a + — a + — a + 04a + const. (7.24) 
CltJ o Z 

The sensitivity of the propagation life over an interval Ik to the stress 
ratio R is obtained as: 

dR 

mK, <<i 

a-k-
rn 

^C[(l-R)Keg] m + l da 

1 
• da 

1 - Ä 
4 (7.25) 
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Figure 7.7: FFD results for sensitivity to the Paris law exponent m. 

To be able to consider in the overall analysis the effect of varying applied 
stress c r a p p , we w i l l also need the sensitivity of the propagation life NR to 
Capp- W h e n the equivalent stress intensity factor is expressed as a product 
of the stress by a function of a crack length, i.e. K, <<i 'app 7(a), the 
contribution to this sensitivity over an interval Ik can be calculated as: 

dh 
da, ai)i) 

- m ( l - i ? h ( a ) 

C [(1 - J R ) a a p p 7 ( a ) ] m + l da 

app Jak 

"l. 

. ^ [ ( í - A ^ r 
da 4 (7.26) 

app 
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Similar ly as in the case of sensitivity wi th respect to C, the sensitivities 
of fatigue life to the stress ratio R and the applied stress c r a p p are directly 
obtained once the fatigue life itself is known. 

Verification of the Sensitivity Equations 
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Figure 7.8: FFD results for sensitivity to the stress ratio R. 

Unlike wi th the sensitivity to the in i t i a l crack length, the sensitivity to 
the Paris law mult ipl ier C calculated by finite differences corresponds well to 
the value predicted by direct differentiation of the Paris law and approaches 
the D D M prediction in an asymptotic-like fashion as the F F D perturbation 
becomes finer. The same is true for the sensitivity to the Paris law exponent 
rn. 

Figures 7.6 and 7.7 show the sensitivities w.r.t . C and m, respectively, 
calculated w i t h various finite difference perturbations. The perturbations 
are indicated as fractions of the standard deviation of the respective vari
ables. The standard deviation considered for C was 0.97165 and the stan
dard deviation used for m was 0.16584. For justification of these values, see 
Section 6.2. 

The horizontal lines which the finite difference results approach mark 
the values computed by the direct differentiation Eqs . (7.21) and (7.22). 

Note that here as well as i n the case of the stress ratio, we are examin
ing the sensitivity to a parameter that influences the lifetime under fatigue 
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propagation of a l l cracks and hence also at the leading crack. 
It can be seen i n Figure 7.8 that also for the stress ratio R, the sensi

t iv i ty calculated by F F D quickly approaches in an asymptotic manner the 
D D M value coming from E q . (7.25) as the perturbat ion is refined. In the 
Figure, the perturbat ion size is again indicated as a fraction of the standard 
deviation of R, which was i n this case OR = 0.2. 

Figure 7.8 also shows that precision is lost once the perturbation becomes 
too small . B u t perturbations wi th in the range of OR/20 to OR/50 y ield valid 
results. 

7.4.4 Sensitivity to Toughness 

The final crack length a / is defined as the length at which Keq attains the 
Mode I fracture toughness Kjc. Its determination involves interpolation on 
the numerically obtained points of the Keq{a) curve (see Sec. 7.2) to find 
the length at which Keq = Kjc. Thus, the sensitivity to Kjc (involving 
the derivative dNR/daf) cannot be obtained by differentiating E q . 7.9 and 
must be calculated by finite differences. However, since this does not re
quire performing an addit ional complete crack propagation simulation, the 
description of the approach to calculate the sensitivity to Kjc is included i n 
this Chapter. 

We consider a certain perturbation 5Kjc for the finite difference calcula
t ion at the perturbed point Kjc + 5Kjc. We interpolate the same numerical 
data of the Keq{a) curve as we used in the current computat ion of fatigue 
propagation life to find the crack length af + Saf at which Keq = Kjc + óKjc. 
T h e n we integrate the dN/da(a) curve fitted to the finite element results for 
Keq from oo up to the upper l imi t of a / + 5athe result being the perturbed 
fatigue propagation life: 

(7.27) 

The sensitivity of NR to the toughness is then simply: 

dNR _ (NR + SNR) - NR 
(7.28) 

dKIc (KIc + SKIc) - KIc 

7.4.5 Concluding Remarks 

Driven by the effort to improve the accuracy, stabil i ty and computat ional 
effectiveness i n the evaluation of response sensitivities, researchers have de
veloped techniques that avoid the use of finite difference method. The direct 
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differentiation method [3], [39] has been elaborated as a method of direct 
computat ion of sensitivities wi th in the finite element context. 

One of the concerns of this thesis was similar: to improve the computa
t ional efficiency, accuracy and stabil i ty in the calculation of the sensitivities 
of the life under fatigue crack propagation governed by an empirical crack 
growth law. 

This section constitutes an important part of this thesis. The formulaefor 
the computat ion of the sensitivities of the fatigue propagation life derived 
herein represent a key concept in the stochastic crack propagation procedure 
proposed i n this thesis. O n the one hand, their application provides for the 
necessary accuracy that is required for the rel iabil i ty approximation methods 
to converge. A n d on the other hand, the use of these sensitivity equations 
reduces the computat ional t ime as compared to sensitivity calculation by the 
finite difference method by a significant amount. This , i n some applications, 
w i l l be decisive for the sheer feasibility of analysing the crack propagation 
problem stochastically. 

F rom the verification examples, it appears that in case of the Paris law 
parameters and the stress ratio, the equations for the sensitivity of the life 
under fatigue crack propagation derived in this section yield results that 
are only attainable w i th an opt imal perturbation i n the finite difference 
computat ion of sensitivities. 

The values predicted by the direct differentiation based formula for sensi
t iv i ty to the in i t ia l crack length indicate a stronger sensitivity than obtained 
by the finite difference method. However, the differences i n F F D predictions 
for various perturbation sizes are higher than the discrepancy between F F D 
and D D M . 

In conclusion, two important observations can be made based on the 
verification examples: 

• In a differentiation by the finite difference method, the size of the 
perturbation taken to compute the differential responses has a great 
effect on the obtained value of the derivative. It is therefore advisable 
in a F F D calculation of derivatives to perform a convergence study 
to choose the correct perturbat ion size. In the example presented i n 
Chapter 9, the perturbation sizes w i l l be chosen based on the F F D 
convergence results plotted in the charts presented in this section. 

• It is believed that a l l of the sensitivity equations derived by direct dif
ferentiation in this section can be trusted to provide reliable sensitivity 
results for use i n reliabil i ty analysis. 
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7.5 Conclusions 

This Chapter described the essentials of the implementation of the crack 
propagation model for the purposes of stochastic analysis. Th is computa
t ional ly efficient and stable procedure is based on load history preprocessing 
by the P R E F F A S method, simulation of crack growth wi th an update of the 
stress intensity factors by a s tructural analysis using the Extended Fin i te 
Element Method , and on an accurate and robust integration of the life under 
fatigue crack propagation. 
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Chapter 8 

Distributed Computing 

8.1 Introduction 

In the calculation of response derivatives by the finite difference method, i n 
the search for an opt imal size of the step to take i n the minimisat ion algo
r i t hm of reliabil i ty approximation methods and in Monte Car lo simulation, 
it is necessary to obtain several s tructural responses at a time. 

If one has mult iple networked computers available, dis tr ibuted comput
ing can be put in place so that the ind iv idua l s tructural responses needed 
at a t ime can be computed i n parallel. In such application, we deal w i th 
distr ibuted computing, where a full but not extraordinari ly large analysis is 
executed on a machine, as opposed to parallel computing. The latter com
putat ional method is used for the analysis of large systems, e.g. a parallel 
solution of a par t icular ly large matr ix , and requires parallel solution routines 
to be implemented wi th in the analysis code. 

O n the other hand, a l l that is required for distr ibuted computing is the 
possibili ty of remote execution of code i n the networked system and the 
analysis software installed on each of the nodes (machines) in the system, 
wi th sufficient licenses available for the number of jobs to be executed. W i t h 
commercial finite element packages, the latter condit ion can tu rn out to be 
prohibit ively expensive. 

The dis t r ibut ion of the computat ional tasks can advantageously be man
aged by a job dis t r ibut ion software. Alternatively, scripts wri t ten i n P e r l or 
other scripting language can also be used to control the remote job execu
tion. 

131 
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8.2 Computational Resources Available 

The author had the opportuni ty to use for the purposes of this thesis 
the computat ional cluster, available at the Institut Frangais de Mecanique 
Avancee ( I F M A ) in Clermont-Ferrand. The cluster is buil t of I B M personal 
computers installed in a single rack. It consists of one master and 27 slave 
nodes running under L inux , each of which has two hyper-threaded X E O N 
bi-processors. A l l in a l l , 108 v i r tua l processors are available, which makes it 
possible to run 108 computations at the same time. The O p e n P B S platform 
was used for job submission and control. The implementation of distr ibuted 
computing was further facilitated by mirror ing of the user directories to each 
and al l of the slave nodes. 

8.3 Implementation 

The jobs actually submitted to the ind iv idua l nodes for execution were U N I X 
scripts, which involved changing to the appropriate directory, cal l ing the 
analysis, moving the files w i th the necessary results to the target directory 
and deleting the results not needed. These local execution scripts were i n 
tu rn created by a master script wri t ten i n Pe r l and launched from wi th in 
the crack propagation simulation run i n Ma t l ab . The control of execution 
of the ind iv idua l analyses was based on directory names involving a unique 
numerical identifier of the job. 

The overall computat ion was steered by a Ma t l ab code, cf. F i g . 8.1. 
The crack growth prediction wi th the stress intensity factor (SIF) being ex
trapolated from previous finite element ( X F E M ) results (see Section 7.2) 
takes place in a single Ma t l ab run for a l l of the required response calcula
tions. Once that a l l of the crack growth simulations require an update of the 
SIF by an X F E M analysis (crack increment exceeds ACIFE), M a t l a b invokes 
the master script mentioned above that takes care of the execution of the 
X F E M analysis for a l l jobs i n which failure has not yet occurred. Final ly , 
when al l of the crack growth simulations have reached failure, the fatigue 
life is integrated wi th in the Ma t l ab run. 

A t this point, we note a very significant advantage of the Extended 
F in i te Element M e t h o d i n distr ibuted computat ion. The geometry of al l 
discontinuities is defined i n an A S C I I file. Th is file is read by the X F E M 
code, while the same mesh file is used for a l l of the computations. 

Note also that the same master script is called also when rel iabil i ty anal
ysis is carried out by means of Monte Car lo simulation. The Ma t l ab script 
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allows for d iv id ing the simulations into batches of the max imum number 
of jobs that can be taken by the system simultaneously. However, when 
using O p e n P B S , spl i t t ing into batches is not necessary. The jobs are s imply 
wait ing in a queue for the slave nodes to complete the execution of pending 
jobs. 

8.4 Conclusions 

Dist r ibuted computing can make affordable many reliabil i ty analyses involv
ing high computat ional effort. A s in the current application, the ind iv idua l 
machines do not need to have any part icular ly high performance. Connect
ing mult iple P C workstations commonly available in many laboratories and 
firms into a network can be sufficient, provided that enough licenses are 
available for the structural analysis code. Under U n i x and L i n u x operating 
systems, tools such as job dis t r ibut ion management, directory mirror ing and 
scripting languages are available, which greatly simplify the implementation 
of distr ibuted computing. 
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Figure 8.1: T/ie architecture of distributed computing 



Chapter 9 

Application Examples 

9.1 Introduction 

In this Chapter , we finally put to work the techniques, procedures and anal
ysis approaches proposed and developed i n this thesis. T w o stochastic crack 
propagation examples are presented in this chapter. They both consider 
a problem of a crack plate subjected to variable amplitude fatigue load
ing. These examples are a demonstration of a full implementation of the 
approach proposed earlier in this thesis, including distr ibuted computing. 

