

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of information engineering

Bachelor Thesis

Data science

Nihar Lathiya

© 2021 CULS Prague

2

3

4

Declaration

 I declare that I have worked on my bachelor thesis titled "Data science" by myself

and I have used only the sources mentioned at the end of the thesis. As the author of the

bachelor thesis, I declare that the thesis does not break copyrights of any their person.

In Prague on 2st March, 2021 _________________________

5

Acknowledgement

 I would like to begin by thanking my thesis supervisor Ing. Jan Tyrychtr, Ph.D. for

his grate support and understanding in the completion of this thesis. His irreplaceable

encouragement lead me to this success.

 I would like to express my sincere thanks to my faculty professors and Czech

University of Life Sciences, Prague for support during my graduation.

 I would like to finish by thanking my parents for their constant help, support and

love.

6

Data science

Abstract

 In this thesis the development of house size prediction model for a real estate website

is presented. This model is a function which requires inputs from customers. These input can

be customer’s desired requirements such as location, price, number of bedrooms and

bathrooms. Based on these inputs, the model will predict estimated size of the house from

which customer can choose the best.

 For this purpose, I used python and its machine learning libraries like NumPy,

Pandas, Matplotlib and Scikit Learn as a tool. These tools are very efficient and helpful to

perform task of data cleaning and data modelling on a huge dataset. After data modelling

there is introduced the machine learning process, which contains various methods,

techniques and machine learning algorithm applications. Finally, I created house size

prediction function based on the best suitable algorithm.

 Machine learning is a huge area of data science studies that could be used in many

different ways such as business, health sectors, education etc. This bachelor thesis

particularly focused on real estate business and analyse how data science plays revolutionary

role in real estate industry.

Keywords

Data science, Big data, Data cleaning, Machine learning, Python, Feature engineering

7

Datová věda

Abstrakt

 V této práci je představen vývoj predikčního modelu velikosti domu pro realitní web.

Tento model je funkce, která vyžaduje vstupy od zákazníků. Těmito vstupy mohou být

požadavky zákazníka, jako jsou umístění, cena, počet ložnic a koupelen. Na základě těchto

vstupů bude model předpovídat odhadovanou velikost domu, ze kterého si zákazník může

vybrat nejlepší.

 Za tímto účelem je použit nástroj Python a jeho knihovny strojového učení jako

NumPy, Pandas, Matplotlib a Scikit Learn. Tyto nástroje jsou velmi účinné a užitečné při

provádění úkolů čištění a modelování velkých dat. Po datovém modelování je představen

proces strojového učení, který obsahuje různé metody, techniky a aplikaci algoritmu

strojového učení. Nakonec vytvářím funkci predikce velikosti domu na základě

nejvhodnějšího algoritmu.

 Strojové učení je obrovská oblast studií datových věd, kterou lze použít mnoha

různými způsoby, jako je obchod, zdravotnictví, vzdělávání atd. Tato bakalářská práce se

zaměřila zejména na obchod s nemovitostmi a analyzovala, jak věda o datech hraje revoluční

roli v realitním průmyslu.

Klíčová slova

Věda o datech, Velká data, Čištění dat, Strojové učení, Python, Návrh funkcí

8

Table of Contents

1. Introduction .. 12

2. Objectives and Methodology ... 14

2.1 Objectives .. 14

2.2 Methodology .. 14

3. Literature review .. 16

3.1 Machine learning ... 16

3.1.1 Data ... 19

3.1.2 Features ... 20

3.1.3 Machine learning algorithms ... 21

3.2 Cross-Validation in Model Selection .. 27

3.2.1 K-fold cross-validation .. 28

3.3 Hyper Parameter Tuning in Machine Learning .. 29

3.3.1 Grid search CV .. 29

3.4 Python for Data Science .. 29

3.5 Essential Python Libraries for Data Science ... 30

3.5.1 NumPy: .. 31

3.5.2 Pandas .. 33

3.5.3 Matplotlib .. 34

3.5.4 Scikit-Learn ... 35

4. Practical part .. 36

4.1 project tool ... 36

4.2 Dataset ... 36

4.3 data cleaning .. 38

4.4 Feature engineering.. 43

4.5 Outlier detection and removal.. 46

9

4.6 Machine learning model building .. 54

4.6.1 One-hot-encoding .. 54

4.6.2 Train-Test split .. 56

4.6.3 Machine learning algorithms and accuracy estimation 57

4.6.4 Function for home size prediction ... 60

4.6.5 Exporting model .. 60

5. Results and discussion .. 62

5.1 Result interpretation of house size estimation function ... 62

5.2 Discussion .. 62

6. Conclusion ... 64

7. References ... 65

10

List of figures

Figure 1: Algorithms employed in Machine Learning. ... 17

Figure 2: Linear Regression Graph .. 22

Figure 3: Lasso regression ... 24

Figure 4: splitting in decision tree ... 25

Figure 5: pruned decision tree ... 27

Figure 6: Row dataset .. 37

Figure 7: Unnecessary columns dropped from dataset .. 38

Figure 8: detected range values in ‘total_sqft’ column.. 41

Figure 9: Converted ‘total_sqft’ into single values ... 42

Figure 10: Added new feature - ‘price_per_sqft’ .. 43

Figure 11: Dataframe after feature engineering ... 46

Figure 12: Square feet per bedroom Outliers detection ... 47

Figure 13: Price outliers of bhk detected ... 50

Figure 14: Price outliers of bhk removed .. 51

Figure 15: House density of price per square feet ... 52

Figure 16: bathroom outliers detected ... 53

Figure 17: Final dataframe after all outliner removal .. 54

Figure 18: dummy columns created for location ... 55

Figure 19: Converted location into numerical category with one-hot-encoding 56

Figure 20: Scores and parameters values comparison of algorithms 59

11

List of equations

Equation 1: Linear equation ... 22

Equation 2: Sum of square error .. 23

Equation 3: Lasso regression ... 23

Equation 4: variance .. 26

12

1. Introduction

 Today we live in a world which generates tons of data, which gives birth to today’s

data driven technologies. Now a days we come across to these technologies in our day-to-

day life, whether it is product recommendation on websites or social media, movie or show

recommendation on various streaming service and many more. Data is being widely used in

every industry such as IT technologies, health sectors, finance and marketing, real estate and

so on. Here we can see that we have a great opportunity to tackle problems easily and

effectively compared to previous era, which makes earth a better place to live.

 Main reason is for rapidly growing revolution is “Big data” available now, which

was not the case before. Now it is also possible to predict future from available data pattern

of past years. Data is not only about the numbers, pictures, audio, or user information, but it

is also about to observe human behaviour and their living pattern which can be used to

develop automated technologies such as smart house, self-driving cars, gadgets like Alexa

and various artificial intelligence software. All these technologies were unrealistic and

untrusted by humans initially, which could be never possible without a problem and creative

mind. As being said “ necessity is mother of invention”. (Plato, 2017)

 Things like internet, data science, artificial intelligence (AI), machine learning (ML)

cannot be underestimated for improvement of human life and technical development,

especially after Covid-19 pandemic when digitalization took place in every industry. If we

need an efficient and qualitive solution for any real-world problems, then individual should

try possible modern approach to tackle it. This modern approach to use data for decision

making, boost business and improve accuracy in various tasks, which is known as “Data

science”.

 Undoubtedly data science is most demanding and profitable technology for any

businesses. Any business growth is highly depended on how they collects meaningful data

and make wise decisions for their business from it. If we take latest example of WhatsApp

new privacy rule to use user data for Facebook’s recommendations and advertisement, it

might be inspired by Google. Most commercials prefer Google to advertise their product.

The reason is Google receives plenty of users data from their various services and platform

and the way they use it, is on next level. We can get this idea from experiencing most relevant

product recommendation and offers on Google platform, which we browsed in chrome or

13

you tube depending on our current location, but Facebook is still lacking in this area. So,

this might be their new strategy to use WhatsApp data for improving their Facebook

commercials quality.

 If we take a look at real estate industry, it has been totally revolutionized by data

science and machine learning technology now a days. We often see price prediction model

on their websites to know worth of the house, for example Zillow have one model called

‘Zestimate’. It helps customers as well as the real estate agent for buying or listing house on

a particular medium. That potential motivated me to create a unique approach in real estate

industry, using data science and machine learning methods.

 In this thesis, I will create a size-prediction model for a real-estate website. This

model will work with numeric and text data, which will require inputs from user for their

desired criteria and will give estimated possible size of house they will get. This model

creation will include various data science techniques and machine learning algorithms. This

unique approach to help customers for selecting their dream home will help real-estate site

to improve their performance as well.

 The theoretical knowledge for this task will be covered. I will discuss initial data

structure and the change we make in it gradually to prepare it for model training. Different

stages for this model training will be discussed with coding and description. Various

machine learning algorithms are used to prepare model for high accuracy results.

14

2. Objectives and Methodology

2.1 Objectives

 The thesis is focused on real estate business to create unique experience not only to

satisfy their existing customers but create new impact in real estate market and attract more

customers for them. Now a days common feature on each reputed real estate site we can see

is house price estimation. It is a great innovation of data science field but to make it unique

from the rest of websites I came across to house size prediction. It can be totally different

and interesting approach to pay attention on customer’s specific need. For example,

customer always have their fixed budget which is most important and first requirement to

focus on. This model will help them to select the best house they can get in their budget.

Then it comes to number of bedrooms and how specious they are, number of baths, few

desired location to select. Considering, all these factors they can have estimate of size of a

house. After analyzing all results, they can choose bigger and specious house for them.

 The main objective of this thesis is to derive valuable information from Big data to

make strategic decisions which can be beneficial for business goals in future.

 To obtain main objective, the development of this bachelor thesis will also tackle the

creation of these 4 artifacts as partial objectives:

• Create literature review in the field of data science and machine learning methods.

• Analyze the python libraries for data science.

• Create size prediction model for a real estate website.

• Synthesize the results of practical part and propose recommendations for practice.

