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ABSTRACT

This thesis deals with the planning of robotic operations for neurosurgery and the opti-
mization algorithms used to propose the surgical procedures performed by them, primar-
ily the VNDMOPSO algorithm. The introductory chapter explains the basic principle of
performing robotic operations and describes a concentric tube robot that can be used to
perform these operations. Furthermore, the thesis deals with a general description of op-
timization problems and algorithms solving them, and then the VNDMOPSO algorithm,
selected for the given optimization problem, is described in detail. For this algorithm, a
function in the MATLAB is created, which is subsequently tested on several benchmark
problems. In the following sections, its functionality is verified on real tumor shapes
and a graphical user interface, which serves as a robotic neurosurgery planning tool, is
presented. In the final part of the thesis, the influence of setting individual parameters
of the algorithm on the optimization results is evaluated.

KEYWORDS

Ablation, benchmark problems, CTR, GUI, optimization algorithms, planning of robotic
neurosurgery, test metrics, tumor, VNDMOPSO

ABSTRAKT

Tato diplomova praca sa zaoberad problematikou planovania robotickych operacii pre
neurochirurgiu a optimalizaénymi algoritmami pouzivanymi na navrh operacnych zakro-
kov nimi prevadzanych, predovsetkym algoritmom VNDMOPSO. V (vodnej kapitole je
vysvetleny zakladny princip prevadzania robotickych operacii a popisany koncentricky
trubicovy robot pouZivany pre tento Géel. Dalej sa praca zaobera véeobecnym popisom
optimaliza¢nych problémov a algoritmov ich rieSiacich a nésledne je podrobne popi-
sovany algoritmus VNDMOPSO, vybrany pre dany optimalizaény problém. Pre tento
algoritmus je vytvorend v prostredi MATLAB funkcia, ktord je nasledne testovana na
viacerych testovacich tdlohach. V nasledujicich Castiach je overovana jej funkénost na
redlnych tvaroch nadorov a je predstavené grafické uzivatelské prostredie, ktoré slizi
ako nastroj pre planovanie neurochirurgickych robotickych operacii. V zavereCnej casti
prace je vyhodnoteny vplyv nastavenia jednotlivych parametrov algoritmu na vysledky
optimalizacie.

KLUCOVE SLOVA
Ablacia, CTR, GUI, nador, optimalizacné algoritmy, planovanie robotickej neurochirurgie,
testovacie ulohy, testovacie metriky, VNDMOPSO
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ROZSIRENY ABSTRAKT

V stcasnosti je coraz vacsia pozornost upriamend na vyvoj vyuzitia robotiky
v chirurgickej praxi z dévodu zvysujicich sa poziadaviek na minimélnu invazivitu
prevadzania operacnych zakrokov. Zaclenenie robotov do lekarskej praxe umoznuje
chirurgom postivat hranice svojich technickych schopnosti. Operacie, ktoré predtym
znamenali velkt zataz pre pacienta aj lekarsky tim, je teraz mozné vykonavat rych-
lejsie a s ovela mensim poc¢tom pooperacnych komplikacii a kratsim ¢asom rekonva-
lescencie [1].

Oblast neurochirurgie sa da povazovat za jednu z najdolezitejsich oblasti, v ktorej
by mal byt vyuzivany minimélne invazivny pristup. Napriek tomu, Ze anatomicka
zlozitost neurologickych struktir znamenala znac¢ny problém pri zacleneni robotiky
do tejto oblasti, bolo vyvinutych niekolko robotov umoznujicich odstranenie moz-
gového nadorového tkaniva [1]. Medzi ne patri aj koncentricky trubicovy roboticky
systém, ktory dokaze pomocou metddy laserom indukovanej termoterapie denatur-
ovat naddorové tkanivo zvnitra. Tato metdéda ma velky potencidl, pretoze ide o
minimalne invazivny pristup k liecbe mozgovych nadorov za pouzitia magnetickej
rezonancie [3].

Proces planovania zohrava pri tomto type operacii klucovu tlohu. Na zéklade
neho je umoznené spolahlivé odstranenie najvacsej moznej ¢asti nadoru s minimal-
nym poskodenim zdravého okolitého tkaniva. Pre tieto tucely sa pouzivaji multi-
kriterialne optimaliza¢né algoritmy, ktoré dokazu najst siibor najlepsich rieseni, tvo-
riaci tzv. Paretovo &elo, z mnoZiny moznych rieSeni tak, aby spliiali poziadavky defi-
nované kriteridlnymi funkciami [10]. Medzi tieto patri aj algoritmus Multi-objective
Particle Swarm Optimization pre premenny pocet dimenzii (VNDMOPSO), ktory
bol v tejto praci zvoleny na optimalizaciu tlohy planovania takto vykonavanych
operacii.

Teoreticka cast prace sa zaoberd popisom koncentrického trubicového systému
a metddy laserovo indukovanej termalnej ablacie, ktora sa pouziva na denaturaciu
tkaniva, ako aj popisom zvoleného optimalizacného algoritmu.

V praktickej casti prace je popisovana funkcia VNDMOPSO, vytvorend v prostredi
MATLAB pre implementéciu tohoto algoritmu, ktord je nasledne testovana na viac-
erych testovacich problémoch. Vysledky st nasledne vyhodnocované pomocou troch
testovacich metrik, ktoré umoznuju kvalitativne postdit vytvoreny optimalizacny
nastroj.

Dalsia ¢ast prace je venovand testovaniu funkcie na 2D rezoch 3D geometrickych
objektov, reprezentovanych vo forme obecného polygénu. Tieto objekty predstavuji
tvary nadorov casto sa vyskytujicich v medicinskej praxi. Pre vizualizaciu vysledkov

testovania bolo vytvorené grafické uzivatelské prostredie, ktoré slizi ako néstroj



pre planovanie robotickych neurochirurgickych operacii. Tento nastroj umoznuje
zobrazit jednotlivé riesenia v Paretovom cele a rozmiestnenie ablacnych objektov v
oblasti nadoru zodpovedajice vybranému rieseniu.

Vysledky ukazuji, ze algoritmus VNDMOPSO dokaze najst mnozinu rieseni
vhodnych pre vykonavanie tohoto typu operacii, pricom tispesnost najdenia idedlnej
mnoziny rieseni sa liSila v zavislosti od nastavenia viacerych parametrov. Najvacsi
vplyv malo nastavenie typu ohranic¢enia priestoru rieSeni. Algoritmus dokazal néjst
najlepsie riesenia v pripade steny typu absorbing, zatial ¢o v pripade steny typu
reflecting boli vysledky podobné. Pri volbe neviditelného typu steny boli vysledky
neuspokojivé. Na vysledky optimalizacie mali vplyv aj rézne kombinacie nastavenia
poctu agentov a iteracii. Ukazalo sa, ze pri zachovani mnozstva vypoctov kriterialnej
funkcie sa oplati nastavit skor viac agentov ako iteracii.

Nakoniec bol optimalizator s premennym poc¢tom dimenzii porovnany s optimal-
izatorom s pevnym poc¢tom dimenzii. Pomocou metédy Dominance Ranking bolo
vyhodnotené, ze verzia algoritmu VND je vyrazne lepsia pri pouziti steny typu ab-
sorbing a reflecting. Pri pouziti neviditelnej steny bola tspesnejsia verzia s pevnym

poc¢tom dimenzii.
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Introduction

Nowadays, more and more attention is paid to medical procedures being minimally
invasive. Therefore, in recent decades, the idea of using robotics in surgical practice
has been widely developed. Incorporating robots into medical practice thus allows
surgeons to push the limits of their technical skills. Surgeries, which meant a great
burden for both the patient and the medical team, can now be performed faster and
with much fewer post-operative complications and a shorter recovery time [1].

Perhaps the most important area in which a minimally invasive approach is
required is the field of neurosurgery. The anatomical complexity of neurological
structures meant a considerable problem in the incorporation of robotics in this
field [1]. Despite this, several robots have been developed, enabling the removal of
tumor tissue from the brain. One of them is a concentric tube robotic system that
can denature tumor tissue from the inside using the Laser-Induced Thermotherapy
method. This method has great potential because it is a minimally invasive approach
to the treatment of brain tumors, thanks to the assistance of magnetic resonance
imaging [3].

For the successful removal of tumor tissue, the procedure of each operation must
be carefully planned for the specific shape of the tumor. Multi-objective optimization
algorithms are used to achieve this task. These include e.g. Multi-objective Parti-
cle Swarm Optimization (MOPSO), Multi-Objective Self-Organizing Migrating Al-
gorithm (MOSOMA), Generalized Differential Evolution (GDE3), Non-dominated
Sorting Genetic Algorithm (NSGA-II) and others [3].

The theoretical part of this thesis deals with the description of the concentric
tube robot and the ablation method that is used for tissue denaturation, as well as
the description of the multi-objective optimization algorithm MOPSO, which was
chosen to optimize the task performed by the robot.

Subsequently, in the practical part, a function for the implementation of this
algorithm is created in MATLAB, which is then tested on several benchmark prob-
lems. The validity of the results is subsequently verified using three test metrics.
In the next part of the thesis, its functionality is tested on several real shapes of
tumors, represented in the form of general polygons in two-dimensional space. A
graphical user interface created for visualization of the results, which represents a
tool for planning robotic neurosurgical operations, is also presented. The final part
of the thesis is devoted to the evaluation of the optimization results and the influence

of the setting of individual parameters of the algorithm on them.
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1 Robotics in Neurosurgery

In recent years, robotics in the medical field has become one of the main subjects of
interest for developers, which has caused the rapid development of this discipline.
The first robot used in neurosurgery to perform a brain biopsy was introduced in
1985, and the first robot which was marked the first robotic device approved by the
FDA for neurosurgical procedures was developed in the 1990s. Since then, many
advances in artificial intelligence and machine learning enabled to evolve various
robots. They are now an integral part of medical practise around the world [5] [6].

This chapter describes the method of brain tumor treatment, called laser-induced
thermotherapy [7], which makes it possible to remove even an irregularly shaped
tumor as well as the robotic surgery system capable to perform such a complex
task.

