
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE
ÚSTAV AUTOMATIZACE A INFORMATIKY

CLIMATE MONITORING AT HOME
MONITOROVÁNÍ PROSTŘEDÍ V DOMÁCNOSTI

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ANDREJ PILLÁR
AUTOR PRÁCE

SUPERVISOR Ing. PETR ŠOUSTEK
VEDOUCÍ PRÁCE

BRNO 2020

T BRNO FACULTY

UNIVERSITY OF MECHANICAL

OF TECHNOLOGY ENGINEERING

Specification Bachelor's Thesis

Department: Institute of Automation and Computer Science

Student: Andrej Pillar

Study programme: Engineering

Study branch: Applied Computer Science and Control

Supervisor: Ing. Petr Soustek

Academic year: 2019/20

Pursuant to Act no. 111/1998 concerning universities and the BUT study and examination rules, you

have been assigned the following topic by the institute director Bachelor's Thesis:

Climate Monitoring at Home

Recommended bibliography:

MONK, Simon. Programming Arduino: getting started with sketches. New York: McGraw-Hill, c2012.

ISBN 978-0071784221.

Deadline for submission Bachelor's Thesis is given by the Schedule of the Academic year 2019/20

In Brno,

L. S.

doc. Ing. Radomil Matoušek, Ph.D. doc. Ing. Jaroslav Katolický, Ph.D.

Director of the Institute FME dean

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Abst rac t
This work is focused on designing, implementing and testing a device which could pro­
vide an overview of indoor environmental conditions at a glance. Environmental sensors
for temperature, humidity, pressure and C O 2 concentration are used for this device. In
addition to providing immediate overview on a built in display, the device is able to com­
municate the measured data via M Q T T ; an Internet of Things protocol. A server solution
for this purpose is also a part of this work. The server stores the data and provides means
of accessing it. Data is saved in an SQLite database and accessible via
a JSON A P I built with a Python web micro framework. A web application built on
several web technologies provides an overview of both the latest and historic values. This
solution can then be hosted on an http server. The reference implementation runs on
the NGINX web server which also facilitates secure communication over TLS for all ser­
vices. The entire solution is implemented with freedom, modularity and extensibility in
mind. Libre and Open Source technologies are leveraged wherever possible.

Abs t rak t
Cieľom tejto bakalárskej práce je vyvinúť, zostaviť a otestovať zariadenie na meranie envi-
romentálnych veličín v interiéri. Zariadenie obsahuje senzory teploty, relatívnej vlhkosti,
tlaku a koncentrácie C O 2 . Aktuálne hodnoty su zobrazené na vstavanej obrazovke spolu
s časom a odosielané pomocou IoT protokolu M Q T T na server. Práca obsahuje aj rieše­
nie tohoto serveru. Dáta sú ním spracovávané, ukladané do SQL databázy a ďalej sprís­
tupnené cez JSON A P I implementované v jazyku Python. Aplikácia vyvinutá pomo­
cou niekoľkých webových technológií ponúka prehľad aktuálnych aj historických hodnôt.
Serverové riešenie je hostované na http serveri. Demonštračná verzia riešenia využíva
server N G I N X ktorý tiež poskytuje zabezpečenie komunikácie so serverom pomocou TLS
pre všetky služby. Celá práca je spracovaná s dôrazom na otvorenosť, modularitu
a rozšíriteľnosť. V práci sú preferenčne používané Libre a Open Source technológie.

Keywords

IoT, Arduino, M Q T T , Python, indoor environment, C02 , sensors, monitoring

Klíčová slova
IoT, Arduino, M Q T T , Python, domácnosť, prostredí, C02, senzory, monitorovaní

PILLÁR, A. Climate monitoring at home. Brno: Brno University of Technology, Faculty
of Mechanical Engineering, 2020. 52 s. Supervisor Ing. Petr Soustek.

Rozš í ř ený abstrakt
Obsahom tejto práce je návrh, spracovanie a testovanie zariadenia na meranie enviromen-
tálnych podmienok v interiéri. Merané veličiny sú teplota, relatívna vlhkosť, tlak a kon­
centrácia C O 2 . Zariadnie je založené na platforme Arduino, konkrétne 8-bit mikroproce­
sore ATmega 2560. Prehľad aktuálnych hodnôt je dostupný na vstavanej e-ink obrazovke
a zároveň sú dáta odosielané na server cez IoT protolkol M Q T T . Pripojenie na internet
je realizované cez W i - F i pomocou modulu ESP8266. Arduino a Wi -F i modul komunikujú
cez asynchrónnu sériovú linku. Použité senzory sú Bosch-Sensortec BME280 merajúci
teplotu, relatívnu vlhkosť a tlak, a Senseair LP8 merajúci koncentráciu C O 2 . Senzor C O 2
je súčasťou integrovaného modulu od firmy Hardwario. Tento modul obsahuje všetky
podporné komponenty potrebné na fungovanie senzoru a zároveň uľahčuje komunikáciu
s ním. Dodávaný software je ale použiteľný len pre A R M mikroprocesory a teda musel
byť upravený pre použitie na platforme Arduino. Senzor BME280 komunikuje s proce­
sorom na zbernici I 2 C, obrazovka používa protokol SPI a C O 2 modul je pripojený cez
sériovú linku. Arduino pracuje s napätím 5 V zatiaľ čo periférie pracujú s napätím 3.3 V .
Bezpečná komunikácia medzi zariadeniami je sprostredkovaná pomocou obojsmerných
prevodníkov úrovní.

Spomínaný server na zber dát je tiež súčasťou práce. Pozostáva z niekoľkých služieb:
M Q T T broker, SQL databáza, JSON A P I a webová aplikácia poskytujúca prehľad. Ako
M Q T T broker bola zvolená implementácia Mosquitto, SQL databázu poskytuje knižnica
SQLite3 a A P I je postavené na webovej mikroplatforme Flask v jazyku Python. We­
bová aplikácia je postavená na technológiách JavaScript a jQuery. Ako vyplýva z funkcie
M Q T T , prichádzajúce dáta sú ukladané pomocou Python skriptu ktorý dáta prečíta,
skontroluje a zapíše do databázy. Taktiež sa stará o oznamovanie stavu meracieho zari­
adenia. JSON A P I poskytuje prístup k dátam z databázy. Prístupné je cez G E T a POST
requesty s jedným argumentom ktorým je počet dátových bodov. Dáta vracia vo formáte
JSON. Webová aplikácia využíva práve toto API . Zobrazuje aktuálne hodnoty a graf his­
torických hodnôt s voliteľným rozsahom. Grafovacie funkcie poskytujú knižnice JustGage
a Chart.js. Aplikácia taktiež disponuje responzívnym štýlom čo jej umožňuje prispôso­
biť svoj obsah veľkosti prehliadačového okna. Serverové riešenie je spustitelné pod http
serverom, v tejto práci je použitý server N G I N X ktorý zároveň poskytuje zabezpečenie
komunikácie pomocou TLS.

Celé riešenie je vyvinuté a postavené na Open Source technológiách, dostupné s Open
Source licenciou a voľne upraviteľné a rozšířitelné. Samotná konštrukcia zostáva mod-
ulárna. Skrinka zariadenia je vyrobená pomocou 3D tlače z P L A plastu. Kompletný
obsah riešenia je dostupný v git repozitári.

I hereby declare that the bachelor's thesis Climate monitoring at home was prepared as
an original author's work under the supervision of Ing. Petr Soustek. A l l the relevant
information sources which were used during preparation of this thesis, are properly cited
and included in the list of references.

Andrej Pillar

CONTENTS

Contents
1 Introduct ion 11

2 Indoor environmental conditions 12
2.1 Temperature 12
2.2 Relative humidity 12
2.3 Atmospheric pressure 13
2.4 C O 2 concentration 13
2.5 Sensors 15

3 IoT connectivi ty protocols 17
3.1 M Q T T 17
3.2 OPC U A 18

4 Implementat ion 19
4.1 Hardware 19

4.1.1 Arduino Mega 2560 19
4.1.2 ESP-01 21
4.1.3 Sensors and peripherals 22

4.2 Firmware 25
4.2.1 Mega 2560 26
4.2.2 The C 0 2 sensor driver 28
4.2.3 The ESP-01 module 28

4.3 Server 29
4.3.1 Processing M Q T T data 30
4.3.2 The database 30
4.3.3 The JSON A P I 30
4.3.4 The web application 32

4.4 The completed device 36

5 Conclus ion 42

Bib l iography 43

Lis t of Abbrevia t ions 48

Lis t of Figures 50

Lis t of Tables 51

A p p e n d i x 52

10

1 Introduction
Comfortable conditions in a living or working space greatly influence people's ability
to focus and perform work efficiently in general. Changes in temperature, too low or too
high humidity or poor airflow causing an increase in C O 2 concentration have an impact
on people's performance and comfort. Therefore it is advisable to keep track of these
conditions and act accordingly to keep them at comfortable levels. The aim of this work
is to provide a tool, a monitoring device that could serve this purpose. This device
is to be built on an 8-bit microcontroller platform. In addition to direct feedback
via an integrated screen, it will feature an internet connection to communicate mea­
sured data to a server via an IoT protocol. The internet connection will be facilitated
by a separate W i F i capable microcontroller. Firmware for both devices will be written
in C++ using the Arduino IDE. The environmental conditions monitored are: tem­
perature, humidity, pressure and C 0 2 concentration. A n R T C module will take care
of accurate time keeping.

The solution will include a server for storing and analyzing the gathered data. The server
will provide connection facilities for the device, a database backend,
a JSON A P I and a web visualization interface. The core server functionality will be
developed on a Python platform. Data from the database will be accessible via a simple
JSON API . A web application utilizing several web development libraries will present
the most recent values and a plot of historical values.

The entire solution is to be provided under a permissive Open Source license allowing
for complete control and ability to customize or extend the solution. Open Source tech­
nologies, both software and hardware will be leveraged on every level of the solution.