2.2 Methodology

 The technical overview of the study is based on of scientific books and web resources

related to data science techniques, machine learning and python. A systematic review of

these aspects will be discussed in the literature review of this thesis. All the publications and

15

literature were helpful during work. There are also citations available for some important

parts.

 First, I studied business requirements for a data science task, which is to build unique

model of house size prediction for their website. Secondly, we will need data to train our

model for further prediction. The data for this thesis will be directly downloaded from the

Kaggle dataset (Chakraborty, 2017). This data will be used only for the study purpose of this

thesis. We will primarily use Jupyter notebook with anaconda distribution as a tool to

implement python programming language and windows operating system for our entire task.

 As soon as we have data, we can start examining and exploring data. Row data will

not be clean in majority of cases including our dataset in this work. For data cleaning we

will use python libraries such as NumPy and Pandas. These libraries are very handy to handle

numeric values and data frames. As we go further, we will need to visual our data for better

understanding. We will use Matplotlib library for plotting graphs for data visualization. Once

our data is cleaned, we will move towards feature engineering and outliers detection and we

will prepare it for machine learning model.

 For our machine learning part we will use supervised machine learning (Kotsiantis,

2007), which means our data set will be labelled with correct prediction values including

training dataset. One-hot-encoding method will be used to reduce dimensionality of string

data, which is location in our case. Train-test method will be used to apply machine learning

algorithm on training data. Scikit learn model selection will be used to implement train test

split method and for machine learning algorithm as well. K-fold cross validation and grid

search CV will be used to come up with best scoring model and its parameters among three

machine learning algorithms, which are linear regression, lasso regression and decision tree.

 For saving model we will use pickle (.pkl) file and json file. Which will include final

pre-trained model, model’s weightage, embedding matrix and data columns. This saved

model will be used in real estate website for house size prediction.

16

3. Literature review

3.1 Machine learning

 Machine learning is a well-known concept in the domain of data science, artificial

intelligence, and computer science - also known as statistical learning and predictive

analytics. Arthur Samuel of IBM firstly used the machine learning term in 1952. In 1950, he

wrote the first computer program. The program was a game of checkers, which makes

winning strategies and incorporating moves. Later, Samuel also designed various

mechanisms allowing his program (Foote, 2019).

 As a data scientist, one must become familiar with machine learning concepts

because both data science and machine learning overlap. We can say:

• Data science is used to gain insights from data and understanding of data patterns.

• Machine learning is used for making predictions based on available data.

 The above predictions employ a set of artificial intelligence techniques that focuses

on designing the system and uses statistical experience to improve model parameters tuning,

the performance of the index, and improving its predictions, where experience can be

previous information or data from broad and specific fields pooled at dataset hubs like

Kaggle and made available for use in research. In other data science projects, critical

measurement of these algorithms' validity and quality in their variables such as time

complexity yields a robust system. Still, an additional notion of sample complexity is

required for the algorithm to learn data patterns. In short, theoretical learning guarantees for

an algorithm depends on the complexity and size of the training data sample (Mehryar

Mohri, 2018).

 Machine learning is all about getting computers to make data-driven decisions rather

than being explicitly programmed to carry out specific tasks. It enables computing devices

to employ embedded programs and generated algorithms to predict instantaneous states just

like humans do. Since programming is automation, machine learning is the core of the

process. The latter process is a way that makes programming scalable. In conventional

programming, data is fed as the input, while programs lie at the core programs to manipulate

it and give an output, which is also a dataset. This concept is employed further in Machine

17

Learning but with improved datasets and robust algorithms to achieve similar goals

(Brownlee, 2015).

There are three main types of machine learning algorithms.

However, there exists another technique under the name of Reinforcement learning. All

these algorithms have their differences stem from the way they treat the training and testing

datasets.

Figure 1: Algorithms employed in Machine Learning.

Source: Author

Supervised machine learning

 A supervised learning algorithm comprises an outcome variable, which is also

referred to as a dependent variable. This variable needs to be predicted by imposing the

independent variables to a learning technique. The technique's overall goal is to generate a

model, which resembles a function that can map output from a given set of inputs. Model

training runs until the computer finds a suitable model while not compromising the accuracy

of the results. This technique's critical points are that it has labelled data, gives direct

feedback, and predicts the outcome or future.

Data analysis
algorithm

Rainforcemet
learning

Semi-
supervised

learning

Unsupervised
learning

Supervised
learning

18

Under this category are Random Forest, Linear regression (most common), k- nearest

neighbor design tree.

Unsupervised learning

 The learning algorithms, in this case, do not contain the outcome or dependent

variable for prediction. In these algorithms, data is without a label, it does not give feedback,

and it helps find hidden data structure in data. Unsupervised learning algorithms cannot be

directly applied to regression or classification problems because we do not know what output

data values might be. It makes it impossible to train data than we usually do in supervised

learning. It can be used for the clustering population in different groups for specific

interventions.

E.G., K- means clustering, Gaussian mixture models, etc.

Reinforcement learning

 In this category, the machines are trained to make only specific decisions while

ignoring others. It has a reward system and learns a series of actions, implying that the

variables in question are manipulated through the trial-and-error mechanism until they fit

the desired output. It can be observed that this form of learning uses experience as the core

of its decision making. The result is that only the best decisions are employed; hence

reliability is optimal.

An example is the Markov decision process.

 There are three main components of the machine learning system: data, features, and

ML algorithms.

In our study, we seek to employ a Supervised Learning algorithm to achieve our project's

objectives. Since we seek to create a model that can easily predict the price of houses in

India, we must have data to train and test the model. Supervised learning allows us the degree

of freedom to choose the appropriate model that predicts house prices accurately. Data for

this project is downloaded from Kaggle (Chakraborty, 2017)

19

3.1.1 Data

 Data can be collected manually or automatically. It can be in any unprocessed

structure, text, value, images, audio, etc. data is a crucial factor in data analysis, ML, and

A.I. It is not possible to train our model without data.

 Therefore, big enterprises spending vast amounts of money on getting to access those

data nowadays. Generally, in machine learning, we divide data into two parts- "training data"

and "testing data." Since we downloaded data from an online repository, Kaggle.com, we

know that this data should be split into the two sections given before. However, as we

understand, we cannot split this data until we have cleaned it. Data cleaning ensures the data

is in good form, with only the required variables being put into play and observing the

dataset's features.

 Much time is bound to be spent on data cleaning. This is the most time-consuming part. The

modeling data's data should be logically viable without outliers, which are the most common

error sources in the modeling paradigm. Data cleaning involves eliminating all the data

values with null or NA as values in their cells. This is done either by replacing the missing

values with a median value of the column it resides. The other alternative is the exclusion of

missing values (rows) entirely from the dataset. It becomes reasonable to perform the latter

decision when the missing variables' population compared to the entire population is small.

Training data :

 It is a portion of our data that we show to our model as input and output. Based on

this data, we train our model. The training dataset needs to form the majority of the sample.

It should be large to overcome the bias introduced by the use of smaller data samples. As

per our project, we split the primary dataset into an 80% training set. This was used to train

the models on how to predict the price of houses given several input parameters. It is

expected that some considerable amount of time would be used during training, and therefore

this is to be treated as usual, and the model should be left to do its training.

20

Testing data:

 After our model is thoroughly trained and ready for prediction, we feed the testing

data values as an input and get predicted output by our model. This output might not be the

same as the actual output of testing data, as our model has not seen it. So, we compare both

outputs and check the accuracy of the model (Gupta, 2018). Model testing forms the last

step in this project. It requires the minimal pseudo-random sample of the remaining

population, which is 20% of the population. However, it should be noted that the sample

should be randomized to have a clear picture of what the model portrays. Testing is done

using any house from any location except the number of bedrooms and bathrooms with an

expectation to have a reasonable house price prediction.

3.1.2 Features

 Features are the measurable and observable properties in data that we are interested

in analyzing. In datasets, features often appear as columns forming distinctive characteristics

in each column. Features can also refer to as "variable" or "attributes." The feature selection

process is varies depending on what we need to analyze in our model. Features are building

blocks of a dataset. Quality of features if the dataset significantly affects the quality of insight

we will gain from datasets. It is possible to improve the quality of feature selection with

feature selection and feature engineering. It is typically tricky and tedious, but if it is done

well, we can get optimum results of the dataset, containing all the essential features that

might have beneficial insights to solve a specific business problem (LLC, 2019). These

features are extracted during the data cleaning phase. It is also to state that the dataset

characteristics, variables, including individual entries, are observed. These observations

form how the required features are selected for the next phase in the data cleaning pipeline.

 Once the required variables have been defined, all the other columns are then

dropped as our goal is to have a data frame with only the factors on which our model will

depend. In case additional variables can help reduce some of the variables, the variables are

created, used until they are no longer required, at which they are dropped. As the features

are extracted, the output data frame shrinks to the tune of the extracted features. The data

shrinks at every stage until finally, we are comfortable using the data frame. In this instance,

since we are employing a supervised learning technique, we have to ensure the proper data

21

statistics are in order; for instance, we visualize the data to confirm that it is normally

distributed. Once this criterion is met, we further confirm that there exist no anomalies in

the data. This is achieved through scatter plots and observing the distribution of houses’

prices in the land space.

3.1.3 Machine learning algorithms

 Algorithms employed in Machine Learning exist in massive amounts, with many

sprouting at the dawn of a day. Generally, data scientist applies more than one algorithms

on the model to check which one scores higher and gives much accuracy. In the practical

part of this thesis, we are going to focus on the following three algorithms.

 These algorithms serve as the litmus test on the viability of a model. In this project,

since we seek to find the best fit model, we will not test just a single model but rather impose

all the available algorithms as discussed below and find the best model with its parameters.

This approach is accompanied by parameter tuning to realize the algorithm viable for the

project with its corresponding parameters for optimal model performance. Therefore, we

employ hyper parameter tuning in the training of this model to achieve the best parameters

and order them with their score index. We then select the algorithm with the best score from

the Score index and note the model’s tuning parameter.

