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ABSTRACT 
This thesis deals with the planning of robotic operations for neurosurgery and the opti­

mization algorithms used to propose the surgical procedures performed by them, primar­

ily the VNDMOPSO algorithm. The introductory chapter explains the basic principle of 

performing robotic operations and describes a concentric tube robot that can be used to 

perform these operations. Furthermore, the thesis deals with a general description of op­

timization problems and algorithms solving them, and then the VNDMOPSO algorithm, 

selected for the given optimization problem, is described in detail. For this algorithm, a 

function in the MATLAB is created, which is subsequently tested on several benchmark 

problems. In the following sections, its functionality is verified on real tumor shapes 

and a graphical user interface, which serves as a robotic neurosurgery planning tool, is 

presented. In the final part of the thesis, the influence of setting individual parameters 

of the algorithm on the optimization results is evaluated. 

KEYWORDS 
Ablation, benchmark problems, CTR, GUI, optimization algorithms, planning of robotic 

neurosurgery, test metrics, tumor, VNDMOPSO 

ABSTRAKT 
Táto diplomová práca sa zaoberá problematikou plánovania robotických operácií pre 

neurochirurgiu a optimalizačnými algoritmami používanými na návrh operačných zákro­

kov nimi prevádzaných, predovšetkým algoritmom VNDMOPSO. V úvodnej kapitole je 

vysvetlený základný princíp prevádzania robotických operácií a popísaný koncentrický 

trubicový robot používaný pre tento účel. Ďalej sa práca zaoberá všeobecným popisom 

optimalizačných problémov a algoritmov ich riešiacich a následne je podrobne popi­

sovaný algoritmus VNDMOPSO, vybraný pre daný optimalizačný problém. Pre tento 

algoritmus je vytvorená v prostredí MATLAB funkcia, ktorá je následne testovaná na 

viacerých testovacích úlohách. V nasledujúcich častiach je overovaná jej funkčnosť na 

reálnych tvaroch nádorov a je predstavené grafické užívateľské prostredie, ktoré slúži 

ako nástroj pre plánovanie neurochirurgických robotických operácií. V záverečnej časti 

práce je vyhodnotený vplyv nastavenia jednotlivých parametrov algoritmu na výsledky 

optimalizácie. 
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Ablácia, CTR, GUI, nádor, optimalizačné algoritmy, plánovanie robotickej neurochirurgie, 

testovacie úlohy, testovacie metriky, VNDMOPSO 
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ROZŠÍRENÝ ABSTRAKT 

V súčasnosti je čoraz väčšia pozornosť upriamená na vývoj využitia robotiky 
v chirurgickej praxi z dôvodu zvyšujúcich sa požiadaviek na minimálnu invazivitu 
prevádzania operačných zákrokov. Začlenenie robotov do lekárskej praxe umožňuje 
chirurgom posúvať hranice svojich technických schopností. Operácie, ktoré predtým 
znamenali veľkú záťaž pre pacienta aj lekársky tím, je teraz možné vykonávať rých­
lejšie a s oveľa menším počtom pooperačných komplikácií a kratším časom rekonva­
lescencie [1]. 

Oblasť neurochirurgie sa dá považovať za jednu z najdôležitejších oblastí, v ktorej 
by mal byť využívaný minimálne invazívny prístup. Napriek tomu, že anatomická 
zložitosť neurologických štruktúr znamenala značný problém pri začlenení robotiky 
do tejto oblasti, bolo vyvinutých niekoľko robotov umožňujúcich odstránenie moz­
gového nádorového tkaniva [1]. Medzi ne patrí aj koncentrický trubicový robotický 
systém, ktorý dokáže pomocou metódy laserom indukovanej termoterapie denatur-
ovať nádorové tkanivo zvnútra. Táto metóda má veľký potenciál, pretože ide o 
minimálne invazívny prístup k liečbe mozgových nádorov za použitia magnetickej 
rezonancie [3]. 

Proces plánovania zohráva pri tomto type operácií kľúčovú úlohu. Na základe 
neho je umožnené spoľahlivé odstránenie najväčšej možnej časti nádoru s minimál­
nym poškodením zdravého okolitého tkaniva. Pre tieto účely sa používajú multi-
kriteriálne optimalizačné algoritmy, ktoré dokážu nájsť súbor najlepších riešení, tvo­
riaci tzv. Paretovo čelo, z množiny možných riešení tak, aby spĺňali požiadavky defi­
nované kriteriálnymi funkciami [10]. Medzi tieto patrí aj algoritmus Multi-objective 
Particle Swarm Optimization pre premenný počet dimenzií (VNDMOPSO), ktorý 
bol v tejto práci zvolený na optimalizáciu úlohy plánovania takto vykonávaných 
operácií. 

Teoretická časť práce sa zaoberá popisom koncentrického trubicového systému 
a metódy laserovo indukovanej termálnej ablácie, ktorá sa používa na denaturáciu 
tkaniva, ako aj popisom zvoleného optimalizačného algoritmu. 

V praktickej časti práce je popisovaná funkcia VNDMOPSO, vytvorená v prostredí 
M A T L A B pre implementáciu tohoto algoritmu, ktorá je následne testovaná na viac­
erých testovacích problémoch. Výsledky sú následne vyhodnocované pomocou troch 
testovacích metrík, ktoré umožňujú kvalitatívne posúdiť vytvorený optimalizačný 
nástroj. 

Ďalšia časť práce je venovaná testovaniu funkcie na 2D rezoch 3D geometrických 
objektov, reprezentovaných vo forme obecného polygónu. Tieto objekty predstavujú 
tvary nádorov často sa vyskytujúcich v medicínskej praxi. Pre vizualizáciu výsledkov 
testovania bolo vytvorené grafické užívateľské prostredie, ktoré slúži ako nástroj 



pre plánovanie robotických neurochirurgických operácií. Tento nástroj umožňuje 
zobraziť jednotlivé riešenia v Paretovom čele a rozmiestnenie ablačných objektov v 
oblasti nádoru zodpovedajúce vybranému riešeniu. 

Výsledky ukazujú, že algoritmus V N D M O P S O dokáže nájsť množinu riešení 
vhodných pre vykonávanie tohoto typu operácií, pričom úspešnosť nájdenia ideálnej 
množiny riešení sa líšila v závislosti od nastavenia viacerých parametrov. Najväčší 
vplyv malo nastavenie typu ohraničenia priestoru riešení. Algoritmus dokázal nájsť 
najlepšie riešenia v prípade steny typu absorbing, zatiaľ čo v prípade steny typu 
reflecting boli výsledky podobné. Pri voľbe neviditeľného typu steny boli výsledky 
neuspokojivé. Na výsledky optimalizácie mali vplyv aj rôzne kombinácie nastavenia 
počtu agentov a iterácií. Ukázalo sa, že pri zachovaní množstva výpočtov kriteriálnej 
funkcie sa oplatí nastaviť skôr viac agentov ako iterácií. 

Nakoniec bol optimalizátor s premenným počtom dimenzií porovnaný s optimal-
izátorom s pevným počtom dimenzií. Pomocou metódy Dominance Ranking bolo 
vyhodnotené, že verzia algoritmu V N D je výrazne lepšia pri použití steny typu ab­
sorbing a reflecting. Pr i použití neviditeľnej steny bola úspešnejšia verzia s pevným 
počtom dimenzií. 
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Introduction 

Nowadays, more and more attention is paid to medical procedures being minimally 
invasive. Therefore, in recent decades, the idea of using robotics in surgical practice 
has been widely developed. Incorporating robots into medical practice thus allows 
surgeons to push the limits of their technical skills. Surgeries, which meant a great 
burden for both the patient and the medical team, can now be performed faster and 
with much fewer post-operative complications and a shorter recovery time [1]. 

Perhaps the most important area in which a minimally invasive approach is 
required is the field of neurosurgery. The anatomical complexity of neurological 
structures meant a considerable problem in the incorporation of robotics in this 
field [1]. Despite this, several robots have been developed, enabling the removal of 
tumor tissue from the brain. One of them is a concentric tube robotic system that 
can denature tumor tissue from the inside using the Laser-Induced Thermotherapy 
method. This method has great potential because it is a minimally invasive approach 
to the treatment of brain tumors, thanks to the assistance of magnetic resonance 
imaging [3]. 

For the successful removal of tumor tissue, the procedure of each operation must 
be carefully planned for the specific shape of the tumor. Multi-objective optimization 
algorithms are used to achieve this task. These include e.g. Multi-objective Parti­
cle Swarm Optimization (MOPSO), Multi-Objective Self-Organizing Migrating A l ­
gorithm (MOSOMA), Generalized Differential Evolution (GDE3), Non-dominated 
Sorting Genetic Algorithm (NSGA-II) and others [3]. 

The theoretical part of this thesis deals with the description of the concentric 
tube robot and the ablation method that is used for tissue denaturation, as well as 
the description of the multi-objective optimization algorithm MOPSO, which was 
chosen to optimize the task performed by the robot. 

Subsequently, in the practical part, a function for the implementation of this 
algorithm is created in M A T L A B , which is then tested on several benchmark prob­
lems. The validity of the results is subsequently verified using three test metrics. 
In the next part of the thesis, its functionality is tested on several real shapes of 
tumors, represented in the form of general polygons in two-dimensional space. A 
graphical user interface created for visualization of the results, which represents a 
tool for planning robotic neurosurgical operations, is also presented. The final part 
of the thesis is devoted to the evaluation of the optimization results and the influence 
of the setting of individual parameters of the algorithm on them. 
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1 Robotics in Neurosurgery 

In recent years, robotics in the medical field has become one of the main subjects of 
interest for developers, which has caused the rapid development of this discipline. 
The first robot used in neurosurgery to perform a brain biopsy was introduced in 
1985, and the first robot which was marked the first robotic device approved by the 
F D A for neurosurgical procedures was developed in the 1990s. Since then, many 
advances in artificial intelligence and machine learning enabled to evolve various 
robots. They are now an integral part of medical practise around the world [5] [6]. 

This chapter describes the method of brain tumor treatment, called laser-induced 
thermotherapy [7], which makes it possible to remove even an irregularly shaped 
tumor as well as the robotic surgery system capable to perform such a complex 
task. 

1.1 Medical Mot ivat ion 

Brain tumors are usually treated with surgery. However, there are cases when it 
is not possible to completely remove the tumor without damaging the surrounding 
vital brain tissues. Mostly, these are tumors of irregular shape. In such cases, other 
treatment approaches are considered, such as chemotherapy, radiotherapy or even a 
method called laser-induced thermotherapy (LITT), described below [2]. 

