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ANNOTATION 

This diploma thesis focuses on calculation of uncertainties by Monte Carlo method. The 

introduction provides an essential theoretical overview of measurement uncertainties. The 

diploma thesis also deals with the analysis of the Monte Carlo method and its application in 

solving the physical models of measurement from a different part of a physics. In conclusion 

are the calculated uncertainties compared to results that came from the Monte Carlo 

Simulation. 
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Tato diplomová práce je zaměřena na výpočet nejistot metodou Monte Carlo. V úvodu 

poskytuje základní teoretický přehled pro nejistoty měření. Dále pak diplomová práce uvadí 

rozbor metody Monte Carlo a její aplikaci při řešení fyzikálních modelů měření z různých 

odvětví fyziky. V závěru jsou vypočítané nejistoty porovnány s výsledky Monte Carlo Simulace 
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1 INTRODUCTION 

Metrology is a science that deals with the measurement of various technical and 

physical quantities. If the same physical quantity is repeated with the same 

conditions several times in succession, different values are usually given. However, 

the measured value is one correct value. Each deviation of the measured value of the 

correct value is generally called an error. Based on the demand for a more versatile 

approach to measuring accuracy, the International Commission has formulated a 

new approach that generalizes the concept of error and is called uncertainty. 

Measurement uncertainty, unlike an error, characterizes the range of the measured 

value around the measurement result, which as expected contains the actual value 

of the measured quantity. The basis for determining uncertainties is the statistical 

approach for random and systematic errors. A specific probability distribution, 

which describes how the measured value values, can deviate from the actual value 

is assumed. Rules for calculating uncertainties are described in Chapter 2 and are 

based on the familiar Guide to the expression of Uncertainty in Measure (GUM). Due 

to many limitations, the GUM method has been extended by the first supplement, 

which provides a calculation of uncertainties by the Monte Carlo method. 

The Monte Carlo method is a numerical computational method based on the use of 

random variables and probability theory. The Monte Carlo method is a class of 

algorithms for system simulation. It is a method using random or pseudo-random 

numbers. It uses a repeated sampling of random variables to simulate random 

events. An introduction to the Monte Carlo method, including representative 

examples and history, is described in Chapter 3. Based on the first supplement of the 

GUM method, a calculation of the uncertainties by the Monte Carlo method was 

formulated in Chapter 4.  

There are five case studies from different branches of physics. Each case study is 
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specific to its approach to best demonstrate the difficulty of calculating GUM 

uncertainties. The calculations focus primarily on the determination of sensitivity 

coefficients, correlations, covariance and coverage intervals. The Monte Carlo 

method was calculated for individual case studies according to the algorithm 

presented in the appendix of the thesis. For individual variables according to the 

first GUM appendix, random M values were generated according to the division 

corresponding to the given measurement. The resulting uncertainty and coverage 

range were determined from the generated values. The results of both methods 

were compared and commented. In conclusion, depending on individual case 

studies, the advantages of the Monte Carlo method are described compared to the 

classical GUM method. 

1.1 Terminology and basic concepts 

To understand the problems in the field of metrology, it is essential to explain some 

basic concepts. The basic ideas with definitions can be found in the International 

Vocabulary of Metrology - Basic and general concepts and associated terms (1) 

Augmented definition for uncertainty can be found in Guide to the expression of 

uncertainty in measurement (2) where the rules of evaluating and expressing 

uncertainty in measurement (GUM) are described. The base of the GUM was used to 

prepare the essential concepts of this work. The Propagation of distributions, using 

the Monte Carlo method is clarified in Supplement 1  and the Guide to the expression 

of uncertainty in measurement (3). 

Quantity. “Property of a phenomenon, body or substance, where the property has a 

magnitude that can be expressed as a number and a reference.” It can be measured 

or counted. The value of a given quantity is given by comparison with a fixed value 

of the quantity of the same kind we choose for the measuring unit. For example, the 

length of an object can be determined by comparing it to an object of known length, 

such as a ruler. 

True quantity value. “Quantity value consistent with the definition of quantity.” The 

true quantity value is the value corresponding to the real dimension of the measured 

quantity value. It is a one-dimensional value for continuous quantities with a large 
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number of decimal places, which we obtain with exact measurements at high 

demands on the technical maturity of the gauges, the competence of the staff and the 

measurement time. 

Reference quantity value. “Quantity value, used as a basis for comparison with values 

of quantities of the same kind.” In other words, it is a specific value affecting the 

quantities to which we measure the result. 

Measured quantity value. “Quantity value is representing a measurement result.” It 

is the quantity value that is measured in practice, being represented as a 

measurement result. Available measurement techniques can measure the length of 

an object. 

Measurement result. “Set of quantity values being attributed to a measurand 

together with any other available relevant information.” The measured quantity 

value is affected by the systematic and random effects that together determine the 

measurement error. The measured value is the data subtracted from the gauge, 

which is given by the true quantity value of the measured dimension and the 

instantaneous magnitude of measurement errors. For example, the result of the 

length of an object is represented by a measurement result: 126 mm ± 0.2 mm. 

Measurement accuracy. “Closeness of agreement between a measured quantity 

value and the true quantity value of the measurand.” Measurement accuracy is a 

metrological concept whose statistical measure is the measurement error. It tells us 

the difference between what we measured and what we should measure. 

The sensitivity of measuring system. “Quotient of the change in an indication of a 

measuring system and the corresponding change in a value of a quantity being 

measured.” The sensitivity indicates the minimum change in the measured value the 

meter is capable of indicating. 

Resolution. “Smallest change in a quantity being measured that causes a perceptible 

change in the corresponding indication.” For modern gauges, the resolution is given 

by the least significant bits of the imaging device 
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Measurement uncertainty. “Non-negative parameter characterizing the dispersion 

of the quantity values being attributed to a measurand, based on the information 

used.” In other words, is the designation for a parameter that is related to outcome 

measurements and characterizes the range of values that can be rationally assigned 

to the measurand. It is a new methodology for processing measurement results. 

Coverage interval. “Interval containing the set of true quantity values of a measurand 

with a stated probability, based on the information available.” This parameter 

provides limits within which the true quantity values may be found with a 

determined probability. So for the length of an object example, there could be 95% 

probability of finding the true value of the length within the interval of 125.8 mm to 

126.2 mm. 
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2 UNCERTAINTY OF MEASUREMENT  

The purpose of measurement is to determine the size of the measured variables, 

characterizing a particular specific property. Specifications of measured values can 

also require data on other variables such as time, temperature or force. Individual 

measurements are usually burdened by variations of noise, known as errors. Results 

are expressed using appropriate estimates of mean 𝜇  and the corresponding 

uncertainty associated with noise. 

Classical statistics, based on the definition of probability as relative frequency limits, 

provides all equipment the expression of uncertainty as  to the confidence interval 

of the parameter  𝜇. Expressing uncertainty is philosophically closer to subjective 

definition of probability as the degree of trust or faith. This probability, however, 

has more to do with lack of knowledge than the result of the repeated experiment. 

Until now, it was customary in the evaluation of measurement data to work with 

errors. New evaluation is done through the expression of uncertainty in 

measurement. Let us now speak briefly about the foundations of the theory of 

errors, so that they can better compare with the new concept of uncertainty, which 

replaces the concept of errors.  

Measurement uncertainty characterizes the range of measured values about the 

result of the measurement, which can be assigned to the value of the measured 

quantity. Measurement uncertainty concerns the result of a measurement, 

measuring devices, the values used constants, corrections, and so on. To which the 

uncertainty of the measurement result depends. The basis of measurement 

uncertainty is the statistical approach to an assumed particular probability 

distribution which describes how the indicated value can deviate from the actual 

value. (4) (5) 
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2.1 Measurement Model 

The measurement model is defined as the relationship between the input and output 

variables for a given measurement. It represents not only the principle, procedure, 

and method of measurement but also the influence of the environment in which the 

measurement takes place or the knowledge and experience of the worker carrying 

out the measurement. 

The measurands are the particular quantities subject to measurement as the 

dependence of the output quantities 𝑌 on the input quantities 𝑄𝑖. The measurands 

are considered those that are the target of measurement. Usually, one output 

quantity 𝑌 depends on a number of input quantities 𝑄𝑖(𝑖 = 1, 2, … , 𝑁) according to 

the function depends in (2.1). 

 𝑌 = 𝑓(𝑄1, 𝑄2, … , 𝑄𝑁) (2.1) 

The function 𝑓  can represent the measurement procedure and the measurement 

method and describes how the values of the output quantity 𝑌 and their estimation 

𝑦 are determined from the values of the input variables 𝑄𝑖 and their estimates 𝑞𝑖 . 

2.2 The Uncertainty of Direct Measurement  

To determine the magnitude of the uncertainty principle two following methods are 

possible. Type A of standard uncertainty and type B of standard uncertainty. 

Random errors mostly cause type A standard uncertainty and determine the static 

analysis of the measured values obtained under precisely defined measurement 

conditions. Here applies a mathematical and statistical approach.  

Known or estimable causes, cause type B standard uncertainty. These establish the 

procedures that are not defined in the standard. For more complex installations, 

requiring increased accuracy it is necessary to perform a detailed analysis of errors 

and fix them accordingly uncertainty type B. The resulting standard uncertainty 𝑢𝐵 

is determined by their geometric sum. The sum of the squares of the standard 
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uncertainty of type A and the resulting standard uncertainty of type B is obtained 

so. Combined standard uncertainty 𝑢𝐶 .  (6) (7) 

2.2.1 Type A evaluation of standard uncertainty 

Type A evaluation of standard uncertainty is determined from repeated 

measurements of the same measured value under the same conditions. The 

uncertainties are reduced with an increasing number of repeated measurements. 

Random errors are expected with a normal distribution. (6) 

Normal distribution assumes the existence of  a primary distribution of repeatability 

and random errors, illustrated in figure 2-1. Where samples are taken, the sample 

means and sample standard deviation are calculated, it is assumed these represent 

the mean and standard deviation of the population distribution. However, this 

equivalence is only approximate. It is responsible for Student distribution used 

instead of the normal distribution to calculate confidence limits around the sample 

mean. (5) 

 

Figure 2-1. Repeatability Distribution 

Estimation data measured variable y is given by sample meaning �̅� from measured 

value 𝑞𝑖 by relationship (2.2). 

 �̅� =
1

𝑛
∑ 𝑞𝑖

𝑛

𝑖=1

 (2.2) 
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Where �̅�  is selective arithmetic average, 𝑛  is the number of trials and 𝑞𝑖  is the 

individual measured values.  The estimated variance of the measured values, 

referred to as sample variance 𝑠𝟐(𝑥) is given by (2.3). 