In the first example, the conversion of the variable amplitude loading to 
constant ampli tude loading through P R E F F A S and the crack propagation 
simulation are separated. This allows us to study the randomness in the 
material parameter bjj entering into the P R E F F A S conversion algorithm. 
In the crack propagation simulation, the loading is considered determinis
tic. B y running the two examples, we w i l l have an opportuni ty to compare 
the reliabil i ty results obtained when loading is considered deterministic and 
when the procedure is applied in full scope, integrating also the P R E F F A S 
load transformation and the random variables entering into it. 

W i t h i n the first example, we w i l l also compare the reliabil i ty results 
obtained when forward finite difference ( F F D ) method and direct differen
t iat ion method ( D D M ) are combined to calculate the response derivatives 
wi th results coming from a purely F F D calculation. 

The two examples also have a different geometry. T h e first considers a 
problem wi th two cracks, the second wi th four cracks. For convenience, a 
procedure was developed to set the geometry of a plate w i th holes and cracks 
just by changing the control parameters. Th is of course does not preclude 
applying the crack propagation algori thm to other 2D geometries. 

135 



136 CHAPTER 9. APPLICATION EXAMPLES 

9.2 First Example 

9.2.1 Problem Description 

In the first example, we w i l l consider a two-dimensional problem of propaga
t ion of cracks i n a plate containing two holes, from which two cracks depart, 
facing each other, see Figure 9.1. 

a=70 MPa, R=0.2 
7|\ /|\~ /jT/J\~/j\"/j\"/j\ " | /J\ /j\~/pj\~/j\~/|\ 7|\ /j\ ~f ~f~f 

r=10 mm 

1 

di=40 mm 

7 / / / / / A 

c 
CO 

\/ 

6=90 mm 

Figure 9.1: Geometry of the problem - example 1 

The plate is constrained for both rotat ional and translational degrees of 
freedom along its bo t tom edge and a uniformly distr ibuted traction loading 
is applied along the top edge. 

9.2.2 Statistical Scatter in b, 

In a first step, we w i l l study the randomness in P R E F F A S , focussing on 
the statistical scatter of the material parameter bjj of Elber ' s crack closure 
model, cf. E q . 2.23. 
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Figure 9.2: Finite element mesh - example 1 

The parameter bjj can be determined as decribed in Section 2.6.4 when 
the crack grow retardation rate TR and the Paris law exponent m are known. 
The statistics of m were estimated from the Vi rk le r ' s experiments. Due to a 
lack of experimental data on TR, we w i l l assume a uniform dis t r ibut ion over 
the range of values indicated by Davy [21] on the basis of a scatter wi th in 
a single set of crack propagation experiments (wi th and without overload). 
The statistics of TR and m are shown in Table 9.1. The correlation coefficient 
of TR and m is 0.427 and can thus be neglected as weak. 

variable type parameter 1 parameter 2 
uniform min . 6.5 max. 16.0 

m normal mean 2.8553 st.dev. 0.1658 

Table 9.1: Statistics of the Paris law exponent m and the crack length re
tardation rate TR 

A simulation using the statistics in Table 9.1 yields a sample of by values. 
Its estimated statistics are shown in Table 9.2. A C h i squared test showed 
that the dis t r ibut ion of bjj can be considered normal. 
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Figure 9.3: Reliability index ßuh 

variable type mean st. deviation 

bu normal 0.5562 0.0215 

Table 9.2: Estimators of the statistics of the parameter bu 

Together w i th the scatter in m, the statistics i n Table 9.2 result i n a 
coefficient of variat ion of the equivalent load stress aeq of only about 8% 
when simulations are performed using P R E F F A S . 

9.2.3 Fatigue Crack Growth Simulation 

The only variables considered random in this example were the two in i t ia l 
crack lengths an and aj2, and the Paris law parameters C and m. Thei r 
statistics are given in Table 9.3. 

A deterministic constant amplitude sinusoidal loading between a min i 
m u m of 14 M P a and a max imum of 70 M P a was applied to the structure 
(Fig . 9.1) and fatigue crack propagation was simulated using the procedure 
described i n Chapter 7. The value of the fracture toughness entering into 
the fhysical failure criterion, cf. E q . 6.4, was 1100 M P a ^ / m m . 

The finite element mesh used is shown i n Figure 9.2. Discontinuities 



9.2. FIRST EXAMPLE 139 

33 

3 

2.5 

2 

1.5 

1 

0.5 

of 
A -

-0.5 — 
4000 

- A -

6000 8000 10000 
A [cycles] 

1— 0 1 
— X — 

- A - LnC 
m 

- A - - " A 

12000 14000 

Figure 9.4: Design point u* (DDM) 

variable dis t r ibut ion type mean std. dev. correlation 
Oj l , aj2 i . i . d . exponential 1.5 1.5 
l o g C normal -26.056 0.972 -0.99759 
m normal 2.855 0.166 -0.99759 

Table 9.3: Statistics of the random variables of the crack propagation model 

(both the holes and the cracks) were introduced i n the model through the 
Extended F in i te Element M e t h o d techniques (see Section 3.4) implemented 
in the software E L F E _ 3 D [46]. The size of the elements i n the central zone 
where the cracks propagate (see Figure 9.1), was 0.4 m m . 

The improved H L - R F algori thm was used for the search of the design 
point [101]. 

The convergence of the design point search in F O R M is tested against 
two criteria. The first one is a criterion on the l imi t state function value: 

ß i 
G_ 

(9.1) 

where GQ is the l imi t state function value i n the first i teration step. 
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Figure 9.5: Design point u* (FDM) 

The second criterion tests whether u is parallel to the normalised gradi
ent of G, whose components are the sensitivities at the design point, denoted 
a. Involving a dot product of vectors, the expression 

e2 = ||u — aTua|| (9-2) 

w i l l tend to zero as u and a are becoming parallel . The value returned by 
E q . (9.2) depends on the size of u. In fact, one computes a dot product of 
a unit vector w i th a vector of the size of ||u||. B y normalising the resulting 
value of E q . (9.2) by the size of ||u||, the criterion becomes independent of 
the probabil i ty of failure: 

llu — aTua|| 
e 2 = ^ 1 1 • (9.3) 

Setting the convergence cri teria to e\ = 0.05 and e 2 = 0.1, convergence 
was achieved after only 3 to 4 iterations. These rather relaxed convergence 
criteria lead to some inaccuracy in the design point coordinates u* i n the 
standard normal space, as documented by the differences between u* found 
wi th F D M and D D M estimation of gradients, respectively - cf. Figures 9.4 



9.2. FIRST EXAMPLE 141 

Figure 9.6: Sensitivity of (3HL to the correlation of C and m 

and 9.5. B u t as it can be seen i n Figure 9.3, the values of the reliabil i ty 
index (3HL obtained by the two methods are almost identical. 

Figure 9.9 shows the reliabil i ty weights of the ind iv idua l random vari
ables expressed i n terms of the importance factors 7, applicable i n the case 
of correlated random variables. The 7 factors have been defined in Sec
t ion 4.5.2. 

It can be seen i n Figure 9.9 that w i th increasing required service life 
N$ and hence wi th increasing probabil i ty of failure, the weight of the in i t ia l 
crack sizes falls off while the Paris parameters C and m rise in importance. 

A further observation regarding Figures 9.4, 9.5 and 9.9 is that at low 
N$ and hence low probabil i ty of failure, the effect of the in i t ia l crack size is 
predominant. Note that in al l configurations considered, 0 2 was the leading 
crack at the t ip of which the failure actually occurred. 

A n important result is documented in Figure 9.6. It shows the sen
sitivities of the rel iabil i ty index (3HL to the correlation between the Paris 
parameters I n C and m. Compar ing the sensitivity values in Figure 9.6 w i t h 
sensitivities to the means and standard deviations plotted i n Figures 9.7 
and 9.8, one can see that the correlation coefficient has a significant effect 
on the reliability. Th is also explains why it was observed in Section 6.2 that 
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Figure 9.7: Sensitivity of (3HL to the means of the variables 

the scatter i n the fatigue propagation life could not be reproduced w i t h a 
statistical model considering only one of the parameters C and m random 
and the other functionally related. Note that i n the study presented in Sec
t ion 6.2, the effect of pin C m was even greater since C and m were the only 
random variables. 

The differences between the sensitivities calculated from the reliabil i ty 
analysis results obtained wi th F D M and D D M estimation of gradients, re
spectively, are due to inaccuracies i n the design point coordinates, which are 
in tu rn caused by the rather relaxed convergence criteria. 

Figures 9.7 and 9.8 show the normalised sensitivities w i th respect to the 
the means and standard deviations of each random variable. It can be seen 
that the effects of the ind iv idua l variables, i n part icular of the length of the 
leading crack, evolve wi th the required service life N$- It appears that at 
low Ns, the rel iabil i ty index is highly sensitive to the standard deviation of 
the length of the leading crack. O n the other hand, at high Ns, it is the 
mean value of the Paris law parameters that are predominant. 
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9.3 Second Example 

The second example presents a full implementation of the proposed algo
r i t hm integrating the load transformation by the P R E F F A S method into the 
overall crack propagation simulation algori thm. The purpose is to demon
strate the use of the algori thm on an example that shows the complexity of 
a real crack propagation problems i n the aerospace industry. 

T f f i F i f f i 

+ 

<h 

ar2 

<h 

+ 
a,4 

Figure 9.10: Geometry of the problem - example 2 

9.3.1 Problem Description 

In this example, we w i l l consider a two-dimensional problem of propagation 
of cracks in a plate containing three holes, from which four cracks depart, 
facing each other, see Figure 9.10. 

The plate is constrained for both rotat ional and translational degrees of 
freedom along its bo t tom edge and a uniformly distr ibuted traction loading 
is applied along the top edge. The load history is input as a sequence of 
peaks and troughs. Th is may be a standard loading sequence applicable to 
the structure in question. For example the aerospace industry standards 
prescribe specific load histories for part icular components and structures of 
the aircraft. 
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9.3.2 Input Parameters and Variables 

A s regards the geometrical parameters, only the in i t i a l crack sizes an to 
a,4 are considered to be random variables. In line wi th common practice, a 
lognormal probabil i ty law is used, an to an are identically distr ibuted, but 
independent. In a real application, their statistics would be derived from 
experiments, using Bayesian updat ing where information is l imi ted. Here, 
no such data collection and evaluation was carried out and the statistics are 
just some reasonable values, not grounded by actual data. 

In other calculations not documented in this thesis, the cracks were mod
elled as starting from a point on the circular hole given by a line running 
from the hole centre at an angle from the horizontal line. The cracks were 
ini t ia l ly oriented i n the same angle. These angles were considered as in 
dependent random variables for each crack, w i th zero mean. However, the 
crack propagation life appeared to be rather insensitive to this angle. In 
fact, the cracks immediately regained the direction of propagation governed 
by the surrounding stress field. 

Other geometrical parameters, including the horizontal and vertical spac
ing of the holes d\ and 6%, respectively, the dimensions b and h of the plate, 
its thickness, as well as the radius of the holes r were treated as deterministic 
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parameters. 
None of the material properties has as much effect on the crack propaga

t ion life and at the same time as much dispersion as the parameters of the 
Paris law. O n the basis of the investigations carried out in Section 6.2, a 
statistical model of joint normally distr ibuted m and In C (for the two Paris 
parameters C and m) was employed. 

The amplitude characteristic of the applied stress OL and the toughness 
Kcr, whose derivatives can be obtained without recourse to finite differences, 
were also considered as random variables. OL is actually the mult ipl ier 
applied onto a standard peak-valley sequence as may be applicable by a 
standard for the given component and environment. OL was represented by 
normal dis t r ibut ion and Kcr was modelled as log-normally distr ibuted. 

The last random variable considered i n the statist ical modell ing for this 
example problem was the material parameter bjj, which enters together 
w i t h the Paris exponent m the load sequence transformation algori thm of 
the P R E F F A S method. Its statistic dis t r ibut ion parameters have been de-
termnined in the example above (Section 9.2) and w i l l be reused here. 