1.1.1 Laser-Induced Thermotherapy Method 

Laser-induced thermotherapy is nowadays a widely used method for removing brain 
tumors. This method consists of several thermal ablation applications in the volume 
of the tumor, as shown in Fig. 1.1. 

Ablation 

Fig. 1.1: Thermal ablation applied in vitro of tumor tissue [3]. 
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The application is performed using a laser producing non-ionizing radiation. 
Laser tissue destruction occurs by absorption and scattering. Absorption is the pro­
cess of converting laser energy into heat after the collision of photons and molecules 
of the target tissue (so-called chromophores). This heat causes photothermal heat­
ing, which destroys diseased cells, as illustrated in Fig. 1.2A. Scattering of light 
on particles in the tissue then causes an increase in the spatial distribution of light 
(Fig. 1.2B). 

LASER TISSUE 

A: Absorption 

Fig. 1.2: Two main types of interaction between tissue and laser light: A: absorption, 
and B: scattering [8]. 

The success of tissue removal depends on the specific properties of the tissue 
(e.g. conductivity, density, perfusion...) and also on the choice of the radiation 
wavelength so that tissue heating and light penetration are optimized [7]. The use of 
this method allows removing tumor tissue with minimal postoperative complications 
and represents a minimally invasive treatment approach (more detailed information 
about LITT can be found in [7]). 

1.2 Planning Robotic Operations 

In order to enable optimal tissue removal by the LITT method, a concentric tube 
robot (CTR) was designed that can induce thermal energy into the tissue and thus 
effectively destroy it. The robot is optimized using a computer-assisted planning 
process that includes optimization of the ablation objects and their placement in 
the tumor volume (task-specific planning) and optimization of the parameters of 
the robot itself (robot-specific planning) [3]. 
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1.2.1 Task-Specific Planning 

The main goal of task-specific planning procedure is to ensure that the treatment is 
as minimally invasive as possible. Therefore, the optimization of the placement of 
ablation objects is very important. It is requisite to remove as much of the tumor as 
possible, on the other hand, the vital surrounding tissues must not be overheated. 
These two criteria contradict each other, so it is important to find a compromise 
between them, using multi-objective optimization methods [3]. 

Task-specific planning involves the calculation of optimal parameters of ablation 
objects (number, size, position), considering these two criteria. Achieving optimal 
distribution can be viewed as an unequal sphere packing problem to place a number 
of objects into a volume. The method called bin packing, illustrated in Fig. 1.3 
(left), could be used for solving this problem. However, in order to remove the 
largest part of the tumor, we must consider the possibility of the ablation objects 
overlapping each other (Fig. 1.3 (right)). That's why bin packing method can't be 
used for this type of optimization problem and parameters of ablation objects must 
be optimized by some kind of available multi-objective optimization methods (e.g. 
MOPSO, GDE3, M O S O M A , NSGA-II) [3]. 

Remaining tumor volume 

Overlapping volume 

Fig. 1.3: Regular bin packing problem (left) and packing problem for robot-assisted 
LITT with overlapping objects (right) [3]. 

1.2.2 Robot-Specific Planning 

The parameters of the ablation objects selected by this algorithm are then the input 
values for the optimization of the robot. This means that C T R optimization is 
closely related to the results of the task-specific planning process. Robot-specific 
planning procedure than includes the optimization of the parameters of the robot 
itself, such as the curvature and length of the tube, as well as the computation of 
the most suitable trajectories into the tumor volume. [3]. 
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1.2.3 Problem Description 

It should be noted that a real ablation object would not have a uniform thermal effect 
over its entire surface, but the heat would spread progressively from the ablation 
needle to the edge of the object. The propagation of the heat produced by the 
laser would depend on the material properties of surrounding tissues. However, 
tumor tissue has different properties than normal, physiological one, so it would 
be very difficult to calculate the parameters of heat propagation throughout the 
ablation object. For the sake of simplicity, the thermal propagation from the ablation 
injection is simulated as a circle with uniform thermal propagation in this thesis. 

The objectives of the optimization problem can be expressed by the percentage 
of the tumor volume not covered by the ablation objects and the percentage of 
the tumor volume where the ablation objects overlap or protrude from the tumor 
volume. This problem can be defined using the following objective functions fi and 

min / i ( f ) = I) n, (1.1) 
1=1 

Ns Ns 

min/ 2 ( f ) = f | S i + P K C 1- 2) 
x i=i i=i 

where x defines the decision vector (solution), represents the area where the i-th 
ablation object does not cover part of the tumor volume, Sj represents the area where 
the i-th ablation object covers part of the tumor volume and Oj represents the part 
of the z-th ablation object that protrudes from the tumor and extends into healthy 
tissue. The intersection area of individual surfaces is calculated over all Ns ablation 
objects. 

The minimization of functions f\ and is the goal of task-specific planning, 
which is one of the tasks of this thesis [3]. 

1.3 Concentric Tube Robots 

Concentric tube robots form a special class of so-called continuum robots, which are 
mainly used in interventional medicine. They consist of superelastic and very thin 
concentric tubes, the size of which can be compared to the size of a catheter. This 
fact makes them different from classic rigid robots with high mechanical rigidity and 
a limited degrees-of-freedom (DOFs) [4]. These properties predispose them to be 
used for many surgical applications. 

The concentric tube robotic system consists of two types of tubes: the outer, so-
called delivery tube, and internal, so-called ablation guide tube. The delivery tube 
represents the straight and rigid part of the robot, while the ablation guide tube 
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is less rigid and consists of a straight part and a curved end part [3]. Figure 1.4A 
illustrates the design of the tubes of the C T R system. Both types of tubes can 
be positioned. The outer tube can be positioned by translation, the inner tube 
by translation and rotation, as shown in Fig. 1.4B. During surgery operation, the 
activation unit for positioning the tubes is mounted outside of the patient's body. 
The laser probe is placed in the inner ablation tube. The laser fiber directed in this 
way then creates an ablation object that destroys the target tumor tissue. In order 
for the operation to be successful, it is necessary to monitor the thermometry, the 
ablated tumor tissue and the position of the robot in the brain, which is provided 
by an M R I scanner [3]. Therefore, this robotic system is compatible with MR. The 
design of the manual control unit is described in detail in [9]. 

A: Tube's design B: CTR design 

Fig. 1.4: C T R design [3]. 

As already mentioned, the distribution of ablation objects in the tumor volume 
is key to achieving good results of the surgical operation with minimal postopera­
tive complications. A multi-objective version of the Particle Swarm Optimization 
algorithm, described in Chapter 2, was chosen for this task. 

20 



2 Optimization Algorithms 

Optimization algorithms represent methods for finding the best solution from a set 
of possible solutions. In the beginning, a fitness (objective) function is defined that 
evaluates how appropriate the proposed solution is. The optimized system is defined 
by the so-called decision variables on which the fitness function depends. These can 
be e.g. profit, cost, production quantity, etc. The optimization process aims to find 
the decision space vector for that either the maximum or the minimum of the fitness 
function is reached [10]. 

The optimization problem can be either formulated as single-objective (SOOP) 
or multi-objective (MOOP). If the optimization problem is described by only one 
fitness function, it is a single-objective optimization problem, if it is described by 
two or more fitness functions, the problem is called a multi-objective optimization 
problem. In the case of MOOP, it is common for fitness functions to conflict with 
each other. This means that if the optimization process aims to reach the minimum 
of these functions, moving closer to the minimum of one function will cause the 
movement away from the minimum of the other function. In order for M O O P to 
be optimized, a trade-off is found between individual objectives. The result of the 
optimization process is then a set of these trade-off solutions. The full set of trade-off 
solutions is called the Pareto-front [10]. 

Today, many researchers are engaged in solving optimization problems, and many 
types of optimization algorithms are already known. These algorithms are generally 
denoted as evolutionary algorithms. The name is derived from an analogy to Dar­
win's theory of evolution [20], which is based on the survival of the fittest species. 
They are divided into genetic algorithms (such as GDE3 [11], NSGA-II [12]) and 
swarm intelligence algorithms (e.g. MOPSO [21] and M O S O M A [13]) [14]. The 
choice of the algorithm that will be used for a given optimization task depends on 
several factors, such as its implementation and computational complexity, the de­
gree of reliability of finding the best solution, different experiences of users with a 
particular method, etc. 

This thesis aims to optimize the robotic system for neurosurgery, described in 
Section 1.3, for which the multi-objective version of the Particle Swarm Optimization 
algorithm was chosen based on the decision criteria mentioned above. This chapter 
contains a description of the single-objective version of this algorithm (PSO), its 
multi-objective version (MOPSO), and finally the MOPSO algorithm for a variable 
number of dimensions (VNDMOPSO). At the end of this chapter, there is a clear 
table (Tab. 2.1) that summarizes the differences between the individual variants of 
this algorithm. 
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2.1 Single-Objective Particle Swarm Optimization 

This optimization technique was developed by social psychologist James Kennedy 
and electrical engineer Russell C. Eberhart in 1995 [16]. It is a stochastic method 
that simulates the social behavior of animals, typically a swarm of bees or a school 
of fish. Most often, this method is explained by the behavior of a swarm of bees in 
search of flowers for pollination. 

The task of the bees in the swarm is to find the place with the largest concen­
tration of flowers. Along the way from the beehive to the field of flowers, each bee 
evaluates several positions as the potentially most densely flowered. Subsequently, 
bee cooperation plays an important role - each bee changes its search method ac­
cording to its own experiences and the experiences of other members of the swarm. 
A l l the bees explore the entire field and then return to the places they have judged 
during their research so far to be the places with the greatest concentration of flow­
ers. With increasing experience, the number of these places decreases and eventually 
leads to one location where the most flowers are located, as shown in Fig. 2.1 [16]. 

The analogy with the behavior of a swarm of bees can easily be applied to 
the PSO algorithm. Bees represent so-called particles (or agents), a field of flowers 
denotes the solution space, the density of flowers on the field is a fitness function, the 
places that one bee evaluated as the most concentrated are called personal bests, and 
the experiences of other swarm members are called global bests. Each bee (particle) is 
located at some current position and has an assigned velocity. Exploring, exchanging 
experiences and returning to already explored places condition the position change 
in individual iterations of algorithm [16]. 