11

2 INDOOR ENVIRONMENTAL CONDITIONS

2 Indoor environmental conditions
Environment of indoor spaces is subject to multiple conditions and variables. Tradition­
ally, the level of comfort is defined by ambient temperature, humidity and "freshness"
of air. This chapter describes the relevant measurable parameters, including methods
of measurement and their respective sensors.

2.1 Temperature
Temperature is the immediately obvious and probably the most significant factor in in­
door environment quality. While dependent on the most external factors such as sea­
sonal conditions, air drafts or occupant activity, regulating it is a straightforward process.
In the context of environment quality, the best indicator is the ambient temperature level.
Keeping this temperature in a comfortable range is vital to ensuring a quality living or
working environment. While the exact value that can be called comfortable differs be­
tween people, it is generally recommended to keep the ambient temperature at around
20 degrees Celsius. Taking seasonal conditions into account, the recommended ranges are
20-23.5°C for the winter or heating season and 23-25.5°C for the summer season [21].

There are many available methods and devices for temperature measurement. From
simple ones such as a mercury thermometer or a bimetallic strip, through analog devices
measuring changes in electrical resistance, to more recent specialist integrated circuits.
Due to nature of this work, the focus is on the latter category.

2.2 Relative humidity
Relative humidity is the amount of water vapor in the air relative to its absolute capacity
at a given temperature. The level of water vapor in the air has an effect on person's
response to temperature. Different levels of relative humidity affect the comfortable
temperature range on both ends. This is because of the effect relative humidity has
on the human body's ability to regulate its temperature through water evaporation.
Higher relative humidity makes air of the same temperature feel warmer and at levels
above 70 percent even uncomfortable. In addition to decreasing overall comfort, higher
relative humidity often results in increased presence of biocontaminants such as molds,
fungi or mites. The range of relative humidity for the most comfortable and productive en­
vironment was established at 30 to 60 percent with temperature also in the recommended
range [22].

A device for measuring humidity is known as a hygrometer. Attempts at measuring
air humidity began in the ancient times with primitive methods such as comparing
the weight of a highly absorbent material like charcoal before and after exposing it to
the measured air. Later, hair tension hygrometers were introduced, leveraging a properly
treated and tensioned hygroscopic material such as a human or animal hair. Length of
the hair changed with the amount of moisture and this movement driven a needle indicat­
ing an approximate value on a dial. This type of hygrometer is dependent on condensation
of moisture [3]. Modern hygrometers are either electrical or optical. Electrical hygrome-

12

2 INDOOR ENVIRONMENTAL CONDITIONS

ters further fall into two categories: capacitive or resistive. The former measure the effects
of humidity on the capacitance of a polymer or metal oxide capacitor while the latter mea­
sure changes in resistance of a metal oxide or polymer based resistor [49]. Optical hygrom­
eters function as spectrometers, measuring absorption of a certain wavelength of light
by the water contained in the measured air [5]. There is one other type of hygrometer
in use today: a volumetric hygrometer. Volumetric hygrometers function by measuring
the weight ratio of an air sample and a sample of dessicated air of equal volume [37]. This
type of hygrometer is usually used only when calibrating the other less precise hygrometers
due to the inconvenience of its use.

2.3 Atmospheric pressure
The pressure of the atmosphere. Decreases with rising altitude from the sea level where
it reaches it's peak value standardized at 101325 Pa or 1013.25 hPa as it is usually
measured [46]. Besides altitude, variations of atmospheric pressure are most often caused
by changing weather conditions. While having a direct effect on human comfort and
environment in general, there is little that can be done about it. It is however influenced
by temperature and humidity and in turn affects the other measured property, the C O 2
concentration, so it needs to be taken into account in the context of this work.

The device for measuring atmospheric pressure is called a barometer. Its invention
is attributed to the Italian physicist Torricelli in the 17th century. The first barometers
functioned on the principle of a column of mercury with an open reservoir. The pressure
exerted on the exposed liquid would force the liquid up the column and the measurement
would be made by reading the height of the column [4]. Later, so called aneroid barom­
eters not containing any liquid but rather a metal cell with a vacuum inside were used.
The cell, held by a spring to prevent it from collapsing, would expand or contract with
changes in pressure of the surrounding air. This movement would then drive an indi­
cator needle by a series of levers and gears [2]. With the advent of photolitography,
the M E M S technology allowed for miniaturization of the sensors and their inclusion
in tiny IC packages. The sensor used in this work belongs to the last category.

2.4 CO2 concentration
Any human activity in an enclosed space causes accumulation of the main byproduct
of breathing: carbon dioxide or C O 2 . Its concentration is therefore a good indicator
of ventilation quality even though it is not considered a primary air contaminant. Poor air
quality has arguably the largest impact on human activity. People who spend a prolonged
amount of time in spaces where C O 2 concentration exceeds the natural background levels
of 300-450 ppm by 2-3 times have been observed to suffer headaches, fatigue, and eye and
respiratory tract irritation. At concentrations above 5000 ppm, C O 2 is considered a health
hazard. A n indoor environment is considered well ventilated if the C O 2 concentration does
not exceed values of 700 ppm above background [23].

C O 2 sensors can be split into two main categories based on the principle of measurement:
Non Dispersive Infrared or NDIR and heated electrode. The first category in principle
functions as a prismless (hence the non-dispersive attribute) spectrometer. The mea-

13

2 INDOOR ENVIRONMENTAL CONDITIONS

sured air enters a chamber with defined optical properties and infrared light is shined
through the chamber in a short, controlled pulse. A photodiode also placed in the mea­
surement chamber captures this flash. The resulting concentration is then determined by
the amount of a particular wavelength of light absorbed by the air within the chamber.
The other category of sensors, based on metal oxide technology, is not capable of direct
measurement of C 0 2 . The measured value is instead calculated as a C 0 2 equivalent
by measuring concentrations of other volatile organic compounds (VOC) in the air. Sen­
sors of this technology are also cross-sensitive to humidity and temperature fluctuations.
They perform the best in higher concentrations of above 2000 ppm [52]. These sensors are
substantially cheaper and more available, however. While also capable of other measure­
ments of potential interest, such sensor was not included due to its limited lifespan and
relatively high power consumption. Instead, a more accurate NDIR technology sensor
was chosen. The solution's architecture, however, allows for the addition of a V O C sensor
either by the user or in further revisions should the need arise.

14

2 INDOOR ENVIRONMENTAL CONDITIONS

2.5 Sensors
In this section, several environmental sensors are compared and evaluated on the basis
of applicability in the solution. The main evaluated parameters are: measured properties,
accuracy, power consumption, the sensor's interface, and availability. Focus is primarily
on sensors based around integrated circuits measuring multiple properties as integrating
analog devices or multiple sensors would needlessly complicate the solution.

Temperature, humidity and pressure sensors

Most IC based sensors available today are capable of measuring at least two of the men­
tioned properties. Of the widely available hobbyist offerings the following environmental
sensors were considered: AM2320, AM2302, Bosch BMP280 and Bosch BME280. A brief
comparison of their properties is presented in Table 2.1.

Table 2.1: Comparison of available environmental sensors [6-9,12,19,20,25].

M o d e l A M 2 3 2 0 A M 2 3 0 3 B M P 2 8 0 B M E 2 8 0

Manufacturer Aosong Aosong Bosch Sensortec Bosch Sensortec

Opera t ing voltage [V D C] 3.3-5.5 3.3-6 1.8-3.3 1.8-5

Opera t ing current [uA] 950 1500 3.4 3.6

Quiescent current [uA] 10 N / A 0.1 0.1

Sampl ing rate [Hz] 0.5 0.5 157 182

Temperature range [°C]
(Fu l l accuracy range) -40-80 -40-80 -40-85 (0-65) -40-85 (0-65)

Temperature accuracy [±°C] 0.5 0.5 0.5 1

Temperature resolut ion [°C] 0.1 0.1 0.01 0.01

H u m i d i t y range [% R H] 0-100 0-100 N / A 0-100

H u m i d i t y accuracy [± % R H] 3 5 N / A 3

H u m i d i t y resolution [% R H] 0.1 0.1 N / A 0.008

Pressure range [hPa] N / A N / A 300-1100 300-1100

Pressure accuracy [± h P a]
(absolute) N / A N / A 0.12 (1) 0.12 (1)

Interface I 2 C 1-wire I 2 C I 2 C or S P I

Pr ice [C Z K] 97 147 62 199

The chosen sensor is the Bosch Sensortec BME280. While not the most accurate, the fact
that the sensor combines all necessary measuring facilities in one low power package was
the deciding factor. A combination of a temperature + humidity sensor and a separate
pressure sensor would be possible but highly impractical due to the increased space and
power requirements. Not to mention the increased code complexity due to the need
to include separate libraries for the sensors.

15

2 INDOOR ENVIRONMENTAL CONDITIONS

C O 2 sensors

The other important environmental sensor for this work is the C O 2 concentration sensor.
Compared to the previous sensor category, these sensors are not nearly as common. This
basically ruled out any selection criteria based on price, the focus here was primarily on
availability and reasonable accuracy. A n overview of the considered sensors is presented
in Table 2.2.

Table 2.2: C 0 2 sensor comparison [1,31,50,53,54,62].

M o d e l M H - Z 1 9 S C D 3 0 L P S

Manufacturer W i n s e n Sensirion Senseair

Opera t ing voltage [V D C] 3.6-5.5 3.3-5.5 2.9-5.5

Opera t ing current [mA]
@ H z sampl ing rate 18 19 0.66

Sampl ing rate [s]
m i n i m u m 60 2 16

Range [ppm]
(extended range) 0-2000 (0-5000) 0-10000 (0-40000) 0-2000 (0-10000)

Accuracy [± p p m +% reading]
(extended range) 50+3 30+3 50+3(10% reading)

Interface serial, p w m serial, I 2 C serial (modbus)

Pr ice 18.6 U S $ 59.95 U S $ 111.70 E U R (module)

The LP8 sensor was chosen because of its immediate availability as an integrated module.
The SCD30 would be a preferred choice for its temperature and humidity measurement
capabilities that would make it an all-in-one solution. The sensor was however unavailable
to the author as of the time of writing. The Chinese MH-Z19 sensor would also be a usable
alternative if it were available.