In summary, the variables considered random are the in i t i a l crack lengths 
aj, logari thm of the Paris law factor In C , the Paris exponent m, the applied 
stress aL-, the toughness Kcr, and the material parameter by of the P R E F 
F A S method. Thei r statistics are listed i n Table 9.4. 

For discusion on the high and precisely given negative correlation coef
ficient between I n C and m, see the discussion in Section 6.2. 

variable dis t r ibut ion type mean std. dev. cor r el. 
Cli lognormal 1.5 0.3 -

InC normal -26.056 0.97165 -0.99759 
m normal 2.8553 0.16584 -0.99759 
K lognormal 1100 110 

OL normal 50 7 -

bu normal 0.56 0.02 

Table 9.4: Statistics of the random variables of the crack propagation model 

9.3.3 Solution Methods 

This example demonstrates the computat ional procedure for probabilist ic 
analysis of crack propagation problems put forward i n the preceding chap
ters. 
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iteration 

Figure 9.12: Convergence criteria. 

The reliabil i ty problem wi th the l imi t state function defined by equation 
(6.6) is solved by the Firs t Order Rel iabi l i ty M e t h o d ( F O R M ) . Whenever 
F O R M requires a calculation of the response, the loading sequence is trans
formed by the P R E F F A S method (Sec. 2.6.3) to the equivalent constant 
ampli tude loading using the variable values passed by F O R M . 

The crack propagation simulation procedure is then executed as de
scribed i n Chapter 7, w i th dis t r ibut ion of computat ional jobs outl ined i n 
Chapter 8 and wi th the mechanical response computed by the Extended 
F in i te Element M e t h o d (Sec. 3.4), using the software E L F E _ 3 D [46]. The 
crack propagation area is meshed wi th a rectangular mesh wi th an element 
size of 0.3 m m . Figure 9.3 shows a detail of the finite element mesh. Sen
sitivities of the life under fatigue crack propagation are computed by direct 
differentiation (see Section 4.4.1) where possible, and otherwise by the for
ward finite difference method. The convergence cri teria used are the same 
as those introduced above i n E q . (9.1) and E q . (9.3). 

9.3.4 Results 

The analysis was run first w i th a mesh size of 0.5 m m i n the crack propa
gation zone. Because of slow convergence on the criterion e2, the mesh was 
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Figure 9.13: Variable values in standard normal space through the iterations. 

refined wi th a hope that convergence w i l l be faster. However, the difference 
was not very important and the li t t le increase i n the speed of convergence 
was pa id for quite expensively by extra computat ional t ime. The history of 
the convergence cri teria through the iterations of the F O R M design point 
search is shown i n F i g . 9.12 for the mesh size of 0.3 mm. 

The values of the ind iv idua l random variables i n the standard normal 
space, i.e. the coordinates of the design point i n the iterations of the design 
point search, are plotted i n F i g . 9.13. In both F i g . 9.12 and F i g . 9.13, it 
can be seen that from the fourth i teration on, the values are quite stabilised 
and only a slow improvement in the ei cri terion is achieved at the expense 
of deterioration i n the e\ criterion. 

The Hasofer-Lind reliabil i ty index, see Section 4.3, was J3HL = 7.55, 
which corresponds to a F O R M probabil i ty of failure of 2.25 • 1 0 - 1 4 . Th is is 
a very low probabil i ty and the fact that the design point search converged 
demonstrates the robustness and stabil i ty of the developed procedure. 

However, we have relied on F O R M only and it would be judicious to 
use the importance sampling simulation procedure in order to confirm the 
probabil i ty of failure and the inexistence of another design point. 

F i g . 9.3.4 plots the importance factors 7. It can be seen that the material 
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trailing crack 

Figure 9.14: Importance factors 7 - example 2 

parameters C and m of the Paris crack propagation law have by far the 
highest potential to contribute to failure or survival of the structure. A b o u t 
four times lower is the effect of the th i rd most important variable - the 
ampli tude characteristic of the loading O~L - followed by another material 
parameter - the bjj parameter of Elber ' s model used to convert the variable 
ampli tude loading to an equivalent constant amplitude load. 

The dominat ing importance of the material parameters governing the 
crack propagation rate suggests that only minor improvements i n reliabil i ty 
can be achieved if one does not play on the material . B u t this may not be a 
feasible option, especially not in the case of a study of crack propagation i n 
an existing structure. The th i rd most important variable is the amplitude of 
the applied stress. It could therefore make sense to implement measures such 
as divert ing the stresses from the cracked site by adding stiffness elsewhere. 

It must be noted that the importance weights of the variables as shown 
in F i g . 9.3.4 are calculated for the current problem wi th given statistical 
model. The importance weights of each variable could look different if also 
other parameters were a part of the model . A n example are the hole dis
tances. Also , i f real statistics of the in i t i a l crack lengths were used, their 
importance could also change. The same could be true also for the Elber ' s 
material parameter bjj if more statistical information on this parameter were 
available. O n the same token, the importances of the variables would be also 
different i f the m i n i m u m required service fatigue life N$ was different. 
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9.3.5 Discussion 

Because of the novelty of the stochastic crack propagation analysis approach 
proposed i n this thesis, the successful implementation and good functioning 
of the analysis procedure is probably more important to discuss than the 
specific values of the results. 

Once the bui ld ing blocks of the stochastic analysis procedures had been 
set out, the implementation of the entire procedure was a process in which 
various algorithmic challenges, interfacing problems and numerical difficul
ties had to be overcome. T h e results listed above were produced without 
encountering any errors that would interrupt the execution of the procedure 
or have an effect on the correctness of the results. A n d they were obtained 
i n a quite reasonable time. The procedure was run also on a single processor 
P C and the computat ion was completed in about 10 days. 

The above reliabil i ty analysis example has demonstrated the accuracy, 
efficiency and robustness of the proposed approach to stochastic analysis 
of complex two-dimensional crack propagation problems. After a relatively 
minor adaptation to other definitions of cracks than those departing from a 
hole, the procedure is ready for analysis of wide range of pract ical 2D crack 
propagation problems. 

Figure 9.15: Mesh with integration sub-elements and displacement results. 
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9.4 Concluding Remarks on the Examples 

Unlike i n the first example, loading was studied in the second example as an 
integral part of the analysis procedure, which allowed us to model the load 
ampli tude parameter oy and the material parameter by of P R E F F A S load 
transformation algori thm as random variables. 

Compar ing the importance factors in F i g . 9.9 and F i g . 9.3.4 makes it 
apparent that by including the loading i n the analysis, a different picture 
about the significance of the variables for rel iabil i ty is drawn. A s a mat
ter of fact, the loading amplitude comes out as the th i rd most important 
variable for the probabil i ty of failure. Th is illustrates how rel iabil i ty results 
depend on appropriate modell ing of the problem. In pract ical analysis, the 
uncertainty about any variable should not be disregarded unt i l a sensitivity 
analysis has been carried out. 

The Paris law exponent m enters also into the load transformation by 
P R E F F A S . One could therefore attribute a part of the sensitivity to the Paris 
law parameters to the fact that they influence the reliabil i ty also through 
the loading. However, such intermediated influence is probably not high. 
Remember that i n the first example, we have found only a smal l coefficient 
of variat ion for the transformed loading when only m and the the crack 
grow retardation rate T r were considered as the random variables i n the 
load transformation algorithm. 

Note also that I n C and m are highly correlated, so any one of them 
cannot have a high significance for rel iabil i ty without the other one being 
about the same important as well. 

The first example focussed on specific aspects: (1) s tudying the random
ness in the load tansformation through the P R E F F A S method, (2) assessing 
the performance of and comparing the results obtained when using the fi
nite difference method ( F D M ) and direct differentiation method ( D D M ) i n 
the calculation of the gradients of the l imi t state function, (3) s tudying the 
evolution of the importance of the variables w i th the required fatigue service 
life and the probabil i ty of failure. 

The purpose of the second example, on the other hand, was to demon
strate a full implementation of the proposed algori thm on an example of an 
industrial-level complexity. 

The first example was calculated on the computat ional cluster described 
in Section 8.2 using distr ibuted computing. The stochastic crack propaga
t ion analysis was complete in about 40 hours. The second example was 
calculated on a single P C wi th a 1.4 M H z processor and 1 G B of R A M . 15 
interations of the design point search algori thm were complete i n about 10 
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days. Th is shows the versatility of the procedure that is capable of using the 
distr ibuted computing technology, but can be run on a single P C as well. 

The examples show that the proposed procedure to analyse stochastic 
fatigue crack propagation is solid and effcient and that it can be useful for 
industr ia l applications. 



Chapter 10 

Conclusions 

This thesis had a double objective, corresponding to a differing research 
focus of the two research groups wi th in which the author conducted his 
doctoral research under joint direction of his two tutors. In this closing 
chapter, we w i l l not only discuss the results and contributions of the thesis, 
but it w i l l also become apparent that lessons learnt in one part of the research 
came useful i n the other, and vice-versa. 

The Czech part of the research focused on investigation of through cracks 
in very th in foils w i th the objective to verify the hypothesis that the observed 
anomalous behaviour of such cracks can be explained by the stress conditions 
around the crack front determined based on cont inuum mechanics. The 
author reviewed the theoretical bases of the concepts commonly used i n 
fracture mechanics to understand their applicabil i ty to problems wi th special 
geometries, such as the one of th in foils. A detailed numerical investigation 
of the stress conditions along and around the crack front was then carried 
out. Th is carefully elaborated 3D finite element models of through cracks 
i n t h in foils revealed some trends i n the evolution of the stress field as 
the sheet metal becomes thinner. B u t none of the k ind that would offer 
any explanation for the anomalous behaviour observed i n fatigue tests on 
cracked th in foils. 

Despite the fact that the above hypothesis appeared ungrounded, this 
research was also useful per se i n that it help the author to fully appreciate 
the assumptions behind two-dimensional fracture mechanics models as well 
as behind two-dimensional crack propagation models. 

The larger part of the thesis, which also brings an original contribution, 
deals w i th numerical modell ing and stochastic analysis of complex-geometry 
crack propagation problems. This computat ional task requires a huge com-
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putat ional effort together w i th a good accuracy i n the numerical mechanical 
model. 

A t the same time, the life under fatigue crack propagation is known to 
show an extraordinary amount of scatter. The computat ional requirements 
arising when a numerical mechanical model needs to be used have long 
prevented engineers from taking the advantage of reliabil i ty analysis to gain 
a better understanding of problems such as inspection scheduling and crack 
repair design evaluation. 

B y employing several computat ional and analysis techniques, a stochas
tic crack propagation analysis procedure was developed in this thesis which 
makes it possible to conduct a rel iabil i ty analysis of the problem wi th rea
sonable computat ional resources, while retaining the necessary robustness 
of the procedure. 

Let us summarise the reasons that lead to the choice of the specific anal
ysis methods that make up the important bui ld ing blocks of the reliabil i ty 
analysis procedure and highlight the contr ibution of each. 

The Fi rs t Order Rel iab i l i ty M e t h o d ( F O R M ) was chosen as the reliabil
i ty analysis tool . It appeared that the problem analysed showed no impor
tant non-linearity. A first-order approximation of the l imi t state function 
was thus sufficient. F O R M directly provides information on sensitivities. In 
comparison to Monte Car lo simulation, F O R M is more demanding as regards 
the accuracy of the structural response computed. B u t is does not require 
the mechanical model to compute responses wi th very low-probabil i ty reali
sations of the random variables. These may lead to a different type of failure 
than the one actually analysed. F O R M thus helps to contain the problem 
wi th in the actual problem of interest. 