1.1 Medical Motivation

Brain tumors are usually treated with surgery. However, there are cases when it
is not possible to completely remove the tumor without damaging the surrounding
vital brain tissues. Mostly, these are tumors of irregular shape. In such cases, other
treatment approaches are considered, such as chemotherapy, radiotherapy or even a
method called laser-induced thermotherapy (LITT), described below [2].

1.1.1 Laser-Induced Thermotherapy Method

Laser-induced thermotherapy is nowadays a widely used method for removing brain
tumors. This method consists of several thermal ablation applications in the volume

of the tumor, as shown in Fig. 1.1.

Ablation
objects

Tumor tissue

Fig. 1.1: Thermal ablation applied in vitro of tumor tissue [3].
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The application is performed using a laser producing non-ionizing radiation.
Laser tissue destruction occurs by absorption and scattering. Absorption is the pro-
cess of converting laser energy into heat after the collision of photons and molecules
of the target tissue (so-called chromophores). This heat causes photothermal heat-
ing, which destroys diseased cells, as illustrated in Fig. 1.2A. Scattering of light
on particles in the tissue then causes an increase in the spatial distribution of light
(Fig. 1.2B).

LASER TISSUE
A: Absorption

( [

B: Scatter

( =

Fig. 1.2: Two main types of interaction between tissue and laser light: A: absorption,

and B: scattering [8].

The success of tissue removal depends on the specific properties of the tissue
(e.g. conductivity, density, perfusion...) and also on the choice of the radiation
wavelength so that tissue heating and light penetration are optimized [7]. The use of
this method allows removing tumor tissue with minimal postoperative complications
and represents a minimally invasive treatment approach (more detailed information
about LITT can be found in [7]).

1.2 Planning Robotic Operations

In order to enable optimal tissue removal by the LITT method, a concentric tube
robot (CTR) was designed that can induce thermal energy into the tissue and thus
effectively destroy it. The robot is optimized using a computer-assisted planning
process that includes optimization of the ablation objects and their placement in
the tumor volume (task-specific planning) and optimization of the parameters of

the robot itself (robot-specific planning) [3].
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1.2.1 Task-Specific Planning

The main goal of task-specific planning procedure is to ensure that the treatment is
as minimally invasive as possible. Therefore, the optimization of the placement of
ablation objects is very important. It is requisite to remove as much of the tumor as
possible, on the other hand, the vital surrounding tissues must not be overheated.
These two criteria contradict each other, so it is important to find a compromise
between them, using multi-objective optimization methods [3].

Task-specific planning involves the calculation of optimal parameters of ablation
objects (number, size, position), considering these two criteria. Achieving optimal
distribution can be viewed as an unequal sphere packing problem to place a number
of objects into a volume. The method called bin packing, illustrated in Fig. 1.3
(left), could be used for solving this problem. However, in order to remove the
largest part of the tumor, we must consider the possibility of the ablation objects
overlapping each other (Fig. 1.3 (right)). That’s why bin packing method can’t be
used for this type of optimization problem and parameters of ablation objects must
be optimized by some kind of available multi-objective optimization methods (e.g.
MOPSO, GDE3, MOSOMA, NSGA-II) [3].

| Remaining tumor volume

- Overlapping volume

Fig. 1.3: Regular bin packing problem (left) and packing problem for robot-assisted
LITT with overlapping objects (right) [3].

1.2.2 Robot-Specific Planning

The parameters of the ablation objects selected by this algorithm are then the input
values for the optimization of the robot. This means that CTR optimization is
closely related to the results of the task-specific planning process. Robot-specific
planning procedure than includes the optimization of the parameters of the robot
itself, such as the curvature and length of the tube, as well as the computation of

the most suitable trajectories into the tumor volume. [3].
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1.2.3 Problem Description

It should be noted that a real ablation object would not have a uniform thermal effect
over its entire surface, but the heat would spread progressively from the ablation
needle to the edge of the object. The propagation of the heat produced by the
laser would depend on the material properties of surrounding tissues. However,
tumor tissue has different properties than normal, physiological one, so it would
be very difficult to calculate the parameters of heat propagation throughout the
ablation object. For the sake of simplicity, the thermal propagation from the ablation
injection is simulated as a circle with uniform thermal propagation in this thesis.
The objectives of the optimization problem can be expressed by the percentage
of the tumor volume not covered by the ablation objects and the percentage of
the tumor volume where the ablation objects overlap or protrude from the tumor

volume. This problem can be defined using the following objective functions f; and

o

Ns
min f1(z) = (J ri, (1.1)
z i=1
N N
min fo(%) = (") s; + () 0s, (1.2)
z i=1 i=1

where 7 defines the decision vector (solution), r; represents the area where the i-th
ablation object does not cover part of the tumor volume, s; represents the area where
the ¢-th ablation object covers part of the tumor volume and o; represents the part
of the i-th ablation object that protrudes from the tumor and extends into healthy
tissue. The intersection area of individual surfaces is calculated over all Ny ablation
objects.

The minimization of functions f; and f; is the goal of task-specific planning,
which is one of the tasks of this thesis [3].

1.3 Concentric Tube Robots

Concentric tube robots form a special class of so-called continuum robots, which are
mainly used in interventional medicine. They consist of superelastic and very thin
concentric tubes, the size of which can be compared to the size of a catheter. This
fact makes them different from classic rigid robots with high mechanical rigidity and
a limited degrees-of-freedom (DOFs) [4]. These properties predispose them to be
used for many surgical applications.

The concentric tube robotic system consists of two types of tubes: the outer, so-
called delivery tube, and internal, so-called ablation guide tube. The delivery tube

represents the straight and rigid part of the robot, while the ablation guide tube
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is less rigid and consists of a straight part and a curved end part [3]. Figure 1.4A
illustrates the design of the tubes of the CTR system. Both types of tubes can
be positioned. The outer tube can be positioned by translation, the inner tube
by translation and rotation, as shown in Fig. 1.4B. During surgery operation, the
activation unit for positioning the tubes is mounted outside of the patient’s body.
The laser probe is placed in the inner ablation tube. The laser fiber directed in this
way then creates an ablation object that destroys the target tumor tissue. In order
for the operation to be successful, it is necessary to monitor the thermometry, the
ablated tumor tissue and the position of the robot in the brain, which is provided
by an MRI scanner [3]. Therefore, this robotic system is compatible with MR. The

design of the manual control unit is described in detail in [9].

A: Tube's design B: CTR design

Skull
2 Actuation unit

52 Lc)' Laser fiber I
— . Ablation guiding
L' J tube / \
51 y

Fig. 1.4: CTR design [3].

As already mentioned, the distribution of ablation objects in the tumor volume
is key to achieving good results of the surgical operation with minimal postopera-
tive complications. A multi-objective version of the Particle Swarm Optimization

algorithm, described in Chapter 2, was chosen for this task.

20



2 Optimization Algorithms

Optimization algorithms represent methods for finding the best solution from a set
of possible solutions. In the beginning, a fitness (objective) function is defined that
evaluates how appropriate the proposed solution is. The optimized system is defined
by the so-called decision variables on which the fitness function depends. These can
be e.g. profit, cost, production quantity, etc. The optimization process aims to find
the decision space vector for that either the maximum or the minimum of the fitness
function is reached [10].

The optimization problem can be either formulated as single-objective (SOOP)
or multi-objective (MOOP). If the optimization problem is described by only one
fitness function, it is a single-objective optimization problem, if it is described by
two or more fitness functions, the problem is called a multi-objective optimization
problem. In the case of MOOP, it is common for fitness functions to conflict with
each other. This means that if the optimization process aims to reach the minimum
of these functions, moving closer to the minimum of one function will cause the
movement away from the minimum of the other function. In order for MOOP to
be optimized, a trade-off is found between individual objectives. The result of the
optimization process is then a set of these trade-off solutions. The full set of trade-off
solutions is called the Pareto-front [10].

Today, many researchers are engaged in solving optimization problems, and many
types of optimization algorithms are already known. These algorithms are generally
denoted as evolutionary algorithms. The name is derived from an analogy to Dar-
win’s theory of evolution [20], which is based on the survival of the fittest species.
They are divided into genetic algorithms (such as GDE3 [11], NSGA-II [12]) and
swarm intelligence algorithms (e.g. MOPSO [21] and MOSOMA [13]) [14]. The
choice of the algorithm that will be used for a given optimization task depends on
several factors, such as its implementation and computational complexity, the de-
gree of reliability of finding the best solution, different experiences of users with a
particular method, etc.

This thesis aims to optimize the robotic system for neurosurgery, described in
Section 1.3, for which the multi-objective version of the Particle Swarm Optimization
algorithm was chosen based on the decision criteria mentioned above. This chapter
contains a description of the single-objective version of this algorithm (PSO), its
multi-objective version (MOPSO), and finally the MOPSO algorithm for a variable
number of dimensions (VNDMOPSO). At the end of this chapter, there is a clear
table (Tab. 2.1) that summarizes the differences between the individual variants of
this algorithm.
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2.1 Single-Objective Particle Swarm Optimization

This optimization technique was developed by social psychologist James Kennedy
and electrical engineer Russell C. Eberhart in 1995 [16]. It is a stochastic method
that simulates the social behavior of animals, typically a swarm of bees or a school
of fish. Most often, this method is explained by the behavior of a swarm of bees in
search of flowers for pollination.

The task of the bees in the swarm is to find the place with the largest concen-
tration of flowers. Along the way from the beehive to the field of flowers, each bee
evaluates several positions as the potentially most densely flowered. Subsequently,
bee cooperation plays an important role - each bee changes its search method ac-
cording to its own experiences and the experiences of other members of the swarm.
All the bees explore the entire field and then return to the places they have judged
during their research so far to be the places with the greatest concentration of flow-
ers. With increasing experience, the number of these places decreases and eventually

leads to one location where the most flowers are located, as shown in Fig. 2.1 [16].

Ilteration # 0 lteration # N

Fig. 2.1: The basic principle of the PSO algorithm [15].