Other sensors

A n air particulate sensor Sharp GP2Y1010AU0F was also sourced for this work.
The sensor was however found to be not sensitive enough for typical indoor use during
testing. This sensor is therefore not included in the final implementation of the solution.

16

3 IOT CONNECTIVITY PROTOCOLS

3 IoT connectivity protocols
The devices comprising the ever evolving landscape of the Internet of Things need to
communicate in order to be useful. This communication is facilitated by either a wireless
or wired network and a messaging protocol. Those are not unlike the messaging protocols
used in communication programs for people, such as X M P P , only they are used between
machines. Over the years, device manufacturers and designers either implemented their
own or re-purposed an existing protocol. These protocols are usually employed in ap­
plications with limited resources and are therefore optimized for low bandwidth use.
A multitude of such more or less featured application layer protocols is available.
For the purpose of this work, two pub/sub messaging protocols were considered: MQTT
and OPC U A. The following sections contain a closer look at the protocols.

3.1 M Q T T
One of the most prominent protocols in use today for consumer IoT devices is M Q T T .
M Q T T stands for M Q Telemetry Transport, though it is sometimes incorrectly referred to
as Message Queuing Telemetry Transport [39]. The name was historically derived from
the " M Q " line of I B M messaging middleware products. The protocol runs over TCP/ IP ,
but any lossless bidirectional connection can support it [14]. The protocol provides
publish-subscribe messaging but no queuing despite the often used name. The M Q T T
protocol was originally created by I B M in the year 1999 for the purpose of monitoring
an oil line running through the desert using little resources [58]. The entire design is fo­
cused on low bandwidth high latency applications. In 2013, the protocol was submitted
to the Organization for the Advancement of Structured Information Standards (OASIS) for
standardization. It is also standardized by International Standards Organization (ISO)
as ISO/IEC 20922 [33]. A separate specification called M Q T T - S N meaning M Q T T Sensor
Network aimed at non-TCP/IP networks also exists. In this version the protocol can be
used over other transports such as UDP, Bluetooth or zigbee [55]. The M Q T T protocol
was standardized in version 3.11 and revised in 2019 to version 5.0 [14], which extended
the functionality with better error reporting and the addition of message metadata among
other things [15,57].

The M Q T T protocol is used for communication between two network entities: a broker
and an arbitrary number of clients. A broker is a server that receives all messages from
connected clients and routes the messages to the appropriate destination clients. A client
is any device that has an M Q T T library available and connects to an M Q T T broker [56].
Clients and brokers can be a wide range of devices; from a microcontroller or a single
board computer to a workstation or server. The messages are organized by topics. Topics
can be freely available to any connected client or secured with a set of credentials. Clients
can subscribe to one or several topics. When a client publishes data to a topic, it sends
a message to the connected broker and the broker in turn distributes the message to
any clients currently subscribed to the topic [59]. This way none of the clients need to
have any information about the number or location of the other clients and the broker
does not need to be configured in any way in order to receive data from the publishers.
A network may contain multiple brokers allowing for broker load balancing. If no clients

17

3 IOT CONNECTIVITY PROTOCOLS

are subscribed to a topic, any messages published to the topic will simply be discarded.
The protocol specifies an optional parameter allowing the message to be retained until a
client subscribes but the broker only stores a single most recent message per topic. This
is useful for topics with multiple subscribers with intermittent connections as it allows
them to receive the latest data without the need to wait for the publisher [60]. M Q T T
also defines three levels of Quality of Service (QoS), which control how hard the broker
tries to deliver a message. The higher the QoS level, the more latency is introduced and
more bandwidth required. The three levels are defined as follows:

• QoS 0: deliver once, no confirmation (fire and forget)
• QoS 1: deliver at least once, confirmation required
• QoS 2: deliver exactly once, using a handshake [38]

Since the data communicated from the measuring device is of no vital importance, only
QoS 0 messaging is used in this work. A n M Q T T message can be as small as two
bytes and a maximum message size can be communicated between the client and broker
using a control message [16]. There are 14 defined control messages for connecting to
and disconnecting from the broker, data publishing and acknowledging and connection
supervision [17]. M Q T T sends all data including connection credentials in plain text.
Transport security can be however added in the underlying T C P protocol. This is known
as M Q T T over TLS or M Q T T S . In this work, this was achieved using the reverse proxy
feature of the N G I N X web server and a Let's Encrypt TLS certificate [34].

3.2 OPC UA

Another machine to machine messaging protocol considered for this work is OPC U A . De­
veloped by the OPC foundation, it is aimed primarily at industrial applications for device
communication and data collection [43]. The name stands for Open Platform Commu­
nications Unified Architecture. While developed by the same organization, OPC U A is
significantly different from the previous OPC protocol [40]. The main differences are the
openness of the protocol and its ability to be used on multiple platforms and even scaled
down to very low power devices [41]. This is an improvement from the previous MS Win­
dows only protocol, implementations of which were often incomplete owing to its black
box nature. The new protocol is built as a Service Oriented Architecture and offers se­
curity functionality for authentication and data integrity [45]. The data security features
include redundancy support, data acknowledgments and buffering meaning that a lost
datagram can be reconstructed. The specification was released in the year 2008 [41] and
the latest version 1.04, in 2017. The latest major revision from 2018 includes a pub/sub
model in addition to the classic client/server [44]. The specification of the protocol is very
complex, comprising of 14 core documents and over 1200 pages total [42]. APIs for sev­
eral languages including Python are available. Due to the project's far reaching coverage
of automation needs and therefore its inherent complexity, the existing implementations
are usually focused on a certain task. This collection of focused implementations due
to the possibility to selectively implement a functionality e.g. only the pub/sub function­
ality, means a diverse environment that is not easy to navigate. While also possible to
deploy on a variety of platforms and devices utilizing either free or commercial toolkits,
the protocol's complexity makes it an inferior choice for a simple application such as
the one presented in this work.

18

4 Implementation
4 IMPLEMENTATION

This chapter describes the reference implementation of the device and related compo­
nents. It is split into four sections. The first is dedicated to the hardware comprising
the monitoring device itself, the next describes the device firmware, the third section
is concerned with the server implementation and the last with the device assembly.
The device is based on an Arduino platform, in particular the Mega 2560. A n ESP8266
chip provides W i F i connectivity. The sensors and other peripherals are connected using
multiple protocols including serial, I 2 C and SPI. The device is also equipped with a 2.9"
e-ink screen to provide information to the user at a glance. The server provides an M Q T T
broker, an SQL database, a JSON A P I and a web front-end for data visualization. A block
diagram in Figure 4.1 showing the hardware, services and protocols provides an overview
of the solution.

Monitoring device
I2C

BME 280 « H

DS3231 , I2C
RTC

! C02 sensor
! module

A i m ega
2560

SPI e-ínk
screen

•ESP8266

J"
MQTTS , '*\MQTT5
ntp

"Internet / LAM 1-ttps

Server

"ftp „ jQuery web
application

NGINX

MQTT

http

http

Python Flask
JSON API

l-ttp

SQL

Mosquitto

MQTT broker

MQTT PythDn

helper script

Figure 4.1: Reference implementation block diagram.

4.1 Hardware

4.1.1 Arduino Mega 2560

The Arduino platform provides a wide range of ready to use accesible development boards
primarily based on A V R 8-bit microcontrollers. For this work, an ATmega2560-based
board was chosen. This decision was primarily driven by the chip's broad array of com­
munication facilities. In particular the 4 hardware serial lines, which are required for
communicating with the ESP chip, the C O 2 sensor and, optionally, with the user's com­
puter. The ability to connect to the board via serial also proved useful during development
and debugging stages. The next driving factor was the chip's large S R A M of 8 K B , which
is beneficial to the system's stability. Particularly when handling display drawing routines
and processing the relatively large amount of data from the sensors. The original board
can be seen in Figure 4.2. The board's technical specification as per the manufacturer
is presented in Table 4.1 below. A customized miniature version of the board, shown in
Figure 4.3, is used in the final product in order to save space while retaining full func­
tionality. Specifications of the custom board differing from the original are also written
in Table 4.1 in parentheses. The board's firmware is written in C++ using the freely
available Arduino IDE. More on the firmware in the following sections.

19

4 IMPLEMENTATION

Figure 4.2: Original Arduino Mega 2560 board [13].

Figure 4.3: Custom miniature board by RobotDyn [48].

Table 4.1: Arduino Mega 2560 - technical specifications [13] [48].

Microcontroller ATmega2560

Operating Voltage 5 V

Input Voltage (limit) 6-20 V

Digital I/O Pins 54 of which 15 provide P W M output

Analog Input Pins 16

DC Current per I/O Pin 20 mA

Flash Memory 256 K B

S R A M 8 K B

E E P R O M 4 K B

Clock Speed 16 MHz

Physical dimensions

Length 101.52 mm (54 mm)

Width 53.3 mm (38 mm)

Weight 37 g (21 g)

20

4 IMPLEMENTATION

4.1.2 ESP-01

Another important piece of hardware is the by now ubiquitous ESP8266 W i F i capable
chip by the Chinese company Espressif. It is available on a wide variety of boards in many
different form factors. The ESP-01 variant, shown in Figure 4.4, was chosen for this work.
It is a small form factor board with a printed antenna and an 8-pin 2x4 DIL header. Since
the board is utilized here for its wireless connectivity only, the limited I/O does not pose
a problem. In addition to power connections, the header exposes a hardware serial line,
two GPIOs that are also used to select boot modes, a reset pin and a chip enable pin.
The reset pin is connected in series with the Arduino's so that both boards can be reset
at the same time with a single button. The module is programmed in the same Arduino
IDE as the Mega thanks to the ESP8266 Arduino Core [28].

Figure 4.4: The ESP-01 module [10].

Table 4.2: ESP-01 - technical specification [29].

