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Data science 

 

Abstract  

 In this thesis the development of house size prediction model for a real estate website 

is presented. This model is a function which requires inputs from customers. These input can 

be customer’s desired requirements such as location, price, number of bedrooms and 

bathrooms. Based on these inputs, the model will predict estimated size of the house from 

which customer can choose the best.  

 For this purpose, I used python and its machine learning libraries like NumPy, 

Pandas, Matplotlib and Scikit Learn as a tool. These tools are very efficient and helpful to 

perform task of data cleaning and data modelling on a huge dataset. After data modelling 

there is introduced the machine learning process, which contains various methods, 

techniques and machine learning algorithm applications. Finally, I created house size 

prediction function based on the best suitable algorithm.  

 Machine learning is a huge area of data science studies that could be used in many 

different ways such as business, health sectors, education etc. This bachelor thesis 

particularly focused on real estate business and analyse how data science plays revolutionary 

role in real estate industry.  

 

Keywords 

Data science, Big data, Data cleaning, Machine learning, Python, Feature engineering  
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Datová věda 

 

Abstrakt 

 V této práci je představen vývoj predikčního modelu velikosti domu pro realitní web. 

Tento model je funkce, která vyžaduje vstupy od zákazníků. Těmito vstupy mohou být 

požadavky zákazníka, jako jsou umístění, cena, počet ložnic a koupelen. Na základě těchto 

vstupů bude model předpovídat odhadovanou velikost domu, ze kterého si zákazník může 

vybrat nejlepší. 

 Za tímto účelem je použit nástroj Python a jeho knihovny strojového učení jako 

NumPy, Pandas, Matplotlib a Scikit Learn. Tyto nástroje jsou velmi účinné a užitečné při 

provádění úkolů čištění a modelování velkých dat. Po datovém modelování je představen 

proces strojového učení, který obsahuje různé metody, techniky a aplikaci algoritmu 

strojového učení. Nakonec vytvářím funkci predikce velikosti domu na základě 

nejvhodnějšího algoritmu. 

 Strojové učení je obrovská oblast studií datových věd, kterou lze použít mnoha 

různými způsoby, jako je obchod, zdravotnictví, vzdělávání atd. Tato bakalářská práce se 

zaměřila zejména na obchod s nemovitostmi a analyzovala, jak věda o datech hraje revoluční 

roli v realitním průmyslu. 

 

Klíčová slova 

Věda o datech, Velká data, Čištění dat, Strojové učení, Python, Návrh funkcí 
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1. Introduction 
 

 Today we live in a world which generates tons of data, which gives birth to today’s 

data driven technologies. Now a days we come across to these technologies in our day-to-

day life, whether it is product recommendation on websites or social media, movie or show 

recommendation on various streaming service and many more. Data is being widely used in 

every industry such as IT technologies, health sectors, finance and marketing, real estate and 

so on. Here we can see that we have a great opportunity to tackle problems easily and 

effectively compared to previous era, which makes earth a better place to live.  

 Main reason is for rapidly growing revolution is “Big data” available now, which 

was not the case before. Now it is also possible to predict future from available data pattern 

of past years. Data is not only about the numbers, pictures, audio, or user information, but it 

is also about to observe human behaviour and their living pattern which can be used to 

develop automated technologies such as smart house, self-driving cars, gadgets like Alexa 

and various artificial intelligence software. All these technologies were unrealistic and 

untrusted by humans initially, which could be never possible without a problem and creative 

mind. As being said “ necessity is mother of invention”. (Plato, 2017)  

 Things like internet, data science, artificial intelligence (AI), machine learning (ML) 

cannot be underestimated for improvement of human life and technical development, 

especially after Covid-19 pandemic when digitalization took place in every industry. If we 

need an efficient and qualitive solution for any real-world problems, then individual should 

try possible modern approach to tackle it. This modern approach to use data for decision 

making, boost business and improve accuracy in various tasks, which is known as “Data 

science”.  

 Undoubtedly data science is most demanding and profitable technology for any 

businesses. Any business growth is highly depended on how they collects meaningful data 

and make wise decisions for their business from it. If we take latest example of WhatsApp 

new privacy rule to use user data for Facebook’s recommendations and advertisement, it 

might be inspired by Google. Most commercials prefer Google to advertise their product. 

