
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

SECURE GATEWAY FOR WIRELESS IOT PROTOCOLS
ZABEZPEČENÁ BRÁNA PRO BEZDRÁTOTOVÉ IOT PROTOKOLY

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MARTIN HOŠALA
A U T O R PRÁCE

SUPERVISOR Doc. Ing.JAN KOŘENEK, Ph.D.
V E D O U C Í PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

Department of Computer Systems (DCSY) Academic year 2018/2019

Bachelor's Thesis Specification
22187

Student:
Programme:
Title:

Hosala Martin
Information Technology
Secure Gateway for Wireless loT Protocols

Category: Networking
Assignment:

1. Study widely used wireless loT protocols and identify their security issues.
2. Get to know the BeeeOn loT gateway and develop a security system to protect wireless loT

communication using existing detection systems.
3. Create a secure gateway that will run on Turris Omnia router and consist of BeeeOn Gateway and

detection systems.
4. Design and implement a set of tests to check properties of the security system in the gateway.
5. Discuss created results and future improvements of the security system in the gateway.

Recommended literature:
• According to the supervisor's recommendation.

Requirements for the first semester:
• Items 1 to 3.

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Kořenek Jan, doc. Ing., Ph.D.
Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.
Beginning of work: November 1, 2018
Submission deadline: May 15, 2019
Approval date: May 9, 2019

Bachelor's Thesis Specification/22187/2018/xhosal00 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
This work aimed to create a functional prototype of a secured gateway for wireless IoT
protocols based on the BeeeOn IoT Gateway. To create the resulting solution, it was nec
essary to analyze existing IoT securing systems, propose their integration wi th the BeeeOn
Gateway, and finally deploy the system. A s the securing systems i n this work, N E M E A
modules developed wi th in SIoT project were used. The resulting solution runs on Turris
O m n i a router and consists of the BeeeOn Gateway, five SIoT detection modules and other
N E M E A modules necessary for detectors full functionality. Potent ia l threats are being de
tected i n the Z-Wave, B L E , and L o R a W A N networks. A user can interact w i th the system
through a web interface of Col io t system, which is also a part of the resulting solution
and serves to store and present detection results. The system functionality was verified
experimentally and by a set of integration tests. The testing has revealed many deficien
cies connected to used subsystems, and most of them were fixed. Resul t ing system is used
wi th in the SIoT project.

Abstrakt
T á t o p r á c a bola z a m e r a n á na vytvorenie funkčného prototypu zabezpečene j b r á n y pre bez
d rô tové IoT protokoly s v y u ž i t í m BeeeOn IoT Gateway. N a vytvorenie výs l edného r iešenia
bolo p o t r e b n é analyzovať ex is tu júce zabezpečovac ie s y s t é m y IoT, n a v r h n ú ť ich in teg rác iu s
BeeeOn Gateway a s y s t é m nasad iť . A k o zabezpečovac ie s y s t é m y v tejto p rác i bo l i použ i t é
moduly N E M E A v y v i n u t é v r á m c i projektu SIoT. Výs ledné r iešenie beží na routeri Turris
O m n i a a pozos t áva z BeeeOn Gateway, piat ich de t ekčných modulov SIoT a ďalších mod
ulov N E M E A p o t r e b n ý c h pre p lnú funkčnosť detektorov. P o t e n c i á l n e hrozby sa zisťujú
v sieťach Z-Wave, B L E a L o R a W A N . Použ íva teľ m ô ž e so s y s t é m o m interagovať prostred
n í c t v o m webového rozhrania s y s t é m u Col io t , k t o r ý je t iež súčasťou výs l edného r iešenia
a slúži na ukladanie a p rezen tác iu výs ledkov detekcie. Funkčnosť s y s t é m u bola overená
e x p e r i m e n t á l n e a m n o ž i n o u in t eg račných testov. Testovanie odhalilo mnoho nedostatkov
spojených s p o u ž i t ý m i p o d s y s t é m a m i a väčš ina z nich bola op ravená . Výs ledný s y s t é m sa
použ íva sa v r á m c i projektu SIoT.

Keywords
Internet of Things, Gateway, Smart Home, BeeeOn, Security, SIoT, N E M E A , Turris Omnia ,
L o R a , Z-Wave, B L E

Kľúčové slová
Internet vecí, B r á n a , I n t e l i gen tná domácnosť , BeeeOn, Bezpečnosť , SIoT, N E M E A , Turris
Omnia , L o R a , Z-Wave, B L E

Reference
H O S A L A , M a r t i n . Secure Gateway for Wireless IoT Protocols. B rno , 2019. Bachelor's
thesis. Brno Univers i ty of Technology, Facul ty of Information Technology. Supervisor Doc .
Ing. Jan Korenek, P h . D .

Rozšírený abstrakt
Trend Internetu vecí (sk rá t ene IoT z angl. Internet of Things) sa rýchlo rozširuje a poče t
in te l igen tných krab ič iek v š a d e okolo n á s k a ž d ý deň rastie. P re tento rast samozrejme exis
t u j ú d o b r é dôvody. S p r á v n e použ ívan ie IoT za r i aden í m ô ž e n a p r í k l a d zefektívniť v ý r o b u a
uľahčiť jej kontrolu, či z au toma t i zovať naše d o m á c n o s t i . V neposlednom rade m ô ž e t ak t i ež
s p r á v n a a n a l ý z a d á t z IoT za r i aden í viesť k u ž i t o č n ý m predpovediam, k t o r é m ô ž u ďalej
viesť k v ý z n a m n ý m ene rge t i ckým ú s p o r á m . Avšak vý robcov ia IoT za r i aden í sú niekedy na
toľko n a d š e n ý víziou zisku, že popr i snahe čo najrýchlejš ie priniesť inova t ívne r iešenia občas
z a b u d n ú dodrž iavať z á k l a d n é b e z p e č n o s t n é normy. To vedie k tomu, že IoT zariadenia sú
čas to zrani teľné , podobne ako poč í t ačové siete na z a č i a t k u 90. rokov.

Trend IoT nevynechal ani Faku l tu in fo rmačných technológi í Vysokého učení technick
ého v Brne. V ý s k u m n á skupina akcelerovaných sieťových t echno log i í 1 (sk r á t ene A N T z
angl. Accelerated Network Technologies) tu pracuje na IoT projekte s n á z v o m BeeeOn 2 .
Cieľom tohto projektu je vyvinúť open-source s y s t é m inteligentnej d o m á c n o s t i , k t o r ý bude
ľahko rozš í ř i te lný a bude podporovať široké spektrum koncových za r i aden í t r e t í ch s t r á n .
V ý s k u m n á skupina A N T t iež participuje na projekte s n á z v o m S I o T 3 , k t o r é h o cieľom je
zlepšiť bezpečnosť Internetu vecí t ý m , že p r e s k ú m a jeho b e z p e č n o s t n é slabiny a vyná jde
r iešenia, k t o r é z a b r á n i a ich využ ívan iu . T a k ý m i t o r iešen iami sú typicky d e t e k č n é sys témy,
k to ré ana lyzu jú IoT siete v r e á l n o m čase, de t egu jú a n o m á l i e a tak identif ikujú po tenc i á lne
b e z p e č n o s t n é hrozby. V r á m c i projektu SIoT sa vyví ja jú de t ekčné s y s t é m y ako moduly pre
s y s t é m N E M E A [4]. S p r á v c o m tohto s y s t é m u je záu jmové združen ie C E S N E T 4 .

Cieľom tejto p r á c e bolo vytvor iť funkčný prototyp zabezpečene j b r á n y pre bezd rô tové
IoT protokoly s v y u ž i t í m BeeeOn IoT Gateway. V teoretickej čas t i p r á c e sa n a c h á d z a
popis fungovania IoT s t ie t í ako t a k ý c h a de ta i lne jš ia a n a l ý z a n i ek to rých čas to použ ívaných
b e z d r ô t o v ý c h IoT protokolov s ich b e z p e č n o s t n ý m i s labinami. Ďalej sa p r á c a venuje popisu
sys t émov BeeeOn Gateway, N E M E A a SIoT de t ekčných modulov.

P r a k t i c k á časť p r á c e sa venuje v y t v á r a n i u výs l edného funkčného prototypu na zák lade
poznatkov z teoretickej čas t i . P re jeho vytvorenie bolo p o t r e b n é n a v r h n ú ť s p ô s o b in tegrá
cie zabezpečovac ích modulov s BeeeOn Gateway, a n á s l e d n e s y s t é m integrovať, nasad iť a
o tes tovať . A k o zabezpečovac ie s y s t é m y bol i v tejto p rác i p o u ž i t é moduly s y s t é m u N E M E A
v y v i n u t é v r á m c i projektu SIoT. Výs ledný s y s t é m je u rčený pre beh na routeri Turris O m
nia a pozos t áva z BeeeOn Gateway, piat ich de t ekčných modulov SIoT a dalš ích N E M E A
modulov p o t r e b n ý c h pre p lnú funkčnosť detektorov. P o t e n c i á l n e hrozby sa zisťujú v sieťach
Z-Wave, B L E a L o R a W A N .

Používa teľ m ô ž e s v ý s l e d n ý m s y s t é m o m interagovať p r o s t r e d n í c t v o m webového rozhra
nia s y s t é m u Col io t , k t o r ý je t iež súčasťou výs l edného r iešenia a slúži na ukladanie a prezen
t ác iu výs ledkov detekcie. Col iot v šak nebež í na routeri, ale na v i r t u á l n o m poč í t ač i so sys té
m o m Ubun tu . N a tento v i r t u á l n y p o č í t a č by bolo takisto m o ž n é p resunúť aj detektory. To
by bolo v ý h o d n é v p r í p a d e , že by sa vyžadova lo nasadenie s y s t é m u ne jaký menej v ý k o n n ý
router. Funkčnosť s y s t é m u bola overená e x p e r i m e n t á l n e a m n o ž i n o u in t eg račných testov.
Testovanie odhalilo mnoho nedostatkov spo jených s p o u ž i t ý m i p o d s y s t é m a m i a väčš ina z
nich bola op ravená . S y s t é m bo l takisto p o d r o b e n ý záťažovému testovaniu, k t o r é ukáza lo ,
že m ô ž e na routeri Turris O m n i a bežať bez akýchkoľvek p rob l émov . Výs ledné r iešenie sa
využ íva v r á m c i projektu SIoT.

xhttps: / / www.fit.vutbr.cz/research/groups / ant/index.php.cs
2https://www.beeeon.org/
3https: //github.com/SecureGatewayloT
4https://www.cesnet.cz /? lang = en

http://www.fit.vutbr.cz/research/groups
https://www.beeeon.org/
https://www.cesnet.cz

Secure Gateway for Wireless IoT Protocols

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work
under the supervision of Doc . Ing. Jan Kofenek P h . D . The supplementary information
was provided by BeeeOn and SIoT project developers. A l l the relevant text information
sources, which were used dur ing preparation of this thesis, are properly cited and included
in the list of references.

M a r t i n Hoša la
M a y 22, 2019

Acknowledgements
Firs t of a l l , I would like to thank G o d for making a l l this possible, encouraging me, and
supporting me a l l the time. M y thanks also belong to my supervisor Doc . Ing. Jan Kořenek
P h . D , who was always happy to help me and was patiently guiding me. Besides, I would
like to thank the SIoT and BeeeOn projects developers. Namely Be. D a v i d Bedna ř ík ,
Ing. O n d ř e j Hu jňák , R N D r . Radek Krejčí , Ing. T o m á š Čejka , Ing. D o m i n i k Soukup, Ing.
E r i k Grešák , Ing. Jakub Jalowiczor, Be. Jozef Hala j , B c . Peter Tisovčík, and B c . K l á r a
Nečasová. Thank you a l l for your advice, valuable information, and your help i n creating
the resulting solution.

Contents

1 Introduction 2

2 IoT networks and protocols 3
2.1 Fog computing model 3
2.2 IoT gateway 6

3 Wireless IoT protocols 8
3.1 Z-Wave 8
3.2 B L E 9
3.3 L o R a W A N 14

4 BeeeOn 1 8

4.1 BeeeOn Gateway 19

5 System for Security Analysis 22
5.1 D a t a Acquis i t ion 24
5.2 Detectors 25

6 Gateway design 27
6.1 System proposal 27

7 System integration 32
7.1 Creat ion of tests 33
7.2 Nemea Collector incorporat ion 36
7.3 Tur r i sOS packages 36
7.4 Col iot 40

7.5 System deployment 40

8 Results 4 3

9 Conclusion 46

Bibl iography 48

1

Chapter 1

Introduction

The IoT trend is rapidly spreading, and the number of smart boxes everywhere around us
is growing up every day. O f course, this growth has good reasons. The proper use of IoT
devices can, for example, make it easier to control the factory and make product ion more
efficient, make households fully automated, and last but not least, the proper analysis of IoT
data can lead to useful predictions and therefore substantial energy saving. However, the
vision of profit leads to the fact that the manufacturers are so excited about offering better
IoT solutions, that they sometimes forget to adhere to the pr imary security standards. So,
the IoT devices are often as vulnerable as computer networks of the early 1990s.