Processor Tensilica L106 32-bit RISC core

Operating voltaj ;e 2.5 - 3.6 V

Flash memory 1 M B external QSPI

Operating memory 32 K B instruction

80KB user data

Clock speed 80 MHz

Physical dimensions

Length 24.8 mm

Width 14.3 mm

21

4 IMPLEMENTATION

4.1.3 Sensors and peripherals

Bosch-Sensortec B M E 2 8 0

This integrated circuit provides the device with the ability to measure temperature, hu­
midity and pressure. The sensor communicates on I 2 C bus and the chosen module, shown
in Figure 4.5, allows operating voltages between 1.8 and 5 V by including an LDO on
the breakout board. As mentioned earlier in Section 2.5, the sensor features a low operat­
ing and quiescent current, a relatively low measuring cycle of 1 second full accuracy and
an accuracy of ± 1 °C, ± 3 % R H , and ±100 Pa as per Table 2.1.

Hardwario C O 2 sensor module (Senseair LP8)

The sensor of choice for C O 2 measurement is the LP8 NDIR sensor by the Swedish
company Senseair. As utilized in the work, the sensor is part of a module. The module,
depicted in Figure 4.6, is designed and manufactured by the Czech company Hardwario.
It includes all the necessary support components for the sensor to operate and several extra
ICs to enable integration into their IoT module lineup. The module and all associated
firmware is released under a permissive MIT Open Source license.

The sensor requires a constant current source with a supercapacitor for the IR lamp as
well as switching the supply voltages on and off at specific times during the measurement
period so having all of these facilities available on a module is very helpful. The module
includes a TCA9534A I 2 C 10 expander and an SC16IS750 I 2 C serial bridge. Since
the mega microcontroller includes a hardware serial, connection to the sensor is made
directly, bypassing the serial bridge. Thankfully, the module's layout includes such option
and the serial pins are even broken out in a pin header [18]. Only a slight modification
to the board by replacing two links is required for the direct connection. This is illustrated
in Figure 4.7 where the two 0 Ohm links are moved to the new position. Also evident in
the figure is the factory bodge to add pullup resistors to the serial line. This was fixed
in a later revision of the board layout. While the mega has enough available I/O pins
to handle the voltage rail switching and pin polling, the onboard I 2 C 10 expander was
used instead as it allowed for a much neater implementation, not to mention the hardware

Figure 4.5: A BME280 sensor on a breakout board [8].

22

4 IMPLEMENTATION

modification required for bypassing it would have to be rather extensive. The sensor's
manufacturer provides a very detailed datasheet and an application guide that proved
extremely useful while writing a measurement routine for the sensor.

4 IMPLEMENTATION

DS3231 real time clock

For the purpose of keeping accurate time even while powered off or used off-line, an RTC
module is used. The chosen module, shown in Figure 4.8, is based around a DS3231 chip.
Besides basic time and date keeping, the chip offers the ability to count days in months
with less than 31 days, a leap year correction, two configurable alarms and both 12 and
24 hour time formats. The chip provides excellent time accuracy and stability thanks
to a robust package and its ability to measure temperature and therefore compensate for
the temperature drift of its oscillator [36]. The module communicates on the I 2 C bus and
accepts voltage levels between 3.3 and 5 V , which makes it easy to integrate. Also present
is a 32K E E P R O M and pins for square wave and 32 kHz oscillator output but they are
not utilized in this work. The module includes a power loss backup by means of a button
cell battery and facilities to recharge said battery. While practical, this arrangement calls
for a rechargeable LIR2032 lithium cell. Since such cell was unavailable to the author
at the time of writing, a simple modification to the module by removing a charging resistor
allowed the safe use of a standard non rechargeable CR2032 battery. No difference in
module functionality was observed throughout the testing period.

Figure 4.8: The DS3231 RTC module [11].

Waveshare 2.9" e-ink screen

The device includes a screen to display time and current measurement values. The cho­
sen display is based on an e-ink technology. The display was chosen for its very low
power consumption. It only consumes power when redrawing its contents and very little
power at that. Another driving factor was the absence of any sort of backlight. This
greatly lowers visual disturbance caused by the device while providing much more de­
tail than what would be possible with a segmented L C D . One slight downside is that
the screen retains its contents even while powered down, which might cause confusion
around the state of the device. The power L E D on the M C U board however remains vis­
ible and can serve as a status indicator. The display operates on 3.3 V and is connected
using SPI. The display can be seen showing a value overview and debugging symbols still
as a part of the testing setup in Figure 4.9 below.

24

4 IMPLEMENTATION

Figure 4.9: The e-ink display.

Breakout board

Since the mega microcontroller operates on a 5 V logic level and most other peripherals
use 3.3 V , level shifters had to be utilized. What's more, the 3.3 V supply available
on the Arduino board is only able to source 50 mA of current, which is not sufficient for
the ESP8266 and other peripherals to operate. To solve this problem, a custom break
out board was created. Besides having a space for connecting the level shiter boards and
breaking out connections to peripherals into pin headers for modularity, the board houses
a 3.3 V L D O capable of sourcing 1 A of current. This is more than a generous amount for
all of the peripherals to run. The development version of the board also provided a micro-
usb port passed through to a full-size connector and a switch for setting boot modes
for the ESP8266 chip. The board was used throughout the development and testing
period, the final construction of the device is different as described in Section 4.4

4.2 Firmware
As mentioned above, firmware for both the Arduino and ESP boards was written in C++
using the free and open source Arduino IDE. There are many useful libraries available for
use in the Arduino environment covering a wide variety of sensors and other peripherals.
Some of these libraries are utilized in this work while others, like in the case of C O 2
module, had to be written from scratch. Figure 4.10 shows a screenshot of the IDE
window.

25

4 IMPLEMENTATION

BSS : 25624) - zeroed v a r i a b l e s (g l oba l , s t a t i c] i n BAM,'HEAP
M u l t i p l e l i b r a r i e s were found f o r "ESP8266WiFi.h"

Used: /home/drew/Arduino/libranes/ESP8266WiFi
Not used: /home/drew/.srduinQl5/packages/esp8266/hardware/esp8266/2.7.l/Ubraries/ESP826i

Using l i b r a r y ESP8266WiFi at ve r s i on 1.0 i n f o l d e r : /home/drew/Arduino/libraries/ESP8266W:
Using l i b r a r y Adaf ruit_MGTT_l_ibrary at ve r s i on l .Q.3 i n f o l d e r : /home/drew/Arduino/l ibrar:
Using l i b r a r y NTPCl ient at ve r s i on 3.2.0 i n f o l d e r : /home/dreui/Arduino/l ibrar ies/NTPCl ierr
/home/drew/.-arduinol5/packages/esp8266/tools/Ktensa-lxlQ6-elf -gcc/2.5.G-4-b4Qa506/bin/xter
Sketch uses 387520 bytes [40%! of program storage space. Maximum i s 958448 bytes .
G l oba l v a r i a b l e s use 28184 bytes [34%) of dynamic memory, l e a v i n g 53736 bytes f o r l o c a l v;

u ld_413224/fw_esp826S. ino.elf

Figure 4.10: The Arduino IDE.

4.2.1 Mega 2560

The ATmega mcu is in charge of polling the sensors, drawing on the e-ink screen and
sending measurement data to the ESP chip for publishing. At its core, the firmware is
relatively simple; consisting of a main loop that executes measurement, communication
and drawing tasks. These tasks are triggered every minute by polling the RTC module
for time change. The loop services a couple of other tasks such as periodic full screen
refresh, date redrawing on midnight and periodic time synchronization. Apart from
the Arduino native libraries for handling serial and I 2 C communication, there are several
3rd party ones in use in this firmware: GxEPD2 [63] for the SPI e-ink screen drawing
methods, M D D S 3 2 3 1 [35] for controlling the RTC module and a library for configuring
interfacing with the BME280 environmental sensor [30]. Methods provided by libraries
are then usually wrapped in functions. The driver for the LP8 C O 2 sensor and associated
circuitry was rewritten by the author for use within the Arduino environment. More
details in Section 4.2.2.

The setup routine initializes the three serial lines required for interfacing as well as the
I 2 C system. Next it waits for the ESP chip to finish booting. Receiving network connec­
tion information (associated A P SSID and IP address), indicates that the ESP is ready
to operate. The setup function then requests an ntp time update and processes the re­
ceived information accordingly. Wait loop for the connection information times out after
approximately 40 seconds and the M C U continues functioning normally without a network
connection. Another initialization loop waits for a response from the BME280 sensor.
If the sensor is not responsive, an error message is printed on the display. The de­
vice will finish booting anyway but as it cannot function properly without the sensor,
the main loop will only update the clock. After processing connection and time informa-

26

4 IMPLEMENTATION

tion, the data is shown on the display. When the printing routine exits, the M C U is ready
to execute its main loop, performing the functions described at the start of the section.

The following is a closer look at the measurement task. As soon as the time changes
the measurements are taken. A function wraps the calls to measuring routines from
an appropriate library and stores the results in a global struct. The struct in question can
be seen in Listing 4.1. This is to simplify access to the measured data for the publishing
function. A n example of a measuring function is shown in Listing 4.2. Minimum sampling
period for the BME280 sensor is one second so in order to balance out speed and accurate
readings, a value is read every second for five seconds. To add at least some statistical
value to the data, the final value is then calculated as an arithmetic average of the five
samples. The float - integer conversions save a few clock cycles since the ATmega2560
does not incorporate a dedicated F P U .