The analogy with the behavior of a swarm of bees can easily be applied to
the PSO algorithm. Bees represent so-called particles (or agents), a field of flowers
denotes the solution space, the density of flowers on the field is a fitness function, the
places that one bee evaluated as the most concentrated are called personal bests, and
the experiences of other swarm members are called global bests. Each bee (particle) is
located at some current position and has an assigned wvelocity. Exploring, exchanging
experiences and returning to already explored places condition the position change
in individual iterations of algorithm [16].

In each iteration ¢, the position and velocity vector of all agents are updated.

At the beginning of the first iteration, each particle has its own randomly generated
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position #;. During every iteration, its position is updated by adding the velocity

vector of the given particle v; according to equation [16]:
T =T+ (2.1)

Therefore, the velocity vector ¢; must be updated first, which is calculated according
to the formula [16]:

U; = WU + 171 [Tpbest,i — L) + Cor2[Tebesti — Li) (2:2)
It can be seen from equation (2.2) that the velocity vector of a particle is influenced
by the location of the personal best of the i-th particle, but it is also influenced by
the rest of the swarm, which represents the global best in the equation. Figure 2.2

shows the graphics computation of the velocity vector [16].

fix)}  inertia X7

~

><V

Fig. 2.2: Visual demonstration of updating the velocity vector [16].

The variables ¢; and ¢ are so-called scaling factors whose value describes how
strongly the particle is attracted towards Zppest; (€1) and Zgpest,i (c2). The random
numbers r; and r9 take values from 0 to 1 and their task is to simulate to some extent
the unpredictability that naturally occurs in the swarm. The variable w indicates
how much the contribution of the old velocity vector will be to the new velocity
vector [16]. This number describes the will of the particle to stick to its original

direction.

2.1.1 PSO Algorithm

Figure 2.3 shows the pseudocode of the PSO algorithm. The user initially generates a
population consisting of individual particles. These are uniquely determined by their

position and velocity vector, which are randomly generated before the first iteration.
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Constraint conditions are also set that the generated positions and velocity vectors
must satisfy. Individual iterations of the code then consist of updating the velocity
and position vectors. Subsequently, the current positions are compared with the
best positions of individuals. If the current position is better than the last updated
Tphest,i from the previous iteration, this Zppest; is replaced with the new position.
If not, the last Zppest,i is left as Zppest;. Finally, the position of the global best is
updated, which is the same process as the Zppest; update. So, if the position of the
particle’s new Z'phest,; position is better than Zgpest,i, then the corresponding position
is replaced by this current position [16].

Step1: Initialization
Initialize fitness function;
Initialize Xgpest to the maximum value of the fitness function;

fori=1: population size

Generate initial (random) particle position P,. Take into
account the lower and upper bounds of the search space;

Initialize the velocity vector taking into account the
boundaries of the solution space.
Evaluate fitness function;

Initialize Xppes to its initial position Xppest(1) = Pi;
end
Step2: Main Loop of algorithm
for i =1 : number of iterations
for j =1 : population size
Update velocity;
Update position;
Update Xppese: If fitness(P;) < fitness(Xpbest)
Xpbest = Pj;
Update Xgpese: If fitness(Xppest) < fitness(Xgbest)
Xgbest — Xpbest;
end
end
Step3: Output X,pec Which holds the best-found solution

Fig. 2.3: Pseudocode of the conventional PSO algorithm [16].

2.1.2 Boundary Conditions

In engineering applications, the realism of the solutions sought is often required.

That is why the so-called boundary conditions to limit the solution space are estab-
lished.
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Three types of walls are used to delimit the space in PSO algorithm:

1. Absorbing walls: If a particle hits the boundary of the solution space, the
absorbing type of wall will absorb the particle’s energy in a specific dimension and
the particle’s velocity will be zeroed in that dimension. In the solution space, it then
looks as if the particle would "slide" along the boundary of the space after hitting
the wall, which is shown in Fig. 2.4A) [16].

2. Reflecting walls: After a particle hits a reflecting type of wall in one of the
dimensions, the particle is reflected back into the solution space in the direction of
the negative velocity vector, as shown in Fig. 2.4B). From a mathematical point of
view, it only changes the sign of the corresponding velocity vector component to the
opposite [16].

3. Invisible walls: If the solution space is not limited in any way, we are talking
about the so-called invisible walls. This type of wall works on the principle of
evaluating only the "feasible" position of the particles. It means that particles whose
positions are already outside of the feasible decision space are not taken into account.

Figure 2.4C) denotes the principle of an invisible wall [16].

A) Absorbing Walls B) Reflecting Walls C) Invisible Walls
f(x)} f(x)} fixpt
,/”Xi-1 /,/’/‘XH
//,/// ﬁi—l = Ux’_c’ + ij; ,/”” 1_7)1'_1 = Uxf + Uy}_; /’/_).xi-l R R
"’/ -------- , .):/ ----- b.N Vi—1 = UxX + 1)y
Xi Xi 1 ', N R Xy’
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Fig. 2.4: Three types of boundary walls [17].

2.2 Multi-Objective PSO

As already mentioned at the beginning of Chapter 2, the result of a multi-objective
optimization problem is not only one solution, called global best, but a set of trade-
off (so-called non-dominated) solutions (created Pareto-front). Therefore, a modi-
fied, multi-objective, version of this algorithm is used instead of a conventional PSO
algorithm for MOOPs.

The main goals to be achieved by the MOPSO algorithm are:

1. Ensure a sufficient number of elements of the Pareto-front,
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2. Minimize the difference between the members of the found non-dominated set,

which is result from the algorithm and the true Pareto-front,

3. Maximize the allocating of the found solutions along the Pareto-front so that

the distribution of vectors is as smooth and uniform as possible [21].

To achieve these goals, non-dominated solutions must be found and stored in an
external archive. The maximum number of archive members should be equal to the
number of population members (particles). Therefore, in each iteration in which
there are more non-dominated solutions in the external archive than the number
of particles in the population, it must be decided which non-dominated solutions
are better than the others. For the sake of the algorithms’ efficiency, a certain
diversity must be preserved in the non-dominated set. Solutions that are too close
to each other do not carry as much information as those that are further away.
Therefore, they can be removed from the archive. Finally, only the least crowded
solutions remain in the external archive, and they are then considered global bests,
which form the Pareto-front. For this selection, a pruning method called crowding

distance is used, which is shown in Fig. 2.5 [22].

fZA fz“ f;“
delete
PF PF
b) f; <) f:

Fig. 2.5: Crowding distance method [24].

The method consists in calculating the Euclidean distances d; and dy between
the solution and its two nearest neighbors. These two Euclidean distances from
the nearest neighbors are multiplied by each other, and the solution that is more
crowded (closer to the considered solution) is removed from the external archive
[10]. Crowding distance can be calculated according to the formula 2.3 [25]:

dy ds

max __ fmin + max __ fmin
1 1 2 2

CD =

(2.3)

However, the crowding distance method is reliably applicable only to a two-

objective optimization problem. In the case of optimization with three or more
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objectives, it is converted using the Equal-average Nearest Neighbor Search (ENNS)
method (described in [23]) into a two-objective one, for which the crowding distance

method can already be used [10], as shown in Fig. 2.6.

W

h

a) Three-objective problem b) Two-objective problem

Fig. 2.6: Principle of Equal-average Nearest Neighbor Search method [10].

2.2.1 MOPSO Algorithm

After the population is created, the external archive is filled with non-dominated
solutions. Then, in each iteration, a global best is chosen for each particle, to whose
position it will be attracted. The following is an update of the velocity and position
vector. The positions must be treated with a boundary condition and then the
fitness function recalculated and the personal best updated. Next, the members of
the external archive must be updated. After the first iteration, old members can
be dominated by new members and they will replace the old ones, and new non-
dominated solutions have also been created and should be added to the external
archive. After the last iteration, the result is the contents of the external archive
26]. In Fig. 2.7 the MOPSO pseudocode is described.

2.3 MOPSO for Variable Number of Dimensions

A conventional MOPSO algorithm works only with a population of particles having

the same number of dimensions. However, in some cases of optimization problems,
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Step1: Initialization
Initialize Population
Initialize an external archive
Step2: Main Loop of Algorithm
for i =1 : Number of iterations
for j =1 : Population Size
Choose a global best
Update position
Apply of boundary conditions
Calculate values of criterion functions
Calculate new personal bests
end
Update the contents of the external archive
end
Step3: The result is the content of the external archive

Fig. 2.7: Pseudocode of the main MOPSO algorithm [26].

it is necessary that the algorithm can find the best solution even if the particles
have a different number of dimensions. Therefore, the conventional MOPSO algo-
rithm was extended to solve problems with a variable number of dimensions [18]
(implementation details can be found in [19]).

The VNDMOPSO algorithm is basically the same as the conventional one, but
the difference is in the number of dimensions of individual agents in the population
and in the computation of the velocity vector. The number of agent’s dimensions is
randomly generated during population generation from a defined list of dimensions.
This list must contain dimensions feasible for the given optimization problem. In
the conventional MOPSO algorithm, the velocity vectors of all particles are updated
in each iteration. The velocity vector of one particle depends on its position (Z;),
personal best (Zppest), and global best (Zgnest). But the global best is always calcu-
lated from all particles, so it can have a different number of dimensions than the
personal best and the position of some particles. Therefore, in the VNDMOPSO
algorithm, the original MOPSO algorithm is extended by a routine that determines
with which number of dimensions to work with [18].