The IoT trend d id not leave out the Facul ty of Information Technology at the Brno
Univers i ty of Technology. Accelerated Network Technologies 1 (abbreviated A N T) research
group works on a project named B e e e O n 2 . The goal of this project is to develop an open-
source intelligent household system, which is easy-extendable and aims at broad coverage
of the third-party end-devices support. The A N T research group also participates i n a
project called S I o T 3 that aims at improving the IoT security by examining its security
vulnerabilit ies and inventing solutions to prevent their exploitat ion. These solutions are
typical ly detection systems that serve for real-time IoT network analysis to detect traffic
anomalies, and thus identify potential security threats. W i t h i n the SIoT project, detection
systems are being developed as modules for the N E M E A system [4] that is maintained by
the C E S N E T Assoc ia t ion 4 .

The goal of this work was to develop a secure gateway for wireless IoT protocols by
integrating the BeeeOn's IoT gateway w i t h the N E M E A system and its appropriate de
tection modules. The result of this integration is a functional sample of IoT gateway that
is capable of detecting and reporting threats i n the IoT network. In order to verify the
achievement of the desired results, a test environment was created, whereby the functional
sample of secure gateway was tested.

State of the art is described i n four chapters. The first of them is dedicated to the gen
eral description of the IoT networks; the second one describes sensor layer IoT protocols
appropriate for this work, and the other two chapters describe BeeeOn and N E M E A sys
tems. The following chapter defines the solution requirements and design. The subsequent
chapter describes the implementat ion of the solution and the last two chapters summarize
and conclude the acquired results.

xhttps: / / www.fit.vutbr.cz/research/groups / ant/index.php.en
2https://www.beeeon.org/
3https: //github.com/SecureGatewayloT
4https: //www.cesnet.cz/?lang=en

2

http://www.fit.vutbr.cz/research/groups
https://www.beeeon.org/
http://www.cesnet.cz/?lang=en

Chapter 2

IoT networks and protocols

Every day, more and more devices are connected to the Internet of Things (IoT). For 2025,
the installed base of IoT devices is forecast to grow to more than 75 b i l l ion worldwide [17].
These billions of new devices generate an unprecedented volume of data and also represent
countless new types of devices and data variations. M o v i n g a l l these data to the cloud for
analysis would require vast amounts of bandwidth , further by the t ime this movement and
analysis would be completed, the opportuni ty to act might be gone [5]. Aforementioned
shows that cloud models are not suitable for the volume, variety, and velocity of data that
the IoT generates and a new model for analyzing and acting on these data is required.

2.1 Fog computing model

The model satisfying these requirements is called fog computing model [5]. The principle
of this model stands i n adding a few sub-layers to the communicat ion, thus bringing the
computing power closer to the end-devices.

The fog computing model extends the cloud model and brings the data processing
physically closer to the devices that produce and act on IoT data. Tha t is done using the
devices w i t h computing power, storage site, and Internet access, called fog nodes. A n y
device that fulfills given requirements can become a fog node. Examples of such devices
include routers, switches, industr ia l controllers, or embedded servers. The fog computing
model consists of three layers: the end-devices layer, the fog layer, and the cloud layer. The
basic idea of the fog computing model is displayed i n figure 2.1.

The fog nodes, i n addi t ion to their standard functionality, provide a part of their re
sources for running external fog applications. The general purpose of the fog applications
is monitor ing and analyzing real-time data from network-connected devices and ini t ia t ing
actions, such as locking the door or sending an alert to a user.

3

ft f
END-POINT DEVICES

Figure 2.1: Fog computing model

The fog nodes closest to the network edge ingest the data from IoT gateways (fog node
can also be the IoT gateway itself), which are direct ly connected to the IoT devices. Then
the fog applicat ion directs the different type of data to an op t imal place for their analysis.
The most time-sensitive data is analyzed on the fog node closest to the devices generating
the data. D a t a that processing can wait a few seconds or minutes are passed along to an
aggregation node which analyses them and initiates appropriate action. D a t a that are less
t ime sensitive are sent to the cloud for historical analysis, b ig data analytics, and long-term
storage. The usage of the fog computing model comes along wi th the following benefits:

• Lower time and bandwidth expenses:
Selected data are processed local ly instead of being sent to the cloud. That conserves
the network bandwidth and also lowers the latency time, which can be crucial when
a cr i t ica l action, such as opening a valve i n response to a pressure reading, should be
invoked.

• Security and privacy enhancement:
Sensitive data do not need to be sent across the internet to the cloud for processing, so
the chances of their leakage are lowered. Further, the fog nodes are typical ly non-stop
connected to the internet and the power supply, so chances of the non-processing the
time-sensitive data due to a connection failure are also minimized.

• Shading of the end-devices diversity:
Thanks to the fog nodes, the end-devices can communicate almost directly and while
s t i l l using different communicat ion protocols. Also , the network administrat ion is
simplified, as long as it is not needed to access the end-devices every time, but most
of the t ime, managing the appropriate fog layers is enough.

4

Above mentioned shows that the Fog Comput ing M o d e l came along wi th many benefits
and was invented direct ly for the IoT networks and also, as long as it only describes the IoT
network structure and the data processing distr ibut ion, it does not contain weak security
spots itself. However, using the Fog Compu t ing M o d e l principles, the IoT communicat ion
model can be divided into three layers [16], where each contains specific vulnerabilities:

1. Sensor Layer
The sensor layer includes a l l end-devices that obtain information from their surround
ings or perform the desired actions. M a n y end-devices can be connected to one IoT
gateway, while also using various communicat ion protocols. The principle of com
municat ion and the capabilities of the topology differ according to the technology
used.

The significant vulnerabilit ies of this layer are, i n particular, wireless protocols. If
no security features are used, communicat ion v i a wireless protocols can easily be
intercepted or modified. Also , there may be devices that are marked as secure, but
s t i l l uses an older version of the communications protocols that come along w i t h out-
of-date security features or contain implementation errors. Th is case is dangerous
because it raises a false sense of security. At tacks can also target battery-powered
items that can be discharged by excessive traffic.

2. Network Layer
To the network layer, the sensor layer is connected v ia an IoT gateway. The commu
nication on the network layer typical ly uses the T C P / I P protocol suite and provides
the transmission of obtained sensor data from the IoT gateway to other services. A l so ,
the remote management of the gateway, and thus also the remote management of the
end-devices takes place on this layer. In most cases, the connection is created using
H T T P S (Hypertext Transfer P ro toco l Secure) or V P N (Vi r tua l Pr ivate Network) .
However, the often used protocols also include M Q T T (Message Queuing Telemetry
Transport) , C O A P (Constrained App l i ca t i on Protocol) or A M Q P (Advanced Message
Queuing Protocol) .

It follows from the above mentioned that as long as the network layer uses t radi t ional
T C P / I P communicat ion, its security threats are identical to the t radi t ional network
threats. Thereby, the standard principles of trust, integrity, and accessibility must be
respected to prevent t radi t ional attacks such as D D o S (Distr ibuted Den ia l O f Service),
M I T M (M a n In The Middle) or information falsification. The main difference of
this layer and the t radi t ional network is that the most common communicat ion on
this layer is M 2 M (Machine To Machine) communication, so it is necessary to use
appropriate communicat ion interfaces and to update the devices whenever possible.
A n outdated version of the firmware can leave the door open to the attack which can
cause unusual behavior or even complete IoT network control takeover.

3. Appl icat ion Layer
Final ly , the applicat ion layer takes care of data processing and their long-term storage.
It also communicates w i th the users and allows them to configure the entire network.
However, as the IoT network can consist of thousands of devices, it is cr i t ica l for
its topology management to support automation. Th i s layer is typical ly located in
the data center, provides remote access, and its security threats can be likened to
cloud computing security threats. The complexity of the appl icat ion layer itself, and

5

therefore also the complexity of its security, depends on the required functionality
and can vary from applicat ion to applicat ion i n significant ways. C o m m o n attacks
threatening this layer include Buffer Overflow, S Q L Injection, or D D o S .

In general, the problem is also the way of an IoT network deployment. IoT end-devices
have different parameters than conventional user devices, and their communicat ion also
differs as long as it is less heterogeneous and often based on M 2 M . The deployment of
many end-devices into one segment complicates security rules and increases the impact of a
potential attack, as it is often possible to extend the control takeover or the data falsification
from a single successfully attacked device to other nodes i n the same segment.

2.2 IoT gateway

In the fog computing model, the IoT gateway [16, 15] is a physical device or software
program that serves as the connection point between the end-devices layer and the fog
layer. Th is is shown i n figure 2.2. IoT gateway nodes can also be referred to as Edge
nodes, and they are typical ly computat ional ly more powerful than the end-devices. For
the IoT networks, it is typica l to consist of many different types of end-devices which use
different communicat ion protocols. The main purpose of the IoT gateway is to collect data
from these devices. Because of their diversity, IoT gateway needs to include addi t ional
communicat ion interfaces that allow it to communicate v i a a l l sorts of wireless and also
wired communicat ion protocols. Examples include Z-Wave, B L E , or Zigbee. More wireless
IoT protocols and their detailed description can be found in the below sections. Collected
data is then provided to the higher layers for the processing. If the IoT gateway is powerful
enough, it can also be a fog node itself. In that case, the IoT gateway can directly process
some of the collected data.

• * t
END-POINT DEVICES

Figure 2.2: IoT gateways

Currently, there are many different IoT gateways available. The i r parameters vary
according to deployment and operational requirements. A significant issue i n this area is
the low emphasis on security features that enable remote gateway control, traffic control,

G

and software upgrades. A n IoT gateway that is mainly focused on the security and broad
IoT protocols coverage is being developed at B U T ^ ' s Facul ty of Information Technology
wi th in the project called BeeeOn. The mentioned IoT gateway is described i n section 4.1.

1https://www.vutbr.cz/en/

https://www.vutbr.cz/en/

Chapter 3

Wireless IoT protocols

3.1 Z-Wave

Z-Wave [21, 8] is a proprietary wireless communicat ion protocol pr imar i ly designed for
home automation. It is owned and maintained by the Z-Wave al l iance 1 , which provides
development licenses, protocol documentation, and also certifies a l l the Z-Wave components.
Z-Wave was introduced in 2001 and later in 2013 Z-Wave alliance started a new certification
program called Z-Wave Plus. Z-Wave P lus certified devices are backward compatible w i th
devices wi th previous Z-Wave certificates but must follow conditions that br ing many user-
friendly orientated benefits. The most significant advantages of the Z-Wave are that it
is widely spread protocol in the field of home automation, Z-Wave devices are a l l fully
inter-operable [22] and affordable.

Z-Wave transmits messages using low-frequency (800-900MHz) radio waves. The Z-
Wave communicat ion speed ranges from 9.6kb/s to 40kb/s , and its range can reach up to
100m outdoors. Devices which participate i n a Z-Wave network are called Z-Wave nodes,
and each of them serves as a controller or as a slave. Mul t ip l e controllers can participate in
one Z-Wave network, and each of them is allowed to control a l l the slave nodes wi th in the
network. However, one of them must be primary. A t a given time, one pr imary controller
can manage one Z-Wave network. Such network is then identified by a unique 32-bit Home
ID which value is wri t ten to the controller's Z-Wave chip by the manufacturer and cannot
be changed by the controller software [6]. The significant advantage of the Z-Wave networks
is that it can span much farther than the radio range of a single device. It is possible as
the Z-Wave devices serve also like the routers and the communicat ion between the devices
wi th in one network does not need to be direct. So, theoretically, to be the part of a Z-
Wave network, it is enough for the device to be placed in the radio range of one another
device if it is possible to reach a controller device v ia i t . Tha t implies a source-routed mesh
topology of the Z-Wave networks. The message can hop v i a up to four nodes, while the real
distance between two communicat ing nodes can typical ly be up to 30-40 meters. However,
to become a part of the Z-Wave network, the new node needs to be paired wi th the pr imary
controller, and this procedure demands a direct connection. Furthermore, the same applies
to the unpair ing process.

W i t h i n the Z-Wave network, each node is identified by an 8-bit identifier called Node
ID. Thus, each Z-Wave node that is in use can be uniquely identified by the pair Home ID
and Node ID. A new network part icipator obtains its Node ID dur ing the pair ing procedure.

xhttps: / / z - wavealliance.org/

8

http://wavealliance.org/

The Node ID of a pr imary controller always 1. Nevertheless, the short length of the Node
ID l imitate the network size - a Z-wave network can consist of only up to 232 devices.
However, it is possible to bridge mult iple networks i f further devices are needed.