Listing 4.1: Dataset structure
s t r u c t data {

f l o a t temp;
f l o a t hum;
i n t rhum;
f l o a t p res;
unsigned i n t r p r e s ;
i n t l 6 _ t C02;

};

Listing 4.2: Temperature measurement function
f l o a t measureTemp() {

BME280::TempUnit tempUnit(BME280::TempUnit_Celsius);
i n t temps[5];

/ / l i g h t led while measuring
d i g i t a l W r i t e (1 3 , HIGH);
S e r i a l . p r i n t (F (" M e a s u r i n g t e m p e r a t u r e ")) ;
f o r (c h a r i = 0; i < 5; i++){

temps [i] = bme.tempO * 100;
S e r i a l . p r i n t (F (" . ")) ;
delay(1000) ;

}
f l o a t temp;
temp = (temps[0] + temps [1] + temps [2] + temps [3] + temps [4]) / 5;
S e r i a l . p r i n t (F (" d o n e : ")) ;
S e r i a l . p r i n t l n (t e m p / 100);
//turn off the led
d i g i t a l W r i t e (1 3 , LOW);
return(temp / 100);

}

The C O 2 sensor has a sampling period of at least 16 seconds as per the manufacturer's
application notes [51], so the C 0 2 value is sampled only once per measurement cycle.
This value however, should be accurate without averaging multiple samples thanks to
built-in progressive filtering, compensation and adjustment algorithms. After each mea­
surement cycle, the data is read from the struct by the publishing routine, formatted into
a string and sent over to the ESP8266 chip via serial.

27

4 IMPLEMENTATION

4.2.2 The C O 2 sensor driver

As mentioned before, the library for the C O 2 sensor was put together in part by porting
over chunks of the open source A R M driver provided for the Hardwario module and in
part by following the official manufacturer's documentation for the sensor. The sensor
is connected on a serial line speaking the modbus protocol. Interfacing with it is fairly
straightforward but its built-in filtering and continuous correction algorithms require
state writebacks complicating the implementation somewhat. The sensor also requires
a constant current source and voltage rail switching during its measurement cycle. These
facilities are provided on the module. Since the module's intended use is with a smaller
M C U with limited I/O, the relevant connections are routed to an I 2 C I/O expander
IC. Even though the ATmega M C U used in this device has plenty of I/O, implement­
ing the functionality using the I 2 C I/O expander chip proved a much neater solution.
Also due to the limited I/O capacity of the intended microcontroller, an I 2 C serial
bridge is present on the module. The module's design, however, allows to break out
the serial line to a pin header by moving a couple of links so this simple hardware
modification was performed. It allowed the use of one of the hardware serials on
the ATmega chip directly without the need to write routines for communicating with
the serial bridge.

4.2.3 The ESP-01 module

The ESP-01 module provides the monitoring device with connectivity to the local net­
work and all Internet related functions such as ntp time sync and M Q T T publishing.
Its firmware is built with IotWebConf library, which provides means to configure and store
parameters such as wireless network credentials and M Q T T server settings via a local
http server [47]. This allows the device to be reconfigured without the need to re-flash the
firmware. Upon powering the device up, a wireless access point is created. Devices that
connect to this access point are then redirected to a captive portal providing the configura­
tion options as depicted Figure 4.11. After setting up access to the local network and filling
out M Q T T server address and credentials, the monitoring device should be power cycled.
The options are saved to non volatile memory and applied on every subsequent boot. Suc­
cessful connection to a local network disables the access point. The configuration interface
however remains accessible. Users can access it from any computer on the same network
as the monitoring device by visiting the device's address from a web browser. When ac­
cessed this way, the configuration interface requires authentication with the password set
up for the access point. The access point also reactivates for a period of 30 seconds af­
ter every reboot. Connecting to the A P halts the boot process so changes can be made to
the configuration. The IotWebConf library also provides facilities for resetting the firmware
in case of a forgotten password by means of boot time pin configuration but since the ESP-
01 module used in this work does not have any pins usable for this purpose, the firmware
must be reset by re-flashing. After connecting to the local wireless network and opening a
connection to the M Q T T server, the ESP begins its main loop. The loop reads the serial
buffer, responds to http configuration server requests and periodically checks the network
and M Q T T server connections, attempting reconnection whenever necessary. The buffer
reading routine is very simple: if the buffer contents are a request for time update, an ntp
sync is performed and since no other serial communication is programmed, anything else

28

4 IMPLEMENTATION

Thing name

AP password

WiFi SSID

WI Fi password

- M Q ^ settings

MQTT server

MQTT user

MQTT pas-sword

MQTT topic

MQTT server cert SHA-1 fingerprint

Leave blank for unsecured connection

p N T P settings

MTP server address

e.g. europe.pooL.ntp.org

Time zone (UTC offset)

UTC offset in seconds

Apply

Figure 4.11: The configuration interface as it would appear on a mobile device.

is published to the set up M Q T T topic. The http server and network connection routines
provided by the IotWebConf library are non-blocking so in case of an unavailable network
or unreachable M Q T T server, the rest of the functionality is not disrupted.

4.3 Server
A server for data gathering and visualization is also part of the solution. The server, same
as the rest of the solution, is built on free and Open Source technologies. It is designed
so that it can be hosted entirely locally within a private network or deployed to a VPS
for example. The functional core is built with Python. The functionality implemented is as
follows: A n M Q T T broker (Mosquitto) is responsible for routing topics and messages from
connected device(s), a Python helper script using the Eclipse Paho M Q T T library [27]
listens to set topics and takes care of validating the incoming messages and writing them
to an SQL database of choice. The reference implementation is using a simple SQLite
database. Next, a Python Flask JSON A P I is available to query the database for its
contents. This A P I is used mainly by the j Query visualization web app but can be made
available externally should the user desire to use the stored data for other purposes.
More on these parts in later sections. This collection of programs can run behind any
web server or reverse proxy on any platform as long as the appropriate M Q T T and SQL
libraries are available. The demo implementation is running on an Arch GNU/Linux based

29

http://europe.pooL.ntp.org

4 IMPLEMENTATION

server behind an N G I N X web server/reverse proxy. The server stack was also successfully
tested on a Raspberry P i 2 B single board computer running Arch GNU/Linux A R M .
The N G I N X web server also provides TLS with Let's Encrypt certificates for all running
services.

4.3.1 Processing M Q T T data

The M Q T T broker of choice in the reference implementation is Mosquitto [26]. It was
chosen because it is a well supported Open Source implementation of the full protocol
and a multitude of resources is available for working with this broker. Since the protocol
works with a client-broker model, capturing the incoming data requires a client listening
to the appropriate topic. This is achieved by means of a python helper script. This script
continuously listens on the set up topic and any incoming messages trigger a processing
routine. The routine first reads the message payload, which contains the actual data in
the form of a comma delimited string "temperature,humidity,pressure,C0 2".
The payload string is subsequently parsed and checked for out of range values. The
processed values are stored internally in an array. Next, an SQL query is formulated with
values from the payload array and the data is committed into the database. A n example
SQL formulation can be seen in Listing 4.3.

Listing 4.3: SQL command creation
s q l = " INSERT INTO envdataO (timestamp , temp, hum, pres , co2) VALUES (\"7.s

\ " , 70s, 70s , 70s, 7 0s)" 70 (datetime . datetime . now () . s t r f time (f) , dec_msg [0] ,
dec_msg[l], dec_msq[2], dec_msg [3])

w r i t e _ d b (s q l)

4.3.2 The database

The incoming data is stored in an SQL database. A library called SQLite is used
to provide this functionality in the reference implementation. This library allows storing
the data in a single database file without the need to run an SQL server.
Thanks to the library's availability for many different languages and platforms, the server
solution is able to be deployed on a variety of devices from traditional servers to A R M
based single board computers. The solution is also able to use an existing SQL server
with minimal modification as long as a Python library exists to interface with it.

4.3.3 The J S O N A P I

Another core functionality of the server part is the JSON API . Its main purpose is to
allow access to the collected data but it is also used internally for monitoring device state
reporting. The A P I is written in Python using the Flask web service micro framework.
The following is a brief description of the available methods, with a sample output pre­
sented in Listing 4.4.

The data retrieval method, by default available at /api /getdata, responds to both G E T
and POST requests. There is one optional argument samples, which allows the user
to specify a number of samples to retrieve. Without this argument the sample count
defaults to 120 data points (minutes). The samples are counted from the last available

30

4 IMPLEMENTATION

sample and timestamps with missing data points get a NaN value. The returned mime-
type is obviously JSON and besides separate datasets for each temperature, humidity,
pressure, and C O 2 concentration, an information about the state of the monitoring device
is included. This can be used to identify whether the data is "fresh" i.e. no older than 120
seconds without having to parse any timestamps. A n example output of a G E T request
/api/getdata?samples=5 is shown in Listing 4.4 below.

Listing 4.4: A n example output of the data fetching A P I method
{ " s t a t u s " : " a l i v e " ,
"temp": {"2020-05-27 16:06:21": "23.2",

"2020-05-27 16:07:21": "23.24",
"2020-05-27 16:08:21": "23.24",
"2020-05-27 16:09:21": "23.2",
"2020-05-27 16:10:21": "23.22"},

"hum": {"2020-05-27 16:06:21": "39.03",
"2020-05-27 16:07:21": "38.43",
"2020-05-27 16:08:21": "38.43",
"2020-05-27 16:09:21": "38.47",
"2020-05-27 16:10:21": "38.67"},

"pres": {"2020-05-27 16:06:21": "1015",
"2020-05-27 16:07:21": "1014",
"2020-05-27 16:08:21": "1014",
"2020-05-27 16:09:21": "1014",
"2020-05-27 16:10:21": "1014"},

"co2": {"2020-05-27 16:06:21": "537",
"2020-05-27 16:07:21": "541",
"2020-05-27 16:08:21": "539",
"2020-05-27 16:09:21": "538",
"2020-05-27 16:10:21": "537"}

}

The other method, available at /api/heartbeat , is mainly used internally for moni­
tor state reporting. Since the device is unreachable from outside the local network it
is attached to and therefore cannot respond to pings, a heartbeat is sent every time
an M Q T T message arrives from the device. This functionality is also covered by
the helper script. After receiving a message, the script sends a POST request with
the message time stamp. The POST request must contain a previously set up secret to
protect and prevent erroneous data from being injected. The time stamp is then stored
and whenever a device status is requested, a time delta between the time of request and
the stored time stamp of the last message is calculated. The monitor is set up to send
messages every minute, so if the delta is larger than 120 seconds, one can safely assume
that the device is dead. A G E T request to this method returns a JSON containing
the device status and the last message time stamp in UNIX format as can be seen in
Listing 4.5.

