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Abstrakt 
Statistické jazykové modely jsou důležitou součástí mnoha úspěšných aplikací, mezi něž 
patří například automatické rozpoznávání řeči a strojový překlad (příkladem je známá 
aplikace Google Translate). Tradiční techniky pro odhad těchto modelů jsou založeny 
na tzv. iV-gramech. Navzdory známým nedostatkům těchto technik a obrovskému úsilí 
výzkumných skupin napříč mnoha oblastmi (rozpoznávání řeči, automatický překlad, neu-
roscience, umělá inteligence, zpracování přirozeného jazyka, komprese dat, psychologie 
atd.), iV-gramy v podstatě zůstaly nejúspěšnější technikou. Cílem té to práce je prezen­
tace několika architektur jazykových modelů založených na neuronových sítích. Ačkoliv 
jsou tyto modely výpočetně náročnější než iV-gramové modely, s technikami vyvinutými v 
této práci je možné jejich efektivní použití v reálných aplikacích. Dosažené snížení počtu 
chyb při rozpoznávání řeči oproti nejlepším iV-gramovým modelům dosahuje 20%. Model 
založený na rekurentní neurovové síti dosahuje nejlepších publikovaných výsledků na velmi 
známé datové sadě (Penn Treebank). 

Abstract 
Statistical language models are crucial part of many successful applications, such as au­
tomatic speech recognition and statistical machine translation (for example well-known 
Google Translate). Traditional techniques for estimating these models are based on N-
gram counts. Despite known weaknesses of iV-grams and huge efforts of research commu­
nities across many fields (speech recognition, machine translation, neuroscience, artificial 
intelligence, natural language processing, data compression, psychology etc.), iV-grams 
remained basically the state-of-the-art. The goal of this thesis is to present various archi­
tectures of language models that are based on artificial neural networks. Although these 
models are computationally more expensive than iV-gram models, with the presented 
techniques it is possible to apply them to state-of-the-art systems efficiently Achieved 
reductions of word error rate of speech recognition systems are up to 20%, against state-
of-the-art iV-gram model. The presented recurrent neural network based model achieves 
the best published performance on well-known Penn Treebank setup. 
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Chapter 1 

Introduction 

1.1 Motivat ion 

From the first day of existence of the computers, people were dreaming about artificial 

intelligence - machines that would produce complex behaviour to reach goals specified 

by human users. Possibility of existence of such machines has been controversial, and 

many philosophical questions were raised - whether the intelligence is not unique only to 

humans, or only to animals etc. Very influential work of Alan Turing did show that any 

computable problem can be computed by Universal Turing Machine - thus, assuming that 

the human mind can be described by some algorithm, Turing Machine is powerful enough 

to represent it. 

Computers today are Turing-complete, ie. can represent any computable algorithm. 

Thus, the main problem is how to find configuration of the machine so that it would 

produce desired behaviour that humans consider intelligent. Assuming that the problem 

is too difficult to be solved immediately, we can think of several ways that would lead us 

towards intelligent machines - we can start with a simple machine that can recognize basic 

shapes and images such as written digits, then scale it towards more complex types of 

images such as human faces and so on, finally reaching machine that can recognize objects 

in the real world as well as humans can. 

Other possible way can be to simulate parts of the human brain on the level of indi­

vidual brain cells, neurons. Computers today are capable of realistically simulating the 

real world, as can be seen in modern computer games - thus, it seems logical that with 

accurate simulation of neurons and more computational power, it should be possible to 

simulate the whole human brain one day. 

4 



Maybe the most popular vision of future AI as seen in science fiction movies are 

robots and computers communicating with humans using natural language. Turing himself 

proposed a test of intelligence based on ability of the machine to communicate with humans 

using natural language [76]. This choice has several advantages - amount of data that 

has to be processed can be very small compared to machine that recognizes images or 

sounds. Next, machine that will understand just the basic patterns in the language can 

be developed first, and scaled up subsequently. The basic level of understanding can 

be at level of a child, or a person that learns a new language - even such low level of 

understanding is sufficient to be tested, so that it would be possible to measure progress 

in ability of the machine to understand the language. 

Assuming that we would want to build such machine that can communicate in natural 

language, the question is how to do it. Reasonable way would be to mimic learning 

processes of humans. A language is learned by observing the real world, recognizing its 

regularities, and mapping acoustic and visual signals to higher level representations in 

the brain and back - the acoustic and visual signals are predicted using the higher level 

representations. Motivation for learning the language is to improve success of humans in 

the real world. 

The whole learning problem might be too difficult to be solved at once - there are many 

open questions regarding importance of individual factors, such as how much data has to 

be processed during training of the machine, how important is it to learn the language 

jointly with observing real world situations, how important is the innate knowledge, what 

is the best formal representation of the language, etc. It might be too ambitious to attempt 

to solve all these problems together, and to expect too much from models or techniques 

that even do not allow existence of the solution (an example might be the well-known 

limitations of finite state machines to represent efficiently longer term patterns). 

Important work that has to be mentioned here is the Information theory of Claude 

Shannon. In his famous paper Entropy of printed English [66], Shannon tries to estimate 

entropy of the English text using simple experiments involving humans and frequency 

based models of the language (n-grams based on history of several preceding characters). 

The conclusion was that humans are by far better in prediction of natural text than n-

grams, especially as the length of the context is increased - this so-called "Shannon game" 

can be effectively used to develop more precise test of intelligence than the one defined by 

Turing. If we assume that the ability to understand the language is equal (or at least highly 
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correlated) to the ability to predict words in a given context, then we can formally measure 

quality of our artificial models of natural languages. This AI test has been proposed for 

example in [44] and more discussion is given in [42]. 

While it is likely that attempts to build artificial language models that can understand 

text in the same way as humans do just by reading huge quantities of text data is unreal-

istically hard (as humans would probably fail in such task themselves), language models 

estimated from huge amounts of data are very interesting due to their practical usage in 

wide variety of commercially successful applications. Among the most widely known ones 

are the statistical machine translation (for example popular Google Translate) and the 

automatic speech recognition. 

The goal of this thesis is to describe new techniques that have been developed to 

overcome the simple n-gram models that still remain basically state-of-the-art today. To 

prove usefulness of the new approaches, empirical results on several standard data sets 

will be extensively described. Finally, approaches and techniques that can possibly lead to 

automatic language learning by computers will be discussed, together with a simple plan 

how this could be achieved. 

1.2 Structure of the Thesis 

Chapter 2 introduces the statistical language modeling and mathematically defines the 

problem. Simple and advanced language modeling techniques are discussed. Also, the 

most important data sets that are further used in the thesis are introduced. 

Chapter 3 introduces neural network language models and the recurrent architecture, 

as well as the extensions of the basic model. The training algorithm is described in detail. 

Chapter 4 provides extensive empirical comparison of results obtained with various 

advanced language modeling techniques on the Penn Treebank setup, and results after 

combination of these techniques. 

The Chapter 5 focuses on the results after application of the R N N language model 

to standard speech recognition setup, the Wall Street Journal task. Results and com­

parison are provided on two different setups; one is from the Johns Hopkins University 

and allows comparison with competitive techniques such as discriminatively trained L M s 

and structured LMs , and the other setup was obtained with an open-source A S R toolkit, 

Kaldi . 
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Chapter 6 presents further extensions of the basic recurrent neural network language 

model that allow efficient training on large data sets. Experiments are performed on data 

sets with up to 400 million training tokens with very large neural networks. Results are 

reported on state of the art setup for Broadcast News speech recognition (the NIST RT04 

task) with a recognizer and baseline models provided by I B M . 

Chapter 7 presents further empirical results on various other tasks, such as machine 

translation, data compression and others. The purpose of this chapter is to prove that 

the developed techniques are very general and easily applicable to other domains where 

n-gram models are currently used. 

Chapter 8 discusses computational limitations of models that are commonly used for 

the statistical language modeling, and provides some insight into how further progress can 

be achieved. 

Finally, Chapter 9 summarizes the achieved results and concludes the work. 

1.3 Claims of the Thesis 

The most important original contributions of this thesis are: 

• Development of statistical language model based on simple recurrent neural network 

• Extensions of the basic recurrent neural network language model: 

— Simple classes based on unigram frequency of words 

— Joint training of neural network and maximum entropy model 

— Adaptation of neural net language models by sorting the training data 

— Adaptation of neural net language models by training the model during pro­

cessing of the test data 

• Freely available open source toolkit for training RNN-based language models that 

can be used to reproduce the described experiments 

• Empirical comparison with other advanced language modeling techniques, with new 

state of the art results achieved with R N N based L M s on the following tasks: 

— Language modeling of Penn Treebank Corpus 

— Wall Street Journal speech recognition 
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— NIST RT04 speech recognition 

— Data compression of text, machine translation and other tasks 

Analysis of performance of neural net language models (influence of size of the hidden 

layer, increasing amount of the training data) 

Discussion about limitations of traditional approaches to language modeling and 

open questions for future research 



Chapter 2 

Overview of Statistical Language 

Modeling 

Statistical language modeling has received a lot of attention in the past decades. Many 

different techniques have been proposed, and nearly each of them can provide improve­

ments over the basic trigram model. However, these techniques are usually studied in 

isolation. Comparison is made just to the basic models, and often even these basic models 

are poorly tuned. It is thus difficult to judge which technique, or combination of tech­

niques, is currently the state-of-the-art in the statistical language modeling. Moreover, 

many of the proposed models provide the same information (for example, longer range 

cache-like information), and can be seen just as permutations of existing techniques. This 

was already observed by Goodman [24], who proposed that different techniques should be 

studied jointly. 

Another important observation of Goodman was that relative improvements provided 

by some techniques tend to decrease as the amount of training data increases. This has 

resulted in much scepticism, and some researchers did claim that it is enough to focus on 

obtaining the largest possible amount of training data and build simple n-gram models, 

sometimes not even focusing much on the smoothing to be sure that the resulting model 

is correctly normalized as reported in [11]. The motivation and justification for these 

approaches were results on real tasks. 

On the other hand, basic statistical language modeling faces serious challenges when it 

is applied to inflective or morphologically rich languages (like Russian, Arabic or Czech), 

or when the training data are limited and costly to acquire (as it is for spontaneous speech 

9 



recognition). Maybe even more importantly, several researchers have already pointed out 

that building large look-up tables from huge amounts of training data (which is equal to 

standard n-gram modeling) is not going to provide the ultimate answer to the language 

modeling problem, as because of curse of dimensionality, we will never have that much 

data [5]. 

The other way around, building language models from huge amounts of data (hundreds 

of billion words or more) is also a very challenging task, and has received recently a lot 

of attention [26]. The problems that arise include smoothing, as well as compression 

techniques, because it is practically impossible to store the full n-gram models estimated 

from such amount of data in computer memory. While amount of text that is available 

on the Internet is ever-increasing and computers are getting faster and memory bigger, we 

cannot hope to build a database of all possible sentences that can ever be said. 

In this thesis, recurrent neural network language model (RNN L M ) which I have re­

cently proposed in [49, 50] is described, and compared to other successful language mod­

eling techniques. Several standard text corpora are used, which allows to provide detailed 

and fair comparison to other advanced language modeling techniques. The aim is at 

obtaining the best achievable results by combining all studied models, which leads to a 

new state of the art performance on the standard setup involving part of Penn Treebank 

Corpus. 

Next, it is shown that the R N N based language model can be applied to large scale 

well-tuned system, and that it provides significant improvements in speech recognition 

accuracy. The baseline system for these experiments from I B M (RT04 Broadcast News 

speech recognition) has been recently used in the 2010 Summer Workshop at Johns Hop­

kins University [82]. This system was also used as a baseline for a number of papers 

concerning novel type of maximum entropy language model, a so-called model M [30] lan­

guage model, which is also used in the performance comparison as it was previously the 

state-of-the-art language model on the given task. 

Finally, I try to answer some fundamental questions of language modeling. Namely, 

whether the progress in the field is illusory, as is sometimes suggested. And ultimately, 

why the new techniques did not reach human performance yet, and what might be the 

missing parts and the most promising areas for the future research. 
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2.1 Evaluation 

2.1.1 Perplexity 

Evaluation of quality of different language models is usually done by using either perplexity 

or word error rate. Both metrics have some important properties, as well as drawbacks, 

which we will briefly mention here. The perplexity (PPL) of word sequence w is defined 

as 

Perplexity is closely related to the cross entropy between the model and some test data . 

It can be seen as exponential of average per-word entropy of some test data. For example, 

if the model encodes each word from the test data on average in 8 bits, the perplexity is 

256. There are several practical reasons why to use perplexity and not entropy: first, it is 

easier to remember absolute values in the usual range of perplexity between 100-200, than 

numbers between corresponding 6.64 and 7.64 bits. Second, it looks better to report that 

some new technique yields an improvement of 10% in perplexity, rather than 2% reduction 

of entropy, although both results are referring to the same improvement (in this example, 

we assume baseline perplexity of 200). Probably the most importantly, perplexity can be 

easily evaluated (if we have some held out or test data) and as it is closely related to the 

entropy, the model which yields the lowest perplexity is in some sense the closest model 

to the true model which generated the data. 

There has been great effort in the past to discover models which would be the best for 

representing patterns found in both real and artificial sequential data, and interestingly 

enough, there has been limited cooperation between researchers working in different fields, 

which gave rise to high diversity of various techniques that were developed. Natural 

language was viewed by many as a special case of sequence of discrete symbols, and its 

structure was supposedly best captured by various limited artificial grammars (such as 

context free grammar), with strong linguistic motivation. 

The question of validity of the statistical approach for describing natural language has 

been raised many times in the past, with maybe the most widely known statement coming 

from Noam Chomsky: 

1For simplification, it is later denoted simply as entropy. 

K 1 
= 2 _ ^ S ^ = i ' ° S 2 - p ( w t l w i - t - i ) (2.1) 

11 



The notion "probability of a sentence" is an entirely useless one, under any known 

interpretation of this term. (Chomsky, 1969) 

Still, we can consider entropy and perplexity as very useful measures. The simple 

reason is that in the real-world applications (such as speech recognizers), there is a strong 

positive correlation between perplexity of involved language model and the system's per­

formance [24]. 

More theoretical reasons for using entropy as a measure of performance come from 

an artificial intelligence point of view [42]. If we want to build an intelligent agent that 

will maximize its reward in time, we have to maximize its ability to predict the outcome 

of its own actions. Given the fact that such agent is supposed to work in the real world 

and it can experience complex regularities including the natural language, we cannot hope 

for a success unless this agent has an ability to find and exploit existing patterns in such 

data. It is known that Turing machines (or equivalent) have the ability to represent any 

algorithm (in other words, any pattern or regularity). However, algorithms that would 

find all possible patterns in some data are not known. Contrary, it was proved that such 

algorithms cannot exist in general, due to the halting problem (for some algorithms, the 

output is not computationally decidable due to potential infinite recursion). 

A very inspiring work on this topic was done by Solomonoff [70], who has shown an 

optimal solution to the general prediction problem called Algorithmic probability. Despite 

the fact that it is uncomputable, it provides very interesting insight into concepts such 

as patterns, regularities, information, noise and randomness. Solomonoff's solution is to 

average over all possible (infinitely many) models of given data, while normalizing by their 

description length. Algorithmic probability (ALP) of string x is defined as 

where PM{X) denotes probability of string x with respect to machine M and |<Si(a;)| is 

the description length of x (or any sequence that starts with x) given the i-th model of 

x. Thus, the shortest descriptions dominate the final value of algorithmic probability of 

the string x. More information about A L P , as well as proofs of its interesting properties 

(for example invariance to the choice of the machine M , as long as M is universal) can be 

found in [70]. 

oc 

(2.2) 
i=0 
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A L P can be used to obtain prior probabilities of any sequential data, thus it provides 

theoretical solution to the statistical language modeling. As mentioned before, A L P is 

not computable (because of the halting problem), however it is mentioned here to justify 

our later experiments with model combination. Different language modeling techniques 

can be seen as individual components in eq. 2.2, where instead of using description length 

of individual models for normalization, we use the performance of the model on some 

validation data to obtain its weight2. More details about concepts such as A L P and 

Minimum description length (MDL) will be given in Chapter 8. 

Another work worth of mentioning was done by Mahoney [44], who has shown that the 

problem of finding the best models of data is actually equal to the problem of general data 

compression. Compression can be seen as two problems: data modeling, and coding. Since 

coding is optimally solved by Arithmetic coding, data compression can be seen just as a 

data modeling problem. Mahoney together with M . Hutter also organize a competition 

with the aim to reach the best possible compression results on a given data set (mostly 

containing wikipedia text), known as a Hutter prize competition. As the data compression 

of text is almost equal to the language modeling task, I follow the same idea and try 

to reach the best achievable results on a single well-known data set, the Penn Treebank 

Corpus, where it is possible to compare (and combine) results of techniques developed by 

several other researchers. 

The important drawback of perplexity is that it obscures achieved improvements. Usu­

ally, improvements of perplexity are measured as percentual decrease over the baseline 

value, which is a mistaken but widely accepted practice. In Table 2.1, it is shown that 

constant perplexity improvement translates to different entropy reductions. For example, 

it will be shown in Chapter 7 that advanced L M techniques provide similar relative reduc­

tions of entropy for word and character based models, while perplexity comparison would 

completely fail in such case. Thus, perplexity results will be reported as a good measure 

for quick comparison, but improvements will be mainly reported by using entropy. 

2It can be argued that since most of the models that are commonly used in language modeling are 
not Turing-complete - such as finite state machines - using description length of these models would be 
inappropriate. 
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Table 2.1: Constant 30% perplexity reduction translates to variable entropy reduction. 

PPL PPL after Relative PPL Entropy Entropy after Relative entropy 

reduction reduction [bits] reduction reduction 

2 1.4 30% 1 0.49 51% 

20 14 30% 4.32 3.81 11.8% 

100 70 30% 6.64 6.13 7.7% 

200 140 30% 7.64 7.13 6.7% 

500 350 30% 8.97 8.45 5.8% 

2000 1400 30% 10.97 10.45 4.7% 

2.1.2 Word Error Rate 

The word error rate of speech recognizer is defined as 

S + D + I 
WER 

N 
(2.3) 

where S is number of substitutions, D deletions and / insertions (each operation can 

change, delete or add a single word). The W E R is defined for the lowest number of these 

operations that are needed to change the decoded utterance W to the reference utterance 

W, which has iV words. 

The word error rate (WER) measures directly the quality of the speech recognition 

system, by counting the number of mistakes between the output of the system and the 

reference transcription which is provided by a human annotator. The drawbacks include 

over-emphasis on uninformative words (which is usually reduced in advanced metrics that 

tolerate substitutions between words with the same sense, like NIST W E R ) . For com­

parison of different techniques, word error rate can be inaccurate, and improvements are 

commonly misinterpreted by researchers. Practical experience shows that it is very hard to 

obtain improvements over well-tuned systems based on state-of-the-art techniques. Some 

techniques can yield large W E R improvements when applied to simple systems, while they 

have practically no influence in the best systems. Comparison of relative W E R reductions 

when applying different techniques to different systems is practically useless. On the other 

hand, comparing different techniques on the same task, or even better by using the same 

configuration of A S R system, can be very informative and W E R can be a better metric 

than perplexity in such cases. 

To conclude usefulness of different metrics - the advantages of perplexity are: 
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• Good theoretical motivation 

• Simplicity of evaluation 

• Good correlation with system performance 

Disadvantages of perplexity are: 

• It is hard to check that the reported value is correct (mostly normalization and 

"looking into future" related problems) 

• Perplexity is often measured assuming perfect history, while this is certainly not true 

for A S R systems: poor performance of models that rely on long context information 

(such as cache models) is source of confusion and claims that perplexity is not well 

correlated with W E R 

• Most of the research papers compare perplexity values incorrectly - the baseline is 

often suboptimal to "make the results look better" 

Advantages of W E R : 

• Often the final metric we want to optimize; quality of systems is usually measured 

by some variation of W E R (such as NIST W E R ) 

• Easy to evaluate, as long as we have reference transcriptions 

Disadvantages of W E R : 

• Results are often noisy; for small data sets, the variance in W E R results can be 

absolutely 0.5% 

• Overemphasis on the frequent, uninformative words 

• Reference transcriptions can include errors, spelling mistakes 

• Substituted words with the same or similar meaning are as bad mistakes as words 

that have the opposite meaning 

• Full speech recognition system is needed 

• Improvements are often task-specific 
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Surprisingly, many research papers come with conclusions such as "Our model pro­

vides 2% improvement in perplexity over 3-gram with Good-Turing discounting and 0.3% 

reduction of WER, thus we have achieved new state of the art results." - that is clearly mis­

leading statement. Thus, great care must be given to proper evaluation and comparison 

of techniques. 

2.2 N-gram Models 

The probability of a sequence of symbols (usually words) is computed using a chain rule 

as 
N 

P(w) = J2P(wi\wi-wi-i) (2-4) 
i=i 

The most frequently used language models are based on the n-gram statistics, which are 

basically word co-occurrence frequencies. The maximum likelihood estimate of probability 

of word A in context H is then computed as 

P(AW _ « ,2.5) 

where C{HA) is the number of times that the HA sequence of words has occurred in the 

training data. The context H can consist of several words, for the usual trigram models 

\H\ = 2. For H = 0, the model is called unigram, and it does not take into account history. 

As many of these probability estimates are going to be zero (for all words that were not 

seen in the training data in a particular context H), smoothing needs to be applied. This 

works by redistributing probabilities between seen and unseen (zero-frequency) events, by 

exploiting the fact that some estimates, mostly those based on single observations, are 

greatly over-estimated. Detailed overview of common smoothing techniques and empirical 

evaluation can be found in [29]. 

The most important factors that influence quality of the resulting n-gram model is 

the choice of the order and of the smoothing technique. In this thesis, we will report 

results while using the most popular variants: Good-Turing smoothing [34] and modified 

Kneser-Ney smoothing [36] [29]. The modified Kneser-Ney smoothing (KN) is reported to 

provide consistently the best results among smoothing techniques, at least for word-based 

language models [24]. 

The most significant advantages of models based on n-gram statistics are speed (prob-
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abilities of n-grams are stored in precomputed tables), reliability coming from simplicity, 

and generality (models can be applied to any domain or language effortlessly, as long as 

there exists some training data). N-gram models are today still considered as state of the 

art not because there are no better techniques, but because those better techniques are 

computationally much more complex, and provide just marginal improvements, not critical 

for success of given application. Thus, large part of this thesis deals with computational 

efficiency and speed-up tricks based on simple reliable algorithms. 

The weak part of n-grams is slow adaptation rate when only limited amount of in-

domain data is available. The most important weakness is that the number of possible 

n-grams increases exponentially with the length of the context, preventing these models 

to effectively capture longer context patterns. This is especially painful if large amounts 

of training data are available, as much of the patterns from the training data cannot be 

effectively represented by n-grams and cannot be thus discovered during training. The idea 

of using neural network based L M s is based on this observation, and tries to overcome the 

exponential increase of parameters by sharing parameters among similar events, no longer 

requiring exact match of the history H. 

2.3 Advanced Language Modeling Techniques 

Despite the indisputable success of basic n-gram models, it was always obvious that these 

models are not powerful enough to describe language at sufficient level. As an introduc­

tion to the advanced techniques, simple examples will be given first to show what n-grams 

cannot do. For example, representation of long-context patters is very inefficient, consider 

the following example: 

THE SKY ABOVE OUR HEADS IS BLUE 

In such sentence, the word BLUE directly depends on the previous word SKY. There is 

huge number of possible variations of words between these two that would not break such 

relationship - for example, THE SKY THIS MORNING WAS BLUE etc. We can even see that 

the number of variations can practically increase exponentially with increasing distance of 

the two words from each other in the sentence - we can create many similar sentences for 

example by adding all days of week in the sentence, such as: 
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THE SKY THIS <MONDAY, TUESDAY, .., SUNDAY> <MORNING, AFTERNOON, EVENINO 

WAS BLUE 

N-gram models with N = 4 are unable to efficiently model such common patterns in 

the language. Wi th iV = 10, we can see that the number of variations is so large that we 

cannot realistically hope to have such amounts of training data that would allow n-gram 

models to capture such long-context patterns - we would basically have to see each specific 

variation in the training data, which is infeasible in practical situations. 

Another type of patterns that n-gram models will not be able to model efficiently is 

similarity of individual words. A popular example is: 

PARTY WILL BE ON <DAY_0F_WEEK> 

Considering that only two or three variations of this sentence are present in the training 

data, such as PARTY WILL BE ON MONDAY and PARTY WILL BE ON TUESDAY, the n-gram 

models will not be able to assign meaningful probability to novel (but similar) sequence 

such as PARTY WILL BE ON FRIDAY, even if days of the week appeared in the training data 

frequently enough to discover that there is some similarity among them. 

As language modeling is closely related to artificial intelligence and language learning, 

it is possible to find great amount of different language modeling techniques and large 

number of their variations across research literature published in the past thirty years. 

While it is out of scope of this work to describe all of these techniques in detail, we will 

at least make short introduction to the important techniques and provide references for 

further details. 