3.1.3.1 Linear regression

 This is an algorithm in the supervised machine learning algorithms family where the

value predicted as output is continuous and exhibits a constant slope. It is used for predictive

analysis, such as a house’s cost, total sales, and calls. The primary goal of this algorithm is

usually to answer the following questions:

(1) Does a set of predictor variables (independent) predict the outcome variable

satisfactorily? And

(2) Which among the predictor variables have great significance in predicting the outcome

variable, and to what extent do they impact the outcome variable?

22

 In linear regression, we establish a relationship between the dependent and

independent variables using the best fit line, statistically referred to as a regression line. The

following general equation represents the line:

y = MX + b

Equation 1: Linear equation

Source: (Pierce, 2018)

where, Y is the value under prediction, x is the independent (predictor) variable, m is the

gradient, and b is the y-intercept.

 There are two main types of linear regression simple regression and multivariable

regression. Simple regression has only one independent variable (x) and one dependent

variable (y), but multivariable regression has one dependent variable (y) and more than one

independent variable (x). If we take the example of house prices, then price prediction based

on only square feet is a simple regression. Price prediction based on square feet, bedrooms,

bathrooms, area, balcony, etc. is multivariable linear regression.

Let us visualize linear regression by the following graph:

Figure 2: Linear Regression Graph

Source: (kassambara, 2018)

23

 In the figure above, we have two variables, x, and y, which has multiple data points

defining the relation between both variables. The blue line is called the regression line

passing through all the data points. Now the question is, why it can be only one line? There

might also multiple lines passing through data points. Well, that is the motto of linear

regression to find the best fit line for our model. The principle behind the regression line is

to minimize error, which can be done by the sum of square errors equation:

SSE = ∑ [∆]𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

∆ = [𝒚𝒚𝒊𝒊 − (𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝒙𝒙𝒊𝒊)]

Equation 2: Sum of square error

Source: (Weisberg, 2005)

where, ∆ is distance between data points and blue line (regression line) which is defined as

red line in figure above.

 The equation does the sum of squared individual error of all data points from 1 to N.

from the minimization of this equation; we can find only a blue line that can best fit for the

model.

3.1.3.2 Lasso Regression

 Lasso stands for "Least absolute shrinkage and selection operator." It is a supervised

machine learning that employs the concept of shrinkage. Shrinkage is where the data values

are compressed towards a central point. The procedure encourages simple and spars model

which have fewer parameters. This algorithm is perfectly suitable for the model having high-

level multilinearity or when it comes to automation of certain parts of model selection,

variable selection, or parameter elimination (Glen, 2015).

 The coefficients are established upon minimization of this equation:

∑ [𝒚𝒚𝒊𝒊 − (𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝒙𝒙𝒊𝒊)]𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏 + 𝝀𝝀∑ |𝜷𝜷𝒋𝒋

𝒑𝒑
𝒋𝒋=𝟏𝟏 |

 Equation 3: Lasso regression

Source: (The group lasso for logistic regression, 2008)

24

Where 𝜆𝜆 is a constant positive amount of shrinkage, which regulates the imposed penalty's

strength and validity.

βj = slope of regression line.

When 𝜆𝜆=0, it is at a steady-state, and the estimates are equal to the one found in the standard

linear regression.

As 𝜆𝜆 increases, more and more coefficients are set to zero and eliminated. So, when l=∞, all

coefficients are eliminated.

As 𝜆𝜆 increases, bias and variance increase.

Figure 3: Lasso regression

Source: Author

 The technique uses a penalized least squares as a basis for modeling and parameter

sub-selection approach. Lasso regression helps us make feature selection by choosing the

slop's magnitude value, which means wherever the slop value is close to zero, it will remove

those features as they are not much important for our prediction. It will keep only essential

features for prediction. It is useful in fitting high-dimensional data exhibiting high

correlations in the predictors. It can, therefore, be thought of as a Hybrid variable selection

procedure. (Bayesian and LASSO Regressions for Comparative Permeability Modeling of

Sandstone Reservoirs, 2018).

25

3.1.3.3 Decision Tee

 The decision tree is usually a supervised machine learning algorithm ideal for task

regression and its classification. The decision tree's primary goal is to predict the value or

class of specific variables depending on generated decision rules by algorithm from the

training dataset. As per the name, this algorithm represents structure like a tree in which we

have a variable as a root node to test on. Branches from root nodes are represented as a result

of the test, and those branches have leaf nodes representing class or label. There are two

decision tree types - categorical variable decision tree (targeted variable is categorical) and

continuous variable decision tree (targeted variable is continuous).

Splitting:

 Decision tree decides by splitting their root nodes into sub-nodes. This splitting

process continuously goes on until it is left with only homogenous nodes. There are multiple

methods of splitting, which depend on the type of targeted variable. For categorical

variables, we can use Gini impurity, information gain, and Chi-square. For continuous

variables, we can use a reduction invariance. As we will focus on the continuous variable in

the practical part, let us understand the reduction invariance.

Figure 4: splitting in decision tree

Source: Author

ROOT NODE

DECESION NODE

DECESION NODETERMINAL NODE

TERMINAL NODE TERMINAL NODE

DECESION NODE

TERMINAL NODE TERMINAL NODE

A

B C

Branch/ sub-tree

26

Reduction invariance:

 This splitting method can be used for continuous variables only. It uses the generic

statistical formula of standard deviation and variance to get the best split.

Variance = ∑(𝒙𝒙−𝝁𝝁)𝟐𝟐

𝒏𝒏

Equation 4: variance

Source: (Suzuki, 2019)

where 𝝁𝝁 is the mean of the values, 𝒙𝒙 is the actual value, and 𝒏𝒏 is the number of values.

 Variance is used to calculate the purity of a node. As much variance is low as purer

a node will be if the node will be entirely pure, then variance value will be 0.

Steps to split a decision tree using reduction invariance (Sharma, 2020):

1. Calculate the variance of each node for each split.

2. Calculate the weighted average variance of each split of child nodes.

3. Pick the split with the lowest variance.

4. Repeat until uniform and homogeneous nodes are realized.

Pruning:

 Overfitting is the most usual and significant problem in the decision tree. It is a

situation when the model gives 100% accuracy for the training data set but for the testing

data set. It might have a more considerable variance between the actual and predicted value.

The reason is there is no limit for growth in the decision tree. Sometimes in the worst case,

it gives 100% accuracy for training data set by making one leaf for each observation. This

situation will affect accuracy while predicting the actual testing data set. Pruning is one of

the well-known ways to avoid overfitting. Pruning methods remove the decision nodes from

the leaf nodes without affecting the model's overall accuracy. This method uses statistical

measures to eliminate the least reliable branches, which leads to faster classification and

improvement in the prediction of outputs from the independent test data (Evaluation of

Decision Tree Pruning Algorithms for Complexity and Classification Accuracy, 2010). We

can easily understand difference between an unpruned tree and a pruned tree with simple

example of bank loan approval from following figure.

27

Figure 5: pruned decision tree

Source: Author

3.2 Cross-Validation in Model Selection

 Generally, in machine learning, we break down our data set into training and testing

data for model creation. Even in the same algorithm, the model will give us different

accuracy for the different test sets. Therefore, it is best practice to apply cross-validation to

the machine learning model for better accuracy. Cross-validation is a popular statistical

technique for algorithm selection. The main goal of the cross-validation is to assess how the

model will perform with different data set. The idea behind cross-validation is to split data

once or several times to estimate each algorithm's skill or model. The training set is used to

train each algorithm, and the validation set is used to estimate the risk. In the end, we select

the algorithm with the smallest estimated risk (A survey of cross-validation procedures,

2010).

 There are plenty of cross-validation methods such as k-fold cross-validation, holdout

method, leave-p-out cross-validation, and leave-one-out cross-validation. We will focus on

k-fold cross-validation as it is prevalent, suitable for extensive data set, and we are going to

use in our practical part.

Income?

Other loan from
same bank?

Income?

Criminal
record?

Income?

Required
docs?

Loan

LoanNo
loan

No
loan Loan

No
loan

No
loan

Other loan from
same bank?

Required
docs?

No
loan Loan

Loan

>=50k <50k <50k>=50k

yes

no

no

no

no
no

no yes

yesyes

yes

yes

An unpruned decision tree A pruned decision tree

28

 Cross-validation Serves to verify that the algorithm selected is robust over random

tests with the test data set. The expected score is supposed not to wander far away from the

observed values after the hyper-parameter tuning.

3.2.1 K-fold cross-validation

 This technique is a widely adopted method for model selection. As per the name, this

technique randomly divides data set into K folds approximately in equal size. This K part of

the data will be used for the testing dataset, and the rest (k-1) part will be used as a training

dataset. The model will be trained and tested for K number of times, and at the end of the

process, we will get a K number of scores. The average number of this score will be

considered as the average accuracy. We can also say the maximum accuracy of this model,

the highest score we received, and the model's minimum accuracy is the lowest score in this

process.

 In K-fold cross-validation, K is a chosen number by us, which represents the number

of folds. The choice of a number depends on our data size and system computation power.

The number can be anything ideally between 5 and 10. We must choose numbers carefully

because poor choice might lead our model to high variance and high bias. K< 5 might cause

issues like that (A Comparative Study of Ordinary Cross-Validation, v-Fold Cross-

Validation and the Repeated Learning-Testing Methods, 1989).

Advantages of K-fold CV

• As K value increases, the estimated variance and bias reduces.

• For the K value, the repetition of the process is limited, so less computation

time.

• Each data part gets to be trained and tasted precisely.

Disadvantages of K-fold CV

• It takes a considerable amount of time to evolve as the algorithm must rerun

from scratch K times.

29

3.3 Hyper Parameter Tuning in Machine Learning

 In machine learning, hyper parameter tuning is an important task to get optimal

values of a model's parameter, which gives the maximum accuracy for a particular model.

Different datasets have different hyper parameter settings, so it must be tuned for each

dataset. A hyper parameter is the machine learning element that automatically cannot be

learned by model, but it can be done by a meta-process called - “hyper parameter tuning."

Manually, it is difficult to keep track of the hyper parameter and frequently fit into training

datasets; simultaneously; it is time-consuming. A grid search CV can solve this problem.