In each iteration i, the position and velocity vector of all agents are updated. 
At the beginning of the first iteration, each particle has its own randomly generated 

Iteration # 0 Iteration # N 

Fig. 2.1: The basic principle of the PSO algorithm [15]. 
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position x\. During every iteration, its position is updated by adding the velocity 
vector of the given particle Vi according to equation [16]: 

Xi-l + Vi (2.1) 

Therefore, the velocity vector Vi must be updated first, which is calculated according 
to the formula [16]: 

WVi + CiTi [Xpbest.i - Xi] + C2T2 [xghest,i ~ %i (2.2) 

It can be seen from equation (2.2) that the velocity vector of a particle is influenced 
by the location of the personal best of the i-th particle, but it is also influenced by 
the rest of the swarm, which represents the global best in the equation. Figure 2.2 
shows the graphics computation of the velocity vector [16]. 

fix) inertia v' 

Xgbest 

* 
Xpbest 

Fig. 2.2: Visual demonstration of updating the velocity vector [16]. 

The variables c\ and c2 are so-called scaling factors whose value describes how 
strongly the particle is attracted towards xpbest,i (ci) and xgbe st,j (c2). The random 
numbers r\ and r2 take values from 0 to 1 and their task is to simulate to some extent 
the unpredictability that naturally occurs in the swarm. The variable w indicates 
how much the contribution of the old velocity vector will be to the new velocity 
vector [16]. This number describes the will of the particle to stick to its original 
direction. 

2.1.1 PSO Algorithm 

Figure 2.3 shows the pseudocode of the PSO algorithm. The user initially generates a 
population consisting of individual particles. These are uniquely determined by their 
position and velocity vector, which are randomly generated before the first iteration. 
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Constraint conditions are also set that the generated positions and velocity vectors 
must satisfy. Individual iterations of the code then consist of updating the velocity 
and position vectors. Subsequently, the current positions are compared with the 
best positions of individuals. If the current position is better than the last updated 
p̂best,* from the previous iteration, this xpbest,i is replaced with the new position. 

If not, the last xpbest,i is left as xpbest,i- Finally, the position of the global best is 
updated, which is the same process as the xpbest,i update. So, if the position of the 
particle's new xpbest,i position is better than xgbest,i, then the corresponding position 
is replaced by this current position [16]. 

Stepl: Initialization 
Initialize fitness function; 
Initialize x g b e s t to the maximum value of the fitness function; 

for i = 1 : population size 

Generate initial (random) particle position P,. Take into 
account the lower and upper bounds of the search space; 

Initialize the velocity vector taking into account the 
boundaries of the solution space. 
Evaluate fitness function; 

Initialize x p b e s t to its initial position xpbest(i) = Pi,' 
end 

Step2: Main Loop of algorithm 
for i = 1 : number of iterations 

for j = 1 : population size 
Update velocity; 
Update position; 
Update xpbeSt: If fitness(Pj) < fitness(xpbest) 

Xpbest 
Update x g b e s t : If fitness(xpbest) < fitness(xgbest) 

Xgbest Xpbest; 
end 

end 
Step3: Output x g b e s t which holds the best-found solution 

Fig. 2.3: Pseudocode of the conventional PSO algorithm [16]. 

2.1.2 Boundary Conditions 

In engineering applications, the realism of the solutions sought is often required. 
That is why the so-called boundary conditions to limit the solution space are estab­
lished. 
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Three types of walls are used to delimit the space in PSO algorithm: 
1. Absorbing walls: If a particle hits the boundary of the solution space, the 

absorbing type of wall will absorb the particle's energy in a specific dimension and 
the particle's velocity will be zeroed in that dimension. In the solution space, it then 
looks as if the particle would "slide" along the boundary of the space after hitting 
the wall, which is shown in Fig. 2.4A) [16]. 

2. Reflecting walls: After a particle hits a reflecting type of wall in one of the 
dimensions, the particle is reflected back into the solution space in the direction of 
the negative velocity vector, as shown in Fig. 2.4B). From a mathematical point of 
view, it only changes the sign of the corresponding velocity vector component to the 
opposite [16]. 

3. Invisible walls: If the solution space is not limited in any way, we are talking 
about the so-called invisible walls. This type of wall works on the principle of 
evaluating only the "feasible" position of the particles. It means that particles whose 
positions are already outside of the feasible decision space are not taken into account. 
Figure 2.4C) denotes the principle of an invisible wall [16]. 

A) Absorbing Walls 

f(x)| 

1 
Vi-i = vxx + vyy 

vt = 0 • x + vyy 

B) Reflecting Walls 

f(x)f 

Vi-i = vxx + vyy 

vt = — vxx + vyy 

C) Invisible Walls 

f(x)t 

• x 
^ = vxx + vyy 

Vi = V:. 

Fig. 2.4: Three types of boundary walls [17]. 

2.2 Mult i -Object ive PSO 

As already mentioned at the beginning of Chapter 2, the result of a multi-objective 
optimization problem is not only one solution, called global best, but a set of trade­
off (so-called non-dominated) solutions (created Pareto-front). Therefore, a modi­
fied, multi-objective, version of this algorithm is used instead of a conventional PSO 
algorithm for MOOPs. 

The main goals to be achieved by the MOPSO algorithm are: 
1. Ensure a sufficient number of elements of the Pareto-front, 
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2. Minimize the difference between the members of the found non-dominated set. 
which is result from the algorithm and the true Pareto-front, 

3. Maximize the allocating of the found solutions along the Pareto-front so that 
the distribution of vectors is as smooth and uniform as possible [21]. 

To achieve these goals, non-dominated solutions must be found and stored in an 
external archive. The maximum number of archive members should be equal to the 
number of population members (particles). Therefore, in each iteration in which 
there are more non-dominated solutions in the external archive than the number 
of particles in the population, it must be decided which non-dominated solutions 
are better than the others. For the sake of the algorithms' efficiency, a certain 
diversity must be preserved in the non-dominated set. Solutions that are too close 
to each other do not carry as much information as those that are further away. 
Therefore, they can be removed from the archive. Finally, only the least crowded 
solutions remain in the external archive, and they are then considered global bests, 
which form the Pareto-front. For this selection, a pruning method called crowding 
distance is used, which is shown in Fig. 2.5 [22]. 

/2" h n h 

Fig. 2.5: Crowding distance method [24]. 

The method consists in calculating the Euclidean distances d\ and d2 between 
the solution and its two nearest neighbors. These two Euclidean distances from 
the nearest neighbors are multiplied by each other, and the solution that is more 
crowded (closer to the considered solution) is removed from the external archive 
[10]. Crowding distance can be calculated according to the formula 2.3 [25]: 

CD = d l + d 2 (2 3) 
/ m a x / m i n / m a x / m i n v ' / 
Jl Jl J2 J2 

However, the crowding distance method is reliably applicable only to a two-
objective optimization problem. In the case of optimization with three or more 
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objectives, it is converted using the Equal-average Nearest Neighbor Search (ENNS) 
method (described in [23]) into a two-objective one, for which the crowding distance 
method can already be used [10], as shown in Fig. 2.6. 

h 

a) Three-objective problem b) Two-objective problem 

Fig. 2.6: Principle of Equal-average Nearest Neighbor Search method [10]. 

After the population is created, the external archive is filled with non-dominated 
solutions. Then, in each iteration, a global best is chosen for each particle, to whose 
position it will be attracted. The following is an update of the velocity and position 
vector. The positions must be treated with a boundary condition and then the 
fitness function recalculated and the personal best updated. Next, the members of 
the external archive must be updated. After the first iteration, old members can 
be dominated by new members and they will replace the old ones, and new non-
dominated solutions have also been created and should be added to the external 
archive. After the last iteration, the result is the contents of the external archive 
[26]. In Fig. 2.7 the MOPSO pseudocode is described. 

2.3 MOPSO for Variable Number of Dimensions 

A conventional MOPSO algorithm works only with a population of particles having 
the same number of dimensions. However, in some cases of optimization problems, 

2.2.1 MOPSO Algorithm 
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Stepl: Initialization 
Initialize Population 
Initialize an external archive 

Step2: Main Loop of Algorithm 
for i = 1 : Number of iterations 

for j = 1 : Population Size 
Choose a global best 
Update position 
Apply of boundary conditions 
Calculate values of criterion functions 
Calculate new personal bests 

end 
Update the contents of the external archive 

end 
Step3: The result is the content of the external archive 

Fig. 2.7: Pseudocode of the main MOPSO algorithm [26]. 

it is necessary that the algorithm can find the best solution even if the particles 
have a different number of dimensions. Therefore, the conventional MOPSO algo­
rithm was extended to solve problems with a variable number of dimensions [18] 
(implementation details can be found in [19]). 

The V N D M O P S O algorithm is basically the same as the conventional one, but 
the difference is in the number of dimensions of individual agents in the population 
and in the computation of the velocity vector. The number of agent's dimensions is 
randomly generated during population generation from a defined list of dimensions. 
This list must contain dimensions feasible for the given optimization problem. In 
the conventional MOPSO algorithm, the velocity vectors of all particles are updated 
in each iteration. The velocity vector of one particle depends on its position (ofj), 
personal best (xpbest), and global best (xgbest)- But the global best is always calcu­
lated from all particles, so it can have a different number of dimensions than the 
personal best and the position of some particles. Therefore, in the V N D M O P S O 
algorithm, the original MOPSO algorithm is extended by a routine that determines 
with which number of dimensions to work with [18]. 

When it is taken into account that each of the vectors Xi, xpbest and x gb e st can 
have a different number of dimensions (Nx, Np^est, iVgbest), it is necessary to deter­
mine which vector will have which "weight" in the decision. For this, probabilities 
are chosen for the mentioned three dimensions: p\ (for Nx), p2 (for iVpbest) and p% 

(for iVgbest)- If the vectors differ in the number of dimensions, a random number 
r is generated, which can take on values between 0 and 1. The number r is then 
compared with the numbers pi, p2 and p^. In the next iteration, the iVgbest number 
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of dimensions will be used if r is less than or equal to p\. With the number of 
dimensions that x pb e st has (iVpbest) will be counted if r G (pi, p\ + p2)- If f is greater 
than the sum of probabilities p\ and P2, then the number of dimensions correspond­
ing to the particle is further considered, as described in [18]. The aforementioned 
procedure can be expressed as follows: 

iVgbest, if 0 < r < Pi 

-v> = i 7V p b e s t , if P l < r < P l + p2 (2.4) 

Nx, itp1+p2<r 

Thus, symbol Nx denotes a new vector dimension, and all vectors that have 
a different number of dimensions are either shortened or completed with random 
numbers. Sometimes these vectors from a;pbest are added to speed up the convergence 
of the algorithm. But the condition is that the xpbest has at least as many dimensions 
as the new 7Vr. 