For the class of problems of interest in this thesis, i.e. two-dimensional 
crack propagation problems involving crack-crack and crack-structure in 
teractions, a solution of the underlying fracture mechanics problem by a 
numerical method becomes necessary. A classical finite element formula
t ion requires updat ing the finite element mesh as the crack is growing. 
This requires highly performing meshing algorithms. B u t more importantly, 
remeshing introduces numerical noise which can easily hamper the conver
gence of the F O R M reliabil i ty algori thm. The accuracy achievable w i th the 
finite elements that is quite satisfactory for deterministic purposes may at 
the same time be s imply insufficient for the rel iabil i ty approximation meth
ods, such as F O R M . 

It was then natural to look for a numerical method that would be bet
ter performing for the purposes of rel iabil i ty analysis of crack propagation 
problems. The Extended F in i te Element M e t h o d ( X F E M ) avoids remeshing 
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and offers a good numerical stability. A s compared to meshless methods, 
which were also explored, X F E M is faster. Also , it builds on the finite ele
ment method, so the computat ional technology developed for finite elements 
remains available also for X F E M . 

The F O R M algori thm requires the computat ion of the derivatives of the 
response. Obta in ing them by numerical differentiation is t ime consuming 
and introduces numerical errors. Th is thesis therefore explored possibilities 
to calculate the response sensitivities by directly differentiating the response 
equation. Several useful formulae were thus derived and used in the analysis 
algori thm. However, the response derivatives w i th respect to some variables 
can only be obtained by employing numerical differentiation by the finite 
difference method. 

The author also had the opportuni ty to use a cluster of personal com
puters. This network of relatively inexpensive machines running L i n u x op
erating system wi th the O p e n P B S distr ibuted computing ut i l i ty appeared 
to be perfectly suited and easy-to-use for rel iabil i ty analysis purposes. The 
dis t r ibut ion of the computations of the structural response brought a further 
acceleration of the whole rel iabil i ty analysis procedure. 

The implemented procedure appeared capable to analyse a stochastic 
crack propagation problem, w i th a complexity at the level of an industr ial 
application, w i th robustness, accuracy and reasonable requirements on com
putat ional hardware and time. After minor modifications to accommodate 
other definition of crack departure than from a hole, the procedure is ready 
to be applied on a wide range of complex-geometry two-dimensional crack 
propagation problems. 

The extensibili ty of the method is l imited mainly by the use of the stress 
intensity factor (SIF) as both the crack growth driver (trough the Paris law) 
and the failure criterion. A s the fracture mechanics theory review i n the first 
part of the thesis exposed, S IF is defined for two-dimensional problems. This 
fact would require a substantial re-formulation of the procedure, should it 
be extended to three-dimensional problems. O n the other hand, X F E M has 
been successfully employed also in 3D crack propagation applications. 

The part of the thesis dealing w i t h stochastic crack propagation mod
elling also shed a different light on the problem of crack propagation in th in 
foils, investigated earlier in the thesis. It appeared that this phenomenon 
has much to do wi th the microstructure of the material . Correla t ing the 
average crack advance to the general level of stress around the crack, as i n 
the Paris law, and stochastic modell ing can perhaps be more successful i n 
capturing the random effects of the material structure. 
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Appendix A 

Fracture Mechanics 
Complements 

A . l Relation between the Energy Release Rate 
and the Stress Intensity Factor 

Consider a crack wi th a length a in state 1, which grows to length a + A a 
in state 2 along the straight line of a. The states w i l l be denoted by left 
superscripts. The two crack lips of the crack extension A a w i l l be denoted 
TAa and w i l l have their outward normals n + and n ~ coinciding wi th the 
unit vectors e ± and e 2 , respectively. Considering that the tractions in state 1 
effectively close the crack over A a , the geometries of state 1 and state 2 are 
the same and Bett i ' s theorem can be invoked, subject to assuming linear 
elasticity [48]: 

Note that 2 T j is zero on T^a. The integrals over <9f2 and T^a, respectively, 
are separated: 

( A . l ) 

(A.2) 
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Under constant loading, 2 T j - 1Ti = f ^ A a , and 2Ui - 1ui = ^ A a . Substi
tu t ing this into (A.2) , we have: 

'T^uids = [ f ^ U i - T ^ ) Aads, (A.3) 
r A a Jan \ da da J 

where we recognise the form of equation (2.5) i n the right hand side. There
fore: 

GAa = - \ t V m d s . (A.4) 2 

Let us now write the tract ion Tj and displacements Ui on the upper (+) and 
lower (-) crack face over T&a w i th the polar coordinate system used for the 
in-plane stresses. For the upper face: 

lTf = 1 a i j n + = ( - V e r e i - V ^ e 2 - V 2 3 e 3 ) (r = x, 9 = 0) 

2Ui = ( 2 t t i e i + 2u2e2 + 2u3e3) (r = A a - x, 9 = ir). (A.5) 

For the lower face: 

1T~ = 1aijn~ = ( V ^ e i + 1 a e e e 2 + V 2 3 e 3 ) (r = x, 9 = 0) 
2 t t i e i + 2 u 2 e 2 + 2u3e3) (r = A a - x, 9 = ir). (A.6) 2„ 

W h e n the expressions for stresses and displacements given in Subsec
t ion A.2 .2 are inserted i n (A.4) using (A.5) and (A.6) - see [48] for details 
- we obtain the Irwin's formula: 

G = ^ 1 T , ^ ds = -^-{Kj + Kfj) + - ^ - K f n . (A.7) 

A.2 Crack T ip Stress Field Expansion 

A.2.1 Airy's Stress Function 

Equilibrium and Compatibility Equations 

Consider an element subjected to stresses as i n Figure A . l . Assuming zero 
body forces, the following equations must hold for the stresses to be i n 
equil ibr ium: 

do~Xx do~Xy Q 

dx dy 

dy dx 
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Figure A . l : Stress equilibrium 

Equations (A.8) are fulfilled identically, if the components of the stress tensor 
are expressed using A i r y ' s stress function $ : 

0":, 

a •ni 

_ d2$ 
dy2 ' 

dxdy ' 

d 2 $ 
w gx2 

The identities are easy to see, e.g.: 

Ox + 
da •ni d 3 $ <93$ 

dy dy2dx dy2dx 
0. 

(A.9) 

(A.10) 

Cont inui ty of deformations is ensured by requiring the compatibi l i ty equa
tions to be fulfilled. Aga in , assuming zero body forces, and wri t ing the 
compatibi l i ty equations in stresses, they read: 

( d2 d2\, 

If the function $ is bi-harmonic, i.e. if: 

0. 

V 2 V 2 $ = 0 , 

then both equation (A.8) and equation (A.11) are satisfied. 

( A . l l ) 

(A.12) 
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The Laplac ian V 2 

(A.13) 

After transformation to polar coordinates by substi tut ing x = r cos 9 and 
y = rs'm9, it reads: 

A.2.2 Williams's Expansion 

Wil l i ams [97] presented a solution to equation (A.12) using an asymptotic ex
pansion of the stress field wi th separation of the variables r and 9. W i l l i a m s ' 
solution is presented i n the following. 

Solution to Differential Equation of the Problem 

A solution is to be found that satisfies equation (A.12) and the boundary 
conditions (see below). The solution is sought i n a factorised form (with r 
and 9 separated). Considering the form of equation A . 14, a solution of the 
form 

w i l l yield a convenient form of the results after the differentiation. K$ i n 
equation A.15 is a proport ionali ty factor applied to the stress dis tr ibut ion. 

Let us now insert equation A.15 into equation A .12 . Fi rs t , let us apply 
the Laplac ian V 2 on $ the first time: 

A p p l y i n g the Laplac ian V 2 a second time on equation A.16 , we arrive at: 

(A.14) 

d? = K*r2-Sf(9) (A.15) 

- r 2 - s f " + - ( 2 - ^ r 1 " * / + (1 - a)(2 - s)r~sf = 0 

[r-sf + ( ( 2 _ s) + ( l _ a ) ( 2 - s)) r~sf] = 0 

[r~sf" + (4 - As + s2) r~sf] = 0 . (A.16) 

r - 2 - Y ' " + r - 2 - ( 4 _ 4 s + s 2 ) fn 

+{-s)r-2-sf" + (4 - As + s2) f{-s)r-2~s 

+{s + s2)f" + (4 - As + s2) (s + s2)fr~2-s = 0 . (A.17) 

After arranging, we obtain: 

/"" + 2 (s2 - 2s + 2) / " + s2(2 - s)2f = 0 . (A.18) 
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Unl ike equation (A . 12), which was a par t ia l differential equation, equa
t ion (A . 18) is a homogeneous ordinary differential equation, depending only 
on 6 . Moreover, it is linear and has constant coefficients. Such equations 
can be solved by an exponential function, looking for a solution in the form 
eke. 

However, when we consider the symmetry of the problem, solutions in the 
form of trigonometric functions can be used advantageously. In particular, 
symmetry of Mode I allows to use only cosines, looking for solutions in the 
form cos(k6). An t i symmet ry of Mode II is represented by sines, w i th the 
solution sought i n the form sin(kd). 

Let us now l imi t our attention to the symmetric problem of Mode I. 
Inserting cos(k9) into equation (A . 18), we obtain the characteristic equation: 

k4 cos(k9) - 2k2 (s2 -2s+ 2) cos(k9) + s2 (2 - s)2 cos(k9) = 0, 

kA - 2k2 (s2 - 2s + 2) + s2 (2 - s)2 = 0 . (A.19) 

Let us now explore separately two cases: where s / 2 and where s = 2. 

Characteristic Equation with s / 2 

Firs t , let us consider the case where s ^ 2 when and the characteristic 
equation remains as in equation (A.19). It can be shown that k = s and 
k = 2 — s are solutions of equation (A.19). F i rs t , subst i tut ing s for k: 

s 4 - 2s2 (s2 - 2s + 2) + s2 (2 - s)2 = 0 , 

s 4 - 2s4 + 4 s 3 - 4s2 + 4s2 - 4s3 + s4 = 0 , 

0 = 0 . (A.20) 

For the other solution k = 2 — s: 

(2 - sf -2(2- s)2 (s2 - 2s + 2) + s2 (2 - s)2 = 0 , 

(2 - s)2 - 2 (s2 - 2s + 2) + s2 = 0 , 

4 - 4s + s2 - 2s2 + 4s - 4 + s2 = 0 , 

0 = 0 . (A.21) 

Thus, the function f(9) in the factorised A i r y ' s stress function $ i n 
equation (A.15) has the form: 

f{6) = c i cos(s#) + c 2 cos [(2 - 8)6] . (A.22) 

To find the constants c\ and c 2 and the exponent i n equation (A.15), we 
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Figure A . 2 : Crack tip field solution geometry. 

use the boundary conditions on the faces of the notch. The stresses perpen
dicular to the notch face and the shear stresses on the notch face must be 
equal to zero: 

0, 

= 0. (A.23) 

Transforming the equations (A.9) into polar coordinates, we can express the 
stresses in terms of the equation (A.15): 

o~ee 

arg 

d2$ 
dr2 

i d2$ 

K*-(2-s)(l-s)f(0) 

r drdO 
-K*-(l-s)f'(0). (A.24) 

If the boundary conditions (A.23) are to be fulfilled, it is apparent that at 
the notch face, i.e. at the angle 9 = ir — a, the value of f{9) and its derivative 
f'(9) must be equal to zero (for a non- t r iv ia l solution). Tha t is: 

c\ cos [S(TT — a)] + C2 cos [(2 — S)(TT — a)] = 0 , 

-c\s sin [S(TT — a)] — 02(2 — s) sin [(2 — S)(TT — a)] = 0 . (A.25) 

In mat r ix notation, the same equation (A.25) reads: 

[T] {c} = {0} , 

cos [S(TT — a)] 
-s sin [S(TT — a)] 

cos [(2 — s)(ir — a)] 
- ( 2 - s ) s i n [ ( 2 - s ) ( 7 r - a ) j 

Cl " 0 " 

. C 2 . 0 _ 
(A.26) 
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For non-t r ivia l solution of equation (A.25), it must hold that the determinant 
of the matr ix [T] is equal to zero. P u t t i n g | T | = 0 , we obtain: 

— cos [S(TT — a)] (2 — s) sin [(2 — S)(TT — a)] 

+ssin[s(vr - a)] cos [(2 - s)(tt - a)] = 0 . (A.27) 

The roots of equation (A.27) are now the eigenvalues of the problem, which 
w i l l yield the exponent in equation (A.15). They can be found by numerical 
methods, such as the interval bisection method. Based on physical consid
erations, we look for values wi th in the interval (0; 1) only. The eigenvalues 

0.5° 
2° 
5° 

Figure A . 3 : Plot of characteristic function for eigenvalues s and various 
notch angles a 

are listed in Table A . l for selected angles a. 

a 30° 45° 60° 
s 0.488 0.456 0.384 

Table A . l : Eigenvalues of equation (A.27). 