3.3.1 Grid search CV

 Grid search CV is one of the well-known methods for hyper parameter tuning. It is a

function of the Scikit-learn library, which helps to loop through predefined hyper parameters

and fit our model in the training dataset. The method will then list each parameter values'

score, and we can select the best parameter from it. According to (Chih-Wei Hsu, 2003), it

is highly recommended to use a grid search CV and cross-validation to archive the best

parameter values. The grid search CV structure is like a dictionary (keys= parameter names,

values= various possibilities for our combinations), and then it passed to our estimator

object.

 Grid Search CV serves the purpose well in our model as from the python data

dictionary. This is the easiest way to validate and classify the parameters used in modeling

the final price prediction model.

3.4 Python for Data Science

 There is plenty of programming language used in data science projects like Python,

Java, R, SAS, SQL, etc. Python is open source, interpreted, and dynamic object-oriented,

publicly available in 1991 (Hsu, 2018). It is widely used and suitable for data science tools

30

and applications. According to a “stake overflow survey” in 2019, python is fast-growing

and second most loved programming language.

 Python holds a unique attribute, and when it comes to performing analytical and

quantitative tasks, it is very easy than other programming languages. According to engineers

of academia and industry, python APIs are available for deep learning frameworks.

Scientific packages have constructed python as incredibly productive and versatile (Bhatia,

2012).

 Hence, now we know what importance python has in the data science field, let us

focus on some elegant features of python.

• Python supports various platforms such as Windows, Linux, Mac, etc.

• It makes the program easy to read and write. It is also easy to perform various

machine learning algorithms and complex scientific calculations, thanks to

elegant and simple syntax.

• Python has the ultimate collection of libraries to perform various tasks like data

manipulation, data analysis, and data visualization.

• Python is an expressive language that makes possible applications to offer a

programmable interface (Eppler, 2015).

• In python, it is simple to an extension of code by appending new modules

implemented in other compiled languages like C or C++.

 Machine learning scientists prefer python as well in terms of application areas. When

it comes to app development for NLP and machine analysis, developers switch to python

due to the huge collection of libraries python provides, which helps solve complex business

problems efficiently and construct a robust system data application.

3.5 Essential Python Libraries for Data Science

 Python libraries are a reusable bunch of functions and methods which we can include

in our program to perform several actions without writing code. Python has improved

libraries' support in recent years and became the best alternative for data manipulation

31

techniques. It is among the favorites for full-stack developers, which is also highly

recommended for general-purpose programming (McKinney, 2012).

 In a data science project, we need to go through all the stages like data cleaning, data

visualization, model building, etc. Python has plenty of popular libraries for these tasks. Let

us focus on some of them, which we are going to use in our practical part.

3.5.1 NumPy:

 NumPy (Numeric Python) is one of the most potent and open-source python libraries

primarily used for numeric analysis. NumPy deals with numerical data and provides

algorithms, data structures, and other utilities to perform scientific calculations and data

storage. It is highly recommended to fast operation on arrays, sorting, selecting,

mathematical functions, statistical operation, linear algebra, random simulation, etc. It was

created by Jim Hugunin which was modified by Travis Oliphant in 2005 to incorporating

features of competing NumPy-array into numeric (Oliphant, 2015).

NumPy basics

• Create NumPy arrays and array attributes.

• Array indexing and slicing.

• Reshaping and concatenation.

NumPy arithmetic and statistics basics

• Computations and aggregations

• Comparison and Boolean masks

 The NumPy package has a significant object called “ndarray” (n-dimensional array).

It is homogeneous and statistical data types and performs many operations in a compiled

language (Leo (Liang-Huan) Chin, 2016). Now the question is, why would we use NumPy

array when we can just use a python list? The list is very flexible and versatile, and excellent

in python, but there are few significant benefits of using NumPy arrays over a python list.

32

Saves coding time

• No for loops: many vector and matrix operation save coding time

. We do not need to iterate through an array to apply a mathematical operation to each

element of that array. We can do it with a single line of code.

Example:

Using python list, we need to use for loop to iterate through that list before you can multiply

*= 6 operation to each element:

for i in range (len(my_list)):
 my list[i] *= 6

Using NumPy array, we can apply that element directly to the entire array with a single code

line. NumPy takes care of the rest of the operation behind the scenes, so we do not have to

worry about it:

my array *= 6

Faster execution

• Uses single data type for each element (all must be the same data type) in array

to avoid type checking at runtime.

• Uses contiguous blocks of memory.

Uses less memory

• No pointers, so type and item sizes are the same for each column.

• In python list, there is an array with pointers to python object (4B+ per pointer

and 16+ for a numerical object).

• Compact data types like unit 8 and float 16.

• Which depends on our task and precision of data.

33

3.5.2 Pandas

 Pandas name is shorthand for “panel data”- a term for data sets with

multidimensional structure. Another important machine learning library provides functions

and rich data structure to make our data analysis task more manageable, fast, and expressive.

Pandas have various methods for combining data, time-series functionality, grouping, and

filtering. It also provides indexing functionality, which simplifies reshaping easier, data

slicing, performing aggregation, and selecting a subset from a dataset (McKinney, 2012).

 Pandas built on top of NumPy. That means pandas require NumPy. Pandas do not

require other libraries like Matplotlib and SciPy, but it can be handy if combined with the

latter. It is an excellent tool for data wrangling due to its robust design coupled with quick

and easy data manipulation features. It has two handy data structures known as “pandas

series” and “pandas data frame." They are core components of pandas that allow us to

reshape, merge, split, train, and aggregate data.

Pandas Series

 It is a one-dimensional labelled array containing data types. These data types span

from strings, doubles, integers, objects, and floats python objects. The axis labels represent

the index. In short, it is just a column in memory that is either independent or belongs to a

pandas data frame. A unique label is not necessary, but it must be a hashable type. The

python object integrates label-based indexing as well. It provisions a host of methods for

performing index-operations.

Pandas Data frame

 This is a two-dimensional, tabular data structure with more details regarding axis.

The concept of a data frame is borrowed from the idea of spreadsheets. It is logically

corresponding to a sheet of Excel that includes both rows and columns. The Data frame

object contains an ordered collection of columns like a spreadsheet or an excel sheet. Each

column holds a unique data type, but different columns may have different types (Bernd

Klein, 2011).

34

Data frame operation in pandas

• Read, view, and extract information;

• Grouping and sorting;

• Deals with duplicate and missing values;

• Selection, filtering, and slicing;

• Pivot table and functions;

 The pandas library has been under development way since the python was made

public. It is established to narrow and possibly close the gap in the available data analysis

tools between python, and the conventional domain-specific statistical computing platforms,

software, and database languages (McKinney, january 2011). There are currently fewer

pandas library releases, including plenty of new features, enhancements, bug fixing, and API

changes. Data analysis among everything else takes the highlights when it comes to the use

of pandas. Pandas ensure high functionality and superb flexibility while combined with other

libraries and tools.

3.5.3 Matplotlib

 It is generally conceptualized as a plotting library for data visualization. It is a python

package for 2D plotting that generates a production-graph. Any organization must visualize

data and descriptive analysis; matplotlib provides very effective methods for these tasks. It

supports both interactive plotting and non-interactive plotting to save the graphics into

several formats like .pdf, .png, .jpeg, among others. It can also employ multi-window toolkits

(GTK+, wxWidgets) and provide a conglomerate of plot types like line graphs, pie-charts,

and bar charts histograms, and other professional-grade figures. Besides, it boasts high

customization levels, flexibility, and convenience in use (Tosi, November 2009).

Features of Matplotlib

PyLab interface :

 It allows users to create plots using code just like the MathWorks Package

MATLABTM figure generates its code.

35

Matplotlib API:

 Acts as the abstract interface over which plots are rendered. It is responsible for

tuning the parameters and ensure what is given in the code is translated properly in the

intended interface.

Backends:

 These play the primary role of interpreting the graphics to other devices connected

to the computer or intended for display services.

 Most professionals employ Matplotlib in generation postscript files for printing or

publishing automatically. Some find the convenience of deploying the graphics on web

applications that can dynamically generate specific nature files. Matplotlib library can also

be called interactively from Tkinter's python shell on the Windows platform (John Huter, 27

may, 2007).

3.5.4 Scikit-Learn

 This is a python library that makes various algorithms and functions that are used in

machine learning available. David Cournapeau initially developed it as a google summer of

code project in 2007. It is considered one of the best libraries for working with complex data.

 Scikit learns built on NumPy, SciPy, and matplotlib. It contains several algorithms

for data mining and machine learning tasks like (Hackeling, 2017):

• Dimensionality reduction;

• Data reduction methods (e.g. principal component analysis, feature selection);

• Regression analysis (e.g. linear, logistic, and ridge);

• Classification and clustering models (e.g. random forest, support vector

machine, K-means);

• Model tuning and selection (e.g. grid-search, cross-validation);

• It also provides modules for pre-processing data, extracting features, optimizing

hyper parameters, and evaluating models to solve real-world problems;

36

4. Practical part

4.1 project tool

 Python is straightforward to learn as it is a described programming language. It has

extensive documentation and vibrant online support groups where support is easily found. It

is also easy to use with minimal coding and realizing maximum computational power in

exploring data, using graphics, and manipulating almost all variables on the go. I have

employed python from the interface of Jupyter Notebooks, which is a very convenient tool

for python beginners and experts. This brings the convenience of installing python and

pandas at a go and accessing them through library import.

4.2 Dataset

 First, the datasets are downloaded directly from Google environment. There can be

multiple ways to access data but, in this case, I assumed that we are getting data from the

organization for which we prepare the size prediction model. I use the data source below:

Dataset Name: Bengaluru-house-price-data

Type: Comma Separated Values (CSV)

 Location: https://www.kaggle.com/amitabhajoy/bengaluru-house-price-

data (Chakraborty, 2017)

 This dataset is about city ‘Bengaluru, India’. So, we assume that we are building size

prediction model for real estate organization in Bengaluru. After downloading the dataset,

we will impot it into jupyter notebook. First, we will import required libraries in jupyter

notebook by executing these commands.