Tab. 2.1: Differences between individual variants of algorithm 

Variant 
of 
algorithm 

Result 
Agent's 
dimen­

sionality 
pbest gbest 

SOPSO single solution fixed 
position with 

min f value 
minimum of 

all pbest 

MOPSO 
set of Pareto-

optimal solutions 
fixed 

position with 
min f value 

a trade-off 
solutions 
among 

all solutions 

VNDMOPSO 
set of Pareto-

optimal solutions 
variable 

position with 

min f value 

a trade-off 
solutions 
among 

all solutions 
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3 Function for VNDMOPSO in MATLAB 

This chapter is devoted to the description of the function for the implementation 
of the V N D M O P S O algorithm in M A T L A B . As a basis, a simple PSO algorithm 
was created, which was gradually supplemented with boundary conditions, a version 
for a variable number of dimensions of population members, and finally modified 
to a multi-objective PSO algorithm. The chapter describes and explains individual 
parts of the created algorithm. In the following text, the names of files (black), 
functions (violet), scripts (red), structures (olive), structure's fields (orange), vector 
variables (pink), scalar variables (green) and string or logic variables ( ) will be 
color-coded for better orientation. 

3.1 Basic Structure 

The main function in the MOPSO folder is VNDMOPSO, which implements the PSO 
algorithm for a multi-objective optimization problem. The function is called from 
main.m, in which the individual parameters used in the function are set. 

At the beginning of the main.m script, the getProblem function is called, which 
defines the problem structure. This structure contains the fitness function and the 
limits for the decision space variables. Other parameters, such as the maximum 
number of iterations, the number of population members, scaling factors, etc., are 
defined in main.m in the params structure. After setting the parameters, it calls 
the VNDMOPSO function and finally plots the optimization result. Figure 3.1 shows a 
flowchart that clearly describes the basic structure. 

The function VNDMOPSO for performing the optimization algorithm is divided into 
4 main parts: 1) Problem definition, 2) Parameters of V N D M O P S O , 3) Initialization 
and 4) Main loop of V N D M O P S O . 

3.1.1 Problem Definition and Parameters Section 

The input variables of the function are the structures problem and params. In the 
Problem Definition section, the fitness function called DensityFunction, is loaded 
from the problem structure, and the number of decision variables is defined. The Pa­
rameters of V N D M O P S O section stores the parameters set in the params structure 
in variables. 

3.1.2 Initialization Section 

Next, the initialization part of the function creates the population. A n empty struc­
ture empty_particle is made, which collects all information about the particle: 
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getProblems 

Define parameters 

params: struct 

[ l x l ] 

VNDMOPSO 

create Pareto front 

plot results 

End 

b) getProblem.m 

Start 

Select fitnessFunction 

I 
Set limits 

problem: struct 

[ l x l ] 

End 

c) VNDMOPSO.m 

Start 

Problem definition 

I 
Parameters of VNDMOPSO 

Initialization 

X 
Main loop of VNDMOPSO 

out: struct [1 x 1] 

End 

Fig. 3.1: Flowchart of a)main.m, b)getProblem.m and c)VNDMOPSO.m. 

Position, Velocity, Density and Best. Best is also a structure itself that carries 
information about the personal best of the particle. It contains the best's Position 
and the best's Density. Initially, these parts of the structure are empty. Since the 
empty_particle structure defines a single particle and all particles are defined the 
same way, copies were made using the repmat function and thus the entire popu­
lation was created. The particles copied in this way were stored in the particle 
variable, which is therefore also a structure. The global best fitness value is initial­
ized to infinity in the next step. Subsequently, using the initParticles function, 
a random position and velocity are generated for each particle, the fitness function 
is evaluated, and the first personal best is created. 

As explained in section 2.3, the main modification of a simple optimization al­
gorithm to an algorithm for solving multi-objective problems consists in storing 
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non-dominated solutions (global bests) in the so-called external archive. So at the 
end of the initialization part of the function, an external archive is created. 

External Archive 

First of all, it is necessary to obtain non-dominated solutions, which will be stored in 
an external archive. This is done by the kungEtAl function, which sorts the solutions 
by the first objective function and then calls the front function. The front function 
divides the population into top and bottom halves so that the top half contains 
dominated solutions and the bottom half contains non-dominated solutions. The 
function decides which bottom half solutions are dominated by the top half solutions 
and finally returns the indices where the non-dominated solutions are stored. The 
kungEtAl function then returns these indices and the external archive is then filled 
with the values of the fitness function for decision space vectors with that indices 
using the f illNonDomSol function. The non-dominated solutions found in this way 
are then stored using the same function in the GlobalBest structure [29]. It contains 
the global best's P o s i t i o n and the global best's Density. 

3.1.3 Main Loop of VNDMOPSO 

The main part of the VNDMOPSO.m is the main loop of V N D M O P S O which is a 
for loop through all iterations, in which the velocity vector (2.2) and the position 
(2.1) of all particles are updated, then the fitness function is re-evaluated, and then 
personal best and external archive members are updated. A n extension for solving 
problems with a variable number of dimensions and bounding the solution space 
using boundary conditions is also implemented in this section. 

V N D M O P S O - r e l a t e d Variables 

The code contains the extension to solve optimization problems in which the mem­
bers of the generated population can have a different number of dimensions. In the 
initialization section, a number from the list of feasible dimensions is randomly as­
signed to individual members of the population using the randperm function. This 
list called nVarsLis t , can be defined by the user in main.m for a specific objective 
function. There are also chosen probabilities, used in the decision algorithm. The 
decision algorithm was created according to [18] described in section 2.3. 

First, the variables p i , p2 and p3 are created, indicating the user-defined proba­
bilities GlobalBest .Pos i t ion , Best . P o s i t i o n and Pos i t ion . The variables 
newSize and tempV, tempP, tempGB and tempPB (hereafter tempX) are also cre­
ated. These will be used after deciding which dimension will continue to be worked 
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with. In the next procedure, the number of dimensions iVgbest, ^Vpbest, and Nx are 
compared, and if they are not the same, a random number r is generated, compared 
with p i , p2 and p3 and according to equation (2.4) a new vector of dimensions is 
created and stored to the newSize variable. 

Next comes the part where the GlobalBest .Pos i t ion , Best . P o s i t i o n and 
P o s i t i o n vectors must be adjusted to this new size. Prepared auxiliary variables 
tempX are used for this in the code. If the vector is smaller, a new one (tempX) will 
be created, which will have the size of the newSize value. The vector is filled with 
random numbers (with respect to the limits) and the front positions are replaced 
by the old vector. If the size of the old vector is larger than the newSize value, 
the new vector (tempX) will be the old vector, trimmed to the size of the newSize 
value. Due to less complexity, this algorithm includes only the method of padding 
with random numbers with respect to the limits. 

So far it has been only talked about resizing the three vectors 
GlobalBest .Pos i t ion , Best . P o s i t i o n and Pos i t ion . But the position vector 
is updated, according to relation (2.1), by adding the velocity vector. This means 
that if the size of this vector was not adapted to the size of the newSize value, it 
would not be possible to calculate the new position. Therefore, in case of changing 
the size of the particle's position vector, the size of the velocity vector must also be 
adjusted. 

Boundary Condit ions 

The user can choose which of the three types of walls - absorbing, reflecting, or 
invisible (see Subsection 2.1.2) - will be used to delimit the space, by selecting the 

variable in the params structure in main.m. Boundary conditions are 
applied in the checkBoundaries function, which uses a switch case condition. A 
check is made to see if the limit has been exceeded in any of the dimensions. The 
following procedure varies according to the type of walls. 

For absorbing walls, if the limit has been exceeded, it sets a flag at a specific 
index and returns the value of the index. In the dimension with the given index, 
the position is then changed to the boundary and the function returns the corrected 
position for which the value of the fitness function is calculated. In the case of 
reflective walls, the procedure is similar, but the new position of the particle will 
not be the position of the boundary of the space, but the particle will return to 
the feasible space in a position shifted by the distance it flew beyond the boundary. 
A n auxiliary variable temp is created in the code for this purpose, in which the 
distance between the old position and the space limit is stored. This distance is 
then subtracted from the limit position and thus the new position of the particle 
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is calculated. Subsequently, the position of the particle shifted in this way is the 
output of the function and the values of the fitness functions are calculated for 
it. For invisible walls, extremely high (essentially unrealistic) values of the fitness 
functions were simply assigned for these cases. However, this type of border wall is 
not very reliable. 

Update of External Archive 

After updating the velocity and position vector of all population members, the 
external archive is updated. New combX and combF vectors will be created, which 
will contain both old positions (combX) and values of the fitness function (combF) 
and new positions and values of the fitness function from the external archive. The 
kungEtAl function is then applied to the combF vector, which selects new non-
dominated solutions and fills the external archive with them. At this moment, there 
can be more non-dominated solutions in the external archive than the size of the 
population. In that case, it has to be cut. For this, the crowding distance technique, 
described in section 2.2, was used. The algorithm was created according to [23]: 

1. The objective space is normalized: The minimum and maximum of the func­
tion are found, and then the normalized function is calculated according to 
the formula: 

2. The /norm values are sorted according to the first dimension. 
3. A n ascending heap with / n o r m values is created. 
4. The crowding distance is calculated: The Euclidean distances from the two 

nearest neighbors E D \ and E D 2 are calculated and multiplied together. 
5. As long as the heap size is larger than the population size, the element with 

the minimum crowding distance is removed and then the heap is updated. 
Finally, the GlobalBest will be filled with the content of the external archive. 

The output is stored in the out structure, from which an array with values for the 
Pareto-front is created in main.m. The decision space vectors of the Pareto-front 
are then plotted on a graph. 

norm max J min 
min (3.1) 
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4 Validation 

The created VNDMOPSO function should be used for planning robotic operations. So 
it is necessary that it can be used to solve as many and ideally as complex real-world 
problems as possible. Therefore, the VNDMOPSO function was tested on several test 
tasks, for which the so-called benchmark problems described in this chapter were 
used. To make the testing complete, the correctness of the found solution should 
be verified, e.g. by comparing the location of the found non-dominated solutions 
and the true ones, by checking the uniformity of the distribution of the found non-
dominated solutions along the Pareto-front and other techniques. To validate the 
solutions found by the VNDMOPSO function, three basic test metrics were used, the 
description of which can also be found in this chapter. 

4.1 Benchmark Problems for V N D M O P S O 

To verify the functionality of the algorithm, benchmark problems from the FOPS 
Package [28] were used. The folder MOPSO contains five two-objective and four three-
objective test problems selected from this package. For each two-objective problem, 
a function for calculating the true Pareto-front is also created. A l l test problems are 
described in detail in [29]. These problems are modified test problems from Deb et 
al.'s test suite [30] based on the method presented in [31]. 