 𝑠2(𝑞𝑖) =
1

𝑛 − 1
∑(𝑞𝑖 − �̅�)2

𝑛

𝑖=1

 (2.3) 

where 𝑠2  is the sample variance. Root of the sample variance is obtained from 

sample standard deviation 𝑠(𝑞𝑖), which characterizes the variance of the measured 

values around the sample mean 𝑞. Sample variance mean 𝑠2(�̅�) is given by (2.4). 

 𝑠2(�̅�) =
𝑠2(𝑞𝑖)

𝑛
 (2.4) 

When the number n of repeated measurements is lower than ten, the reliability of a 

Type A evaluation of standard uncertainty, as expressed by equation (2.5). 

 𝑢𝐴(𝑞) = 𝑠(�̅�) = √
1

𝑛(𝑛 − 1)
∑(𝑞𝑖 − �̅�)2

𝑛

𝑖=1

 (2.5) 

Where𝑢(�̅�) is associated with the input estimate �̅�  is the experimental standard 

deviation of the mean. 

From equation (2.5) it follows that 𝑢𝐴(𝑞) will be the smaller the more repeated 

measurements 𝑛. Assuming not enough repetitive measurements, we can estimate 

𝑢𝐴(𝑞) if the number of measurements is less than 10. If the data comes from the 

normal distribution, follow equation (2.6). 

 𝑢𝐴(𝑞) = 𝑘𝑢𝐴
√

1

𝑛(𝑛 − 1)
∑(𝑞𝑖 − �̅�)2

𝑛

𝑖=1

 (2.6) 

Where 𝑘𝑢𝐴
 is a safety factor, the size of which is given in the table 2-1. 
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Table 2-1.  Safety factor table for an estimate 𝒖𝑨(𝒒). 

𝒏 2 3 4 5 6 7 8 9 10 + 

𝒌𝒖𝑨
 7,0 2,3 1,7 1,4 1,3 1,3 1,2 1,2 1 

From the methodological point of view, it is not recommended to perform repeat 

measurements of less than 10 for the determination of type A uncertainties. It is also 

not advisable to perform measurements in an environment where the measurement 

is not usually performed. (6) (8) 

2.2.2 Type B evaluation of standard uncertainty 

In addition to the influences described by the Type A method, the measurement 

system also has sources that can be traced to contextual cause, size of variability and 

static behavior without the need for repeated measurements. Non-statistical 

methods determine sources of uncertainty type B. Their amount depends on the 

operator's decision. Repeated measurements can not reduce Their influence. 

Measurands are based on rational judgments and use all available information on 

the measuring chain, method, and other factors, which may affect measurement 

results. Properties of type B sources of uncertainty of are as follows: 

 are determined by non-static methods, 

 their amount depends on the operator's decision,  

 repeated measurements cannot reduce their influence. 

Sources of uncertainty type B can be divided into two groups: variable systematic 

effect and random sources with known variability. 

Variable systematic effects are knowable, quantifiable, workable, but  their effect on 

the system is not stable. They have a permanent and variable component. The 

permanent component of a systematic effect has been compensated. For the 

processing of type B uncertainties only variable component apply. The sources are 

the influence of weather conditions, the effect of calibration, the impact of the sensor 

storage and the effect of the measuring cables. 
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Random sources with known variability are determined by estimation based on 

static distribution and probability interval. The sources are the influence of the 

resolution of the meter and the influence of the constants in the calculation of the 

indirectly measured quantity. (9) 

Standard uncertainty type B, can be calculated in several ways. Only the way of 

estimating the source variability and the static distribution that is used in the 

practical part can be discussed here. 

Calculation of type B uncertainty, is based on the partial uncertainties individual 

sources, where the value 𝐴𝑚𝑎𝑥  is the maximum deviation of the sources of 

uncertainty. 

 𝑈𝐵𝑍(𝑞) =
𝐴𝑚𝑎𝑥

𝜒
 (2.7) 

The equation (2.7) is an expression of standard calculation deviation another way, 

than the static method. As was said 𝐴𝑚𝑎𝑥  describe the 𝑛  spread of uncertainty 

sources and 𝜒 is the coefficient corresponding to the selected approximation of the 

probability distribution described in table 2-2. These probability distributions are 

the most known. 

Numerically, the source of uncertainty can be determined by a separate 

measurement, such as the average value from repeated measurements, the technical 

conditions of measurement or an estimate. 

The total uncertainty of type B is given by the geometric sum of the individual 

resources in the case that the individual sources are uncorrelated. (9) 

 𝑢𝐵
2 (𝑞) = ∑ 𝑢𝐵𝑍

2 (𝑞)

𝑛

𝑖=1

 (2.8) 
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Table 2-2. Uncertainty Equations for Selected Distributions 𝝌. 

Distribution Distribution Plot Coefficient 𝝌 

Normal 

 

2 

(𝑃 = 95 %) 

Uniform 

 

√3 ≈ 1.73 

(𝑃 = 100 %) 

Triangular 

 

√6 ≈ 2.45 

(𝑃 = 100 %) 

Uniform distribution is used in cases where any deviation from the nominal value 

may occur with equal probability. Uniform distribution is the most common 

approximation in practice. In the evaluation of standard uncertainty type B, it is 

often the only available information an interval [𝑎, 𝑏],  then knowledge of the 

magnitude is characterized by the uniform distribution. Approximation normal or 

triangular distribution is used when there are more small deviations from the 

nominal value and the increasing size of deviation decreases the probability of their 

occurrence.  (8) (11) 
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2.2.3 Combined standard uncertainty 

The combined standard uncertainty 𝑢𝑐(𝑞) is a measure of uncertainty of the result 

obtained from a number of other variables. This is an estimate of the standard 

deviation associated with the result, which is equal to the positive square root of the 

combined variance obtained from all variance input variables and all potential 

covariates. Procedure for the determination of the combined standard uncertainty 

is different for uncorrelated and correlated to other variables. 

For uncorrelated quantities, the combined standard uncertainty 𝑢𝑐(𝑞)  is 

determined as the positive square root of the variance of the combined standard 

uncertainty, which is determined according to the relationship (2.9). 

 𝑢𝐶(𝑞) = √𝑢𝐴
2(𝑞) + 𝑢𝐵

2 (𝑞) (2.9) 

Where 𝑢𝐴(𝑞)  is a type A of standard uncertainty, 𝑢𝐵(𝑞)  is a type B of standard 

uncertainty.  By obtaining equation (2.5) to (2.8) gets  

 𝑢𝐶(𝑞) = √𝑢𝐴
2(𝑞) + ∑ 𝑢𝐵𝑍

2 (𝑞)

𝑛

𝑖=1

 (2.10) 

The equation (2.10) points to merging both uncertainties and comparing their 

magnitudes. In conclusion, if 𝑢𝐴(𝑞) will be significantly higher than 𝑢𝐵(𝑞), may be 

assumed that the measurement system dominated by random effects, and should be 

in the context of measures to improve the focus on these influences. If 𝑢𝐵(𝑞) will be 

significantly higher than 𝑢𝐴(𝑞) it may be assumed that either there is an improperly 

designed system of measurement in the system or a dominant source of the type B. 

This fact again gives instructions to improve the measurement system. 

Numerically uncertainty is equal to the standard deviation of measurement 

variability investigated. (6) (8) 
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2.3 The Uncertainty of Indirect Measurement 

Evaluation of the uncertainty of measurement of output estimates can be calculated 

on the base of the particular operations uncertainty measurement of output. 

Quantity 𝑌, representative output value, known as function of values 𝑄1, 𝑄2, . . . , 𝑄𝑚. 

This quantity can be directly measured or whose estimates, uncertainties and 

covariance is known from other sources. Then we can write 

 𝑌 = 𝑓(𝑄1, 𝑄2, . . . , 𝑄𝑚) (2.11) 

Estimate 𝑦 output quantity of 𝑌 is given by equation (2.12) 

 𝑦 = 𝑓(𝑞1, 𝑞2, . . . , 𝑞𝑚) (2.12) 

For uncorrelated input quantities, the square of the standard uncertainty associated 

with the output estimate y is given equation (2.13). 

 𝑢2(𝑦) = ∑ 𝑐𝑖
2𝑢2(𝑞𝑖)

𝑁

𝑖=1

 (2.13) 

Where 𝑢(𝑦)  is an uncertainty estimate of output quantity, 𝑢(𝑥𝑖)  is uncertainty 

estimate of input quantity and 𝑐𝑖  is sensitivity coefficient. Furthermore equation 

(2.14) describe sensitivity coefficient. 

 𝑐𝑖 =
𝜕𝑓

𝜕𝑞𝑖
=

𝜕𝑓

𝜕𝑄𝑖
|

𝑄𝑖=𝑞𝑖…𝑄𝑁=𝑞𝑁

 (2.14) 

In case estimates are correlated, it is necessary to consider the covariance between 

the estimates, which are another component of the resulting uncertainty. 

Correlating input variables to output variables and uncertainty, is determined from 

the relation (2.15) 

 𝑢2(𝑦) = ∑ 𝑐𝑖
2𝑢2(𝑞𝑖)

𝑁

𝑖=1

+ 2 ∑ ∑ 𝑐𝑖𝑐𝑘

𝑁−1

𝑘<𝑖

𝑢(𝑞𝑖, 𝑞𝑘)

𝑁

𝑖=2

 (2.15) 



 

   14 

Where 𝑢(𝑞𝑖, 𝑞𝑘) is the covariance between the mutually correlated estimates 𝑞𝑖 and 

𝑞𝑘, which can be as two interdependent different variables, as well as two values of 

the same magnitude, between which there is a certain correlation bond.  (6) (11) 

2.4 Correlated quantities 

Correlated quantities are assumed that resources are infinitely independent 

(uncorrelated). It means that individual resources do not have a standard 

mathematical or physical basis, a standard organizational or technical base — 

covariance expected value of the product of the deviations of two random variables 

from their respective means. The covariance of two independent random variables 

is zero. (5) 

If two input quantities 𝑄𝑖 and 𝑄𝑘 are known to be correlated. The covariance 

associated with the two estimates is 𝑞𝑖 and 𝑞𝑘. In the case of available 𝑛 measured 

values of two quantities 𝑃 and 𝑄 the estimates are presented by arithmetic means �̅� 

and �̅� is given by (2.16). 

 𝑠(�̅�, �̅�) =
1

𝑛(𝑛 − 1)
∑(𝑝𝑗 − �̅�)(𝑞𝑗 − �̅�)

𝑛

𝑗=1

 (2.16) 

Where 𝑠(�̅�, �̅�) is covariance between the estimated input �̅�, �̅� , 𝑛 is the number of 

measured value and 𝑝𝑗 , 𝑞𝑗  is the estimate of two input quantities. 