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
import matplotlib
matplotlib.rcParams["figure.figsize"]=(20,10)

https://www.kaggle.com/amitabhajoy/bengaluru-house-price-data
https://www.kaggle.com/amitabhajoy/bengaluru-house-price-data

37

These libraries will help us for our initial tasks for data cleaning and data visualizing. As we

discussed in our literature review NumPy will help us for all numerical operation, Pandas

will help us for all data frame operation and Matplotlib will help us for plotting visual graph.

Each module assigned with their short form such as np for NumPy, pd for Pandas, plt for

pyplot of Matplotlib. So, we don’t have to write full form when we execute commands with

libraries. Now, we will read our dataset by executing following command.

pd.read_csv("Bengaluru_House_Data.csv")

Figure 6: Row dataset

Source: Author

 In our dataset we have different types of columns, from them total_sqft is dependent

as our end goal is to predict home size. But other columns are independent, their value can

influence total_sqft of house. Now, we will assign whole dataset as main data frame

executing following command:

Main_Data_Frame =pd.read_csv("Bengaluru_House_Data.csv")
mdf0=Main_Data_Frame

 Step by step we will make improvements in our row dataset and we will assign

updated dataset a new name, which is also known as pipeline in data science term. For

example, mdf0 is our row dataset, unnecessary columns will be removed from it and assign

as mdf1. The reason for removing unnecessary columns is they doesn’t impact much on our

38

dependent variable and by removing these columns, we can reduce size and features of our

dataset for ease of further operations. The code for dropping those columns is:

mdf1=mdf0.drop(['area_type','society','balcony','availability'],axis
= 'columns')
mdf1.head()

Figure 7: Unnecessary columns dropped from dataset

Source: Author

 Now, we left with only columns which are very important for prediction house size

and these will be the columns which customer will use as input value to check house sizes

in different locations. As we can see BHK unite in size columns, it stands for Bedroom-Hall-

Kitchen in Indian term. Price is in lakh unit and in Indian currency INR (1,00,000 INR is

called 1 lakh). We will proceed to data cleaning task now.

4.3 data cleaning

 Data cleaning is part where data scientists spend majority of their time because

usually row data are messy and it became critical to handle missing and unexpected values

sometimes. That’s another reason why we dropped certain columns to keep it short and

beginner friendly for this thesis. When it comes to data cleaning, the very first thing we

should focus on is null values. To check null values in our data set I will execute following

command:

mdf1.isnull().sum()
output:

location 1
size 16
total_sqft 0
bath 73

39

price 0
dtype: int64

 As we can see, we have only 16 null values for size and 73 null values for bath, which

are negligible as compared to total rows 13320. We can use standard deviation or average to

fill those values randomly, but it might be not accurate for our model. When null values are

negligible, we should drop them instead of filling with average. So, in our case I will simply

drop those rows by executing following command:

mdf2=mdf1.dropna()
mdf2.isnull().sum()
output:

location 0
size 0
total_sqft 0
bath 0
price 0
dtype: int64

 We dropped null values from our dataset and assigned name as mdf2 to the new

dataset. Now, let us focus on size feature. As it contains values mixture of numbers and

strings, we need to deal with it. To see unique values of size, I will execute unique command:

mdf2['size'].unique()
output:

array(['2 BHK', '4 Bedroom', '3 BHK', '4 BHK', '6 Bedroom', '3 Bedroo
m',
 '1 BHK', '1 RK', '1 Bedroom', '8 Bedroom', '2 Bedroom',
 '7 Bedroom', '5 BHK', '7 BHK', '6 BHK', '5 Bedroom', '11 BHK',
 '9 BHK', '9 Bedroom', '27 BHK', '10 Bedroom', '11 Bedroom',
 '10 BHK', '19 BHK', '16 BHK', '43 Bedroom', '14 BHK', '8 BHK',
 '12 Bedroom', '13 BHK', '18 Bedroom'], dtype=object)

 As we can see from output, some of size values are measured in BHK unite and some

of them are as bedroom. Technically both values are same as they indicates to number of

bedrooms only. We cannot do numerical operation on string. Thus, we will create new

feature BHK to keep only number of bedrooms. In order to create this feature, we need to

split size values in two parts in numbers and strings. Then we will use separated numbers

in our BHK column. In Python lambda is very popular anonymous function which can takes

pythonic expression as parameter. Lambda function is used as an application and whenever

it uses, it generally means we want to apply this expression to constructed type. Lambda is

40

widely being used in mapping data and for loops as well (Boudreau, 2020). In our case, I

will use following function to split our value:

mdf2['bhk']= mdf2['size'].apply(lambda x: int(x.split(' ')[0]))

In this function, we created new column bhk in data frame mdf2 by applying lambda function

on size column. Simply, this lambda function tokenize whole value of size and split them

with space (‘ ’) from which 1st part will be converted into int from string and will be assigned

in bhk column. We can check bhk columns unique values by executing following function:

mdf2['bhk'].unique()
output:

array([2, 4, 3, 6, 1, 8, 7, 5, 11, 9, 27, 10, 19, 16, 43, 14, 12,

 13, 18], dtype=int64)

 Now, it looks exactly how we wanted for our further operations and we can use bhk

column instead of size. Let us focus on square feet feature. By executing following

command, we can see what unique values total_sqft column contains.

mdf2.total_sqft.unique()
output:

array(['1056', '2600', '1440', ..., '1133 - 1384', '774', '4689'],
 dtype=object)

total_sqft feature contains ranges of square feet, which is not appropriate for numerical

operation for machine learning. So, we can simply tackle this problem by taking average of

range and change it into single value. Following function will be applied to total_sqft column

to detect all values which contains range values or any other type of values expect single

number.

def float_sqft(x):
 try:
 float(x)
 except:
 return False
 return True
This function take values as input and check if the value is float or not. If not then it will

return as false, otherwise it will remain true. I will apply this function to total_sqft columns

by executing following command:

mdf2[~mdf2['total_sqft'].apply(float_sqft)]

41

Here, I used negate operator for function to return only values with range values. Output for

this operation is represented in following figure.

Figure 8: detected range values in ‘total_sqft’ column

Source: Author

 We have 190 rows which have range or other kind of values expect single number.

To handle this problem, we will take average where values are in range and other type of

values we will drop from dataset. I will create following function to convert range values

into average.

def sqft_to_numeric_value(x):
 tokens = x.split('-')
 if len(tokens)== 2:
 return (float(tokens[0])+float(tokens[1]))/2
 try:
 return float(x)
 except:
 return None

This function works by tokenizing values. It will take values as input and if values are in

range, then it splits values in two tokens from (-) operator and return average of both. Else

it return to original value in case of single numbers. Now I will apply this function to

total_sqft column by executing following function:

42

mdf3=mdf2.copy()
mdf3['total_sqft'] = mdf3['total_sqft'].apply(sqft_to_numeric_value)
mdf3

In this command, I created new dataframe mdf3 by copying mfd2 and applying

(sqft_to_numeric_value) function. The output of mdf3 represented in following figure:

Figure 9: Converted ‘total_sqft’ into single values

Source: Author

 As we can see, all values in total_sqft seems like single. But to cross check I will

examine following command on row number 30 because it had range value, as we can see

in figure 8.

mdf3.loc[30]
output:

location Yelahanka

size 4 BHK
total_sqft 2475
bath 4
price 186
bhk 4
Name: 30, dtype: object

43

Now, the value of total_sqft is 2475, which is average of 2100-2850. As our dataset is

cleaned from null values and ununiformed values, we can proceed to next step of data

science life cycle, which is feature engineering.

4.4 Feature engineering

 Feature engineering part is focused on creating new variables or features or modify

them in a way, which can help us for our next task of outliner detection and removal. We

have price of house feature in our dataset but it does not make much sense when we want to

examine how price differs from location to location according to area. So, price per square

feet is a common feature for any real estate organization. Considering this, I will create new

column ‘price_per_sqft’ by executing following command:

mdf4 = mdf3.copy()
mdf4['price_per_sqft'] = mdf4['price']*100000/mdf4['total_sqft']
mdf4.head()

This command will create new dataframe mdf4 which is copy of mdf3. But in mdf4 there is

new column called ‘price_per_sqft’, which is division of price and total_sqft columns. Here

I multiplied price column with 100000 (1 lakh) which is unit of price in our dataset, so our

price per square feet will be normalized unit. Result for this command is represented in

following figure:

Figure 10: Added new feature - ‘price_per_sqft’

Source: Author

 Our second feature is location. Let us focus on structure of location column.

44

len(mdf4.location.unique())

output: 1304

we have 1304 types of different locations in our dataset, which is way more for model

building process. Because in our future task we will convert all location as columns, that

means we will have 1304 more columns. This is known as ‘curse of dimensionality’.

According to (Bellman, 2010), curse of dimensionality is the problem caused by the

exponential increase in volume associated with adding extra dimensions to Euclidean space.

 To tackle this problem, one of the best solution is to come up with ‘other’ category.

Which means there will be plenty of locations, which will have only 1 or 2 houses. So basic

idea is to move all locations in other category, which have less than 10 homes. For this task,

first I will execute following function to know which how many homes are available per

location:

mdf4.location=mdf4.location.apply(lambda x: x.strip())

location_stats =mdf4.groupby('location')['location'].agg('count').sor
t_values(ascending=False)
location_stats

first line of code is lambda function to strip any location, to remove extra spaces from

beginning or end. In second line of code, I created variable called location states which will

give statistics on location by grouping by locations. The result for this code is below:

location
Whitefield 535
Sarjapur Road 392
Electronic City 304
Kanakpura Road 266
Thanisandra 236
 ...
LIC Colony 1
Kuvempu Layout 1
Kumbhena Agrahara 1
Kudlu Village, 1
1 Annasandrapalya 1
Name: location, Length: 1293, dtype: int64

 Now, I will create variable called ‘location_states_less_than_10’ which will contain

all location having less than 10 data points or homes by executing following code:

location_stats_less_than_10 = location_stats[location_stats <= 10]

45

location_stats_less_than_10
output:

location
BTM 1st Stage 10
Basapura 10
Sector 1 HSR Layout 10
Naganathapura 10
Kalkere 10
 ..
LIC Colony 1
Kuvempu Layout 1
Kumbhena Agrahara 1
Kudlu Village, 1
1 Annasandrapalya 1
Name: location, Length: 1052, dtype: int64

As we can see there are 1052 location which have less than 10 homes and now all these

location will be represented in other category. To perform this task, I will execute following

lambda function:

mdf4.location = mdf4.location.apply(lambda x: 'other' if x in locatio
n_stats_less_than_10 else x)
len(mdf4.location.unique())

output: 242

So, now we have only 242 unique location rows which are pretty decent for our future

operations. Following figure represents dataframe with latest features.