This method describes how the position of the solution can be defined using two 
angles (9(x) and #m a x). The solution is located between the extremum points of the 
Pareto-front. A n extremum point is a point on a PF , where one of the objective 
functions has its minimum, while another has its maximum. Symbol #m a x indicates 
the angle between the maximum and minimum point of the Pareto-front and 9(x) 

indicates the angle between the position of the solution in the objective space and 
the maximum point of the front [31], as shown in Fig. 4.1. 

These test problems use the function getNOpt (for two-objective problems) or 
getN0pt3D (for three-objective problems). Each problem has the optimal number of 
dimensions defined by the nOptList vector, which the members of the Pareto-front 
should have. The functions getNOpt and getN0pt3D divide the Pareto-front into 
nParts parts, where in each part the o variable decides whether the dimensions 
are ordered either in ascending order (oi ) or in descending order ( 

) [29], as shown in Fig. 4.2. Dividing the Pareto-front into individual parts 
makes it possible to have a smaller angle #m a x. In general, parts with small values 
of 9 converge more easily than those with large values of 9 [31]. 
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Fig. 4.2: Explanation of getNOpt function parameters [31]. 

4.2 Test Metrics 

In an ideal case, the created function for solving multi-objective optimization prob­
lems should be able to find solutions as close as possible to the true Pareto-front. At 
the same time, it should also find solutions uniformly spread over the entire Pareto-
front. To verify the correctness of the solutions found by the VNDMOPSO function, 
three test metrics were used: Generational Distance, Spread, and Hypervolume. 
Detailed information on individual metrics can be found in [32]. 
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4.2.1 Generational Distance 

This metric compares the position of the found Pareto-front with the position of the 
true one. To determine the difference in the positions of the Pareto-front solutions, 
the average Euclidean distance is calculated according to the equation [29]: 

GD E g U 
\Q\ 

(4.1) 

where Q describes the set of found solutions and the parameter di indicates the dis­
tance between the i-th solution from the found Pareto-front and the closest solution 
from the true Pareto-front, which is calculated as the Euclidean distance according 
to [32]: 

d; mm 
| P . | 
k=l" 

M „ 
V" (Ai) Mk)\2 

\ m=l 

(4.2) 

where the symbol P* describes the set of Pareto-optimal solutions (members of the 
true Pareto-front), f$ is the value of the m-th objective function of the z-th member 
of the set Q and indicates the value of the m-th objective function of the k-
th member of the set P* [29]. This metric is visualized in Fig. 4.3 for a better 
understanding. 

The metric requires knowledge of the members of the true Pareto-front. The set 
of members of both Pareto-fronts must be large enough to reliably compare their 
distance [26]. 

% members of the found 

Pareto f ront 

• members of the true 

Pareto f ront 

Fig. 4.3: Demonstration of the Generation Distance metric for calculating the dis­
tance of members of Pareto-fronts [34]. 
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4.2.2 Spread (A) 

This metric evaluates the allocation of the members of the found set of non-dominated 
solutions along the Pareto-front based on the mutual Euclidean distance and the dis­
tance of the extremes of the found front from the extremes of the true front. So it is 
necessary to know at least the extremes of the true Pareto-front. This distribution 
of the found solutions along the Pareto-front is defined as [29]: 

£ £ = 1 d f c , + | Q | - d ' 1 ] 

where di is the Euclidean distance between two neighboring solutions, d is the mean 
value of these distances and de

m is the distance between the extremes of the found 
and true Pareto-front of the m-th objective function. A n example of the use of the 
metric is in Fig. 4.4. 

Fig. 4.4: A n example of the Spread metric to calculate the distance between the 
members of the found Pareto-front [35]. 

4.2.3 Hypervolume (HV) 

The Hypervolume metric combines the advantages of the two previous methods. 
It can compare the locations of the found and the true Pareto-front, and at the 
same time it also takes into account the allocation of the members of the found 
non-dominated set along the true Pareto-front. 

The metric consists in calculating the volume (HV) of the objective space dom­
inated by the found Pareto-front with respect to the so-called reference point. In­
dividual hypercubes are counted, while each hypercube is given by two points - a 
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reference point and some member of the set of solutions of the found Pareto-front. 
Finally, the entire volume is calculated by the union of these hypercubes according 
to formula [32]: 

101 
H V = volume(Uui), ( 4- 4) 

i=l 

Figure 4.5 shows the total volume calculated by uniting individual hypercubes. 
The point [ / i m a x , / 2 m a x , • • • , / iv m a x ] for the N-objective optimization problem is usually 
called as the reference point. The larger the total calculated HV, the better the set 
of non-dominated solutions, forming the given Pareto-front, was found [29]. 

Fig. 4.5: Calculation of the entire volume from individual hypercubes above the 
Pareto-front using the Hypervolume metric [36]. 

For two-objective optimization problems, this method is easy to use because it 
only means the union of the rectangular areas. But for three- and more-objective 
problems, the calculation becomes more complicated. Therefore, the W F G method 
described in [33] is used, which can simplify the calculation and thus speed it up 
[29]. 

4.3 Summary of Results 

The proposed algorithm was tested on all optimization benchmark problems from 
the MOPSO folder and the non-dominated solutions found were plotted in a graph 
and compared with the true Pareto-front (see Appendix A) . Using each metric, the 
value of the deviation of found Pareto-front from true Pareto-front was calculated. 
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The setting of individual parameters of the algorithm for testing is summarized in 
Table 4.1. Tables 4.2, 4.3, and 4.4 contain a comparison of deviations calculated 
using individual metrics. 

Tab. 4.1: Setting parameters for testing 

Agents: 1000 w: 1 
Iterations: 100 Boundary: absorbing 
cl: 2 p3: 0,99 
c2: 2 p i , p2: 0,005 

Tab. 4.2: Values of deviations calculated using the Generational Distance metric 

Problem Max Value Min Value Average Value 

MOLI1 0,0082 0,0015 0,0041 
MOLI2 0,0147 0,0042 0,0063 
MOLZ3 0,0062 0,0046 0,0053 

MOZDT2 1,9808 • 10"4 2,7562 • 10"5 5,1809- 10"5 

MOZDT3 5, 7930 • 10"5 4,5966 • 10"5 5,0480 • 10"5 

Tab. 4.3: Values of deviations calculated using the Spread metric 

Problem Max Value Min Value Average Value 

MOLI1 1,0842 0,7612 0,9048 
MOLI2 1,0640 0,6394 0,7635 
MOLZ3 1,4793 1,4656 1,4645 

MOZDT2 1,4519 1,1733 1,3499 
MOZDT3 1,5450 1,4068 1,4714 

The largest average deviation, calculated using the Generational Distance metric, 
was 0,0063. This metric calculates the distance of found Pareto-front members from 
true Pareto-front members. It follows that the larger the value of the deviation, the 
worse is the group of found non-dominated solutions. In this case, this group of 
non-dominated solutions was the worst found for the VNDMOLI2Fitness function. 

The average deviation calculated using the Spread metric was the highest for the 
VNDMOZDT3Fitness benchmark problem with a value of 1,4714. For the Spread 
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Tab. 4.4: Values of deviations calculated using the Hypervolume metric 

Problem Max Value Min Value Average Value 

MOLI1 0,4766 0,4376 0,4622 
MOLI2 0,4853 0,4617 0,4735 
MOLZ3 0,5738 0,4968 0,5353 

MOZDT2 0,3300 0,3213 0,3253 
MOZDT3 0,7799 0,7662 0,7775 

metric, the smaller the deviation value, the better. It expresses how much the dis­
tribution of found Pareto-front members differs from the distribution with mutual 
Euclidean distance equal to the mean value, which represents the optimal distribu­
tion of members along the Pareto-front. 

For the Hypervolume metric, the largest average value was 0,7775. For this 
metric, the larger the HV, the better the set of solutions was found. In this case, it 
was found for the test function VNDMOZDT3Fitness. 

4.3.1 Effect of Probability of Dimension Change 

One of the main parameters that could affect the result of the optimization is the 
probability that the number of decision variables of the particle will change or not. 
As mentioned in Section 2.3, this probability is described using three variables - p\. 

p2 and p3. 

For ten different values of the variable ps, the values of the fitness function of the 
test problem were calculated for 20 iterations. Subsequently, metrics were calculated 
for each probability value and their deviations were plotted in the form of standard 
boxplots. Examples of boxplots of the parameter p^ are shown in Figures 4.6 (for 
the Generational Distance metric), 4.7 (for the Spread metric) and 4.8 (for the 
Hypervolume metric), when the parameter was tested on the VNDMOZDT3Fitness. 
The effect of changing this parameter was tested on all test problems. The results 
are presented in Appendix B. 

The results of testing the probability parameter showed a minimal impact of set­
ting this parameter on the optimization results. Testing of influence was performed 
for different settings of type of wall as well as different numbers of agents and itera­
tions. It can be seen from the boxplot figures that the results are very comparable 
for both low and high numbers of agents and iterations. A n absorbing wall was used 
when rendering the images below, as well as those in Appendix B. 
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VNDMOZDT3Fitness - Gen. Distance 
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Fig. 4.6: Standard boxplots for ten different settings of the parameter for the 
Generational Distance metric. 
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Fig. 4.7: Standard boxplots for ten different settings of the p% parameter for the 
Spread metric. 
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Fig. 4.8: Standard boxplots for ten different settings of the p3 parameter for the 
Hypervolume metric. 
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5 Implementation of Real Problems 

In the real world, tumors usually do not have a regular shape that can be easily 
removed. Therefore, the created VNDMOPSO function should be able to find the best 
possible solution for the removal of an irregularly shaped tumor. For the purpose of 
testing the functionality of the programmed algorithm, ten different tumor shapes 
were selected, for which a new fitness function polygonFitness was created based on 
the mathematical definition of the solved problem (see Section 1.2.3). Since finding 
a solution in 3D space would be very difficult and beyond the scope of this thesis, 
their representation in two-dimensional space was created. This chapter describes 
the selected method of obtaining 2D cross-sections of 3D geometric objects that 
represent real examples of brain tumors. Subsequently, the method for calculating 
the area in the created fitness function is described. 

5.1 Geometric Representation of Tumors 

Preparing the patient for the type of surgery being considered involves a magnetic 
resonance (MR) examination. This non-invasive imaging technology produces three-
dimensional detailed anatomical images [37]. It is then possible to detect a tumor 
from the brain images obtained in this way. The operator can then delineate the 
part of the brain affected by tumor growth. 