P lo t t ing the function on the left side of equation (A.27) for several chosen 
notch angles a, one can see the locations of the roots of (A.27) i n the interval 
(0; 1) - see F i g . A . 3 . 
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For a crack, which is here the special case of a notch when a = 0, s = 0 
is also a root. The constant stress term of Wi l l i ams eigen-series expansion 
corresponding to s = 0 is known as the T-stress. 

It can be seen in F i g . A . 3 that for notch angles a ^ 0, s = 0 is not a 
root of equation (A.27) and hence also not an eigenvalue of the mat r ix [T] i n 
equation (A.26). Therefore, it appears that i n case of a notch, the T-stress 
term does not exist. 

Characteristic Equation with s = 2 

In this case, the characteristic equation (cf. A . 19) w i l l be: 

kA - 4k2 = 0 . (A.28) 

The four roots of this equation (A.28) are k\p = 0, £^4 = ± 2 i . Thus, the 
function f{9) has the form: 

f{9) = c i + c29 + c 3 sin(20) + c 4 cos(2(9). (A.29) 

Considering Mode I, the function f{9) must be even, which leads to a re
duct ion of equation (A.29) to 

f{9) = c i + c 2 cos(2#). (A.30) 

F rom boundary conditions (A.23), f(9) and its derivative f'(9) must be 
equal to zero, i.e.: 

C l + C2 cos[2(-7r — a)] = 0 , 

c 2sin[2(7r - a)} = 0 . (A.31) 

Rearranging the equations (A.31) and replacing c 2 w i th the T-stress value 
T: 

T j^- + cos[2(vr - a)] J = 0 , 

T {sin[2(7r - a)]} = 0 (A.32) 

If these equations (A.32) are to be fulfilled for any notch angle a, then the 
T-stress T must be equal to zero. 

Thus, from a rigorous mathematical analysis of the problem as posed, it 
appears that the T-stress exists but i n the case of a crack wi th zero in i t ia l 
opening angle. 
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A.3 Stress Behaviour along the Crack Front 

This section of the appendix presents the results of numerical investigations 
of the behaviour of the stress field along the crack front, i.e. from one face 
of the cracked body through its thickness to the other face. Th is study was 
motivated by observations made on cracks in th in metallic foils, which have 
an application e.g. i n micro-devices, operating as switches at frequencies 
ranging from 1 H z to as much as 1 M H z . The research was induced by the 
hypothesis that it is possible to explain some of the crack growth behaviour 
of cracks in th in metallic foils by classical linear elastic fracture mechanics 
( L E F M ) methods. The relevant effects i n terms of L E F M include i n partic
ular the variation of the fracture parameter along the crack front as a result 
of the influence of stress singularity at the crack front corner. For obvious 
simplici ty reasons, these in i t i a l analyt ical investigations are l imi ted to the 
case including an edge singularity and one corner singularity. To keep the 
discussion even simpler, only Mode I fracture is considered; mixed mode 
considerations, the problem is becoming much more complex. 

Before discussing the L E F M solutions, a note is made on the relevance 
of the present results for th in metall ic sheets. Evident ly, for L E F M to be 
applicable, it must be possible to reasonably assume that the body under 
investigation behaves as a continuum. In the literature (see e.g. Hadrbo-
letz et al. [37]), a marked effect of microstructure on the crack propagation 
path and behaviour has been reported i n th in sheets. Hadrboletz et al. [37] 
characterise the nature of the behaviour by the dependence on the ratio of 
material grain size to the foil thickness. The grain size i n rolled material is 
in the order of a few dozens / jm, while electro-deposited materials are very 
fine grained wi th grain sizes of just several / jm. G r a i n boundaries give rise 
to strain gradients. The results herein are thus relevant only for th in sheets 
where a continuum behaviour can be reasonably assumed wi th regard to the 
grain size to sheet thickness ratio. 

A.3.1 State of Stress in the Inner and Sheet Surface Regions 

It is tempting to discuss the state of stress in the sheet subjected to Mode I 
loading i n terms of plane stress or plane strain dominat ion. Th is may be 
correct in regions sufficiently distant from the crack corner point. However, 
due to the presence of the corner-type singularity, the stress and displace
ment fields i n the vic in i ty of the corner point are t ru ly three-dimensional. 
Th is must be kept in mind when interpreting any numerical results. 
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A.3.2 Finite Element Modell ing 

In the finite element computations, the ANSYS [86] finite element code was 
used. A th in centre-cracked tension ( C C T ) specimen was considered wi th 
breadth 2W = 10 m m , wid th 2H = 65 m m , crack half length a = 2.5 m m . 
The model was loaded w i t h a uniform tension of 10 M P a along the edge 
y = W/2. Three thicknesses 50 / /m, 150 / /m and 250 / i m were considered. 
Due to symmetry, only 1/8 of the specimen needed to be modelled. 

20-noded iso-parametric brick elements were used. In the planes per
pendicular to the crack front, the finite element model had a typica l fan 
arrangement of quarter-point elements around the crack t ip, and the same 
geometry persisted throughout the thickness. The size of the first element 
at the crack front i n the direction of the crack face was 3 / i m . The ind iv id
ual layers of elements along the crack front had varying thicknesses, w i t h 
the first five element layers being 3 / i m thick and the next two layers 5 / i m 
thick. T h e number of elements was 7462 i n case of the 250 / i m thick model. 
In addit ion, a smaller por t ion of the 50 / i m model was discretised w i t h a 
finer mesh to allow for better capturing of the stress dis t r ibut ion in the d i 
rection of the thickness. Here, the thickness of the first three element layers 
was only 1 / i m . This reduced-size model (with a total of 13320 elements) 
was loaded w i t h displacements obtained from the coarser-mesh model and 
applied at the respective nodes. 

F i g . A . 4 shows the results of a study of solution convergence wi th mesh 
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Figure A . 5 : SIF fitted from stresses 

refinement on the 50 /jm thick specimen. The size of the first element at the 
crack front i n the direction normal to the crack front was 3 / jm in case of the 
mesh denoted "coarse" i n F i g . A . 4 and 1 /jm in the other two cases, which 
differ from each other by the element size i n the crack front direction. This 
was 3 /jm i n case of the mesh denoted as " 1 s t refinement" and 3 / i i n in case 
of the " 2 n d refinement". The plot s t i l l shows some convergence problems at 
the crack face even wi th the " 2 n d refinement", so even a finer mesh may st i l l 
be needed to achieve trustable results. 

Using quarter-point elements at the crack t ip , a l / y ^ - t y p e stress singu
lari ty is imposed [5]. In terms of the corner - edge singularity concept, no 
incorrect singularity is imposed as the order of singularity along the edge 
remains 1/2. The corner singularity is not expl ici t ly modelled. 

A.3.3 Computational Results 

The global energy method (see paragraph 3.7.2) is used to obtain an asymp
totic value of the S IF as a reference for other results. The S IF values com
puted are given i n Table A . 2 . A s expected, the values of S IF i n Table A . 2 
are nearly the same for a l l thicknesses considered. 

Figures A . 5 , A . 6 and A . 7 show the distributions of S IF obtained by fitting 
from stresses perpendicular to the crack face using least squares and fitting 
from crack opening displacements (see paragraph 3.7.1). In F i g . A . 8 , the 
SIF values obtained by the various methods are compared on the example 



168 APPENDIX A. FRACTURE MECHANICS COMPLEMENTS 

3.70e+007 

3.65e+007 

3.60e+007 

3.55e+007 

tN 3.50e+007 

< 3.45e+007 

3.40e+007 
T 

3.35e+007 

fa 1—1 3.30e+007 
m 

3.25e+007 

3.20e+007 

3.15e+007 

3.10e+007 

- t-- t-

--

50 un i — A — 

-

150 um — * -
250 um —H— 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 

d e p t h [mm] 
Figure A . 6 : SIF fitted from displacements under assumption of plane strain 

Thickness 50 / an 150 / i m 250 / i m 
SIF [PaVmmj 3.34 • 10 7 3.23 • 10 7 3.33 • 10 7 

Table A . 2 : Global SIF values 

of the 50 /jm thick specimen. 

Table A . 3 lists the averages (weigthed by element length) along the crack 
front of the values of S IF computed using the various methods considered 
and plotted i n Figs. A . 5 , A . 6 and A . 7 . 

Thickness 50 / i m 150 / an 250 / an 
Ingraffea & M a n u [41], p i . strain, F i g . A . 6 3.54 • 10 7 3.56 • 10 7 3.57 • 10 7 

Ingraffea & M a n u [41], p i . stress, F i g . A . 7 3.11 • 10 7 3.13 • 10 7 3.14 • 10 7 

Stress fitting, F i g . A . 5 3.44 • 10 7 3.44 • 10 7 3.46 • 10 7 

Table A . 3 : Averaged SIF values in [Pa^/mm] for results plotted in Figs. A.5, 
A.6 and A.7 

In F i g . A . 9 , the stresses perpendicular to the crack face i n the vic in i ty of 
the crack front are plotted using the F E M results obtained wi th the finest 
mesh considered. 
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A.3.4 Discussion of the Results 

It can be seen i n F i g . A . 8 that throughout the specimen thickness, S IF values 
fitted from stresses lie between the values of the displacement fit obtained 
under the assumption of plane strain and plane stress, respectively. Th is 
could suggest that the actual behaviour is somewhere between plane strain 
and plane stress. 

In Figs. A . 5 , A . 6 and A . 7 , the S IF values converge to about the the same 
value as the specimen mid-thickness is approached (these asymptotic values 
somewhat differ optically in F i g . A . 5 , but the actual difference is w i th in a 
2 % tolerance). A l l of these asymptotic values are wi th in about a 10 % 
deviation range from the "global" S IF values in Table A . 2 , obtained by the 
method described i n paragraph 3.7.2. 

The results i n Figs. A . 5 , A . 6 and A . 7 seem to suggest that the surface 
corner point does not effect some region of a more or less constant absolute 
size for a given geometrical configuration wi th only the specimen thickness 
being different. Rather, there seems to be some relation between the thick
ness and the size of the corner influenced domain. However, it appears that 
these parameters are not l inearly proport ional - in the thinner specimen, a 
relatively larger por t ion of the specimen thickness appears to be significantly 
effected by the corner than in the thicker specimens. A t the same time, the 
surface to mid-thickness S IF variat ion span increases wi th the thickness. 

A s can be seen i n Table A . 3 , the crack front length average of the SIF 



170 APPENDIX A. FRACTURE MECHANICS COMPLEMENTS 

CM 3.30e+007 

a 

0.01 
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Figure A . 8 : Comparison of SIF values obtained by various methods, 50 / i m 
thick specimen 

values for a given method is the same for al l thicknesses. The stress intensity 
is thus only differently distr ibuted. The averages of the S IF values obtained 
by fitting to the stresses differ from the "global" S IF values in Table A . 2 by 
no more than 3 to 5 %. 