When it is taken into account that each of the vectors &, Fppest and Tgpest can
have a different number of dimensions (N, Nppest; Ngbest), it 1S necessary to deter-
mine which vector will have which "weight" in the decision. For this, probabilities
are chosen for the mentioned three dimensions: p; (for N,), pa (for Nppest) and ps
(for Ngpest). If the vectors differ in the number of dimensions, a random number
r is generated, which can take on values between 0 and 1. The number r is then

compared with the numbers p;, p» and ps. In the next iteration, the Ngpesr number
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of dimensions will be used if r is less than or equal to p;. With the number of
dimensions that Zppest has (Nppest) Will be counted if € (py1, p1 +p2). If r is greater
than the sum of probabilities p; and p,, then the number of dimensions correspond-
ing to the particle is further considered, as described in [18]. The aforementioned

procedure can be expressed as follows:

Ngbest> if0<r S 41
Ny = 4 Npbest,  if p1 <7 < p1+po (2.4)
Nma if p1 +p2 <r

Thus, symbol N, denotes a new vector dimension, and all vectors that have
a different number of dimensions are either shortened or completed with random
numbers. Sometimes these vectors from Z',es; are added to speed up the convergence
of the algorithm. But the condition is that the Zppest has at least as many dimensions

as the new N,.

Tab. 2.1: Differences between individual variants of algorithm

Variant Agent’s
of Result dimen- pbest gbest
algorithm sionality
. . position with | minimum of
SOPSO single solution fixed .
min f value all pbest
a trade-off
set of Pareto- position with solutions
MOPSO ) . fixed )
optimal solutions min f value among
all solutions
a trade-off
set of Pareto- . position with solutions
VNDMOPSO . . variable .
optimal solutions min f value among
all solutions
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3 Function for VNDMOPSO in MATLAB

This chapter is devoted to the description of the function for the implementation
of the VNDMOPSO algorithm in MATLAB. As a basis, a simple PSO algorithm
was created, which was gradually supplemented with boundary conditions, a version
for a variable number of dimensions of population members, and finally modified
to a multi-objective PSO algorithm. The chapter describes and explains individual
parts of the created algorithm. In the following text, the names of files (black),
functions (violet), scripts (red), structures (olive), structure’s fields ( ), vector
variables (pink), scalar variables (green) and string or logic variables (bluc) will be

color-coded for better orientation.

3.1 Basic Structure

The main function in the MOPSO folder is VNDMOPSO, which implements the PSO
algorithm for a multi-objective optimization problem. The function is called from
main.m, in which the individual parameters used in the function are set.

At the beginning of the main.m script, the getProblem function is called, which
defines the problem structure. This structure contains the fitness function and the
limits for the decision space variables. Other parameters, such as the maximum
number of iterations, the number of population members, scaling factors, etc., are
defined in main.m in the params structure. After setting the parameters, it calls
the VNDMOPSO function and finally plots the optimization result. Figure 3.1 shows a
flowchart that clearly describes the basic structure.

The function VNDMOPSO for performing the optimization algorithm is divided into
4 main parts: 1) Problem definition, 2) Parameters of VNDMOPSO, 3) Initialization
and 4) Main loop of VNDMOPSO.

3.1.1 Problem Definition and Parameters Section

The input variables of the function are the structures problem and params. In the
Problem Definition section, the fitness function called , is loaded
from the problem structure, and the number of decision variables is defined. The Pa-
rameters of VNDMOPSO section stores the parameters set in the params structure

in variables.

3.1.2 Initialization Section

Next, the initialization part of the function creates the population. An empty struc-

ture empty_particle is made, which collects all information about the particle:
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a) main.m b) getProblem.m

Select fitnessFunction
getProblems .
\ Set limits

problem: struct
[1x1]
I

i

Define parameters ‘
|
params: struct
[1x1]

c) VNDMOPSO.m

,:"‘ ‘ Problem definition ‘
."': I
‘ Parameters of VYNDMOPSO ‘

VNDMOPSO Initialization

‘ Main loop of VNDMOPSO ‘
[
‘ out: struct [1x 1] ‘

(i

‘ create Pareto front ‘

‘ plot results ‘

Fig. 3.1: Flowchart of a)main.m, b)getProblem.m and ¢)VNDMOPSO.m.

, , and Best. Best is also a structure itself that carries
information about the personal best of the particle. It contains the best’s
and the best’s . Initially, these parts of the structure are empty. Since the
empty_particle structure defines a single particle and all particles are defined the
same way, copies were made using the repmat function and thus the entire popu-
lation was created. The particles copied in this way were stored in the particle
variable, which is therefore also a structure. The global best fitness value is initial-
ized to infinity in the next step. Subsequently, using the initParticles function,
a random position and velocity are generated for each particle, the fitness function
is evaluated, and the first personal best is created.
As explained in section 2.3, the main modification of a simple optimization al-

gorithm to an algorithm for solving multi-objective problems consists in storing
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non-dominated solutions (global bests) in the so-called external archive. So at the

end of the initialization part of the function, an external archive is created.

External Archive

First of all, it is necessary to obtain non-dominated solutions, which will be stored in
an external archive. This is done by the kungEtAl function, which sorts the solutions
by the first objective function and then calls the front function. The front function
divides the population into top and bottom halves so that the top half contains
dominated solutions and the bottom half contains non-dominated solutions. The
function decides which bottom half solutions are dominated by the top half solutions
and finally returns the indices where the non-dominated solutions are stored. The
kungEtAl function then returns these indices and the external archive is then filled
with the values of the fitness function for decision space vectors with that indices
using the £i11NonDomSol function. The non-dominated solutions found in this way
are then stored using the same function in the GlobalBest structure [29]. It contains
the global best’s and the global best’s

3.1.3 Main Loop of VNDMOPSO

The main part of the VNDMOPSO.m is the main loop of VNDMOPSO which is a
for loop through all iterations, in which the velocity vector (2.2) and the position
(2.1) of all particles are updated, then the fitness function is re-evaluated, and then
personal best and external archive members are updated. An extension for solving
problems with a variable number of dimensions and bounding the solution space

using boundary conditions is also implemented in this section.

VNDMOPSO-related Variables

The code contains the extension to solve optimization problems in which the mem-
bers of the generated population can have a different number of dimensions. In the
initialization section, a number from the list of feasible dimensions is randomly as-
signed to individual members of the population using the randperm function. This
list called nVarsList, can be defined by the user in main.m for a specific objective
function. There are also chosen probabilities, used in the decision algorithm. The
decision algorithm was created according to [18] described in section 2.3.

First, the variables p1, p2 and p3 are created, indicating the user-defined proba-
bilities , and . The variables
newSize and tempV, tempP, tempGB and tempPB (hereafter tempX) are also cre-

ated. These will be used after deciding which dimension will continue to be worked
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with. In the next procedure, the number of dimensions Ngpest, Npbest; and Ny are
compared, and if they are not the same, a random number r is generated, compared
with p1, p2 and p3 and according to equation (2.4) a new vector of dimensions is
created and stored to the newSize variable.
Next comes the part where the , and
vectors must be adjusted to this new size. Prepared auxiliary variables
tempX are used for this in the code. If the vector is smaller, a new one (tempX) will
be created, which will have the size of the newSize value. The vector is filled with
random numbers (with respect to the limits) and the front positions are replaced
by the old vector. If the size of the old vector is larger than the newSize value,
the new vector (tempX) will be the old vector, trimmed to the size of the newSize
value. Due to less complexity, this algorithm includes only the method of padding
with random numbers with respect to the limits.
So far it has been only talked about resizing the three vectors
, and . But the position vector
is updated, according to relation (2.1), by adding the velocity vector. This means
that if the size of this vector was not adapted to the size of the newSize value, it
would not be possible to calculate the new position. Therefore, in case of changing
the size of the particle’s position vector, the size of the velocity vector must also be

adjusted.

Boundary Conditions

The user can choose which of the three types of walls - absorbing, reflecting, or
invisible (see Subsection 2.1.2) - will be used to delimit the space, by selecting the

variable in the params structure in main.m. Boundary conditions are
applied in the checkBoundaries function, which uses a switch case condition. A
check is made to see if the limit has been exceeded in any of the dimensions. The
following procedure varies according to the type of walls.

For absorbing walls, if the limit has been exceeded, it sets a flag at a specific
index and returns the value of the index. In the dimension with the given index,
the position is then changed to the boundary and the function returns the corrected
position for which the value of the fitness function is calculated. In the case of
reflective walls, the procedure is similar, but the new position of the particle will
not be the position of the boundary of the space, but the particle will return to
the feasible space in a position shifted by the distance it flew beyond the boundary.
An auxiliary variable temp is created in the code for this purpose, in which the
distance between the old position and the space limit is stored. This distance is

then subtracted from the limit position and thus the new position of the particle

33



is calculated. Subsequently, the position of the particle shifted in this way is the
output of the function and the values of the fitness functions are calculated for
it. For invisible walls, extremely high (essentially unrealistic) values of the fitness
functions were simply assigned for these cases. However, this type of border wall is
not very reliable.

Update of External Archive

After updating the velocity and position vector of all population members, the
external archive is updated. New combX and combF vectors will be created, which
will contain both old positions (combX) and values of the fitness function (combF)
and new positions and values of the fitness function from the external archive. The
kungEtAl function is then applied to the combF vector, which selects new non-
dominated solutions and fills the external archive with them. At this moment, there
can be more non-dominated solutions in the external archive than the size of the
population. In that case, it has to be cut. For this, the crowding distance technique,
described in section 2.2, was used. The algorithm was created according to [23]:

1. The objective space is normalized: The minimum and maximum of the func-

tion are found, and then the normalized function is calculated according to

o f_fmin
fnorm B f max .f min.

2. The fyom values are sorted according to the first dimension.

the formula:
(3.1)

3. An ascending heap with f,om values is created.
4. The crowding distance is calculated: The Fuclidean distances from the two
nearest neighbors FD; and E D, are calculated and multiplied together.
5. As long as the heap size is larger than the population size, the element with
the minimum crowding distance is removed and then the heap is updated.
Finally, the GlobalBest will be filled with the content of the external archive.
The output is stored in the out structure, from which an array with values for the
Pareto-front is created in main.m. The decision space vectors of the Pareto-front
are then plotted on a graph.
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4 Validation

The created VNDMOPSO function should be used for planning robotic operations. So
it is necessary that it can be used to solve as many and ideally as complex real-world
problems as possible. Therefore, the VNDMOPSO function was tested on several test
tasks, for which the so-called benchmark problems described in this chapter were
used. To make the testing complete, the correctness of the found solution should
be verified, e.g. by comparing the location of the found non-dominated solutions
and the true ones, by checking the uniformity of the distribution of the found non-
dominated solutions along the Pareto-front and other techniques. To validate the
solutions found by the VNDMOPSO function, three basic test metrics were used, the

description of which can also be found in this chapter.