Each Z-Wave node includes the definition of the supported C o m m a n d Classes. These
define the commands that the appropriate node can understand and the form of the node's
response to them. Dur ing the pair ing process, the new node sends its C o m m a n d Classes to
the controller. Every Z-Wave message needs to be acknowledged. If the acknowledgment
message does not arrive, the original message is resent up to 3 times, then canceled.

3.1.1 Secur i ty a n d vulnerabi l i t i e s

Since 2009 Z-Wave used a security standard called SO. This standard uses 128-bit A E S
encrypt ion 2 to secure the communicat ion. Despite, i n the SO standard, the encryption is
not required but optional . If it is used, the SO network key exchange takes place during
a pair ing procedure. However, this exchange is encrypted wi th a fixed key of a l l zeros.
Consequently, the attacker can obtain the network key while a new device is being paired
and then attack any device wi th in the network. Therefore it is recommended to pair devices
in a secure environment [8].

Significant advances in Z-Wave security occurred in 2016 w i t h the arr ival of the new
Z-Wave security standard named Security 2 (abbreviated S2). Th is standard came along
wi th mandatory message encryption and the E C D H algori thm usage for the keys exchange.
Since A p r i l 2017, devices need to meet the S2 standard to be Z-Wave certified. A l though the
S2 security enhancement solved a l l known Z-Wave vulnerabilit ies, there is s t i l l a majority
of devices without it [22]. The encryption of communicat ion is entirely opt ional for these
devices, and it is not commonly used. Thus their communicat ion can be easily intercepted
and modified.

Furthermore, the Z-Wave devices are backward compatible, and an S2 device pairs as
the SO, when pair ing wi th an SO device. The information about the device security level
is exchanged unencrypted at the beginning of the pair ing process. Therefore, an active
attacker, present at the t ime of pairing, can downgrade an S2 pair ing to SO, and thereby
make it possible to intercept and inject SO traffic on the Z-Wave network [18].

3.2 B L E

Bluetooth L o w Energy (colloquially B L E , formerly Blue tooth Smart) is a wireless network
technology designed and maintained by the Blue tooth SIG'^ intended for IoT networks such
as intelligent houses. Its specification, accompanying the Classic Bluetooth and Bluetooth
high speed, is a part of the Blue tooth 4.0 specification, also known as Bluetooth Smart,
introduced in 2010. However, significant B L E improvement came along w i t h the specifi
cation of the Bluetooth 5.0. Transmission range of B L E is s imilar to the range of Classic
Bluetooth , and these two protocols also operate i n the same spectrum range. Nevertheless,
B L E aims at the reduction of power consumption, and it is not compatible w i th the Classic
Bluetooth . Information i n this chapter are based on [8, 7, 11, 19, 9].

B L E operates i n the spectrum range 2.400-2.4835 G H z and uses 40 2 - M H z channels.
A l though the Classic Bluetooth operates in the same spectrum range, it uses 79 1-MHz
channels, and that is the main reason for the B L E and Classic Blue tooth incompatibi l i ty.

2https: / / en.wikipedia.org/ wiki/ Advanced Encryption Standard
3https: //www.bluetooth.com/

9

http://en.wikipedia.org/
http://www.bluetooth.com/

The m a x i m u m data transmission speed of B L E 4.0 is 1 M b i t / s , and its range can reach
up to 100m i n a suitable environment. B L E 5.0 can operate i n two transfer modes. The
first mode aims at the communicat ion speed and allows data transmission speed to reach
2 M b i t / s . O n the other hand, the second mode aims at the transmission range, which can
span up to 1000m in ideal condit ion. However, the transmission speed of the second mode
is the same if not even slower compared to B L E 4.0.

The B L E networks consist of two device types - Masters and Slaves. The te rm Slave
is used for end-devices and the term Master for their controllers. In the B L E version 4.0,
an end-device could only be connected to one controller, and that led to the star topology
of the B L E networks, as shown in figure 3.1. It changed i n 2017 wi th the arr ival of the
Bluetooth 5.0 Specification that came along wi th Bluetooth Mesh Networking Specifications
which allowed bui ld ing B L E networks w i t h the mesh topology, which is also displayed in
the figure 3.2. Each Bluetooth and also B L E device is identified by a globally unique 48-bit
Bluetooth device address (B D A D D R) .

O
END-DEVICE END-DEVICE

o
END-DEVICE END-DEVICE

Figure 3.1: B L E 4 . 0 star topology

10

END-DEVICE

Figure 3.2: B L E 5 . 0 mesh topology

The communicat ion between the end-device and the controller device typical ly consists
of five steps [7]:

1. Transmission of a connection request
For device discovery purposes, there are three B L E channels reserved. W h e n a pair ing
mode is ini t ia ted at an end-device, it starts to broadcast so-called advertisement
packets on at least one of these channels. These advertisements include basic device
information such as supported services, device name, vendor name, and they are
repetitively sent un t i l the connection is ini t ia ted or the timeout is passed.

2. Receivement of a connection request
W h e n a controller is i n scan mode, it periodical ly listens on advertisement channels
for a durat ion called scan window. Then the controller offers a user a list of a l l
end-devices, from which it received a message.

3. Initation of a connection
Once the user chooses an end-device to connect wi th , the controller stops the adver
tisement scanning and initiates a connection.

4. Connect ion set up
Dur ing this phase, the controller scans end-device for the available services, and both
parties agree on communicat ion parameters.

5. M a i n communication
The controller exchanges information wi th the end-device using appropriate (read,
write, or notify) requests and responses.

11

This communicat ion model is captured i n figure 3.3, which displays the t ime course and
communicat ion direction of B L E connection steps as mentioned above. However, depending
on the usage scenario, the direct connection set up is not always necessary, and in some
cases, the controller can handle advertisements without it.

CONTROLLER

SCAN WINDOW ^ ADVERTISEMENT

END-DEVICE

SCAN WINDOW 30w|
ADVERTISEMENT

CONNECT

4 COMMUNICATION SETUP

MAIN COMMUNICATION

DISCONNECT <—

Figure 3.3: B L E communicat ion model

3.2.1 Secur i ty a n d vulnerabi l i t i e s

A potential attack on the B L E communicat ion is complicated by the fact, that the transmis
sion does not take place on constant frequency, but hops from channel to channel. However,
there are several nonexpensive options to accomplish communicat ion interception, includ
ing open-source platform Ubertooth ' 1 . Information about B L E Security and vulnerabili t ies
are mainly based on [7, 3, 8, 14].

To avoid interception of B L E traffic, B L E uses highly secure 128-bit A E S encryption
operating i n C C M mode. However, to establish a secured connection, the devices must first
go through the pair ing procedure. The process, and thus also the security of the pair ing
procedure differs depending on the B L E version. The devices wi th a B L E version older
than 4.2 use a custom key exchange protocol unique to B L E and their pair ing procedure is
known as Legacy Pa i r ing . D u r i n g this procedure, the devices exchange v ia one of the pair ing
methods so-called Temporary K e y (T K) which is then used to derive a Short Term K e y
(S T K) that serves to encrypt the connection. If it is required to create a bond, a master
device sets up a L o n g Term K e y (L T K) that would be used to secure future sessions,
and transmit it to the slave. The pair ing procedure of the B L E 4.2, and also the later
versions, is known as Secure Pa i r ing and it uses, instead of the formerly used custom one,
the El l ip t ic-curve Dime-Hel lman (E C D H) key exchange protocol. B o t h devices which are
going through Secure Pa i r ing procedure generate an E C D H public-private key pair. The
public keys are then exchanged and used to compute a Dime-Hel lman key. The connection
is then authenticated using one of the pair ing methods, and when everything is correct, a

4https: / / github.com / greatscottgadgets / ubertooth

12

http://github.com

Long Term K e y is derived from the Diffie-Hellman key, and then it is used to encrypt the
communication.

The key exchange i n the Legacy Pa i r ing is possible by three methods. The Secure
Pa i r ing improved a l l of them and introduced an addi t ional one. These methods are:

Just Works The main advantage of this method is that it proceeds automatically; the
user does not need to confirm anything, and thus, the device does not need to have a
display. Therefore, as long as many B L E devices do not have a display, this method
is the most commonly used one.

In the Legacy Pa i r ing , the Just Works means that the T K is 0 and thus, w i t h the usage
of a brute force, it is easy for a potential attacker to find out the S T K and decrypt
the communicat ion. Moreover, this method offers no way of verifying the devices that
participate i n the connection, and thus, there is no M I T M attack protection.

W h e n Just Works method is used i n the Secure Pai r ing , devices first exchange the
public keys and compute Diffie-Hellman keys. After that, the in i t ia t ing device gener
ates a random nonce and uses it w i th Dime-Hel lman key to generate a confirmation
value (Cb) . Then both the nonce and the C b are sent to the non-ini t iat ing device,
which generates confirmation value (Ca) from its Dime-Hel lman key and the received
nonce. If C a matches wi th C b , both devices computed the same Diffie-Hellman keys
and the connection can proceed.

Thanks to the E C D H , the Just Works in Secure Pa i r ing is markedly more resistant
to passive eavesdropping than in Legacy pair ing. Nevertheless, the communicat ion
participators s t i l l cannot be verified, and thus, the M I T M vulnerabi l i ty stays the
same.

Passkey If this method is used i n the Legacy Pai r ing , the T K is a 6-digit number which
needs to be passed between the devices by a user. Devices can use different mecha
nisms to exchange T K . For example, one device can generate a number and show it to
the user, who has to enter the number to the other device. A s long as a potential at
tacker does not intercept the pair ing procedure, the communicat ion w i l l be protected
against passive eavesdropping. However, w i th the sniffed passkey value, the attacker
can use brute force to derive S T K just as when the Just Works method is used. This
method is also generally considered to be M I T M resistant, yet Tomas Rosa presented
a way of bypassing passkey a u t h e n t i c a t i o n in his whitepaper [13].

In the Secure Pa i r ing , the user needs to input an equal number to each device. The
authentication then proceeds like i n the Just Works method, but the confirmation
values are calculated also using a bit from the input passkey, and the checking process
repeats unt i l each bit is checked.

Out of B a n d (O O B) In the O O B pairing, the appropriate information is exchanged us
ing a different communicat ion channel (wireless technology, typical ly N F C) . Th is in
formation includes T K i n the Legacy pair ing and the public keys, nonces, and con
firmation values i n the Secure Pa i r ing . If the used channel is immune against M I T M
and eavesdropping, the B L E connection w i l l be secured. In the Legacy Pa i r ing , this
is the most secure method, yet it is not widely adopted.

Numeric Comparison Numer ic Compar ison came along wi th the B L E 4.2; thus, it is
only available i n the Secure Pa i r ing . In this method, the pair ing proceeds the same

13

as in the Just Works method. The th ing is, that after the connection is set up, bo th
devices generate 6-digit code and let a user check their match. Usage of this method
secures the connection against M I T M attacks [16].

A s shown above, the B L E pair ing procedure cannot be considered as secure unt i l ver
sion 4.2. W i t h advanced knowledge of B L E protocol, a potential attacker can decrypt the
communicat ion and use man i n the middle attack. Even though mostly used pair ing meth
ods are susceptible to passive interception, the idea is that it is supposed to be performed
only once and in a secure environment. Thus it is meaningful to pair devices that use elder
protocol versions i n a secure area. Nevertheless, there is also a way to force already paired
devices to renew their L o n g Term K e y and thus re-launch the pair ing process. Tha t can be
accomplished by injecting the appropriate l ink layer message (L L _ R E J E C T _ I N D) at the
proper moment during the session ini t ia l izat ion.

Even though later versions improve the pair ing process security, the encryption remains
optional, and many vendors do not implement i t . Some vendors implement encryption
and other security features on the applicat ion layer, but their implementations commonly
contain flaws or weak protection against specific threats (M I T M or replay attacks). Another
problem related to B L E security is the complexity of the B L E specification itself. Its
vastness leads to B L E implementat ion inaccuracies, and despite the usage of a l l the available
security features, there can s t i l l be vulnerabilit ies caused by the implementation.

3.3 L o R a W A N

L o R a W A N is an IoT protocol maintained by the L o R a Al l iance ' ' , based on their proprietary
L o R a (Long Range) radio technology. It is the next example of low-power wireless protocols
designed for cheap and secure communicat ion i n the IoT networks. Its most significant
advantage is its range as in a suitable environment it can reach up to 20km. L o R a W A N
communicat ion takes place on the sub-gigahertz license-free bands, and its data rate ranges
from 0.3 kb i t / s to 50 kb i t / s . Information about L o R a W A N are based on [10, 8].