2.3.1 Cache Language Models 

As stated previously, one of the most obvious drawbacks of n-gram models is in their 

inability to represent longer term patterns. It has been empirically observed that many 

words, especially the rare ones, have significantly higher chance of occurring again if they 

did occur in the recent history. Cache models [32] are supposed to deal with this regularity, 

and are often represented as another n-gram model, which is estimated dynamically from 

the recent history (usually few hundreds of words are considered) and interpolated with the 
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main (static) n-gram model. As the cache models provide truly significant improvements 

in perplexity (sometimes even more than 20%), there exists a large number of more refined 

techniques that can capture the same patterns as the basic cache models - for example, 

various topic models, latent semantic analysis based models [3], trigger models [39] or 

dynamically evaluated models [32] [49]. 

The advantage of cache (or similar) models is in large reduction of perplexity, thus 

these techniques are very popular in the language modeling related papers. Also, their 

implementation is often quite easy. The problematic part is that new cache-like techniques 

are compared to weak baselines, like bigram or trigram models. It is unfair to not include 

at least unigram cache model to the baseline, as it is very simple to do so (for example by 

using standard L M toolkits such as S R I L M [72]). 

The main disadvantage is in questionable correlation between perplexity improvements 

and word error rate reductions. This has been explained by [24] as a result of the fact 

that the errors are locked in the system - if the speech recognizer decodes incorrectly a 

word, it is placed in the cache which hurts further recognition by increasing chance of 

doing the same error again. When the output from the recognizer is corrected by the user, 

cache models are reported to work better; however, it is not practical to force users to 

manually correct the output. Advanced versions, like trigger models or L S A models were 

reported to provide interesting W E R reductions, yet these models are not commonly used 

in practice. 

Another explanation of poor performance of cache models in speech recognition is 

that since the output of a speech recognizer is imperfect, the perplexity calculations that 

are normally performed on some held-out data (correct sentences) are misleading. If the 

cache models were using the highly ambiguous history of previous words from a speech 

recognizer, the perplexity improvements would be dramatically lower. It is thus important 

to be careful when conclusions are made about techniques that access very long context 

information. 

2.3.2 Class Based Models 

One way to fight the data sparsity in higher order n-grams is to introduce equivalence 

classes. In the simplest case, each word is mapped to a single class, which usually repre­

sents several words. Next, n-gram model is trained on these classes. This allows better 

generalization to novel patterns which were not seen in the training data. Improvements 
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are usually achieved by combining class based model and the n-gram model. There exists a 

lot of variations of class based models, which often focus on the process of forming classes. 

So-called soft classes allow one word to belong to multiple classes. Description of several 

variants of class based models can be found in [24]. 

While perplexity improvements given by class based models are usually moderate, these 

techniques have noticeable effect on the word error rate in speech recognition, especially 

when only small amount of training data is available. This makes class based models quite 

attractive as opposed to the cache models, which usually work well only in experiments 

concerning perplexity. 

The disadvantages of class based models include high computational complexity during 

inference (for statistical classes) or reliance on expert knowledge (for manually assigned 

classes). More seriously, improvements tend to vanish with increased amount of the train­

ing data [24]. Thus, class based models are more often found in the research papers, than 

in real applications. 

From the critical point of view, there are several theoretical difficulties involving class 

based models: 

• The assumption that words belong to some higher level classes is intuitive, but 

usually no special theoretical explanation is given to the process how classes are 

constructed; in the end, the number of classes is usually just some tunable parameter 

that is chosen based on performance on development data 

• Most techniques do attempt to cluster individual words in the vocabulary, but the 

idea is not extended to n-grams: by thinking about character-level models, it is obvi­

ous that with increasing amount of the training data, classes can only be successful 

if longer context can be captured by a single class (several characters for this case) 

2.3.3 Structured Language Models 

The statistical language modeling was criticized heavily by the linguists from the first 

days of its existence. The already mentioned Chomsky's statement that "the notion of 

probability of a sentence is completely useless one" can be nowadays easily seen as a big 

mistake due to indisputable success of applications that involve n-gram models. However, 

further objections from the linguistic community usually address the inability of n-gram 

models to represent longer term patterns that clearly exist between words in a sentence. 
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There are many popular examples showing that words in a sentence are often related, 

even if they do not lie next to each other. It can be shown that such patterns cannot be 

effectively encoded using a finite state machine (n-gram models belong to this family of 

computational models). However, these patterns can be often effectively described while 

using for example context free grammars. 

This was the motivation for the structured language models that attempt to bridge dif­

ferences between the linguistic theories and the statistical models of the natural languages. 

The sentence is viewed as a tree structure generated by a context free grammar, where 

leafs are individual words and nodes are non-terminal symbols. The statistical approach 

is employed when constructing the tree: the derivations have assigned probabilities that 

are estimated from the training data, thus every new sentence can be assigned probability 

of being generated by the given grammar. 

The advantage of these models is in their theoretical ability to represent patterns in 

a sentence across many words. Also, these models make language modeling much more 

attractive for the linguistic community. 

However, there are many practical disadvantages of the structured language models: 

• computational complexity and sometimes unstable behaviour (complexity raises non-

linearly with the length of the parsed sentences) 

• ambiguity (many different parses are possible) 

• questionable performance when applied to spontaneous speech 

• large amount of manual work that has to be done by expert linguists is often required, 

especially when the technique is to be applied to new domains or new languages, 

which can be very costly 

• for many languages, it is more difficult to represent sentences using context free 

grammars - this is true for example for languages where the concept of word is not 

so clear as in English, or where the word order is much more free and not so regular 

as it is for English 

Despite great research effort in the past decade, the results of these techniques remain 

questionable. However, it is certain that the addressed problem - long context patterns 

in the natural languages - has to be solved, if we want to get closer towards intelligent 

models of languages. 
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2.3.4 Decision Trees and Random Forest Language Models 

A decision tree can partition the data in the history by asking question about history at 

every node. As these questions can be very general, decision trees were believed to have 

a big potential - for example, it is possible to ask questions about presence of specific 

word in the history of last ten words. However, in practice it was found that finding good 

decision trees can be quite difficult, and even if it can be proved that very good decision 

trees exist, usually only suboptimal ones are found by normal training techniques. This 

has motivated work on random forest models, which is a combination of many randomly 

grown decision trees (linear interpolation is usually used to combine trees into forests). 

For more information, see [78]. 

As the questions in the decision trees can be very general, these models have a possi­

bility to work well for languages with free word order as well as for inflectional languages, 

by asking questions about morphology of the words in the history etc. [59]. The drawback 

is again high computational complexity. Also, the improvements seem to decrease when 

the amount of the training data is large. Thus, these techniques seem to work similar to 

the class based models, in some aspects. 

2.3.5 M a x i m u m Entropy Language Models 

Maximum entropy (ME) model is an exponential model with a form 

p^h> = ~ w r (2-6) 

where w is a word in a context h and Z(h) is used for normalizing the probability distri­

bution: 

Z(h) = e > : ' ' A i / i ( " ' ' ! ' ° (2.7) 
Wi£V 

thus it can be viewed as a model that combines many feature functions fi(w,h). The 

problem of training M E model is to find weights Aj of the features, and also to obtain a 

good set of these features, as these are not automatically learned from the data. Usual 

features are n-grams, skip-grams, etc. 

M E models have shown big potential, as they can easily incorporate any features. 

Rosenfeld [64] used triggers and word features to obtain very large perplexity improvement, 

as well as significant word error rate reduction. There has been a lot of work recently done 
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by Chen et al., who proposed a so-called model M, which is basically a regularized class 

based M E model [30]. This model is reported to have a state-of-the-art performance on 

a broadcast news speech recognition task [31], when applied to a very well tuned system 

that is trained on large amounts of data and uses state of the art discriminatively trained 

acoustic models. The significant reductions in W E R are reported against a good baseline 

language model, 4-gram with modified Kneser-Ney smoothing, across many domains and 

tasks. This result is quite rare in the language modeling field, as research papers usually 

report improvements over much simpler baseline systems. 

A n alternative name of maximum entropy models used by the machine learning commu­

nity is logistic regression. While unique algorithms for training M E models were developed 

by the speech recognition community (such as Generalized Iterative Scaling), we will show 

in Chapter 6 that M E models can be easily trained by stochastic gradient descent. In fact, 

it will be later shown that M E models can be seen as a simple neural network without 

a hidden layer, and we will exploit this fact to develop novel type of model. Thus, M E 

models can be seen as a very general theoretically well founded technique that has already 

proven its potential in many fields. 

2.3.6 Neural Network Based Language Models 

While the clustering algorithms used for constructing class based language models are quite 

specific for the language modeling field, artificial neural networks can be successfully used 

for dimensionality reduction as well as for clustering, while being a very general machine 

learning technique. Thus, it is a bit surprising that neural network based language models 

have gained attention only after Y . Bengio's et al. paper [5] from 2001, and not much 

earlier. Although a lot of interesting work on language modeling using neural networks 

was done much earlier (for example by Elman [17]), the lack of rigorous comparison to the 

state of the art statistical language modeling techniques was missing. 

Although it has been very surprising to some, the N N L M s , while very general and 

simple, have beaten many of the competing techniques, including those that were devel­

oped specifically for modeling the language. This might not be a coincidence - we may 

recall the words of a pioneer of the statistical approaches for automatic speech recognition, 

Frederick Jelinek: 

23 



"Every time I fire a linguist out of my group, the accuracy goes ups." 

We may understand Jelinek's statement as an observation that with decreased com­

plexity of the system and increased generality of the approaches, the performance goes up. 

It is then not so surprising to see the general purpose algorithms to beat the very specific 

ones, although clearly the task specific algorithms may have better initial results. 

Neural network language models will be described in more detail in Chapter 2. These 

models are today among state of the art techniques, and we will demonstrate their per­

formance on several data sets, where on each of them their performance is unmatched by 

other techniques. 

The main advantage of N N L M s over n-grams is that history is no longer seen as exact 

sequence of n — 1 words H, but rather as a projection of H into some lower dimensional 

space. This reduces number of parameters in the model that have to be trained, resulting 

in automatic clustering of similar histories. While this might sound the same as the 

motivation for class based models, the main difference is that N N L M s project all words 

into the same low dimensional space, and there can be many degrees of similarity between 

words. 

The main weak point of these models is very large computational complexity, which 

usually prohibits to train these models on full training set, using the full vocabulary. I will 

deal with these issues in this work by proposing simple and effective speed-up techniques. 

Experiments and results obtained with neural network models trained on over 400M words 

while using large vocabulary will be reported, which is to my knowledge the largest set 

that a proper N N L M has been trained on . 

2.4 Introduction to Data Sets and Experimental Setups 

In this work, I would like to avoid mistakes that are often mentioned when it comes to 

criticism of the current research in the statistical language modeling. It is usually claimed 

that the new techniques are studied in very specific systems, using weak or ambiguous 

baselines. Comparability of the achieved results is very low, if any. This leads to much 

3Although later, Jelinek himself claimed that the original statement was "Every time a linguist leaves 
my group, the accuracy goes up", the former one gained more popularity. 

4 I am aware of experiments with even more training data (more than 600M words) [8], but the resulting 
model in that work uses a small hidden layer, which as it will be shown later prohibits to train a model 
with competitive performance on such amount of training data. 
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confusion among researchers, and many new results are simply ignored as it is very time 

consuming to verify them. To avoid these problems, the performance of the proposed 

techniques is studied on very standard tasks, where it is possible to compare achieved 

results to baselines that were previously reported by other researchers5. 

First, experiments will be shown on a well known Penn Treebank Corpus, and the 

comparison will include wide variety of models that were introduced in section 2.3. A 

combination of results given by various techniques provides very important information 

by showing complementarity of the different language modeling techniques. Final combina­

tion of all techniques that were available to us results in a new state of the art performance 

on this particular data set, which is significantly better than of any individual technique. 

Second, experiments with increasing amount of the training data will be shown while 

using Wall Street Journal training data ( N Y T Section, the same data as used by [23] [79] [49]) 

This study will focus on both entropy and word error rate improvements. The conclusion 

seems to be that with increasing amount of the training data, the difference in performance 

between the R N N models and the backoff models is getting larger, which is in contrast to 

what was found by Goodman [24] for other advanced L M techniques, such as class based 

models. Experiments with adaptation of the R N N language models will be shown on this 

setup and additional details and results will be provided for another W S J setup that can 

be much more easily replicated, as it is based on a new open-source speech recognition 

toolkit, Kaldi [60]. 

Third, results will be shown for the R N N model applied to the state of the art speech 

recognition system developed by I B M [30] that was already briefly mentioned in Sec­

tion 2.3.5, where we will compare the performance to the current state of the art language 

model on that set (so-called model M). The language models for this task were trained 

on approximately 400M words. Achieved word error rate reductions over the best n-gram 

model are relatively over 10%, which is a proof of usefulness of the techniques developed 

in this work. 

Lastly, comparison of performance of R N N and n-gram models will be provided on a 

novel task "The Microsoft Research Sentence Completion Challenge" [83] that focuses on 

ability of artificial language models to appropriately complete a sentence where a single 

informative word is missing. 

5Many of the experiments described in this work can be reproduced by using a toolkit for training 
Recurrent neural network (RNN) language models which can be found at http:/ /www.fit .vutbr.cz/ 
~imikolov/rnnlm/. 
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Chapter 3 

Neural Network Language Models 

The use of artificial neural networks for sequence prediction is as old as the neural network 

techniques themselves. One of the first widely known attempts to describe language using 

neural networks was performed by Jeff Elman [17], who used recurrent neural network 

for modeling sentences of words generated by an artificial grammar. The first serious at­

tempt to build a statistical neural network based language model of real natural language, 

together with an empirical comparison of performance to standard techniques (n-gram 

models and class based models) was probably done by Yoshua Bengio in [5]. Bengio's 

work was followed by Holger Schwenk, who did show that N N L M s work very well in a 

state of the art speech recognition systems, and are complementary to standard n-gram 

models [68]. 

However, despite many scientific papers were published after the original Bengio's 

work, no techniques or modifications of the original model that would significantly improve 

ability of the model to capture patterns in the language were published, at least to my 

knowledge1. Integration of additional features into the N N L M framework (such as part 

of speech tags or morphology information) has been investigated in [19] [1]. Still, the 

accuracy of the neural net models remained basically the same, until I have recently shown 

that recurrent neural network architecture can work actually better than the feedforward 

one [49] [50]. 

Most of the research work did focus on overcoming practical problems when using 

these attractive models: the computational complexity was originally too high for real 

world tasks. It was reported by Bengio in 2001 that training of the original neural net 
1 With the exception of Schwenk, who reported better results by using linear interpolation of several 

neural net models trained on the same data, with different random initialization of the weights - we denote 
this approach further as a combination of NNLMs. 
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language model took almost a week using 40 CPUs for just a single training epoch (and 10 

to 20 epochs were needed for reaching optimal results), despite the fact that only about 

14M training words were used (Associated Press News corpus), together with vocabulary 

reduced to as little as 18K most frequent words. Moreover, the number of hidden neurons 

in the model had to be restricted to just 60, thus the model could not have demonstrated 

its full potential. Despite these limitations, the model provided almost 20% reduction of 

perplexity over a baseline n-gram model, after 5 training epochs. 

Clearly, better results could have been expected if the computational complexity was 

not so restrictive, and most of the further research focused on this topic. Bengio proposed 

parallel training of the model on several CPUs, which was later repeated and extended by 

Schwenk [68]. A very successful extension reduced computation between the hidden layer 

and the output layer in the model, using a trick that was originally proposed by Joshua 

Goodman for speeding up maximum entropy models [25] - this will be described in more 

detail in Section 3.4.2. 

3.1 Feedforward Neural Network Based Language Model 

The original model proposed by Bengio works as follows: the input of the n-gram N N L M 

is formed by using a fixed length history of n — 1 words, where each of the previous n — 1 

words is encoded using 1-of-V coding, where V is size of the vocabulary. Thus, every 

word from the vocabulary is associated with a vector with length V, where only one value 

corresponding to the index of given word in the vocabulary is 1 and all other values are 0. 

This 1-of-V orthogonal representation of words is projected linearly to a lower dimen­

sional space, using a shared matrix P, called also a projection matrix. The matrix P is 

shared among words at different positions in the history, thus the matrix is the same when 

projecting word wt-i, wt-2 etc. In the usual cases, the vocabulary size can be around 50K 

words, thus for a 5-gram model the input layer consists of 200K binary variables, while 

only 4 of these are set to 1 at any given time, and all others are 0. The projection is done 

sometimes into as little as 30 dimensions, thus for our example, the dimensionality of the 

projected input layer would be 30 x 4 = 120. After the projection layer, a hidden layer 

with non-linear activation function (usually hyperbolic tangent or a logistic sigmoid) is 

used, with a dimensionality of 100-300. A n output layer follows, with the size equal to the 

size of full vocabulary. After the network is trained, the output layer of 5-gram N N L M 
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represents probability distribution P(wt\wt-4, wt-3, wt-2, wt-i)-

I have proposed an alternative feedforward architecture of the neural network language 

model in [48]. The problem of learning n-gram N N L M is decomposed into two steps: 

learning a bigram N N L M (with only the previous word from the history encoded in the 

input layer), and then training an n-gram N N L M that projects words from the n-gram 

history into the lower dimensional space by using the already trained bigram N N L M . Both 

models are simple feedforward neural networks with one hidden layer, thus this solution 

is simpler for implementation and for understanding than the original Bengio's model. It 

provides almost identical results as the original model, as will be shown in the following 

chapter. 

3.2 Recurrent Neural Network Based Language Model 

I have described a recurrent neural network language model (RNNLM) in [49] and exten­

sions in [50]. The main difference between the feedforward and the recurrent architecture 

is in representation of the history - while for feedforward N N L M , the history is still just 

previous several words, for the recurrent model, an effective representation of history is 

learned from the data during training. The hidden layer of R N N represents all previous 

history and not just n — 1 previous words, thus the model can theoretically represent long 

context patterns. 

Another important advantage of the recurrent architecture over the feedforward one is 

the possibility to represent more advanced patterns in the sequential data. For example, 

patterns that rely on words that could have occurred at variable position in the history 

can be encoded much more efficiently with the recurrent architecture - the model can 

simply remember some specific word in the state of the hidden layer, while the feedforward 

architecture would need to use parameters for each specific position of the word in the 

history; this not only increases the total amount of parameters in the model, but also the 

number of training examples that have to be seen to learn the given pattern. 

The architecture of R N N L M is shown in Figure 3.1. The input layer consists of a 

vector w(t) that represents the current word wt encoded as 1 of V (thus size of w(i) is 

equal to the size of the vocabulary), and of vector s(t—1) that represents output values 

in the hidden layer from the previous time step. After the network is trained, the output 

layer y(i) represents P(wt+i\wt,s(t—l)). 
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s ( t - l ) 

Figure 3.1: Simple recurrent neural network. 

The network is trained by stochastic gradient descent using either usual backpropa-

gation (BP) algorithm, or backpropagation through time (BPTT) [65]. The network is 

represented by input, hidden and output layers and corresponding weight matrices - ma­

trices U and W between the input and the hidden layer, and matrix V between the hidden 

and the output layer. Output values in the layers are computed as follows: 

Sj(t) = f ^2wi(t)uji + Y^si(t-l)wj^j (3.1) 

yk(t) = g\ Y/sJ(t)vkjJ (3.2) 

where f{z) and g{z) are sigmoid and softmax activation functions (the softmax function 

in the output layer is used to ensure that the outputs form a valid probability distribution, 

i.e. all outputs are greater than 0 and their sum is 1): 

I g^-m 

f(z) = i T _z> 9(zm) = —— (3.3) 

Note that biases are not used in the neural network, as no significant improvement of 

performance was observed - following the Occam's razor, the solution is as simple as it 

needs to be. Alternatively, the equations 3.1 and 3.2 can be rewritten as a matrix-vector 

multiplication: 

s(t) = / ( U w ( t ) + W s ( t - l ) ) (3.4) 
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y(t)=g(Vs(t)) (3.5) 

The output layer y represents a probability distribution of the next word wt+i given 

the history. The time complexity of one training or test step is proportional to 

where H is size of the hidden layer and V is size of the vocabulary. 

3.3 Learning Algori thm 

Both the feedforward and the recurrent architecture of the neural network model can be 

trained by stochastic gradient descent using a well-known backpropagation algorithm [65]. 

However, for better performance, a so-called Backpropagation through time algorithm can 

be used to propagate gradients of errors in the network back in time through the recurrent 

weights, so that the model is trained to capture useful information in the state of the 

hidden layer. Wi th simple B P training, the recurrent network performs poorly in some 

cases, as will be shown later (some comparison was already presented in [50]). The B P T T 

algorithm has been described in [65], and a good description for a practical implementation 

is in [9]. 

Wi th the stochastic gradient descent, the weight matrices of the network are updated 

after presenting every example. A cross entropy criterion is used to obtain gradient of an 

error vector in the output layer, which is then backpropagated to the hidden layer, and in 

case of B P T T through the recurrent connections backwards in time. During the training, 

validation data are used for early stopping and to control the learning rate. Training 

iterates over all training data in several epochs before convergence is achieved - usually, 

8-20 epochs are needed. As it will be shown in Chapter 6, the convergence speed of the 

training can be improved by randomizing order of sentences in the training data, effectively 

reducing the number of required training epochs (this was already observed in [5], and we 

provide more details in [52]). 

The learning rate is controlled as follows. Starting learning rate is a = 0.1. The 

same learning rate is used as long as significant improvement on the validation data is 

observed (in further experiments, we consider as a significant improvement more than 

0.3% reduction of the entropy). After no significant improvement is observed, the learning 

O = H x H + H x V = H x (H + V) (3.6) 
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rate is halved at start of every new epoch and the training continues until again there is 

no improvement. Then the training is finished. 

As the validation data set is used only to control the learning rate, it is possible to train 

a model even without a validation data, by manually choosing how many epochs should be 

performed with the full learning rate, and how many epochs with the decreasing learning 

rate. This can be also estimated from experiments with subsets of the training data. 

However, in normal cases, it is usual to have a validation data set for reporting perplexity 

results. It should be noticed that no over-fitting of the validation data can happen, as the 

model does not learn any parameters on such data. 

The weight matrices U , V and W are initialized with small random numbers (in 

further experiments using normal distribution with mean 0 and variance 0.1) Training of 

R N N for one epoch is performed as follows: 

1. Set time counter t = 0, initialize state of the neurons in the hidden layer s(t) to 1 

2. Increase time counter t by 1 

3. Present at the input layer w(t) the current word wt 

4. Copy the state of the hidden layer s(t— 1) to the input layer 

5. Perform forward pass as described in the previous section to obtain s(t) and y(t) 

6. Compute gradient of error e(t) in the output layer 

7. Propagate error back through the neural network and change weights accordingly 

8. If not all training examples were processed, go to step 2 

The objective function that we aim to maximize is likelihood of the training data: 

where the training samples are labeled t = 1.. . t, and k is the index of the correct predicted 

word for the t 'th sample. Gradient of the error vector in the output layer eQ(t) is computed 

using a cross entropy criterion that aims to maximize likelihood of the correct class, and 

is computed as 

T 
(3.7) 

t=i 

ea(t) = d(t) - y(t) (3.8) 
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where d(t) is a target vector that represents the word w(t + 1) that should have been 

predicted (encoded again as 1-of-V vector). Note that it is important to use cross entropy 

and not mean square error (MSE), which is a common mistake. The network would still 

work, but the results would be suboptimal (at least, if our objective is to minimize entropy, 

perplexity, word error rate or to maximize compression ratio). Weights V between the 

hidden layer s(t) and the output layer y(t) are updated as 

vjk(t+l) = Vjk(t) + Sj(t)eok(t)a (3.9) 

where a is the learning rate, j iterates over the size of the hidden layer and k over the 

size of the output layer, Sj(t) is output of j- th neuron in the hidden layer and e0k(i) is 

error gradient of k-th neuron in the output layer. If L2 regularization is used, the equation 

changes to 

Vjk(t+1) = Vjk(t) + Sj(t)eok(t)a - Vjk(t)P (3.10) 

where /? is regularization parameter, in the following experiments its value is /3 = 1 0 - 6 . 

Regularization is used to keep weights close to zero 2. Using matrix-vector notation, the 

equation 3.10 would change to 

V(t+1) = V(t ) + s(t)e0(t)Ta - V(t)/3. (3.11) 

Next, gradients of errors are propagated from the output layer to the hidden layer 

eh(t)=dh(e0(t)TV,t), (3.12) 

where the error vector is obtained using function d^Q that is applied element-wise 

dhj(x,t) = X8j{t){\ - Sj(t)). (3.13) 

Weights U between the input layer w(t) and the hidden layer s(t) are then updated as 

Uij(t+1) = Uij(t) + Wi(t)ehj(t)a - Uij(t)P (3.14) 

2 Quick explanation of using regularization is by using Occam's razor: simper solutions should be 
preferred, and small numbers can be stored more compactly than the large ones; thus, models with small 
weights should generalize better. 
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or using matrix-vector notation as 

U ( H - l ) = U(t) + w(t)eh(t)Ta - U(t)/3. (3.15) 

Note that only one neuron is active at a given time in the input vector w(t). As can be 

seen from the equation 3.14, the weight change for neurons with zero activation is none, 

thus the computation can be speeded up by updating weights that correspond just to the 

active input neuron. The recurrent weights W are updated as 

wij(t+l) = wijit) + si(t-l)ehj(t)a - wij{t)j3 (3.16) 

or using matrix-vector notation as 

W ( H - l ) = W(t) + s(t-l)eh(t)Ta - W(i)/3 (3.17) 

3.3.1 Backpropagation Through Time 

The training algorithm presented in the previous section is further denoted as normal 

backpropagation, as the R N N is trained in the same way as normal feedforward network 

with one hidden layer, with the only exception that the state of the input layer depends 

on the state of the hidden layer from previous time step. 