The reason is Google receives plenty of users data from their various services and platform 

and the way they use it, is on next level. We can get this idea from experiencing most relevant 

product recommendation and offers on Google platform, which we browsed in chrome or 
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you tube depending on our current location, but Facebook is still lacking in this area. So, 

this might be their new strategy to use WhatsApp data for improving their Facebook 

commercials quality.  

 If we take a look at real estate industry, it has been totally revolutionized by data 

science and machine learning technology now a days. We often see price prediction model 

on their websites to know worth of the house, for example Zillow have one model called 

‘Zestimate’. It helps customers as well as the real estate agent for buying or listing house on 

a particular medium. That potential motivated me to create a unique approach in real estate 

industry, using data science and machine learning methods.  

 In this thesis, I will create a size-prediction model for a real-estate website. This 

model will work with numeric and text data, which will require inputs from user for their 

desired criteria and will give estimated possible size of house they will get. This model 

creation will include various data science techniques and machine learning algorithms. This 

unique approach to help customers for selecting their dream home will help real-estate site 

to improve their performance as well.  

 The theoretical knowledge for this task will be covered. I will discuss initial data 

structure and the change we make in it gradually to prepare it for model training. Different 

stages for this model training will be discussed with coding and description. Various 

machine learning algorithms are used to prepare model for high accuracy results.  
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2. Objectives and Methodology  
 

2.1 Objectives  
 

 The thesis is focused on real estate business to create unique experience not only to 

satisfy their existing customers but create new impact in real estate market and attract more 

customers for them. Now a days common feature on each reputed real estate site we can see 

is house price estimation. It is a great innovation of data science field but to make it unique 

from the rest of websites I came across to house size prediction. It can be totally different 

and interesting approach to pay attention on customer’s specific need. For example, 

customer always have their fixed budget which is most important and first requirement to 

focus on. This model will help them to select the best house they can get in their budget. 

Then it comes to number of bedrooms and how specious they are, number of baths, few 

desired location to select. Considering, all these factors they can have estimate of size of a 

house. After analyzing all results, they can choose bigger and specious house for them.   

 The main objective of this thesis is to derive valuable information from Big data to 

make strategic decisions which can be beneficial for business goals in future.  

 To obtain main objective, the development of this bachelor thesis will also tackle the 

creation of these 4 artifacts as partial objectives: 

• Create literature review in the field of data science and machine learning methods. 

• Analyze the python libraries for data science. 

• Create size prediction model for a real estate website. 

• Synthesize the results of practical part and propose recommendations for practice. 

  

2.2 Methodology  
 

 The technical overview of the study is based on of scientific books and web resources 

related to data science techniques, machine learning and python. A systematic review of 

these aspects will be discussed in the literature review of this thesis. All the publications and 
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literature were helpful during work. There are also citations available for some important 

parts.  

 First, I studied business requirements for a data science task, which is to build unique 

model of house size prediction for their website. Secondly, we will need data to train our 

model for further prediction. The data for this thesis will be directly downloaded from the 

Kaggle dataset (Chakraborty, 2017). This data will be used only for the study purpose of this 

thesis. We will primarily use Jupyter notebook with anaconda distribution as a tool to 

implement python programming language and windows operating system for our entire task.  

 As soon as we have data, we can start examining and exploring data. Row data will 

not be clean in majority of cases including our dataset in this work. For data cleaning we 

will use python libraries such as NumPy and Pandas. These libraries are very handy to handle 

numeric values and data frames. As we go further, we will need to visual our data for better 

understanding. We will use Matplotlib library for plotting graphs for data visualization. Once 

our data is cleaned, we will move towards feature engineering and outliers detection and we 

will prepare it for machine learning model.  

 For our machine learning part we will use supervised machine learning (Kotsiantis, 

2007), which means our data set will be labelled with correct prediction values including 

training dataset. One-hot-encoding method will be used to reduce dimensionality of string 

data, which is location in our case. Train-test method will be used to apply machine learning 

algorithm on training data. Scikit learn model selection will be used to implement train test 

split method and for machine learning algorithm as well.  K-fold cross validation and grid 

search CV will be used to come up with best scoring model and its parameters among three 

machine learning algorithms, which are  linear regression, lasso regression and decision tree.   