46

Figure 11: Dataframe after feature engineering

Source: Author

4.5 Outlier detection and removal

 Outliers are the data points which are data errors or in some case they are not data

errors but they represents the extreme variation in dataset. Although they are valid sometime,

still it make sense to remove them otherwise they can create some issues for accuracy of

model later on. So, this section will be focus on various type of outliers and their removal

techniques.

 In real estate domain, there are some basic concepts for square feet area per bedroom

which cannot be less than some threshold value. This threshold values are decided by real

estate owner or business manager. In our case we assume that we discussed with our business

manager and by their opinion, there cannot be any bedroom with less than 300 square feet

area. So, our task will be to detect data points with less than 300 square feet per bedroom. I

will execute this command and check if our dataset have this kind of errors:

47

Figure 12: Square feet per bedroom Outliers detection

Source: Author

 As we can see in above figure, we have 744 rows which have less than 300 square

feet per bedroom, which is clearly data errors. To remove this data points from dataset I will

execute following command:

mdf5= mdf4[~(mdf4.total_sqft/mdf4.bhk<300)]
mdf5.shape

output: (12502, 7)

This command creates new data frame mdf5 which is mdf4 with removed outliers of square

feet per bedrooms.

 Now, it’s time to focus on price per square feet feature which we created in feature

engineering chapter. Following command will be describe stats of price_per_sqft column:

mdf5.price_per_sqft.describe()

output:

count 12456.000000

48

mean 6308.502826
std 4168.127339
min 267.829813
25% 4210.526316
50% 5294.117647
75% 6916.666667
max 176470.588235
Name: price_per_sqft, dtype: float64

From the above statistical data, we observe that min price per square feet is 267.82 which is

very rare in city like Bengaluru. Also, maximum price is 176470 which is extremely high

but it might be possible for some luxurious house in prime location. Even though these are

not errors, we need to remove this data points to make our data normally distributed.

Otherwise, these extreme values might lead our model to wrong conclusion. In order to

elimination of this values I will create following function:

def price_per_sqft_outlier_elimination(df):
 df_out =pd.DataFrame()
 for key, subdf in df.groupby('location'):
 m=np.mean(subdf.price_per_sqft)
 st = np.std(subdf.price_per_sqft)
 reduced_df =subdf[(subdf.price_per_sqft>(m-st)) & (subdf.pric
e_per_sqft<=(m+st))]
 df_out =pd.concat([df_out,reduced_df],ignore_index=True)
 return df_out

 This function removes extreme values based on standard deviation. In our case we

are assuming that our data should be normally distributed and most of data points should lie

between mean and one standard deviation. Basic function of this function is it will take a

dataframe as an input and group by location. Groping data by location is very important

because price differs from location to location. So, per location I am getting ‘subdf’ (sub

dataframe) for which I am calculating m (mean) and std (standard deviation). Then I am

filtering data points which are beyond one standard deviation. So, anything above (m - std)

and anything below (m + std) I will keep it in my reduced_df and I will keep appending

those dataframe per location and it will give me output dataframe as df_out. Now, I will

apply this function on mdf5 and create new dataframe mdf6 by following command:

mdf6=price_per_sqft_outlier_elimination(mdf5)
mdf6.shape

output: (10241, 7)

49

As per our output of new dataframe, we removed 2,261 data points with extreme values.

 Now, we proceed to check if we have any outliers in our feature of bedrooms. There

might be many cases where 2bhk homes have higher price than 3bhk in same location. There

might be many reason for that such as property’s age and condition. But for our case we

need to check if we have that data points or no in any random location. If we have, than it is

necessary to remove or decrease those values for better accuracy of our model. For this task,

I will create matplotlib PyPlot function to visualize our data in more convenient way:

def plot_scatter_distribution(df,location):
 bhk2 = df[(df.location == location) & (df.bhk == 2)]
 bhk3 = df[(df.location == location) & (df.bhk == 3)]
 matplotlib.rcParams['figure.figsize'] = (15,10)
 plt.scatter(bhk2.total_sqft,bhk2.price, marker = '*',color ='blu
e', label = '2 BHK', s = 80)
 plt.scatter(bhk3.total_sqft,bhk3.price, color ='orange', label =
'3 BHK', s = 80)
 plt.xlabel("Total Square Feet Area")
 plt.ylabel("Price")
 plt.title(location)
 plt.legend()
 plt.grid()

This function will take dataframe and location as input and it will plot scatterplot for 2bhk

vs 3 bhk. For example, if we take ‘Sarjapur road’ as location then our command and result

will look like this:

plot_scatter_distribution(mdf6, "Sarjapur Road")

50

Figure 13: Price outliers of bhk detected

Source: Author

 As we can see from above figure there are many data points of 3bhk which has less

price than 2bhk. Our goal is to minimize those data points. To tackle this issue, I will create

following function:

def bedroom_outliers_elimination(df):
 exclude_indices = np.array([])
 for location, location_df in df.groupby('location'):
 bhk_stats = {}
 for bhk, bhk_df in location_df.groupby('bhk'):
 bhk_stats[bhk] ={
 'mean' : np.mean(bhk_df.price_per_sqft),
 'std' : np.std(bhk_df.price_per_sqft),
 'count': bhk_df.shape[0]

 }
 for bhk, bhk_df in location_df.groupby('bhk'):
 stats = bhk_stats.get(bhk-1)
 if stats and stats['count']>5:
 exclude_indices = np.append(exclude_indices,bhk_df[bh
k_df.price_per_sqft<(stats['mean'])].index.values)
 return df.drop(exclude_indices, axis = 'index')

51

 This function takes dataframe as an input. First it generate for loop for grouping

dataframe (location_df) by location in which it generates another for loop to grouping

dataframe (bhk_df) by bhk. For each bhk it will compute mean, standard deviation and count.

Then, I created another for loop which will filter data points based on our desired filter (for

example, price of 3bhk home should not be less then mean of 2bhk home). Now, I will apply

this function to mdf6 and create new dataframe mdf7 by executing following command:

mdf7 = bedroom_outliers_elimination(mdf6)
mdf7.shape

output: (7329, 7)

In our new dataframe mdf7, we remain with 7329 rows. To cross check result of our function,

I will plot same scatterplot as figure 13, but with new dataframe.

plot_scatter_distribution(mdf7, "Sarjapur Road")

Figure 14: Price outliers of bhk removed

Source: Author

52

 As we can see from above figure, we minimized price outliers of bhk compared to

figure 13. It is very critical to remove them all but in my opinion this kind of abnormalities

are fine to have because it is not necessary that 3bhk are always expensive than 2bhk in real

life.

 Now, I will plot a histogram with help of matplotlib to visualize density of homes

per square feet by executing following code:

matplotlib.rcParams["figure.figsize"] =(20,10)
plt.hist(mdf7.price_per_sqft,rwidth = 0.9, color="teal")
plt.xlabel("Price Per Square Feet")
plt.ylabel("Count")

Figure 15: House density of price per square feet

Source: Author

 As we can see from above figure, most of our house are in price range of 0-10000

per square feet. This is a gaussian curve that means now our data is normally distributed.

 Now, let us explore bathroom feature. To see unique values of bathrooms I will

execute following function:

mdf7.bath.unique()

output:

array([4., 3., 2., 5., 8., 1., 6., 7., 9., 12., 16., 13.])

53

As we can see we have huge amount of bathrooms like 13 and 16 as well. Here we need to

check some criteria of how many bathrooms a particular house can have. In that case,

business manager comes in frame to decide this criteria. For our task, business requirement

is that one house cannot have more bathrooms than bedrooms+2. Because in real life, if we

have 3bhk apartment we cannot have 6 bathrooms. If we have these types of house in our

dataset, we will consider it as outliers and remove them. Following command and result will

help us to check if we have house having more bathrooms than bedrooms+2

Figure 16: bathroom outliers detected

Source: Author

 We have only 4 bathrooms outliers. To remove them I will create new dataframe

mdf8 by executing following command:

mdf8=mdf7[mdf7.bath<mdf7.bhk+2]
mdf8.shape

output: (7251, 7)

 Now we removed all outliers from our dataframe. So, I will drop unnecessary

columns and create a new dataframe mdf9 by executing following function:

mdf9 = mdf8.drop(['size','price_per_sqft'], axis = 'columns')
mdf9.head()
output:

54

Figure 17: Final dataframe after all outliner removal

Source: Author

 Above figure represents final dataset after all process of data cleaning, feature

engineering and outliers removals. This dataframe contains 7251 rows and 5 columns. This

dataset is now ready for model building and machine learning process.

4.6 Machine learning model building

 This chapter is focused on building a machine learning model. Various machine

learning methods will be applied on our dataset such as ‘one-hot-encoding’ and ‘train test

split’. Cross validation and hyperparameter tuning process will be discussed in this section

to select best machine learning algorithm and their best parameter as well.

4.6.1 One-hot-encoding

 In our final dataset, we have 5 columns from which location is containing text data.