However, it can be seen that such training approach is not optimal - the network tries 

to optimize prediction of the next word given the previous word and previous state of the 

hidden layer, but no effort is devoted towards actually storing in the hidden layer state 

some information that can be actually useful in the future. If the network remembers 

some long context information in the state of the hidden layer, it is so more by luck than 

by design. 

However, a simple extension of the training algorithm can ensure that the network will 

learn what information to store in the hidden layer - this is the so-called Backpropagation 

through time algorithm. The idea is simple: a recurrent neural network with one hidden 

layer which is used for N time steps can be seen as a deep feedforward network with 

N hidden layers (where the hidden layers have the same dimensionality and unfolded 

recurrent weight matrices are identical). This idea has already been described in [53], and 

is illustrated in Figure 3.2. 

Such deep feedforward network can be trained by the normal gradient descent. Errors 
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w(t-l) 

w(t-2) 

s(t-3) 

Figure 3.2: Recurrent neural network unfolded as a deep feedforward network, here 
for 3 time steps back in time. 

are propagated from the hidden layer s(t) to the hidden layer from the previous time step 

s(t—1) and the recurrent weight matrix (denoted as W in Figure 3.2) is updated. Error 

propagation is done recursively as follows (note that the algorithm requires the states of 

the hidden layer from the previous time steps to be stored): 

eh(t-T-l) = dh (eh(t-T)TW, t-r-1) . (3.18) 

The function dh is defined in equation 3.13. The unfolding can be applied for as many 

time steps as many training examples were already seen, however the error gradients 

quickly vanish as they get backpropagated in time [4] (in rare cases the errors can explode), 

so several steps of unfolding are sufficient (this is sometimes referred to as truncated 

BPTT). While for word based LMs , it seems to be sufficient to unfold network for about 

5 time steps, it is interesting to notice that this still allows the network to learn to store 
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information for more than 5 time steps. Similarly, network that is trained by normal 

backpropagation can be seen as a network trained with one unfolding step, and still as 

we will see later, even this allows the network to learn longer context patterns, such as 

4-gram information. The weights U are updated for B P T T training as 

T 

Uij(t+1) = Uij(t) + y^jwi(t-z)ehj(t-z)a - Uij(t)(3, (3.19) 
z=0 

where T is the number of steps for which the network is unfolded in time. Alternatively, 

equation 3.19 can be written as 

T 

U ( H - l ) = U(t) + w(t-z)eh(t-z)Ta - U(t)/3. (3.20) 
z=0 

It is important to note that the change of the weight matrix U is to be done in one large 

update, and not incrementally during the process of backpropagation of errors - that can 

lead to instability of the training [9]. Similarly, the recurrent weights W are updated as 

T 

wij(t+l) = wij(t) + ^si{t-z-l)ehj{t-z)a - wij(t)/3, (3.21) 

z=0 

which is equal to 

T 

W(t+1) = W(t ) + s(t-z-l)eh(t-z)Ta - W(t)/3. (3.22) 
z=0 

3.3.2 Practical Advices for the Training 

While the network can be unfolded for every processed training example, it can be seen 

that this would lead to large computational complexity - it would depend on T x W, 

where T is the number of unfolding steps and W is the number of the training words. 

However, it can be seen that if the network is unfolded and the recurrent part is trained 

only after processing several training examples, the complexity will decrease - in fact, if 

the unfolding would be done after processing all the training examples, it can be seen 

that the complexity would depend just on W. As in our experiments on-line update of 

weights did work better than batch update, it seems to be the best practice to update 

recurrent weights in mini-batches (such as after processing 10-20 training examples). This 

can effectively remove the term T. The flow of gradients in batch mode training of R N N 
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w(t) Y ( t ) 
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s(t-3) 

Y ( t - 3 ) 

Figure 3.3: Example of batch mode training. Red arrows indicate how the gradients are 
propagated through the unfolded recurrent neural network. 

is illustrated at Figure 3.3. 

For numerical stability purposes, it is good to use double precision of the real numbers 

and some regularization (in our experiments, we used either no regularization, or small L2 

penalty such as f$ = le — 6). Wi th single precision and no regularization, the training might 

not converge to a good solution. Also, it is important to realize that training of RNNs 

can be more difficult than of normal feedforward networks - the gradients propagated by 

B P T T can in some rare cases explode, that is, increase during backpropagation through 

the recurrent connections to such large values that the weights of the network get rewritten 

with meaningless values, causing the training to fail. The exploding gradient problem has 

been described in [4]. 
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A simple solution to the exploding gradient problem is to truncate values of the gradi­

ents. In my experiments, I did limit maximum size of gradients of errors that get accumu­

lated in the hidden neurons to be in a range < —15; 15 >. This greatly increases stability 

of the training, and otherwise it would not be possible to train R N N L M s successfully on 

large data sets. 

3.4 Extensions of N N L M s 

3.4.1 Vocabulary Truncation 

The original neural network language model is very computationally expensive, which 

severely limits its possible application in real world systems. Most modifications that 

aim to reduce the computational complexity attempt to overcome the huge term H x V 

that corresponds to the computation done between the hidden and output layers. This 

computational bottleneck is the same for both feedforward and for the recurrent archi­

tecture. Using reasonably large hidden layer such as H = 200 and vocabulary V = 50K, 

it would take impractically long to train models even on data sets with several million 

words. Moreover, application to speech recognition systems via n-best list rescoring would 

be many times slower than real-time. 

The simplest solution is to reduce the size of the output vocabulary V. Originally, 

Bengio merged all infrequent words into a special class that represents probability of all 

rare words [5]. The rare words within the class have probability estimated based on their 

unigram frequency. This approach has been later improved by Schwenk, who redistributed 

probabilities of rare words using n-gram model [68]. 

Note that the vocabulary truncation techniques can provide very significant speedups, 

but at a noticeable cost of accuracy. Schwenk did use in some cases as little as 2K output 

units in the neural network, and even if these correspond to the most frequent words, the 

performance degradation was significant as was later shown in [40]. 

3.4.2 Factorization of the Output Layer 

A more sophisticated approach for reducing the huge term H x V was proposed in [57], and 

a similar idea was re-discovered later by [19] and [50]. Instead of computing probability 

distribution over all words V or some reduced subset of the most frequent words, the 

probability is estimated for groups of words, and then only for words from a particular 
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s ( t - l ) c(t) 

Figure 3.4: Factorization of the output layer. 

group that we are interested in. 

The original idea can be tracked back to Goodman [25], who used classes for speeding 

up training of the maximum entropy models. Figure 3.4 illustrates this approach: first, the 

probability distribution over classes is computed. Then, a probability distribution for the 

words that belong to the specific class are computed. So instead of computing V outputs 

and doing softmax over V elements, only C + V' outputs have to be computed, and the 

softmax function is applied separately to both C and V', where C are all the classes, and 

V are all words that belong to the particular class. Thus, C is constant and V can be 

variable. 

I have proposed an algorithm that assigns words to classes based just on the unigram 

frequency of words [50]. Every word Wi from the vocabulary V is assigned to a single 

Cj. Assignment to classes is done before the training starts, and is based just on relative 

frequency of words - the approach is commonly referred to as frequency binning. This 

results in having low amount of frequent words in a single class, thus frequently V is 

small. For rare words, V' can still be huge, but rare words are processed infrequently. 

This approach is much simpler than the previously proposed ones such as using Wordnet 

for obtaining the classes [57], or learning hierarchical representations of the vocabulary [54]. 

As we will see in the next chapter, the degradation of accuracy of models that comes from 

using classes and the frequency binning approach is small. 

Following the notation from section 3.2, the computation between the hidden and the 
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output layer changes to computation between the hidden and the class layer: 

(t)=g\ X (3.23) 

and the hidden layer and a subset of the output layer: 

(3.24) 

The probability of word w(t + 1) is then computed as 

P(wt+Mt)) = P(ci\a(t))P(wi\ci,a(t)) (3.25) 

where Wi is an index of the predicted word and Cj is its class. During training, the weights 

are accessed in the same way as during the forward pass, thus the gradient of the error 

vector is computed for the word part and for the class part, and then is backpropagated 

back to the hidden layer, where gradients are added together. Thus, the hidden layer is 

trained to predict both the distribution over the words and over the classes. 

A n alternative to simple frequency binning is a slightly modified approach, that min­

imizes access to words and classes: instead of using frequencies of words for the equal 

binning algorithm, one can apply square root function on the original frequencies, and 

perform the binning on these modified frequencies. This approach leads to even larger 

Factorization of the computation between the hidden and output layers using simple 

classes can easily lead to 15 - 30 times speed-up against a fair baseline, and for the net­

works with huge output layers (more then 100K words), the speedup may be even an order 

of magnitude larger. Thus, this speedup trick is essential for achieving reasonable perfor­

mance on larger data sets. Additional techniques for reducing computational complexity 

will be discussed in more detail in Chapter 6. 

3Thanks to Dan Povey who suggested this modification. 

speed-up3. 
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3.4.3 Approximation of Complex Language Mode l by Backoff N-gram 

model 

In [15], we have shown that N N L M can be partly approximated by a finite state machine. 

The conversion is done by sampling words from the probability distribution computed by 

N N L M , and a common N-gram model is afterwards trained on the sampled text data. 

For infinite amount of sampled data and infinite order N , this approximation technique 

is guaranteed to converge to an equivalent model to the one that was used for generating 

the words. 

Of course, this is not achievable in practice, as it is not possible to generate infinite 

amounts of data. However we have shown that even for manageable amounts of sampled 

data (hundreds of million words), the approximated model provides some of the improve­

ment over baseline n-gram model that is provided by the full N N L M . Note that this 

approach is not limited just to N N L M s or R N N L M s , but can be used to convert any com­

plex model to a finite state representation. However, following the motivation examples 

that were shown in the introductory chapter, representing certain patterns using FSMs 

is quite impractical, thus we believe this technique can be the most useful for tasks with 

limited amount of the training data, where size of models is not so restrictive. 

Important advantage of this approach include possibility of using the approximated 

model directly during decoding, for the standard lattice rescoring, etc. It is even possible 

to use the (R) N N L M s for speech recognition without actually having a single line of neural 

net code in the system, as the complex patterns learned by neural net are represented as a 

list of possible combinations in the n-gram model. The sampling approach is thus giving 

the best possible speedup for the test phase, by trading the computational complexity for 

the space complexity. 

Empirical results obtained by using this technique for approximating R N N L M s in 

speech recognition systems are described in [15] and [38], which is a joint work with 

Anoop Deoras and Stefan Kombrink. 

3.4.4 Dynamic Evaluation of the Mode l 

From the artificial intelligence point of view, the usual statistical language models have 

another drawback besides their inability to represent longer term patterns: the impossibil­

ity to learn new information. This is caused by the fact that L M s are commonly assumed 

to be static - the parameters of the models do not change during processing of the data. 
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While R N N models can overcome this disadvantage to some degree by remembering some 

information in the hidden layer, due to the vanishing gradient problem it is not possible to 

train RNNs to do so using normal gradient based training. Moreover, even if the training 

algorithm was powerful enough to discover longer term patterns, it would be inefficient to 

store all new information (such as new names of people) in the state of the hidden layer, 

and access and update this information at every time step. 

The simplest way to overcome this problem is to use dynamic models, which has been 

already proposed by Jelinek in [32]. In the case of n-gram models, we can simply train 

another n-gram model during processing of the test data based on the recent history, and 

interpolate it with the static one - such dynamic model is usually called cache model. 

Another approach is to maintain just a single model, and update its parameters online 

during processing of the test data. This can be easily achieved using neural network 

models. 

The disadvantages of using dynamically updated models are that the computational 

complexity of the test phase increases, as we need to perform not only the forward pass, 

but also calculate gradients and propagate them backwards through the network, and 

change weights. More seriously, a network that is presented ambiguous data continually 

for significant amount of time steps might forget older information - it can rewrite its own 

weights with meaningless information. After the test data switches back to normal data, 

the network cannot access the forgotten information anymore. This would not happen 

with the n-gram models, since these access parameters very sparsely. Neural net models 

share information among all words, thus it is easier to corrupt them. 

The dynamic evaluation of the N N language models has been described in my recent 

work [49] [50], and is achieved by training the R N N model during processing of the test 

data, with a fixed learning rate a = 0.1. Thus, the test data are processed only once, 

which is a difference to normal N N training where training data are seen several times. 

While the dynamic evaluation of the N N models leads to interesting perplexity im­

provements, especially after combination with the static model (which has the advantage 

that it cannot forget any information and cannot be corrupted by the noisy data), ap­

plication to a speech recognition system is very computationally expensive if done in the 

exact way, as several versions of the model must be kept in the memory and weights have 

to be reloaded to prevent the model to "see the future" (for example in n-best list rescor-

ing, it is needed to reload weights after processing each hypothesis from a given list). A 
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simplification to the dynamic evaluation is to retrain the N N model on the 1-best utter­

ances, instead of doing a true dynamic evaluation. Both approaches did provide similar 

improvements in our experiments. 

In [38], we have shown that adaptation of R N N models works better in some cases if 

the model is retrained separately on subsets of the test data. In the cited work, it was 

shown that for a task of meeting speech recognition, it is a good practice to adapt R N N 

LMs on every session in the test data separately. 

3.4.5 Combination of Neural Network Models 

Since the weights in the neural networks are initialized with small random numbers, every 

model converges to a somewhat different solution after the training is finished, even if 

the training data are exactly the same. By averaging outputs from several models, it is 

possible to obtain better performance - this was already observed by Schwenk [68]. 

For combining outputs from neural net models, linear interpolation is usually used. 

The probability of a word w given N models is then computed as 

where Pi{w\h) is a probability estimation of a word w in a context h given by the i-th 

model. We can obtain the individual models by simply training several R N N language 

models with different random initialization of the weights, or by training R N N models 

with different architecture. 

Actually, by recalling Algorithmic probability (equation 2.2), we should use infinite 

amount of models with all possible architectures, and instead of using equal weights of 

models in the combination, an individual model weight should be normalized by the de­

scription length of the model. Computing the description length of any non-trivial model 

is intractable 4, however we can estimate weights of the models on some validation data. 

Practical experience shows that it is the best to train as large models as possible, and to 

interpolate models with the same architecture using equal weights. 

While I did not perform experiments with combinations of neural net models with 

4Sometimes it is assumed that the description length of a model is related to the number of parameters 
in the model; however, this can be shown to be false, as clearly different parameters require different amount 
of bits to be stored, and many parameters are often redundant. Moreover, as stated earlier, many patterns 
can be described using exponentially less parameters by using computationally unrestricted model, than 
by using a limited model, such as F S M or a neural net. 

N 
(3.26) 

i=l 
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complex or random architectures (such as more hidden layers, sparse weight matrices etc.), 

it can be expected that training models with deep architectures would be very difficult by 

using stochastic gradient descent, as vast majority of final solutions are likely to converge 

to the same (or similar) local maxima. Thus, the individual solutions are likely to be very 

similar in some sense. It might be interesting to explore training techniques that would 

produce models with higher diversity, such as evolutionary techniques - although clearly, 

that would be a topic for another work. 

It is possible to think of using other combination techniques than linear averaging of 

probabilities, that can be more useful in the cases when we do not have infinite amount 

of possible models of the data. My experiments with log-linear interpolation have shown 

only minor improvements over linear interpolation, but since I tried to combine just two 

R N N models, more experiments can be done in this direction. Also, it is possible to think 

of an additional neural network that would combine the individual models in a non-linear 

way: such additional network can be again an R N N model. 

We will discuss possible gains that can be obtained by combining outputs from several 

R N N models in the next chapter. Also, results when many language modeling techniques 

are linearly combined will be presented. 
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Chapter 4 

Evaluation and Combination 

of Language Modeling Techniques 

It is very difficult, if not impossible, to compare different machine learning techniques 

just by following their theoretical description. The same holds for the numerous language 

modeling techniques: almost every one of them is well-motivated, and some of them even 

have theoretical explanation why a given technique is optimal, under certain assumptions. 

The problem is that many of such assumptions are not satisfied in practice, when real 

data are used. 

Comparison of advanced language modeling techniques is usually limited by some of 

these factors: 

• private data sets that do not allow experiments to be repeated are used 

• ad hoc preprocessing is used that favours the proposed technique, or completely 

artificial data sets are used 

• comparison to proper baseline is completely missing 

• baseline technique is not tuned for the best performance 

• in comparison, it is falsely claimed that technique X is the state of the art (where X 

is usually n-gram model) 

• possible comparison to other advanced techniques is done poorly, by citing results 

achieved on different data sets, or simply by falsely claiming that the other techniques 

are too complex 
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While for any of the previous points I would be able to provide at least several references, 

it would be better to define how the new techniques should be evaluated, so that scientific 

progress would be measurable: 

• experiments should be repeatable: public data sets should be used, or data that are 

easily accessible to the scientific community 

• techniques that aim to become a new state of the art should be compared not against 

the weakest possible baseline, but against the strongest baseline, such as combination 

of all known techniques 

• to improve repeatability, the code needed for reproducing the experiments should be 

released 

• review process for accepting papers that propose new techniques should be at least 

partially automated, when it comes to verification of the results 

While in some cases it might be difficult to satisfy all these points, it is foolish to claim 

that new state of the art has been reached, after the perplexity against 3-gram model 

drops by 2%; still, such results are still being published at the top level conferences (and 

even sometimes win awards as the best papers). 

For these reasons, I have decided to release a toolkit that can be used to train R N N 

based language models, so that the following experiments can be easily repeated. This 

toolkit is introduced and described in Appendix A . Moreover, the following experiments 

are performed on well known setups, with direct comparison to competitive techniques. 

4.1 Comparison of Different Types of Language Models 

It is very difficult to objectively compare different language modeling techniques: in prac­

tical applications, accuracy is sometimes as important as low memory usage and low 

computational complexity. Also, the comparison that can be found in the scientific papers 

is in some cases unfair, as models that aim to find different type of regularities are some­

times compared. The most obvious example would be a comparison of a long context and 

a short context model, such as comparing n-gram model to a cache-like model. 

A model that has a potential to discover information only in a few preceding words (like 

n-gram model or a class based model) will be further denoted as a "short-span model", 

while a model that has ability to represent regularities over long range of words (more 
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than a sentence) will be called a " long-span model". A n example of a long-span model is 

a cache model, or a topic model. 

Comparison of performance of a short span model (such as 4-gram L M ) against a 

combination of a short span and a long span model (such as 4-gram + cache) is very 

popular in the literature, as it leads to large improvements in perplexity. However, the 

reduction of a word error rate in speech recognition by using long-span models is usually 

quite small - as was mentioned previously, this is caused by the fact that perplexity is 

commonly evaluated while assuming perfect history, which is a false assumption as the 

history in speech recognition is typically very noisy 1. Typical examples of such experiments 

are different novel ways how to compute cache-like models. Joshua Goodman's report [24] 

is a good reference for those who are interested in more insight into criticism of typical 

language modeling research. 

To avoid these mistakes, performance of individual models is reported and compared 

to a modified Kneser-Ney smoothed 5-gram (which is basically a state-of-the-art among 

n-gram models), and further compared to a combination of a 5-gram model with a un-

igram cache model. After that, we report the results after using all models together, 

with an analysis which models are providing the most complementary information in the 

combination, and which models discover patterns that can be better discovered by other 

techniques. 

4.2 Penn Treebank Dataset 

One of the most widely used data sets for evaluating performance of the statistical language 

models is the Penn Treebank portion of the W S J corpus (denoted here as a Penn Treebank 

Corpus). It has been previously used by many researchers, with exactly the same data 

preprocessing (the same training, validation and test data and the same vocabulary limited 

to 10K words). This is quite rare in the language modeling field, and allows us to compare 

directly performances of different techniques and their combinations, as many researchers 

were kind enough to provide us their results for the following comparison. Combination 

of the models is further done by using linear interpolation - for combination of two models 

M i and M 2 this means 

PMl2(w\h) = XPMl(w\h) + (1 - X)PM2(w\h) (4.1) 
1Thanks to Dietrich Klakow for pointing this out. 
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where A is the interpolation weight of the model M\. As long as both models produce 

correct probability distributions and A £ < 0; 1 >, the linear interpolation produces cor­

rect probability distribution. It has been reported that log-linear interpolation of models 

can work in some cases significantly better than the linear interpolation (especially when 

combining long span and short span language models), but the log-linear interpolation 

requires renormalization of the probability distribution and is thus much more computa­

tionally expensive [35]: 

PMl2Hh) = ^jPM,Hh)Xl x PM2(w\h)X2 (4.2) 

where Z\(h) is the normalization term. Because of the normalization term, we need to 

consider the full probability distribution given by both models, while for the linear inter­

polation, it is enough to interpolate probabilities given by both models for an individual 

word. The previous equations can be easily extended to combination of more than two 

models, by having separate weight for each model. 

The Penn Treebank Corpus was divided as follows: sections 0-20 were used as the 

training data (930k tokens), sections 21-22 as the validation data (74k tokens) and sections 

23-24 as the test data (82k tokens). A l l words outside the 10K vocabulary were mapped to 

a special token (unknown word) in all P T B data sets, thus there are no Out-Of-Vocabulary 

(OOV) words. 

4.3 Performance of Individual Models 

The performance of all individual models used in the further experiments is presented in 

Table 4.1. First, we will give references and provide brief details about the individual 

models. Then we will compare performance of models, combine them together and finally 

analyze contributions of all individual models and techniques. I would also like to mention 

here that the following experiments were performed with the help of Anoop Deoras who 

reimplemented some of the advanced L M techniques that are mentioned in the comparison. 

Some of the following results are also based on the work of other researchers, as will be 

mentioned later. 
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Table 4.1: Perplexity of individual models alone and after combination with the baseline 
language models. Results are reported on the test set of the Penn Treebank corpus. 

Model Perplexity Entropy reduction 

over baseline 

individual +KN5 +KN5+cache KN5 KN5+cache 

3-gram, Good-Turing smoothing (GT3) 165.2 - - - -

5-gram, Good-Turing smoothing (GT5) 162.3 - - - -

3-gram, Kneser-Ney smoothing (KN3) 148.3 - - - -

5-gram, Kneser-Ney smoothing (KN5) 141.2 - - - -

5-gram, Kneser-Ney smoothing + cache 125.7 - - - -

PAQ8ol0t 131.1 - - - -

Maximum entropy 5-gram model 142.1 138.7 124.5 0.4% 0.2% 

Random clusterings L M 170.1 126.3 115.6 2.3% 1.7% 

Random forest L M 131.9 131.3 117.5 1.5% 1.4% 

Structured L M 146.1 125.5 114.4 2.4% 1.9% 

Within and across sentence boundary L M 116.6 110.0 108.7 5.0% 3.0% 

Log-bilinear L M 144.5 115.2 105.8 4.1% 3.6% 

Feedforward neural network L M [50] 140.2 116.7 106.6 3.8% 3.4% 

Feedforward neural network L M [40] 141.8 114.8 105.2 4.2% 3.7% 

Syntactical neural network L M 131.3 110.0 101.5 5.0% 4.4% 

Recurrent neural network L M 124.7 105.7 97.5 5.8% 5.3% 

Dynamically evaluated R N N L M 123.2 102.7 98.0 6.4% 5.1% 

Combination of static RNNLMs 102.1 95.5 89.4 7.9% 7.0% 

Combination of dynamic RNNLMs 101.0 92.9 90.0 8.5% 6.9% 

4.3.1 Backoff N-gram Models and Cache Models 

The first group of models are standard n-gram models with Good-Turing (GT) and mod­

ified Kneser-Ney smoothing (KN) [24]. The usual baseline in many papers is a trigram 

model with Good-Turing smoothing. We can see that substantial gains can be gained by 

using K N smoothing and also by using higher order n-grams (in this case, the performance 

of models with order higher than 5 did not provide any significant gains). Although the 

P T B corpus is relatively small, the difference between GT3 and KN5 models is large -

perplexity is reduced from about 165 to 141. On larger data sets, even bigger difference 

can be expected. 

We have used popular S R I L M [72] toolkit to build the n-gram models, with no count 

cutoffs. In many papers, the reported perplexity on the P T B data set is obtained by using 

models trained with count cutoffs, which leads to slight degradation of performance - KN5 
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model with default S R I L M cutoffs provides P P L 148 on the test set, while without cutoffs, 

the perplexity is 141. We also report the perplexity of the best n-gram model (KN5) when 

using unigram cache model (as implemented in the S R I L M toolkit). We have used several 

unigram cache models interpolated together, with different lengths of the cache history 

(this works like a crude approximation of cache decay, ie. words further in the history 

have lower weight). This provides us with the second baseline2. 