Listing 4.5: A n example output of the heartbeat method
{ " s t a t u s " : " a l i v e " ,
" last_msg": 1590656302.2858639}

31

4 IMPLEMENTATION

4.3.4 The web application

To give the user an easy access to the gathered data, a web visualization application
was created. This application is built with JavaScript and jQuery, the plots are drawn
using the Chart.js library [24] and the main gauges with JustGage [61]. A screenshot of
the application can be seen in Figure 4.12. A detail of the leftmost column is shown in
Figure 4.13. This column contains gauges illustrating the latest values as well as a simple
interface for changing the plot timebase. A detail of plots showing an overview of a full
day can be seen in Figures 4.14 and 4.15. The application features a "responsive" design,
which enables it to adapt to the browser viewport size to efficiently display its contents.
The application fetches the data by querying the aforementioned JSON API . This is done
asynchronously using ajax. After the initial load, a timer refreshes the contents every 90
seconds by requesting the latest data point from the API . In case of a device outage the site
stops refreshing its contents and instead polls the A P I for monitor status. Upon monitor
state change from dead to alive, the whole dataset is reloaded and the visualization
continues operating as usual. Any missing data points are then drawn in the plot as
an empty space. At the bottom of the web page is a status bar of sorts indicating
the current mode of operation (live data or latest values presented statically).

Indoor enviro data
Most recent values

2020-05-15 23:01:24

25.35 °C

Temperature

999 hPa

Pressure

Temperature

Humidity

Show last 20 minutes. Select

Refresh all

J / l/f
Live update enabled. (Data might be delayed up to a minute]

C02 concentration

Figure 4.12: The overview web application.

32

4 IMPLEMENTATION

Indoor enviro data

Most recent values

2020-06-15 00:27:24

698 ppm

C02 concentration

Show last 120 minutes. Select

Refresh aLL

Figure 4.13: Detail of the web application interface.

33

4 IMPLEMENTATION

Temperature

Humidity

Figure 4.14: A full day overview (center column).

34

4 IMPLEMENTATION

Combined

I | Temperature t I Humidi ty

C02 concentration

Figure 4.15: A full day overview (right column).

35

4 IMPLEMENTATION

4.4 The completed device
Construction of the device was developed alongside the firmware and also progressively
evolved. One difference from the development board is the absence of a dedicated 3.3
V L D O on the finished device. The alternative version of the M C U board used for
the final product contains an appropriate 3.3 V regulator so the need for an external
one was obsoleted. While the device was intended to remain modular from the start,
another major change is the main board. A custom double sided breakout P C B for
the modules was laid out but due to circumstances outside of author's control, custom
P C B manufacturing was unavailable at the time so the board is instead hand-wired on
a single-sided prototyping board. This posed somewhat of a challenge since the board
requires pin headers broken out on both sides. The finished product is functional as in­
tended albeit slightly larger and not very aesthetically pleasing. Figures 4.16 and 4.17
provide a look at the populated board. Immediately apparent is the modification per­
formed to the C O 2 module. The RTC module and the B M E sensor are attached to
the otherwise unused connections on the module. This solution saves a significant amount
of space and simplifies the breakout board further.

Figures 4.18 and 4.19 show renders of the basic P C B for comparison. A n alternative P C B
design also provides footprints for two 2 mm pin pitch JST connectors for other power
sources. A render of this slightly taller alternative design is presented in Figure 4.20.
One connector is for powering the device with a 7-12 V DC supply and one with 5 V DC
directly either from a lithium battery with a step-up converter or other 5V source. Only
one connector should be used at a time. Powering the board through these connectors
will result in a neater appearance since the cable can be routed through the back panel,
but the serial output will be unavailable.

The device's housing is 3D printed out of P L A plastic. The enclosure measures 65 mm
wide, 75 mm deep and 110 mm tall for the P C B version and 67 mm wide, 75 mm deep
and 115 mm tall for the prototyping board version. The model was created using
an OpenSCAD script for generating custom enclosures, written by the user Heartman
on Thingiverse [32] and modified by the author for use with the device. A n OpenSCAD
render of the enclosure can be seen in Figure 4.21. The front panel contains a cutout for
the e-ink display and the back panel has some additional ventilation holes in the vicinity
of the C O 2 sensor. The back panel also includes a cutout for a power cable in case
the user elects to power the board through the optional D C input. The bottom part of
the enclosure has enough space to house a battery and related circuitry. The board is
placed vertically into rails. The mounted board can be seen in Figure 4.22. A cutout
on the side of the enclosure allows connection to the M C U board's micro USB port.
The reset button is also accessible just below the connector but power cycling is
the preferred method of resetting the device and should be used instead. The assem­
bled device is shown in Figure 4.23.

36

4 IMPLEMENTATION

Figure 4.16: Populated board, front side.

Figure 4.17: Populated board, back side.

.37

4 IMPLEMENTATION

4 IMPLEMENTATION

G O
o o
o o J6

n o o
s i o o
»> o o
o o o

o o
o o

o o o
O o o
0 o o
o o o
o o o
o o o
3} o o
l>

3 » Hardwario
o o
o n

<$) (s) jej o <>
s o : <> »

o o
o o
6 o

o o
<> • •

•1 II

•> II

o o
II II

s ®

C02 module

Figure 4.20: Render of the alternative P C B with JST connectors.

(a) View of the front (b) View of the back

Figure 4.21: OpenSCAD renders of the enclosure.

39

4 IMPLEMENTATION

4 IMPLEMENTATION

5 Conclusion
The goal of this bachelor's thesis was to implement an indoor climate monitoring device
based on the Arduino platform. This was achieved by using an 8-bit ATmega2560 M C U
and a W i F i capable ESP8266 module. The monitoring device was extensively tested over
a period of four months and proven reliable. The remote data gathering is facilitated
by the M Q T T protocol. To supplement the device's functionality, a web server compris­
ing of a JSON A P I and a visualization frontend for easy data access was implemented.
The A P I provides a method for retrieving data points using both G E T and POST requests.
A JavaScript visualization application uses this A P I to display plots of the measured data.
The entire solution is built with freedom and extensibility in mind. Free Open Source
technologies and hardware were leveraged wherever possible. Another result of this work
is a port of a Hardwario C O 2 sensor module driver for use with the Arduino platform.

The monitoring device and the auxiliary server are tested and fully functional.
The device is further extensible by means of additional sensors. The entire service
is also extensible to multiple monitoring devices. There is however still space for improve­
ment mainly in the area of user experience and the power efficiency of the monitoring
device which were outside the original scope of this work.

The entirety of this project is available under an Open Source license in a git reposi­
tory git.dotya.ml/thesis_project. A demonstration of the web server and A P I is available
at env.astora.gq.

42

http://git.dotya.ml/thesis_project

Bibliography
BIBLIOGRAPHY

[1] Aliexpress.com. ME Z19B Infrared CO2 Sensor for C02 Monitor MH-Z19B
5000PPM MH-Z19B NDIR Gas Sensor C02 gas sensor MH-Z19. [online], [cit. 2020-
02-11]. Available from: https://www.aliexpress.com/item/32672336586.html.

[2] American Meteorological Society. Aneroid barometer. Meteorology Glossary, [online].
Apr. 2012, ©2020 [cit. 2020-04-20]. Available from: http:/ /glossary.ametsoc.org/
wiki/Aneroid_barometer.

[3] American Meteorological Society. Hair hygrometer. Meteorology Glossary, [online].
Feb. 2012, ©2020 [cit. 2020-04-20]. Available from: http:/ /glossary.ametsoc.org/
wiki/Hair_hygrometer.

[4] American Meteorological Society. Mercury barometer. Meteorology Glossary, [online].
Apr. 2012, ©2020 [cit. 2020-04-20]. Available from: http:/ /glossary.ametsoc.org/
wiki/Mercury_barometer.

[5] American Meteorological Society. Spectral hygrometer. Meteorology Glos­
sary, [online]. Apr. 2012, ©2020 [cit. 2020-04-20]. Available from: h t t p : / /
glossary.ametsoc.org/wiki/Spectral_hygrometer.

[6] A O S O N G . Digital Temperature and Humidity Sensor: AM2320 product man­
ual, [online], [cit. 2020-02-11]. Available from: https://cdn-shop.adafruit .com/
product-files/3721/AM2320.pdf.

[7] Arduino-shop.cz. Arduino DHT22 teploměr a vlhkoměr digitální [online], [cit. 2020-
02-11]. Available from: https:/ /arduino-shop.cz/arduino/1188-arduino-dht22-
teplomer-a-vlhkomer-digi talni .html.

[8] Arduino-shop.cz. BME280 Modul Měření Teploty Vlhkosti a Baro­
metrického Tlaku Precizní. [online]. [cit. 2020-02-11]. Available from:
ht tps: //arduino-shop.cz/arduino/1361-bme280-modul-mereni-teploty-
vlhkost i -a-barometr ickeho- t laku-precizni .h tml .

[9] Arduino-shop.cz. IIC I2C Senzor Tlaku a Teploty BMP280 3,3V. [online], [cit.
2020-02-11]. Available from: h t tps : / / a rdu ino-shop .cz /a rdu ino /1488- i ic - i2c-
senzor-tlaku-a-teploty-bmp280-3-3v.html.

[10] Arduino-shop.cz. Internet věcí je tady! TCP/IP WIFI ESP8266 ESP-01. [on­
line], [cit. 2020-05-19]. Available from: ht tps: / /arduino-shop.cz/arduino/911-
internet-veci- je- tady-tcp- ip-wif i -esp8266-esp-01.html .

[11] Arduino-shop.cz. RTC Hodiny reálného času DS3231. [online], [cit. 2020-05-19].
Available from: https : / /arduino-shop.cz/arduino/1261-rtc-hodiny-realneho-
casu-ds3231-at24c32-iic-pametovy-modul-pro-arduino.html.

[12] Arduino-shop.cz. Teploměr a vlhkoměr AM2320 digitální, [online], [cit. 2020-02-11].
Available from: https ://arduino-shop.cz/arduino/2023-teplomer-a-vlhkomer-
am2320-digitalni.html.