4.1 Benchmark Problems for VNDMOPSO

To verify the functionality of the algorithm, benchmark problems from the FOPS
Package [28] were used. The folder MOPSO contains five two-objective and four three-
objective test problems selected from this package. For each two-objective problem,
a function for calculating the true Pareto-front is also created. All test problems are
described in detail in [29]. These problems are modified test problems from Deb et
al’s test suite [30] based on the method presented in [31].

This method describes how the position of the solution can be defined using two
angles (0(z) and 0,,,). The solution is located between the extremum points of the
Pareto-front. An extremum point is a point on a PF, where one of the objective
functions has its minimum, while another has its maximum. Symbol 6., indicates
the angle between the maximum and minimum point of the Pareto-front and 6(x)
indicates the angle between the position of the solution in the objective space and
the maximum point of the front [31], as shown in Fig. 4.1.

These test problems use the function getNOpt (for two-objective problems) or
getNOpt3D (for three-objective problems). Each problem has the optimal number of
dimensions defined by the nOptList vector, which the members of the Pareto-front
should have. The functions getNOpt and getNOpt3D divide the Pareto-front into
nParts parts, where in each part the variable decides whether the dimensions
are ordered either in ascending order ( ) or in descending order (

) [29], as shown in Fig. 4.2. Dividing the Pareto-front into individual parts
makes it possible to have a smaller angle 0,,... In general, parts with small values

of # converge more easily than those with large values of 6 [31].
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Fig. 4.1: Angle method [31].
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Fig. 4.2: Explanation of getNOpt function parameters [31].

4.2 Test Metrics

In an ideal case, the created function for solving multi-objective optimization prob-
lems should be able to find solutions as close as possible to the true Pareto-front. At
the same time, it should also find solutions uniformly spread over the entire Pareto-
front. To verify the correctness of the solutions found by the VNDMOPSO function,
three test metrics were used: Generational Distance, Spread, and Hypervolume.

Detailed information on individual metrics can be found in [32].
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4.2.1 Generational Distance

This metric compares the position of the found Pareto-front with the position of the
true one. To determine the difference in the positions of the Pareto-front solutions,

the average Euclidean distance is calculated according to the equation [29]:

_ x4
QI

where () describes the set of found solutions and the parameter d; indicates the dis-

GD (4.1)

tance between the i-th solution from the found Pareto-front and the closest solution
from the true Pareto-front, which is calculated as the Euclidean distance according
to [32]:

. mmng S (40— 1), 12
m=1
where the symbol P* describes the set of Pareto-optimal solutions (members of the
true Pareto-front), f{¥) is the value of the m-th objective function of the i-th member
of the set @ and f**) indicates the value of the m-th objective function of the k-
th member of the set P* [29]. This metric is visualized in Fig. 4.3 for a better
understanding.

The metric requires knowledge of the members of the true Pareto-front. The set
of members of both Pareto-fronts must be large enough to reliably compare their

distance [26].

@® members of the found
Pareto front

@® members of the true

Pareto front

Fig. 4.3: Demonstration of the Generation Distance metric for calculating the dis-

tance of members of Pareto-fronts [34].
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4.2.2 Spread (A)

This metric evaluates the allocation of the members of the found set of non-dominated
solutions along the Pareto-front based on the mutual Euclidean distance and the dis-
tance of the extremes of the found front from the extremes of the true front. So it is
necessary to know at least the extremes of the true Pareto-front. This distribution
of the found solutions along the Pareto-front is defined as [29]:
Sy doy + 512 |di — d|
S, +1Q1d
where d; is the Euclidean distance between two neighboring solutions, d is the mean

A= (4.3)

value of these distances and df, is the distance between the extremes of the found
and true Pareto-front of the m-th objective function. An example of the use of the

metric is in Fig. 4.4.

e
5 ' dl e members of found Pareto front
d1 — true Pareto front
e—e Euclidean distances
dz ------- found Pareto front
o—e distance between the extremes

Fig. 4.4: An example of the Spread metric to calculate the distance between the

members of the found Pareto-front [35].

4.2.3 Hypervolume (HV)

The Hypervolume metric combines the advantages of the two previous methods.
It can compare the locations of the found and the true Pareto-front, and at the
same time it also takes into account the allocation of the members of the found
non-dominated set along the true Pareto-front.

The metric consists in calculating the volume (HV) of the objective space dom-
inated by the found Pareto-front with respect to the so-called reference point. In-

dividual hypercubes are counted, while each hypercube is given by two points - a
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reference point and some member of the set of solutions of the found Pareto-front.
Finally, the entire volume is calculated by the union of these hypercubes according
to formula [32]:

Q|
HV = volume(| J v;), (4.4)

i=1

Figure 4.5 shows the total volume calculated by uniting individual hypercubes.
The point [fi,...; fomaes s [Nway) fOr the N-objective optimization problem is usually
called as the reference point. The larger the total calculated HV, the better the set

of non-dominated solutions, forming the given Pareto-front, was found [29].

f A

Fig. 4.5: Calculation of the entire volume from individual hypercubes above the

Pareto-front using the Hypervolume metric [36].

For two-objective optimization problems, this method is easy to use because it
only means the union of the rectangular areas. But for three- and more-objective
problems, the calculation becomes more complicated. Therefore, the WFG method

described in [33] is used, which can simplify the calculation and thus speed it up
[29].

4.3 Summary of Results

The proposed algorithm was tested on all optimization benchmark problems from
the MOPSO folder and the non-dominated solutions found were plotted in a graph
and compared with the true Pareto-front (see Appendix A). Using each metric, the

value of the deviation of found Pareto-front from true Pareto-front was calculated.
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The setting of individual parameters of the algorithm for testing is summarized in
Table 4.1. Tables 4.2, 4.3, and 4.4 contain a comparison of deviations calculated

using individual metrics.

Tab. 4.1: Setting parameters for testing

Agents: 1000 || w: 1
Iterations: 100 | Boundary: absorbing
cl: 2 p3: 0,99

c2: 2 pl, p2: 0,005

Tab. 4.2: Values of deviations calculated using the Generational Distance metric

Problem | Max Value | Min Value | Average Value

MOLI1 0,0082 0,0015 0,0041
MOLI2 0,0147 0,0042 0,0063
MOLZ3 0,0062 0,0046 0,0053

MOZDT2 | 1,9808 - 1074 | 2,7562-10"° | 5,1809 - 10~°
MOZDT3 | 5,7930-107° | 4,5966 - 10~° | 5,0480-107°

Tab. 4.3: Values of deviations calculated using the Spread metric

Problem | Max Value | Min Value | Average Value

MOLI1 1,0842 0,7612 0,9048
MOLI2 1,0640 0,6394 0,7635
MOLZ3 1,4793 1,4656 1,4645
MOZDT?2 1,4519 1,1733 1,3499
MOZDT3 1,5450 1,4068 1,4714

The largest average deviation, calculated using the Generational Distance metric,
was 0,0063. This metric calculates the distance of found Pareto-front members from
true Pareto-front members. It follows that the larger the value of the deviation, the
worse is the group of found non-dominated solutions. In this case, this group of
non-dominated solutions was the worst found for the VNDMOLI2Fitness function.

The average deviation calculated using the Spread metric was the highest for the
VNDMOZDT3Fitness benchmark problem with a value of 1,4714. For the Spread
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Tab. 4.4: Values of deviations calculated using the Hypervolume metric

Problem | Max Value | Min Value | Average Value

MOLI1 0,4766 0,4376 0,4622
MOLI2 0,4853 0,4617 0,4735
MOLZ3 0,5738 0,4968 0,5353
MOZDT2 0,3300 0,3213 0,3253
MOZDT3 0,7799 0,7662 0,7775

metric, the smaller the deviation value, the better. It expresses how much the dis-
tribution of found Pareto-front members differs from the distribution with mutual
Euclidean distance equal to the mean value, which represents the optimal distribu-
tion of members along the Pareto-front.

For the Hypervolume metric, the largest average value was 0,7775. For this
metric, the larger the HV, the better the set of solutions was found. In this case, it
was found for the test function VNDMOZDT3Fitness.

4.3.1 Effect of Probability of Dimension Change

One of the main parameters that could affect the result of the optimization is the
probability that the number of decision variables of the particle will change or not.
As mentioned in Section 2.3, this probability is described using three variables - py,
p2 and ps.

For ten different values of the variable ps, the values of the fitness function of the
test problem were calculated for 20 iterations. Subsequently, metrics were calculated
for each probability value and their deviations were plotted in the form of standard
boxplots. Examples of boxplots of the parameter ps are shown in Figures 4.6 (for
the Generational Distance metric), 4.7 (for the Spread metric) and 4.8 (for the
Hypervolume metric), when the parameter was tested on the VNDMOZDT3Fitness.
The effect of changing this parameter was tested on all test problems. The results
are presented in Appendix B.

The results of testing the probability parameter showed a minimal impact of set-
ting this parameter on the optimization results. Testing of influence was performed
for different settings of type of wall as well as different numbers of agents and itera-
tions. It can be seen from the boxplot figures that the results are very comparable
for both low and high numbers of agents and iterations. An absorbing wall was used

when rendering the images below, as well as those in Appendix B.
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Fig. 4.6: Standard boxplots for ten different settings of the ps parameter for the

Generational Distance metric.
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Fig. 4.7: Standard boxplots for ten different settings of the ps3 parameter for the

Spread metric.
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VNDMOZDT3Fitness - Hypervolume
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Fig. 4.8: Standard boxplots for ten different settings of the ps3 parameter for the
Hypervolume metric.
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5 Implementation of Real Problems

In the real world, tumors usually do not have a regular shape that can be easily
removed. Therefore, the created VNDMOPSO function should be able to find the best
possible solution for the removal of an irregularly shaped tumor. For the purpose of
testing the functionality of the programmed algorithm, ten different tumor shapes
were selected, for which a new fitness function polygonFitness was created based on
the mathematical definition of the solved problem (see Section 1.2.3). Since finding
a solution in 3D space would be very difficult and beyond the scope of this thesis,
their representation in two-dimensional space was created. This chapter describes
the selected method of obtaining 2D cross-sections of 3D geometric objects that
represent real examples of brain tumors. Subsequently, the method for calculating

the area in the created fitness function is described.