We are aware of the fact that unigram cache model is not state of the art among cache 

models - as reported by Goodman [24], n-gram cache models can provide in some cases 

up to twice the improvement that the simple unigram cache model provides. However 

due to the fact that we will use later more complex techniques for capturing long context 

information in the model combination, we do not consider this to be a significant weakness 

in our comparison. 

4.3.2 General Purpose Compression Program 

PAQ8ol0t is a state of the art general purpose compression program 3 developed by Ma-

honey et al. [46]. To compute perplexity of the test set using a compression program, we 

have first compressed the training set, and then the training set concatenated with the 

test set. As there are no new words occurring in the test set of the P T B corpus (all words 

outside the 10K vocabulary are rewritten as <unk>), the information that needs to be cap­

tured by a compression program is the same as when using a statistical language model 

(this is however not true in cases when the test data contains out of vocabulary words, as 

the language modeling techniques usually skip such words for likelihood evaluation). By 

subtracting the sizes of the two files, we can measure the amount of bits that were needed 

to compress the test data, after the compression program has seen the training data. We 

can compute the word-level perplexity, as we know the number of symbols in the test data, 

denoted as COUNT (the number of words and end of line symbols), and the number of 

bits B that were needed to encode them: 

P P L = 2 COUNT (4.3) 

2 In fact, performance of many techniques were reported in the past on this data set without actually 
showing the perplexity when a cache model is used. Such papers include topic models and other techniques 
that aim to capture longer context information, which can be easily captured (to some degree) by a simple 
cache model. Thus, we consider it important to show results also for the second baseline that includes 
cache, although it makes the comparison in Table 4.1 more difficult to read. 

3The benchmark can be found at http://cs.fit.edu/~mmahoney/compression/ 
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The resulting perplexity 131.1 given by P A Q is quite good, comparable to the state of the 

art backoff model combined with the cache model. This model is however not used in the 

model combination, as it would be difficult to obtain probabilities of individual words in 

the test set. Also, we do not expect this model to be complementary to the KN5+cache 

model. 

The P A Q archivers are based on a neural network without a hidden layer, thus the 

model is very similar to what is denoted in the language modeling field as a maximum 

entropy model. The main difference is that the prediction is based not only on the history 

of preceding words, but also on the history of several previous characters. In fact, there 

are several other predictors in the model, each using different context (some of them 

are specific to other types of data than text). The other interesting difference is that 

the prediction of the future data is done on a bit level, which leads to speed up as one 

does not have to normalize over all possible characters, or words. Also, the hash-based 

implementation of the neural network has been a motivation for our model that will be 

introduced in Chapter 6. 

4.3.3 Advanced Language Model ing Techniques 

The second group of models in Table 4.1 represents popular advanced L M techniques. 

Maximum entropy models [64] allow easy integration of any information source in the 

probabilistic model. In our study, we have used a model with up to 5-gram features. The 

results were obtained by using S R I L M extension for training M E models, with the default 

L I and L2 regularization parameters described in [2]. The observed improvement over 

baseline KN5 model is rather modest, it can be seen that the M E model with just n-gram 

features works about the same as the n-gram model with the best smoothing. It can be 

expected that better results can be obtained by having more features in the model, like 

triggers or class features. 

Random clustering L M is a class based model described in [20]. This model has been 

reimplemented for our experiments by Anoop Deoras. We used just simple classes for this 

model, but the performance after interpolation with the baseline n-gram model is about 

the same as reported by Emami. 

We used 4-gram features for the Random forest language model [78], that is a combi­

nation of several randomly grown decision trees. We are aware of several implementations 

of structured language models that were previously evaluated on the P T B dataset - in our 
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experiments, we have used the one implemented by Filimonov [23], as it has very competi­

tive performance among structured L M s (PPL 125.5). Better results were reported on this 

dataset with another structured L M - in [77], perplexity 118.4 is reported for SuperARV 

language model combined with n-gram model; however, we did not have this model for 

our experiments. 

Within and across sentence boundary L M was proposed in [56]. This model incorpo­

rates several information sources: across sentence boundary model similar to cache, skip 

n-gram model and a class based model. Across sentence boundary model works in a very 

similar way as a cache model, and the combination with the skip n-gram model and a class 

based model is thus quite similar to the combination of models reported by Goodman [24]. 

The perplexity is reduced considerably over the baseline KN5 model; although it is claimed 

in [56] that the performance of the standalone model is state of the art, we have found that 

a combination of this model with a KN5 model provides further improvement, resulting 

in P P L 110. Adding also our cache model did not improve the results significantly, only 

to P P L 108.7. This model performs the best among the non-neural network models, but 

one has to keep in mind that the model itself is a combination of several models. 

4.3.4 Neural network based models 

The third group of models in Table 4.1 consists of individual neural network language 

models with different architectures. There are two types of feedforward neural network 

models. The first type was proposed in my earlier work and learns the features and 

the final model independently while using two neural networks, both with one hidden 

layer [48] (see section 3.1). The second and more common type was originally proposed 

by Yoshua Bengio [5] - the neural network learns a linear projection of words into a low 

dimensional space together with the final model. Both feedforward architectures were 

found to have almost identical performance on the P T B setup. The latter model used in 

these experiments was implemented by Hai Son Le [40], as well as the log-bilinear model, 

which was proposed as an alternative to the neural network language models in [54]. 

Syntactical neural network language model developed by Emami has been reported 

to provide the state of the art results on the Penn Treebank Corpus in [19], and we are 

not aware of any better results published since then until our work. It is the only neural 

network architecture in our study that actually uses more features in the input layer than 

just words - the syntactical information comes from a syntactical parser, thus this model is 
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believed to have better ability to cover longer context dependencies. This work has been 

an interesting attempt to combine neural network language models and the structured 

language models, with very good results. 

The recurrent neural network language model that was described in more depth in the 

previous chapter outperforms all other types of language models on the P T B data set [50]. 

It works similar to the feedforward neural network language model, with the main differ­

ence being representation of the history. While for both feedforward and the recurrent 

architecture the history is projected into a lower dimensional space where clustering of sim­

ilar events occur, the main difference is that feedforward N N projects individual words, 

and recurrent N N performs clustering of the whole histories. This gives the recurrent 

model ability to compactly describe wider range of patterns in the data. In the exper­

iments reported in this chapter, we have used truncated B P T T and Stochastic gradient 

descent (SGD) for training the R N N models. Error gradients were computed by perform­

ing unfolding of the R N N model for 5 time steps. The B P T T learning has been already 

described in the Chapter 3.3.1. 

Figure 4.1 shows importance of propagating the gradients using B P T T for obtaining 

good performance. As it can be seen, even if the gradients are actually not propagated 

through the recurrent connections which corresponds to B P T T = 1 in the Figure 4.1, the 

performance is very good. As can be seen in the given figure, the gains obtained from 

B P T T are not the same gains as those obtained by training more models - in other words, 

B P T T discovers information that cannot be simply discovered by having large amount of 

randomly initialized models. It is important to note here that while on the P T B corpus 

the propagation of gradients might not look crucial as the difference in perplexity is about 

10%, the B P T T algorithm is neccessary for obtaining good performance on larger data 

sets, where capturing information from longer contexts becomes crucial. 

Dynamical evaluation of the language models has been proposed already by Jelinek [32], 

which resulted in the cache techniques for n-gram models. The idea has been applied to 

neural network language models and reported to provide significant improvements in our 

previous work [49]. Unlike cache models, the dynamically adapted N N L M s were reported 

to provide reductions of both perplexity and word error rate, which can be explained by 

the fact that the adaptation of neural network model is performed in continuous space, and 

can be thus much faster and smoother than adaptation of n-gram counts. This technique 

is discussed in more detail in section 3.4.4. We have applied dynamical evaluation only 
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Figure 4.1: Effect of B P T T training on Penn Corpus. B P T T = 1 corresponds to standard 
backpropagation (no unfolding of RNN) . Average over 4 models corresponds to average 
perplexity given by 4 models with different random initialization of the weights, while 
mixture of 4 models corresponds to combination of these 4 models. 

to the recurrent N N L M s , but it can be expected that the improvements would be similar 

also when applied to the feedforward N N L M s . 

4.3.5 Combinations of N N L M s 

The last group of models in Table 4.1 consists of combinations of different R N N models. 

We have used up to 20 R N N models, each trained with different random initialization of 

the weights. This technique is described in more detail in Section 3.4.5. In Figure 4.2, it is 

demonstrated how adding more R N N models into the mixture helps to reduce perplexity. 

The dynamic evaluation of a model as well as a combination of randomly initialized 

models are both general approaches that can be applied to neural network L M s with any 

architecture. However, it is the most useful to apply these techniques to the best models, 

which are in our case R N N based models. We will demonstrate this later as we will show 

that a combination of R N N models cannot be improved by adding to it a feedforward 

neural network L M . 
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Figure 4.2: Linear interpolation of R N N models trained with different random initializa­
tion of the weights. 

4.4 Comparison of Different Neural Network Architectures 

As neural network language models seem to work very well, we will describe them and 

compare their performances in more detail. As can be seen in Table 4.1, the performance 

of neural network based models with feedforward architectures is almost identical. The 

syntactical N N L M has an advantage of having more input features: it uses a syntactical 

parser to obtain part of speech tags for words in a sentence. We can observe that a signif­

icant improvement was obtained by using these additional features. On the other hand, 

application of this technique to new languages and domains might not be straightforward, 

as it relies on a syntactical parser that has to be trained on (usually) hand-annotated 

data. There has been a following work done by Emami [22], where it is shown how differ­

ent linguistic features affect results, both perplexity and word error rate. The conclusion 

of that experiments seems to be that the linguistic features improve only perplexity, but 

do not reduce the word error rate. 

Additional input features make interpretation of the results quite difficult: it can be 

seen that the P T B corpus is quite small, and thus having additional information from a 

parser that is trained on additional data (POS tags of words) can be a great boost to the 

results. However, with increased amount of the training data, such additional information 

would be probably less useful. Thus, it would be more convincing if the results obtained 
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with syntactical N N L M s would be presented on larger data sets, containing at least several 

hundreds of millions of words. 

The other way to improve accuracy of the model is to allow it to represent compactly 

larger set of patterns. By changing the topology of the network from a feedforward to 

a recurrent one, we allow the model to form a short context memory that is learned 

unsupervisedly from the data. The prediction of the next word then depends on the 

previous word and the state of the short context memory. We can thus claim that such 

model can actually cluster entire histories that are in some sense similar. This is in 

contrast to feedforward neural networks that can effectively cluster only individual words 

in the projection layer, and then it is needed to perform another step to cluster the low-

dimensional representation of several words from the history. If some pattern involves 

variable position of some word in the history, it is not possible to represent such pattern 

efficiently with a compact feedforward network, while this can be accomplished by using 

a recurrent one. 

From the empirical point of view, we can see in Table 4.1 that recurrent networks 

work both better than feedforward networks, and also better than feedforward networks 

with additional linguistic features. A question arises, if this improvement does not come 

from simply learning cache-like information from the data, as the recurrent topology ac­

tually allows this. Theoretical explanation from Bengio [4] shows that this actually can 

not happen if R N N is trained by stochastic gradient descent, as the error signal that is 

propagated through the recurrent connections converges to zero fast in most cases, thus 

it is hard to train a recurrent network to represent long term patterns that would span 

over several sentences. Table 4.1 shows empirical results, where we can see a combination 

with a cache model: we can observe that in combination with the KN5+cache model the 

recurrent network is behaving in a very similar way as the feedforward networks. Thus we 

can conclude that the improvements obtained with R N N models come from better repre­

sentation of short context information, and not from learning cache information. Overall, 

we can see 2.4% improvement in entropy when comparing the neural net with the feed­

forward achitecture (PPL 140.2) and with the recurrent achitecture (PPL 124.7). This is 

a large improvement, especially if we consider that the feedforward neural network itself 

has a very good position among studied models. 

The dynamic evaluation of the R N N model provides further improvement. While 

the perplexity reduction against the static R N N model is small, we will see in the next 
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Table 4.2: Combination of individual statically evaluated NNLMs. PPL without the model' 
means perplexity of the combination of all models without the particular model. Weights 
are tuned for the best performance on the validation set. 

Model Weight Model PPL PPL without the model 

Log-bilinear L M 0.163 144.5 107.4 

Feedforward N N L M 0.124 140.2 106.7 

Syntactical N N L M 0.306 131.3 110.9 

Recurrent N N L M 0.406 124.7 113.2 

A L L 1 105.8 -

section that the dynamically evaluated models are complementary to the static models -

their interpolation provides interesting improvements. A closer analysis shows that the 

performance improvement that is obtained from a dynamically evaluated R N N model is 

lower after the model is interpolated with a baseline KN5+cache model. The explanation 

is that the dynamically evaluated model incorporates information from the test data into 

the model, and thus it can capture long context information in a similar way as a cache 

model. The small degradation of performance can be explained by the fact that R N N 

model can also forget some information as it gets updated on-line during processing the 

test data. 

The last type of neural network models in the comparison are combinations of R N N 

language models. These are obtained by linearly interpolating probability distributions 

from several neural network language models with different initialization of the weight 

matrices - a similar idea is used for constructing random forests from individual decision 

trees. Typically, 4-5 models are enough to obtain most of the achievable improvement. 

In our experiments, as we are interested in the best achievable results, we have used a 

combination of 20 models that performed the best on the validation set. The configuration 

of these models was: 200-400 hidden units, B P T T steps 5-10, the starting learning rate 

0.1 and default regularization, as was mentioned in the previous chapter4. 

To verify the conclusion that R N N based models are performing the best among neural 

network based language models, we have combined all individual N N models with different 

architectures. Table 4.2 shows resulting perplexity and the optimal weight of each model 

4Actually we have found that L2 regularization can improve the results very slightly, but the models 
trained with a regularization seem to be less complementary in the combination than the models trained 
without regularization. The disadvantage of not using any regularization is in a possible numerical insta­
bility of the training, thus we typically use small L2 penalty that is not further tuned. 
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Table 4.3: Combination of individual static NNLMs and one dynamically evaluated 
RNNLM. 

Model Weight Model PPL PPL without the model 

Log-bilinear L M 0.125 144.5 101.1 

Feedforward N N L M 0.086 140.2 100.6 

Syntactical N N L M 0.257 131.3 103.8 

Static RNNLM 0.207 124.7 101.6 

Dynamic RNNLM 0.325 123.2 105.8 

A L L 1 100.2 -

Table 4.4: Combination of all types of NN language models. 

Model Weight Model PPL PPL without the model 

Log-bilinear L M 0.023 144.5 93.2 

Feedforward N N L M 0.010 140.2 93.2 

Syntactical N N L M 0.140 131.3 94.2 

Combination of static RNNLMs 0.385 124.7 95.5 

Combination of dynamic RNNLMs 0.442 123.2 99.4 

A L L 1 93.2 -

in the combination. We can conclude that model with the recurrent architecture has the 

highest weight and the lowest individual perplexity, and thus is the most successful one 

for this particular data set. It should be noted that both feedforward and the recurrent 

N N L M s were carefully tuned for the maximal performance. Also, we can see that discard­

ing the R N N model from the combination hurts the most, with degradation of perplexity 

from 105.8 to 113.2. The second most important model is the syntactical N N L M , which 

provides complementary information as it uses additional features. 

As stated before, the dynamic models provide complementary information to the stat­

ically evaluated ones. It can be observed in Table 4.3 that after adding a dynamically 

evaluated R N N L M , the final perplexity goes down from 105.8 to 100.2. It is important 

to note that the dynamic R N N in this comparison is the same same R N N model as the 

static one, and the only difference is that it is being trained as the test data are processed. 

Moreover, to show that the improvement provided by dynamic evaluation is not caused 

by simply having more models in the mixture, we have combined all N N models including 

the statically and dynamically evaluated combinations of the 20 R N N models. Results in 

Table 4.4 prove that dynamic evaluation provides complementary information. 
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Table 4.5: Results on Penn Treebank corpus (evaluation set) after combining all models. 
The weight of each model is tuned to minimize perplexity of the final combination. 

Model Weight Model PPL 

3-gram, Good-Turing smoothing (GT3) 0 165.2 

5-gram, Kneser-Ney smoothing (KN5) 0 141.2 

5-gram, Kneser-Ney smoothing + cache 0.079 125.7 

Maximum entropy 5-gram model 0 142.1 

Random clusterings L M 0 170.1 

Random forest L M 0.106 131.9 

Structured L M 0.020 146.1 

Across sentence L M 0.084 116.6 

Log-bilinear L M 0 144.5 

Feedforward neural network L M [50] 0 140.2 

Feedforward neural network L M [40] 0 141.8 

Syntactical neural network L M 0.083 131.3 

Combination of static RNNLMs 0.323 102.1 

Combination of dynamic RNNLMs 0.306 101.0 

A L L 1 83.5 

4.5 Combination of all models 

The most interesting experiment is to combine all language models together: based on 

that, we can see which models can truly provide useful information in the state of the art 

combination, and which models are redundant. It should be stated from the beginning 

that we do not compare computational complexity or memory requirements of different 

models, as we are only interested in achieving the best accuracy. Also, the conclusions 

about accuracies of individual models and their weights should not be interpreted as that 

the models that provide no complementary information are useless - further research can 

prove otherwise. 

Table 4.5 shows weights of all studied models in the final combination, when tuned 

for the best performance on the development set. We do not need to use all techniques 

to achieve optimal performance: weights of many models are very close to zero. The 

combination is dominated by the R N N models, which together have a weight of 0.629. It 

is interesting to realize that some individual models can be discarded completely without 

hurting the performance at all. On the other hand, the combination technique itself is 
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Table 4.6: Results on Penn Treebank corpus (evaluation set) when models are added iter-
atively into the combination. The most contributing models are added first. 

Model PPL 

Combination of adaptive RNNLMs 101.0 

+KN5 (with cache) 90.0 

+Combination of static RNNLMs 86.2 

+Within and across sentence boundary L M 84.8 

+Random forest L M 84.0 

possibly suboptimal, as log-linear interpolation was reported to work better [35]; however, 

it would be much more difficult to perform log-linear interpolation of all models, as it 

would required to evaluate the whole probability distributions for every word in the test 

sets given by all models. 

By discarding R N N models from the combination (both statically and dynamically 

evaluated), we observe severe degradation in performance, as the perplexity raises to 92.0. 

That is still much better than the previously reported best perplexity result 107 in [19], 

but such result shows that R N N models are able to discover information that the other 

models are unable to capture. 

A potential conclusion from the above study is that different techniques actually dis­

cover the same information. For example, the random forest language model that we used 

is implicitly interpolated with a Kneser-Ney 4-gram L M . Thus, by using the random forest 

language model in the combination of all models, KN5 model automatically obtains zero 

weight, as the random forest model contains all the information from the KN5 model plus 

some additional information. 

To make this study more tractable, we have added the models into the combination in a 

greedy way: we have started with the best model, and then iteratively added a model that 

provided the largest improvement. The results are shown in Table 4.6. The most useful 

models are R N N models and the Kneser-Ney smoothed 5-gram model with a cache. The 

next model that improved the combination the most was the Within and across sentence 

boundary language model, although it provided only small improvement. After adding 

random forest L M , the perplexity goes down to 84.0, which is already almost the same as 

the combination of all techniques presented in Table 4.5. 
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Table 4.7: Results on Penn Treebank corpus (evaluation set) with different linear interpo­
lation techniques. 

Model P P L 

Static LI of all models 

Static LI of all models + dynamic RNNs with a = 0.5 

Adaptive LI of all models + dynamic RNNs with a = 0.5 

83.5 

80.5 

79.4 

4.5.1 Adaptive Linear Combination 

A l l the experiments above use fixed weights of models in the combination, where the 

weights are estimated on the P T B validation set. We have extended the usual linear 

combination of models to a case when weights of all individual models are variable, and are 

estimated during processing of the test data. The initial distribution of weights is uniform 

(every model has the same weight), and as the test data are being processed, we compute 

optimal weights based on the performance of models on the history of the last several words 

(the objective is to minimize perplexity). In theory, the weights can be estimated using 

the whole history. However, we found that it is possible to use multiple lengths of history 

- a combination where interpolation weights are estimated using just a few preceding 

words can capture short context characteristics that can vary rapidly between individual 

sentences or paragraphs, while a combination where interpolation weights depend on the 

whole history is the most robust. 

It should be noted that an important motivation for this approach is that a combination 

of adaptive and static R N N models with fixed weights is suboptimal. When the first word 

in the test data is processed, both static and adaptive models are equal. As more data is 

processed, the adaptive model is supposed to learn new information, and thus its optimal 

weight can change. If there is a sudden change of topic in the test data, the static model 

might perform better for several sentences, while if there are repeating sentences or names 

of people, the dynamic model can work better. 

Further improvement was motivated by the observation that adaptation of R N N models 

with the learning rate a = 0.1 leads usually to the best individual results, but models in 

combination are more complementary if some are processed with larger learning rate. The 

results are summarized in Table 4.7. Overall, the adaptive learning rate provides small 

improvement, and has an interesting advantage: it does not require any validation data 

for tuning the weights of individual models. 
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4.6 Conclusion of the Mode l Combination Experiments 

We have achieved a new state of the art results on the well-known Penn Treebank Corpus, 

as we reduced the perplexity from the baseline 141.2 to 83.5 by combining many advanced 

language modeling techniques. Perplexity was further reduced to 79.4 by using adaptive 

linear interpolation of models and by using larger learning rate for dynamic R N N models. 

These experiments were already described in [51]. 

In the subsequent experiments, we were able to obtain perplexity 78.8 by using 

in the model combination also R N N M E models that will be described in the Chapter 6. 

This corresponds to 11.8% reduction of entropy over 5-gram model with modified 

Kneser-Ney smoothing and no count cutoffs - this is more than twice more entropy 

reduction than the best previously published result on the Penn Treebank data set. 

It is quite important and interesting to realize that we can actually rely just on a 

few techniques to reach near-optimal performance. Combination of R N N L M s and KN5 

model with a cache is very simple and straightforward. A l l these techniques are purely 

data driven, with no need for extra domain knowledge. This is in contrast to techniques 

that rely for example on syntactical parsers, which require human-annotated data. Thus, 

my conclusion for the experiments with the Penn Treebank corpus is that techniques that 

focus on the modeling outperform techniques that focus on the features and attempt to 

incorporate knowledge provided by human experts. This might suggest that the task of 

learning the language should focus more on the learning itself, than on hand-designing 

features and complex models by linguists. I believe that systems that rely on the extra 

information provided by humans may be useful in the short term perspective, but from 

the long term one, the machine learning algorithms will improve and overcome the rule 

based systems, as there is a great availability of unstructured data. Just by looking at 

the evolution of the speech recognition field, it is possible to observe this drift towards 

statistical learning. Interestingly, also the research scientists from big companies such as 

Google claim that systems without special linguistic features work if not the same, then 

even better [58]. 
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Chapter 5 

Wall Street Journal Experiments 

Another important data set frequently used by the speech recognition community for 

research purposes is the Wall Street Journal speech recognition task. In the following 

experiments, we aim to: 

• show full potential of R N N L M s on moderately sized task, where speech recognition 

errors are mainly caused by the language model (as opposed to acoustically noisy 

tasks where it would be more important to work on the acoustic models) 

• show performance of R N N L M s with increasing amount of the training data 

• provide comparison to other advanced language modeling techniques in terms of 

word error rate 

• describe experiments with open source speech recognition toolkit Kaldi that can be 

reproduced 

5.1 W S J - J H U Setup Description 

The experiments in this section were performed with data set that was kindly shared 

with us by researchers from Johns Hopkins university. We report results after rescoring 

100-best lists from D A R P A WSJ'92 and WSJ'93 data sets - the same data sets were used 

by X u [79], Filimonov [23], and in my previous work [49]. Oracle W E R of the 100-best 

lists is 6.1% for the development set and 9.5% for the evaluation set. Training data for 

the language model are the same as used by X u [79]. The training corpus consists of 37M 

words from N Y T section of English Gigaword. The hyper-parameters for all R N N models 
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were: 400 classes, hidden layer size up to 800 neurons. Other hyper-parameters such as 

interpolation weights were tuned on the WSJ'92 set (333 sentences), and the WSJ'93 set 

used for evaluation consists of 465 sentences. 

Note that this setup is very simple as the acoustic models that were used to generate 

n-best lists for this task were not the state of the art. Also, the corresponding language 

models used in the previous research were trained just on limited amount of the training 

data (37M-70M words), although by using more training data that are easily affordable 

for this task, better performance can be expected. The same holds for the vocabulary - a 

20K word list was used, although it would be simple to use more. Thus, the experiments 

on this setup are not supposed to beat the state of the art, but to allow comparison to 

other L M techniques and to provide more insight into the performance of the R N N LMs. 

5.1.1 Results on the J H U Setup 

Results with R N N models and competitive techniques are summarized in Table 5.1. The 

best R N N models have very high optimal weight when combined with KN5 baseline model, 

and actually by discarding the n-gram model completely, the results are not significantly 

affected. Interpolation of three R N N models gives the best results - the word error rate 

is reduced relatively by about 20%. Other techniques, such as discriminatively trained 

language model and joint L M (structured model) provide smaller improvements, only 

about 2-3% reduction of W E R on the evaluation set. 