5.1.1 Delineation of the Tumor from the MRI Image 

A simple script ginputToImage .m was created to obtain a 2D cross-section from 
individual M R I images of brain tumors. This script allows the user to delineate any 
shape on the selected image using the ginput function. Using this function, it is 
possible to get the coordinates of all the points that the user clicked on. The object 
selected in this way is then stored in the polygon variable and saved as a *.mat 
file with the corresponding name. A l l objects created by the described method are 
therefore represented as general polygons and stored in the 3D0bjects folder. 

However, this method of obtaining the shape of the tumor introduces a certain 
deficiency into the solution due to the necessary approximation. It is logical that the 
more points used to define the given shape, the smaller this approximation error will 
be, and the more accurate the solution will be. On the other hand, the complexity of 
the calculation of fitness functions increases significantly with the number of points, 
and the improvement in calculation accuracy is insignificant. For this reason, it is 
possible to simplify the given problem in the mentioned way. A representation of 
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the approximate shape of the tumor obtained using the ginput function is shown 
in Fig. 5.1. 

Original MRI image Tumor delineation 2D representation of the tumor 

Fig. 5.1: Obtaining a 2D representation of the tumor using ginputTolmage.m [41]. 

5.2 Fitness Function 

The polygonFitness function is an objective function for calculating the areas by 
which the solved problem is described - covered/remaining and overlapping. Since 
the polygon is actually a 2D cross-section of the real shape of the tumor, 2D ablation 
objects, i.e. circles, are also considered. In order to meet the considered criteria, it is 
necessary to determine the of the tumor, the of the circles, the intersection 
of the area of the tumor and of the circles, and the area of the individual circles 
with each other. The Monte Carlo integration method, described below, is used to 
calculate the 

5.2.1 Computation of Fitness Function 

The method consists of covering a certain bounded space with a large number of 
randomly distributed testing points. Subsequently, it is determined which testing 
points lie in the desired part of the space (in the tumor, outside the tumor area, in 
the intersection of the circles, etc.). 

In the case of a circle, calculating the area it covers is simple - just find out the 
distance of the selected point to the center of the circle and compare it with its 
radius. For this, the function euclideanDistanceBetweenTwoSets is used, which 
returns a matrix of calculated Euclidean distances between the corresponding testing 
points and centers of circles. If this distance of a specific testing point to the center 
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of a specific circle is shorter than its radius, the point lies inside the circle, as is 
shown in Fig. 5.2. 

Fig. 5.2: Determining whether or not a point lies in a circle and the corresponding 
table. 

Using the following equation, the area covered by a given object is obtained: 

^ p ~ n 5 p (5.1) 
Sb nSb 

where Sp represents the area of the object, St, the area of the bounding box, nsp 

is the number of points located in the object area and n$b is the total number of 
random points. 

The larger the selected number of points, the more accurate the area estimate. 
A n example of area calculated this way is shown in Fig. 5.3. 

However, the polygon, the shape that represents the tumor, is not any known 
regular shape, so determining whether or not a point lies inside the polygon is more 
difficult. The arePointsInPolygon function was used for this purpose. It uses one 
of the two main options for solving this problem - obtaining the value of the so-
called winding number. If the winding number is non-zero, the point lies inside the 
polygon. The principle of the algorithm is explained in detail in [38]. The function 
then returns a vector of ones and zeros depending on whether the given point lies 
inside the polygon or not. In Figure 5.3 shows the area of the polygon covered by 
the points detected in this way. 

The principles described above are subsequently applied for the calculation: 
1. The area of the tumor that the individual ablation objects cover/do not cover 

(Fig. 5.4 left) 
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Fig. 5.4: Remaining, overlapping and out of the polygon area. 

2. The area of the tumor in which the ablation objects overlap 
3. The area of ablation objects that protrude from the tumor area (Fig. 5.4 right) 
The task of the created optimization algorithm is then to find the best possible 

compromise between the values of these two functions. 
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6 Applying the Algorithm to Various Tumor 

Shapes 

The main goal of this thesis is to apply the chosen optimization algorithm to var­
ious 2D structures that could represent a real tumor and to show its functionality 
in solving these well. This chapter describes the options for setting the 
optimization function, subsequent processing of the results, and presents a tool for 
planning neurosurgical operations performed by robots. 

6.1 Algor i thm Sett ing Options 

Even before starting the algorithm itself, it is necessary to set the parameters for 
which the algorithm will perform the calculation. Unlike the functionality testing 
on benchmark problems (see Chapter 4), the algorithm is not run using the main.m 
script, but from mainPolygon.m, where the user can find the parameter settings. 
Their setting is key to achieving the desired result. 

It is mainly: 
1. polygonName - selection of the shape of the tumor, represented by a polygon 
2. nVarsLis t - represents a list (or number) of dimensions. Since the opti­

mization algorithm finds a trade-off between coverage and overlap of circles, 
nVarsLis t will give the maximum possible number of these circles. Each cir­
cle is then described by the x and y coordinates of its center and then its 
radius. This means that if the user demands that the algorithm find solutions 
for example for one to ten circles, it is necessary to set nVarsLis t from three 
to thirty with a step of three because each circle is given by three parameters. 

3. Maxlter - setting the maximum number of iterations 
4. PopSize - setting the number of agents (particles) 
5. - setting the type of wall (see Subsection 2.1.2) for delimiting the 

solution space 
After setting the necessary parameters, the algorithm can be started to opti­

mize the selected problem. The calculation time may vary depending on the set 
parameters. By default, two runs of the algorithm are set. 

6.2 Results of Optimization 

After the completion of the optimization process, the results are stored in the out 
structure. The most important information is contained in the exArchive structure, 
which stores the positions of the agents (in the field Posi t ion) and the values of 
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the fitness function (in the variable Density). The values of the fitness function are 
then stored in the form of a matrix in the paretoFront variable. 

The P o s i t i o n variable contains three types of information: 
1. x-coordinate of the center (cell centers_x) - 1st, 4th, 7th, etc. position in the 

P o s i t i o n vector 
2. y-coordinate of the center (cell centers_y) - 2nd, 5th, 8th, etc. position in 

the P o s i t i o n vector 
3. radius (cell radius) - 3rd, 6th, 9th, etc. position in the P o s i t i o n vector 
The variables paretoFront, centers_x, centers_y and radius are stored in a 

*.mat file named P F l (first run) and P F _ 2 (second run) in the selected location. 

6.2.1 Comparing Results 

The two optimization runs are important for the possibility of comparing the results 
due to the randomness of the input data. So the files P F l . m a t and PF_2.mat are 
then compared. The script named compareResult .m is used for this. The user 
chooses polygonName (the name of the polygon) and (the type of wall 
used during the calculation). After starting, the optimization results from the first 
and second runs of the algorithm are compared. The script works on the principle 
that the values of the fitness function of both solutions are combined, and the non-
dominated solutions are selected and stored in the bestPF.mat file, which contains 
both fitness function values and information about circles. In this way, the best non-
dominated solutions across all solutions can be selected. Finally, it is determined 
how many non-dominated solutions in the new Pareto-front come from the first 
run and how many from the second run. The selection of the best non-dominated 
solutions from two Pareto-fronts is shown in Fig. 6.1. 

6.3 Tool for Displaying Results 

A graphical user interface (GUI) called GUIfor Tumor Coverage was created to visual­
ize the optimization results, which serves as a tool for planning robotic neurosurgical 
operations. It allows the user to view the distribution of individual circles in the 
polygon and thus decide on the robot settings suitable for a particular patient. 

At the beginning, polygonName and are selected again, and after start­
ing, a graphical interface is displayed in which a specific solution can be selected 
either by choosing an index in the roller in the upper middle or by clicking on the 
corresponding point in the Pareto-front graph (left graph). In the right figure, the 
polygon and the distribution of circles in its area will then be displayed. In the 
middle, the percentage of coverage of the polygon and the percentage of overlap of 
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Combined Pareto Front 

0.05 0.1 0.15 0.2 0.25 0.3 
Remaining area 

Fig. 6.1: A demonstration of combining two runs of the algorithm and selecting the 
best solutions from both. 

circles or protruding from the polygon are displayed. Information about the location 
of the individual circles and their radius is then available in the table in the middle 
below. A description of the workspace and a visual demonstration of the GUI is 
shown in Fig. 6.2 and Fig. 6.3. 

0.6; 

0.1 

0 005 0.1 0.15 0.2 0.25 0.3 0.35 abOllt ClfCleS 0 01 02 0 3 04 0 5 0 6 07 08 0 9 

Fig. 6.2: Description of GUI workspace. 
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T h e S e t o f S o l u t i o n s F o u n d b y t h e O p t i m i z a t i o n A l g o r i t h m V i s u a l i z a t i o n o f T u m o r C o v e r a g e b y A b l a t i o n O b j e c t s 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fig. 6.3: GUI demonstration. 
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7 Evaluation of Optimization Results 

For each optimizer, its quality should be evaluated, i.e. how efficiently it can find a 
solutions for different settings of the selected parameters for which the optimization 
will be performed. Some methods can also be used to compare two optimizers 
against each other. 

This chapter is devoted to a general evaluation of the optimization results, ob­
servation of the influence of the setting of individual parameters on the results ob­
tained by the created optimizer, and a subsequent discussion regarding the possible 
improvement of its performance. This V N D M O P S O optimizer is then compared to 
a simple MOPSO algorithm that would use a fixed dimension setting. 

7.1 The Influence of the Type of Boundary of the 

Solution Space 

Each of the three boundary options has its advantages and disadvantages. Based 
on research, reflecting wall is the best in terms of convergence (i.e. how well the 
algorithm converges). The results, summarized in the table below (Tab. 7.1), show 
that the used optimization tool can find the best set of solutions when choosing 
an absorbing wall. It depends on the specific tested problem, but in general the 
algorithm was able to find a set of solutions for both absorbing and reflecting wall 
types very similarly. Images of all tested problems (P1-P10) can be found in the 
3D0bjects folder of the electronic appendix. 

When evaluating results of this type, however, the user cannot only look at 
numbers but solutions must also be evaluated visually, i.e. how much is the proposed 
distribution of circles in the area of the tumor suitable depending on the comfort of 
the patient, the duration of the procedure, the power that was burned during the 
procedure, etc. 