5.1 Geometric Representation of Tumors

Preparing the patient for the type of surgery being considered involves a magnetic
resonance (MR) examination. This non-invasive imaging technology produces three-
dimensional detailed anatomical images [37]. It is then possible to detect a tumor
from the brain images obtained in this way. The operator can then delineate the

part of the brain affected by tumor growth.

5.1.1 Delineation of the Tumor from the MRI Image

A simple script ginputToImage.m was created to obtain a 2D cross-section from
individual MRI images of brain tumors. This script allows the user to delineate any
shape on the selected image using the ginput function. Using this function, it is
possible to get the coordinates of all the points that the user clicked on. The object
selected in this way is then stored in the polygon variable and saved as a *.mat
file with the corresponding name. All objects created by the described method are
therefore represented as general polygons and stored in the 3DObjects folder.
However, this method of obtaining the shape of the tumor introduces a certain
deficiency into the solution due to the necessary approximation. It is logical that the
more points used to define the given shape, the smaller this approximation error will
be, and the more accurate the solution will be. On the other hand, the complexity of
the calculation of fitness functions increases significantly with the number of points,
and the improvement in calculation accuracy is insignificant. For this reason, it is

possible to simplify the given problem in the mentioned way. A representation of
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the approximate shape of the tumor obtained using the ginput function is shown
in Fig. 5.1.

Original MRl image Tumor delineation 2D representation of the tumor

L T —

08 ’/// "By

08 < T

0 0.2 0.4 06 08 1

Fig. 5.1: Obtaining a 2D representation of the tumor using ginputTolmage.m [41].

5.2 Fitness Function

The polygonFitness function is an objective function for calculating the areas by
which the solved problem is described - covered /remaining and overlapping. Since
the polygon is actually a 2D cross-section of the real shape of the tumor, 2D ablation
objects, i.e. circles, are also considered. In order to meet the considered criteria, it is
necessary to determine the area of the tumor, the area of the circles, the intersection
of the area of the tumor and of the circles, and the area of the individual circles
with each other. The Monte Carlo integration method, described below, is used to

calculate the areas.

5.2.1 Computation of Fitness Function

The method consists of covering a certain bounded space with a large number of
randomly distributed testing points. Subsequently, it is determined which testing
points lie in the desired part of the space (in the tumor, outside the tumor area, in
the intersection of the circles, etc.).

In the case of a circle, calculating the area it covers is simple - just find out the
distance of the selected point to the center of the circle and compare it with its
radius. For this, the function euclideanDistanceBetweenTwoSets is used, which
returns a matrix of calculated Euclidean distances between the corresponding testing

points and centers of circles. If this distance of a specific testing point to the center
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of a specific circle is shorter than its radius, the point lies inside the circle, as is

shown in Fig. 5.2.

point P, lies

inside

point P, lies ﬁ&rc:fo?nts —_—
outside 7

thecircleN 1]0 0 8

0|0 1 1

circle 1

Circles

Fig. 5.2: Determining whether or not a point lies in a circle and the corresponding
table.

Using the following equation, the area covered by a given object is obtained:

S o, Mo (5.1)

Sp ns,
where S}, represents the area of the object, Sy, the area of the bounding box, ng,
is the number of points located in the object area and ng, is the total number of
random points.

The larger the selected number of points, the more accurate the area estimate.
An example of area calculated this way is shown in Fig. 5.3.

However, the polygon, the shape that represents the tumor, is not any known
regular shape, so determining whether or not a point lies inside the polygon is more
difficult. The arePointsInPolygon function was used for this purpose. It uses one
of the two main options for solving this problem - obtaining the value of the so-
called winding number. If the winding number is non-zero, the point lies inside the
polygon. The principle of the algorithm is explained in detail in [38]. The function
then returns a vector of ones and zeros depending on whether the given point lies
inside the polygon or not. In Figure 5.3 shows the area of the polygon covered by
the points detected in this way.

The principles described above are subsequently applied for the calculation:

1. The area of the tumor that the individual ablation objects cover/do not cover

(Fig. 5.4 left)
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Fig. 5.3: Area of circles and polygon covered with points.
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Fig. 5.4: Remaining, overlapping and out of the polygon area.

2. The area of the tumor in which the ablation objects overlap

3. The area of ablation objects that protrude from the tumor area (Fig. 5.4 right)

The task of the created optimization algorithm is then to find the best possible
compromise between the values of these two functions.
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6 Applying the Algorithm to Various Tumor
Shapes

The main goal of this thesis is to apply the chosen optimization algorithm to var-
ious 2D structures that could represent a real tumor and to show its functionality
in solving these cases as well. This chapter describes the options for setting the
optimization function, subsequent processing of the results, and presents a tool for

planning neurosurgical operations performed by robots.

6.1 Algorithm Setting Options

Even before starting the algorithm itself, it is necessary to set the parameters for
which the algorithm will perform the calculation. Unlike the functionality testing
on benchmark problems (see Chapter 4), the algorithm is not run using the main.m
script, but from mainPolygon.m, where the user can find the parameter settings.
Their setting is key to achieving the desired result.
It is mainly:
1. polygonName - selection of the shape of the tumor, represented by a polygon
2. nVarsList - represents a list (or number) of dimensions. Since the opti-
mization algorithm finds a trade-off between coverage and overlap of circles,
nVarsList will give the maximum possible number of these circles. Each cir-
cle is then described by the z and y coordinates of its center and then its
radius. This means that if the user demands that the algorithm find solutions
for example for one to ten circles, it is necessary to set nVarsList from three
to thirty with a step of three because each circle is given by three parameters.
3. MaxIter - setting the maximum number of iterations
4. PopSize - setting the number of agents (particles)
5. - setting the type of wall (see Subsection 2.1.2) for delimiting the
solution space
After setting the necessary parameters, the algorithm can be started to opti-
mize the selected problem. The calculation time may vary depending on the set

parameters. By default, two runs of the algorithm are set.

6.2 Results of Optimization

After the completion of the optimization process, the results are stored in the out
structure. The most important information is contained in the exArchive structure,

which stores the positions of the agents (in the field ) and the values of
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the fitness function (in the variable ). The values of the fitness function are
then stored in the form of a matrix in the paretoFront variable.
The variable contains three types of information:
1. x-coordinate of the center (cell centers_x) - 1st, 4th, 7th, etc. position in the
vector
2. y-coordinate of the center (cell centers_y) - 2nd, 5th, 8th, etc. position in
the vector
3. radius (cell radius) - 3rd, 6th, 9th, etc. position in the vector
The variables paretoFront, centers x, centers_y and radius are stored in a

* mat file named PF 1 (first run) and PF 2 (second run) in the selected location.

6.2.1 Comparing Results

The two optimization runs are important for the possibility of comparing the results
due to the randomness of the input data. So the files PF1.mat and PF_2.mat are
then compared. The script named compareResult.m is used for this. The user
chooses polygonName (the name of the polygon) and (the type of wall
used during the calculation). After starting, the optimization results from the first
and second runs of the algorithm are compared. The script works on the principle
that the values of the fitness function of both solutions are combined, and the non-
dominated solutions are selected and stored in the bestPF.mat file, which contains
both fitness function values and information about circles. In this way, the best non-
dominated solutions across all solutions can be selected. Finally, it is determined
how many non-dominated solutions in the new Pareto-front come from the first
run and how many from the second run. The selection of the best non-dominated

solutions from two Pareto-fronts is shown in Fig. 6.1.

6.3 Tool for Displaying Results

A graphical user interface (GUI) called GUIforTumorCoverage was created to visual-
ize the optimization results, which serves as a tool for planning robotic neurosurgical
operations. It allows the user to view the distribution of individual circles in the
polygon and thus decide on the robot settings suitable for a particular patient.

At the beginning, polygonName and are selected again, and after start-
ing, a graphical interface is displayed in which a specific solution can be selected
either by choosing an index in the roller in the upper middle or by clicking on the
corresponding point in the Pareto-front graph (left graph). In the right figure, the
polygon and the distribution of circles in its area will then be displayed. In the

middle, the percentage of coverage of the polygon and the percentage of overlap of
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Fig. 6.1: A demonstration of combining two runs of the algorithm and selecting the

best solutions from both.

circles or protruding from the polygon are displayed. Information about the location
of the individual circles and their radius is then available in the table in the middle
below. A description of the workspace and a visual demonstration of the GUI is
shown in Fig. 6.2 and Fig. 6.3.
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Fig. 6.2: Description of GUI workspace.
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7 Evaluation of Optimization Results

For each optimizer, its quality should be evaluated, i.e. how efficiently it can find a
solutions for different settings of the selected parameters for which the optimization
will be performed. Some methods can also be used to compare two optimizers
against each other.

This chapter is devoted to a general evaluation of the optimization results, ob-
servation of the influence of the setting of individual parameters on the results ob-
tained by the created optimizer, and a subsequent discussion regarding the possible
improvement of its performance. This VNDMOPSO optimizer is then compared to

a simple MOPSO algorithm that would use a fixed dimension setting.

7.1 The Influence of the Type of Boundary of the

Solution Space

Each of the three boundary options has its advantages and disadvantages. Based
on research, reflecting wall is the best in terms of convergence (i.e. how well the
algorithm converges). The results, summarized in the table below (Tab. 7.1), show
that the used optimization tool can find the best set of solutions when choosing
an absorbing wall. It depends on the specific tested problem, but in general the
algorithm was able to find a set of solutions for both absorbing and reflecting wall
types very similarly. Images of all tested problems (P1-P10) can be found in the
3D0bjects folder of the electronic appendix.