The adapted R N N model is not evaluated as a dynamic R N N L M described in the 

previous chapters, but simply a static model that is re-trained on the 1-best lists. This was 

done due to performance issues; it becomes relatively slow to work with R N N models that 

are continuously updated, especially in the n-best list rescoring framework. Adaptation 

itself provides relatively small improvement, especially with the large models. 

5.1.2 Performance with Increasing Size of the Training Data 

It was observed by Joshua Goodman that with increasing amount of the training data, 

improvements provided by many advanced language modeling techniques vanish, with 

a possible conclusion that it might be sufficient to train basic n-gram models on huge 

amounts of data to obtain good performance [24]. This is sometimes interpreted as an 

argument against language modeling research; however, as was mentioned in the introduc­

tion of this thesis, simple counting of words in different contexts is far from being close 
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Table 5.1: Comparison of advanced language modeling techniques on the WSJ task (37M 
training tokens). 

Model Dev WER[%] Eval WER[%] 

Baseline - K N 5 12.2 17.2 

Discriminative L M [79] 11.5 16.9 

Joint L M [23] - 16.7 

Static R N N 10.3 14.5 

Static R N N + K N 10.2 14.5 

Adapted R N N 9.7 14.2 

Adapted R N N + K N 9.7 14.2 

3 interpolated R N N L M s 9.5 13.9 

Table 5.2: Comparison of results on the WSJ dev set (JHU setup) obtained with models 
trained on different amount of the data. 

# words P P L W E R Improvement [%] 

KN5 + R N N KN5 + R N N Entropy W E R 

223K 415 333 - - 3.7 -

675K 390 298 15.6 13.9 4.5 10.9 

2233K 331 251 14.9 12.9 4.8 13.4 

6.4M 283 200 13.6 11.7 6.1 14.0 

37M 212 133 12.2 10.2 8.7 16.4 

to the way humans process natural language. I believe that advanced techniques exist 

that are able to model richer set of patterns in the language, and these should be actu­

ally getting increasingly better than n-grams with more training data. Thus, I performed 

experiments to check if R N N L M s behave in this way. 

Results with increasingly large subset of the training data for the W S J - J H U task 

are shown in Table 5.2. Both relative entropy reductions and relative word error rate 

reductions are increasing with more training data. This is a very optimistic result, and 

it confirms that the original motivation for using neural net language models was correct: 

by using distributed representation of the history instead of the sparse coding, the neural 

net models can represent certain patterns in the language more efficiently than the n-gram 

models. The same results are also shown at Figure 5.1, where it is easier to see the trend. 
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Figure 5.1: Improvements with increasing amount of training data - W S J (JHU setup). 
Note that size of the hidden layer is tuned for the optimal performance, and increases with 
the amount of the training data. 

5.1.3 Conclusion of W S J Experiments ( J H U setup) 

The possible improvements increase with more training data on this particular setup. This 

is a very positive result; the drawback is that with increased amount of the training data, 

such as billions of words, the computational complexity of R N N models is prohibitively 

large. However, we dealt with the computational complexity in the previous chapter, and 

it should be doable to train good R N N models even on data sets with more than a billion 

words by using the class-based R N N M E architecture. 

Similarly to the experiments with the Penn Treebank Corpus, I tried to achieve the 

lowest possible perplexity. However, this time just two R N N L M s were used, and the 

combination of models did include just static R N N LMs, dynamic R N N L M s (with a 

single learning rate a = 0.1) and a Kneser-Ney smoothed 5-gram model with a cache. 

Good-Turing smoothed trigram has perplexity 246 on the test data; the best combination 

of models had perplexity 108 - this by more than 56% lower (entropy reduction 15.0%). 

The 5-gram with modified Kneser-Ney smoothing has perplexity 212 on this task, thus 

the combined result is by 49% lower (entropy reduction 12.6%). Thus, although the 

combination experiments were much more restricted than in the case of P T B , the entropy 
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improvements actually increased - this can also be explained by the fact that the W S J - J H U 

setup is about 40x larger. 

5.2 K a l d i W S J Setup 

Additional experiments on the Wall Street Journal task were performed using n-best lists 

generated with an open source speech recognition toolkit Kaldi [60] trained on SI-84 data 

further described in [62]. The acoustic models used in the following experiments were 

based on triphones and G M M s . Several advantages of using Kaldi such as better re­

peatability of the performed experiments were already mentioned in the beginning of this 

chapter (although Kaldi is still being developed, it should be easy to repeat the following 

experiments with slightly better results, as R N N rescoring code is integrated in the Kaldi 

toolkit). Note that this setup is also not the state of the art, as with more training data 

and advanced acoustic modeling techniques, it is possible to get better baseline results. 

Rescoring experiments with R N N L M s on a state of the art setup is subject of the following 

chapter. 

I used 1000-best lists generated by Stefan Kombrink in the following experiments. The 

test sets are the same as for the J H U setup. This time I trained R N N M E models to save 

time - it is possible to achieve very good results even with tiny size of the hidden layer. For 

the M E part of the model, I used unigram, bigram, trigram and fourgram features, with 

hash size 2G parameters. The vocabulary was limited to 20K words used by the decoder. 

Training data consisted of 37M tokens, from which 1% was used as heldout data. The 

training data were shuffled to increase speed of convergence during training, however, due 

to homogeneity of the corpus, the automatic sorting technique as described in Chapter 6 

was not used. The results are summarized in Table 5.3. 

It can be seen that R N N M E models improve P P L and W E R significantly even with 

tiny size of the hidden layer, such as 10 neurons. However, for reaching top performance, it 

is useful to train models as large as possible. While training of small R N N M E models (such 

as with less than 100 neurons in the hidden layer) takes around several hours, training the 

largest models takes a few days. After combining all R N N M E models, the performance 

still improves; however, adding unsupervised adaptation resulted in rather insignificant 

improvement - note that the Eval 92 contains 333 utterances and Eval 92 only 213, thus 

there is noise in the W E R results due to small amount of test data. 
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Table 5.3: Results on the WSJ setup using Kaldi. 

Model Perplexity W E R [%] 

heldout Eval 92 Eval 92 Eval 93 

GT2 167 209 14.6 19.7 

GT3 105 147 13.0 17.6 

KN5 87 131 12.5 16.6 

KN5 (no count cutoffs) 80 122 12.0 16.6 

R N N M E - 0 90 129 12.4 17.3 

RNNME-10 81 116 11.9 16.3 

RNNME-80 70 100 10.4 14.9 

RNNME-160 65 95 10.2 14.5 

RNNME-320 62 93 9.8 14.2 

RNNME-480 59 90 10.2 13.7 

RNNME-640 59 89 9.6 14.4 

combination of R N N M E models 

+ unsupervised adaptation 

- - 9.24 

9.15 

13.23 

13.11 

Table 5.4: Sentence accuracy on the Kaldi WSJ setup. 

Model Sentence accuracy [%] 

Eval 92 Eval 93 

K N 5 (no count cutoffs) 

R N N M E combination+adaptation 

27.6 

39.9 

26.8 

36.6 

Overall, the absolute reduction of W E R is quite impressive: against 5-gram with mod­

ified Kneser-Ney smoothing with no count cutoffs, the W E R reduction is about 2.9% -

3.5%. This corresponds to relative reduction of W E R by 21% - 24%, which is the most 

likely the best result in the statistical language modeling field. As the word error rates are 

already quite low, it is interesting to check another performance metric - the number of 

correctly recognized sentences, as reported in Table 5.4. Relatively, the sentence accuracy 

increased by using R N N M E models instead of n-gram models by 37% - 45%. 

In Figure 5.2, it is shown how word error rate decreases with increasing size of the 

N-best lists. It is possible that results can be further improved by using even larger N -

best lists, such as lOK-best. However, the expected improvements are small. It would be 

67 



12.5 

Figure 5.2: W E R on Eval 92 after rescoring with increasing size of N-best list, the baseline 
is obtained with 5-gram model. 

probably more useful to either produce wider lattices to allow more diverse paths to be 

encoded in the lattice, or to use neural net language models directly during decoding. 

5.2.1 Approximation of R N N M E using n-gram models 

As was described in Section 3.4.3, it is possible to approximate complex generative lan­

guage models by sampling huge amount of data and building usual n-gram models based 

on the generated data. This can be seen as an attempt to precompute large lookup ta­

ble for likely n-gram entries. To demonstrate potential of this technique which allows 

trivial integration of R N N and R N N M E models directly into decoders, 15 billion words 

were generated from RNNME-480 model. A Good-Turing smoothed 5-gram model was 

built on top of these data, and various results are reported in Table 5.5. It should be 

noted that while using modified Kneser-Ney smoothing provides slightly better results for 

standalone models based on the generated data, the results after interpolation with the 

baseline 5-gram model are worse than if Good-Turing smoothing is used. 

Based on the results reported in Table 5.5, it is possible to obtain around 0.6% W E R 

reduction by rescoring lattices using models that were trained on additional data that 

were generated from the RNNME-480 model. However, the n-gram model based on the 
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Table 5.5: Results for models based on data sampled from RNNME-480 model (15B words). 

Model Perplexity W E R [%] 

heldout Eval 92 Eval 93 

GT3 105 13.0 17.6 

K N 5 (no count cutoffs) 80 12.0 16.6 

Approximated RNNME-480 80 11.7 16.2 

Approximated RNNME-480 + K N 5 75 11.4 16.0 

Full RNNME-480 59 10.2 13.7 

Table 5.6: Results for pruned models based on data sampled from RNNME-480 model (15B 
words). 

Model W E R [%] Number of n-grams 

Eval 92 Eval 93 

GT3 13.0 17.6 11.1M 

K N 5 (no count cutoffs) 12.0 16.6 68M 

Approximated RNNME-480 + KN5 11.4 16.0 846M 

Approximated RNNME-480 + K N 5 , pruning le-9 11.6 16.0 33M 

Approximated RNNME-480 + K N 5 , pruning le-8 12.2 16.7 9.5M 

Approximated RNNME-480 + K N 5 , pruning le-7 12.9 17.5 1.8M 

generated data is huge, and cannot be used directly in the decoder. Thus, additional 

experiments were performed with models that were pruned down in size, as reported in 

Table 5.6. Pruning was performed using S R I L M toolkit and entropy pruning technique 

described in [73]. It can be seen that even after pruning, the approximated models remain 

competitive with the baseline 5-gram model. 

Conclusion of the data sampling experiments is that it is possible to approximate 

computationally complex language models by precomputing results for frequent n-grams. 

In theory, by sampling infinite amount of data and by building n-gram models with infinite 

order, this technique can be used for converting R N N models into n-gram models without 

any loss of precision. However in practice, it seems difficult to obtain more that 20% -

30% of improvement that the original model provides. Still, even this can be interesting 

in some situations, as the approximated models can be used directly in decoders with no 

additional effort - the only thing that changes is the training data. 
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Chapter 6 

Strategies for Training Large Scale 

Neural Network Language Models 

The experiments on the Penn Treebank Corpus have shown that mixtures of recurrent 

neural networks trained by backpropagation through time provide state of the art results 

in the field of statistical language modeling. However a remaining question is, if the 

performance would be also this good with much larger amount of the training data -

the P T B corpus with about 1M training tokens can be considered as very small, because 

language models are typically trained on corpora with orders of magnitude more data. 

It is not unusual to work with huge training corpora that consist of much more than a 

billion words. While application to low resource domains (especially for new languages 

and for domains where only small amount of relevant data exists) is also a very interesting 

research problem, the most convincing results are those obtained with well tuned state of 

the art systems, which are trained on large amounts of data. 

The experiments in the previous chapter focused on obtaining the largest possible 

improvement, however some of the approaches would become computationally difficult 

to apply to large data sets. In this chapter, we briefly mention existing approaches for 

reducing the computational complexity of neural net language models (most of these ap­

proaches are also applicable to maximum entropy language models). We propose two new 

simple techniques that can be used to reduce computational complexity of the training 

and the test phases. We show that these new techniques are complementary to existing 

approaches. 

Most interestingly, we show that a standard neural network language model can be 
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trained together with a maximum entropy model, which can be seen as a part of the the 

neural network, where the input layer is directly connected to the output layer. We intro­

duce a hash-based implementation of a class-based maximum entropy model, that allows 

us to easily control the trade-off between the memory complexity, the space complexity 

and the computational complexity. 

In this chapter, we report results on the NIST RT04 Broadcast News speech recogni­

tion task. We use lattices generated from I B M Atti la decoder [71] that uses state of the art 

discriminatively trained acoustic models 1. The language models for this task are trained 

on about 400M tokens. This highly competitive setup has been used in the 2010 Speech 

Recognition with Segmental Conditional Random Fields summer workshop at Johns Hop­

kins University 2 [82]. Some of the results reported in this chapter were recently published 

in [52]. 

6.1 Mode l Description 

In this section, we will show that a maximum entropy model can be seen as a neural 

network model with no hidden layer. A maximum entropy model has the following form: 

e E £ i A i / i ( M 0 
P{w\h) = (6.1) 

V e £ i = i Kfi(h,w) 
i—lW 

where f is a set of features, A is a set of weights and h is a history. Training of maximum 

entropy model consists of learning the set of weights A. Usual features are n-grams, but it 

is easy to integrate any information source into the model, for example triggers or syntactic 

features [64]. The choice of features is usually done manually, and significantly affects the 

overall performance of the model. 

The standard neural network language model has a very similar form. The main 

difference is that the features for this model are automatically learned as a function of 

the history. Also, the usual features for the M E model are binary, while N N models use 

continuous-valued features. We can describe the N N L M as follows: 

e £ £ i A i / i ( s , ™ ) 

P{w\h) = (6.2) 
V e E j = i Kfi(s,w) 

l rrhe lattice rescoring experiments reported in this chapter were performed by Anoop Deoras at JHU 
due to the license issues of the IBM recognizer. 

2 
www. clsp.jhu.edu/workshops/archive/wslO/groups/speech-recognition-with-segmental-conditional-random-fields/ 
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where s is a state of the hidden layer. For the feedforward N N L M architecture introduced 

by Bengio et al. in [5], the state of the hidden layer depends on a projection layer, that is 

formed as a projection of iV — 1 recent words into low-dimensional space. After the model 

is trained, similar words have similar low-dimensional representations. 

Alternatively, the current state of the hidden layer can depend on the most recent 

word and the state of the hidden layer in the previous time step. Thus, the time is not 

represented explicitly. This recurrence allows the hidden layer to represent low-dimensional 

representation of the entire history (or in other words, it provides the model a short term 

memory). Such architecture is denoted as a Recurrent neural network based language 

model (RNN L M ) , and it was described in the Chapter 3. In the Chapter 4, we have shown 

that R N N L M achieves state of the art performance on the well-known Penn Treebank 

Corpus, and that it outperforms standard feedforward N N L M architectures, as well as 

many other advanced language modeling techniques. 

It is interesting to see that maximum entropy models trained with just n-gram features 

have almost the same performance as usual backoff models with modified Kneser-Ney 

smoothing, as reported in Table 4.1. On the other hand, neural network models, due to 

their ability to cluster similar words (or similar histories), outperform the state-of-the-

art backoff models. Moreover, neural net language models are complementary to backoff 

models, and further gains can be obtained by linearly interpolating them. 

We can view a maximum entropy model as neural net model with no hidden layer, 

with the input layer that represents all features being directly connected to the output 

layer. Such a model has been already described in [81], where it was shown that it can be 

trained to perform similarly to a Kneser-Ney smoothed n-gram model, although on very 

limited task due to memory complexity. 

Maximum entropy language models have been usually trained by special algorithms, 

such as generalized iterative scaling. Interestingly, we will show that a maximum entropy 

language model can be trained using the same algorithm as the neural net models - by the 

stochastic gradient descent with early stopping. This leads to very simple implementation 

of the training, and allows us to train both models jointly, as will be shown later. 
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Figure 6.1: Feedforward neural network 4-gram model (on the left) and Recurrent neural 
network language model (on the right). 

6.2 Computational Complexity 

The computational complexity of a basic neural network language model is very high for 

several reasons, and there have been many attempts to deal with almost all of them. The 

training time of N-gram feedforward neural network language model is proportional to 

IxWx((N-l)xDxH + HxV^, (6.3) 

where / is the number of the training epochs before convergence of the training is achieved, 

W is the number of tokens in the training set (in usual cases, words plus end-of-sentence 

symbols), iV is the N-gram order, D is the dimensionality of words in the low-dimensional 

space, H is size of the hidden layer and V size of the vocabulary (see Figure 6.1). The 

term (N — 1) x D is equal to the size of the projection layer. 

The recurrent neural network language model has computational complexity 

IXWX(HXH + HXV^. (6.4) 

It can be seen that for increasing order N, the complexity of the feedforward architecture 

increases linearly, while it remains constant for the recurrent one (actually, iV has no 

meaning in R N N L M ) . 

Assuming that the maximum entropy model uses feature set f with full N-gram features 

(from unigrams up to order N) and that it is trained using on-line stochastic gradient 

descent in the same way as the neural network models, its computational complexity is 

I x W x (N x v). (6.5) 
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The largest terms in the previous three equations are W, the number of the training words, 

and V, the size of the vocabulary. Typically, W can be in order of millions, and V in 

hundreds of thousands. 

6.2.1 Reduction of Training Epochs 

Training of neural net L M s is mostly performed by gradient descent with on-line update 

of weights. Usually, it is reported that 10-50 training epochs are needed to obtain con­

vergence, although there are exceptions (in [81], it is reported that thousands of epochs 

were needed). In the next section, we will show that good performance can be achieved 

while performing as few as 6-8 training epochs, if the training data are sorted by their 

complexity. 

6.2.2 Reduction of Number of Training Tokens 

In usual circumstances, backoff n-gram language models are trained on as much data as 

available. However, for common speech recognition tasks, only small subset of this data 

is in-domain. Out-of-domain data usually occupy more than 90% size of the training 

corpora, but their weight in the final model is relatively low. Thus, neural net L M s are 

usually trained only using the in-domain corpora. In [68], neural net L M s are trained 

on in-domain data plus some randomly sampled subset of the out-of-domain data that is 

randomly chosen at the start of each new training epoch. 

In a vast majority of cases nowadays, neural net L M s for L V C S R tasks are trained 

on just 5-30M tokens. Although the sampling trick can be used to claim that the neural 

network model has seen all the training data at least once, simple sampling techniques 

lead to severe performance degradation, against a model that is trained on all data - a 

more advanced sampling technique has been recently introduced in [80]. 

6.2.3 Reduction of Vocabulary Size 

It can be seen that most of the computational complexity of neural net L M in Eq. 6.3 is 

caused by the huge term HxV. For L V C S R tasks, the size of the hidden layer H is usually 

between 100 and 500 neurons, and the size of the vocabulary V is between 50k and 300k 

words. Thus, many attempts have been made to reduce the size of the vocabulary. The 

most simple technique is to compute probability distribution only for the most frequent 

S words in the neural network model, called a shortlist; the rest of the words use backoff 
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n-gram probabilities. However, it was shown in [40] that this simple technique degrades 

performance for small values of S very significantly, and even with small S such as 2000, 

the complexity induced by the H x V term is still very large. 

More successful approaches are based on Goodman's trick for speeding up maximum 

entropy models using classes [25]. Each word from the vocabulary is assigned to a single 

class, and only the probability distribution over the classes is computed first. In the 

second step, the probability distribution over words that are members of a particular class 

is computed (we know this class from the predicted word whose probability we are trying 

to estimate). As the number of classes can be very small (several hundreds), this is a 

much more effective approach than using shortlists, and the performance degradation is 

smaller. We have shown that meaningful classes can be formed very easily, by considering 

only unigram frequencies of words [50]. Similar approaches have been described in [40] 

and [57]. 

6.2.4 Reduction of Size of the Hidden Layer 

Another way to reduce H x V is to choose a small value of H. For example, in [8], H = 100 

is used when the amount of the training data is over 600M words. However, we will show 

that the small size of the hidden layer is insufficient to obtain good performance when the 

amount of training data is large, as long as the usual neural net L M architecture is used. 

In Section 6.6, a novel architecture of neural net L M is described, denoted as R N N M E 

(recurrent neural network trained jointly with maximum entropy model). It allows small 

hidden layers to be used for models that are trained on huge amounts of data, with 

very good performance (much better than what can be achieved with the traditional 

architecture). 

6.2.5 Parallelization 

Computation in artificial neural network models can be parallelized quite easily. It is 

possible to either divide the matrix times vector computation between several CPUs, or to 

process several examples at once, which allows going to matrix times matrix computation 

that can be optimized by existing libraries such as B L A S . In the context of N N LMs, 

Schwenk has reported a speedup of several times by exploiting parallelization [68]. 

It might seem that recurrent networks are much harder to parallelize, as the state of 

the hidden layer depends on the previous state. However, one can parallelize just the 
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computation between the hidden and the output layers. It is also possible to parallelize 

the computation by training from multiple positions in the training data simultaneously. 

Another approach is to divide the training data into K subsets and train a single 

neural net model on each of them separately. Then, it is needed to use all K models 

during the test phase, and average their outputs. However, neural network models profit 

from clustering of similar events, thus such an approach would lead to suboptimal results. 

Also, the test phase would be more computationally complex, as it would be needed to 

evaluate K models, instead of one. 

6.3 Experimental Setup 

We performed recognition on the English Broadcast News (BN) NIST RT04 task using 

state-of-the-art acoustic models trained on the English Broadcast News (BN) corpus (430 

hours of audio) provided to us by I B M [31]. The acoustic model was discriminatively 

trained on about 430 hours of HUB4 and TDT4 data, with L D A + M L L T , V T L N , f M L L R 

based SAT training, fMMI and m M M I . I B M also provided us its state-of-the-art speech 

recognizer, Att i la [71] and two Kneser-Ney smoothed backoff 4-gram L M s containing 4.7M 

n-grams and 54M n-grams, both trained on about 400M tokens. Additional details about 

the recognizer can be found in [31]. 

We followed IBM's multi-pass decoding recipe using the 4.7M n-gram L M in the first 

pass followed by rescoring using the larger 54M n-gram L M . The development data con­

sisted of DEV04f+RT03 data (25K tokens). For evaluation, we used the RT04 evaluation 

set (47K tokens). The size of the vocabulary is 82K words. 

The training corpora for language models are shown in Table 6.1. The baseline 4-gram 

model was trained using modified Kneser-Ney smoothing on all available data (about 403M 

tokens). For all the R N N models that will be described later, we have used the class-based 

architecture described in Section 3.4.2 with 400 classes. 

6.4 Automatic Data Selection and Sorting 

Usually, stochastic gradient descent is used for training neural networks. This assumes 

randomization of the order of the training data before start of each training epoch. In the 

context of N N LMs, the randomization is usually performed on the level of sentences or 

paragraphs. However, an alternative view can be taken when it comes to training deep 
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Table 6.1: Training corpora for NIST RT04 Broadcast news speech recognition task. 

Name of Corpus # of Tokens 

LDC97T22 838k 

LDC98T28 834k 

LDC2005T16 11,292k 

BN03 45,340k 

LDC98T31 159,799k 

LDC2007E02 184,484k 

A L L 402,589k 

neural network architectures, such as recurrent neural networks: we hope that the model 

will be able to find complex patterns in the data, that are based on simpler patterns. 

These simple patterns need to be learned before complex patterns can be learned. Such 

concept is usually called 'incremental learning'. In the context of simple R N N based 

language models, it has previously been investigated by Elman [18]. In the context of N N 

LMs, the incremental learning was described and formalized in [8], where it is denoted as 

Curriculum learning. 

Inspired by these approaches, we have decided to change the order of the training data, 

so that the training starts with out-of-domain data, and ends with the most important 

in-domain data. Another motivation for this approach is even simpler: if the most useful 

data are processed at the end of the training, they will have higher weights, as the update 

of parameters is done on-line and the learning rate during a training epoch is fixed. 

We divided the full training set into 560 equally-sized chunks (each containing 40K 

sentences). Next, we computed perplexity on the development data given a 2-gram model 

trained on each chunk. We sorted all chunks by their performance on the development set. 

We observed that although we use very standard L D C data, some chunks contain noisy 

data or repeating articles, resulting in high perplexity of models trained on these parts 

of the training data. In Figure 6.2, we plot the performance on the development set, as 

well as performance on the evaluation set, to show that the correlation of performance on 

different, but similar test sets is very high. 

We decided to discard the data chunks with perplexity above 600 to obtain the 

Reduced-Sorted training set, that is ordered as shown in Figure 6.2. This set contains 
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Figure 6.2: Perplexity of data chunks sorted by their performance on the development 

about 318M tokens3. In Figure 6.3, we show three variants of training the R N N L M : 

training on all concatenated training corpora with the natural order, standard stochastic 

gradient descent using all data (randomized order of sentences), and training with the 

reduced and sorted set. 

We can conclude that stochastic gradient descent helps to reduce the number of re­

quired training epochs before convergence is achieved, against training on all data with 

the natural order of sentences. However, sorting the data results in significantly lower 

final perplexity on the development set - we observe around 10% reduction of perplexity. 