The stresses i n the crack front v ic in i ty (see the 3D plot i n F i g . A.9) 
appear to be influenced by the surface corner effect i n a significant way only 
wi th in a smal l distance from the corner, about 3 to 5 /jm, which is less than 
10 % of the thickness (50 / im) . However, as noted above, the effect observed 
on the S IF appears to reach deeper into the thickness. 

F rom F i g . A . 4 it appears that even w i t h the very finely meshed model 
used, there are s t i l l numerical errors on the first one or two elements at the 
crack front. Th is suggests that a further refinement may be necessary. 
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Figure A . 9 : Variation of stresses the vicinity of the crack front 

A.4 The P R E F F A S Method 

In Section 2.6, the principles of the P R E F F A S method were outlined. A c 
cording to E q . (2.27), the crack length increment can be calclated as 

N 

Aa = CFm(a) £ ( a m a x , , - a 0 ^ m , (A.33) 
i=l 

where C and m are the coefficients of the P r i s crack growth law, F(a) is 
the geometry factor, the index i runs through the iV cycles in the load 
sequence considered, c r m a X j j is the peak of the given stress cycle and <7o,j is 
the applicable crack opening stress. 

This appendix provides details of the calculation of the load sequence 

— 2 - , i = l l^max,* — <^Q,i) • 

In the calculation, we process the sequence of stress peaks and troughs 
cycle by cycle, while constructing and storing stress cycles that w i l l be signif
icant for determining the opening stress level in the following cycles. Each 
of these significant history stress cycles consists of its m a x i m u m Hmaxj, 
opening stress H0j and m i n i m u m i ^ m i n , j . 

Throughout the load sequence, a m in ima l crack opening stress HQti ap
plies, determined by the overall load max imum i ^ m a x , i and m i n i m u m i ? m i n , i 
of the stress sequence using E q . (2.23). These are the values stored as the 
in i t ia l history values and the P R E F F A S algori thm is started. 
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A peak larger than Hmaxj 

If the currently processed stress cycle i features a peak c r m a X j j that is higher 
than any of the max ima stored i n the history, the following procedure is 
carried out. 

Fi rs t , we find j such that c7 m a x , j > Hmaxj and c7 m a x , j < i ? m a x j - i - In a 
RainFlow- l ike manner, we update the sequence effect given by the history 
values: 

n 
Es = Es + (c r m a X j j — i ? 0 j _ i ) m + ^ (-Hmax,fc — #o,fc)™ 

k=j 
n 

- Y, (H™*,* - tfo,fc-i)m) • (A.34) 
fe=j 

U N D E R L O A D . Next , we check whether the current stress cycle presents 
also an underload w.r.t. i ^ m i n j - i : which is the m i n i m u m corresponding 
to -ffmaxj- If so, we again find I such that c r m m i i < Hmini and c r m i n ^ > 
i?min,z-i> and take the corresponding max imum Hmaxj to recalculate the 
crack opening stress for the history cycle I: 

Ri = m m ' t , Ui = auRi + by , Hoi = Hmaxj - Ui (Hmaxj - c r m m j j ) . 
-"max,/ 

(A.35) 

Due to the underload, we effectively scrap the history values from I onwards 
and reduce the applicable opening stress to HQ[. If HQi < H0j_i, we erase 
the history cycle I as well and keep only the cycles up to I — 1. The number 
of history values that are discarded here is determined by the underload 
w.r.t . I. 

N o U N D E R L O A D . If, on the other hand, the m i n i m u m of the current stress 
cycle is above al l of the stored history min ima, we check whether this stress 
cycle should be stored in the history, or whether we shall keep the history 
stress cycle having the m a x i m u m Hmaxj. For this purpose, we compare 
H0j_\ w i th cr0ji, determined from E q . (2.23). 

If cr0ji > i ? 0 j _ i , we assign to the posit ion j i n the history the max imum, 
m i n i m u m and opening stress values of the cycle i , and discard a l l values 
from j onwards. Otherwise, we erase the posit ion j — 1 as well and retain 
just the history up to j — 1. 
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A peak lower than the last his tory m a x i m u m 

If the currently processed stress cycle i features a peak c r m a x , i that is less 
than any of the history maxima, we just add a contr ibution to the sequence 
effect Es: 

where HQ^m is the last opening stress stored i n the history. 

U N D E R L O A D . In case that the cycle i presents an underload w.r.t . any of 
the history min ima -^min,m; we w i l l again reduce the level of the crack open
ing stress and discard some of the history values. We proceed analogically 
to the case of a stress cycle w i th a new max imum and wi th an underload 
described above. 

N o U N D E R L O A D . Th is is the only case when we may add stress cycles to 
the recorded history. We w i l l only do so i f its opening stress level oQ^ is 
higher than the last of the history values HQjm. 

H i s t o r y values 

Most of the time, a contr ibut ion to the sequence effect Es w i l l be calculated 
using E q . (A.36) and the last crack opening stress HQjm stored i n the his
tory. The history w i l l consist of stress cycles where each cycle w i l l have a 
lower maximum, higher m i n i m u m and higher crack opening stress than the 
previous one. The history w i l l usually not be very long, since we w i l l occa
sionally add a cycle to it , but also remove cycles every t ime we encounter 
an underload. 

Equivalent stress 

One we have processed the entire load sequence, we obtain the cumulated 
stress effect Es. Th is can be used to calculate an equivalent stress level aeq 

for any chosen number of load cycles Neq and stress ratio Req: 

ES = ES + (a, in (A.36) max,« 

(A.37) eq — (1 - i?eq) (auReq + M ' 
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Appendix B 

Solution Methods 
Complements 

B . l M i n i m u m Energy Principle and the Galerkin 
Method 

In this appendix, the variat ional methods and in part icular the Gale rk in 
M e t h o d presented in Section 3.2 are i l lustrated i n a greater detail by means 
of a simple one-dimensional example that w i l l expose the general approach 
in a concise form. 

A N I L L U S T R A T I O N E X A M P L E . Consider a linear-elastic bar i n t ract ion and 
compression wi th section A(x), Young's modulus E(x), of length I, statically 
loaded by a continuous loading f(x). A s regards the boundary conditions, 
consider both ends of the bar to be fixed for now, i.e. u(0) = u(l) = 0. 

The governing equation of the problem is: 

where the short hand notation u' = 4^ was introduced and E, A and / 
continue to be considered as known functions of x, although the function 
notation was dropped for brevity. 

The problem to solve reads: 

(AEu')' = f ( B . l ) 

find u G VQ such that Lu = f (B.2) 

where 
Lu= -(AEu'Y. 

E q . (B.2) is called the strong form of the problem. 

175 
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B . l . l Variational Methods 

Let us first show that the variationsl solution u minimizes the potential 
energy II. The potential energy of the system is: 

n (u ) = \ [ AE (u'f dx - [ fudx, u G V0 , (B.3) 
2 Jo Jo 

where Vo is a space of functions continuous on (0,1) up to their second 
derivatives such that u(0) = u(l) = 0. Consider a variation of u as w = u+ev 
such that v G VQ. T h e n 

U(u + ev) = e [ AEu'v' - fvdx + \e2 [ AE {v'f + v2 dx . (B.4) 
Jo 2 Jo 

We take the l imit 

.. TL(u + ev) - U(u) C T T fl
 AT^ i i J- i m r t h m — — = 5U= AEuv - fvdx . (B.5) 

(5LT is called the first variation of E q . (B.2). The first term in the integral of 
5YL is manipulated as follows: 

u'v)\ [ AEu'v'dx = [ (AEu'v)'-(AEu')'vdx = [ -(AEu')'vdx + (AE 
Jo Jo Jo 

B u t v G Vo vanishes at both ends, so, from E q . (B.5): 

m= f (AEu')'v- fvdx = [ (Lu- f)vdx = 0 (B.6) 
Jo Jo 

because u satisfies Lu = f and v G Vo- Therefore, II has is stationary wi th 
the displacement u. 

Introducing the notat ion 

a(u,v)= [ AEu'v'dx, (f,v) = [ fvdx, (B.7) 
Jo Jo 

5YL = 0 can be rewrit ten as a(u, v) = (f, v) and we formulate the problem 
i n its weak form: 

find u G Vo such that a(u, v) = (f, v) for a l l v G V$. (B.8) 

It follows from E q . (B.5) and (B.6) that the u found i n this way is the 
solution of Lu = f. 
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B .1 .2 Natural Boundary Conditions 

Let us now consider the present example w i th different boundary conditions. 
Instead of fixing both ends, we prescribe a displacement at the left end: 
u(0) = do and a force Fi acting on the right end x = I. The boundary 
condit ion on the basic variable u is called an essential or Dirichlet condition. 
The prescribed boundary force is termed a natural or Neumann boundary 
condit ion. Note that the latter boundary condit ion can be wri t ten as: 

to match the prescribed force w i th the internal force. 

B . 1 . 3 The Galerkin Method 

We define a space VQ as a space of functions continuous up to the first 
derivative on the interval (0,1) and vanishing at points where an essential 
boundary condit ion is prescribed, i.e. VQ = {v G C 1 (0 , ^ ) : v(0) = 0}, and 
call a function v G VQ a test function. 

M u l t i p l y E q . ( B . l ) w i t h a test function v, integrate over (0,1) by parts 
and use the boundary condit ion (B.9): 

We w i l l seek the solution u from the space of trial functions W = {w G 
C2(0,l) : w(0) = do} satisfying the Dirichlet boundary condit ion. We now 
have the following weak form: 

f indu G W such that a(u,v) = (f,v) + Flv(l)foT&llv G V0 . ( B . l l ) 

E(l)A(l)u'(l) = Ft (B.9) 

(B.10) 

Note that the natural boundary condit ion has become a part of the integral 
equation ( B . l l ) and is therefore automatically satisfied. 
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B.1.4 The Finite Element Method 

W h e n the test function v is assumed to be a series of the form vn{x) = 
Y^l anfi(x), the variat ion of vn{x) is: 

8vn(x) = ~E; = lfi{x)5ai + (p2(x)Sa2 + . . . . ( B -12) 
1=1 

Subst i tut ing such vn(x) into E q . (B.10): 

n „[ n „[ n 

-FiS2,anpi(l) + / AEv! 5anpi(x) dx = / f^ajip^x) dx (B.13) 
. , Jo • , Jo • , 
i=i t=i i=i 

This , in general terms, is the mathematical basis of the finite element 
method, where both the t r i a l functions u and test functions v are constructed 
using the finite element shape functions, the test functions satisfying the 
essential boundary conditions. E q . (B.13) leads directly to the set of finite 
element equations, see A p p e n d i x B .2 . 

• 

B.2 F E M Equations for Plane Problems 

In this Append ix , it is shown how the finite element equations for a plane 
strain/plane stress problem can be derived based on the Galerk in weak form 
as outl ined in Append ix B . l . 

In the plane strain/plane stress problem, the solution consists of two 
functions, namely the displacement functions vi(x,y) and V2(x,y) i n the 
directions of the two coordinate axes. We w i l l use a tensor notation and the 
new introduced matrices w i l l also be exposed in full. 

B.2.1 Plane Strain/Plane Stress — Governing Equations 

The problem unknowns and the body forces are collected in vectors: 

displacements : u 

strains : e 

stresses : a 

body forces : / 

dv\ dv2 dv\ dv2 

dx ' dy ' dy dx 

\Pxx 0~yy 0~xy\ i 

\flJ2f • 

file:///flJ2f
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We have the following governing equations: 

equi l ibr ium : D er + / = 0 . 

kinematic : e = D u , 

constitutive : er = Ee . 