For machine learning process, it is necessary to have numerical data only otherwise it cannot

be proceed further. One of the best method for transforming categorical feature into

numerical feature is ‘one-hot-encoding’, it is also known as dummies method. To perform

one-hot-encoding on our dataset I will execute following command:

dummies = pd.get_dummies(mdf9.location)
dummies.head()
output:

55

Figure 18: dummy columns created for location

Source: Author

 As we can see from above figure, all 242 location categories are converted into

dummy columns, which are stored in separate dataframe called ‘dummies’. If data value in

particular column represent 1 then it means that home is located there and the rest columns

values will be 0. Now, I will join both dataframe dummies and mfd9 together using concat

function as shown below:

mdf10 = pd.concat([mdf9,dummies.drop('other', axis = 'columns')], axi
s = 'columns')

mdf11 = mdf10.drop('location', axis = 'columns')
mdf11.head(3)

In first line of code, I created new dataframe mdf10 which join mdf9 and dummies dataframe

together. I also dropped column ‘other’ because in dummies we can live with 1 less column

and we can know it’s value from values of other columns. For example, if the rest of columns

will be 0, then we can assume that the home will be in other category. In second line I created

new dataframe mdf11 by dropping location column from the previous dataframe because

now we have all location as columns so it does not make sense to have them in row. The

result of above code is represented in following figure:

56

Figure 19: Converted location into numerical category with one-hot-encoding

Source: Author

Actual shape of the mdf11 is:

mdf11.shape
output: (7251, 245)

4.6.2 Train-Test split

 Train-test method is used to estimate performance of machine learning algorithm.

We can also train the model using entire dataset but it is not an idol approach. Because our

model already seen whole data so it will give 100% accuracy on machine learning algorithm.

That is why train test split method idol strategy when dataset is huge. Basic concept of train-

test split is we divide our dataset in two parts- training data and testing data, ratio can be

anything, but 80:20 is most common and we will take the same in our case. We will train

model with 80% of data and test model accuracy with 20% of data.

 Before we divide our dataset into training and testing, I will create dependent and

independent variable from dataset. In our case, house size is dependent variable as we are

going to predict it based on other variable and rest of the variables will be independent. The

code for this is:

X = mdf11.drop('total_sqft', axis = 'columns')
y = mdf11.total_sqft

X is defined as independent variable and dropped total_sqft column from it. Y is defined as

dependent variable, which contains only total_sqft column.

57

 Now, I will import train-test split method from Scikit learn model selection library

by executing following code:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size = 0.
2, random_state = 10)

We divided our data and used 20% as test data and remaining 80% as training data. Random

state parameter is set as 10 so train-test data will remain same each time. If we do not provide

random state variable or set as 0, then data will be randomly changed each time when we

execute this code.

4.6.3 Machine learning algorithms and accuracy estimation

 Our model is ready to train by machine learning algorithm now. First, I will try linear

regression algorithm and examine score of model. I will import linear regression model from

scikit learn linear model and code for this is:

from sklearn.linear_model import LinearRegression
lr_clf = LinearRegression()
lr_clf.fit(X_train,y_train)
lr_clf.score(X_test,y_test)
print("The trained Linear Regression Model has a score of : " + str(l
r_clf.score(X_test,y_test)))

output:

The trained Linear Regression Model has a score of : 0.85253305552204
74

 We got pretty decent score from linear regression algorithm but it was for only one

random split, which might have different score for other split. So, here I would like to import

K-fold cross validation method and perform shuffle-split method to get more reliable results

of particular algorithm. I have elaborated detail theoretical concept and principal of K-fold

cross validation in literature review part in chapter 3.2.1. the code for this task is below:

from sklearn.model_selection import ShuffleSplit

58

from sklearn.model_selection import cross_val_score

cv = ShuffleSplit(n_splits =5, test_size = 0.2, random_state = 0)

print("The output correlation array is as shown below; ")

cross_val_score(LinearRegression(), X, y ,cv = cv)

output:
The output correlation array is as shown below;

array([0.83006819, 0.74838861, 0.84647633, 0.76505671, 0.74945186])

 I set shuffle-split as 5 which means our data will be split in to 5 random parts and

will be shuffled each time and will return to their individual scores. We have observed from

above score that linier regression is giving us very high accuracy in every splits. But in real

life project it is very important to compare other algorithms as well to obtain as much higher

accuracy as we can. So, my text step will be to compare lasso regression and decision tree

regressor algorithm with linear regression. Along with it, I will import grid search cv to come

up with best parameter of each algorithm. Theoretical concepts and principal of grid search

cv is described in literature review part in chapter 3.3.1. the code for this task is below:

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Lasso
from sklearn.tree import DecisionTreeRegressor

def look_for_best_model_and_tuning_parameters(X,y):
 algos = {
 'Linear_Regression':
 {
 'model' :LinearRegression(),
 'params':
 {
 'normalize': [True, False]
 }
 },

 'Lasso Model' :
 {
 'model': Lasso(),
 'params':
 {
 'alpha' : [1, 2],
 'selection' : ['random', 'cyclic']
 }
 },

 'Decision Tree Model' :
 {
 'model':DecisionTreeRegressor(),

59

 'params':
 {
 'criterion' :['mse', 'friedman_mse'],
 'splitter' : ['best','random']
 }
 }
 }

 scores = []
 cv = ShuffleSplit(n_splits = 5, test_size = 0.2, random_state = 0
)
 for algo_name, config in algos.items():
 gs = GridSearchCV(config['model'], config['params'], cv = cv,
return_train_score=False)
 gs.fit(X,y)
 scores.append({
 'model' : algo_name,
 'best_score' :gs.best_score_,
 'best_params' : gs.best_params_,
 })
 return pd.DataFrame(scores,columns=['model','best_score','best_pa
rams'])

In this code, first I imported grid search cv, lasso regression model and decision tree model

from scikit learn. Then I defined a function which takes x(independent variable) and

y(dependent variable) as input and it goes by each algorithms and their parameters. In last

part, I created score object to store scores of each algorithms in a dataframe. Gs will

configure each algorithm and their parameters and cv is set for 5 times shuffle-split. I will

execute following command to apply this function on our dataset:

print("The Optimum Models that can Characterise the Approximate Size
of a home are tabulated below ")
look_for_best_model_and_tuning_parameters(X,y)

output:

Figure 20: Scores and parameters values comparison of algorithms

Source: Author

60

4.6.4 Function for home size prediction

 As we can see from above figure, linear regression is winner for this model with

highest accuracy score of 78.78%. So, I will use linear regression algorithm to build

house size prediction model. We have already created lr_clf (linear regression model)

previously, so I will just create a function home_size_estimation and use this lr_clf model

in it. The code for this task is below:

def home_Size_Estimation(location,price,bath,bhk):
 loc_index = np.where(X.columns == location)[0][0]

 x = np.zeros(len(X.columns))
 x[0] = price
 x[1] = bath
 x[2] = bhk
 if loc_index >= 0:
 x[loc_index] = 1
 return lr_clf.predict([x])[0]

Above function takes location, price, bath and bhk as input and return estimated size of

house.

4.6.5 Exporting model

 Finally, our size house prediction model is built. We will interpret results of this

function in result and discussion part of this thesis. For now, I will export this model into

pickle file by executing following code:

import pickle
with open('House_Price_Model.pickle', 'wb') as f:
 pickle.dump(lr_clf,f)

It is very simple to export our model in pickle file, we just define model name and dump

model classifier in it. This pickle file does not contain actual data but it contains only

coefficients, intercepts and other parameters. Other than the model we also need columns

information as we can see in our home_size_estimation function location and index of

columns are very important. For storing those column, I will use json file and execute

following command:

61

import json
columns={
 'data_columns' : [col.lower() for col in X.columns]
}
with open("columns.json", "w") as f:
 f.write(json.dumps(columns))

62

5. Results and discussion

5.1 Result interpretation of house size estimation function

 To predict area occupied by a home, we have to call a function

‘home_size_estimation’. Parameters of the function are illustrated as below:

Home_size_estimation(location, price, bath, bhk).

 This model will ask for inputs from customer and will predict size of home by given

values. Let us assume, customers have already their decided budget of 20 lakh INR. As per

their family size they are looking for 3 bath and 3 bhk apartment. But their main concern is

location as they are confused in three location and they want to know which location will

offer them bigger house. So, here we have results for 3 different location:

1)home_Size_Estimation('Raja Rajeshwari Nagar',20,3,3)
 Output: 2607.9527865108266

2) home_Size_Estimation('Whitefield',20,3,3)
 Output: 2533.4277211332465

3) home_Size_Estimation('Sarjapur Road',20,3,3)
 Output: 2433.19471401022

 As we can see from the output, the customer would go for ‘Raja Rajeshwari Nagar’

because this area provides bigger size of house then other 2 in the same price. They can also

change the criteria and the output will keep changing accordingly as well.

5.2 Discussion

 My main motivation for thesis was to create a unique yet very interesting and

valuable approach to make improvements in real estate industry with the help of data science

techniques. As per our results, I obtained it by building a home size prediction model. As we

all know, some reputed real estate websites have house price prediction model but the most

valuable thing we look other than price is the size of house. Because generally, customers

63

get approval of their bank loan before buying any property and their budget is fixed and

there is no reason to look for house price anymore. So, their main concern will be to choose

best and specious house from their desired location. In this case, this feature of size

prediction will be very helpful and flexible to decide location of the house.

 Even though our model have pretty high accuracy of 78.78%, there are certain

limitations and ideas to improve accuracy score. The limitations are features in our data as

size does not depends on only bedrooms and baths. There might be many luxurious houses

with gardens, garages and terrace which influence house size a lot. Our dataset was only

about one city and limited features. But we can take it on next level by increasing data size

with multiple cities and analysing their other features as well. We also removed null values

and outliers from our dataset to keep it short for this thesis, but in real world these values

can be filled with various techniques as per business requirements. There are various

algorithm such as XG boost and RNN (recurrent neural network) which can be applied in

order to get more accurate score.

 After working on this research topic, I came to know a fact that house price or size

are just a number which depends on a lots of factor and have their own limitations. For

example, house price cannot be only decided by size, feature and location of the house. It is

also dependent on quality and age of the house. This problem also can be solved by image

processing of the house with the help of technologies of data science, artificial intelligence

and neural network. This is very interesting approach to focus on and might be my future

research topic.