In Table 6.2, we show that these improvements carry over to the evaluation set. 

6.5 Experiments with large R N N models 

The perplexity of the large 4-gram model with modified Kneser-Ney smoothing (denoted 

later as KN4) is 144 on the development set, and 140 on the evaluation set. We can see 

in Table 6.2 that R N N models with 80 neurons are still far away from this performance. 

3Training a standard n-gram model on the reduced set results in about the same perplexity as with the 
n-gram model that is trained on all data. 

data. 
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Figure 6.3: Perplexity on the development set during training of R N N models with 80 
neurons. 

In further experiments, we have used R N N models with increasing size of the hidden 

layer, trained on the Reduced-Sorted data set. We have used just 7 training epochs, as 

with sorted data, the convergence is achieved quickly (for the first three epochs, we used 

constant learning rate 0.1, and halved it at start of each new epoch). These results are 

summarized in Table 6.3. We denote R N N model with 80 neurons as RNN-80 etc. 

In Figure 6.4, we show that the performance of R N N models is strongly correlated 

with the size of the hidden layer. We needed about 320 neurons for the R N N model to 

match the performance of the baseline backoff model. However, even small models are 

Table 6.2: Perplexity on the evaluation set with differently ordered training data, for RNN 
models with various sizes of the hidden layer. 

Model Hidden layer size 

10 20 40 80 

ALL-Natura l 357 285 237 193 

ALL-Stochastic 371 297 247 204 

Reduced-Sorted 347 280 228 183 
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Table 6.3: Perplexity of models with increasing size of the hidden layer. 

Model Dev P P L Eval P P L Model 

+KN4 +KN4 

backoff 4-gram 144 144 140 140 

RNN-10 394 140 347 140 

RNN-20 311 137 280 137 

RNN-40 247 133 228 134 

RNN-80 197 126 183 127 

RNN-160 163 119 160 122 

RNN-240 148 114 149 118 

RNN-320 138 110 138 113 

RNN-480 122 103 125 107 

RNN-640 114 99 116 102 

useful when linearly interpolated with the baseline KN4 model, as shown in Table 6.3. It 

should be noted that training the models with more than 500 neurons on this data set 

becomes computationally very complex: the computational complexity of R N N model as 

given by Eq. 6.4 depends on the recurrent part of the network with complexity H x H, 

and the output part with complexity H x C + H x W, where C is the number of classes 

(in our case 400) and W is the number of words that belong to a specific class. Thus, the 

increase of complexity is quadratic with the size of the hidden layer for the first term, and 

linear for the second term. 

We rescore word lattices using an iterative decoding method previously described 

in [16], as it can be much less computationally intensive than basic N-best list rescor-

ing in some cases. As shown in Figure 6.5, R N N models perform very well for lattice 

rescoring; we can see that even the stand-alone RNN-80 model is better than the baseline 

4-gram model. As the weights of individual models are tuned on the development set, 

we have observed a small degradation for the RNN-10 model interpolated with baseline 

4-gram model. On the other hand, the RNN-640 model provides quite an impressive 

reduction of W E R , from 13.11% to 12.0%. 

By using three large R N N models and a backoff model combined together, we achieved 

the best result so far on this data set - 11.70% W E R . The model combination was carried 

out using the technique described in [14]. The models in combination were: RNN-480, 
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Figure 6.4: Entropy per word on the dev set with increasing size of the hidden layer. 

RNN-640 and RNN-640 model trained on 58M subset of the training data. 

6.6 Hash-based Implementation of Class-based Max imum 

Entropy Mode l 

We have already mentioned that maximum entropy models are very close to neural network 

models with no hidden layer. In fact, it has been previously shown that a neural network 

model with no hidden layer can learn a bigram language model [81], which is similar to 

what was shown for the maximum entropy models with n-gram features. However, in [81], 

the memory complexity for the bigram model was V2, where V is size of the vocabulary. 

For a trigram model and V around 100K, it would be infeasible to train such model, as 

the number of parameters would be (100-KT)3. 

The maximum entropy model can be seen in the context of neural network models as 

a weight matrix that directly connects the input and output layers. Direct connections 

between projection layer and the output layer were previously investigated in the context 

of N N L M s in [5], with no improvements reported on a small task. The difference in our 

work is that we directly connect the input and output layers. 
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Figure 6.5: W E R on the eval set with increasing size of the hidden layer. 

We have added the direct connections to the class-based R N N architecture. We use 

direct parameters that connect the input and output layers, and the input and class 

layers. We learn direct parameters as part of the whole network - the update of weights 

is performed on-line using stochastic gradient descent. We found that it is important 

to use regularization for learning the direct parameters on small data sets (we currently 

use L2 regularization). However, on large data sets, the regularization does not seem 

to be so important, as long as we do early stopping. Using classes also helps to avoid 

over-fitting, as the direct parameters that connect input and class layers already perform 

ad-hoc clustering. As the full set of parameters (which can be seen as feature functions 

in the M E model) is very large, hash function is used to map parameters to a hash array 

with fixed size. 

6.6.1 Training of Hash-Based M a x i m u m Entropy Mode l 

Inspiration for the hash-based implementation of maximum entropy language model was 

the work of Mahoney, who used similar model with features based on various contexts 

(such as previous word, two previous words, previous N characters etc.) to obtain state 

of the art results in compression of text data [45]. 
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Figure 6.6: Maximum entropy model with unigram features. 
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Figure 6.7: Maximum entropy model with bigram features. 

For example, assume a vocabulary V with three words, V = ( O N E , T W O , T H R E E ) . 

Figure 6.6 shows a graphical representation of a unigram maximum entropy model with 

the given vocabulary. We can see that the model has three parameters, 0 1 , 0 2 , 0 3 . The 

probability distribution P{w{t)\history) is not conditioned on any previous information, 

thus the model can be seen as a bias in a neural network model - the single input neuron 

that has always activation 1. 

Figures 6.7 and 6.8 illustrate how bigram and trigram features can be represented in a 

maximum entropy model: in a case of a bigram model, we have a matrix B that connects 

all possible previous words w{t— 1) and current words w(t). In case of a trigram model, we 

have to use all possible combinations of two previous words as inputs. Thus, the number 

of parameters for a maximum entropy model with full feature set with order iV is VN. 

It is important to see that the input word w(t — 1) in a case of the bigram model will 

cause activation of exactly one neuron at any given time, among neurons that represent 

bigram connections (if we considered also out of vocabulary words, then there might be 

even no active neuron). For the model with trigram features, the situation is the same 

- again, we will have a single neuron active. Thus, for N-gram maximum entropy model 

with a full feature set consisting of unigrams, bigrams, N-grams, there will be N active 

input neurons at any given time, if we do not consider out of vocabulary words. 

The problem with such model representation is that for higher orders and for large 

vocabularies, the VN term will become impractically large. Such full weight matrix would 

actually represent all possible combinations of iV words, and with finite amount of the 

training data, most of these combinations will never be seen. Many other features would 
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Figure 6.8: Maximum entropy model with trigram features. 

be used just once or twice. So, to reduce memory complexity of such huge weight matrix, 

we can define a hash function that will map every n-gram history to a single value in a 

hash array. A n example of a hash function for mapping trigram features into an array 

with length SIZE is 

g(w(t-2),w(t-l)) = {w{t-2)xPlxP2 + w{t-l)xPl) % SIZE, (6.6) 

where P i and P2 are some arbitrary large prime numbers and % is a modulo function. 

Then, the equation 6.1 can be written as 

P{w\h) = - (6.7) 

Mapping histories into a single dimensional array using the hash function can result in 

collisions, in cases when different histories will have the same hash value. It can be seen 

that with increasing size of the hash, the probability of collisions is decreasing. While it 

might look dangerous to use hash due to collisions, it is important to notice that if two 

or more histories are mapped to the same position, then the most frequent features will 

dominate the final value after the model is trained. Thus a model that uses small hash 

array will work similar to a pruned model. 

Training is performed using stochastic gradient descent, in the same way as training of 

the recurrent neural network model. Thus, both models can be trained and used together, 

and in fact the direct connections can be seen just as a part of the R N N model. The 

output neurons y(t) then have input connections both from the hidden layer of R N N , and 

directly from the sparsely coded input layer. 
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Table 6.4: Perplexity on the evaluation set with increasing size of hash array, for RNN 
model with 80 neurons. 

Model Hash size 

0 1 0 6 1 0 7 1 0 8 1 0 9 

RNN-80+ME 183 176 160 136 123 

RNN-80+ME + K N 4 127 126 125 118 113 

The factorization of the output layer by using classes is used for speeding up the 

maximum entropy model in the same way as it was described for the R N N model in 

section 3.4.2. The training of the M E model is performed in the same way as training of 

weights of the R N N model: the same update rules are used, and the same learning rate 

and the same regularization parameters (see section 3.3). Thus, the maximum entropy 

model is viewed just as direct connections in the R N N model between the input and the 

output layers. 

6.6.2 Results with Early Implementation of R N N M E 

In the early implementation, we used bigram and trigram features for the direct part of 

the R N N model, and we denote this architecture further as R N N M E . The following results 

were recently published in [52]. As only two features are active in the input layer at any 

given time, the computational complexity of the model increases about the same as if two 

neurons were added to the hidden layer. 

Using hash has an obvious advantage: we can easily control size of the model by tuning 

a single parameter, the size of the hash array. In Table 6.4, we show how the hash size 

affects the overall performance of the model. In the following experiments, we have used a 

hash size of 10 9, as it gives reasonable performance. As we use double precision of weights, 

the hash takes 8GB of memory. If we train just the M E part of the model (RNNME-0) 

with hash size 10 9, we obtain perplexity 157 on the evaluation set. 

The achieved perplexity of 123 on the evaluation set with RNNME-80 model is sig­

nificantly better than the baseline perplexity 140 of the KN4 model. After interpolation 

of both models, the perplexity drops further to 113. This is significantly better than the 

interpolation of RNN-80 and KN4, which gives perplexity 127. Such result already proves 

the usefulness of training the R N N model with direct parameters. 

We can see that performance improves dramatically for models with small size of the 
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hidden layer, both for their stand-alone version and even after combining them with the 

backoff model. R N N models without direct connections must sacrifice a lot of parameters 

to describe simple patterns, while in the presence of direct connections, the hidden layer 

of the neural network may focus on discovering complementary information to the direct 

connections. Comparison of improvements over the baseline n-gram model given by R N N 

and R N N M E models with increasing size of the hidden layer is provided in Figure 6.9. 

Most importantly, we have observed good performance when we used the R N N M E 

model for rescoring experiments. Reductions of word error rate on the RT04 evaluation 

set are summarized in Table 6.5. The model with direct parameters with 40 neurons in 

the hidden layer performs almost as well as model without direct parameters and with 320 

neurons. This means that we have to train only 40 2 recurrent weights, instead of 3202, to 

achieve similar W E R . 

The best result reported in Table 6.5, W E R 11.70%, was achieved by using interpola­

tion of three models: RNN-640, RNN-480 and another RNN-640 model trained on subset 

of the training data (the corpora LDC97T22, LDC98T28, LDC2005T16 and BN03 were 

used - see Table 6.1). It is likely that further combination with R N N M E models would 

yield even better results. 

6.6.3 Further Results with R N N M E 

Motivated by the success of the R N N M E architecture, I have later performed additional 

experiments with the R N N M E models. The models were improved by adding unigram 

and four-gram features, and by using larger hash array. The new results are summarized 

in Table 6.6. 

It can be seen that by using more features and more memory for the hash, the perplexity 

results improved considerably. The R N N M E - 0 with 16G features alone is better than the 

baseline backoff 4-gram model, and after their interpolation, the perplexity is reduced to 

125 from the baseline 140. Using 16G features is impractical due to memory complexity, 

thus additional experiments were performed with 8G features. By using as little as 10 

neurons in the hidden layer, we can see that the perplexity on the evaluation set was 

reduced from 137 to 127 - even after interpolation with the backoff model, the difference 

is significant (126 to 120). 

Even models with more neurons, such as RNNME-40 , improved considerably - we can 

see that by using more memory and more features, the perplexity of RNNME-40 model 
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Figure 6.9: Improvements over the K N 4 model obtained with R N N and R N N M E models 
with increasing size of the hidden layer. 

decreased from 131 to 117. The training progress of R N N , R N M M E - 4 0 with 1G hash 

and the new RNNME-40 with 8G hash is shown at Figure 6.10. Unfortunately, we were 

not able to run new lattice rescoring experiments due to graduation of Anoop Deoras and 

limitations of use of the I B M recognizer, but it can be expected that even W E R would be 

much lower with the new models with larger hash and more features. Lastly, experiments 

with even more features were performed - adding 5-gram features seems to not help, while 

adding skip-1 gram features helps a bit. 

It is also interesting to compare performance of R N N and R N N M E architectures as the 

amount of the training data increases. Wi th more training data, the optimal size of the 

hidden layer increases, as the model must have enough parameters to encode all patterns. 

In the previous chapter, it was shown that the improvements from the neural net language 

models actually increase with more training data, which is a very optimistic result. How­

ever, with more training data it is also needed to increase the size of the hidden layer -

here we show that if the hidden layer size is kept constant, the simple R N N architecture 

provides smaller improvements over baseline n-gram model as the amount of the train­

ing words increases. A very interesting empirical result is that R N N M E architecture still 
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Table 6.5: Word error rate on the RT04 evaluation set after lattice rescoring with various 
models, with and without interpolation with the baseline 4-gram model. 

Model WER[%] 

Single Interpolated 

K N 4 (baseline) 13.11 13.11 

model M - 12.49 

RNN-40 13.36 12.90 

RNN-80 12.98 12.70 

RNN-160 12.69 12.58 

RNN-320 12.38 12.31 

RNN-480 12.21 12.04 

RNN-640 12.05 12.00 

R N N M E - 0 13.21 12.99 

RNNME-40 12.42 12.37 

RNNME-80 12.35 12.22 

RNNME-160 12.17 12.16 

RNNME-320 11.91 11.90 

3xRNN - 11.70 

performs well with more data, as shown in Figure 6.11. It should be noted that models 

in these experiments were trained on subsets from the Reduced-Sorted data set, and thus 

some of the observed improvement also comes from the adaptation effect. 

Additional experiments were performed using training data with randomized order of 

sentences - this is important to remove the adaptation effect when models are trained 

on sorted data, as this time we are interested in comparison of performance of R N N and 

R N N M E models trained on large homogeneous data sets. Also, the baseline KN4 model 

does not use any count cutoffs or pruning for the following experiments. Figure 6.12 shows 

several interesting results: 

• Even the hash-based M E model with simple classes can provide significant improve­

ment over the best n-gram model, and the improvement seems to be slowly increasing 

with more data. 

• The improvements from R N N models with fixed size are still vanishing with more 
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Table 6.6: Perplexity with the new RNNME models, using more features and more memory. 

Model P P L on dev P P L on eval P P L on eval + K N 4 

K N 4-gram baseline 144 140 140 

R N N M E - 0 , 1G features 157 - -

R N N M E - 0 , 2G features 150 144 129 

R N N M E - 0 , 4G features 146 - -

R N N M E - 0 , 8G features 142 137 126 

R N N M E - 0 , 16G features 140 135 125 

RNNME-10, 8G features 133 127 120 

RNNME-20, 8G features 124 120 115 

RNNME-40, 8G features 120 117 112 

old RNNME-40 , 1G features 134 131 119 

R N N M E - 0 , 2G + skip-1 145 140 125 

R N N M E - 0 , 8G + skip-1 136 132 121 

RNNME-10, 8G + 5-gram 133 128 120 

training data. 

• Wi th more training data, performance of R N N M E models also seems to degrade, 

although more slowly than for R N N models. 

• The RNNME-20 model trained on all data is better than RNN-80 model. 

• Although this is not shown in the figure, even combination of RNN-80, M E and 

baseline KN4 models is still much worse than RNNME-80 combined with the KN4. 

On small data sets, the R N N model with small hidden layer can encode most of the 

information easily - but on large data sets, the model must use a lot of parameters to 

encode basic patterns that can be also described by normal n-grams. On the other hand, 

R N N M E architecture that uses n-gram features as part of the model focuses on discovering 

complementary information to the n-grams. Thus, training neural network together with 

some kind of n-gram model seems to be a crucial technique for successful application of 

neural net language models to very large data sets, as training models with thousands of 

hidden neurons seems to be intractable. 
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Figure 6.10: Comparison of training progress of R N N model with 40 neurons and R N N M E 
with 40 neurons (1G hash and 8G hash). Entropy is calculated on the development set. 

6.6.4 Language Learning by R N N 

Statistical language modeling has been criticized by linguists, for example by Chomsky as 

mentioned in the introduction, for inability to distinguish grammatical and ungrammatical 

sentences that are completely novel. Chomsky's famous examples were 'colorless green 

ideas sleep furiously' and 'furiously sleep ideas green colorless'. Unless we would use 

enormous amount of the training data, the n-gram models will not be able to assign 

different probability to these two sentences, although the first one is grammatical and 

thus should be more likely than the second one. 

For the following simple experiment, the language models introduced in the previous 

sections were used - namely, the RNN-640 model and the large K N 4 n-gram model trained 

on the Broadcast News data. Interestingly, the n-gram model does not contain any bigrams 

that would correspond to those found in the test sentences, thus it has to back off to 

unigram statistics for estimation of probability of every word (except the first word that 

is in the context of start of sentence symbol, and the end of sentence symbol - for these 

cases, bigram statistics were used). 

The difference in probability of the test sentences given by the n-gram model is just 

minor, as can be seen in Table 6.7. On the other hand, the RNN-640 model assigns about 

90 



-0.04 

-0.22 1 ; — ; ; — 1 ; — ; : i ; — : 

10 5 10 6 10 7 10 8 10 9 

Training tokens 

Figure 6.11: Improvements over K N 4 model obtained with RNN-20 and RNNME-20 mod­
els, as the amount of training data increases (all models including K N 5 were trained on 
subset of the Reduced-Sorted training set). Models were trained for 5 epochs. 

37000 times higher probability to the grammatical sentence. This experiment clearly 

shows that Chomsky's assumption was incorrect - even for a completely novel sentence 

where even fragments (bigrams) are novel, it is possible to use simple statistical techniques 

(without any innate knowledge of the language) to distinguish between grammatical and 

ungrammatical sentences. 

Table 6.7: Probability of Chomsky's sentences given n-gram and RNN-based language mod­
els. 

Sentence w logwP(w) Sentence w 

4-gram R N N 

colorless green ideas sleep furiously 

furiously sleep ideas green colorless 

-24.89 

-25.35 

-24.99 

-29.56 
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Figure 6.12: Improvements over KN4 model (no count cutoffs) obtained with with R N N 
and R N N M E models, as the amount of training data increases. Models were trained on 
up to 400M words, with randomized order of sentences. A l l results are reported after 
interpolation with the baseline KN4 model. 

6.7 Conclusion of the N I S T RT04 Experiments 

We have shown that neural network models, in our case with recurrent architecture, can 

provide significant improvements on state-of-the-art setup for Broadcast News speech 

recognition. The models we built are probably the largest neural network based language 

models ever trained. We have used about 400M training tokens (318M in the reduced ver­

sion). Size of the hidden layer of the largest model was 640 neurons, and the vocabulary 

size 82K words. 

We have shown that by discarding parts of the training data and by sorting them, 

we can achieve about 10% reduction of perplexity, against classical stochastic gradient 

descent. This improvement would be probably even larger for tasks where only some 

training corpora can be considered as in-domain. 

The relative word error rate reduction was almost 11%, over a large 4-gram model 

with Kneser-Ney smoothing - absolutely, we reduced W E R from 13.11% to 11.70%. We 

are aware of slightly better baseline for this setup - in [31], 13.0% W E R was reported 
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as a baseline, and 12.3% after rescoring with so-called "model M " [30] (while in our 

experiments, rescoring with model M resulted in 12.5% W E R ) . We suspect that if we used 

wider lattices, we would be able to observe further improvements in our experiments. 

We have shown that training R N N model with direct connections can lead to good 

performance both on perplexity and word error rate, even if very small hidden layers are 

used. The model RNNME-40 with only 40 neurons has achieved almost as good perfor­

mance as RNN-320 model that uses 320 neurons. We have shown that direct connections 

in N N model can be seen as a maximum entropy model, and we have also verified that it 

is important to train the R N N and M E models jointly. Roughly speaking, we can reduce 

training times from many weeks to a few days by using the novel R N N architecture. 

The presented techniques can also be easily applied to more traditional feedforward 

N N LMs . On large data sets with billions of training words, the joint training of neu­

ral network model with some kind of n-gram model seem to be necessary for obtaining 

reasonable performance. Our further experiments that will be described in the following 

chapter confirm usefulness of the R N N M E architecture also on other tasks, such as data 

compression, machine translation and sentence completion. 

Finally, in Appendix B we show text data generated from the KN4 baseline n-gram 

model and from the largest R N N model with 640 neurons. Note that both models are 

tuned to work the best on the validation data, and thus the generated data do not repeat 

just sentences seen in the training data (otherwise, it would be possible to generate very 

meaningful sentences from maximum likelihood 10-gram model, but such data would be 

very similar to those seen in the training data). Interestingly, this comparison shows how 

much better R N N models are: the generated text data are much more fluent compared 

to those generated from n-gram model, with much less disfluencies. Still, R N N model 

changes topic randomly just as the n-gram model does, but locally the generated data are 

better. 
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Chapter 7 

Additional Experiments 

As the n-gram statistical models are not specific just to the automatic speech recognition, 

I performed more experiments to show potential of the recurrent neural network based 

language models, and of the R N N M E architecture. These experiments include Machine 

Translation, text compression (which can be simply extended to general data compres­

sion), and a novel task 'Microsoft Sentence Completion Challenge'. These will be briefly 

described in this chapter, to show that R N N L M s are general technique applicable to a 

wide variety of applications and to motivate future research of these topics. 

Many of these experiments are reproducible using R N N L M toolkit (see Appendix A) . 

As this toolkit is still under development, some results might be exactly reproduced only 

with its older versions that are available on the R N N L M webpage. However, the actual 

version of the toolkit should be faster than the older versions, and thus it should be possible 

to train larger models and obtain better results than is described in this chapter. 

7.1 Machine Translation 

Automatic translation of text between languages is a very interesting application, with 

great potential - people all around the world use Internet nowadays, and not everyone 

has good knowledge of English. Also, for those who speak English, it is often difficult 

to access information on foreign web sites. Using R N N language models for M T should 

result in increased readability and more fluent output, which is a common problem with 

the current M T systems. 

I performed the following experiments while I was visiting Johns Hopkins University, 

and the baseline systems were produced by Zhifei L i and Ziyuan Wang. I did perform some 
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Table 7.1: BLEU on IWSLT 2005 Machine Translation task, Chinese to English. 

Model B L E U 

baseline (n-gram) 

300-best rescoring with RNNs 

48.7 

51.2 

Table 7.2: BLEU and NLST score on NLST MT 05 Machine Translation task, Chinese to 
English. 

Model B L E U NIST 

baseline (n-gram) 

1000-best rescoring with RNNs 

33.0 

34.7 

9.03 

9.19 

of these experiments years ago and the results remained unpublished, thus there might be 

some slight inconsistencies in the description of the tasks. Also, the models used in these 

experiments were just basic R N N models trained with the normal backpropagation of 

errors (not by B P T T ) without classes and the other tricks, which limited the experiments. 

Still, I consider the achieved results interesting and worth mentioning. 

First, the results on IWSLT 2005 Chinese to English translation task are shown in 

Table 7.1. The amount of the training data for this task was very small, about 400K 

tokens, with vocabulary size about 10K words. B L E U is a standard metric in machine 

translation; higher is better. It can be seen that R N N language models improve B L E U by 

about 2.5 points absolutely on this task, against the baseline system trained at J H U . 

Another task with more training data is NIST MT05 Chinese to English translation. 

Again, the baseline system was trained at J H U . The amount of training tokens that the 

baseline n-gram models were trained on was too high, thus the following R N N models 

were trained on a subset of about 17.5M tokens, with a vocabulary using a shortlist of 

25K words. The results are summarized in Table 7.2. Despite the fact that R N N models 

were not using full vocabulary, the amount of training data was severely limited and only 

B P training was used, the improvement is still significant - almost two points in B L E U 

score. 

Later, I performed additional experiments with R N N M E models on the M T tasks; 

although I did not run additional rescoring experiments, perplexity results with models 

trained on corpora with 31M tokens were looking even better than for the A S R tasks. 

This is caused by the nature of the typical training data for M T , which contain not only 
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words, but also additional symbols such as brackets and quotation marks. These follow 

simple patterns that cannot be described efficiently with n-gram models (such as that after 

a left bracket, a right bracket should be expected etc.). Even with a limited R N N M E -

160 model, the entropy reduction over KN5 model with no count cutoffs was about 7% -

perplexity was reduced from 110 to 80. By combining static and dynamic RNNME-160 

model, perplexity decreased further to 58. It would be not surprising if a combination 

of several larger static and dynamic R N N M E models trained on the M T corpora would 

provide perplexity reduction over 50% against the K N 5 model with no count cutoffs - it 

would be interesting to investigate this task in the future. 