The gradient operator matr ix D reads: 

(B.14) 

(B.15) 

(B.16) 

D 
dx 
0 

0 
JL 

JL i 
dy dx 

(B.17) 

For isotropic materials w i th Young's modulus E and Poisson's ratio v the 
stress-strain mat r ix is for plane stress: 

E 
E 

l - l / 2 

1 v 0 
v 1 0 

0 0 (l-u) 

and for plane strain: 

E 
E 

(1 + i / ) ( 1 - 2 i / ) 

1 — v v 
V 1 — V 
0 0 

0 
0 

(1-2^) 

Alternatively, introducing the Lame constants 

E 

A T=P (plane stress), A - ( 1 + „ ) ( 1 _ 2 „ ) 

the stress-strain matr ix can be wri t ten as: 

E 
A + 2/j A 0 

A A + 2/i 0 
0 0 ii 

B.2.2 Boundary Conditions 

O n the Dirichlet boundary Tu, displacements are prescribed: 

u\ = d i , u2 = d2 onTu . 

(B.18) 

(B.19) 

vE „+„„„^ \ _ vE ( P L A N E G T R A I N ) ; ( B 2 Q ^ 

(B.21) 

(B.22) 
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O n the Neumann boundary I \ , the static boundary conditions are: 

o-xxnx + a x y n y = Ti, o-yyUy + a x y n x = T2 onFt, (B.23) 

in which n = (nx,ny)T is the unit vector of the outward normal to the 
boundary T. We note that for the to ta l boundary T, the following holds: 
r = Fu U Tt, whereby Fu n Ft = 0. 

B.2.3 Weak Form 

Let us define a space X of function couples v(x,y) = (vi(x,y), v2(x,y)) 
as X = {v\vi(x,y) G H1^), v2(x,y) £ where f2 is the domain of 
the two-dimensional body i n consideration and H1 is a normed space of 
square-integrable functions continuous up to the first derivative. 

Test functions w i l l be chosen from the space V = {v £ X\v = O o n T u } . 
Solution is sought in the t r ia l functions space H 7 = { u G X | u = d o n r u } , i n 
which d = { d i , d2}T is the prescribed displacement. 

The static equi l ibr ium equations (B.14) wri t ten out i n full read: 

Ox + 
da. •ni 

Oy 
+ fi = o, 

Oa, yy 
Oy + 

Oa. •ni 
Ox 

+ / 2 = o . (B.24) 

In a manner analogous to the procedure used in the Gale rk in method, mul
t ip ly the first of the above equations (B.24) by v\ and the second one by 
v2, add up the two equations and integrate over Q. Then , using the Green's 
theorem, the Neumann boundary conditions (B.23), the kinematic equa
tions (B.15) and the Hooke's law (B.16), we find: 

0arr Oa 
+ •ni + h )vi + 

0ayy Oa 
+ ^ + f2)v2 

Ox Oy J \ Oy Ox 

[(axxnx + axyny) v\ + (ayyny + axynx) v{\ dS 

dxdy 

Ovi Ovi 0v2 0v2 

0-xx-^ VOxy^ ^Vxy-Z h Vyy-^~ dxdy + 
Q \ Ox Oy Ox Oy 

+ / (fivi + f2v2) dxdy = 
Jn 

= / (T\V\ + T2v2) dS — / e(-v) • a dxdy + / v • {dxdy 
JVt Jn Jn 

= v T d S - / e(v) • E e ( u ) dxdy + / v - f d x d y . 
J rt Jn Jn 
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Therefore, we may write the weak form of the plane strain/stress problem 
as follows: 

find u G W such that a(u, v ) = L ( v ) for a l l v € V , (B.25) 

where 

o ( u , v ) = / e(v) • Ee(u) dxdy , (B.26) 
Jn 

L ( v ) = f v - f d x d y + f v - T d S . (B.27) 
Jn Jvt 

B.2.4 Discrete Weak Form 

We discretise the domain f2 into elements. We may for example use some 
tr iangulat ion to get tr iangular elements. The elements have a to ta l of A W 
nodes, including BN nodes on the Dirichlet boundary (in which displace
ments are prescribed) and IN = NN — BN interior nodes. 

We can then define a space of functions that are piecewise (or rather 
element-wise) continous up to the first derivative. The test functions space 
is defined as: 

Vh = { v | u i G Xh,v2 G Xh A v(Pj) = O V P j € Fu} , (B.28) 

where Pj G Fu are the nodes on the essential (Dirichlet) boundary. The t r ia l 
functions belong to the space: 

Wh = { L b > i G Xh,v2 G Xh A UfrCP,-) = d V P j G Fu} , (B.29) 

i n which d stands for the prescribed displacements. The test and t r ia l 
functions can then be represented as follows: 

IN 

v(x,y) = ^2,[vi(xj,yj)Nj(x,y)+v2{xj,yj)Nj(x,y)} (B.30) 
i = i 
IN 

Uh(x,y) = ^2[vi(xj,yj)Nj(x,y)+v2(xj,yj)Nj(x,y)] + 

NN 

+ 51 [di(xj,yj)Nj(x,y) + d2(xj,yj)Nj(x,y)], (B.31) 
j=IN+l 

where Nj are base functions chosen from the space X^ such that Nj = 1 at 
the node Pj and Nj = 0 at a l l other nodes. Note that this corresponds to 
the partition of unity concept discussed i n Section 3.3. 
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We then write the discrete weak form of the plane strain/stress problem 

as: 

where 

find U h G Wh such that a(Uh,v) = L(v) Vv G Vh 

ah(Uh, v) = [ e ( v ) • E £(U^) d^e , 

Lh{^)=Y.J v f d ^ e + J v - T d r e . 

(B.32) 

(B.33) 

(B.34) 

The integral over an element f2 e or over a boundary element edge Te is 
evaluated using Gauss quadrature. Denot ing the value of the components U\ 
and U2 of the discretised solution at node Pj as Uji and £/j2 ; respectively, 
and denoting the components v\ and V2 of the test function v at node Pi as 
0 j i and 0j2, respectively, we may rewrite E q . (B.30) and (B.31) as: 

IN 

v(x,y) = S2[eilNi(x,y) + ei2Ni(x,y)} 
i=i 
IN 

Uh(x,y) = S^[U3lN3{x,y) + U32N3{x,y)] + 

(B.35) 

i=i 
NN 

+ 51 idi(xj,yj)Nj(x, V) + d2(xj,yj)Nj(x, y)} . (B.36) 
j=IN+l 

B.2.5 Element Matrices and Vectors 

To formulate the finite element equations based on the weak form (B.32), 
we further proceed as follows. The base functions defined on an element 
wi th n nodes are arranged i n the matr ix 

Nf 0 iVf 0 
0 Nf 0 iVf 

K 0 
• 0 N* 

the values of the element nodal displacements i n the vector 

u e = [ Uf, Uf2 ui2 . . . E f t E f t } , 

and the element nodal values of the test function in the vector 

0 e = [ e? ! e f 2 6 | 2 . . . ee

nl e* 2 ] . 

(B.37) 

(B.38) 

(B.39) 
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We further define the strain-displacement mat r ix B of the size 3 x 2n (n is 
the number of element nodes) 

B' D N £ 

- dNf 
0 9N£ 

dx 0 dx 

0 dNf 
dy 

dNf 
0 

dNf 

dNf 
dy 

dNf Ml 
- dy dx dy 

0 

dy 

Mi 
dx 

9N1 
dx 

0 

0 
dm 
dy 

dNe dNe 

dy dx 

(B.40) 

allowing us to write the kinematic relation (B.15) i n the discretised form 
e=Bu, and assume that the elasticity mat r ix E is constant over the element. 
We are then able to write the integrals i n E q . (B.33) and (B.34) as follows: 

f ee(v) - E e e e ( U ^ ) d O e = [®ef [ [Be]T E e B e dÜe U e 

[ 0 e ] T K e U e , (B.41) 

v T d T e : 

Subst i tut ing into E q . (B.32), we find 

[@ef[ [N e ] T fd f t e = [ 0 e ] T F e , (B.42) 
Jne 

[ 0 f f [N e ] T T d r e = [ 0 S ] T F S . (B.43) 

0 = ah(XJh, v ) - Lh(v) = ] T [ 0 s ] T ( K e U e - F e ) - ] T [ 0 S ] T F S (B.44) 
een 5er t 

and invoking the arbitrariness of the variations and thus the arbitrariness of 
the vectors 0 e and 0 s , we finally obtain the familiar finite element equation 
at the element level: 

K e U e = F e + F s . (B.45) 

K e is called the element stiffness matr ix and F e + F s is called the element 
load vector. 

Isoparametric Elements 

O n isoparametric elements, the shape functions are defined in terms of local 
geometrical coordinates on the element. E . g . for quadrilaterals, these coor
dinates vary between -1 and 1. The global geometric posit ion of a point on 
the element is established by interpolating the nodal global coordinate to 
that point using the shape functions i n the same way as the displacements 
are interpolated (therefore the term isoparametric): 

n n 

x = Y/*iNf, y = 5 > i V f . (B.46) 
i=l i=l 
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W h e n strains are calculated using E q . (B.40), the par t ia l derivatives of the 
shape functions w i th respect to the local coordinates £, r\ are easily found. 
These derivatives need to be transformed to par t ia l derivatives w i th respect 
to the global coordinates x, y using the Jacobian matr ix: 

(B.47) 

Let us now calculate the elements § | , • • • of the Jacobian matr ix . Substi
tu t ing for the global coordinates from E q . (B.46) and differentiating w i t h 
respect to the local coordinates, we have: 

- mi - drj r mi i 
- T " 1 

r m? i 
dx 

mi 
dx dx - T " 1 dx 

mi K &n mi — J dNf 
. dy _ dy dy drj drj 

dx 

a n 
OX \ -

dr] t—s' 

dy dNf 
d£ 

dNf 

drj ' drj 
dy = 

fin ^—^ % 

dNf 
d£ 

dNf 

drj 

Because the nodal coordinates Xj , yi do not depend on ^, rj, the Jacobian can 
be wri t ten as: 

P X 
dNf 

d%l 
drj 

dpq 

drj 

mi 
a? mi 
drj 

xi y\ 
X2 y2 

(B.48) 

The inverse Jacobian J 1 is obtained by numerical inversion. 

B.2.6 Numerical Integration and Assembly 

The stiffness matr ix and the load vector appearing i n equation E q . (B.45) 
are calculated using a Gauss quadrature. In the computer implementation, 
the contributions from the ind iv idua l quadrature points are usually directly 
added to the respective positions i n the global stiffness matr ix . To this end, 
a mapping between the local and global numbers of the element degrees of 
freedom ( D O F ) is necessary. If r = k ... I is the sequence of the global D O F 
of the element nodes, Wj is the weight of the quadrature point qj of the m 
quadrature points on the element e, then the elements at the positions (r, r ) 
of global stiffness matr ix K are computed as follows: 

m 

K(r, r) = K(r, r) + ^ b T e b w i I J l • ( R 4 9 ) 
E 3 
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The global load vector F is computed likewise by numerical integration. 
It is a sum of the surface forces and the body forces. For example, the 
contribution of the body forces acting on the element to the positions (r) of 
the global load vector F are, c.f. E q . (B.42): 

m 

F ( r ) = F ( r ) + ] T ] T N(<&) f{q3) W j | J | , (B.50) 
E 3 

where N(gj) is the value of the shape function at the quadrature point qj 
and f(qj) is the value of the body force at the quadrature point. 

B.3 Moving Least Squares Approximation 

In the moving least squares ( M L S ) approximation, the displacement field 
approximation is constructed separately for each integration point. The 
function basis of the approximation is usually polynomial , but an enriched 
basis can be used to account e.g. for cracks i n the domain of interest [28]. 
The idea is to minimise for the given point of interest the sum of squares of 
the differences between the approximation and the nodal value at the nodes 
of influence. Each node is thereby given a certain weight in the minimisat ion 
depending on its distance from the point of interest. 

In the case of a po lynomia l base, the value of the approximating func
t ion uh(x.) at any point x i n the domain f2 is given for an approximating 
polynomial constructed for the point of interest £ by: 

m 

u h ( x ) = PiWai(Z) = P T W a ( l ) (B.51) 
i=i 

where m is the number of terms i n the polynomial , a ( £ ) are the coefficients 
of the approximation polynomial , and p T ( x ) is a base of monomes, which 
may consist in a 2D case of 

p T ( x ) = { p i ( x ) > • • • , P m ( x ) } = {i,x,y,xy,x2,y2, • • •} • (B.52) 

Note that the number n of nodes whose support domains contain the point 
£ must satisfy n > m so that a ( £ ) can be determined. 