 For saving model we will use pickle (.pkl) file and json file. Which will include final 

pre-trained model, model’s weightage, embedding matrix and data columns. This saved 

model will be used in real estate website for house size prediction.  
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3.  Literature review  
 

3.1 Machine learning 
 

  Machine learning is a well-known concept in the domain of data science, artificial 

intelligence, and computer science - also known as statistical learning and predictive 

analytics. Arthur Samuel of IBM firstly used the machine learning term in 1952. In 1950, he 

wrote the first computer program. The program was a game of checkers, which makes 

winning strategies and incorporating moves. Later, Samuel also designed various 

mechanisms allowing his program (Foote, 2019).    

 As a data scientist, one must become familiar with machine learning concepts 

because both data science and machine learning overlap. We can say: 

• Data science is used to gain insights from data and understanding of data patterns. 

• Machine learning is used for making predictions based on available data. 

 The above predictions employ a set of artificial intelligence techniques that focuses 

on designing the system and uses statistical experience to improve model parameters tuning, 

the performance of the index, and improving its predictions, where experience can be 

previous information or data from broad and specific fields pooled at dataset hubs like 

Kaggle and made available for use in research. In other data science projects, critical 

measurement of these algorithms' validity and quality in their variables such as time 

complexity yields a robust system. Still, an additional notion of sample complexity is 

required for the algorithm to learn data patterns. In short, theoretical learning guarantees for 

an algorithm depends on the complexity and size of the training data sample (Mehryar 

Mohri, 2018).  

 Machine learning is all about getting computers to make data-driven decisions rather 

than being explicitly programmed to carry out specific tasks. It enables computing devices 

to employ embedded programs and generated algorithms to predict instantaneous states just 

like humans do. Since programming is automation, machine learning is the core of the 

process. The latter process is a way that makes programming scalable. In conventional 

programming, data is fed as the input, while programs lie at the core programs to manipulate 

it and give an output, which is also a dataset. This concept is employed further in Machine 
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Learning but with improved datasets and robust algorithms to achieve similar goals 

(Brownlee, 2015).  

There are three main types of machine learning algorithms.  

However, there exists another technique under the name of Reinforcement learning. All 

these algorithms have their differences stem from the way they treat the training and testing 

datasets. 

 

Figure 1: Algorithms employed in Machine Learning. 

Source: Author 

 

Supervised machine learning 

 A supervised learning algorithm comprises an outcome variable, which is also 

referred to as a dependent variable. This variable needs to be predicted by imposing the 

independent variables to a learning technique. The technique's overall goal is to generate a 

model, which resembles a function that can map output from a given set of inputs. Model 

training runs until the computer finds a suitable model while not compromising the accuracy 

of the results. This technique's critical points are that it has labelled data, gives direct 

feedback, and predicts the outcome or future. 

Data analysis
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Under this category are Random Forest, Linear regression (most common), k- nearest 

neighbor design tree. 

 

Unsupervised learning 

 The learning algorithms, in this case, do not contain the outcome or dependent 

variable for prediction. In these algorithms, data is without a label, it does not give feedback, 

and it helps find hidden data structure in data. Unsupervised learning algorithms cannot be 

directly applied to regression or classification problems because we do not know what output 

data values might be. It makes it impossible to train data than we usually do in supervised 

learning. It can be used for the clustering population in different groups for specific 

interventions. 

E.G., K- means clustering, Gaussian mixture models, etc. 

 

Reinforcement learning 

 In this category, the machines are trained to make only specific decisions while 

ignoring others. It has a reward system and learns a series of actions, implying that the 

variables in question are manipulated through the trial-and-error mechanism until they fit 

the desired output. It can be observed that this form of learning uses experience as the core 

of its decision making. The result is that only the best decisions are employed; hence 

reliability is optimal. 

An example is the Markov decision process.  

 There are three main components of the machine learning system: data, features, and 

ML algorithms.    

In our study, we seek to employ a Supervised Learning algorithm to achieve our project's 

objectives. Since we seek to create a model that can easily predict the price of houses in 

India, we must have data to train and test the model. Supervised learning allows us the degree 

of freedom to choose the appropriate model that predicts house prices accurately. Data for 

this project is downloaded from Kaggle (Chakraborty, 2017) 
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3.1.1 Data 

  

 Data can be collected manually or automatically. It can be in any unprocessed 

structure, text, value, images, audio, etc. data is a crucial factor in data analysis, ML, and 

A.I. It is not possible to train our model without data. 