When evaluating results of this type, however, the user cannot only look at
numbers but solutions must also be evaluated visually, i.e. how much is the proposed
distribution of circles in the area of the tumor suitable depending on the comfort of
the patient, the duration of the procedure, the power that was burned during the

procedure, etc.

7.2 Effect of Number of lterations and Agents

There are several ways to look at obtaining solutions by an algorithm. One of them
is obtaining solutions based on the speed of convergence. With two different settings,
when the fitness function is calculated the same times, by choosing the ratio of the
number of iterations and agents, it is possible to set the algorithm either so that
the number of agents exceeds the number of iterations, or, on the contrary, when
the setting of the number of iterations is greater than the number of agents. In the

first case, the algorithm will search the solution space well using a large number of
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Tab. 7.1: The influence of the type of boundary for more agents than iterations

PARAMETERS: Agents = 300, Iterations = 100
Pol N max min best
il B DAV I S0 DO Lol P
absorbing | 34,80 57,40 0 0 10,05 10,80
P1 reflecting | 37,20 80,18 0 0 12,03 12,71
invisible | 54,50 60,32 | 0,56 0 17,94 17,13
absorbing | 34,40 46,87 0 0 11,02 11
P2 reflecting | 35,15 68,57 | 0,04 0 11,70 11,60
invisible | 43,97 65,73 | 0,30 0,01 | 1523 12,17
absorbing | 23,68 47,77 | 0,05 0 7,83 7,99
P3 reflecting | 31,96 59,40 0 0 8,94 9,77
invisible | 39,78 72,07 | 0,10 0 9,60 9,88
absorbing | 24,42 56,69 0 0 7,41 7,28
P4 reflecting | 20,69 65,20 0 0 787 8,15
invisible | 36,38 5240 | 0,91 0,01 | 10,73 7,80
absorbing | 35,85 52,10 0 0 10,28 10,85
P5 reflecting | 42,30 76,30 | 0,31 0 13,10 12,10
invisible | 48,73 55,80 | 2,30 0,01 | 1559 1491
absorbing | 22,50 35,25 0 0 7,70 7,60
P6 reflecting | 36,28 65,65 0 0 9,57 9,54
invisible | 55,13 69,85 | 0,38 0,02 | 12,09 14,42
absorbing | 33,42 32,72 0 0 10,23 10,14
P7 reflecting | 33,20 5247 0 0 10,79 11,39
invisible | 40,70 58,51 | 0,23 0 14,67 12,90
absorbing | 24,50 45,98 0 0 5,70 5,32
P8 reflecting | 22,50 53,83 0 0 6,18 6,68
invisible | 37,40 75,82 0 0 4,98 7,38
absorbing | 20,10 31,34 0 0 5,09 5,04
P9 reflecting | 22,46 39,98 | 0,10 0 7,16 6,62
invisible | 28,62 45,30 | 0,40 0 877 T07
absorbing | 27,66 35,43 0 0 7,84 7,60
P10 reflecting | 26,98 41,89 0 0 9,45 8,80
invisible | 39,41 68,71 | 0,04 0 7,96 12,30

agents, but it will converge faster, so it will not have enough time to choose a global

best of good quality. The second case has the opposite problem when the algorithm

93



will be able to select the best agent as the global best, but it will not have enough
information about the solution space due to the low number of agents.

Some problems did not achieve satisfactory results when the ratio of number of
agents and iterations was initially set, so this ratio was reset to exactly the opposite.
It can be seen from Table 7.2 that the ratio of percentage of coverage and overlap has
improved for some problems. In addition, visual results for very difficult problems,
which the algorithm could not solve with the previous settings, were solved relatively
more successfully with the new parameter settings, which is also shown in Figure 7.1.

of Tumor C ge by Ablation Objects of Tumor Coverage by Ablation Objects

09
08
07
06
05
04
03
02

01 Agents =300 | o+ Agents = 100
Iterations = 100 Iterations = 300

0 L L L
-0.2 0 02 04 06 08 1 0 0.1 0.2 03 0.4 05 06 07 08 09

Remaining area = 9.0453% Overlap = 11.2675% Remaining area = 9.2346% Overlap = 11.0535%

Visualization of Tumor Coverage by Ablation Objects v :
Agents = 300 Agents =100
oot Iterations = 1l esr|terations = 30

of Tumor Coverage by Ablation Objects

08+ el

07

06

06 [

05

04 -

04

03

03

02
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01 01
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Remaining area = 13.0962% Overlap = 12.2278% Remaining area = 6.7785% Overlap = 18.6165%

Fig. 7.1: After changing the parameters, it was possible to find good solutions even
for very complex tumor shapes, such as P2 (upper) and P5 (lower).
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Tab. 7.2: The influence of the type of boundary for more iterations than agents

PARAMETERS: Agents = 100, Iterations = 300
Pol max min best
oven | M A A A D0 AU A 0
absorbing | 31,47 66,31 0 0 10,27 10,31
P1 reflecting | 38,70 77,20 | 0,03 0 12,52 13,00
invisible | 61,14 71,17 1,15 0 14,92 22,30
absorbing | 34,73 48,80 0 0 9,98 10,52
P2 reflecting | 33,70 65,18 | 0,07 0 11,13 10,92
invisible | 43,81 5592 | 0,44 0,01 | 16,80 17,24
absorbing | 25,36 50,16 0 0 7,95 7,71
P3 reflecting | 25,10 58,28 0 0 7,49 8,20
invisible | 51,41 58,01 | 0,98 0,01 | 12,15 13,25
absorbing | 21,67 55,87 0 0 7,43 7,54
P4 reflecting | 21,72 60,95 0 0 727 7,94
invisible | 36,82 63,44 | 0,48 0,01 9,76 11,28
absorbing | 38,20 48,14 0 0 947 9,88
P5 reflecting | 37,92 70,34 | 0,19 0 11,54 11,92
invisible | 49,04 63,75 | 1,71 0,02 | 18,55 17,79
absorbing | 22,48 35,30 0 0 7,54 7,60
P6 reflecting | 32,28 59,75 0 0 8,20 9,85
invisible | 55,34 63,30 | 3,69 0,01 | 17,55 18,93
absorbing | 31,91 33,28 0 0 10,39 10,52
P7 reflecting | 36,53 50,65 0 0 10,78 10,78
invisible | 46,55 47,17 | 0,31 0 13,99 15,18
absorbing | 23,10 47,80 0 0 5,30 5,43
P8 reflecting | 27,85 60 0 0 5,56 5,50
invisible | 31,55 57,32 | 0,26 0 10,80 5,93
absorbing | 20,40 31,05 0 0 5,18 4,69
P9 reflecting | 22,32 38,42 | 0,07 0 6,17 6,06
invisible | 28,40 47,40 | 0,70 0 9,14 9,52
absorbing | 27,90 33,74 0 0 7,41 7,53
P10 reflecting | 28,08 38,80 0 0 8,45 8,86
invisible | 39,38 67,45 | 0,018 0 9,81 7,13
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7.3 Impact of Tumor Shape Approximation

As already mentioned in Chapter 5, the real shapes of the tumors were approximated,
so the calculation of the area covered by the circles is imprecise. However, the error
it introduces into the overall result is small, as shown in Fig. 7.2. For this purpose,
a much more accurate tumor model was created, when 61 points were used for
delineation. It can be seen that the same solution in the Pareto-front corresponds
to a distribution of circles with almost the same coverage and overlap as when the
shape was much more simplified.

L___®
06 The Set of Solutions Found by the Optimization Algorithm 1 of Tumor Coverage by Ablation Objects
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ok
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Fig. 7.2: Demonstration of minimal impact of tumor shape approximation on area

calculation (tested on P3).
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7.4 Ideal Distribution of Ablation Objects for Com-

plete Removal of the Tumor

For this type of surgery, neurosurgeons have to trust incomplete or inaccurate data
produced by imaging techniques such as magnetic resonance or computed tomogra-
phy, where tumor detection is not always accurate. The images contain information
about the brain tumor collected before surgery. Meanwhile, the brain tissue may
have moved and the size of the tumor may also have increased [39]. Therefore, it is
more appropriate to choose such a distribution of circles, in which the circles pro-
trude to a certain extent from the tumor. In this case, the tumor would definitely
be removed entirely. The first priority is to remove the tumor tissue, but it is neces-
sary to consider that the brain tissue does not have the ability to regenerate and its
degradation is irreversible [39]. An example of the distribution of ablation objects
in the tumor area for the maximum possible removal of tumor tissue is shown in
Fig. 7.3. It can be seen in the picture that for the selection of such large and thus
positioned ablation objects, essentially 100% coverage would be achieved, while their
size is not much larger than the tumor itself. This would make it possible to remove

e.g. changes in tumor size.

Visualization of Tumor Coverage by Ablation Objects
T T T T T T

o8l Remaining area = 1.0147%

0.7

0.6

Overlap = 30.5735%

0.5

Although the ablation
objects protrude, the
coverage of the tumor is
almost 100% and if the
tumor is slightly larger
than in the image, a total
removal would still occur

04

03 -

0.2

0.1

Fig. 7.3: Ideal distribution of ablation objects.
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7.5 Comparison of VNDMOPSO and Simple MOPSO
Algorithm

Multi-objective PSO for variable number of dimensions is the most complex version
and it should be proven that its use was necessary. Therefore, a comparison test
of the version of the MOPSO algorithm with a fixed (FND) and variable number
of dimensions was performed. The method used for this test is called Dominance
Ranking.

This method consists in combining two Pareto-fronts and their dominance. Us-
ing both types of optimizer, the values of the fitness function are calculated, then
their Pareto-fronts are combined into a common one, and non-dominated solutions
are selected from it. According to how many non-dominated solutions from which
Pareto-front were selected, it is then decided which of the two original Pareto-fronts
has more better solutions [40].

Figure 7.4 shows that the test results were in favor of the VND version of this
algorithm for absorbing and reflecting walls. For an invisible wall, the algorithm

with fixed dimensions worked better, as shown in Figure 7.5.