The sensor layer of L o R a W A N networks consists of two device types - gateways and end-
devices. The gateways communicate w i th the end-devices using L o R a radio technology and
wi th the central Network Server using standard T C P / I P communicat ion. Consequently,
they serve as bridges connecting the end-devices wi th the central Network Server. O n
the other hand, end-devices do not route messages and cannot communicate w i th each
other; they serve only for their part icular purposes. One end-device can be connected to
mult iple gateways, but a l l these gateways must be connected wi th the same Network Server.
Tha t leads to a star-of-stars topology of the L o R a W A N network, which is also displayed
in figure 3.4. The Network Server routes a l l messages received from the gateway to an
appropriate App l i ca t i on Server that proceeds them, or to the Jo in Server that handles the
Jo in procedures and the session keys derivation. Every end-device has its Device Identifier
(DevEUI) that is a 64-bit unique identifier set by vendors or developers. Addi t ional ly ,
a l l end-devices wi th in the network have a 32-bit address allocated by the Network Server,
called End-device Address (DevAddr) , that serves for the communicat ion addressing.

5https: //lora-alliance.org/

14

END-DEVICE END-DEVICE

END-DEVICE

END-DEVICE END-DEVICE

END-DEVICE

Figure 3.4: L o R a W A N network topology

The end-device communicat ion model is d ivided into three classes:

Class A - A l l end-devices: End-devices support basic bi-directional communicat ion wi th
a gateway. The messages from the end-devices can be transmit ted at any time, but
they listen for incoming messages only i n the two reception windows at a specified
t ime after the transmission. Then they switch to the power-saving mode and do not
listen to any messages unt i l their next transmission. A l l end-devices must implement
the Class A features.

Class B - Beacon: Class B opt ion serves to have end-devices that are available for recep
t ion at a predictable t ime and thus can also be reached at another time, not only after
their transmission. The end-devices listen to the beacon messages, that are regularly
sent by the gateway and serve to synchronize a l l end-devices i n the network to open

15

a short addi t ional reception window (called "ping slot") periodical ly at an expected
time.

Class C - Continuously listening: F ina l ly , the durat ion of the reception windows of
the end-devices implant ing the Class C option is maximized, so they listen almost
continuously for a l l messages. The reception windows are closed only at the time
when the end-devices transmit messages. T h i s approach is used for devices which
have a sufficient energy source and do not need to minimize the reception t ime to
save power.

A n end-device can implement mult iple classes mentioned above and switch from one
class to another. Figure 3.5 shows the reception windows opening principle for each class.
Also , in the L o R a W A N network, end-devices using different classes can coexist, but there
is no part icular message type specified by the L o R a W A N protocol to inform the gateway
about the device class. If this information is needed, its obtainment must be handled on
the applicat ion layer.

GATEWAY CLASS A

MESSAGE

RECEPTION

RECEPTION

CLASS B

C ROUTINE
RECEPTION

ROUTINE
RECEPTION

CLASS C

NONSTOP
RECEPTION

Figure 3.5: L o R a W A N end-devices reception windows

3.3.1 Secur i ty a n d vulnerabi l i t i e s

L o R a W A N uses 128-bit A E S encryption operating i n C T R mode to secure the commu
nicat ion on the network layer and also on the applicat ion layer. Two 128-bit keys called
N w k K e y and A p p K e y are stored in the end-device and are used during the jo ining proce
dure to derive end-device specific session keys. The jo ining procedure can be realized in two
ways. F i rs t of them is called A B P (Act ivat ion by Personalization) and the keys exchange
does not take place i n it , because the session keys are generated at product ion time, stored
in the end-device and locked to a specific deployment. Security analysis of the L o R a W A N
is based on [10, 1, 8].

The second one is called O T A A (Over the A i r Act iva t ion) , and this procedure is ini t iated
by a Join-request message sent by an end-device. Th is message contains D e v E U I , J o i n E U I

16

which is a unique 64-bit identifier of a Jo in Server and the DevNonce which is a counter
incremented wi th every sent Join-request message. The Jo in Server keeps track of a l l
received D e v E U I values and appropriates DevNonce values to prevent a replay attack.
However, the Join-request message is not encrypted, and i f eavesdropped, it can s t i l l be
later used for a replay attack, as shown in . If the end-device is permit ted to j o i n a network,
the Jo in Server response wi th a Join-accept message that consists of JoinNonce, D e v A d d r ,
and other network and configuration information. Sending the Join-accept message also
causes incrementation of the JoinNonce, which is a counter specific for a Jo in Server. B o t h
the DevNonce and JoinNocne participate i n the session keys derivation, although the exact
way and other participators depend on the L o R a W A N version.

To prevent a replay attack of messages from regular communicat ion, L o R a W A N uses
message counters to generate different keystream for each message. Th is keystream is
then used to encrypt the message payload, which is done using X O R operation w i t h an
appropriate key from keystream. However, it is also typica l for the end-devices to reboot or
reset after some. In that case, message counters are zeroed, as the whole pair ing procedure
must be done again. A s devices always use the same session keys in the A B P mode,
it is possible to use a replay attack. A potential attacker can capture messages w i t h a
specific sequence number and inject them later, after the end-device restarts. The Network
Server w i l l then ignore the message containing information that counters had been zeroed.
Therefore, following messages sent from the end-device would be considered to have a wrong
sequence number and thus also ignored. Tha t would lead to DoS of the end-device unt i l
the message counter reaches the value stored on the server [1].

The further vulnerabi l i ty of the L o R a W A N protocol is beacon messages that serve to
synchronize reception windows on end-devices implementing Class B . Beacon messages are
not encrypted, nor signed, and contain data that can be misused. These data include,
for example, G P S coordinates of the gateway, which makes it possible to localize and
physically attack the gateway. Moreover, it is possible for an attacker to inject malicious
beacon messages that contain the wrong synchronization t ime and thus cause the DoS of the
end-devices as they w i l l open reception widows at the incorrect t ime. Besides, by injecting
numerous malicious beacon messages, an attacker can drain the battery of battery powered
end-devices. W h e n an end-device receives mult iple beacon messages containing always
different synchronization time, it discharges its battery faster, as it has to process these
messages and always re-synchronize its reception windows.

Another security flaw is based on the fact that i n the A B P mode, end-device uses the
same encryption keys for each session. Th is fact makes it possible to retrieve the content
of the eavesdropped messages, al though they are encrypted. To do so, an attacker needs
to eavesdrop the communicat ion of an end-device, then wait for its restart and eavesdrop
again. Captured messages from two sessions can be then paired based on their sequence
numbers to get message pairs containing messages that were encrypted using the same
keystream. Since the encryption of the messages in the C T R mode is done using the X O R
operation wi th the appropriate keystream, it is possible to do the X O R operation of two
eavesdropped messages encrypted using the same keystream and get the result that is equal
to the result of the X O R operation of their non-encrypted forms. W i t h a knowledge of the
L o R a W A N communicat ion details, an attacker can then reconstruct these messages and
thus get their plaintext. Th is attack is described i n more detail i n [20].

17

Chapter 4

BeeeOn

The goal of this work is to develop a functional sample of the secure IoT gateway for
wireless IoT protocols based on BeeeOn Gateway (B G W) . The B G W is being developed
wi th in an open-source and open-hardware project called B e e e O n 1 . Th is project aims to
develop a modular , easily expandable, and secure system for the intelligent household. It is
maintained by Accelerated Network Technologies Research Group operat ing 2 at the Facul ty
of Information Technology i n Brno .

The BeeeOn system consists of several layers, as shown i n 4.1, and endeavors to cover
as much third-party end-devices available on the market as possible. These are sensors and
actuators of various kinds, communicat ing v ia different protocols.

User applications

Figure 4.1: Layers of the BeeeOn system

1https://www.beeeon.org/
2https: / / www.fit.vutbr.cz/research/groups / ant/index.php.en

18

https://www.beeeon.org/
http://www.fit.vutbr.cz/research/groups

Sensors are used as a source of information. They can measure physical quantities or
detect door openness. Actuators are devices that are manageable and able to change state.
A n example of an actuator device is a smart socket that can be switched on or off at a
distance or a smart light bulb that can be remotely adjusted for the intensity or color of
the light. B o t h the actuators and the sensors are wirelessly connected to the central system
unit - Gateway.

Gateway [2] is the center of the BeeeOn Intelligent Household. It is a platform-
independent system. However, the development is affected by the fact that the standard
platform for Gateway is a specific microcomputer w i th A R M architecture and G N U / L i n u x
operating sys tem 3 . Th is microcomputer can be expanded by hardware modules (U S B don-
gles, S P I peripherals, and so on) to include a variety of wireless IoT interfaces. Besides
its ma in functionality, the gateway provides an interface for real-time operational details
monitoring.

The BeeeOn system also consists of BeeeOn Server and user applications. The BeeeOn
Server is main ly responsible for user accounts and data management, while user applications
are used to control and monitor the household. However, these parts of the BeeeOn system
are not relevant to this work.

4.1 BeeeOn Gateway

BeeeOn Gateway (B G W) [2] is a modular system whose ma in tasks are connecting and
management of end-devices and communicat ion wi th the server. Communica t ion wi th the
end-devices takes place v i a wireless protocols, and at the t ime of wri t ing, B G W supports
W i F i , Z-Wave, B L E , and I Q R F protocol. B G W source codes are wri t ten in the C + +
language C + + 1 1 , w i th significant usage of the P O C O 1 libraries. The basic structure of the
B G W is shown i n Figure 4.2 and consists of five components.

3http: / / nanopi.io/nanopi-neo.html
4https: //pocoproject.org/

19

• * •

Figure 4.2: BeeeOn Gateway structure

DeviceManager serves to communicate, pair, and control a group of end-devices that
communicate similarly. The data from the end-devices received by appropriate De
viceManager are converted to the uniform format and sent to the Dis t r ibutor for
further processing.

CommandDispatcher is responsible for sending commands to end-devices and also for
the Gateway itself. C o m m a n d examples include a command to t u r n on the Gateway
pairing mode, an end-device shutdown command, or an order to change the status of
an actuator.

20

CredentialsStorage is used to store credentials needed to authenticate devices connected
to Gateway.

Distr ibutor cooperates w i th Exporters and forwards the received data to them. However,
the Dis t r ibutor can also implement protection from the potential data loss due to
adverse events such as the internet inaccessibility.

Exporter is responsible for delivering the data in an implementation-specific way to the
final destination. For example, it can deliver the data using the M Q T T protocol or
export them to the BeeeOn server.

Also , each of these components uses the Observer Design Pa t te rn and defines appro
priate observable events to provide information about its current state. Therefore it is
possible to implement a specific component, a so-called collector, as shown i n Figure 4.3.
The collector implements the observer role and observes demanded events. Therefore it gets
a notification w i t h related data when an event occurs. The exporter collects and exports
this data for further processing. The data can be then analyzed to create statistics or to
detect network anomalies and help identify potential threats.

Figure 4.3: Collector i n the BeeeOn Gateway

21

Chapter 5

System for Security Analysis

To reach the goal of this work, which is a secured gateway for wireless IoT protocols,
the chosen IoT gateway needs to be secured by a system that w i l l provide analysis of the
IoT data flow. This system should be modular and easily extendable wi th new analysis
methods. For these purposes, the Network Measurements A n a l y s i s 1 (N E M E A) system
seems to be suitable. The information i n this chapter regarding the N E M E A system is
based on whitepaper published by C E S N E T [4].

N E M E A is developed as an open-source project, and its maintenance is a responsibility
of C E S N E T Associat ion. It is a modular heterogeneous system for network traffic analysis.
Its design respects the stream-wise concept, so the data processing can run continuously
in operational memory and does not require any storage space. Moreover, N E M E A can
be ut i l ized i n many use-cases. It can process live network flows as well as offline traffic
traces, it is designed for both operational and experimental use, and it can also be used
to analyze other than standard internet networks. The system is very flexible and can be
easily extended by new modules which can be implemented i n C , C + + , or P y t h o n language.

A module of the N E M E A system is an applicat ion which implements an algori thm or
a method that performs a specific task. For example, such a task may be data fil tration,
anomaly detection, or results reporting. Besides that, each module is buil t upon N E M E A
Framework and uses functionality which is implemented i n its shared libraries.

The most important of these libraries is the Traffic Analys is P la t fo rm (T R A P) l ibrary
that implements basic functionality needed by every module, such as T R A P Communica t ion
Interfaces (IFC) , which allow modules to communicate w i th each other. A n I F C can serve
as either an input or an output of a module, and it is an abstraction of several different
interprocess communicat ion methods; the most used of them are T C P and U N I X sockets.
Thus an input I F C of one module can be connected to an output I F C of another module.
Also , every module can have mult iple I F C inputs and outputs, and many input I F C can
be connected to one output. D a t a pass through the I F C in the form of short messages
(up to 64kB) and create a potential ly infinite stream. The specific I F C types along wi th
the parameters specifying where they should be connected, for example, socket name or
IP address and port, are passed to a module as command-line parameters, and they are
processed by the T R A P library. The key idea is that the ma in algori thm of the module is
entirely abstracted from module communicat ion details, thus a developer can leave a l l the
integration up to the T R A P library.