43

http://Aliexpress.com
https://www.aliexpress.com/item/32672336586.html
http://glossary.ametsoc.org/
http://glossary.ametsoc.org/
http://glossary.ametsoc.org/
http://glossary.ametsoc.org/wiki/Spectral_hygrometer
https://cdn-shop.adafruit.com/
http://Arduino-shop.cz
https://arduino-shop.cz/arduino/1188-arduino-dht22-
http://Arduino-shop.cz
http://Arduino-shop.cz
https://arduino-shop.cz/arduino/1488-iic-i2c-
http://Arduino-shop.cz
https://arduino-shop.cz/arduino/911-
http://Arduino-shop.cz
http://Arduino-shop.cz

BIBLIOGRAPHY

[13] Arduino Store. Arduino Mega 2560 rev.3. [online], [cit. 2020-05-19]. Available from:
https : / /s tore.arduino. cc/arduino-mega-2560-rev3.

[14] B A N K S , A . , B R I G G S , E . , B O R G E N D A L E , K . , A N D G U P T A , R . MQTT Version
5.0. OASIS Standard, [online]. Mar. 2019 [cit. 2020-05-19]. Available from: ht tps:
/ /docs, oasis-open. org/mqtt/mqtt/v5.0/mqtt-v5.0. html.

[15] B A N K S , A . , B R I G G S , E . , B O R G E N D A L E , K . , A N D G U P T A , R . MQTT Version
5.0. p. 20. OASIS Standard, [online]. Mar. 2019 [cit. 2020-05-19]. Available from:
https : //docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[16] B A N K S , A . , B R I G G S , E . , B O R G E N D A L E , K . , A N D G U P T A , R . MQTT Version
5.0. p. 36. OASIS Standard, [online]. Mar. 2019 [cit. 2020-05-19]. Available from:
https : //docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[17] B A N K S , A . , B R I G G S , E . , B O R G E N D A L E , K . , A N D G U P T A , R . MQTT Version
5.0. pp. 21-22. OASIS Standard, [online]. Mar. 2019 [cit. 2020-05-19]. Available from:
https : //docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[18] bigclownlabs, H A R D W A R I O Hardware (Schematic and Assembly Drawings).
bc-module-co2-rev-l-4-sch.pdf. GitHub. [online]. [cit. 2020-05-29]. Available
from: ht tps: / /github.com/bigclownlabs/bc-hardware/blob/master/out/bc-
module-co2/bc-module-co2-rev-l-4-sch.pdf.

[19] B O S C H - S E N S O R T E C . BME280 Combined humidity and pressure sen­
sor, [online]. Rev. 1.6, ©Sep. 2018 [cit. 2020-02-11]. Available from:
ht tps: //www.bosch-sensortec.com/media/boschsensortec/downloads/
datasheets/bst-bme280-ds002.pdf.

[20] B O S C H - S E N S O R T E C . BMP280 Digital Pressure Sensor. [online]. Rev. 1.19,
©2018 [cit. 2020-02-11]. Available from: https://www.bosch-sensortec.com/media/
boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf.

[21] B U R R O U G H S , H . A N D H A N S E N , S. J . Managing Indoor Air Quality, pp. 149 - 151.
Fairmont Press, Lilburn (Georgia), fifth edn.. 2011. ISBN 978-0-88173-661-8.

[22] B U R R O U G H S , H . A N D H A N S E N , S. J . Managing Indoor Air Quality, pp. 151 - 155.
Fairmont Press, Lilburn (Georgia), fifth edn.. 2011. ISBN 978-0-88173-661-8.

[23] B U R R O U G H S , H . A N D H A N S E N , S. J . Managing Indoor Air Quality, pp. 92 - 96.
Fairmont Press, Lilburn (Georgia), fifth edn.. 2011. ISBN 978-0-88173-661-8.

[24] Chartjs. Chart.js, Simple HTML5 Charts using the <canvas> tag. GitHub. [online],
[cit. 2020-06-07]. Available from: ht tps: / /gi thub.com/chart js /Chart . js .

[25] Digital relative humidity & temperature sensor AM2302/DHT22. [online], [cit. 2020-
02-11]. Available from: https:/ /cdn-shop.adafruit .com/datasheets/Digital-l-
humidity+and+temperature-|-sensor-|- AM2302.pdf.

[26] Eclipse Foundation. Eclipse Mosquitto MQTT broker, [online]. Eclipse Foundation,
[cit. 2020-04-20]. Available from: ht tp: / /mosqui t to .org/ .

44

http://www.bosch-sensortec.com/media/boschsensortec/downloads/
https://www.bosch-sensortec.com/media/
https://github.com/chartjs/Chart.js
https://cdn-shop.adafruit.com/datasheets/Digital-l-
http://mosquitto.org/

BIBLIOGRAPHY

[27] Eclipse Foundation. Eclipse Paho MQTT library, [online], [cit. 2020-06-07]. Available
from: ht tps: //www.eclipse.org/paho/.

[28] Esp8266 community. ESP8266 core for Arduino. GitHub. [online], [cit. 2020-05-19].
Available from: https://github.com/esp8266/Arduino.

[29] E S P R E S S I F . ESP8266EX: datasheet. [online]. ©2020 [cit. 2020-05-19]. Avail­
able from: https : //www.espressif .com/si tes /defaul t / f i les /documentat ion/
0a-esp8266ex_datasheet_en.pdf.

[30] Finitespace. BME280, Arduino library for reading and interpreting Bosch BME280
data over I2C, SPI or Sw SPI. GitHub. [online], [cit. 2020-04-20]. Available from:
ht tps: / /github.com/f initespace/BME280.

[31] Hardwario. Hardwario shop: CO2 module, [online], [cit. 2020-05-19]. Available from:
ht tps: //shop.hardwario.com/co2-module/.

[32] Heartman. The Ultimate box maker. Thingiverse. [online]. Heartman, 2016 [cit.
2020-06-07]. Available from: https://www.thingiverse.eom/thing:1264391.

[33] I N T E R N A T I O N A L S T A N D A R D S O R G A N I Z A T I O N . ISO/IEC 20922:2016 Message Queu­
ing Telemetry Transport (MQTT) vS.l.l. [online]. Jun. 2016 [cit. 2020-04-20]. Avail­
able from: https://www.iso.org/standard/69466.html.

[34] Let's Encrypt - A nonprofit Certificate Authority Frequently Asked Questions, [on­
line], [cit. 2020-04-20]. Available from: h t tps : / / l e t sencrypt .o rg /docs / faq / .

[35] MajicDesigns. MD_DS3231 RTC library. GitHub. [online], [cit. 2020-04-20]. Avail­
able from: https://github.com/MajicDesigns/MD_DS3231.

[36] M A X I M I N T E G R A T E D P R O D U C T S . DS3231 Extremely Accurate I2C-Integrated
RTC/TCXO/Crystal, [online]. ©2015 [cit. 2020-04-20]. Available from: ht tps:
//datasheets.maximintegrated.com/en/ds/DS3231.pdf.

[37] M E Y E R , C . W . The second-generation NIST standard hygrometer. Metrologia.
47(3), pp. 192 - 207. 2010. doi:10.1088/0026-1394/47/3/010.

[38] Mosquitto. MQTT man page, [online], [cit. 2020-04-20]. Available from: ht tp:
//mosquitto.org/man/mqtt-7.html.

[39] M Q T T . Frequently Asked Questions. In: mqtt.org. [online], [cit. 2020-04-20]. Avail­
able from: ht tps: / /mqtt .org/faq.

[40] OPC Foundation. OPC Foundation technologies: OPC Classic. [online].
©2020 [cit. 2020-06-10]. Available from: https:/ /opcfoundation.org/about/opc-
technolog ies /opc-c lass ic / .

[41] OPC Foundation. OPC Foundation technologies: OPCUA. [online]. ©2020 [cit. 2020-
06-10]. Available from: https:/ /opcfoundation.org/about/opc-technologies/
opc-ua/.

45

http://www.eclipse.org/paho/
https://github.com/esp8266/Arduino
http://www.espressif
http://hardwario.com/co2-module/
https://www.thingiverse.eom/thing:1264391
https://www.iso.org/standard/69466.html
https://letsencrypt.org/docs/faq/
https://github.com/MajicDesigns/MD_DS3231
http://maximintegrated.com/en/ds/DS3231.pdf
http://mqtt.org
https://mqtt.org/faq
https://opcfoundation.org/about/opc-
https://opcfoundation.org/about/opc-technologies/

BIBLIOGRAPHY

[42] O P C F O U N D A T I O N . OPC UA Online Reference, Part 1, Chapter 2 Reference
documents, [online]. Ver. 1.04, Nov. 2017, ©2020 [cit. 2020-06-10]. Available from:
https : / / r e f erence.opcf oundat ion .Org /vl04/Core/docs/Part l /2/ .

[43] O P C F O U N D A T I O N . OPC UA Online Reference, Part 1, Chapter 5.3 Design goals.
[online]. Ver. 1.04, Nov. 2017, ©2020 [cit. 2020-06-10]. Available from: h t t p s : / /
ref erence.opcf oundation.org/vl04/Core/docs/Part 1/5.3/.

[44] O P C F O U N D A T I O N . OPC UA Online Reference, Part 14 PubSub. [on­
line]. Ver. 1.04, Feb. 2018, ©2020 [cit. 2020-06-10]. Available from: h t t p s : / /
reference.opcfoundation.org/vl04/Core/docs/Partl4/ .

[45] O P C F O U N D A T I O N . OPC UA Online Reference, Part 2, Chapter 4-2.1 Security
objectives, [online]. Ver. 1.04, Aug. 2018, ©2020 [cit. 2020-06-10]. Available from:
https : / / r e f erence.opcf oundation.org/vl04/Core/docs/Part2/4.2.1/.

[46] P O R T L A N D S T A T E A E R O S P A C E S O C I E T Y . A Quick Derivation relating altitude to
air pressure, [online]. Ver. 1.03, Dec. 2004. ©2004 [cit. 2020-04-20]. Available from:
http://archive.psas.pdx.edu/RocketScience/PressureAltitude_Derived.pdf.