In a case without the available 𝑛 measured values of two quantities, for each source 

of each pair estimated to estimate the correlation coefficient 𝑟(𝑞𝑖, 𝑞𝑘), where 𝑖 ≠ 𝑘 

and |𝑟| ≤ 1  and showing the degree of correlation characterized between the 

estimates. Values close to zero correspond to a weak dependence, values close to 

one strong a dependence. Relevant covariance value is determined from the 

relationship 

 𝑢𝐵(𝑞𝑖, 𝑞𝑘) = 𝑢(𝑞𝑖)𝑢(𝑞𝑘)𝑟(𝑞𝑖, 𝑞𝑘) (2.17) 

If the two input variables 𝑄1 and 𝑄2 with estimates by 𝑞1 and 𝑞2 are functions of the 

independent variables 𝑄𝑖 can be expressed by relations (2.18). 



 

   15 

 

𝑄1 =  𝑔1(𝑄1, 𝑄2, … , 𝑄𝐿) 

𝑄2 =  𝑔2(𝑄1, 𝑄2, … , 𝑄𝐿) 

(2.18) 

Furthermore, determine the covariance between the estimates 𝑞1 and 𝑞2 provided 

the estimates 𝑞𝑖(𝑙 = 1,2, … , 𝐿) are uncorrelated. In this case the covariance is given 

by equation (2.19). 

 𝑢(𝑞1, 𝑞2) = ∑ 𝑐1𝑙𝑐2𝑙𝑢
2(𝑞i)

𝐿

𝑙=1

 (2.19) 

Where 𝑐1𝑙 and  𝑐2𝑙are the sensitivity coefficients derived from the functions 𝑔1and 

𝑔2.  

If the two input variables 𝑄1 and 𝑄2 with estimates by 𝑞1 and 𝑞2 are functions of the 

dependent variables 𝑄𝑖 can be expressed by relations 2.20. 

 𝑢2(𝑦) = ∑ 𝑢𝑖
2(𝑦)

𝑁

𝑖=1

+ 2 ∑ ∑ 𝑢𝑖(𝑦)

𝑁

𝑘=𝑖+1

𝑢𝑘 (𝑦)𝑟(𝑞𝑖, 𝑞𝑘)

𝑁−1

𝑖=1

 (2.20) 

 Where 𝑟(𝑞𝑖, 𝑞𝑘) is the correlation coefficient, 𝑢𝑖(𝑦)is the standard uncertainty of 

the output estimate 𝑦 resulting from the standard uncertainty of the input estimate 

𝑞𝑖 given by  

 𝑢𝑖(𝑦) = 𝑐𝑖𝑢(𝑞𝑖) (2.21) 

If you cannot determine the correlation coefficient it is recommended to determine 

the maximum correlation effects on the resulting uncertainty means the upper limit 

of the estimate of the standard uncertainty of the measured quantity. It means that 

if there is not enough information for an accurate assessment of covariance, it is 

possible to specify an upper limit of uncertainty. (6) (7) (9) 

2.5 Expand standard uncertainty 

The measurement result in the form of 𝑦 ±  𝑢(𝑦) defines the actual measured value 

with a relatively small probability, approximately 65%. This probability is generally 
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insufficient. Therefore, the effort to determine the interval at which the value occurs 

with a probability of close to 100%. In practice, therefore introduces Expanded 

uncertainty 𝑈.  The term expanding is understood combined uncertainty 

multiplication constant (coefficient of expansion) so as to establish an agreed 

probability zone.  

The basic definition for the expanded uncertainty of measurement is followed by 

equation (2.22) 

 𝑈 = 𝑘 ∗ 𝑢𝐶(𝑦), (2.22) 

Where 𝑈 is the expanded uncertainty, 𝑢𝐶(𝑦) is the combined standard uncertainty 

and 𝑘 is the coverage factor. 

The value of 𝑘 depends on the probability distribution of the measurement result. 

In practice, the different expansion coefficients of the type of division and the 

desired probability value. In the case of a normal distribution of measurement 

results, where coverage factor 𝑘 = 2, corresponds to a 95% probability. 

Some other coverage factors (for a normal distribution) are 𝑘 =  1 for a confidence 

level of approximately 68 percent, 𝑘 =  2.58 for a confidence level of 99. (11) (4) 
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3 INTRODUCTION TO MONTE CARLO 

METHODS 

The Monte Carlo Method is a numerical method of solving mathematical problems 

by the simulation of random variables. (12) The random variables were created for 

the solved example, and the mean value was identical with the solution of the 

original problem. Stochastic and deterministic problems can be solved, although the 

random variables had the same solution  to the problem. It is not possible to achieve 

this solution because many random experiments can be done. The sample average 

was created based of these randomized trials which are approximations of the mean. 

(13) 

The term "Monte Carlo" is dated around 1944. Since then there have been many 

other works. In 1945, J. Neumann suggested using the apparatus of probability using 

a computer used in the development of the atomic bomb. S.A Ulam, N. Metropolis, H. 

Kahn and E. Fermi also participated on the development of methods. The detailed 

history of the facility can be found at (14). Monte Carlo method thus uses the 

apparatus of probability theory and mathematical statistics, which are also included 

in this work. A deeper interpretation of the theory of probability and mathematical 

statistics can be found at (13). 

The first recorded use of the Monte Carlo method was in 1777 by French scientist 

Georges de Buffon determining the number using the random throwing of needles 

on plain covered parallels. The random experiment is known as Buffon’s needle. 

We have a plane which is covered with parallel and whose distance is 𝑑. On this 

plane were accidentally thrown a needle of length 𝑙, 𝑙 ≤  𝑑 . See figure 3-1. The 

question arose: What is the probability that the parallels would be intersect by the 

needle. (15) (16) 
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Figure 3-1. Buffon’s needle experiment. 

If the distance of the needle from the closest parallel were described as 𝑥 and angle, 

which were formed between needle  and parallels as 𝜑, the needle position on the 

plane would be described by a pair (𝜑, 𝑥), where 0 ≤ 𝜑 ≤ 𝜋  and 0 ≤ 𝑥 ≤ 𝑑/2 . 

Needle crossed any of parallels if and only if this condition would be valid 𝑥 ≤

(𝑙/2) 𝑠𝑖𝑛𝜑. The coordinates display (𝜑, 𝑥), can be seen in figure 3-2. 

 

Figure 3-2. Coordinates the center of the needle. 

Coordinates of the center of the needle (𝜑, 𝑥) can be any value of square Ω. The 

crossing of some parallels could happen if coordinates of the center of the needle 

would lie in the hatched area 𝐴. The probability 𝑃 intersecting parallel lines would 

be equal to the ratio of surface area 𝐴 to square area Ω. Mathematical expression can 

be seen on (3.1). 
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 𝑃 = ∫ 𝑑𝜑 ∫ 𝑑𝜑
(

𝑙
2

) 𝑠𝑖𝑛𝜑

0

𝜋

0

2

𝜋𝑑
=

𝑙

𝜋𝑑
∫ 𝑑𝜑 𝑠𝑖𝑛𝜑

𝜋

0

=
2𝑙

𝜋𝑑
 (3.1) 

The probability of parallel needle transaction was expressed as the number 𝜋, in this 

experiment. If  𝑛 throws were performed and the throws frequency 𝑚 of needles 

that crossed the parallels were determined, relative frequency 𝑛/𝑚  estimate the 

probability 𝑃 and calculate the number 𝜋 by relation 2𝑙/(𝜋𝑑) =̇ 𝑚/𝑛 (15) (16). 

In 1901, Italian mathematician Mario Lazzarini throws needles3408 times, and the 

number 𝜋 get the value of 355/113 = 3.14159292, which was a surprisingly good 

result. It is clear that the described method of determining the number 𝜋  is 

considerably lengthy (17). However, after the introduction of computers, there was 

an opportunity to attempt faster simulation. Thanks to computing speed and solving 

several tasks at the same time, the speed of this process got rapidly faster. Of course, 

the broader dissemination of the Monte Carlo was not possible until the computers 

became widespread. (18) 

3.1  Random Numbers Generator 

Solving tasks by Monte Carlo method was based on repeated random experiments. 

Useful calculation required vast quantities of these random experiments. A random 

experiment was realized by modeling which means operations with random 

numbers. Parameters inserted into the generator of random numbers have to fulfill 

at least one of these three conditions. The first condition is that parameters have to 

characterize where the random numbers start. The second condition characterizes 

a maximum span between the numbers, and the last condition characterize the value 

that cannot be exceeded. We have two different types of random numbers. 

Pseudorandom numbers and true random numbers 

Pseudorandom numbers are deterministic algorithms, which create long strings of 

numbers seemingly having a proper random distribution. Later, these sequences are 

repeated, and the quality distribution is reduced. Among the simple hand-feasible 

method includes a method of secondary squares designed by John Von Neumann. Its 
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implementation is very simple, and the results are poor statistical properties. 

Nowadays, there are programs for generating random numbers. 

True random numbers are a measured physical phenomenon, which is assumed to 

be random, and subsequently, compensate for deviations. The first approach was 

throwing dice, flipping a coin, roulette, etc. For use in statistics or encryption, this is 

too slow and inefficient. (13) (19) 

3.2 Monte Carlo Technique 

The Monte Carlo method can be applied to numerous models. Monte Carlo method 

can be applied for many techniques. 

 solving differential equations, 

 solving definite integrals, 

 modeling of stochastic systems, 

 calculation of uncertainties. 

3.2.1 Estimating Pi Using the Monte Carlo Method 

For an illustrative example of the Monte Carlo method, the numbers 𝜋  was 

estimated. Figure 3-3 is represents the square of size two, in which an inscribed 

circle of a maximum. If the sides of the square are parallel to the mathematical axes 

Cartesian coordinate system, the origin of the coordinate system lies at the center of 

the circle. Each point inside the square is defined by an ordered pair of 

numbers[𝛾1, 𝛾2], where is 𝛾𝑖 ∈< −1,1 >  is a random number. Randomly selected 

point unit square lies in a circular sector.  

On the basis of geometrical probability, equation (3.2) can be written. 

 𝜌 =
𝑆𝑐𝑖𝑟𝑐𝑙𝑒

𝑆𝑠𝑞𝑢𝑎𝑟𝑒
=

𝜋𝑟2

(2𝑟2)
=

𝜋

4
 (3.2) 

If the sum of the generated numbers and the radius of the circle is known, it is 

possible to write equation (3.3) for number 𝜋. (20) (12) (13) 



 

   21 

 𝜋 =
𝑆𝑠𝑞𝑢𝑎𝑟𝑒𝑁𝑐𝑖𝑟𝑐𝑙𝑒

𝑟2𝑁𝑡𝑟𝑖𝑎𝑙𝑠
 (3.3) 

  

Figure 3-3. Estimate π number. 

The numbers of trials were varied from 1,000 to 1,000,000 in Rstudio. The error in 

the estimate of 𝜋 was also calculated. Results are illustrated in table 3-2. 

Table 3-1. Estimating of number π by Rstudio. 