1 https://github.com/CESNET/Nemea

22

https://github.com/CESNET/Nemea

Next significant l ibrary of the N E M E A Framework is called U n i R e c and implements a
data format used for inter-module communicat ion. A l though the I F C also supports another
two data formats (unstructured data and J S O N) , they are seldom used. Inside the N E M E A
system, data are transferred typical ly i n U n i R e c format. It is an efficient binary format
for transferring and storage of elementary data records. These records are similar to C
structures, but U n i R e c also supports fields w i t h variable length. However, U n i R ec records
are raw data, and their part icular form is given by a template. The U n i R e c templates can
also be defined during runtime, and U n i R ec fields can be accessed direct ly without parsing
the record. Nevertheless, a l l Un iRec data sent through one I F S has to have the same form
given by one specific template. That , however, also radically simplifies data processing,
and i n most cases, it is not a problem.

The last l ibrary that is included i n N E M E A Framework is the C o m m o n library. This
l ibrary provides many functions and data structures which are regularly used by network
traffic analysis algorithms. Examples include various hash functions, hash tables, B l o o m
filter, prefix tree, or B + tree. A l l the libraries i n the N E M E A Framework are wr i t ten i n C
language. However, for the first two mentioned, there is a P y t h o n A P I , so it is also possible
to use them i n python modules. Figure 5.1 shows the structure of a standard N E M E A
module buil t upon N E M E A Framework.

NEMEA MODULE

Figure 5.1: N E M E A module buil t upon N E M E A Framework

Each module is a single program that can be launched from a console. However, an
instance of the N E M E A system typical ly consists of various interconnected modules or
even sets of modules. To deploy N E M E A modules w i th an appropriate interconnection, it is
necessary to start its every module wi th proper parameters. It would be very uncomfortable
to do that manual ly from the console, and it would lead to the opacity of the system and thus
cause problems wi th its maintenance. Therefore, a tool for the N E M E A system control and
monitor ing was created. Th is tool's name is N E M E A Supervisor, and it can run whether
as a system daemon or i n an interactive mode. It uses an X M L configuration file which
describes a structure of the system in such way, that it defines a l l demanded modules w i th
their appropriate parameters and module groups, which can be then launched or stopped
at once. This configuration file can be changed and reloaded at run-time.

Moreover, the Supervisor also provides a th in N E T C O N F client that allows a user to
change the configuration file v i a the N E T C O N F protocol. A n instance of N E M E A system
is displayed i n Figure 5.2. This instance consists of a few interconnected N E M E A modules
and two data measurement probes. The figure shows which parts of the example N E M E A
instance could be managed by the N E M E A Supervisor.

23

NEMEA SUPERVISOR

(PROBE)

COLLECTOR

DETECTOR

PREPROCESSOR

FILTER

* >

DETECTOR

* >

DETECTOR

DETECTOR

>

Figure 5.2: N E M E A system wi th Supervisor

5.1 Data Acquisition

A t the beginning of the N E M E A system data processing typical ly stand modules called
collectors. These modules serve for data acquisit ion and transformation into a N E M E A
supported format, typical ly Un iRec . Collectors can use various data sources, for example,
internet moni tor ing probes, Bluetooth H C I interface, or Open Z-Wave Library . A collector
can send the data direct ly to the analyzing modules, or save them into a file for later
processing. Four data acquisit ion modules were developed wi th in the project SIoT [12].

The first module is responsible for acquiring data from from the BeeeOn Gateway.
It is called Nemea Collector, and it was developed as the addi t ional BeeeOn Gateway
module which, by default, is not compiled nor used, yet this can be changed i n Gateway
configuration files. It is wri t ten in C + + while respecting the implementat ion practices of
the Gateway. The way the Nemea Collector works is that it inherits the BeeeOn class
Abst rac tCol lec tor . The Abst rac tCol lec tor is a class that serves as an interface through
which a l l the B G W traffic data are accessible. Nemea Collector formats acquired data that
are suitable for the N E M E A detectors to U n i R e c . These data are subsequently sent v ia
U N I X Sockets to Nemea detectors for further processing. Nemea Collector observes and
exports data from the following events:

Expor t - Occurs when data from an end-device are delivered to the gateway. These
received data are the object of the observation and exportation.

Dispatch - Occurs when the gateway receives a user command. The object of the obser
vation is the appropriate command.

HciStats - Occurs periodically. The data that are observed are the statistics of a B L E
network traffic, which are available on the H C I interface.

DriverStats - Occurs periodically. Observed are the data available on a communicat ion
interface of a Z-Wave network.

NodeStats - Occurs periodically. Observed data, which are statistics about Z-Wave nodes
wi th in the network, are obtained from the OpenZWave library.

The next SIoT collector is called HCICol l ec to r . It is a standalone module which collects
al l B L E packets w i th their metadata obtainable on a specified H C I interface. The metadata

24

consists of the type of a packet, its t imestamp, and its direction. Next collector is also a
standalone module, which also collects B L E related data. Its name is B L E Adver t is ing
Scanner, and its purpose is cyclic l istening to B L E advertising channels and reporting a l l
the discovered devices. The last SIoT collector is LoRaCol lec to r which is meant to run
on L o R a Ga teway 2 developed at V S B Technical Univers i ty of Ostrava. Its purpose is to
format a l l L o R a messages which the gateway captured into the U n i R e c format and offer
them v i a I F C for processing.

5.2 Detectors

N E M E A modules which analyze the data flow and identify potential threads are called
Detectors. Input I F C of these modules is typical ly connected to the output I F C of a
collector, or some data preprocessor. The detectors then examine received data and search
for anomalies or known attack scenarios, and report identified security threads through
their output I F C s . F ive such modules were developed wi th in the SIoT project [12].

One of them is called W S N A n o m a l y Detector. It is a universal configurable detector
that was developed simultaneously w i t h the Nemea Collector, and these two modules are
intended to work as a pair. The principle of W S N A n o m a l y Detector detections lies in the
creation of a network profile and its subsequent comparison w i t h the current network traffic.
For these purposes, the detector treats the input data flows as t ime series and analyzed
characteristics are average, moving average, moving variance, and moving median. W S N
A n o m a l y creates a t ime series for each specific U n i R ec field specified i n a given configuration
file. Cr i t e r i a used for detection which are also part icularized in the configuration file, are an
unexpected growth, exceeding the determined values, and periodici ty violat ion. However,
W S N A n o m a l y uses one input I F C , while the Nemea Collector can use mult iple output
I F C s , one for each observed data source. This issue can be overcome by the use of Merger,
which is a N E M E A module intended for consolidating many I F C flows into one. After the
processing, the W S N A n o m a l y detector proceeds the information about detected threats
v i a single output I F C .

Next detector serves to detect threats i n B L E networks it is intended to work wi th H C I
Collector mentioned above. Its name is B L E Pa i r ing Detector, and its purpose is to identify
unexpected B L E pair ing procedures. M a n y B L E security threats stem on the interception
of the pair ing procedure. Therefore, unexpected pair ing procedures can indicate an attack,
where an attacker forces already paired devices to go over the pair ing procedure again.

The following group of SIoT detectors that consists of L o R a A i r t i m e Detector, L o R a
Distance Detector, and L o R a Replay Detector, is developed to increase the security of the
L o R a W A N network. A l l these detectors are designed to work wi th the LoRaCol lec to r , and
thus they expect their input to be L o R a packets i n U n i R e c format. The purpose of the
A i r t i m e Detector is air t ime regulation for ind iv idua l L o R a W A N end-devices. L o R a W A N
protocol specifies the m a x i m u m on-air t ime for each device, and this detector is intended
to detect its exceedance. L o R a Replay Detector detects potential attacks that can cause
the DoS of a L o R a end-devices. These attacks misuse the vulnerabi l i ty connected to L o R a
devices which use A P B joining procedure, by injecting previously captured messages at the
right t ime. The last L o R a detector detects physical movement of L o R a W A N end-devices.
The detector considers that a device had been moved when the Received Signal Strength
Indicator (RSSI) i n the newly received packet and the previously stored R S S I for the device

2https: //lora. vsb.cz/index.php/building-rpi-gateway/

25

http://vsb.cz/index.php/building-rpi-gateway/

differs. However, this method is not highly accurate, and it is not possible to compute
exact device posit ion. Nevertheless, it also does not require sophisticated algorithms,
much computing power, and the information that the device had changed its posit ion
be precious.

26

Chapter 6

Gateway design

The goal of this work is to create a secured IoT gateway, which w i l l consist of BeeeOn
Gateway and existing detection systems and run on Turris O m n i a . The resulting solution
must meet several functional and non-functional requirements to fulfill this goal and also to
be the quality. Funct ional requirements specify the resulting solution functionality itself.
One of these essential functional requirements is to preserve the functionality of the BeeeOn
Gateway, which can communicate w i th and control IoT devices. In order to secure this
communication, detection systems w i l l always be running along w i t h the gateway. A l l
these systems w i l l run on the router. Routers are typical ly restarted once a t ime and have
to work without any user interaction for a long period. Therefore, the system must be
started automatical ly wi th the router and run continuously. Another main requirement is
system interaction w i t h the user. A s long as the detection systems and nor the BeeeOn
Gateway cannot react i n the way to prevent or stop a potential attack, in the case of a
detected security threat, the system w i l l only warn the user. Also , the resulting system
has to be configurable, meaning that it w i l l be possible to choose detection systems and
configure them, as well as B G W .

Regarding the l imi t ing properties of the system, i.e., non-functional requirements, two
of them result from the nature of Turris O m n i a . A l t h o u g h it is one of the more powerful
routers, it should be taken into account that it has considerably less computing power than
a regular P C . Therefore it is necessary for the resulting system to have relatively small
demands on computing power. It is also noteworthy that this router uses the Turr i sOS
operating system based on O p e n W R T , and thus, the resulting system w i l l be targeted to run
on and also tested on this platform. Another non-functional requirement is expandability.
It is l ikely that new detection systems w i l l emerge and that the existing ones w i l l somehow
change or improve. Hence the architecture of the resulting system w i l l be proposed the way
that w i l l ensure its easy extendibil i ty and independence of its subsystems.

6.1 System proposal

The proposal of the resulting secured IoT gateway system is shown i n figure 6.1.

27

VSB LoRa Gateway

LoRaCollector

Turris Omni

r

Colliot

3
A ' '

• 11

Ubuntu

Figure 6.1: Proposal of the secured IoT gateway system

28

The design consists of two hardware components, one v i r tua l machine, and ten software
components. The idea is the BeeeOn Gateway serves as IoT gateway. Thus the B G W
connect to and control IoT end-devices and also communicate w i t h the server to send data
and receive commands. However, the B G W is extended w i t h one addi t ional module. It
is the Nemea Collector [16] which, along wi th the H C I Collector and the L o R a Collector,
serve as a data source for the detection systems. Figure 6.2 displays the usage of B G W in
the resulting system.

END-DEVICE

Figure 6.2: BeeeOn Gateway as a part of the secured IoT gateway system

The proposal shows the B G W secured using the detection systems, that were developed
wi th in the SIoT project and are buil t on the N E M E A framework. These detection systems
are:

W S N A n o m a l y Detector - Th is detector w i l l retrieve data from the Nemea Collector
and analyze them to detect potential DoS attacks i n the Z-Wave network.

B L E Pair ing Detector - Th is detector w i l l retrieve data from the H C I Collector and
analyze them to detect suspicious or unexpected B L E pair ing process.

L o R a Air t ime Detector - Th is detector w i l l retrieve data from the L o R a Collector and
analyze them to detect eventual exceeding the allowed transmission t ime l imi t of each
L o R a W A N end-device.

L o R a Distance Detector - Th is detector w i l l retrieve data from the L o R a Collector and
analyze them to detect changes i n L o R a W A N end-devices posit ion.

L o R a Replay Detector - Th is detector w i l l retrieve data from the L o R a Collector and
analyze them to detect potential DoS attacks in the L o R a W A N network.

29

A central hardware unit of the system, where also the most crucial software parts of
the system are running, is the Turris O m n i a router. A l l the detectors and also the H C I
Collector are N E M E A Modules designed as stand-alone programs. A s long as it would
be complicated to run and manage a l l these modules individual ly, it is reasonable to use
a program that encapsulates them and ensures their unified management. Therefore the
proposal shows N E M E A Supervisor that manages a l l stand-alone N E M E A modules on the
router. The usage of N E M E A Supervisor w i l l make it easy to enable, disable, or anyhow
configure these modules and also to automatical ly start them along w i t h the operating
system because the Supervisor can work as a system daemon.