Polygon 1 Polygon 1
Absorbing wall Reflecting wall
06 Combined Pareto Front 09 Combined Pareto Front
X  Fixed Dimensions: 12 X  Fixed Dimensions: 19
X VNDMOPSO Algorithm: 35 X VNDMOPSO Algorithm: 31
X 0.8%
051 X
X
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x 0 / < The VND version
; 04y thu:':lNl? ver:;‘on ; 06 of the algorithm
2 |x ot the algorithm 2| had better results
I had better Zost™ than those with a
£ 03t ’,; results ‘Eha" s | x fixed dimension
+ ¢ those? with 'a + o4l x setting
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i 021 x setting T; 03 ’&xx
é ¢ é X
X x x
0 ", 0.2 % "
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% %%
x 01+ x
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X Xy *%
%
0 . . . * X X g 0 L L . BMox X % w
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Fig. 7.4: Comparison results of VND and FND versions of the algorithm for absorb-

ing and reflecting wall.
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Fig. 7.5: Comparison results of VND and FND versions of the algorithm for invisible

wall.

Since the invisible wall is the worst approach in terms of convergence, the
MOPSO algorithm with a variable number of dimensions seems to be the right
choice, both in terms of computational time and better results. An overview of the
number of non-dominated solutions originated from the Pareto-front obtained by
the VND variant and the FND variant of the algorithm is available in Tab. 7.3.
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Tab. 7.3: Comparison of VND (Variable number of dimensions) and FND (fixed

number of dimensions) version of the algorithm

Number of solutions
Polygon Wall
PFynp PFenp
absorbing 35 12
P1 reflecting 31 19
invisible 3 18
absorbing 81 8
P2 reflecting 42 8
invisible 6 26
absorbing 50 13
P3 reflecting 35 9
invisible 6 23
absorbing 60 21
P4 reflecting 42 13
invisible 6 28
absorbing 55 9
P5 reflecting 35 16
invisible 7 23
absorbing 88 3
P6 reflecting 23 11
invisible 5 17
absorbing 64 15
P7 reflecting 38 11
invisible 5 20
absorbing 46 9
P8 reflecting 26 14
invisible 6 13
absorbing 97 11
P9 reflecting 34 9
invisible 5 27
absorbing 7 3
P10 reflecting 24 14
invisible 4 31
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Conclusion

The aim of this thesis was to get acquainted with the basic principle of performing
robotic operations used in the field of neurosurgery. After an initial study of the
issue, a selected algorithm for solving multi-objective optimization problems was
described, which could be used to optimize surgical procedures for the removal of
brain tumors by the LITT method, used by a concentric tube robot.

The Multi-Objective Particle Swarm Optimization algorithm with a variable
number of dimensions turned out to be the most suitable of the available heuristic
algorithms, thanks to its simple implementation and the best results in solving multi-
objective problems having up to low tens of variables, which includes the problem
solved in this thesis.

One of the main tasks of the thesis was the creation of a function in which this
algorithm is implemented. This function, created in MATLAB, was tested on several
benchmark problems and the results were verified using three test metrics.

The largest average deviation calculated using the Generational Distance met-
ric was found for the VNDMOLI2Fitness function, the average deviation calcu-
lated using the Spread metric was the highest for the VNDMOZDT3Fitness func-
tion, and the Hypervolume metric calculated the largest average HV for the VND-
MOZDT3Fitness test function. The influence of setting the probability whether or
not the number of decision variables will be changed was minimal.

The thesis was further devoted to solving real problems. This part of the the-
sis dealt with obtaining 2D cross-sections of 3D structures, represented as general
polygons, and creating a fitness function. This function is formulated to be able to
calculate the area that covers or does not cover the tumor, the area of overlapping
ablation objects, and the part of the area of the ablation objects that does not cover
the tumor.

The created optimization function was subsequently used to optimize the cov-
erage of ten different polygons with ablation objects. To visualize the results, a
tool that displays individual solutions in the Pareto-front and the corresponding
distribution of ablation objects in the tumor area was created.

The results show that the VNDMOPSO algorithm was able to find a set of
solutions that could be suitable for this type of operation, while the success of
finding the ideal set of solutions varies based on the setting of several parameters.
Setting the solution space boundary type had the greatest impact. The algorithm
was able to find the best solutions in the case of an absorbing wall, while it achieved
similar success in the case of a reflecting wall. When setting up an invisible wall, the
results were unsatisfactory. Different combinations of setting the number of agents

and iterations also had an impact on the optimization results. When setting a higher
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number of iterations than agents, the optimizer was more successful.

Finally, the optimizer with a variable number of dimensions was compared to
the optimizer with a fixed number of dimensions. Using the Dominance Ranking
method, it was evaluated that the VND version of the algorithm is significantly
better when using an absorbing and reflecting wall. With the invisible wall, the
version with a fixed number of dimensions was more successful.

However, several simplifications have been used in achieving the results, which
cause them to be somewhat distorted. Of course, these simplifications could be
replaced by a more accurate model. However, their usage would increase the time
required for the calculation. The use of another programming language, possibly
parallel processing of results, etc. could then reduce this increase in time require-

ments.
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Symbols and abbreviations

1 Cognitive Learning Factor

Ca Social Learning Factor

CD Crowding Distance

CTR Concentric Tube Robot

dq Euclidean Distance between the First Solution and Its Nearest
Neighbor

do Euclidean Distance between the First Solution and Its Second

Nearest Neighbor

d; Euclidean Distance of i-th Solution
DOF Degree-of-Freedom

A Spread

ENNS Equal-average Nearest Neighbor
FDA Food and Drug Administration
FOPS Fast Optimization Procedures

GD Generational Distance

GDE3 Third version of Generalized Differential Evolution
GUI Graphical User Interface

HV Hypervolume

LITT Laser-Induced Thermotherapy

MOOP Multi-Objective Optimization Problem

MOPSO Multi-Objective Particle Swarm Optimization

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MOSOMA Multi-Objective Self-Organizing Migrating Algorithm
Total number of random points

ngb
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ns,
Nppest
Npest

N,
NSGA-II
b1

P2

b3

r
P
PF

PSO

(%

VNDMOPSO MOPSO Algorithm for Variable Number of Dimensions

w

WFG

L gbest

Lpbest

Number of random points located in the object area
Number of dimensions of Personal Best
Number of dimensions of Global Best
Number of dimensions of Particle
Non-dominated Sorting Genetic Algorithm
Probability of dimension of Particle
Probability of dimension of Personal Best
Probability of dimension of Global Best
Random number

Pareto-optimal front

Pareto-front

Particle Swarm Optimization

Found Pareto-front

Bounding box area

Object area

Single-Objective Optimization Problem
Single-Objective Particle Swarm Optimization

Velocity Vector of i-th Particle

inertial weight
Weighted Fast Greedy Algorithm
Position of i-th Particle

Global Best

Personal Best
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A Results of Testing the Function VNDMOPSO

For each test problem, nVarsList, nOptList, the number of parts of the Pareto-front
nParts and the parameter were set to the optimal parameters specified in
the FOPS Package. The number of iterations and the population size were adjusted
as needed. Since the metrics can only calculate the difference between the found
and the true Pareto-front for two-objective problems, the following figures depict

the three-objective problems without the true Pareto-front.

1.4

X Found PF

True PF
1.2 b

f2[-]

0 0.2 0.4 0.6 0.8 1 1.2

Fig. A.1: VNDMOPSO applied to VNDMOLI1Fitness (MaxIter = 100, PopSize =
1000).
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1.2

X Found PF
True PF

0 0.2 0.4 0.6 0.8 1 1.2
fil-]

Fig. A.2: VNDMOPSO applied to VNDMOLI2Fitness (MaxIter = 100, PopSize =
1000).

Fig. A.3: VNDMOPSO applied to VNDMODTLZ4Fitness (MaxlIter = 200, PopSize
= 1000).
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Fig. A.4: VNDMOPSO applied to VNDMODTLZ7Fitness (MaxIter = 200, PopSize
= 1000).

T

X Found PF
True PF |

1.2 1.4

Fig. A.5: VNDMOPSO applied to VNDMOLZ3Fitness (MaxIter = 100, PopSize =
1000).
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Fig. A.6: VNDMOPSO applied to VNDMOLZ6Fitness (MaxIter = 200, PopSize =
1000).

Fig. A.7: VNDMOPSO applied to VNDMOUF10Fitness (Maxlter = 500, PopSize
= 1000).
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1 T T T T T T T T

X Found PF
True PF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Al

Fig. A.8: VNDMOPSO applied to VNDMOZDT2Fitness (MaxIter =
= 1000).
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True PF |
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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100, PopSize

Fig. A.9: VNDMOPSO applied to VNDMOZDT3Fitness (MaxIter = 100, PopSize

= 1000).

75



B Results of Testing the Influence of the
Parameter of Probability

VNDMOLIHIMFitness - Gen. Distance
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Fig. B.1: Standard boxplots for ten different settings of the p3 parameter for the

Gen.Distance metric.
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Fig. B.2: Standard boxplots for ten different settings of the p3 parameter for the

Spread metric.
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VNDMOLHFitness - Hypervolume
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Fig. B.3: Standard boxplots for ten different settings of the ps parameter for the

Hypervolume metric.

VNDMOLI2Fitness - Gen. Distance
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Gen.Distance metric.
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VNDMOLI2Fitness - Spread
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Fig. B.6: Standard boxplots for ten different settings of the p3 parameter
Hypervolume metric.
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VNDMOLZ3Fitness - Gen. Distance
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Fig. B.7: Standard boxplots for ten different settings of the p3 parameter for the

Gen.Distance metric.
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Spread metric.
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VNDMOLZSFltness Hypervolume
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Fig. B.9: Standard boxplots for ten different settings of the p3 parameter for the

Hypervolume metric.
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Fig. B.10: Standard boxplots for ten different settings of the p; parameter for the

Gen.Distance metric.
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VNDMOZDT2Fitness - Sprea
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Fig. B.11: Standard boxplots for ten different settings of the ps parameter for the
Spread metric.
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Fig. B.12: Standard boxplots for ten different settings of the p; parameter for the
Hypervolume metric.
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