7.2 Effect of Number of Iterations and Agents 

There are several ways to look at obtaining solutions by an algorithm. One of them 
is obtaining solutions based on the speed of convergence. With two different settings, 
when the fitness function is calculated the same times, by choosing the ratio of the 
number of iterations and agents, it is possible to set the algorithm either so that 
the number of agents exceeds the number of iterations, or, on the contrary, when 
the setting of the number of iterations is greater than the number of agents. In the 
first case, the algorithm will search the solution space well using a large number of 
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Tab. 7.1: The influence of the type of boundary for more agents than iterations 

P A R A M E T E R S : Agents = 300, Rerations = 100 

Polygon Wall 
max 

/i[%] / 2[%] 

min 

/ i [%] / 2[%] 

best 

/ i [%] / 2[%] 

PI 
absorbing 
reflecting 
invisible 

34,80 57,40 
37,20 80,18 
54,50 60,32 

0 0 
0 0 

0,56 0 

10,05 10,80 
12,03 12,71 
17,94 17,13 

P2 
absorbing 
reflecting 
invisible 

34,40 46,87 
35,15 68,57 
43,97 65,73 

0 0 
0,04 0 
0,30 0,01 

11,02 11 
11,70 11,60 
15,23 12,17 

P3 
absorbing 
reflecting 
invisible 

23,68 47,77 
31,96 59,40 
39,78 72,07 

0,05 0 
0 0 

0,10 0 

7,83 7,99 
8,94 9,77 
9,60 9,88 

P4 
absorbing 
reflecting 
invisible 

24,42 56,69 
20,69 65,20 
36,38 52,40 

0 0 
0 0 

0,91 0,01 

7,41 7,28 
7,87 8,15 
10,73 7,80 

P5 
absorbing 
reflecting 
invisible 

35,85 52,10 
42,30 76,30 
48,73 55,80 

0 0 
0,31 0 
2,30 0,01 

10,28 10,85 
13,10 12,10 
15,59 14,91 

P6 
absorbing 
reflecting 
invisible 

22,50 35,25 
36,28 65,65 
55,13 69,85 

0 0 
0 0 

0,38 0,02 

7,70 7,60 
9,57 9,54 
12,09 14,42 

P7 
absorbing 
reflecting 
invisible 

33,42 32,72 
33,20 52,47 
40,70 58,51 

0 0 
0 0 

0,23 0 

10,23 10,14 
10,79 11,39 
14,67 12,90 

P8 
absorbing 
reflecting 
invisible 

24,50 45,98 
22,50 53,83 
37,40 75,82 

0 0 
0 0 
0 0 

5,70 5,32 
6,18 6,68 
4,98 7,38 

P9 
absorbing 
reflecting 
invisible 

20,10 31,34 
22,46 39,98 
28,62 45,30 

0 0 
0,10 0 
0,40 0 

5,09 5,04 
7,16 6,62 
8,77 7,77 

P10 
absorbing 
reflecting 
invisible 

27,66 35,43 
26,98 41,89 
39,41 68,71 

0 0 
0 0 

0,04 0 

7,84 7,60 
9,45 8,80 
7,96 12,30 

agents, but it will converge faster, so it will not have enough time to choose a global 
best of good quality. The second case has the opposite problem when the algorithm 
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will be able to select the best agent as the global best, but it will not have enough 
information about the solution space due to the low number of agents. 

Some problems did not achieve satisfactory results when the ratio of number of 
agents and iterations was initially set, so this ratio was reset to exactly the opposite. 
It can be seen from Table 7.2 that the ratio of percentage of coverage and overlap has 
improved for some problems. In addition, visual results for very difficult problems, 
which the algorithm could not solve with the previous settings, were solved relatively 
more successfully with the new parameter settings, which is also shown in Figure 7.1. 

V i s u a l i z a t i o n o f T u m o r C o v e r a g e b y A b l a t i o n O b j e c t s 

Agents = 300 

Iterations = 100 

V i s u a l i z a t i o n o f T u m o r C o v e r a g e b y A b l a t i o n O b j e c t s 

0 0.1 0.2 0.3 0.4 0.5 

Remaining area = 9.0453% Overlap = 11.2675% Remaining area = 9.2346% Overlap = 11.0535% 

V i s u a l i z a t i o n o f T u m o r C o v e r a g e b y A b l a t i o n O b j e c t s 

Agents = 300 

Iterations = 100 

0 0 1 02 03 D.4 05 0.6 07 0.8 0. 

V i s u a l i z a t i o n o f T u m o r C o v e r a g e b y A b l a t i o n O b j e c t s 

Remaining area = 13.0962% Overlap = 12.2278% Remaining area = 6.7785% Overlap = 18.6165% 

Fig. 7.1: After changing the parameters, it was possible to find good solutions even 
for very complex tumor shapes, such as P2 (upper) and P5 (lower). 
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Tab. 7.2: The influence of the type of boundary for more iterations than agents 

P A R A M E T E R S : Agents = 100, Iterations = 300 

Polygon Wall 
max 

/i[%] / 2[%] 

min 

/ i [%] / 2[%] 

best 

/ i [%] / 2[%] 

PI 
absorbing 
reflecting 
invisible 

31,47 66,31 
38,70 77,20 
61,14 71,17 

0 0 
0,03 0 
1,15 0 

10,27 10,31 
12,52 13,00 
14,92 22,30 

P2 
absorbing 
reflecting 
invisible 

34,73 48,80 
33,70 65,18 
43,81 55,92 

0 0 
0,07 0 
0,44 0,01 

9,98 10,52 
11,13 10,92 
16,80 17,24 

P3 
absorbing 
reflecting 
invisible 

25,36 50,16 
25,10 58,28 
51,41 58,01 

0 0 
0 0 

0,98 0,01 

7,95 7,71 
7,49 8,20 
12,15 13,25 

P4 
absorbing 
reflecting 
invisible 

21,67 55,87 
21,72 60,95 
36,82 63,44 

0 0 
0 0 

0,48 0,01 

7,43 7,54 
7,27 7,94 
9,76 11,28 

P5 
absorbing 
reflecting 
invisible 

38,20 48,14 
37,92 70,34 
49,04 63,75 

0 0 
0,19 0 
1,71 0,02 

9,47 9,88 
11.54 11,92 
18.55 17,79 

P6 
absorbing 
reflecting 
invisible 

22,48 35,30 
32,28 59,75 
55,34 63,30 

0 0 
0 0 

3,69 0,01 

7,54 7,60 
8,20 9,85 
17,55 18,93 

P7 
absorbing 
reflecting 
invisible 

31,91 33,28 
36,53 50,65 
46,55 47,17 

0 0 
0 0 

0,31 0 

10,39 10,52 
10,78 10,78 
13,99 15,18 

P8 
absorbing 
reflecting 
invisible 

23,10 47,80 
27,85 60 
31,55 57,32 

0 0 
0 0 

0,26 0 

5,30 5,43 
5,56 5,50 
10,80 5,93 

P9 
absorbing 
reflecting 
invisible 

20,40 31,05 
22,32 38,42 
28,40 47,40 

0 0 
0,07 0 
0,70 0 

5,18 4,69 
6,17 6,06 
9,14 9,52 

P10 
absorbing 
reflecting 
invisible 

27,90 33,74 
28,08 38,80 
39,38 67,45 

0 0 
0 0 

0,018 0 

7,41 7,53 
8,45 8,86 
9,81 7,13 
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7.3 Impact of Tumor Shape Approximation 

As already mentioned in Chapter 5, the real shapes of the tumors were approximated, 
so the calculation of the area covered by the circles is imprecise. However, the error 
it introduces into the overall result is small, as shown in Fig. 7.2. For this purpose, 
a much more accurate tumor model was created, when 61 points were used for 
delineation. It can be seen that the same solution in the Pareto-front corresponds 
to a distribution of circles with almost the same coverage and overlap as when the 
shape was much more simplified. 

T h e S e t o f S o l u t i o n s F o u n d b y t h e O p t i m i z a t i o n A l g o r i t h m V i s u a l i z a t i o n o f T u m o r C o v e r a g e b y A b l a t i o n O b j e c t s 
jt- 1.2 I 1 1 1 1 1 1 1 1 1 

Polygon defined 

T h e S e t o f S o l u t i o n s F o u n d b y t h e O p t i m i z a t i o n A l g o r i t h m V i s u a l i z a t i o n o f T u m o r C o v e r a g e b y A b l a t i o n O b j e c t s 

Fig. 7.2: Demonstration of minimal impact of tumor shape approximation on area 
calculation (tested on P3). 
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7.4 Ideal Distr ibution of Ablation Objects for Com­

plete Removal of the Tumor 

For this type of surgery, neurosurgeons have to trust incomplete or inaccurate data 
produced by imaging techniques such as magnetic resonance or computed tomogra­
phy, where tumor detection is not always accurate. The images contain information 
about the brain tumor collected before surgery. Meanwhile, the brain tissue may 
have moved and the size of the tumor may also have increased [39]. Therefore, it is 
more appropriate to choose such a distribution of circles, in which the circles pro­
trude to a certain extent from the tumor. In this case, the tumor would definitely 
be removed entirely. The first priority is to remove the tumor tissue, but it is neces­
sary to consider that the brain tissue does not have the ability to regenerate and its 
degradation is irreversible [39]. A n example of the distribution of ablation objects 
in the tumor area for the maximum possible removal of tumor tissue is shown in 
Fig. 7.3. It can be seen in the picture that for the selection of such large and thus 
positioned ablation objects, essentially 100% coverage would be achieved, while their 
size is not much larger than the tumor itself. This would make it possible to remove 
e.g. changes in tumor size. 

Visual izat ion of Tumor Coverage by Ablat ion Objects 

Remaining area = 1.0147% 

Overlap = 30.5735% 

Although the ablation 

objects protrude, the 

coverage of the tumor is 

almost 100% and if the 

tumor is slightly larger 

than in the image, a total 

removal would still occur 

''-0.2 0 0 2 0.4 0.6 0.8 1 1.2 

Fig. 7.3: Ideal distribution of ablation objects. 
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7.5 Comparison of V N D M O P S O and Simple MOPSO 

Algori thm 

Multi-objective PSO for variable number of dimensions is the most complex version 
and it should be proven that its use was necessary. Therefore, a comparison test 
of the version of the MOPSO algorithm with a fixed (FND) and variable number 
of dimensions was performed. The method used for this test is called Dominance 
Ranking. 

This method consists in combining two Pareto-fronts and their dominance. Us­
ing both types of optimizer, the values of the fitness function are calculated, then 
their Pareto-fronts are combined into a common one, and non-dominated solutions 
are selected from it. According to how many non-dominated solutions from which 
Pareto-front were selected, it is then decided which of the two original Pareto-fronts 
has more better solutions [40]. 

Figure 7.4 shows that the test results were in favor of the V N D version of this 
algorithm for absorbing and reflecting walls. For an invisible wall, the algorithm 
with fixed dimensions worked better, as shown in Figure 7.5. 