Nevertheless, three above mentioned detectors detect threats i n L o R a W A N networks,
and L o R a Collector is designed to be their data source. This Collector was designed and
developed to run on the V S B L o R a Gateway, which is, therefore, the second hardware part
of the resulting system. In the resulting system L o R a Gateway, however, does not fulfill
any other purpose except being a platform for L o R a Collector . Figure 6.3 shows data flows
between collectors and detectors in the resulting system. Specifically, it displays which
collectors serve as the data source to ind iv idua l detectors.

Figure 6.3: Collectors as data sources for detectors

The last software part of the system is the Col io t IoT collector. The Col iot role i n the
system is to collect data from the detectors to store them permanently and present them to
the user. The design shows Col iot running on a U b u n t u v i r tua l machine. The Col iot system
was developed to run on U b u n t u and Debian, and no instal lat ion script nor a package for
other operating systems is available at the t ime of wr i t ing . The idea of user interaction
wi th the security system is displayed in Figure 6.4. The figure shows that a l l the detectors
send data from the router to the Col iot system running on a v i r tua l U b u n t u machine. A
user can interact w i th the system by connecting to the Col io t system.

30

31

Chapter 7

System integration

It is necessary to integrate and interconnect a l l the mentioned components to bu i ld a
resulting system as designed i n the previous chapter. Therefore following activities had to
be done:

Creat ion of the integration tests: It is a good practice to determine how w i l l the re
sulting system work at the beginning of the development phase. That means, in
particular, the creation of some way to verify correct system functionality. The re
sulting system w i l l be tested by a testing script using pre-set data sets. Therefore it
was necessary to design and implement this script.

Nevertheless, the best way would be to test the resulting system on real IoT network
w i t h real attacks. However, the creation of a testing environment meeting these
requirements is not possible wi th in this work. It would require many IoT devices and
also other hardware components suitable for attacking.

Integration of the Nemea Collector to the BeeeOn Gateway: The Nemea Collec
tor was developed direct ly for BeeeOn Gateway but has never been incorporated into
the official repository. However, to use B G W i n the secured IoT gateway system for
the long run, it is necessary to incorporate it to reflect any changes i n B G W and
thus avoid incompat ib i l i ty over t ime. Moreover, the incorporat ion facilitated the cre
ation of packages as described in the next indent, because the B G W can be compiled
directly from official source codes available on Gi thub .

Creat ion of packages for Turr i sOS: A significant part of the system run on the Turris
O m n i a router w i th OpenWRT-based Turr i sOS operation system. Therefore it was
necessary to create packages of the required programs that are suitable to be installed
and running on the router. Specifically, these programs are BeeeOn Gateway, N E M E A
Supervisor, H C I Collector, W S N A n o m a l y Detector, B L E Pa i r ing Detector, L o R a
A i r t i m e Detector, L o R a Distance Detector, and L o R a Replay Detector.

Instalation and configuration of the created packages to the Turris Omnia: After
their creation, the packages need to be installed and tested on the router. Then, to use
them as one secured system, they have to be suitably configured. Such configuration
activities included, in particular, creating a configuration for the N E M E A Supervi
sor and edit B G W configuration files. W i t h the proper configuration, the Supervisor
arranges correct interconnection of a l l the N E M E A modules. Correct ly configured

32

B G W preserves its full functionality on the Turris O m n i a and interconnects w i th
appropriate N E M E A modules.

Creat ion of the v irtual disk with configured Coliot system: Another needed func
t ionali ty of the resulting system is interaction wi th the user, which is provided by the
Coliot system running on a v i r tua l U b u n t u machine. Consequently, such a v i r tua l
machine needed to be created, and the Col io t system needed to be installed to it.
The Col io t system, moreover, had to be then appropriately configured to be able to
correctly recognize incoming data and visualize it to the user in a useful way.

Inter-hardware interconnection: A necessary step was also connecting a l l hardware
components. Tha t included the Turris Omnia , V S B L o R a Gateway and also the
machine that the v i r tua l U b u n t u w i l l run on. However, it was not only needed to
interconnect them w i t h an ethernet cable, but also to connect appropriate programs
that need to be connected but run on different devices. These programs are, specif
ically, L o R a Collector which runs on V S B L o R a Gateway and is meant to serve as
a data source for a l l L o R a detectors that run on the Turris Omnia . , and also the
Coliot Collector, which w i l l run on a v i r tua l machine, but its purpose is to collect
data from a l l detectors.

7.1 Creation of tests

Firs t of the activities is the creation of a testing script that w i l l provide integration tests of
the system. Figure 7.1 shows the proposed, and also implemented, principle of its operation.

The way, how it works, is that at first, it launches an instance of the N E M E A system
that consists of a l l detectors developed wi th in the SIoT project. T h e n it injects appropriate
data sets containing captured network traffic to each detector and, finally, it compares their
outputs w i th the pre-created expected outputs.

33

A l l the SIoT detectors are published and maintained i n a central git repository on Gi thub
called N E M E A - S I o T . However, none of these detectors had an automated tool to test it and,
furthermore, the majority of the detectors d id not even include example datasets suitable
to demonstrate their functionality. These facts have proven to be a problem in creating an
integration testing script and motivated the creation of automated tests for the modules
wi th in N E M E A - S I o T repository. The figure 7.2 displays the principle of proposed, and also
implemented automated tests.

NEMEA-SIoT

1. SCAN THE REPO

logreplay — • executable module logger •

Figure 7.2: A u t o test script for N E M E A - S I o T repository

The idea is that a single script located at the uppermost level of the repository pro
vides the testing. T h i s script tests each module separately and thus provides unit tests of
N E M E A - S I o T systems. F i r s t l y it scans the repository and identifies a l l folders containing
N E M E A module wri t ten in C language and also determines, wheater the module includes
tests. Then the script tries to compile a l l modules and verifies the result of this compila
t ion. The modules which were successfully compiled, and include tests, are then tested.
For each module, the testing process begins w i th the identification of a l l test datasets and
appropriate files w i th expected module output after their processing, and then goes as
follows:

1. The script launches the module which is currently under testing, waits for one second
and ensures that the module is correctly running.

34

2. The next phase needs two addi t ional N E M E A modules are - Logreplay and Log
ger. The first test data set is injected to the module input I F C using the N E M E A
Logreplay, and the module output is captured by the N E M E A Logger.

3. After a module process the data, the script shuts down a l l launched programs. The
end of data proceeding is determined the way that the testing script waits un t i l the
tested module shuts down. This shut down is caused by the fact, that after replaying
the complete test data set, N E M E A Logreplay sends a special E O F U n i R e c record.
A s soon as the tested module receives this E O F record, it ceases its activity.

4. F inal ly , using the shell diff uti l i ty, the script compares captured output w i t h the
expected one and evaluates the result.

5. A n d then the script repeats a l l steps for the next test dataset.

However, it takes quite a lot of t ime to test the whole repository, as there is a timeout
for every single test, as results from the first step mentioned above. Moreover, some of
the test datasets are huge, and thus, their processing takes a few seconds. Furthermore,
the compilat ion takes much time too and is not always necessary. Therefore, the script
supports arguments by which a user can specify the modules that are demanded to be
tested, and also can tu rn off the compilat ion or testing. Also , the paths to N E M E A Logger
and N E M E A Logreplay can be specified by script arguments. Thus it not inevitable to
have them installed.

For the script to work properly, it is necessary that modules have a uniform and clearly
defined structure. Nevertheless, the structure of ind iv idua l modules differed. Therefore,
the following rules have been agreed upon and implemented into the repository:

• Every module is stored i n the directory wi th a name created as the lowercase name
of the module wi th dashes instead of spaces (W S N A n o m a l y —> wsn-anomaly).

• Module source codes and files needed for automatic compilat ion is stored in the up
permost level of a module directory.

• The compilat ion of a module creates in an executable file w i th the name identical to
the repository but w i th the siot- prefix (wsn-anomaly —> siot-wsn-anomaly).

• In each module directory, a directory named tests is present. Th is directory serves
as a storage place for file pairs composed of a file containing a test dataset and a
file containing modules expected output after the dataset processing. B o t h the files,
forming the pair, have an identical name, but the suffix of the dataset file is .csv, and
the suffix of the expected output file is .out.

• A module directory can also contain a special file named tests.json. In this file, two
sets of shell commands and a set of arguments are specified. One set of the shell
commands is executed before the module is launched. Then the module is launched
w i t h the specified arguments, and finally, the second set of shell commands is executed.
B y this, it is possible to overcome the fact that besides the common N E M E A Trap
arguments, a module could support or even require other specific arguments.

This repository modification and auto test script creation significantly facilitated the
development of the integration test script, which can also use the mentioned test datasets.

35

The work of the integration test script and auto test script is significantly alike. The main
difference is that the integration test launches a l l modules at once. For this purpose, the
N E M E A Supervisor is used. Also , the integration test does not have anything to do wi th
the module compil ing; it tests installed modules.

However, this test does not cover any other part of the resulting system than the detec
tors, which are running on Turris O m n i a . Nevertheless, the creation of an automated test
that w i l l cover a more significant part of the resulting system w i l l be overcomplicated. Be
sides, this test covers the heart of the securement - co-work of a l l used detectors. Moreover,
other parts of the system could be quite merely tested manually.

7.2 Nemea Collector incorporation

Another task was to incorporate Nemea Collector into the BeeeOn Gateway repository.
Thereby it is ensured that the potential future changes in the B G W w i l l reflect on the
collector and thus it prevents incompat ibi l i ty from occurring over t ime. This reason proved
to be adequate as the original Nemea Collector was even no longer compatible w i th the
latest version of the B G W . The reason for this incompat ib i l i ty was that names of some
B G W methods had changed. Hence it was necessary to reflect these changes i n the Nemea
Collector source codes to make it possible to compile the B G W wi th i t .

Furthermore, the previous use of the Nemea Collector was not in line w i th the principles
that are followed when developing the B G W . Therefore, the Nemea Collector source codes
and their location wi th in the B G W repository have been changed. Changes also occurred
in the B G W configuration files and files needed for its compilat ion. These modifications
have introduced Nemea Collector as one of the opt ional B G W modules that can be easily
switched on and off i n the B G W configuration. In this state, the Nemea Collector has been
incorporated into the official B G W repository, and by default, it is turned off.

7.3 TurrisOS packages

Packages for the Turr i sOS are necessary to instal l and run secured IoT gateway system
on the Turris Omnia . In addi t ion to packages of the already mentioned programs, from
which the resulting system w i l l consist, it was also necessary to create packages that are
not included i n the Tur r i sOS package system, but the resulting system is dependent on
them, or are needed to test or l ink some parts of the system. Specifically, except the SIoT
modules and BeeeOn Gateway, demanded packages are:

• G L i b 2 and Poco libraries
The glib2 package and also a package containing the Poco libraries are needed as the
B G W depends on them, but the Tur r i sOS package system does not include them.

• N E M E A Framework
A l l the N E M E A modules, which include a l l SIoT detectors and collectors, are depen
dent on the N E M E A Framework. Consequently, its package is required.

• N E M E A Logger and Logreplay
These two N E M E A modules, and, therefore, their packages, are required for resulting
system testing.

36

• N E M E A Merger
Because of the fact, that the Nemea Collector outputs data through as many I F C s
as many events it listens to, the N E M E A Merger is required as the interface between
the Nemea Collector and the W S N A n o m a l y Detector which uses single input I F C .

Furthermore, a new N E M E A module was created due to the fact that the N E M E A
instance i n the resulting solution has to run on the router w i th Tur r i sOS. It is a lightweight
version of the N E M E A Supervisor called N E M E A Supervisor Lightweight (SupervisorL).
A m o n g its most significant benefits compared to the classic N E M E A Supervisor belongs
the fact, that except the N E M E A Framework it has no dependencies besides the com
monly available Tur r i sOS packages. Moreover, it is much less sophisticated and demands
significantly less computing power than the regular Supervisor. However, the essential
functionality for the secured IoT gateway system remains. The N E M E A SupervisorL can
start and stop a l l demanded N E M E A Modules wi th their interconnections at once. For its
work, SupervisorL needs a single configuration file where the required N E M E A instance is
specified.

For the reason that the SIoT project also aims at the possibil i ty of the deployment
of developed modules on commonly available network elements, especially routers, there
already has been an ini t iat ive to create SIoT N E M E A modules packages. Moreover, as long
as the widely spread, and for this purposes most suitable operating system used on such
devices is Linux-based O p e n W R T , this ini t iat ive is mainly aimed at O p e n W R T packages.

Consequently, some packages for O p e n W R T and also for the Tur r i sOS has already
existed. Nevertheless, few essential packages for the secured IoT gateway system were
missing. Moreover, a principle of releasing, maintaining, versioning, and testing these
packages has not been established. The ind iv idua l packages were in different locations, and
they d id not come from the latest module versions. Furthermore, they were not tested and
often contained errors that made them unusable.