𝐍𝒕𝒓𝒊𝒂𝒍𝒔 𝛑𝑴𝑪 𝐄𝐫𝐫𝐨𝐫 [%] 

1,000 3.012 4.13 

10,000 3.175 1.05 

100,000 3.143 0.04 

1,000,000 3.141 0.02 

3.2.2  Monte Carlo Integration 

A lot of numerical methods can solve the definite integral. In any cases, the results 

of the definite integral can achieve high accuracy. However, definite calculation by 

the Monte Carlo method with the same accuracy requires much more computation. 

For estimation, a one-dimensional integral by Monte Carlo method according to 

equation (3.4), can be used the knowledge of the previous example 3.2.1 – 
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Estimating 𝜋 number. Ring in this case replaced the common geometric formation. 

It can be seen in figure 3-4. 

 

Figure 3-4. Calculating a one-dimensional integral. 

 ∫ 𝑓(𝑞)𝑑𝑞
𝑏

𝑎

 (3.4) 

As a first step, the most integrated features should be determined, which can be 

used, for example, the function 𝑚𝑎𝑥(). Then the rectangle sides AB, BC must be 

defined. Random numbers [𝛾1, 𝛾2], 𝛾1 ∈< 𝑎, 𝑏 >, 𝛾2 ∈< 0, max (𝑓(𝑥)) >  must be 

generated. and the ratio between the points that lie within the integrated area and 

all generated numbers must be calculated. The value of the integral can be 

determined according to the relationship (3.5). (20) 

 𝐼 =
𝑁𝑎𝑐𝑐𝑒𝑝𝑡

𝑁𝑡𝑟𝑖𝑎𝑙𝑠
𝑆𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 (3.5) 

The demonstration is made on the calculation of the integration sine function over 

the interval < 0, 𝜋 > , given by equation (3.6).  

 ∫ 𝑠𝑖𝑛(𝑥)𝑑𝑥 = 2
𝜋

0

 (3.6) 

The analytic result is equal to 2. The value obtained by MCM is 2 as well. For the 

calculation, 106 random numbers are used. Since the program Rstudio generated 
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random numbers with a uniform probability distribution over the interval  < 0,1 >. 

Concerning equation (3.7), must be interval  transformed to follow interval < 𝑎, 𝑏 >  

 𝛾′ = 𝑎 + (𝑏 − 𝑎)𝛾. (3.7) 

Results are illustrated in table 3-2. The table shows the numbers of trials that were 

varied from 1,000 to 1,000,000 in Rstudio. The errors in integration were also 

calculated. It is evident that the result is more accurate the more the number of 

generated values are chosen. (21) (12) (14) 

Table 3-2. Error in MCM Integration. 

𝐍𝒕𝒓𝒊𝒂𝒍𝒔 𝐈𝑴𝑪 𝐄𝐫𝐫𝐨𝐫 [%] 

1,000 1.955 2.25 

10,000 2.004 0.2 

100,000 1.999 0.05 

1,000,000 2 0 
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4 MONTE CARLO SIMULATION APPLIED 

TO METROLOGY 

As was indicated in Chapter 3, the principle of MCM is to generate the random 

numbers by the probability density function of input variables and their assignment 

in the measurement model and calculated probability function output variables. 

(22) As in GUM method, it is necessary before the calculation of uncertainties to 

specify the following:  

a. definition of the measurand and input quantities; 

b. modeling; 

c. estimation of the probability density functions (PDFs) for the input 

quantities; 

d. setup and run the Monte Carlo simulation; 

e. summarizing and expression of the results. 

 

Figure 4-1. Illustrations of the methodologies. Propagation of uncertainties on the left and 
propagation of distribution on the right. 

Figure 4-1 represents the propagation of uncertainties, where 𝑞1, 𝑞2  and 𝑞3  are 

input quantities. Then 𝑢(𝑞1), 𝑢(𝑞2) and 𝑢(𝑞3) are their uncertainties and 𝑦 and 𝑢(𝑦) 

are the measurand and its uncertainty. However, propagation of distribution, where 

𝑔(𝑞1), 𝑔(𝑞2) and 𝑔(𝑞3) are distribution functions of the input quantities and  𝑔(𝑦) is 

the distribution function of the measurand. 
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4.1 Basic Principles  

Firstly, measurands and input quantities must be defined. It has to be clear witch 

quantity could be the final object of measurement. Further, we have to identify all 

the variables, known as the input source, which directly or indirectly influence the 

determination of the measured. The example we can see on equation (4.1).  

 𝑦 = 𝑓(𝑞1, 𝑞2, 𝑞3, 𝑞4) (4.1) 

where 𝑦  is a function of four different input sources 𝑞𝑖 ≥ 1 . The next step is 

modeling measurement procedure. It should be modeled in order to have the 

measured as a result of all the input sources. Example we can see on equation (4.2) 

 𝑦 =
𝑞1(𝑞2 + 𝑞3)

𝑞4
2  (4.2) 

Construction of a flowchart helps with visualizing modeling process of experiments. 

Problems may arise if we want to define what impact they could have on the 

measurement of input sources. 

This step is also significant. All the details about the estimation of the uncertainties 

of input sources are described in chapter 2.  Unlike GUM the most appropriate 

density functions for each of the input quantities must be found. (22) (23) There are 

many other probability distributions used for input variables that are outside the 

scope of this project. 

After all, the input PDFs have been defined, some Monte Carlo trials following in step 

(d). Because uncertainty provides a maximum of two valid points, most cases, 

merely choose 𝑀 > 104 . For complicated uncertainty calculations 𝑀 = 106  is 

sufficient. For complicated computations, it may be advisable to reduce 𝑀  to a 

minimum. In that case, we must use an adaptive methodology for determining 𝑀.  

Let’s suppose that our model calculations could consist of a high enough number of 

trials. Therefore, this document does not consist of an adaptive methodology. This 

methodology is described in the 1 Supplement of GUM.  However, the principle is to 
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check after each trial for stabilization of the results of interest Representation of the 

expected result we can see  in equation (4.3). 

 𝑀 >
104

1 − 𝑝
 (4.3) 

Where 100𝑝%  is the selected coverage probability. For example, if we have 

coverage probability 95%, so 𝑝 = 0,95 and 𝑀 should be at least 200,000. 

After setting 𝑀 trials an algorithm for estimating measurement uncertainty needs 

to be chosen. Requirements for a reliable simulation is a pseudorandom number 

generator. Of course, this depend on our software.  

4.2 Implementation of a Monte Carlo Method 

The Monte Carlo method is implemented using an algorithm that can be summarized 

in six steps base on Supplement 1 to the Guide to the Expression of Uncertainty in 

measurement (3). 

4.2.1 Numbers if Monte Carlo trials 

First of all, you need to create a mathematical model to measure 𝑌 =  𝑓 (𝑞), where 

𝑌 is the scalar output quantity and, 𝑞 represents 𝑁 input variables. Each variable 𝑞𝑖 

is considered as a random variable with possible value 𝜉𝑖 , with medium vala ue 𝑞𝑖  

and probability the of density 𝑔(𝜉𝑖). 𝑌 is a random variable with possible value 𝜂, 

the mean value 𝑦 and the probability of density 𝑔(𝜂). Furthermore, it is necessary 

to choose the number of trials 𝑀 of Monte Carlo method and coverage of probability 

𝑝. 

4.2.2 Sampling from a probability distribution 

Each input quantity 𝑞𝑖 generates 𝑀 random vectors 𝑞𝑟 ,𝑟 = 1, . . . , 𝑀 according to the 

density of distribution of uncertainties. Thus generated 𝑀 ·  𝑁 numbers. 
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4.2.3 Evaluation of the model 

Generated numbers are substituted into the measurement model 𝑦𝑟  =  𝑓(𝑞𝑟), 𝑟 =

 1, . . . , 𝑀. The measurement model 𝑟-th element contains 𝑞1,𝑟 , … , 𝑞𝑁,𝑟 , 𝑞𝑖,𝑟   random 

number according to the density of distribution of uncertainties. 

4.2.4 Representation of the distribution function for the output quantity 

The values 𝑦𝑟 , 𝑟 = 1, . . . , 𝑀 must be sorted into a non-declining order. This ordered 

model is designated as 𝑦(𝑟), 𝑟 = 1, . . . , 𝑀.  After that, the discrete distribution 

function 𝐺 is determined from the values 𝑦(𝑟).  

4.2.5 Estimate of the output quantity 

The average of the quantity 𝑦  must be calculated by (4.4) and standard deviation 

by (4.5). 

 𝑦 =
1

𝑀
∑ 𝑦𝑟

𝑀

𝑟=1

 (4.4) 

 𝑢(𝑦) = √
1

𝑀 − 1
∑(𝑦𝑟 − �̃�)

𝑀

𝑟=1

 (4.5) 

4.2.6 Coverage interval for the output. 

The coverage interval for 𝑌  can be estimated from the discrete form 𝐺 . It can be 

calculated as 𝑞 = 𝑝𝑀. Then [𝑦𝑙𝑜𝑤, 𝑦ℎ𝑖𝑔ℎ] is a 100𝑝% coverage interval for 𝑌, where  

𝑦𝑙𝑜𝑤 = 𝑦(𝑟)  and 𝑦ℎ𝑖𝑔ℎ = 𝑦(𝑟+𝑞)  for 𝑟 = 1, … , 𝑀 − 𝑞.  100𝑝% probabilistically 

symmetric coverage interval is calculated by 𝑟 = (𝑀 − 𝑞)/2. The shortest 100𝑝% 

coverage interval 𝑟∗ can be determined as 𝑦(𝑟∗+𝑞) − 𝑦𝑟∗ ≤ 𝑦(𝑟+𝑞) − 𝑦(𝑟)  for 𝑟 =

1, … , 𝑀 − 𝑞. 
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Figure 4-2. The propagation and summarizing stages of uncertainty evaluation using MCM to 

implement the propagation of distributions.  

Figure 4-2 is represented implementation of the procedure in the flow diagram. All 

of the steps showed at the start of chapter 4 are stacked to form flow chart. 
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5 CASE STUDIES: VOLUME OF A SOLID 

OBJECT 

The cuboid was chosen as the measured object. Length, Width, and Height were 

measured by caliper with tolerance 0.02 mm for all three sides.  For this reason the 

correlation must be considered.  The volume of the cuboid can be expressed by 

equation (5.1).  

 𝑉 = 𝑎𝑏𝑐 (5.1) 

Length, Width, and Height were repeatedly measured ten times. Measured values 

were recorded in table 5-1. 

Table 5-1. Measured value for case studies 5: Volume of a Solid Object. 