Polygon 1 
Absorbing wall 

Combined Pareto Front 

Fixed Dimensions: 12 
VNDMOPSO Algorithm: 35 

The VND version 
of the algorithm 

had better 
results than 
those with a 

fixed dimension 
setting 

0.15 0.2 
Remaining area 

Polygon 1 

Reflecting wall 
Combined Pareto Front 

Fixed Dimensions: 19 
VNDMOPSO Algorithm: 31 

The VND version 
of the algorithm 

had better results 
than those with a 
fixed dimension 

setting 

Ifc X 

0.1 0.15 0.2 0.25 
Remaining area 

Fig. 7.4: Comparison results of V N D and F N D versions of the algorithm for absorb­
ing and reflecting wall. 
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ä. 0.2 

Polygon 1 
Invisible wall 

Combined Pareto Front 

X Fixed Dimensions: 18 
X VNDMOPSO AlgoiAm: 3 

The version with 
fixed dimensions 
had better results 
with the invisible 

wall 

0.2 0.3 
Remaining area 

Fig. 7.5: Comparison results of V N D and F N D versions of the algorithm for invisible 
wall. 

Since the invisible wall is the worst approach in terms of convergence, the 
MOPSO algorithm with a variable number of dimensions seems to be the right 
choice, both in terms of computational time and better results. A n overview of the 
number of non-dominated solutions originated from the Pareto-front obtained by 
the V N D variant and the F N D variant of the algorithm is available in Tab. 7.3. 
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Tab. 7.3: Comparison of V N D (Variable number of dimensions) and F N D (fixed 
number of dimensions) version of the algorithm 

Polygon Wall 
Number 

P F V N D 

of solutions 

P F F N D 

absorbing 35 12 
PI reflecting 31 19 

invisible 3 18 
absorbing 81 8 

P2 reflecting 42 8 
invisible 6 26 

absorbing 50 13 
P3 reflecting 35 9 

invisible 6 23 
absorbing 60 21 

P4 reflecting 42 13 
invisible 6 28 

absorbing 55 9 
P5 reflecting 35 16 

invisible 7 23 
absorbing 88 3 

P6 reflecting 23 11 
invisible 5 17 

absorbing 64 15 
P7 reflecting 38 11 

invisible 5 20 
absorbing 46 9 

P8 reflecting 26 14 
invisible 6 13 

absorbing 97 11 
P9 reflecting 34 9 

invisible 5 27 
absorbing 77 3 

P10 reflecting 24 14 
invisible 4 31 
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Conclusion 

The aim of this thesis was to get acquainted with the basic principle of performing 
robotic operations used in the field of neurosurgery. After an initial study of the 
issue, a selected algorithm for solving multi-objective optimization problems was 
described, which could be used to optimize surgical procedures for the removal of 
brain tumors by the LITT method, used by a concentric tube robot. 

The Multi-Objective Particle Swarm Optimization algorithm with a variable 
number of dimensions turned out to be the most suitable of the available heuristic 
algorithms, thanks to its simple implementation and the best results in solving multi-
objective problems having up to low tens of variables, which includes the problem 
solved in this thesis. 

One of the main tasks of the thesis was the creation of a function in which this 
algorithm is implemented. This function, created in M A T L A B , was tested on several 
benchmark problems and the results were verified using three test metrics. 

The largest average deviation calculated using the Generational Distance met­
ric was found for the VNDMOLI2Fitness function, the average deviation calcu­
lated using the Spread metric was the highest for the VNDMOZDT3Fitness func­
tion, and the Hypervolume metric calculated the largest average H V for the V N D -
MOZDT3Fitness test function. The influence of setting the probability whether or 
not the number of decision variables will be changed was minimal. 

The thesis was further devoted to solving real problems. This part of the the­
sis dealt with obtaining 2D cross-sections of 3D structures, represented as general 
polygons, and creating a fitness function. This function is formulated to be able to 
calculate the area that covers or does not cover the tumor, the area of overlapping 
ablation objects, and the part of the area of the ablation objects that does not cover 
the tumor. 

The created optimization function was subsequently used to optimize the cov­
erage of ten different polygons with ablation objects. To visualize the results, a 
tool that displays individual solutions in the Pareto-front and the corresponding 
distribution of ablation objects in the tumor area was created. 

The results show that the V N D M O P S O algorithm was able to find a set of 
solutions that could be suitable for this type of operation, while the success of 
finding the ideal set of solutions varies based on the setting of several parameters. 
Setting the solution space boundary type had the greatest impact. The algorithm 
was able to find the best solutions in the case of an absorbing wall, while it achieved 
similar success in the case of a reflecting wall. When setting up an invisible wall, the 
results were unsatisfactory. Different combinations of setting the number of agents 
and iterations also had an impact on the optimization results. When setting a higher 
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number of iterations than agents, the optimizer was more successful. 
Finally, the optimizer with a variable number of dimensions was compared to 

the optimizer with a fixed number of dimensions. Using the Dominance Ranking 
method, it was evaluated that the V N D version of the algorithm is significantly 
better when using an absorbing and reflecting wall. With the invisible wall, the 
version with a fixed number of dimensions was more successful. 

However, several simplifications have been used in achieving the results, which 
cause them to be somewhat distorted. Of course, these simplifications could be 
replaced by a more accurate model. However, their usage would increase the time 
required for the calculation. The use of another programming language, possibly 
parallel processing of results, etc. could then reduce this increase in time require­
ments. 
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Symbols and abbreviations 

Ci Cognitive Learning Factor 

C2 Social Learning Factor 

C D Crowding Distance 

C T R Concentric Tube Robot 

d\ Euclidean Distance between the First Solution and Its Nearest 
Neighbor 

d2 Euclidean Distance between the First Solution and Its Second 
Nearest Neighbor 

di Euclidean Distance of z-th Solution 

D O F Degree-of-Freedom 

A Spread 

ENNS Equal-average Nearest Neighbor 

F D A Food and Drug Administration 

FOPS Fast Optimization Procedures 

G D Generational Distance 

GDE3 Third version of Generalized Differential Evolution 

GUI Graphical User Interface 

H V Hypervolume 

L I T T Laser-Induced Thermotherapy 

M O O P Multi-Objective Optimization Problem 

M O P S O Multi-Objective Particle Swarm Optimization 

M R Magnetic Resonance 

M R I Magnetic Resonance Imaging 

M O S O M A Multi-Objective Self-Organizing Migrating Algorithm 

n$b Total number of random points 

G8 



risv Number of random points located in the object area 

Npbest Number of dimensions of Personal Best 

Ngbest Number of dimensions of Global Best 

Nx Number of dimensions of Particle 

NSGA-II Non-dominated Sorting Genetic Algorithm 

Pi Probability of dimension of Particle 

P2 Probability of dimension of Personal Best 

P3 Probability of dimension of Global Best 

r Random number 

P* Pareto-optimal front 

P F Pareto-front 

PSO Particle Swarm Optimization 

Q Found Pareto-front 

Sb Bounding box 

Sp Object 

SOOP Single-Objective Optimization Problem 

SOPSO Single-Objective Particle Swarm Optimization 

Vi Velocity Vector of i-th Particle 

V N D M O P S O MOPSO Algorithm for Variable Number of Dimensions 

w inertial weight 

W F G Weighted Fast Greedy Algorithm 

Xi Position of i-th Particle 

xgbest Global Best 

Xpbest Personal Best 
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A Results of Testing the Function VNDMOPSO 

For each test problem, nVarsList, nOptList, the number of parts of the Pareto-front 
nParts and the parameter were set to the optimal parameters specified in 
the FOPS Package. The number of iterations and the population size were adjusted 
as needed. Since the metrics can only calculate the difference between the found 
and the true Pareto-front for two-objective problems, the following figures depict 
the three-objective problems without the true Pareto-front. 

1.4 

1.2 

x Found PF 
True PF 

1.2 

Fig. A . l : V N D M O P S O applied to VNDMOLIlFi tness (Maxlter 
1000). 

100, PopSize 
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x Found PF 
True PF 

hl-} 

Fig. A.2: V N D M O P S O applied to VNDMOLI2Fitness (Maxlter = 100, PopSize = 
1000). 

Fig. A.3: V N D M O P S O applied to VNDMODTLZ4Fitness (Maxlter = 200, PopSize 
= 1000). 
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Fig. A.5: V N D M O P S O applied to VNDMOLZ3Fitness (Maxlter = 100, PopSize = 
1000). 
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Fig. A.6: V N D M O P S O applied to VNDMOLZöFitness (Maxlter = 200, PopSize = 
1000). 

Fig. A.7: V N D M O P S O applied to V N D M O U F 1 OFitness (Maxlter = 500, PopSize 
= 1000). 
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B Results of Testing the Influence of the 

Parameter of Probability 

VNDMOLI1 Fitness - Gen. Distance 

iter=40,agents=50 iter=100,agerits=200 iter=100,agents=1000 

Fig. B . l : Standard boxplots for ten different settings of the p^ parameter for the 
Gen.Distance metric. 

VNDMOLI1 Fitness - Spread 

Fig. B.2: Standard boxplots for ten different settings of the ps parameter for the 
Spread metric. 
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VNDM0LI1 Fitness - Hypervolume 
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Fig. B.3: Standard boxplots for ten different settings of the p^ parameter for the 
Hypervolume metric. 

VNDMOLI2Fitness - Gen. Distance 
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Fig. B.4: Standard boxplots for ten different settings of the p% parameter for the 
Gen.Distance metric. 
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VNDMOLI2Fitness - Spread 
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Fig. B.5: Standard boxplots for ten different settings of the p% parameter for the 
Spread metric. 
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Fig. B.6: Standard boxplots for ten different settings of the p% parameter for the 
Hypervolume metric. 
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VNDM0LZ3Fi tness - Gen. Distance 
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Fig. B.7: Standard boxplots for ten different settings of the p% parameter for the 
Gen.Distance metric. 

VNDMOLZ3Fitness - Spread 

1.5 t-

1.3 

1.2 

1.1 - ' 
• i 
- 1 

0.9 

0.8 h 

0.7 

i i 
i 

a s 

iter=40,agents=50 iter=100,agents=200 

. i . 

iter=100,agents=1000 

ST 

Fig. B.8: Standard boxplots for ten different settings of the p3 parameter for the 
Spread metric. 
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Fig. B.9: Standard boxplots for ten different settings of the p3 parameter for the 
Hypervolume metric. 
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Fig. B.10: Standard boxplots for ten different settings of the p3 parameter for the 
Gen.Distance metric. 
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Fig. B . l l : Standard boxplots for ten different settings of the p% parameter for 
Spread metric. 
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Fig. B.12: Standard boxplots for ten different settings of the p^ parameter for 
Hypervolume metric. 