Therefore it was necessary to establish a uniform system for package releasing, testing,
and maintaining. For this purpose, a branch i n the N E M E A - S I o T G i thub repository was
created. A name of this branch is turris-secured-gateway, and its structure is designed to
store and manage the packages required to create the secured IoT gateway system on the
Tur r i sOS. A l o n g w i t h the appropriate packages, it also contains text files w i th information
related to them and instructions needed for the system instal lat ion. The structure of this
branch is i l lustrated i n figure 7.3 and is as follows:

Uppermost level: Reposi tory root on this branch contains directories that serve to store
packages. E a c h directory stores packages of one part of the system. In these parts,
packages are grouped based on which project they are related. Therefore there are
three of this directories - one wi th the name siot-modules for N E M E A modules devel
oped wi th in the SIoT project, the other w i th the name nemea for a l l other N E M E A
related packages and the last one, named beeeon-gateway, for a l l packages necessary
for the B G W installat ion.

Also , there is an instal lat ion script and a readme file i n the root directory. The
instal lat ion script serves to instal l whole secured IoT gateway system. That means it
installs a l l packages i n the proper order, as shown in Figure 7.4. For this purposes, it
uses instal lat ion scripts i n subdirectories, which are described in the following indent.
F i r s t ly it calls instal lat ion script in the Nemea directory. It is because the SIoT
N E M E A modules and also the BeeeOn Gateway wi th enabled Nemea Collector are

37

dependant on the N E M E A Framework. The order of instal l ing siot-modules and
beeeon-gateway does not matter, yet the script calls the siot-modules instal lat ion
script as the second and the beeeon-gateway instal lat ion script as the last.

The readme file present i n the repository root contains information about the reposi
tory itself, its purpose and the guide on how to instal l the whole secured IoT gateway
system using the instal lat ion script.

E a c h package group directory: The idea is that packages related to one project are
kept w i th in one repository subdirectory. However, the beeeon-gateway directory also
includes glib2 and poco-all packages, as the B G W depends on it . Moreover, the
B G W , as well as N E M E A SIoT modules, is also dependant on the N E M E A Framework
which package is stored in the nemea directory. Therefore, these directories cannot be
regarded as independent package groups nor as package groups of programs that have
been developed wi th in a single project. S t i l l , this divis ion best reflects the relat ion of
packages to ind iv idua l projects and brings benefits to their release, maintenance, and
retention of associated information.

That information is held i n a readme file which is present i n each of these subdi
rectories. E a c h of these readme files contains a description of the packages wi th in
the appropriate directory, their dependencies, their instal lat ion procedure, and also a
T O D O list l inked to them. Examples of items that T O D O lists are meant for include
bugs found in the latest version or proposed enhancements for the future. The last
thing present i n package group directories is instal lat ion scripts. These scripts contain
shell commands which reflect instal lat ion guide in the relevant readme file and thus
automize the instal lat ion.

For this work, the packages were created from the latest available versions at the time
of wri t ing:

• B L E Pa i r ing Detector - commit c083deb i n branch N E M E A - S I o T / m a s t e r 1

• W S N A n o m a l y Detector - commit 145edd4 i n branch N E M E A - S I o T / m a s t e r 1

• L o R a A i r t i m e Detector - commit d7a3730 i n branch N E M E A - S I o T / m a s t e r 1

• L o R a Distance Detector - commit 2049474 i n branch N E M E A - S I o T / m a s t e r 1

• L o R a Replay Detector - commit 2049474 i n branch N E M E A - S I o T / m a s t e r 1

• H C I Collector - commit 202fa5c in branch N E M E A - S I o T / m a s t e r 2

• N E M E A Merger - commit 9a3c031 i n branch Nemea-Modules /master 2

• N E M E A Logger - commit 90d9643 i n branch Nemea-Modules /master 2

• N E M E A Logreplay - commit dbf6d8d i n branch Nemea-Modules /master 2

• N E M E A SupervisorL - not publ ic ly available

• BeeeOn Gateway - commit 121ee07 i n branch gateway/master 3

xhttps: //github.com/CESNET/NEMEA-SIoT/tree/master /
2https: //github.com/CESNET/Nemea-Modules/tree/master /
3https: / / github.com/BeeeOn/gateway/tree / master /

38

http://github.com/BeeeOn/gateway/tree

NEMEA-SloT/turris-secured-gateway

install.sh README

beeeon-gateway

install gateway.sh

glib2

poco-all

beeeon-gateway

README

siot-modules

install siot.sh

siot-ble-pairing

siot-hci-collector

siot-lora-airtime

siot-lora-distance

siot-lora-replay

siot-wsn-anomaly

README

install nemea.sh

nemea-framework

nemea-logger

nemea-logreplay

nemea-merger
nemea-supervisorl

README

Figure 7.3: N E M E A - S l o T repository - branch turris-secured-gateway

NEMEA-SloT/turris-secured-gateway

beeeon-gateway

instalLgateway.sh 3.

f
glib2

poco-all

beeeon-gateway

as*.
README

install.sh

siot-modules

README

o
install siot.sh

f
siot-ble-pairing 1.

siot-hci-collector 2.

siot-lora-airtime 3.

siot-lora-distance 4.

siot-lora-replay

siot-wsn-anomaly 6.

README

install nemea.sh 1.

f
nemea-framework

nemea-logger

nemea-logreplay

nemea-merger

nemea-supervisorl

2^.

README

Figure 7.4: Tur r i sOS package instal lat ion order

39

7.4 Coliot

To provide relevant data to a user, it was necessary to set up the Col io t system. This system
is designed to work wi th the U n i R e c data. These data are acquired by Col io t Collector and
stored i n a S Q L database. The Col iot Collector is a python N E M E A module, which uses
a single input I F C . For its proper work, it needs a set of templates which contain two
sections - M A I N and F I E L D S . The F I E L D S section stores definitions of U n i R ec fields in
the format NAME_OF_FIELD = datatype. W h e n the Col iot Collector receives first Un iRec
record, it goes through a l l templates to find the one which fields definitions match w i t h the
fields of the received record. T h e n it stores the received data in the database to a table
which name is given in the M A I N section of the appropriate template. Structure of this
table is generated based on the F I E L D S definitions. Therefore, to correctly store a l l the
detection results in the database, it was necessary to create a Col io t Collector template
wi th appropriate F I E L D S section for a l l the detectors.

A s a G U I , the Col iot system uses Apache Superset' 1 web applicat ion. The way it works
is that it has access to the database and allows user creating dashboards wi th graphs
and tables from the available data. To make the detection results user-friendly to read a
dashboard that shows a l l the significant detection results in one place was created.

7.5 System deployment

The most significant part of the system is BeeeOn Gateway and the SIoT N E M E A instance
on the Turris O m n i a . To deploy these systems, it is necessary to instal l created packages
to the router. Tha t was done using before mentioned instal lat ion script available in the
N E M E A - S I o T repository on the branch turris-secured-gateway.

However, B G W supports W i F i , Z-Wave, B L E , and I Q R F protocol, but the router only
provides a communicat ion interface for W i F i . Therefore it was necessary to plug addi t ional
modules (dongles) into the router providing communicat ion interfaces for Z-Wave, B L E ,
and I Q R F protocol to conserve full functionality of the B G W . Moreover, the H C I Collector
also draws data from the H C I interface and thus a Bluetooth dongle. Figure 7.5 shows
the Turris O m n i a router w i th a l l addi t ional required dongles and their connection to the
secured IoT gateway system parts. Also wor th mentioning is that the Turris O m n i a has
only two U S B input interfaces, and since three dongles are needed to use the full system
functionality, it was unavoidable to use a U S B hub.

4https: //superset.incubator.apache.org/

40

Figure 7.5: A l l necessary dongles plugged into Turris O m n i a

For this work, Turris O m n i a router w i th clean OpenWrt omnia 15.05 system that has
disabled auto-updates is used. This system, by default, do not recognize the abstract
control model (A C M) devices, and the used Z-Wave dongle represents itself an A C M device.
Therefore it was necessary to instal l the kmod-usb-acm package to it.

In addi t ion to preserving the full functionality of B G W , it was also necessary to properly
interconnect the parts of the system running on the router. Specifically, the H C I Collector
w i th B L E Pa i r ing Detector and Nemea Collector w i t h W S N A n o m a l y Detector. A l l N E -
M E A modules use I F C s as an input and output interface. Specification for those I F C s is
given to stand-alone modules as arguments at their launch. Consequently, interconnections
of these modules can be handled by the N E M E A SupervisorL, as it is possible to specify
arbitrary arguments for each N E M E A module in its configuration file.

However, the Nemea Collector is not a stand-alone module, but its a part of B G W .
Thus it cannot be configured in the SupervisorL configuration file, but its output I F C s are
specified w i th in the B G W configuration. Moreover, i n the resulting solution, the Nemea
Collector uses mult iple output I F C s . Specifically, five of them - each for one observed
B G W event. O n the other hand, the W S N A n o m a l y Detector uses a single input I F C .
To overcome these issues, the N E M E A Merger was used as an interface between W S N
A n o m a l y and Nemea Collector. A s long as N E M E A Merger is a standard stand-alone
N E M E A module, it can also be managed by the N E M E A SupervisorL.

Besides the connections wi th in the router, a l l the detectors must be connected to a Col iot
Collector which runs on a v i r tua l machine. Also , the L o R a detectors must be connected to
the L o R a Collector running on the V S B L o R a Gateway. Nevertheless, a l l the mentioned
programs are N E M E A modules. Therefore their interconnection can be handled by the
use of T C P I F C s . Tha t means that on a l l detectors on the Turris O m n i a must open an

41

T C P S IFC

T C P S IFC

T C P S IFC

T C P S IFC

T C P S IFC

lora-replay TCP S IFC \ * -

--T---0

lora-airtime / TCP S IFC f* -

ble pairing / UNIX S IFC /•*• - - / UNIX S IFC ̂ > Hcicoiiector

wsn-anomaly / UNIX S IFC f * - - / UNIX S IFC I merger

BeeeOn GW

NemeaCollector

Nemea Supervisor

UNIX S IFC j- - -*j UNIX S IFC

UNIX S IFC j- - ->/ UNIX S IFC

UNIX S IFC j- - ->/ UNIX S IFC

UNIX S IFC /• - ->/ UNIX S IFC

UNIX S I F C / - - ->/ UNIX S IFC

Figure 7.6: I F C s of N E M E A modules running on the Turris O m n i a

output T C P I F C to which the Col iot system w i l l connect. Besides, L o R a detectors have
to use input T C P I F C to connect to the L o R a Collector. However, the type of I F C does
not affect the way of its specification. Hence, these T C P I F C s can also be specified i n the
SupervisorL configuration file.

Therefore the creation of appropriate configuration file for SupervisorL entirely solved
connection requirements of the system parts running on the Turr is O m n i a . Figure 7.6
displays a l l system parts running on the router and a l l the I F C s they use. Arrows i n the
figure between the I F C s always point from an output I F C to an input one and thus indicate
the direction of the data transfer.

Nevertheless, it was also necessary to set up appropriate connections on the other two
devices that are part of the resulting system. The Col io t system running on the v i r tua l
U b u n t u uses a python script called Col iot Collector for the data acquisit ion. Th is script is
buil t upon N E M E A Framework and uses the I F C as an input interface. However, the Col iot
Collector is designed to use a single input I F C , while Col iot system needs to be connected
to five detectors. Therefore, five instances of Col iot Collector were used to interconnect the
Col iot system wi th a l l the detectors running on the Turris Omnia . Each of these instances
connects w i th its input T C P I F C to the output T C P I F C of one detector.

The L o R a collector which runs on the V S B L o R a Gateway and serves as a data source
for L o R a detectors is also a N E M E A module. To connect it w i th the detectors it was
necessary to launch it w i th a correctly specified output T C P I F C . Subsequently, a l l the
L o R a detectors connected to that I F C , as long as it is possible for mult iple input I F C s to
connect to a single output one.

42

Chapter 8

Results

The resulting functional sample of secured gateway for wireless IoT protocols was created by
integrating many systems that are being developed by mult iple developers across multiple
projects. A l so , its overall functionality depends on the functionality of the used systems.
The fact that most of these systems are s t i l l under development, and they have often not
been systematically tested has proven to be cr i t ica l . Moreover, the development of these
systems d id not take into account that they would be used as a single unit . Consequently,
several problems had to be solved during their integration so that the resulting system
could be created.