𝒊 1 2 3 4 5 6 7 8 9 10 

𝒂 [𝒄𝒎] 6.141 6.135 6.139 6.146 6.140 6.138 6.144 6.139 6.142 6.144 

𝒃[𝒄𝒎] 4.222 4.219 4.215 4.225 4.224 4.218 4.217 4.221 4.219 4.214 

𝒄 [𝒄𝒎] 2.322 2.319 2.323 2.327 2.318 2.319 2.323 2.321 2.318 2.324 

Length (a). The average length was calculated to 6.141 cm, with uncertainty type A 

of 1.041∗10-3 cm. Uncertainty type B was estimated as caliper tolerance divided by 

expected PDF. The best PDF is Uniform distribution, and the results of uncertainty 

type B is 1.155∗10-2 cm. 

Width (b). The average width is 4.219 cm. Uncertainty type A was calculated to 

1.147∗10-3 cm, and uncertainty type B is 1.155∗10-2 cm as well. PDF was also 

estimated as uniform distribution. 

Height (c).  Average height is 2.321 cm. Uncertainty type A is 9.333∗10-4 cm, and 

uncertainty type B is 1.155∗10-2 cm. The best PDF is a uniform distribution. 
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Every single uncertainty with their PDFs was summarized in table 5-2 and was 

calculated according to chapter 2. As was mentioned at the beginning, all 

measurements were finished with the same caliper for all three sides. In this case, 

there is a powerful correlation between measurements. Theoretical background of 

correlation can be found in chapter 2.3. 

Final Uncertainty of this case studies can be calculated base on equation (5.2).  

 
𝑢2(𝑉) = 𝑐𝑎

2𝑢2(𝑎) + 𝑐𝑏
2𝑢2(𝑏) + 𝑐𝑐

2𝑢2(𝑐) + 2𝑐𝑎𝑐𝑏𝑢(𝑎, 𝑏)

+ 2𝑐𝑎𝑐𝑐𝑢(𝑎, 𝑐) + 2𝑐𝑏𝑐𝑐𝑢(𝑏, 𝑐) 
(5.2) 

For each measured value, the following applies. 

 
𝑢2(𝑎) = 𝑢𝐴

2(𝑎) + 𝑢𝐵
2 (𝑎), 𝑢2(𝑏) = 𝑢𝐴

2(𝑏) + 𝑢𝐵
2 (𝑏), 𝑢2(𝑐)

= 𝑢𝐴
2(𝑐) + 𝑢𝐵

2 (𝑐) 
(5.3) 

The covariance method A is determined according to the relationship (5.4) because 

there is a real pair of measurements. 

 
𝑢𝐴(𝑎, 𝑏) = 𝑐𝑜𝑣(𝑎, 𝑏);  𝑢𝐴(𝑎, 𝑐) = 𝑐𝑜𝑣(𝑎, 𝑐);  𝑢𝐴(𝑏, 𝑐)

= 𝑐𝑜𝑣(𝑏, 𝑐) 
(5.4) 

For a covariance determined by method B, a correlation factor equals one, which 

was used because it is a strong correlation.  

 

𝑢𝐵(𝑎, 𝑏) = 𝑢𝐵(𝑎)𝑢𝐵(𝑏)𝑟(𝑎, 𝑏) = 𝑢𝐵
2 (𝑉);  𝑢𝐵(𝑎, 𝑐)

= 𝑢𝐵(𝑎)𝑢𝐵(𝑐)𝑟(𝑎, 𝑐) = 𝑢𝐵
2 (𝑉);  𝑢𝐵(𝑏, 𝑐)

= 𝑢𝐵(𝑏)𝑢𝐵(𝑐)𝑟(𝑏, 𝑐) = 𝑢𝐵
2 (𝑉) 

(5.5) 

Every single partial derivation has the meaning of sensitivity coefficients, and they 

were estimated according to the equations below. 

 𝑐𝑎 =
𝜕𝑉

𝜕𝑎
= 𝑏𝑐, 𝑐𝑏 =

𝜕𝑉

𝜕𝑏
= 𝑎𝑐, 𝑐𝑐 =

𝜕𝑉

𝜕𝑐
= 𝑏𝑐 (5.6) 

Concerning to equation (5.2) and chapter 2.5 it is necessary to expand the final 

uncertainty by two. It means that the final results should be in the interval with 

probability 95%. The results can be seen in table 5-3. 
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Table 5-2. Input sources and associated PDFs with their parameters for the estimation of uncertainty 

for the measurement for the volume of a solid object. 

Input source Type PDF PDF parameters 

Length [cm] 

-  due to repeatability 

-  due to certificate 

 

A 

B 

 

Gaussian 

Uniform 

 

Mean: 6.141 cm; 𝑢𝐴: 1.041∗10-3 cm 

                                 𝑢𝐵: 1.155∗10-2 cm 

Width [cm] 

-  due to repeatability 

-  due to certificate 

 

A 

B 

 

Gaussian 

Uniform 

 

Mean: 4.219 cm; 𝑢𝐴: 1.147∗10-3 cm 

                                 𝑢𝐵: 1.155∗10-2 cm 

Height [cm] 

-  due to repeatability 

-  due to certificate 

 

A 

B 

 

Gaussian 

Uniform 

 

Mean: 2.321 cm; 𝑢𝐴: 9.333∗10-4 cm 

                                 𝑢𝐵: 1.155∗10-2 cm 

Monte Carlo Simulation was set to run M=107 trials. Random values in Rstudio were 

generated for each side of a cuboid with uniform distribution. Model of 

measurement was chosen according to equation (5.6) where Q1 represent length, Q2 

represent width and Q3 is a height.  

 𝑌 = 𝑓(𝑄) = 𝑄1 ∗ 𝑄2 ∗ 𝑄3 (5.6) 

By assigning the quantities, the relationship (5.1) is obtained. Then the average final 

volume of a the cuboid was evaluated. Measurement model  𝑦𝑟  =  𝑓(𝑞𝑟), 𝑟 =

 1, . . . , 𝑀 contained M values. By shorting the values of the model  𝑦𝑟  =  𝑓(𝑞𝑟) to a 

non-decreasing order the discrete distribution function was obtained. Then the 

average value was calculated with regard to equation (4.4). Then the shortest 

coverage interval must be found with alpha factor equal to 0.05. It means the 

shortest coverage interval contain 95% generated pseudorandom numbers. This 

interval respond standard uncertainty of Y for probability 95%.  

The picture 5-1 represent the histogram of density probability — vertical lines are 

labeling 95% coverage interval obtained by the Monte Carlo Method. 
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Figure 5-1. Histogram representing the resulting PDF for Volume of a solid object. 

The significant results are represented in table 5-2. The averages obtained from both 

method is matching. Uncertainty belongs to GUM is bigger than uncertainty from 

MCM. That is a consequence of correlation because MCM does not count with it. It 

means that uncertainty calculated according to GUM method is the most likely. 

However for quick estimate it is better to use MCM because correlation calculation 

is demanding. 

Table 5-3.  Summarization of significant results for GUM and MCM at case studies 5. 

Parameter GUM MCM 

Mean 60.148  60.135  

Uncertainty 1.162  0.673  

Low endpoint for 95% 58.987  59.465  

High endpoint for 95% 61.31  60.81  
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6 CASE STUDIES: DENSITY 

MEASUREMENT 

In determining the density of the solid object, it was assumed that the temperature 

of the solid was assayed at room temperature. The volume of the solid object 

measured is based on the previous example of volume measurement with 

uncertainty. The weighing of the solid object was done on the electronic laboratory 

scales with tolerance 0.01 mg for ten times, and the measured values are shown in 

table 6-1 marked as 𝑧 . A correction was made for the air lift according to the 

relationship (6.1) where 𝑧 is the average calculated from the ten measured values 

was set. Density of calibration weights 𝜌𝑧 = 8400 𝑘𝑔/𝑚3  and air density 𝜌𝑣 =

1.2𝑘𝑔/𝑚3. Density of the solid object was calculated base on equation (6.2). 

Table 6-1.  Measured values for case studies 6: Density measurement. 

𝒊 𝒛 [𝒈] 𝒎 [𝒈] 

1 68.7123 69.4243 

2 68.7121 69.4241 

3 68.7118 69.4238 

4 68.7125 69.4245 

5 68.7121 69.4241 

6 68.7119 69.4239 

7 68.712 69.4240 

8 68.7127 69.4247 

9 68.7126 69.4246 

10 68.7122 69.4242 
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 𝑚 = ∑ 𝑧𝑖 + (𝑉 −  
𝑧𝑖

𝜌𝑧
) 𝜌𝑣

𝑛

𝑖=1

 (6.1) 

 𝜌 =
𝑚

𝑉
 (6.2) 

Final Uncertainty can be calculated base on equation (6.3).  

 𝑢(𝜌) = √(
𝜕𝜌

𝜕𝑉
𝑢(𝑉))

2

+ (
𝜕𝜌

𝜕𝑚
𝑢(𝑚))

2

 (6.3) 

The uncertainty of volume of a solid object 𝑢(𝜌) was established as a results came 

from case studies 5 and it is equal to  0.011 m3. Uncertainty of the mass 𝑢(𝑚) was 

calculated regards to equation (2.9) where uncertainty type A was calculated from 

equation (2.5) and type B from the equation (2.7). The best PDF if uniform. Final 

uncertainty of the the mass is 5.77∗10-6 kg.  

The partials derivation as sensitivity coefficients were appointed to equation (6.3). 

The theoretical background can be seen in chapter 2.3. Due to this chapter, 

sensitivity coefficients were set according to the equations below. 

 
𝜕𝜌

𝜕𝑉
= −

𝑚

𝑉2
 (6.4) 

 
𝜕𝜌

𝜕𝑚
=

1

𝑉
 (6.5) 

Ultimate results for the density of the object is 0.12 kg/m3 calculated from equation 

(6.2). Concerning the equation, (6.3) the final uncertainty was equal to 0.0022 

kg/m3 with probability 68.2%. However, a request from GUM has represented the 

results with probability of 95%.  In this case, results extend by two and uncertainty 

is 0.44 kg/m3. Shortest coverage interval was estimated for low endpoint as 0.1109 

kg/m3  and for a hight endpoint 0.1154 kg/m3. All of the significant results were 

recorded in table 6-3. 
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Table 6-2. Input sources and associated PDFs with their parameters for the estimation of uncertainty 

for the measurement for the Density measurement. 

Input source Type PDF PDF parameters 

Mass [kg] 

-  due to repeatability 

-  due to certificate 

 

A 

B 

 

Gaussian 

Uniform 

 

Mean: 0.069 kg; 𝑢𝐴: 9.52∗10-8 kg 

                                𝑢𝐵: 5.77∗10-6 kg 

Volume [m3] 

-  due to certificate 

 

B 

 

Uniform 

 

Mean: 0.60 m3; 𝑢: 0.012 m3 

Monte Carlo Simulation was set to run M=107 trials. Input quantities were selected 

according to table 6-2. Random values for volume and mass with uniform PDF were 

generated in Rstudio. Generated values were provided to model measurement (6.6) 

concerning equation (6.2). 