A t the locat ion x / of a node / , Uh w i l l amount to 

u h ( x j ) = P

T ( x 7 ) a ( | ) (B.53) 

and we want to minimise the squares of the differences uh(x.]) — uj, w i th uj 
being the known values at nodes. Note that this is a least squares technique, 
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so after a(£) have been found, the approximation u (x) w i l l not pass through 
the nodal values. 

The weight of each node i n the minimisat ion is determined by a weighting 
function u>/(£-x/) such that w(0) = 1 (i.e. for £ = x/) and w = 0 for a l l £ 
outside the support domain of node I. In summary, we seek to minimise 

n 

= J > J « - x/) [pT(x)a(|) - u 7] 2 . (B.54) 
i= i 

U p o n expanding the squared term, the m i n i m u m condit ion § ^ = 0 gives 
the following set of equations: 

A(£)a(£) - B ( £ ) U / = 0 (B.55) 

wi th 

A(£) = [«;/(€ " x /)p(x /)p T(x /)] , B(£) = - x/)p(x/)] . (B.56) 

Remembering that uh(x) = pT(x)a(^), the approximation can be finally 
expressed as: 

uh(x) = p T ( x ) A - 1 ( € ) B « ) u / or « f c (x) = x ) U / , (B.57) 

where 

*/(€,x)=p T(x)A- 1(€)B(€) (B.58) 

is the M L S shape function. 
For completeness, we note that the derivative of the M L S shape function 

can be computed as: 

= p j A ^ B + p T ( - A " 1 A . A " 1 ) B + p T A - 1 B , ; c , (B.59) 

where the functional notation has been dropped and indic ia l notation for 
derivatives used to reduce clutter. Note that the derivative of A - 1 is not 
necessary. 

Final ly , a note should be made about the enforcement of essential bound
ary conditions in an element free Gale rk in method ( E F G M ) using M L S ap
proximation. This is not as straightforward as in the finite element method, 
where it suffices to prescribe the respective nodal displacements. A s it has 
been said above, the M L S approximation does not pass through the nodal 
values it approximates. Various approaches have been proposed to remedy 
this problem. F r o m among the common ones, let us mention Lagrange mul
tipliers and a coupling wi th a finite element domain, where a transi t ion by 
weighting is effectuated between the approximations in the F E M and the 
E F G M domains. 



Appendix C 

The Direct Differentiation 
Method 

The presentation i n this Section consists merely i n a simplification of the 
developments i n [39] to the static, linear elastic case. 

W h e n the finite element equation (B.45) is wri t ten at the global level 
and w i t h the definitons introduced i n equations (B.41) to (B.43), we have: 

f B T E B d f t U = f N T f d f t + f N T T d I \ ( C . l ) 
Jn Jn Jr 

Note that E B U is the internal stress er. Th is notation w i l l be introduced 
now for brevity. We can thus write: 

/ aBdfl = I f N d f i + / T N d r , (C.2) 
Jn Jn Jr 
" v ' V v ' 

Pint Pext 

which expresses the balance of the internal forces P j n t and the external forces 
P e x t - Differentiating E q . (C.2) w i th respect to a parmeter h, the sensitivity 
in respect of which is of interest, we get: 

ďPjnt du ďPjnt 

<9u dh dh 

We introduce the tangent stiffness matr ix 

K = ^ E t = / - ^ B d n = / ^ | i B d n = / B ^ B d n . (c .4) 
du Jn du Jn de du Jn de 

dP OX I 

11 fixpd dh 
(C.3) 
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In the linear elastic case, the tangent stiffness mat r ix is equivalent to the 
stiffness mat r ix itself since the Hooke's law remains val id: §f = E . De-

du 
dh 

as: 
-^r <9Pext <9Pint 
K a 

noting the displacement sensitivity as ^ as a, we may rewrite E q . (C.3) 

(C.5) 
9 h 9 h u fixed 

This is the key equation, from which the displacement sensitivities a can 
be directly obtained i n our static, linear elastic analysis. Then , one may 
calculate from a the sensitivities of the derived response quantities, such as 
the stresses. Th is is done i n the same way as the derived response quantities 
themselves are calculated using the displacement vector u . 

In line w i t h the presentation in [39], the equations to calculate and 
w [ \ \ kg given next. 

C . l Sensitivity with Respect to a Material Param
eter 

W h e n the parameter h of interest is a material parameter, the derivative 
of the external force vector ^Q^ x t vanishes, since it does not depend on the 
material parameters. 

F rom E q . (C.2), where the internal force vector is 

/ 
•hi 

aBdtt , (C.6) 

and differentiate E q . (C.6) wi th respect to h, which is now a material pa
rameter: 

č>P i n t C>U , g P i : 

du dh Oh u fixed oh 
(C.7) 

We introduce the notat ion K = l 9 ^ i

i

i

n t defined above and expand the deriva
tives by the chain rule: 

— du ďPjnt 

dh dh u fixed 

da de da 

de dh dh € fixed 
B d f i . (C.8) 

A l so the strain derivative is expaned by the chain rule: 
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Introducing the material tangent stiffness k 
E q . (C.8) can be rewritten as: 

and the relation = B , 

Kdu+d_P1 

dh dh 
int 

u fixed 
B r k B ^ + k B ? Í 

dh Oh u fixed dh e fixed 

d a 

F rom E q . (C.4), we see that the terms and J n B T k B | ^ d f 2 mutual ly 
cancel out. In addit ion, the material paramaters do not enter the kinematic 
equations, so for a parameter h being a material one, it holds: 

8e 
Oh 

0. 
u fixed 

E q . (C.10) thus further simplifies to the following relation for the condit ional 
derivative of the internal force vector i n the static case: 

C P ; int 
Oh u fixed 

T da 
B dh 

( C . l l ) 
e fixed 

In the case of linear elasticity, where a = E B U , one can write E q . ( C . l l ) 
more explicitely as: 

<9P int 
Oh u fixed 

TdE 
B T — B d f t U . 

dh 
(C.12) 

C.2 Sensitivity with Respect to Nodal Coordi
nates 

The terms that need to be evaluated in the top-level sensitivity equation 
(C.5) are both the derivative of the internal force vector and of the 
external force vector g g ^ x t . In the latter case, the surface and body forces 
are integrated over the elements, cf. E q . (B.42) and (B.43) and the change 
of a nodal coordinate affects the element integral. 

Consistently w i th Section B.2.6, the elemment integrals are assumed 
to be evaluated using a Gauss quadrature - for a general integrand, the 
quadrature wi th m quadrature points resumes to (in 2D): 

„ m 

/ / ( x , y ) d í í e « y W ( É , » 7 ) | J | , ( C 1 3 ) 
Jne j = 1 

where J is the Jacobian of transformation from the global to the isopara
metric coordinates, see E q . (B.48). It is implic i te ly understood that (£,?/•) 
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are the isoparametric coordinates of the integration point w i th the weight 
u)j. The derivative of the integral is then: 

d_ 
dh 

[ f(x,y)dne)nY/L a / « ' " ) | J | + / « . , ) a | J | 

dh 1 1 v (/ dh 
(C.14) 

The Jacobian derivative provides for the mapping between the element 
w i t h the actual geometry i n the space of physical cocordinates Xi = {x, y} 
and the parent element wi th an invariable geometry in the space of the 
isoparametric coordinates £j = {£, rf\. Thus , a sensitivity to a change i n the 
physical geometry translates to the sensitivity of the Jacobian derivative 

To find what this derivative equals, we expand it by the chain rule 

and use the equality = | J | 3~T, w i th the superscript —T signifying the 
inverse transpose. We get: 

ah ~ dj d h ~ ] J ] J dh- ( C - 1 5 ) 

E q . (B.48) tells us that J = P X , where P is the matr ix of shape function 
derivatives. Thus, i f h is the i - th coordinate of the p-th node, the derivative 
| ^ reads: 
d_J^L_d_NIt 83 ax. 

dh ~ otj o r oh~pdh- ( C - 1 6 ) 

Having found the derivative of the Jacobian determinant, we are ready 
to look at the derivatives of the internal and external force vector. 

C.2.1 Derivative of the Internal Force vector 

A s a point of departure for finding the derivative, the internal force vector 
evaluated by numerical integration 

Pint ~ ^ UjO-B IJI (C.17) 

is differentiated wi th respect to the nodal coordinate parameter h: 

(dh 
<9P i n t du 9 P i n t 

du dh dh u fixed 

^ / ö t r _ | T | Ö B | T | _ Ö | J 
_ B | J | + c r ^ - \3\ + *B 

3=1 
dh 

(C.18) 
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whereby the derivative is evaluated from E q . (C.15) and (C.16). The 
terms ^ and ^ are expanded by the chain rule and E q . (C.9) is further 
used. We thus obtain: 

— du ď P j n t 

dh dh u fixed 

+ 
T da 

dh 

_ T _ „du „ T de 
B T k B — + B T k — 

dh dh u fixed 

£ fixed 

dB „ , TdJ 

(C.19) 

where use has been made of E q . (C.16) and of the notation k = F rom 

E q . (C.4), we see that the terms K g ^ and YIjLi^j l J l B k B M mutual ly 
cancel out. The above E q . (C.19) thus simplifies to: 

dP; 
dh u fixed 

m 

u fixed 

+ B T d * 

dh € fixed 

dB „ T _ T 3 J 
+ (T h o - B J — 

dh dh 
(C.20) 

In linear elasticity, <x=Ee and e = B U . We can thus express 

de 

dh 

da 

dh 

u fixed 

<9B, 

~0h 
U , 

dB 

e fixed 

Using these results and noting that for linear elastic materials, k 
E q . (C.20) may be rewrit ten to its final form in linear elasticity: 

E , 

dP int 

dh u fixed 

+ a— +aBJ 
dh 

T dB rp dB 
B T E — U + B T E — U 

dh 

.TdJ\ 
dh 

dh 

, , / T dB 
V w , - J 2 B E — - U + 
j=l \ 

+ B ^ E B U J " ^ 
oh J 

Oh 

dB 

~dh 
E B U 

(C.21) 

It remains to find the derivative of strain-displacement matr ix § P . The 
elements of B are calculated by mul t ip ly ing the shape function derivatives 



192 APPENDIX C. THE DIRECT DIFFERENTIATION METHOD 

wi th respect to the isoparametric coordinates by the inverse Jacobian, see 
E q . (B.47). Thus, their derivative w i th respect to the A;-th component of 
the nodal coordinate h = Xrk of node r is: 

<9B 

dXrk dXrk dxj 

0 dNip dNip 0 d£ .63~ 

d£i dXrk dxj Oh 
(C.22) 

W h i l e -gjj^- is easlily obtained, the term 9 £ k

 1 S the derivative of the 

inverse jacobian. It is shown i n [39] that it can be obtained as follows: 

0 'dxj - i dxi T d dxi dxi 

dh \_6ik\ dhWi dX. rk 
(C.23) 

The derivative of the Jacobian is given i n E q . (C.16) and the inverses of the 
Jasobian itself are obtained numerically. 

C.2.2 Derivative of the External Force vector 

W h e n the loads are prescribed in terms of nodal forces and the problem is 
geometrically linear, then the derivative vanishes. However, i n the case 
of dis tr ibuted loads, the nodal coordinate enters the calculation of the Jaco
bian i n the numerical integration of the global load vector (c.f. E q . (B.50)). 
The integration formula is differentiated using E q . (C.15) and E q . (C.16) to 
obtain e.g. for the integral of the body forces: 

Oh E 
J'=I 

UjK(qj) f(qj)\3\ 3 
^03_ 

Dh 
(C.24) 
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