[47] Prampec. IotWebConf ESP8266/ESP32 non-blocking WiFi/AP web configura­
tion Arduino library. GitHub. [online], [cit. 2020-06-07]. Available from: ht tps:
//github.com/prampec/IotWebConf.

[48] RobotDyn. RobotDyn store: Mega 2560 PRO (Embed), [online], [cit. 2020-
05-19]. Available from: https://robotdyn.com/mega-2560-pro-embed-ch340g-
atmega2560-16au.html.

[49] R O V E T I , D . K . Choosing a humidity sensor: A review of three technolo­
gies. In: fierceelectronics.com [online]. 2001-07-01 [cit. 2020-04-20]. Available
from: https : //www.f ierceelectronics.com/components/choosing-a-humidity-
sensor-a-review-three-technologies.

[50] S E N S E A I R . Product Specification: Senseair ®LP8. [on­
line]. Rev. 7, ©2019 [cit. 2020-02-11]. Available from: h t t p s : / /
rmtplusstoragesenseair.blob.core.windows.net/docs/Dev/publicerat/
PSP1334.pdf.

[51] S E N S E A I R . Senseair LP8 CO2 Sensor specification and integra­
tion guideline. [online], [cit. 2020-02-11]. Available from: ht tps:
/ / rmtpluss t oragesenseair.blob.core.windows.net/docs/Dev/publicerat/
TDE2712.pdf.

[52] Senseair. Why NDIR? [online], [cit. 2020-02-11]. Available from: h t t p s : / /
senseair.com/knowledge/sensor-technology/technology/why-ndir/.

[53] S E N S I R I O N . Datasheet Sensirion SCD30 Sensor Module. [online]. Rev 0.94,
©Jun. 2019 [cit. 2020-02-11]. Available from: https://eu.mouser.com/pdfDocs/
Sensirion_C02_Sensors_SCD30_Datasheetl.pdf.

46

http://oundation.Org/vl04/Core/docs/Partl/2/
http://oundation.org/vl04/Core/docs/Part
http://reference.opcfoundation.org/vl04/Core/docs/Partl4/
http://archive.psas.pdx.edu/RocketScience/PressureAltitude_Derived.pdf
https://robotdyn.com/mega-2560-pro-embed-ch340g-
http://fierceelectronics.com
http://www.f
http://rmtplusstoragesenseair.blob.core.windows.net/docs/Dev/publicerat/
http://oragesenseair.blob.core.windows.net/docs/Dev/publicerat/
http://senseair.com/knowledge/sensor-technology/technology/why-ndir/
https://eu.mouser.com/pdfDocs/

BIBLIOGRAPHY

[54] Sparkfun.com. C02 Humidity and Temperature Sensor - SCD30. [online], [cit.
2020-05-29]. Available from: https://www.sparkfun.com/products/15112.

[55] S T A N F O R D - C L A R K , A . A N D T R U O N G , H . L . MQTT For Sensor Networks (MQTT-
SN). [online]. ©2013. Version 1.2, Nov. 2013 [cit. 2020-05-19]. Available from: ht tps:
//mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_vl.2.pdf.

[56] The HiveMQ team. Client, Broker / Server and Connection Establishment - MQTT
Essentials: Part 3. In: hivemq.com [online]. 2019-07-17 [cit. 2020-04-20]. Available
from: https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-
connect ion-establishment/ .

[57] The HiveMQ team. Foundational Changes in the MQTT 5 Protocol - MQTT 5 Es­
sentials Part 2. In: hivemq.com [online]. 2018-01-08 [cit. 2020-04-20]. Available
from: https://www.hivemq.com/blog/mqtt5-essentials-part2-foundational-
changes-in-the-protocol/ .

[58] The HiveMQ team. Getting started with MQTT. In: hivemq.com [online]. 2019-07-
04 [cit. 2020-04-20]. Available from: https://www.hivemq.com/blog/how-to-get-
started-with-mqtt/ .

[59] The HiveMQ team. MQTT Publish, Subscribe & Unsubscribe - MQTT Essen­
tials: Part I In: hivemq.com [online]. 2015-02-02 [cit. 2020-04-20]. Available
from: https://www.hivemq.com/blog/mqtt-essentials-part-4-mqtt-publish-
subscribe-unsubscribe/.

[60] The HiveMQ team. Retained messages - MQTT Essentials: Part 8. In: hivemq.com
[online]. 2015-03-02 [cit. 2020-04-20]. Available from: https://www.hivemq.com/
blog/mqtt-essentials-part-8-retained-messages/.

[61] Toorshia. JustGage, a handy JavaScript plugin for generating dashboard gauges.
Based on Raphael library for vector drawing. GitHub. [online], [cit. 2020-06-07].
Available from: https: / /gi thub.com/toorshia/justgage.

[62] Z H E N G Z H O U W I N S E N E L E C T R O N I C S T E C H N O L O G Y C o . , L T D . Intelligent Infrared
C02 Module (Model: MH-Z19). [online]. Rev. 1.0, Mar. 2015 [cit. 2020-02-11].
Available from: https ://www.winsen-sensor.com/d/f iles/PDF/Inf rared°/o20Gas°/o
20Sensor/NDIR%20C02y„20SENS0R/MH-Z19%20C02%20Verl.0.pdf.

[63] ZinggJM. GxEPD2, Arduino Display Library for SPI E-Paper Displays. GitHub.
[online], [cit. 2020-04-20]. Available from: https://github.com/ZinggJM/GxEPD2.

47

http://Sparkfun.com
https://www.sparkfun.com/products/15112
http://hivemq.com
https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-
http://hivemq.com
https://www.hivemq.com/blog/mqtt5-essentials-part2-foundational-
http://hivemq.com
https://www.hivemq.com/blog/how-to-get-
http://hivemq.com
https://www.hivemq.com/blog/mqtt-essentials-part-4-mqtt-publish-
http://hivemq.com
https://www.hivemq.com/
https://github.com/toorshia/justgage
http://www.winsen-sensor.com/d/f
https://github.com/ZinggJM/GxEPD2

BIBLIOGRAPHY

List of Abbreviations
°C degrees Celsius

uA microampere

A Ampere

A P Access Point

A P I Application Programming Interface

C O 2 Carbon dioxide

DC Direct Current

DIL Dual In-Line

E E P R O M Electrically Erasable Programmable Read Only Memory

F P U Floating Point Unit

GPIO General Purpose Input/Output

http Hypertext Transfer Protocol

I/O Input Output

I 2 C Inter-Integrated-Circuit bus

IDE Integrated Development Environment

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

L D O Low dropout voltage regulator

L E D Light Emitting Diode

mA milliampere

M C U Microcontroller

M E M S Micro Electro-Mechanical Systems

M Q T T M Q Telemetry Transport

N / A Not available

NDIR Non-dispersive Infra Red

ntp Nertwork Time Protocol

48

BIBLIOGRAPHY

P C B Printed Circuit Board

P L A Polylactic acid

ppm parts per million

QoS Quality of Service

QSPI Quad Serial Peripheral Interface

R H Relative Humidity

RISC Reduced Instruction Set Computer

RTC Real-time clock

SPI Serial Peripheral Interface

SQL Structured Query Language

SSID Service Set Identifier

SSL Secure Sockets Layer

T C P Transmission Control Protocol

TLS Transport Layer Security

UI User interface

USB Universal Serial Bus

V Volts

voc Volatile Organic Compound

VPS Virtual Private Server

49

LIST OF FIGURES

List of Figures
4.1 Reference implementation block diagram 19
4.2 Original Arduino Mega 2560 board [13] 20
4.3 Custom miniature board by RobotDyn [48] 20
4.4 The ESP-01 module [10] 21
4.5 A BME280 sensor on a breakout board [8] 22
4.6 The Hardwario C 0 2 sensor module [31] 23
4.7 Bottom side of the C O 2 sensor module 23
4.8 The DS3231 RTC module [11] 24
4.9 The e-ink display 25
4.10 The Arduino IDE 26
4.11 The configuration interface as it would appear on a mobile device 29
4.12 The overview web application 32
4.13 Detail of the web application interface 33
4.14 A full day overview (center column) 34
4.15 A full day overview (right column) 35
4.16 Populated board, front side 37
4.17 Populated board, back side 37
4.18 P C B render, front side 38
4.19 P C B render, back side 38
4.20 Render of the alternative P C B with JST connectors 39
4.21 OpenSCAD renders of the enclosure 39
4.22 Detail of the board mounting 40
4.23 The finished device 41

50

LIST OF TABLES

List of Tables
2.1 Comparison of available environmental sensors [6-9,12,19,20,25] 15
2.2 C O 2 sensor comparison [1,31,50,53,54,62] 16
4.1 Arduino Mega 2560 - technical specifications [13] [48] 20
4.2 ESP-01 - technical specification [29] 21

51

A P P E N D I X A
LIST OF TABLES

Folder structure of the attached archive. The archive contains authored software and its
dependencies, schematics and 3D models as well as a copy of this text.

b_thesis_pillar_attachment.zip
Firmware

fw_mega
fw_mega.ino
FreeSans22pt7b.h

_ FreeSansBoldllpt7b.h
_fw_esp8266

1 fw_esp8266.ino
Libraries

bcl co2 arduino
bc_co2_module_arduino.cpp

1 bc_co2_module_arduino.h
Hardware

Models
panel_back.stl
panel_front.stl
shell_bottom.stl
shell_top.stl

Schematics
inenvmon_breakout.pdf
inenvmon_breakout.kicad_pcb
inenvmon_breakout_power_conns.kicad_pcb

Server
inenvmon_web

static
,_ is

Chart.min.j s
jquery.min.js
j ustgage.min.j s
main.js
moment.min.j s
raphael.min.j s

styles
Chart.min.ess
style.ess

templates
1 index.html
inenvmon_web.py

inenvmon_collector.py
inenvmon_data.db

b_thesis_pillar.pdf

52