 𝑌 = 𝑓(𝑄) =
𝑄1

𝑄2
 (6.6) 

With regarding chapter, 4.2.4 results came from measurement model shorted to 

non-declining sequence, and the distribution function G was obtained. Then the 

average of density was calculated as 0.16 kg/m3  with uncertainty 0.016 kg/m3. 

Coverage interval 95% was estimated base on chapter 4.2.6. The results are 

recorded in table 6-3. 

Shown in the picture 6-1, is a histogram of density probability for the density of a 

solid object. Vertical lines are represented 95% coverage interval calculated MMC.  
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Figure 6-1. Histogram representing the resulting PDF for Density of a solid object. 

Also from table 6-3 can be seen the comparison between GUM and MCM. At first 

view is evident that the standard uncertainty belongs to GUM method is bigger than 

the uncertainty get from MCM. Nevertheless, the algorithm of MCM did not include 

a sensitivity coefficient so it might be bigger. However, means are matching and 

endpoints for coverage interval were overlapped. It follows that the results are 

correct and methods are compatible. 

Table 6-3. Summarization of significant results for GUM and MCM at case studies 6. 

Parameter GUM MCM 

Mean 0.1154 0.1154 

Uncertainty 0.0197  0.0161 

Low endpoint for 95% 0.0957 0.0992 

High endpoint for 95% 0.1351 0.1314 
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7 CASE STUDIES: VOLTAGE DIVIDER 

UNLOADED 

The voltage divider allows redistributing input voltage to required output voltage. 

The unloaded voltage divider has no load on the output voltage from which no 

current is drawn. The current passing through both resistors is the same. The total 

voltage is divided between resistors R1 and R2. For the output voltage, the unloaded 

divider applies to the Ohm law following equations (7.1). Diagram of the unloaded 

voltage divider is represented in image 7-1. 

 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 (
𝑅2

𝑅1 + 𝑅2
) (7.1) 

 

Figure 7-1.  Diagram of an unloaded voltage divider. 

Measurements were made in the laboratory where the temperature was set to 22°C, 

humidity 31% and pressure was 1006 hPa. 

Input Voltage (𝐕𝒊𝒏). HPM2000 programmable power supply with a tolerance of 1% 

with respect to a data sheet was used for measurement. Input voltage was set to 10V. 
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Absolute uncertainty type B is eaqual to 0.0058 V and it was estimated based on 

equation (2.7). 

Resistance (𝐑𝟏).  The value for resistance is state in a certification 5% and nominal 

value is equal to 220Ω. Then the absolute uncertainty type B was calculated as 6.35 

Ω. Uncertainty type A is not needed in this case due to datasheet characteristics. 

Resistance (𝐑𝟐).  The nominal value for a second resistance is 1 kΩ with tolerance 

5% as specified on datasheet. Absolute uncertainty was calculated to 28.87 Ω Detail 

of the calculation can be seen in attached excel sheet. 

Final Uncertainty can be calculated base on equation (7.2).  

 𝑢𝑉𝑜𝑢𝑡
= √(𝑢𝑉𝑖𝑛

𝜕𝑉𝑜𝑢𝑡

𝜕𝑉𝑖𝑛
)

2

+ (𝑢𝑅1

𝜕𝑉𝑜𝑢𝑡

𝜕𝑅1
)

2

+ (𝑢𝑅2

𝜕𝑉𝑜𝑢𝑡

𝜕𝑅2
)

2

 (7.2) 

Based on the chapter 2.2. the sensitivity coeficients should be calculated as partial 

derivation according to the equations below. 

 
𝜕𝑉𝑜𝑢𝑡

𝜕𝑉𝑖𝑛
=  

𝑅2

𝑅1 + 𝑅2
 (7.3) 

 
𝜕𝑉𝑜𝑢𝑡

𝜕𝑅1
= −𝑣𝑖𝑛

𝑅2

(𝑅1 + 𝑅2)2
 (7.4) 

 
𝜕𝑉𝑜𝑢𝑡

𝜕𝑅2
= −𝑣𝑖𝑛 (

𝑅2

𝑅1 + 𝑅2
−

𝑅2

(𝑅1 + 𝑅2)2
) (7.5) 

Quantities 𝑢𝑉𝑖𝑛
, 𝑢𝑅1

 and 𝑢𝑅2
  were determined as a tolerance of the products 

transfered to absolute value devided by PDF. The best PDF  that best represents this 

case is uniform distribuitons because the tolerances has been read from the 

datasheets. 

With respect to the equation (7.2) is a final uncertainty equal to 0.061 Ω with 

probability 68.2%, however, request from GUM represent the results with 

probability 95%.  In this case, result extend by two and uncertainty is 0.12 Ω.  
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Table 7-1. Input sources and associated PDFs with their parameters for the estimation of uncertainty 

for the measurement for the Voltage divider. 

Input source Type PDF PDF parameters 

Input Voltage[V] 

-  due to certificate 

 

B 

 

Uniform 

 

𝑢𝐵: 0.00577 V 

Resistance [Ω] 

-  due to certificate 

 

B 

 

Uniform 

 

𝑢𝐵(𝑅1): 6.3508 Ω 

𝑢𝐵(𝑅2): 28.8675 Ω 

Monte Carlo Simulation was set to run M=107 trials in software Rstudio. Input 

quantities were selected according to table 7-1. Random values with uniform 

distribution for all three input quantities were generated. Based on equation (7.1) 

the measurement model was created and can be represented by equation (7.6) 

where the generated values were appointed. 

 𝑌 = 𝑓(𝑄) = 𝑄3 (
𝑄2

𝑄1 + 𝑄2
) (7.6) 

Measurement model 𝑦𝑟  =  𝑓(𝑞𝑟), 𝑟 =  1, . . . , 𝑀  contains M generated values. By 

assigning the values of the measurement model to non-decreasing order, a discrete 

distribution function G was obtained, average was calculated using equation (4.4). 

Then the uncertainty and 95% coverage interval was calculated and the results were 

recorded to table 7-2. 
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Figure 7-2. Histogram representing the resulting PDF for Output Voltage. 

Figure 7-2 representing the density of probability for output voltage. Vertical lines 

showed coverage interval where the uncertainty should be in 95% probability. 

Table 7-2. Summarization of significant results for GUM and MCM at case studies 7. 

Parameter GUM MCM 

Mean 8.1967  8.1959  

Uncertainty 0.1211  0.1151  

Low endpoint for 95% 8.0756  8.0805  

High endpoint for 95% 8.3177  8.3107  

As can be seen from table 7-2 both methods are compatible. Means they are exactly 

matched for both methods. Uncertainties are with 5% related difference.  Endpoints 

for low and high position are leaner for MCM method. Calculation in this case study 

did not include statistical approach by reason of value used from the datasheet.  
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8 CASE STUDIES: AMMETER 

VOLTMETER METHOD 

The Ammeter-Voltmeter method is the most popular and simple method for the 

measurement of resistance. It uses one ammeter and one voltmeter. The technique 

was used for the measurement of low resistance according to circuit shown in figure 

8-1. The voltmeter measured the actual voltage at the measured resistance. 

However, the ammeter shows the sum of the currents passing through the measured 

resistance and the voltmeter. This method is suitable where the current passing 

through the measured resistance is considerably higher than the current passing 

through the voltmeter. With the known resistance of voltmeter, the correction can 

be made and the unknown resistance calculated according to equation (8.1). 

 𝑅𝑚 =
𝑉

𝐼 −
𝑉

𝑅𝑉

 (8.1) 

 

Figure 8-1.  Diagram of low resistance measurement. 
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Measurements were made in the laboratory under normal conditions with the 

followed specification. Temperature was 22°C, humidity 31% and pressure 1006 

hPa. For voltage measurement, a voltmeter Fluke 117 with resistance of 10∗105Ω 

was used. For current measurement an Agilent 34401A ammeter and Power supply 

HMP2020 was used. Measured values were recorded into table 8-1.  

Table 8-1. Measured values for case studies 8: Ammeter Voltmeter Method 

𝒊 1 2 3 4 5 6 7 8 9 10 

𝑽 [𝑽] 4.339 4.339 4.340 4.340 4.341 4.341 4.342 4.340 4.339 4.338 

𝑰 [𝒎𝑨] 95.94 95.99 95.99 95.98 95.98 95.99 95.97 95.97 95.98 95.91 

Voltage [V].  Voltage was repeatedly measured ten times. The average was given as 

4.340V with uncertainty type A equal to 0.379 mV calculated based on chapter 2.2.1. 

Source of uncertainty was classified as type B equal to instrument error 𝐴𝑚𝑎𝑥  

divided by PDF exactly as was described in chapter 2.2.2. The error of digital 

voltmeter was established according to datasheet from the error range 𝛿1 and error 

reading 𝛿2. Together with the average of measured value Q and used range M  from 

the following equation 𝛿 = 𝛿1𝑄 + 𝛿2𝑀 calculated the final instrument error. As it 

was expected that values in the datasheet come from correct metrology procedures, 

the best estimation of PDF was a uniform distribution and it is equal to 0.0195V 

Current [A].  The current was repeatedly measured ten times. The average was 

estimated the same way as the voltage calculation, and it is equal to 95.969 mA. 

Uncertainty type A is 7.968 𝜇A. Regards to the datasheet of the Ammeter and the 

determination process of instrument error described above the uncertainty type B 

was established as 1.131 mA. 

Probability density functions with every single input source and theoretical results 

were recorded at table 8-2. 
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Table 8-2. Input sources and associated PDFs with their parameters for the estimation of uncertainty 

for the measurement for the Ammeter Voltmeter Method.  

Input source Type PDF PDF parameters 

Voltage [V] 

-  due to repeatability 

-  due to certificate 

 

A 

B 

 

Gaussian 

Uniform 

 

Mean: 4.340 mV; 𝑢𝐴: 0.38 mV 

                                  𝑢𝐵: 0.019 V 

Ampere [A] 

-  due to repeatability 

-  due to certificate 

 

A 

B 

 

Gaussian 

Uniform 

 

Mean: 95.969 mA; 𝑢𝐴: 7.97 𝜇A 

                                    𝑢𝐵: 1.13 mA 

Final uncertainty can be calculated according to equation (8.2). 

 𝑢(𝑅) = √(
𝜕𝑅𝑚

𝜕𝑉
𝑢(𝑉))

2

+ (
𝜕𝑅𝑚

𝜕𝐼
𝑢(𝐼))

2

 (8.2) 

Partial derivatives have the meaning of the sensitivity coefficients, and it was 

calculated with equation (2.14). The results of the partial derivatives with respect 

to voltage and current are represented by equation (8.3) and (8.4). 