The first problem solved was that the functionality of the ind iv idua l detection mod
ules could not be uniformly verified. To overcome this deficiency, a script for automated
testing of modules developed wi th in the N E M E A - S I o T repository was implemented. This
test revealed many shortcomings. The main hindrance was that no data was available
to demonstrate the functionality of any testable module except W S N A n o m a l y Detector.
Furthermore, despite the existence of data samples for the W S N A n o m a l y Detector, the
expected module output after their processing was not defined. Therefore, the correct
functionality of any SIoT module could not be verified at a l l . Another revealed deficien
cies included inappropriate access rights on one module's script needed for its automated
compilement, improper names of resulting executable files after modules compil ing and also
shortcomings in the structure of module s directories. A n overview of the problems found
by the auto test is shown i n Table 8.1.

The test was incorporated into the N E M E A - S I o T repository, and modules developers
were made aware of their modules shortcomings. A l l the revealed deficiencies were fixed,
and the data suitable for modules testing along wi th the expected outputs after their
processing were added. However, this exposed a deficiency i n the N E M E A Logger, which is
used by the testing script to capture modules outputs. The problem was the output format
of M A C Address datatype which can occur i n the U n i R ec record. The N E M E A Logger
formatted this output w i th the usage of a l ibrary which behavior differs depending on the
operational system. Consequently, the tests were passing on some computers yet failed on
others. A s long as the use of Logger is the only suitable way of capturing modules output,
its developers were notified, and this issue has been fixed.

43

M o d u l e Structure A u t o compilement Executable name Test data
B L E Pa i r ing / / X X
W S N A n o m a l y X / X /
L o R a A i r t i m e / X x X
L o R a Distance / / x x
L o R a Replay / / x x

Table 8.1: Modu le deficiencies revealed by the auto test script

A s soon as a l l modules were unified and tested, the deployment on Turris O m n i a fol
lowed. Packages of a l l necessary modules were created using the existing SIoT environment
designed for these purposes. Also , an integration test script suitable to test the system on
the router was implemented. However, after the packages were installed, the test d id not
pass, and it has revealed various package-related problems. M u l t i p l e modules were crashing
after they received data v ia the N E M E A Logreplay. The detectors L o R a Distance and W S N
A n o m a l y were falling on a bus error, and L o R a A i r t i m e was crashing on a segmentation
fault. Besides, the L o R a Replay detector output was different than expected. Moreover, the
N E M E A Logreplay installed from the package was not able to parse timestamps present in
the B L E Pa i r ing testing data sets. Also , experimental testing of the whole system shown,
that Col iot system was not ready to process U n i R e c records containing M A C addresses.

These issues have been reported, and most of them were successfully fixed. Table 8.2
summarizes the problems that occurred during testing of the resulting system and whether
they were solved. The errors connected to the L o R a Distance and W S N A n o m a l y persists.
Therefore, these detectors are not suitable to be used in potential product ion as a part of
the resulting system.

Problem Solved
N E M E A Logreplay - unable to parse timestamps «/
W S N A n o m a l y - bus error X
L o R a A i r t i m e - segmentation fault «/
L o R a Distance - bus error X
L o R a Replay - inappropriate output /
Col io t system - unable to process records wi th M A C Address /

Table 8.2: Issues associated w i t h installed packages

Nevertheless, a l l the other parts of the system work as expected except a smal l problem
that occurred after the L o R a A i r t i m e segmentation fault fix. A b o u t 1 out of 250 its Un iRec
output records is improper. However, this is not a crucial issue, the detector can be used,
and the system can be deployed i n its enlighted version. The connection between V S B L o r a
Gateway, Turr is O m n i a router, and Col iot system running on U b u n t u V M functions prop
erly, and a user can display detection results using Col iot web interface. This functionality
was experimentally tested by running the entire system, sequential injection of test data
sets to working detectors and moni tor ing results v ia Col iot system. Exper imenta l testing
also included testing of the BeeeOn Gateway. Its functionality was tested v i a the Testing
Center, which is one of its modules, al lowing its control v i a a console interface. Every th ing
worked as expected. The Col iot system shown appropriate detection results, and the B G W
was able to connect to and control IoT end-devices.

44

The detectors running on Turr is O m n i a were also subjected to stress tests. The test
scenario was that the modules were launched and test data sets were injected to their inputs
in an endless cycle. Dur ing the test, system resource consumption was monitored using the
shell top uti l i ty. None of the functional detectors loaded the processor to even one percent,
nor consumed at least two percent of v i r tua l memory (V M S) . The same results of consumed
resources were observed during the B G W experimental testing. Therefore, it can be stated
that the router is capable of running the system without any problems.

45

Chapter 9

Conclusion

The goal of this thesis was to create IoT gateway wi th integrated detection modules for IoT
wireless networks. Therefore I got to know the structure and functioning of IoT networks,
studied the widely used IoT protocols, and examined their security weaknesses. Besides,
I analyzed the systems developed wi th in the SIoT and BeeeOn projects. In these sys
tems analysis, I focused mainly on the BeeeOn IoT gateway and N E M E A modules for the
detection of threats i n IoT networks.

Based on the acquired knowledge, I created a proposal of connecting the mentioned
systems to develop a functional sample of secured IoT gateway for wireless IoT protocols.
I consulted this proposal w i th SIoT project developers as well as BeeeOn project develop
ers. Subsequently, I integrated the systems and created the mentioned functional sample
designed to run on the Turris O m n i a router and thus fulfilled the pr imary goal of this work.
The resulting system is modular and wel l configurable. Moreover, I created integration
tests, which serve to verify overall system functionality. The implementat ion of the system,
integration tools, and tests was created concerning the future extension of new functions
and features.

Moreover, I introduced a new methodology on integrated and structured development
of new modules for securing IoT networks wi th in the gateway and on how to create new
releases and versions of the gateway wi th in the SIoT project. New tools have been created
for automatic testing of the system and also instructions for commissioning the system
from any available securing modules version. Furthermore, the existing BeeeOn Gateway
IoT data collection module was modified to be suitable for incorporat ion into the BeeeOn
official repository.

The overall functionality of the resulting system was tested both experimentally and
by implemented integration tests. Moreover, system parts running on the Turris O m n i a
were also subjected to stress tests. However, the overall system functionality is significantly
dependant on the functionality of the used systems. The testing revealed many deficiencies
in these systems. A l l these deficiencies were reported, and most of them were fixed except
the errors connected wi th two detectors. Therefore these two detectors are not included in
the resulting functional sample. Nevertheless, a l l the other system parts work as expected.
Also , the stress tests have proven that the router is capable of running the system without
any problems.

I see areas for improvement i n the possibil i ty of integrating a v i r tua l machine that
interacts w i t h users to run directly on the router. Also , w i th a smal l modification of the
detection modules, it would be possible to create automated integration tests that are

46

time-independent. For the more realistic verification of the system functionality, it would
be relevant to create a real IoT network testbed to test the system i n a real environment.

47

Bibliography

[1] Aras , E . ; Ramachandran, G . S.; Lawrence, P.; et a l . : Exploring the Security
Vulnerabilities of LoRa. In 2017 3rd IEEE International Conference on Cybernetics
(CYBCONF). June 2017. pp. 1-6. doi :10.1109/CYBConf.2017.7985777.

[2] BeeeOn Gateway - Next generation of the gateway firmware. [Online; visited
02.03.2019].
Retrieved from: https: //github.com/BeeeOn/gateway

[3] B o n , M . : A Basic Introduction to BLE Security. [Online; visi ted 01.03.2019].
Retrieved from: https: //www.digikey.com/eewiki/display/Wireless/A+Basic+
Introduction+to+BLE+Security

[4] Cejka, T. ; Bartos, V . ; Svepes, M . ; et a l . : NEMEA: A framework for network traffic
analysis. In 2016 12th International Conference on Network and Service Management
(CNSM). I E E E . 10 2016. pp. 195-201. doi:10.1109/CNSM.2016.7818417.

[5] Cisco: Fog Computing and the Internet of Things: Extend the Cloud to Where the
Things Are. 2015. [Online; visi ted 20.12.2018].
Retrieved from: https: //www.cisco.com/c/dam/en_us/solutions/trends/iot/
docs/computing-overview.pdf

[6] Fouladi , B . ; Ghanoun, S.: Security Evaluation of the Z-Wave Wireless Protocol.
[Online; visi ted 29.12.2018].
Retrieved from: https: //sensepost.com/cms/resources/conferences/2013/
bh_zwave/Security°/.20Evaluation°/.20of y.20Z-Wave_WP.pdf

[7] Jasek, S.: GATTACKING BLUETOOTH SMART DEVICES. [Online; visited
29.12.2018].
Retrieved from: http: //gattack.io/whitepaper.pdf

[8] Kre jc i , R . ; Hujnak, O. ; Svepes, M . : Security survey of the IoT wireless protocols. In
2011 25th Telecommunication Forum (TELFOR). I E E E . 11 2017. I S B N
978-1-5386-3073-0. pp. 1-4. doi :10 .1109/TELFOR.2017.8249286.

[9] K w o n , G . ; K i m , J . ; N o h , J . ; et a l . : Bluetooth low energy security vulnerability and
improvement method. In 2016 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia). I E E E . 10 2016. I S B N 978-1-5090-2743-9. pp. 1-4.
doi:10.1109/ICCE-Asia.2016.7804832.

[10] L o R a Al l iance Technical Commit tee: LoRaWAN™ 1.1 Specification. 2017. [Online;
visi ted 13.02.2019].

18

http://github.com/BeeeOn/
http://www.digikey.com/
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/
http://sensepost.com/

Retrieved from: https: //lora-alliance.org/sites/default/f iles/2018-04/
lorawantm_specification_-vl.l.pdf

[11] Mackensen, E . ; L a i , M . ; Wendt, T . M . : Bluetooth Low Energy (BLE) based wireless
sensors. In 2012 IEEE Sensors. I E E E . 10 2012. I S B N 978-1-4577-1767-3. pp. 1-4.
doi:10.1109/ICSENS.2012.6411303.

[12] NEMEA modules for securing IoT networks. M a y 2019. [Online; visi ted 01.03.2019].
Retr ieved from: https://github.com/CESNET/NEMEA-SIoT

[13] Rosa, T . : Bypassing Passkey Authentication in Bluetooth Low Energy. 2013. [Online:
visi ted 26.01.2019].
Retrieved from: http://eprint.iacr.org/2013/309

[14] Ryan , M . : Bluetooth: With Low Energy comes Low Security. [Online; visited
25.01.2019].
Retrieved from:
https: //www.usenix.org/system/files/conf erence/wootl3/wootl3-ryan.pdf

[15] Sankaran, S.: Modeling the performance of IoT networks. In 2016 IEEE International
Conference on Advanced Networks and Telecommunications Systems (ANTS). I E E E .
11 2016. I S B N 978-1-5090-2193-2. pp. 1-6. doi:10.1109/ANTS.2016.7947807.

[16] Soukup, D . : Detekce anomálií v provozu IoT sítí Master 's Thesis. České vysoké
učení t echnické v Praze, Faku l ta in formačních technologi í . P raha . 2018.

[17] Statista: Internet of Things (IoT) connected devices installed base worldwide from
2015 to 2025 (in billions). [Online; visi ted 20.12.2018].
Retrieved from: https: //www.statista.com/statistics/471264/iot-number-of-
connected-devices-worldwide/

[18] Tierney, A . : Z-Shave - Exploiting Z-Wave downgrade attacks. [Online; visited
25.01.2019].
Retrieved from: https: //www.pentestpartners.com/security-blog/z-shave-
exploit ing-z-wave-downgrade-attacks/

[19] Yaakop, M . B . ; M a l i k , I. A . A . ; b in Suboh, Z . ; et a l . : Bluetooth 5.0 throughput
comparison for internet of thing usability a survey. In 2017 International Conference
on Engineering Technology and Technopreneurship (ICE2T). I E E E . 9 2017. I S B N
978-1-5386-1805-9. pp. 1-6. doi:10.1109/ICE2T.2017.8215995.

[20] Yang , X . : LoRa WAN: Vulnerability Analysis and Practical Exploitation. Master 's
Thesis. Delft Univers i ty of Technology. Delft. 2017.

[21] Yassein, M . B . ; M a r d i n i , W . ; K h a l i l , A . : Smart homes automation using Z-wave
protocol. In 2016 International Conference on Engineering & MIS (ICEMIS). I E E E .
9 2016. I S B N 978-1-5090-5579-1. pp. 1-6. doi:10.1109/ICEMIS.2016.7745306.

[22] Z-Wave Al l iance : 2018 END OF YEAR Z-WAVE ECOSYSTEM REPORT. [Online;
visi ted 26.01.2019].
Retrieved from: https: //z-wavealliance.org/wp-content/uploads/2019/01/Z-
Wave-Alliance-End-of-Year-Report-FINAL-for-web.pdf

49

https://github.com/CESNET/NEMEA-SIoT
http://eprint.iacr.org/2013/309
http://www.usenix.org/system/files/conf
http://www.statista.com/statistics/471264/iot-number-of-
http://www.pentestpartners.com/security-blog/z-shave-
http://wavealliance.org/wp-