64

6. Conclusion

 The bachelor thesis objective was to study literature publications and web resources

to know modern data science and machine learning techniques along with various python

libraries for building a home size prediction model. This bachelor thesis represents life cycle

of a real-world data science project which includes various stages like accessing raw data,

data cleaning, feature engineering, outliers detection and removal, machine learning

methods and algorithm and finally model creation. In the second chapter of this thesis, I

discussed goal of the study and in depth methodologies used to achieve desired results from

this process.

 The third chapter of the study demonstrate literature review to understand theorical

concepts of topics like machine learning methods and algorithms, python and its libraries

with used references and bibliography. In the fourth chapter of this study, I conducted

practical part based on methodologies to obtain objectives of this thesis. The main use of

‘home size estimation function’ and its results to make wise decision to buy a house are

discussed in the fifth chapter of the study results and discussion.

 To sum up, data science is a must have technology for development of any

organization or just for staying in market as well. Because every day there are new data

science techniques and machine learning algorithms are being discovered which makes easy

to develop new business strategies and technological development for better human life. In

my opinion, every business or industry should approach new data driven technologies.

Whether it is a new startup or a giant organization, whether it is product based company or

service based company, they should use their data wisely to make smart decisions which not

only impact society economically but socially as well. Finally, I conclude my thesis and

affirm that I have accomplished all the objectives which were assigned to me.

65

7. References
{Matplotlib: A 2D graphics environment. Hunter, J. D. 2007. 3, s.l. : IEEE COMPUTER

SOC, 2007, Vol. 9, pp. 90-95.

A Comparative Study of Ordinary Cross-Validation, v-Fold Cross-Validation and the

Repeated Learning-Testing Methods. Burman, Prabir. 1989. 3, Davis, California : Oxford

university press, 1989, Vol. 76. ISSN: 00063444.

A survey of cross-validation procedures. Celisse, Sylvain Arlot & Alain. 2010. 40-79, s.l. :

Statist. Surv., 2010, Vol. 4. ISSN : 1935-7516.

Bayesian and LASSO Regressions for Comparative Permeability Modeling of Sandstone

Reservoirs. AI-Mudhafar, watheq J. 2018. 1, s.l. : Springer US, February 10, 2018, Natural

Resources Research, Vol. 28, pp. 47-62. ISSN: 1520-7439.

Bellman, Richard Ernest. 2010. Dynamic Programming. NJ, United States : Princeton

university press, 2010. ISBN:978-0-691-14668-3.

Bernd Klein, Bodenseo. 2011. Nuerical & scientific computing with Python. introduction

into pandas. [Online] 2011. https://www.python-course.eu/pandas.php.

Bhatia, Richa. 2012. Analytics India Magazine. WHY DO DATA SCIENTISTS PREFER

PYTHON OVER JAVA? [Online] Analytics India Magazine, 2012.

https://analyticsindiamag.com/why-do-data-scientists-prefer-python-over-java/.

Boudreau, Emmett. 2020. Scientific Python With Lambda. The exact meaning a proper

usage of Python’s Lambda function: Python’s greatest syntax for scientific programming.

October 22, 2020.

Brownlee, Jason. 2015. Start machine learning. Basic concepts in machine learning.

December 25, 2015.

Chakraborty, Amitabha. 2017. Bengaluru House price data. Kaggle. [Online] October

2017. [Cited: October 31, 2020.] https://www.kaggle.com/amitabhajoy/bengaluru-house-

price-data.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. 2003. A Practical Guide to

Support Vector Classification. Taiwan : research gate, research gate, 2003.

66

documentation, NumPy. NumPy v1.19 Manual. NumPy. [Online] The SciPy community.

[Cited: September 16, 2020.] https://numpy.org/doc/stable/.

documentation, pandas. API reference. Pandas. [Online] the pandas development team.

[Cited: September 17, 2020.] https://pandas.pydata.org/docs/reference/index.html.

Eppler, Jochen Martin. 2015. A convinient interface to the NEST simulator. [book auth.]

Eilif Muller. python in neuroscience. Nijmegen : Rolf Kotter, 2015.

Evaluation of Decision Tree Pruning Algorithms for Complexity and Classification

Accuracy. Patil, Dipti D. 2010. 02, s.l. : International Journal of Computer Applications,

2010, International Journal of Computer Applications, Vol. 11.

Foote, Keith D. 2019. A Brief History of Machine Learning. Data topics. [Online]

Dataversity, March 26, 2019. [Cited: August 05, 2020.] https://www.dataversity.net/a-brief-

history-of-machine-learning/.

Glen, Stephanie. 2015. Lasso Regression: Simple Definition. StatisticsHowTo. [Online]

September 24, 2015. [Cited: August 06, 2020.] https://www.statisticshowto.com/lasso-

regression/.

Gupta, Mohit. 2018. ML | Introduction to Data in Machine Learning. Geeksforgeeks.

[Online] may 01, 2018. [Cited: August 01, 2020.] https://www.geeksforgeeks.org/ml-

introduction-data-machine-learning/?ref=lbp.

Hackeling, Gavin. 2017. Mastering machine learning with scilkit learn. Birmingham :

packt publishing ltd., 2017. ISBN: 978-1-78829-987-9.

Hsu, Hansen. 2018. 2018 MUSEUM FELLOW GUIDO VAN ROSSUM, PYTHON

CREATOR & BENEVOLENT DICTATOR FOR LIFE. s.l. : computer history museum, 2018.

John Huter, Darren dale. 27 may, 2007. The Matplotlib User’s Guide. 27 may, 2007.

kassambara. 2018. Simple Linear Regression in R. STHDA Statistical tools for high-

throughput data analysis. [Online] March 10, 2018. [Cited: February 20, 2021.]

http://www.sthda.com/english/articles/40-regression-analysis/167-simple-linear-

regression-in-r/.

Kotsiantis, S.B. 2007. Supervised machine learning- A review of classification techniques.

[book auth.] Ilias G. Maglogiannis. Emerging Artificial Intelligence Applications in

Computer. Greece : University of Peloponnese, 2007.

67

Leo (Liang-Huan) Chin, Tanmay Dutta. 2016. NumPy Essentials. Birmingham : Packt

publishing ltd., 2016. p. 11. ISBN: 978-1-78439-367-0.

LLC, Cogito Tech. 2019. What are Features in Machine Learning and Why it is Important?

Medium. [Online] Medium, July 15, 2019. [Cited: August 01, 2020.]

https://medium.com/@cogitotech/what-are-features-in-machine-learning-and-why-it-is-

important-e72f9905b54d.

McKinney, Wes. january 2011. 1pandas: a Foundational Python Library for DataAnalysis

and Statistics. [Article] s.l. : researchgate, january 2011.

—. 2012. Python for data analysis. 1st eddition. Sebastopol : O'reilly media, 2012. ISBN:

978-1-449-31979-3.

Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar. 2018. foundation of machine

learning. 2nd eddition . Cambridge, England : the MIT press, 2018. ISBN: 978-0-262-

03940-6.

Oliphant, Travis E. 2015. Guide to numpy . 2nd eddition. s.l. : creater space, 2015. ISBN:

978-1-51730-007-4.

Pierce, Rod. 2018. Equation of a Straight Line. MathsIsFun.com. [Online] Rod Pierce

DipCE BEng, october 12, 2018. [Cited: july 31, 2020.]

http://www.mathsisfun.com/equation_of_line.html.

Plato. 2017. Republic. s.l. : Pangiun books, 2017. p. 480. ISBN: 0140455116.

scikit-learn, Machine Learning in {P}ython. Pedregosa, F. and Varoquaux, G. and

Gramfort, A. and Michel, V. 2011. s.l. : Journal of Machine Learning Research, 2011, Vol.

12, pp. 2825--2830.

Sharma, Abhishek. 2020. 4 Simple Ways to Split a Decision Tree in Machine Learning.

decision tree split methods. [Online] June 30, 2020. [Cited: August 30, 2020.]

https://www.analyticsvidhya.com/blog/2020/06/4-ways-split-decision-tree/.

Suzuki, Kunihiro. 2019. statistic - the fundamentals. New York : Nova Science Publishers,

Incorporated, 2019. p. 162. Vol. 1. ISBN : 9781536144628.

The group lasso for logistic regression. Meier, Lukas. 2008. 1, Zurich : J.R. statist, January

04, 2008, Journal of the royal statistical society , Vol. 70, pp. 53-71. 1369-7412/08/70053.

68

Tosi, Sandro. November 2009. Matplotlib for python developers. [ed.] Rakesh Shejwal.

Birmingham, UK : Packt publishing ltd., November 2009. ISBN: 978-1-847197-90-0.

Weisberg, Stanford. 2005. Applied Linear Regression. 3rd edition. Hoboken, New Jersey :

John Wiley & sons, 2005. p. 24. ISBN : 0-471-66379-4.

	1. Introduction
	2. Objectives and Methodology
	2.1 Objectives
	2.2 Methodology

	3. Literature review
	3.1 Machine learning
	3.1.1 Data
	3.1.2 Features
	3.1.3 Machine learning algorithms
	3.1.3.1 Linear regression
	3.1.3.2 Lasso Regression
	3.1.3.3 Decision Tee

	3.2 Cross-Validation in Model Selection
	3.2.1 K-fold cross-validation

	3.3 Hyper Parameter Tuning in Machine Learning
	3.3.1 Grid search CV

	3.4 Python for Data Science
	3.5 Essential Python Libraries for Data Science
	3.5.1 NumPy:
	3.5.2 Pandas
	3.5.3 Matplotlib
	3.5.4 Scikit-Learn

	4. Practical part
	4.1 project tool
	4.2 Dataset
	4.3 data cleaning
	4.4 Feature engineering
	4.5 Outlier detection and removal
	4.6 Machine learning model building
	4.6.1 One-hot-encoding
	4.6.2 Train-Test split
	4.6.3 Machine learning algorithms and accuracy estimation
	4.6.4 Function for home size prediction
	4.6.5 Exporting model

	5. Results and discussion
	5.1 Result interpretation of house size estimation function
	5.2 Discussion

	6. Conclusion
	7. References