 
𝜕𝑅𝑚

𝜕𝑉
=

𝑅𝑣
2 ∗ 𝐼

(𝐼𝑅𝑉 − 𝑉)2
 (8.3) 

 
𝜕𝑅𝑚

𝜕𝐼
=

𝑅𝑣
2 ∗ 𝑉

(𝐼𝑅𝑉 − 𝑉)2
 (8.4) 

Parts of the final uncertainty for voltage and current was calculated from equation 

(2.9) where the uncertainty type A and type B was calculated in the paragraph 

above. 

Resistance was calculated with respect to equation (8.1), and the value is equal to 

45.22 Ω. Uncertainty for the resistance was from equation (8.2) calculated to 0.57 Ω 

for 68% coverage interval. Then the expanded uncertainty for 95% coverage 
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interval is equal to 1.14 Ω.  In this case, its low endpoint is 44.08 Ω and the High 

endpoint is 46.39 Ω. 

In Rstudio  the Monte Carlo Simulation set to run M=107 trials. Input quantities were 

set according to table 8-2, both input quantities were generated by random values 

with uniform distribution. Generated values were substituted in measurement 

model (8.1) where 𝑅𝑉 is voltmeter resistivity. 

 
𝑌 = 𝑓(𝑄) =

𝑄1

𝑄2 −
𝑄1

𝑅𝑉

 
(8.1) 

Generated values came from the measurement model were shorted to non-declining 

order, and the distribution function G was obtained. The average was estimated in 

regards to equation (4.4). Uncertainty and endpoints estimated by MCM were 

recorded in table 8-3.  

 

Figure 8-2. Histogram representing the resulting PDF for Resistance. 

Figure 8-2 representing the density of probability resistance R. Vertical lines 

showed 95% coverage interval calculated by MCM. Uncertainty obtained by MCM is 

smaller and endpoints for low and high position are inside the interval calculated 

based on GUM method.  
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Table 8-3. Summarization of significant results for GUM and MCM at case studies 8. 

Parameter GUM MCM 

Mean 45.222  45.226  

Uncertainty 1.1409  0.5054  

Low endpoint for 95% 44.081  44.7005  

High endpoint for 95% 46.363  45.7113  
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9  CASE STUDIES: POWER 

MEASUREMENT 

An indirect measurement of DC power is realized by transferring power to other 

electrical quantities. The output of DC current at load has defined the product 

voltage and the current flowing, mathematically expressed by equation (9.1). 

 𝑃 = 𝑉 ∗ 𝐼 (9.1) 

Diagram of the circuit connection can be seen from picture 8-1.  Ammetr measures 

the actual current passing thru the resitance of the ammetr and voltmeter. Curent 

which passes through the voltmeter is very low, so can be skiped, however if the 

voltmeter resistance is high – thousnads ohms, the correction must be done accoring 

to equation (9.2). 

 𝑃 = 𝑉 ∗ 𝐼 − ∆𝑃𝑣 (9.2) 

where ∆𝑃𝑣 = 𝑉2/𝑅𝑉  Than the final power can be estimated.  

Power calculation used the data collected in previous chapter – case studies 8. 

Voltage and current were repeatedly measured ten times. According to table 8-1, the 

average for voltage is given at 4.340V with uncertainty 0.379 mV for type A and 

0.0195 for type B. The average current was estimated  at 95.969 mA. Uncertainty 

type A is 7.968 𝜇A and type B is 1.131 mA. Results can be found at table 8-2. 

Final uncertainty calculated based on the GUM method can be calculated from 

equation (9.3). 

 𝑢(𝑃) = √(
𝜕𝑃

𝜕𝑉
𝑢(𝑉))

2

+ (
𝜕𝑃

𝜕𝐼
𝑢(𝐼))

2

 (9.3) 
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Where partial derivatives 𝜕𝑃/𝜕𝑉 and 𝜕𝑃/𝜕𝐼  have the meaning of the sensitivity 

coefficients. The results of the partial derivatives are represented at equation (9.4) 

and (9.5). 

 
𝜕𝑃

𝜕𝑉
= 𝐼 −

2𝑉

𝑅𝑉
 (9.4) 

 
𝜕𝑃

𝜕𝐼
= 𝑉 (9.5) 

Uncertainties for voltage 𝑢(𝑉)  and current 𝑢(𝐼)  was calculated as combined 

uncertainty for single quantities according to equation (2.9). 

Result of the power as stated in equation (9.2) is 0.416 W with uncertainty 0.0052 

W for 68% coverage interval. 95% coverage interval for expand uncertainty 

calculated from equation (2.5) is 0.010 W. Low endpoint is 0.406 W and high 

endpoint is 0.427 W for 95% coverage interval. 

Monte Carlo Simulation was set to run M=107 trials in Rstudio. For input quantities, 

random values were generated with uniform PDF. According to equation (9.2) the 

measurement model (9.6) was established. Generated values were substituted in 

the following equation (9.6) where 𝑅𝑉 is voltmeter resistivity. 

 𝑌 = 𝑓(𝑄) = 𝑄1 ∗ 𝑄2 −
𝑄1

2

𝑅𝑉
 (9.6) 

Generated values were shorted to non-declining order, and the distribution function 

G was obtained. The average was estimated as per equation 4.4. PDF of the output 

quantity is shown in Figure 9-1. That figure represented the density of probability 

wattage W. 95% coverage interval where the significant uncertainty is represented 

by vertical grey lines. Results obtained from the MCM are smaller in comparison to 

the results from the GUM method. High and low endpoints are shortest for MCM 

however, the means for both method are overlapped. In this case the uncertainty 

could be calculated properly. Results can be seen in table 9-1. 
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Figure 9-1. Histogram representing the resulting PDF for Wattage. 

Regarding case study 8 – Ammeter Voltmeter method, the measurement model has 

been changed. Comparison output PDF shown in figure 8-2 with figure 9-1 showing 

the density of probability is higher, however, the PDF is still uniform. 

Table 9-1. Summarization of significant results for GUM and MCM at case studies 9. 

Parameter GUM MCM 

Mean 0.416  0.416  

Uncertainty 0.01  0.0047 

Low endpoint for 95% 0.406  0.4119 

High endpoint for 95% 0.427 0.4213  
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10 CONCLUSION 

The thesis aimed to demonstrate the advantages of the Monte Carlo method against 

the GUM method in five case studies. 

The theoretical part of the diploma thesis was divided into four chapters, including 

the introduction, which contains the basic concepts of measurement, which are 

presented in work. The second chapter explained the calculations of uncertainties 

for direct and indirect measurements with the most important relationships. The 

third chapter introduced the Monte Carlo method with representative examples for 

estimating the 𝜋  number and for calculating a definite integral. The results 

demonstrated the accuracy of the method based on the count of generated numbers. 

The most important fourth chapter described the determination of uncertainties by 

the Monte Carlo method with all the basic assumptions. 

Five case studies follow as a practical part of the diploma thesis. Each study was 

designed to demonstrate the complexity of the GUM method is best. Moreover, it is 

proven that the calculations by GUM method are complicated in comparison to 

Monte Carlo. These are indirect measurements focused on the different branches of 

physics. Case studies for GUM measurement include a theoretical analysis of every 

single task. Uncertainty type A and minor calculations are only commented for 

simplicity. These calculations can be viewed in the attached medium. The 

calculations are primarily focused on determining more demanding calculations. 

Analytical uncertainties calculations were performed in MS Excel based on the 

selected measurement model. Each case study includes, among other things, a brief 

description of the process, the measurement model from which the simulation was 

based, a histogram, and a comparison of the results of both methods with a concise 

conclusion. 

In the first case study, the volume of a solid object is determined by the same gauge, 

which included calculation of covariance and correlation. The seemingly most 

straightforward case contains the most complicated calculations. The resulting 
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uncertainty by 95% GUM is 1.16 cm. The resulting uncertainty of the Monte Carlo 

method was estimated at 0.63 cm. The output probability density function has 

corresponded to the normal distribution. The final uncertainty calculated by the 

Monte Carlo method is smaller by 42% 

The second case study deals with density measurement. The calculation of 

uncertainties is based on a simple model of measurement. The uncertainty 

calculated by the GUM method for 95% probability was 0.020 kg/m3. The 

uncertainty obtained by the Monte Carlo method is equal to 0.016 kg/m3. It means 

that the resulting uncertainty is 20% smaller. The output probability density 

function corresponds to the trapezoid distribution. 

In case study three, on the contrary, all input parameters are based on specifications. 

For the probability of 95%, the uncertainties obtained by both methods after 

rounding to two digits are equal to 0.12 V. From the result without rounding the 

MMC, is smaller by 5%. The probability density function of the resulting uncertainty 

corresponds to the triangle distribution. 

In case studies 4 and 5, the uncertainty of the measuring instruments has been 

calculated. In the case of the fourth case study, the resulting uncertainty for the 

probability of 95% by the GUM method was 1.14 Ω. The uncertainty of the Monte 

Carlo method was 0.51 Ω. It means that MCM is smaller by 55%. For case study five 

uncertainty was estimated at 0.0047 W by MCM and it is smaller by 45% than 

uncertainty from GUM method, which is equal to 0.01 W.  Both cases used the same 

input quantities, however measurement model was different. Output PDF changed 

as was recorded in previous chapter – case study 5 however, density probability still 

corresponds with uniform distribution. 

The Monte Carlo calculated coverage interval, in which the calculated 95% 

probability variable is found, is narrower than the GUM method. It means that the 

resulting uncertainty obtained by the Monte Carlo method is much smaller. In the 

paragraph above, the Method is smaller by 30% of the case studies. Since intervals 

overlap and the mean values agree, we can assume that the calculations have been 

made correctly. 
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The advantage of MCM is the speed and simplicity of the algorithm. It is easy to get 

the right result, even without calculating partial derivations, sensitivity coefficients, 

or much else between calculations. Requirements are only placed on a high-quality 

random number generator that is already available in all paid and unpaid statistical 

programs such as Matlab, Octave, and Rstudio that were used in the calculations in 

this paper. The software then depends on the selected number of generated 

numbers. 