7.2 Data Compression 

Compression of text files is a problem almost equivalent to statistical language modeling. 

The objective of state of the art text compressors is to predict the next character or word 

with as high probability as possible, and encode it using algorithmic coding. Decompres­

sion is then a symmetric process, where models are built while processing the decoded 

data in the same way as they were built during the compression. Thus, the objective is 

to simply maximize P(w\h). A n example of such compression approach is the state of the 

art compression program ' P A Q ' from M . Mahoney [45, 46]. 

The difference between language modeling and data compression is that the data is not 

known in advance, and has to be processed on-line. As it was described in the previous 

chapters, training of neural network models with a hidden layer requires several training 

passes over the training data for reaching the top performance. Thus, it was not clear if 

R N N L M s can be practically applied to data compression problems. 

As data compression is not topic of this thesis, I will not describe experiments in great 

detail. However, it is worth observing that it is possible to accurately estimate compression 

ratio given by R N N L M s using the R N N L M toolkit. The size of a compressed text file is 

size of (possibly also compressed) vocabulary plus entropy of the training data during the 

first training epoch (this is simply average entropy per word times number of words). 

For the further experiments, I have implemented arithmetic coding into a special ver­

sion of the R N N L M toolkit, thus the following results were obtained with real RNN-based 

data compressor. As the class based R N N architecture was used, first the class of predicted 

word is encoded using arithmetic coding, and then the specific word, as the text data are 
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Table 7.3: Size of compressed text file given by various compressors. 

Compressor Size [MB] Bits per character 

original text file 1696.7 8.0 

gzip -9 576.2 2.72 

R N N M E - 0 273.0 1.29 

PAQ8ol0t -8 272.1 1.28 

RNNME-40 263.5 1.24 

RNNME-80 258.7 1.22 

RNNME-200 256.5 1.21 

being compressed or decompressed. As the process is symmetric, it takes about the same 

time to compress or decompress a specific file. 

General data compression programs such as P A Q usually use several predictors of the 

data, and a language model based on words is just one of such predictors - others can 

use different context than the few preceding words, such as several preceding characters, 

normalized previous words, etc. As my motivation was just to show the potential of RNNs 

in data compression, I have chosen a simple task of normalized text compression. Thus, 

the only context used by RNNs are the preceding words. The data to be compressed are 

the same as those used in Chapter 6, the 'Reduced-Sorted' set. A l l words in this corpus 

are written in capital letters, and all extra characters such as diacritics were removed. 

This file was then compressed using several data compressors to allow comparison. I have 

found that by using pure R N N models, it is difficult to obtain good compression ratio and 

reasonable speed - however, the R N N M E architecture did work very well for this task, at 

reasonable speed. 

Using a large text file with a vocabulary limited to 82K words has several advantages: 

it is not needed to have special model for new words, and the vocabulary can be simply 

saved in the beginning of the compressed file, as its size is negligible in comparison to the 

compressed file size (it is less than 1 M B ) . When compressing smaller files, various tricks 

are quite important for obtaining good compression ratio; for example, using more models 

with different learning rate, or using additional features (such as skip-grams). These tricks 

were still used in the R N N M E models presented in Table 7.3, however on small data sets, 

their influence would be much bigger than advantage of using R N N , which on the other 

hand becomes important on large data sets. 
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As can be seen in Table 7.3, the usual data compression programs such as gzip do 

not work very well on text data - however, the speed of advanced compressors is orders 

of magnitude lower. Thus, the achieved results are currently more interesting from the 

research point of view, than from the practical point of view - however, with further 

progress, things may change in the future. 

Interestingly, the achieved entropy 1.21 bits per character for English text (including 

spaces and end of line symbols) is already lower than the upper bound estimate of Shannon, 

1.3 bpc [66]. It can be expected that with even more data, the entropy would still decrease 

considerably. 

7.3 Microsoft Sentence Completion Challenge 

The motivation examples in the introduction of this thesis did show that a good statistical 

language model should assign higher probability to sentences that can be assumed as usual, 

correct or meaningful, and low probability to the others. Also, it was explained that n-

gram models cannot represent patterns over longer contexts efficiently due to exponential 

increase of number of parameters with the order of the model. Thus it is an interesting 

task to compare the developed R N N language models and n-gram models on a simple 

task, where the language model is supposed to choose the most meaningful word among 

several options in a sentence with one missing word. 

Such task has been recently published in [83]. It consists of 1040 sentences where a 

single informative word is discarded, and five possible options are given. A n example: 

I have seen it on him , and could write to i t . 

I have seen it on him , and could migrate to i t . 

I have seen it on him , and could climb to i t . 

I have seen it on him , and could swear to i t . 

I have seen it on him , and could contribute to i t 

Thus, by computing the likelihood of each sentence and choosing the most likely one 

given a specific model, we can test ability of language models to "understand" patterns 

in the sentence. Note that this task is similar to the usual quality measure of language 
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Table 7.4: Accuracy of different language modeling techniques on the Microsoft Sentence 
Completion Challenge task. Human performance is 91% accuracy [83]. 

Model Perplexity Accuracy [%] 

random - 20.0 

GT3 92 36.0 

GT5 87 38.4 

K N 5 84 40.0 

RNNME-50 68 43.5 

RNNME-100 65 45.1 

RNNME-200 63 47.7 

RNNME-300 60 49.3 

models, the perplexity - with the difference that the sentence completion challenge focuses 

on the informative words that occur infrequently. Results obtained with various n-gram 

models and R N N M E models are summarized in Table 7.4. The models were trained on 

about 50M tokens using 200K vocabulary, as a link to the training data was provided 

in [83]. 

R N N M E language models perform much better that the usual n-gram models on this 

task: obviously, their ability to represent longer context patterns is very useful. While 

n-gram models perform about 20% better than is the random performance, the largest R N ­

N M E model is almost 30% better. Still, the performance is far from human performance, 

which is 91% accuracy. 

We can think of models that would focus more on the task itself - basic objective 

function for usual language models is to minimize entropy of the training data, while in 

the case of sentence completion challenge, we are more interested in capturing patterns 

between infrequent words. A simple task-specific modification can involve models that 

are trained on data where frequent words are discarded. This reduces amount of possible 

parameters of n-gram models for capturing regularities between infrequent words. In the 

following experiments, the 200 most frequent words were discarded both from the training 

and test data. 

It can be observed that n-gram models that are trained on such modified training 

data give much better accuracy. However, as a lot of possibly important information 

is discarded, the R N N M E models do not have possibility to significantly overcome the 
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Table 7.5: Additional results on the Microsoft Sentence Completion Challenge task. 

Model Accuracy [%] 

filtered KN5 

filtered RNNME-100 

47.7 

48.8 

R N N M E combination 55.4 

n-gram models. These results are summarized in Table 7.5, where models trained on 

modified training data are denoted as filtered. Combination of R N N M E models trained 

on the original and the filtered training data then provides the best result on this task so 

far, about 55% accuracy. 

As the task itself is very interesting and shows what language modeling research can 

focus on in the future, the next chapter will include some of my ideas how good test sets 

for measuring quality of language models should be created. 

7.4 Speech Recognition of Morphologically Rich Languages 

N-gram language models usually work quite well for English, but not so much for other 

languages. The reason is that for morphologically rich languages, the number of word 

units is much larger, as new words are formed easily using simple rules, by adding new 

word ending etc. Having two or more separate sources of information (such as stem and 

ending) in a single token increases amount of parameters in n-gram models that have to 

be estimated from the training data. Thus, higher order n-gram models usually do not 

give much improvement. Other problem is that for these languages, much less training 

data is usually available. 

To illustrate the problem, we have used the Penn Treebank Corpus as described in 

Chapter 4, and added two bits of random information to every token. This should increase 

perplexity of the model that is trained on these modified data by more than two bits, as 

it is not possible to revert the process (the information that certain words are similar has 

to be obtained just from the statistical similarity of occurrence). 

As the n-gram models cannot perform any clustering, it must be expected that their 

performance will degrade significantly. On the other hand, R N N models can perform clus­

tering well, thus the increase of entropy should be lower. Results with simple R N N models 

with the same architecture and K N 5 models with no discounts are shown in Table 7.6. 
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Table 7.6: Entropy on PTB with n-gram and RNN models, after adding two bits of random 
information to every token. 

Model Entropy Entropy after adding 

two bits of information 

KN5 

R N N 

7.14 

7.19 

10.13 

9.71 

Table 7.7: Word accuracy in speech recognition of Czech lectures. 

Model Word accuracy [%] 

KN4 70.7 

Open vocabulary 4-gram model 71.9 

Morphological Random Forest 72.3 

N N L M s 75.0 

While R N N models were not tuned for the best performance, it can be seen that entropy 

increased by about 2.5 bits per token, while in case of n-gram models, the increase was 

about 3 bits. This clearly shows that potential of neural net models to overcome n-gram 

techniques when modeling inflectional languages is great. 

In my early work described in [48], I used feedforward neural network language models 

for a task of speech recognition of Czech lectures. The amount of training data for this task 

was very low - only about 7M words with less than 1M words of in-domain data. Still, 

N N L M s did increase accuracy by a large margin over KN4 model. Later experiments 

performed by Ilya Oparin on this setup did show that also morphological random forest 

L M can provide improvements on this task [59]; however, less than what was achieved 

with N N LMs . Results are summarized in Table 7.71. 

1Note that the results in this table are a bit better than those published in [48], as subsequent experi­
ments with larger models did provide further small improvements. 
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Chapter 8 

Towards Intelligent Models of 

Natural Languages 

The previous chapters focused on achieving new state of the art results on several standard 

tasks with a novel type of language model based on recurrent neural network. As was 

stated in the introduction, a better statistical language model should be able to capture 

more patterns in the language, and be closer to the human performance - we can say 

that by using an advanced model, the output from systems such as machine translation 

or automatic speech recognition should look more meaningful, more intelligent. It can be 

seen in Appendix B that the data generated from n-gram and R N N language models that 

were trained on the same data are different - those generated from R N N are truly looking 

more fluent and meaningful. Still, even the text generated from the R N N model is far 

from human performance. 

In this chapter, I would like to present ideas that led me to the work on R N N LMs, and 

that can motivate further research. I believe that further progress in statistical language 

modeling can lead not only to reductions of error rates of the classical M T / A S R systems, 

but also to development of completely new systems and applications that will allow humans 

to naturally communicate with computers using natural language, much over the scope 

of traditional rule-based systems which are incapable of truly learning novel facts from 

communication and can only follow patterns predefined by human experts. 
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8.1 Machine Learning 

One possible definition of machine intelligence is ability to perform complex tasks inde­

pendently on humans. Such task can be anything; however, for simplicity we can assume 

that any task can be written in a form of a function y = /(x) that maps input vector 

x to output vector y. The input data can have many forms: observation of the real 

world, characters, words, pixels, acoustic features, etc. The outputs can be passive, such 

as classes of detected objects or sounds, or active that influence future inputs x, such as 

activation of movement of a robot, or writing text output to communicate with user of 

the system. 

Historically, the first tasks that computers performed did involve a lot of human effort 

through programming. The function / had to be written completely by a programmer. 

Some of these tasks were simply using computer memory to store and recall data; thus, 

the function / was quite trivial. Other tasks involved some degree of freedom - by writing 

a general algorithm, it was possible to use the computer to compute correct output values 

y for new input values x that were not explicitly specified by a programmer. A n example 

may be a calculator - it can add any two numbers without having to store all possible 

combinations of input and output values, which would be needed if the computer was used 

as a database. 

Wi th progress in the information theory and computer science, it became clear that 

some tasks are too difficult to be solved by a programmer directly. A n example can be 

an automatic speech recognition. While it is possible to write algorithms that take input 

values such as basic acoustic features and produce output values, for example phoneme 

strings, this task involves a lot of variability in the input data x, making it difficult to 

write general algorithms that would work well in different conditions. Further research 

resulted in learning systems that use training data to algorithmically find part of the 

function / . 

A typical example is linear projection, where the function / computes the output 

values by multiplying the input vector by a weight matrix W, where the weight matrix 

is estimated using the training data. We can see that such computer program has two 

parts: the algorithm (here, the matrix times vector computation), and the parameters 

(the matrix W). It is usual that size of W is in millions of parameters, while description 

length of the algorithm is tiny. 
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By considering popular machine learning techniques from the computational point of 

view, we can see that the principal component analysis, logistic regression and neural net­

works use small, fixed algorithms with huge amount of learnable parameters. Thus, these 

techniques are still somewhere between general learning systems and simple databases. 

Based on the experimental results described in the previous chapters, we can observe 

that by allowing the function / to learn more complex patterns, the generalization ability 

increases. Thus, neural networks with one hidden layer (with non-linear activation func­

tion) have potential to work better than logistic regression. From the computational point 

of view, we can see the non-linearity in the neural networks as the IF command: we can­

not express regularity in the data such as IF OBJECT IS SMALL AND RED, THE OBJECT 

IS APPLE without using the IF command, as weighted combination such as SMALL IS 

APPLE, RED IS APPLE would classify any small object as an apple. 

We do not have to stop with just a single non-linearity; it can be seen that some other 

patterns can require two subsequent IF commands to be expressed efficiently. It is often 

mentioned that single non-linearity in computational models is sufficient to approximate 

any function - while this is true, such approximation can collapse to the basic database 

approach; the logic in function / is then expressed in the form of large number of rules such 

as IF (X=1.05 AND Z=2.11) THEN Y=1.14. Contrary, deeper architecture can represent 

some patterns using much fewer rules, which leads to better generalization when new data 

are presented as inputs. 

A possible future work in machine learning can be to use models with more non-

linearities, such as deep neural networks that are composed of several layers of neurons 

with non-linear activation function [6]. This way, it is possible to express efficiently more 

patterns. Recurrent neural networks are another example of deep architecture. On the 

other hand, while the increased depth of the computational models increases the number of 

patterns that can be expressed efficiently, it becomes more difficult to find good solutions 

using techniques such as simple gradient descent. 

Even the deep neural network architectures are severely limited, as the number of 

hidden layers (computational steps) is defined by the programmer in advance, as a hyper-

parameter of the model. However, certain patterns cannot be described efficiently by using 

constant number of computational steps (for example any algorithm that involves loop 

with variable amount of steps, or recursive functions). Additionally, feedforward neural 

networks do not have ability to represent patterns such as memory; however, practice shows 
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that almost every non-trivial computer program uses variables to store information. While 

it can be believed that for example recurrent neural networks have ability to remember 

information and to learn what is useful to be remembered, the gradient based learning 

techniques have difficulties in finding good representations of long context patterns [4]. 

Moreover, it can be seen that the R N N computational model is much different than 

usual computer program that uses variables for storing important information: the tradi­

tional recurrent neural network has to access the whole state of the hidden layer at each 

computational step, while computer programs usually access information in the memory 

only when it is needed. 

8.2 Genetic Programming 

Since airplanes do not have to flap wings to fly, I believe A I does not have to be a faithful 

copy of the human brain to work. I suppose that problems should be solved in the simplest 

natural way. The most common way for humans to specify algorithms today is through 

programming - and typical computer programs have a structure with many non-linearities, 

and can access memory randomly, not at every computational step. 

Automatic construction of computer programs that optimize some defined fitness func­

tion (in machine learning it is called cost function) is a subject of evolutionary techniques 

such as genetic programming (GP). The basic algorithm for genetic programming involves 

the following steps: 

1. Randomly initialize population P 

2. Randomly perform an action to each member of P; the possible actions being: 

• Mutation: randomly modify description of the given member of P 

• Crossover: choose another member and replace random part of the description 

of the given member with random part of another member 

• Nothing - individual is copied to the next epoch without changes 

3. Evaluate fitness function of all members 

4. Select the best members of the population and copy them across population to form 

new generation 

5. If convergence was not achieved, go to step 2 
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There is a great variability of approaches how one can choose the size of the popula­

tion, the probabilities that certain action will be taken, the way how both crossover and 

mutation operators affect the individuals, how population in new epoch is exactly formed 

etc. It is possible to even apply genetic algorithm to this optimization process itself, to 

avoid the need to tune these constants; this is called meta-genetic programming. 

Genetic programming can be successfully applied to small problems and it was reported 

that many novel algorithms were found using these or similar approaches. However, for 

large problems, the G P seems to be very inefficient; the hope is that through the recom­

bination of solutions using the crossover operator, the G P will find basic atomic functions 

first, and these will be used later to compose more complex functions. However, it is 

sometimes mentioned that G P itself is not really guaranteed to work better than other 

simple search techniques, and clearly for difficult large problems, random search is very 

inefficient as space of possible solutions increases exponentially with the length of their 

description. 

My own attempts to train recurrent neural network language models using genetic al­

gorithms were not very promising; even on small problems, the stochastic gradient descent 

is orders of magnitude faster. However, certain problems cannot be efficiently learned by 

SGD, such as storing some information for long time periods. For toy problems, RNNs 

trained by genetic algorithms were able to easily learn patterns that otherwise cannot be 

learned by SGD (such as to store single bit of information for 100 time steps). Thus, an 

interesting direction for future research might be to combine G P and SGD. 

8.3 Incremental Learning 

The way humans naturally approach a complex problem is through its decomposition into 

smaller problems that are solved separately. Such incremental approach can be also used 

for solving many machine learning problems - even more, it might be crucial to learn com­

plex algorithms that are represented either by deep architectures, or by complex computer 

programs. It can be shown that certain complex problems can be solved exponentially 

faster, if additional supervision in the form of simpler examples is provided. 

Assume a task to find a six digit number, with a supervision giving information if 

the candidate number is correct or not. On average, we would need ^ attempts to find 

the number. However, if we can search for the number incrementally with additional 
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supervision such as one digit at a time, we would need on average only x 6 guesses. 

The situation might be just like this when we learn the language; if we first see a new 

word in various simple contexts, it is easier to guess its meaning than if it appears just 

once in a completely novel situation. 

Humans do learn incrementally, and that is not a coincidence. It seems that learning 

complex functions that are compositions of other functions is a highly non-linear problem, 

where SGD will not work and random search would take too long. Thus, part of the 

solution seems to be in using training data that would allow simple functions to be learned 

first, and also using machine learning techniques that can grow with the complexity of the 

problem. 

8.4 Proposal for Future Research 

Studying problems stated above in the context of statistical language modeling has several 

advantages - the amount of involved data can be actually pretty low compared to machine 

vision problems, and it can be easier to see what is going wrong when the machine is 

unable to learn some basic pattern in the language. A motivation example to show what 

patterns the n-gram models cannot represent efficiently is a basic memory - consider the 

following sentences: 

APPLE IS APPLE 

BALL IS BALL 

SUN IS SUN 

RED IS RED 

THIS IS THIS 

It is easy for a human to see that the pattern in such text data is actually of the form 

X Y X, where Y=IS and X is some string of characters that is repeated after occurrence of 

Y. It is simple for a human to predict the next characters in a sequence NOVEL IS . . .; 

however, n-gram models as well as finite state machines cannot be used for such task. 

Interestingly, many simple patterns cannot be represented efficiently by usual models, 

including neural networks and context free grammars. 

Thus, the most simple proposal for a research that would aim to get closer to the 

human level when it comes to language understanding by a computer, would be to first 

define incrementally more complex tasks that would involve basic patterns that humans 
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have to discover while learning a language. The second step would be to design learning 

algorithms that can learn given patterns using limited amount of resources (number of 

training examples, computational time). Simplicity of such proposal is actually an advan­

tage: importantly, after the definition of the incrementally more difficult tasks, it should 

be possible to objectively compare many different approaches and techniques developed 

by independent researchers. 

There are of course many possible modifications and extensions of this proposal that 

may be crucial for successful learning of the language using reasonable amount of resources. 

For example, it might be important to learn the language together with observing the real 

world (or simulated world) situations [10]. Also, it might be important to use an active 

system that does not just passively predict future events. Measuring success of different 

systems based on their ability to predict future events (words) might be sufficient in the 

beginning, but also can be insufficient in the long run - an AI system should probably aim 

to maximize some reward function. 

The representation of the AI system itself is another important topic: due to compu­

tational limitations, traditional neural network architectures might be insufficient. Repre­

senting A I by a Turing machine or a computer program that is automatically constructed 

during training can be a better option, although with other difficulties as discussed in [43]. 

Clearly, the deeper we go, the more questions arise - thus, my opinion is that the prob­

lem of language understanding by computers should be solved step by step, starting with 

simple problems where various techniques that can be easily compared. 
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Chapter 9 

Conclusion and Future Work 

I hope this work will help to make the statistical language modeling more attractive for 

future research. The achieved results clearly show that n-gram models can no longer be 

considered as state of the art, and that significant improvements in many applications can 

be obtained by incorporating neural network based language models. Moreover, I tried to 

show links between the language modeling, machine learning, natural language processing 

and artificial intelligence. The main conclusions of this work are: 

• Recurrent neural network language models can be successfully trained by using 

stochastic gradient descent and backpropagation through time 

• Great speedup can be achieved by using simple classes in the output layer; main 

advantage over other similar proposed techniques is simplicity 

• Comparison and combination of many advanced techniques shows that R N N lan­

guage models reach state-of-the-art performance on several setups, mainly the well-

known Penn Treebank Corpus 

• Wi th increasing amount of the training data, the potential for improvements with 

R N N L M s over n-gram models is increasing; however, it is crucial to also increase 

number of parameters in the model (mainly the hidden layer size) 

• If hidden layer size is kept constant, the potential improvements from neural network 

language models is decreasing with more training data 

• R N N L M s can be easily trained together with maximum entropy models (the R N -

N M E architecture); this seems especially useful for very large data sets - R N N M E 
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architecture should allow to obtain significant improvements even on setups with 

billions of training words 

• Results on large state-of-the-art setup for Broadcast News NIST RT04 speech recog­

nition from I B M confirm that neural net language models perform the best among 

language modeling techniques known today 

• R N N L M s are completely data driven, and do not require any annotated data; thus, 

many applications can be improved simply by replacing n-gram models with neural 

nets (data compression, machine translation, spelling correction, ...) 

There is of course still much space for future improvements. The language modeling 

techniques are usually compared based on the following properties: accuracy, speed, size 

and implementation complexity. Among these, accuracy is the most interesting one; how­

ever, also the most difficult one to improve. Future research that would aim to improve 

accuracy might be: 

• Exploring different training algorithms for recurrent neural networks [41, 47, 74] 

• Clustering of similar words in the output layer instead of the simple frequency-based 

classes 

• Adding more features to the maximum entropy model for R N N M E 

• More complex R N N model with different time scales (character-level, subword-level, 

word-level, phrase-level etc.); this would allow the model to access more easily in­

formation from the distant history [27] 

However, accuracy is often related to the computational complexity of models, as with 

more efficient algorithms, it is possible to train larger models that perform better. Also 

for some tasks, scaling training algorithms to very large data sets is necessary to compete 

with n-grams. Ideas that can lead to significant reduction of the training time are: 

• Further reduction of complexity between the hidden layer and the output layer by 

using more levels of classes [57, 55] 

• Additional study of the R N N M E architecture - it might be possible to reach similar 

results by training R N N L M together with the usual n-gram model with slowly 

increasing weight; then, adding more features might help to move certain patterns 
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from the expensive part of the model (features encoded in the hidden layer) to the 

cheap part of the model (sparse binary features at the input layer) 

• Exploration of additional features somewhere between the sparse features (n-grams) 

and the distributed features (state of the hidden layer); for example topic-dependent 

distributed features; this can also possibly lead to better accuracy and more robust­

ness against noise during the training 

• Parallelization of the implementation of the R N N L M toolkit 

• Techniques for reduction of the amount of the training data, beyond simple sampling 

or data selection based on performance - for example, frequently occurring contexts 

can be collapsed into one, to update the weights just once 

The size of the neural net language models is usually not a problem. Actually it can 

be shown that at the same level of accuracy when compared to n-gram model pruned and 

compressed with state of the art approaches, the size of R N N L M can be 10 times smaller 

(unpublished result). However, the M E model based on hash as currently implemented in 

the R N N L M toolkit is memory expensive, and should be improved in the future. 

The recurrent neural networks are more difficult to implement than the classical n-

gram techniques. It is easy to make a mistake in the training algorithm - this has been 

reported many times in research papers, and the reason is in difficult debugging (even in­

correct implementation can work meaningfully). However, correct implementation is quite 

compact, and the test phase can be implemented very trivially. Thus, once the model is 

successfully trained, it is very easy to use it. Certain applications might require limitation 

of the context, as having infinite history might seem like a disadvantage; however, this can 

be accomplished easily by either teaching the network to reset itself (having additional 

symbol for start of the sequence and erase all the activations in the hidden layer), or even 

more simply by just erasing the activations (in most cases, this does not degrade signifi­

cantly performance of R N N L M , as learning information across sentence boundary seems 

to be difficult). 

9.1 Future of Language Modeling 

Although the statistical language modeling has received much attention in the last thirty 

years, the main problems are still far from being solved. This is given by the complexity 
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of the task, as often the easiest way how to obtain good results is to choose crude but fast 

techniques, and train models on as much data as available. This strategy is however not 

getting any closer to solving the problems, rather avoiding them for as long as possible. 