10.1 Discussion 

Results obtained from the MCM is smaller in average by 30% however, it cannot be 

said that the MCM is more precise. It depend for what the final uncertainty could be 

used.  MCM is a great instrument for a quick estimate of the uncertainty 

nevertheless; in quality point of view the MCM method could not be more precise. It 

can be seen from case studies 3, there was not used any advance statistical 

calculation, so estimated uncertainties from both methods had a difference of just 

5%. Otherwise the difference was much bigger for other case studies, by cause of 

covariance, correlation and sensitivity coefficient estimation. 
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APPENDIX A – VOLUME OF A SOLID OBJECT 

#trials numbers 

nsim = 10^7 

 

#input quantities 

meanA = 6.141 

meanB = 4.219 

meanC = 2.321 

deltaABC = .02 

 

#generate of random numbers 

randA <- runif(nsim,meanA - deltaABC, meanA + deltaABC)  

randB <- runif(nsim,meanB - deltaABC, meanB + deltaABC)  

randC <- runif(nsim,meanC - deltaABC, meanC + deltaABC)  

 

#model of measurement 

randV = randA*randB*randC 

meanV = mean(randV)                                      

 

#function for calculating the shortest coverage interval 

sci <- function (values, alpha){ 

  sortedSim <- sort(values) 

  nsim <- length(values) 

  covInt <- sapply(1:(nsim-round((1-alpha)*nsim)), function(i) { 

    sortedSim[1+round((1-alpha)*nsim)+(i-1)]-sortedSim[1+(i-1)]}) 

  lcl <- sortedSim[which(covInt==min(covInt))] 

  ucl <- sortedSim[1+round((1-alpha)*nsim)+(which(covInt==min(covInt))-1)] 

  c(lcl, ucl) 

} 

 

#shortest 95% coverage interval 

(simInt <- round(sci(randV, alpha=.05), 4)) 

 

#plot the histogram 

hist(randV, breaks = seq(min(randV)-0.05, max(randV)+0.05 ,0.05), probability = 

1, axes = F, border = "white", col = rgb(0.75,0,0),xlab = "Volume [cm^3]",ylab 

= "Density of Probability",main = "") 

vgrid <- seq(0, 1, 0.2)  

abline(h=vgrid, col="grey", lty=2)  

hist(randV, add=TRUE, breaks = seq(min(randV)-0.05, max(randV)+0.05 ,0.05), 

probability = 1, axes = F, border = "white", col = rgb(0.75,0,0),xlab = "Volume 

[cm^3]",ylab = "Density of Probability",main = "") 

abline(v=simInt, col="gray", lty=1, lwd=2) 

axis(side=1, at=seq(0,1000,0.25)) 

axis(side=2, at=seq(0,1, 0.2), labels = seq(0,1, 0.2)) 

 

#output quantity 

meanV 

(simInt[2]-simInt[1])/2 
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APPENDIX B – DENSITY MEASUREMENT 

#trials numbers 

nsim = 10^7 

 

#input quantities 

meanm = .069424187 

meanV = .6014861501 

deltam = .01 

deltaV = .0116534395 

 

#generate of random numbers 

randm <- runif(nsim,meanm - deltam, meanm + deltam)  

randV <- runif(nsim,meanV - deltaV, meanV + deltaV)  

 

 

#model of measurement 

randRo = randm/randV 

meanRo = mean(randRo)                                      

 

#function for calculating the shortest coverage interval 

sci <- function (values, alpha){ 

  sortedSim <- sort(values) 

  nsim <- length(values) 

  covInt <- sapply(1:(nsim-round((1-alpha)*nsim)), function(i) { 

    sortedSim[1+round((1-alpha)*nsim)+(i-1)]-sortedSim[1+(i-1)]}) 

  lcl <- sortedSim[which(covInt==min(covInt))] 

  ucl <- sortedSim[1+round((1-alpha)*nsim)+(which(covInt==min(covInt))-1)] 

  c(lcl, ucl) 

} 

 

#shortest 95% coverage interval 

(simInt <- round(sci(randRo, alpha=.05), 4)) 

 

#plot the histogram 

hist(randRo, breaks = seq(min(randRo)-0.001, max(randRo)+0.001 ,0.001), 

probability = 1, axes = F, border = "white", col = rgb(0.75,0,0),xlab = "Density 

[kg/m^3]",ylab = "Density of Probability",main = "") 

vgrid <- seq(0, 100, 5)  

abline(h=vgrid, col="grey", lty=2)  

hist(randRo, add=TRUE, breaks = seq(min(randRo)-0.001, max(randRo)+0.001 

,0.001), probability = 1, axes = F, border = "white", col = rgb(0.75,0,0),xlab 

= "Density [kg/m^3]",ylab = "Density of Probability",main = "") 

abline(v=simInt, col="gray", lty=1, lwd=2) 

axis(side=1, at=seq(0,0.5,0.005)) 

axis(side=2, at=seq(0,100, 5), labels = seq(0,100, 5)) 

 

#output quantity 

meanRo 

(simInt[2]-simInt[1])/2 



 

   58 

APPENDIX C – UNLOADED VOLTAGE DIVIDER 

#trials numbers 

nsim = 10^7 

 

#input quantities 

Vin = 10 

R1 = 220 

R2 = 1000 

deltaVin = .01 

deltaR1 = 11 

deltaR2 = 50 

 

#generate of rand numbers 

randVin <- runif(nsim,Vin - deltaVin, Vin + deltaVin) 

randR1 <- runif(nsim,R1 - deltaR1, R1 + deltaR1) 

randR2 <- runif(nsim,R2 - deltaR2, R2 + deltaR2) 

 

#model of measurement 

randVout = randVin*(randR2/(randR1+randR2)) 

meanVout = mean(randVout)                                      

 

#function for calculating the shortest coverage interval 

sci <- function (values, alpha){ 

  sortedSim <- sort(values) 

  nsim <- length(values) 

  covInt <- sapply(1:(nsim-round((1-alpha)*nsim)), function(i) { 

    sortedSim[1+round((1-alpha)*nsim)+(i-1)]-sortedSim[1+(i-1)]}) 

  lcl <- sortedSim[which(covInt==min(covInt))] 

  ucl <- sortedSim[1+round((1-alpha)*nsim)+(which(covInt==min(covInt))-1)] 

  c(lcl, ucl) 

} 

 

#shortest 95% coverage interval 

(simInt <- round(sci(randVout, alpha=.05), 4)) 

 

#plot the histogram 

hist(randVout, breaks = seq(min(randVout)-0.05, max(randVout)+0.05 ,0.01), 

probability = TRUE, axes = F, border = "white", col = rgb(0.75,0,0),xlab = 

"Output Voltage [V]",ylab = "Density of Probability",main = "") 

vgrid <- seq(0, 6, 1)  

abline(h=vgrid, col="grey", lty=2)  

hist(randVout,add=TRUE, breaks = seq(min(randVout)-0.05, max(randVout)+0.05 

,0.01), probability = TRUE, axes = F, border = "white", col = rgb(0.75,0,0),xlab 

= "Output Voltage [V]",ylab = "Density of Probability",main = "") 

abline(v=simInt, col="grey", lty=1, lwd=2) 

axis(side=1, at=seq(0,10,0.05)) 

axis(side=2, at=seq(0,1000, 1), labels = seq(0,1000,1)) 

 

#output quantity 

meanVout 

(simInt[2]-simInt[1])/2 
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APPENDIX D – AMMETER VOLTMETER METHOD 

#trials numbers 

nsim = 10^7 

 

#input quantities 

meanU = 4.340 

meanI = 95.969E-3 

deltaU = .195E-3 

deltaI= 1.13E-3 

 

#generate of random numbers 

randV <- runif(nsim,meanU - deltaU, meanU + deltaU)  

randI <- runif(nsim,meanI - deltaI, meanI + deltaI)  

 

#model of measurement 

randR = randV/(randI-(randV/10E5)) 

meanR = mean(randR)                                      

 

#function for calculating the shortest coverage interval 

sci <- function (values, alpha){ 

  sortedSim <- sort(values) 

  nsim <- length(values) 

  covInt <- sapply(1:(nsim-round((1-alpha)*nsim)), function(i) { 

    sortedSim[1+round((1-alpha)*nsim)+(i-1)]-sortedSim[1+(i-1)]}) 

  lcl <- sortedSim[which(covInt==min(covInt))] 

  ucl <- sortedSim[1+round((1-alpha)*nsim)+(which(covInt==min(covInt))-1)] 

  c(lcl, ucl) 

} 

 

#shortest 95% coverage interval 

(simInt <- round(sci(randR, alpha=.05), 4)) 

 

#plot the histogram 

hist(randR, breaks = seq(min(randR)-0.07, max(randR)+0.05 ,0.02), probability = 

1, axes = F, border = "white", col = rgb(0.75,0,0),xlab = "Resistance [Ohm]",ylab 

= "Density of Probability",main = "") 

vgrid <- seq(0, 1, 0.2)  

abline(h=vgrid, col="grey", lty=2)  

hist(randR, add=TRUE, breaks = seq(min(randR)-0.07, max(randR)+0.05 ,0.02), 

probability = 1, axes = F, border = "white", col = rgb(0.75,0,0),xlab = 

"Resistance [Ohm]",ylab = "Density of Probability",main = "") 

abline(v=simInt, col="gray", lty=1, lwd=2) 

axis(side=1, at=seq(0,100,0.1)) 

axis(side=2, at=seq(0,1, 0.2), labels = seq(0,1, 0.2)) 

 

#output quantity 

meanR 

(simInt[2]-simInt[1])/2 
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APPENDIX E – POWER MEASUREMENT 

#trials numbers 

nsim = 10^7 

 

#input quantities 

meanU = 4.340 

meanI = 95.969E-3 

deltaU = .195E-3 

deltaI= 1.13E-3 

 

#generate of random numbers 

randV <- runif(nsim,meanU - deltaU, meanU + deltaU)  

randI <- runif(nsim,meanI - deltaI, meanI + deltaI)  

 

#model of measurement 

randP = randI-(2*randV/10e5) 

meanP = mean(randP)                                      

 

#function for calculating the shortest coverage interval 

sci <- function (values, alpha){ 

  sortedSim <- sort(values) 

  nsim <- length(values) 

  covInt <- sapply(1:(nsim-round((1-alpha)*nsim)), function(i) { 

    sortedSim[1+round((1-alpha)*nsim)+(i-1)]-sortedSim[1+(i-1)]}) 

  lcl <- sortedSim[which(covInt==min(covInt))] 

  ucl <- sortedSim[1+round((1-alpha)*nsim)+(which(covInt==min(covInt))-1)] 

  c(lcl, ucl) 

} 

 

#shortest 95% coverage interval 

(simInt <- round(sci(randP, alpha=.05), 4)) 

 

#plot the histogram 

hist(randP) 

hist(randP, breaks = seq(min(randP)-0.0001, max(randP)+0.0001 ,0.0001), 

probability = 1, axes = F, border = "white", col = rgb(0.75,0,0),xlab = 

"Resistance [Ohm]",ylab = "Density of Probability",main = "") 

vgrid <- seq(0, 1, 0.2)  

abline(h=vgrid, col="grey", lty=2)  

hist(randP, add=TRUE, breaks = seq(min(randP)-0.07, max(randP)+0.05 ,0.02), 

probability = 1, axes = F, border = "white", col = rgb(0.75,0,0),xlab = 

"Resistance [Ohm]",ylab = "Density of Probability",main = "") 

abline(v=simInt, col="gray", lty=1, lwd=2) 

axis(side=1, at=seq(0,100,0.1)) 

axis(side=2, at=seq(0,1, 0.2), labels = seq(0,1, 0.2)) 

 

#output quantity 

meanR 

(simInt[2]-simInt[1])/2 