For many tasks today, the amount of the available training data is so huge that further 

progress by adding another data is not very likely. 

Another reason why advanced techniques are not used in practice is importance of the 

achieved results: it is commonly known that most of the published papers report only 

negligible improvements over basic baselines. Even the best techniques rarely affect the 

word error rate of speech recognition systems by more than 10% relatively - and that is 

hardly observable difference from the user perspective. However, even small difference can 

be huge in the long term - competitions are often won by a slight margin. Also, even if 

the improvements are small and hardly observable, it is likely that in the longer term, the 

majority of users will tend to prefer the best system. 

While I see integration of neural net language models into production systems as the 

next step for the language modeling research, there is still much to do in the basic research. 

Based on the history of the language modeling research that has been often rather chaotic, 

it might be fruitful to first define a roadmap. While detailed proposal for future research 

is out of scope of this work, the main points are: 

• The involved models should be computationally much less restricted than the tradi­

tional ones; it should be clear that a compact solution to simple problems can exist 

in the model space 

• The progress should be measured on increasingly more complex tasks (for example, 

finding the most likely word in an incomplete sentence, as in [83]) 

• The tasks and the training data should be coherent and publicly available 

While such research would not be competitive with the common techniques in the 

short term, it is certain that a progress beyond models such as finite state machines is 

needed. It has been popular to claim that we need orders of magnitude more powerful 

computers, and also much more training data to make progress towards AI - I find this 

doubtful. In my opinion, what needs to be addressed is the capability of the machine 

learning techniques to efficiently discover new patterns. 
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Appendix A: RNNLM Toolkit 

To further support research of advanced language modeling techniques, I implemented and 
released open source toolkit for training recurrent neural network based language models. 
It is available at http://www.fit.vutbr.cz/~imikolov/rnnlm/. The main goals for the 
R N N L M toolkit are: 

• promotion of research of advanced language modeling techniques 

• easy usage 

• simple portable code without any dependencies on external libraries 

• computational efficiency 

Basic Functionality 

The toolkit supports several functions, mostly for the basic language modeling operations: 
training R N N L M , training hash-based maximum entropy model (ME L M ) and R N N M E 
L M . For evaluation, either perplexity can be computed on some test data, or n-best lists 
can be rescored to evaluate impact of the models on the word error rate or the B L E U score. 
Additionally, the toolkit can be used for generating random sequences of words from the 
model, which can be useful for approximating the R N N models by n-gram models, at a 
cost of memory complexity [15]. 

Training Phase 

The input data are expected to be in a simple ASCII text format, with a space between 
words and end-of-line character at the end of each sentence. After specifying the training 
data set, a vocabulary is automatically constructed, and it is saved as part of the R N N 
model file. Note that if one wants to use limited vocabulary (for example for open-
vocabulary experiments), the text data should be modified outside the toolkit, by first 
rewriting all words outside the vocabulary to <unk> or similar special token. 

After the vocabulary is learned, the training phase starts (optionally, the progress can 
be shown if -debug 2 option is used). Implicitly, it is expected that some validation data 
are provided using the option -valid, to control the number of the training epochs and the 
learning rate. However, it is also possible to train models without having any validation 
data; the option -one-iter can be used for that purpose. The model is saved after each 
completed epoch (or also after processing specified amount of words); the training process 
can be continued if interrupted. 
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Test Phase 

After the model is trained, it can be evaluated on some test data, and perplexity and 
logio probability is displayed as the result. The R N N L M toolkit was designed to provide 
results that can be compared to the results given by the popular S R I L M toolkit [72]. 
We also support an option to linearly interpolate the word probabilities given by various 
models. For both R N N L M and S R I L M , the option -debug 2 can be used to obtain verbose 
output during the test phase, and using the -lm-prob switch, the probabilities given by 
two models can be interpolated. We provide further details in the example scripts at the 
R N N L M webpage. 

For n-best list rescoring, we are usually interested in the probabilities of whole sen­
tences, that are used as scores during the re-ranking. The expected input for the R N N L M 
is a list of sentences to be scored, with a unique identifier as the first token in each hy­
pothesis. The output is a list of scores for all sentences. This mode is specified by using 
the -nbest switch. Example of n-best list input file: 
1 WE KNOW 
1 WE DO KNOW 
1 WE DONT KNOW 
2 I AM 
2 I SAY 

Typical Choice of Hyper-Parameters 

Due to huge computational complexity of neural network based language models, suc­
cessful training of models in a reasonable time can require some experience, as certain 
parameter combinations are too expensive to explore. There exist several possible sce­
narios, depending on whether one wants to optimize the accuracy of the final model, the 
speed of the training, the speed of the rescoring or the size of the models. We will briefly 
mention some useful parameter configurations. 

Options for the Best Accuracy 

To achieve the best possible accuracy, it is recommended to turn off the classes by -class 
1, and to perform training for as long as any improvement on the validation data is 
observed, using the switch -min-improvement 1. Next, the B P T T algorithm should run 
for at least 6 steps (-bptt 6). The size of the hidden layer should be as large as possible. 
It is useful to train several models with different random initialization of the weights 
(by using the -rand-seed switch) and interpolate the resulting probabilities given by all 
models as described in Section 3.4.5. 

Parameters for Average-Sized Tasks 

The above parameter choice would be very time consuming even for small data sets. 
Wi th 20-50 million of training words, it is better to sacrifice a bit of accuracy for lower 
computational complexity. The most useful option is to use the classes (-class), with 
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about sgrt(|F|) classes, where \V\ is the size of the untruncated vocabulary (typically, the 
amount of classes should be around 300-500). It should be noted that the user of the toolkit 
is required to specify just the amount of the classes, and these are found automatically 
based on unigram frequencies of words. The B P T T algorithm should run in a block mode, 
for example by using -bptt-block 10. 

The size of the hidden layer should be set to around 300-1000 units, using the -hidden 
switch. Wi th more data, larger hidden layers are needed. Also, the smaller the vocabulary 
is, the larger the hidden layer should be to ensure that the model has sufficient capacity. 
The size of the hidden layer affects the performance severely; it can be useful to train 
several models in parallel, with different sizes of the hidden layers, so that it can be 
estimated how much performance can be gained by using larger hidden layer. 

Parameters for Very Large Data Sets 

For data sets with 100-1000 million of words, it is still possible to train R N N models 
with a small hidden layer in a reasonable time. However, this choice severely degrades 
the final performance, as networks trained on large amounts of data with small hidden 
layers have insufficient capacity to store information. In our previous work, it proved to 
be very beneficial to train R N N model jointly with a maximum entropy model (which can 
be seen as a weight matrix between the input and the output layers in the original R N N 
model). We denote this architecture as R N N M E and it should be noted that it performs 
very differently than just interpolation of R N N and M E models - the main difference is 
that both models are trained jointly, so that the R N N model can focus on discovering 
complementary information to the M E model. This architecture was described in detail 
in Chapter 6. 

A hash-based implementation of M E can be enabled by specifying the amount of 
parameters that will be reserved for the hash by using the -direct switch (this option 
just increases the memory complexity, not the computational complexity) and the order 
of n-gram features for the M E model is specified by -direct-order. The computational 
complexity increases linearly with the order of the M E model, and for model with order iV 
it is about the same as for R N N model with iV hidden neurons. Typically, using M E with 
up to 4-gram features is sufficient. Due to the hash-based nature of the implementation, 
higher orders might actually degrade the performance if the size of the hash is insufficient. 
The disadvantage of the R N N M E architecture is in its high memory complexity. 

Application to A S R / M T Systems 

The toolkit can be easily used for rescoring n-best lists from any system that can produce 
lattices. The n-best lists can be extracted from the lattices for example by using the 
lattice-tool from S R I L M . A typical usage of R N N L M in an A S R system consists of 
these steps: 

• train R N N language model(s) 

• decode utterances, produce lattices 

• extract n-best lists from lattices 
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• compute sentence-level scores given by the baseline n-gram model and R N N model(s) 

• perform weighted linear interpolation of log-scores given by various L M s (the weights 
should be tuned on the development data) 

• re-rank the n-best lists using the new L M scores 

One should ensure that the input lattices are wide enough to obtain any improvements 
- this can be verified by measuring the oracle word error rate. Usually, even 20-best list 
rescoring can provide majority of the achievable improvement, at negligible computational 
complexity. On the other hand, full lattice rescoring can be performed by constructing 
full n-best lists, as each lattice contains a finite amount of unique paths. However, such 
approach is computationally complex, and a more effective approach for lattice rescoring 
with R N N L M is presented in [16], together with a freely available tool written by Anoop 
Deoras1. 

A self-contained example written by Stefan Kombrink that demonstrates R N N rescor­
ing on an average-sized Wall Street Journal A S R task using a Kaldi speech recognition 
toolkit is provided in the download section under http://rnnlm.sourceforge.net. 

Alternatively, one can approximate the R N N language model by an n-gram model. 
This can be accomplished by following these steps: 

• train R N N language model 

• generate large amount of random sentences from the R N N model 

• build n-gram model based on the random sentences 

• interpolate the approximated n-gram model with the baseline n-gram model 

• decode utterances with the new n-gram model 

This approach has the advantage that we do not need any R N N L M rescoring code in the 
system. This comes at a cost of additional memory complexity (it is needed to generate 
large amount of random sentences) and by using the approximation, in the usual cases it 
is possible to achieve only about 20%-40% of the improvement that can be achieved by 
the full R N N L M rescoring. We describe this technique in more detail in [15, 38]. 

Conclusion 

The presented toolkit for training R N N language models can be used to improve existing 
systems for speech recognition and machine translation. I have designed the toolkit to be 
simple to use and to install - it is written in simple C/C+-1- code and does not depend on 
any external libraries (such as B L A S ) . The main motivation for releasing the toolkit is to 
promote research of advanced language modeling techniques - despite significant research 
effort during the last three decades, the n-grams are still considered to be the state of the 
art technique, and I hope to change this in the future. 

I have shown in extensive experiments presented in this thesis that the R N N models 
are significantly better than n-grams for speech recognition, and that the improvements 

1 Available at http://www.clsp. jhu.edu/~adeoras/HomePage/Code_Release.html 
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are increasing with more training data. Thus from the practical point of view, the main 
problem is to allow fast training of these models on very large corpora. Despite its simple 
design, the R N N L M toolkit can be used to train very good R N N language models in a 
few days on corpora with hundreds of million of words. 
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Appendix B: Data generated from 
models trained on the Broadcast 
News data 

4-gram model (modified Kneser-Ney): 
SAYS IT'S N O T IN T H E C A R D S L E G E N D A R Y R E C O N N A I S S A N C E B Y R O L L I E 
D E M O C R A C I E S U N S U S T A I N A B L E C O U L D S T R I K E R E D L I N I N G VISITS T O P R O F I T 
B O O K I N G WAIT H E R E A T M A D I S O N S Q U A R E G A R D E N C O U N T Y C O U R T H O U S E 
W H E R E H E H A D B E E N D O N E IN T H R E E A L R E A D Y IN A N Y W A Y IN W H I C H A 
T E A C H E R O F A I D E S Y R I A N A N O T H E R I M I G H T D E B T D I A G E O S H A M E </S> 
A M E R I C A ' S K E E P I N G S T A T E A N X I E T Y P O L I C Y T H E N E N L I S T E D INTO T H E Y ' L L 
O F F I C E R W H O L E L O O K W I T H I N A T H A T ' S E V E R T O M E T E O R O L O G I S T C E ­
CILY </S> 
P R E D I S P O S E D TIPS A R E JUST B E G I N N I N G T O B R O W N A N D W E I G H T H E PROS 
O F IT W H E N T H E W A R IN HIS O W N W A Y SO F A R IN N I N E T E E N E I G H T Y F O U R 
OR F I V E M E A N S H E FINISHED H I G H W H E N C O N G R E S S M A N F I G H T S FLIES T H E 
A M E R I C A N P E O P L E W I L L W A T C H A N D SEE A W I L L F U L G O L F U P A C T O R S 
T H I R T Y T H A T ' S E X A C T L Y T H E P R O B L E M IS </S> 
V I R T U A L L Y U N R E G U L A T E D S T A N D B Y H E L I C O P T E R </S> 
W A R F A R E S E E M S T O A R K A N S A S Y O U ' R E O F A B O U T T W O H U N D R E D F O R T Y 
N I N E IS P E O P L E T R E M E N D O U S </S> 
JONES T W O O N L Y IN Y U G O S L A V I A </S> 
T W O P L U S H A S F O U N D T H A T A L O T O F P E O P L E W I T H M I G R A I N E S A R E 
T H O S E L I G H T S A K A H O N E S T S E E M A N I P U L A T E P E R S E C U T I N G B E F O R E P R E S ­
I D E N T BUSH'S S T A T E M E N T S H O U L D H A V E SAID T H A T IF S A D D A M HUSSEIN 
H A D BESHIR W I T H I N T H E M S E L V E S A V A I L A B L E W I P E A W A Y HIS C A L M I N G 
C A H I L L ' S W O U L D H A V E W R E C K E D A N O T H E R O N E T H I R D D O M E S T I C D R U G 
A C T I V I T Y O N T H E S T R E E T S B U T T H E Y N E V E R S E E M E D S E A R C H E D U N D E R 
T H E R E P O R T WAS T H E C O U N T I N G BORIS Y E L T S I N IN M I N N E S O T A I N C L U D ­
ING THIS N O V E M B E R H A R R Y ' S D E F E N S E P L E A F O R C A L M F R O M O M E L E T 
P Y G M I E S IN F I N A N C E C O M M I T T E E ' S T O N Y P O C A H O N T A S ' S I N D I C A T I N G T O O 
T A X P A Y E R T A R G E T E D F O R A L L F A M I L I E S A S W E L L A S IT G O E S B U T T H E R E 
A R E N ' T M A N Y O T H E R M I D D L E E A S T E R N C O U N T R I E S W H E R E A N N O U N C E 
</S> 
W H O S E H O M E T O T H E F O L L O W I N G T H E D E F E N S I V E SHOT </S> 
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RNN-640 model: 
DAVID IT'S T H A T P E A C E T R E A T Y W E A R E A W A R E O F O U R M E D I A E V E N SO 
T H E P R E S I D E N T O F T H E U N I T E D STATES IN INDIA A R R I V E D H E R E IN P A K ­
ISTAN T H A T T O N I G H T W I L L L A Y E V E N M O R E C O N C R E T E S O U R C E S A R O U N D 
H I M </S> 
L A S T M I N U T E %HESITATION S P O K E S M A N F O R T H E S P E A K E R M I S T E R P E R E S 
H A D H O P E D T O A W H I L E S T R O N G L Y OPPOSITION T O T H E T A L K S </S> 
C O M I N G U P IN T H E E A R L Y D A Y S O F T H E C L I N T O N A D M I N I S T R A T I O N T H E 
Y O U N G E R M E M B E R S O F T H E A D M I N I S T R A T I O N A N D E G Y P T I A N P R E S I D E N T 
F R A N C O I S M I T T E R A N D S A Y T H A T IF F E W E R F L I G H T S A R E G O I N G T O G E T 
T H E I R H A N D S T H A N O T H E R R E P O R T E R S T R Y I N G T O M A I N T A I N I N F L U E N C E 
</S> 
Y E S T H E Y ' R E S A Y I N G T H A T ' S E V E N I B E L I E V E I W I L L B U T I T H I N K T H A T 
T H A T IS T H E V E R Y FIRST A R A B I S R A E L I D E C R E E T H A T A R E B E I N G M A D E 
T O C O N T I N U E T O P U S H T H E P A L E S T I N I A N S INTO A F U T U R E AS F A R AS A N 
E C O N O M Y IN THIS C O U N T R Y </S> 
P O L I T I C A L %HESITATION T H E Y A R E D E T E R M I N E D W H A T T H E Y E X P E C T T O 
DO </S> 
T H A T ' S W H Y DAVID W A L T R I P WAS K I L L E D AS A P A R A T R O O P E R </S> 
J I M M Y C A R T E R H A S B E E N F L Y I N G R E L A T I V E L Y C L O S E L Y F O R S O M E T I M E 
HIS O N E S I M P L E A C C U S A T I O N R A I S E A N O T H E R N A T I O N A L C O M M I T M E N T 
</S> 
Y O U W O U L D N O T S U F F E R W H A T H E WAS P R O M O T I N G IN A N A T I O N IN T H E 
C E N T R A L I N D U S T R Y A N D C A M E T O I R A N A N D H E DID A N D H E H A V E P R O M I S E D 
T H E Y ' L L B E A N N O U N C I N G HE'S F R E E T H E P E A C E P R O C E S S </S> 
W E L L A C T U A L L Y L E T M E T E L L Y O U I D O N ' T T H I N K %HESITATION S H O U L D 
B E P L A Y E D A N Y S A C R E D A N D W I L L B R I N G E V E R Y T H I N G T H A T ' S B E H I N D 
H I M SO H E C A N E X C U S E M E O N K I L L I N G HIS W I F E </S> 
%HESITATION T H E O N L Y T H I N G I W E N T D I R E C T L Y T O A N Y O N E I H A D T R I E D 
T O S A V E F O R D U R I N G T H E C O L D W A R </S> 
S H A R O N S T O N E SAID T H A T WAS T H E I N F O R M A T I O N U N D E R S U R V E I L L I N G 
S E P A R A T I O N SQUADS </S> 
P E O P L E K E P T I N F O R M E D O F W H A T DID T H E Y S A Y WAS T H A T %HESITATION 
</S> 
W E L L I ' M A C T U A L L Y A D A N G E R T O T H E C O U N T R Y T H E F E A R T H E P R O S E ­
C U T I O N W I L L L I K E L Y M O V E </S> 
W E L L T H A T DOES N O T M A K E SENSE </S> 
T H E W H I T E H O U S E A N N O U N C E D Y E S T E R D A Y T H A T T H E C L I N T O N A D M I N ­
I S T R A T I O N A R R E S T E D THIS P R E S I D E N T O F T E N C O N S P I C U O U S L Y R E L I E V E D 
L A S T D E C E M B E R A N D AS A M E M B E R O F T H E S P E C I A L C O M M I T T E E </S> 
T H E W H I T E H O U S E A . B . C.'S P A N E L C O M M E N T ASSISTED O N J U S T I C E R E H N -
QUIST </S> 
T H E G U A R D I A N E X P R E S S E D A L L D E S I R E T O L E T START T H E I N V E S T I G A ­
T I O N </S> 
IN N O R T H K O R E A THIS IS A J O K E </S> 
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Appendix C: Example of decoded 
utterances after rescoring 

Rescored wi th 5-gram model, modified Kneser-Ney smoothed wi th no count cutoffs 
(16.60% W E R on full Eval 93 set) and R N N L M s (13.11% W E R ) ; differences are 
highlighted by red color, the examples are first sentences in the Eva l 93 set that 
differ after rescoring (not manually chosen): 

5-gram: IN T O K Y O FOREIGN E X C H A N G E TRADING Y E S T E R D A Y T H E UNIT 
INCREASED AGAINST T H E DOLLAR 
RNN: IN T O K Y O FOREIGN E X C H A N G E TRADING Y E S T E R D A Y T H E Y E N IN­
CREASED AGAINST T H E DOLLAR 

5-gram: SOME C U R R E N C Y TRADERS SAID T H E UPWARD REVALUATION OF 
T H E G E R M A N M A R K WASN'T BIG E N O U G H AND T H A T T H E M A R K E T M A Y 
CONTINUE TO RISE 
RNN: SOME C U R R E N C Y TRADERS SAID T H E UPWARD REVALUATION OF 
T H E G E R M A N M A R K E T WASN'T BIG E N O U G H AND THAT T H E M A R K E T 
M A Y CONTINUE TO RISE 

5-gram: MEANWHILE QUESTIONS REMAIN WITHIN T H E E. M . S. W E A T H ­
ERED YESTERDAY'S R E A L I G N M E N T WAS ONLY A T E M P O R A R Y SOLUTION 
RNN: M E A N W H I L E QUESTIONS R E M A I N WITHIN T H E E. M . S. W H E T H E R 
YESTERDAY'S REALIGNMENT WAS ONLY A T E M P O R A R Y SOLUTION 

5-gram: MR. PARNES FOLEY ALSO FOR T H E FIRST TIME T H E WIND WITH 
SUEZ'S PLANS FOR G E N E R A L E D E BELGIQUE'S WAR 
RNN: MR. PARNES SO L A T E ALSO FOR T H E FIRST TIME ALIGNED WITH 
SUEZ'S PLANS FOR G E N E R A L E D E BELGIQUE'S WAR 

5-gram: H E SAID T H E GROUP WAS M A R K E T IN ITS S T R U C T U R E AND NO 
ONE HAD LEADERSHIP 
RNN: H E SAID T H E GROUP WAS A R C A N E IN ITS S T R U C T U R E AND NO ONE 
HAD LEADERSHIP 
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5-gram: H E SAID SUEZ AIMED TO BRING B E T T E R M A N A G E M E N T OF T H E 
C O M P A N Y TO INCREASE PRODUCTIVITY AND PROFITABILITY 
RNN: H E SAID SUEZ AIMED TO BRING B E T T E R M A N A G E M E N T TO T H E 
C O M P A N Y TO INCREASE PRODUCTIVITY AND PROFITABILITY 

5-gram: JOSEPH A. M . G. WEIL JUNIOR WAS N A M E D SENIOR VICE PRES­
IDENT AND PUBLIC FINANCE D E P A R T M E N T E X E C U T I V E OF THIS B A N K 
HOLDING COMPANY'S CHASE M A N H A T T A N B A N K 
RNN: JOSEPH M . J A K E LEO JUNIOR WAS N A M E D SENIOR VICE PRESIDENT 
AND PUBLIC FINANCE D E P A R T M E N T E X E C U T I V E OF THIS B A N K HOLD­
ING COMPANY'S CHASE M A N H A T T A N B A N K 

5-gram: IN T H E N E W L E E C R E A T E D POSITION H E HEADS T H E N E W PUBLIC 
FINANCE D E P A R T M E N T 
RNN: IN T H E N E W L E E K O R E A N POSITION H E HEADS T H E N E W PUBLIC 
FINANCE D E P A R T M E N T 

5-gram: MR. C H E E K LEO HAS H E A D E D T H E PUBLIC FINANCE GROUP AT 
B E A R STEARNS AND COMPANY 
RNN: MR. J A K E LEO HAS H E A D E D T H E PUBLIC FINANCE GROUP AT B E A R 
STEARNS AND COMPANY 

5-gram: PURCHASERS ALSO N A M E D A ONE HUNDRED EIGHTY NINE C O M ­
MODITIES THAT ROSE IN PRICE LAST M O N T H WHILE ONLY T H R E E DROPPED 
IN PRICE 
RNN: PURCHASERS ALSO N A M E D ONE HUNDRED EIGHTY NINE COMMODI­
TIES T H A T ROSE IN PRICE LAST M O N T H WHILE ONLY T H R E E DROPPED 
IN PRICE 

5-gram: ONLY T H R E E OF T H E NINE BANKS SAW FOREIGN E X C H A N G E PROF­
ITS DECLINED IN T H E LATEST QUARTER 
RNN: ONLY T H R E E OF T H E NINE BANKS SAW FOREIGN E X C H A N G E PROF­
ITS DECLINE IN T H E LATEST QUARTER 

5-gram: T H E STEEPEST FALL WAS T H E B A N K A M E R I C A COURTS B A N K OF 
AMERICA A THIRTY P E R C E N T DECLINE TO T W E N T Y EIGHT MILLION 
DOLLARS F R O M FORTY MILLION DOLLARS 
RNN: T H E STEEPEST FALL WAS A B A N K A M E R I C A COURT'S B A N K OF A M E R ­
ICA A THIRTY P E R C E N T DECLINE TO T W E N T Y EIGHT MILLION DOLLARS 
F R O M FORTY MILLION DOLLARS 

5-gram: A SPOKESWOMAN B L A M E D T H E DECLINE ON M A R K E T VOLATIL­
ITY AND SAYS THIS SWING IS WITHIN A R E A S O N A B L E R A N G E FOR US 
RNN: A SPOKESWOMAN BLAMES T H E DECLINE ON M A R K E T VOLATILITY 
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AND SAYS THIS SWING IS WITHIN A REASONABLE R A N G E FOR US 

5-gram: LAW E N F O R C E M E N T OFFICIALS SAID SIMPLY M E A S U R E OF THEIR 
SUCCESS BY T H E PRICE OF DRUGS ON T H E STREET 
RNN: LAW E N F O R C E M E N T OFFICIALS SAID SIMPLY M E A S U R E THEIR SUC­
CESS B Y T H E PRICE OF DRUGS ON T H E STREET 

5-gram: IF T H E DRY UP T H E SUPPLY T H E PRICES RISE 
RNN: IF T H E Y DRY UP T H E SUPPLY T H E PRICES RISE 

5-gram: CAROLYN PRICES H A V E SHOWN SOME E F F E C T F R O M T H E PIZZA 
SUCCESS AND OTHER D E A L E R BLASTS 
RNN: C A R O L Y N PRICES H A V E SHOWN SOME E F F E C T ON T H E PIZZA SUC­
CESS AND OTHER D E A L E R BLASTS 
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