 Therefore, big enterprises spending vast amounts of money on getting to access those 

data nowadays. Generally, in machine learning, we divide data into two parts- "training data" 

and "testing data."  Since we downloaded data from an online repository, Kaggle.com, we 

know that this data should be split into the two sections given before. However, as we 

understand, we cannot split this data until we have cleaned it. Data cleaning ensures the data 

is in good form, with only the required variables being put into play and observing the 

dataset's features.   

 Much time is bound to be spent on data cleaning. This is the most time-consuming part. The 

modeling data's data should be logically viable without outliers, which are the most common 

error sources in the modeling paradigm. Data cleaning involves eliminating all the data 

values with null or NA as values in their cells. This is done either by replacing the missing 

values with a median value of the column it resides. The other alternative is the exclusion of 

missing values (rows) entirely from the dataset. It becomes reasonable to perform the latter 

decision when the missing variables' population compared to the entire population is small.  

 

Training data : 

  It is a portion of our data that we show to our model as input and output. Based on 

this data, we train our model. The training dataset needs to form the majority of the sample. 

It should be large to overcome the bias introduced by the use of smaller data samples. As 

per our project, we split the primary dataset into an 80% training set. This was used to train 

the models on how to predict the price of houses given several input parameters. It is 

expected that some considerable amount of time would be used during training, and therefore 

this is to be treated as usual, and the model should be left to do its training.  
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Testing data: 

  After our model is thoroughly trained and ready for prediction, we feed the testing 

data values as an input and get predicted output by our model. This output might not be the 

same as the actual output of testing data, as our model has not seen it. So, we compare both 

outputs and check the accuracy of the model (Gupta, 2018). Model testing forms the last 

step in this project. It requires the minimal pseudo-random sample of the remaining 

population, which is 20% of the population. However, it should be noted that the sample 

should be randomized to have a clear picture of what the model portrays. Testing is done 

using any house from any location except the number of bedrooms and bathrooms with an 

expectation to have a reasonable house price prediction. 

 

3.1.2 Features 

  

 Features are the measurable and observable properties in data that we are interested 

in analyzing. In datasets, features often appear as columns forming distinctive characteristics 

in each column. Features can also refer to as "variable" or "attributes." The feature selection 

process is varies depending on what we need to analyze in our model. Features are building 

blocks of a dataset. Quality of features if the dataset significantly affects the quality of insight 

we will gain from datasets. It is possible to improve the quality of feature selection with 

feature selection and feature engineering. It is typically tricky and tedious, but if it is done 

well, we can get optimum results of the dataset, containing all the essential features that 

might have beneficial insights to solve a specific business problem (LLC, 2019). These 

features are extracted during the data cleaning phase. It is also to state that the dataset 

characteristics, variables, including individual entries, are observed. These observations 

form how the required features are selected for the next phase in the data cleaning pipeline.  

 Once the required variables have been defined, all the other columns are then 

dropped as our goal is to have a data frame with only the factors on which our model will 

depend. In case additional variables can help reduce some of the variables, the variables are 

created, used until they are no longer required, at which they are dropped. As the features 

are extracted, the output data frame shrinks to the tune of the extracted features. The data 

shrinks at every stage until finally, we are comfortable using the data frame. In this instance, 

since we are employing a supervised learning technique, we have to ensure the proper data 
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statistics are in order; for instance, we visualize the data to confirm that it is normally 

distributed. Once this criterion is met, we further confirm that there exist no anomalies in 

the data. This is achieved through scatter plots and observing the distribution of houses’ 

prices in the land space. 

 

3.1.3 Machine learning algorithms  

   

 Algorithms employed in Machine Learning exist in massive amounts, with many 

sprouting at the dawn of a day. Generally, data scientist applies more than one algorithms 

on the model to check which one scores higher and gives much accuracy. In the practical 

part of this thesis, we are going to focus on the following three algorithms.    

 These algorithms serve as the litmus test on the viability of a model. In this project, 

since we seek to find the best fit model, we will not test just a single model but rather impose 

all the available algorithms as discussed below and find the best model with its parameters. 

This approach is accompanied by parameter tuning to realize the algorithm viable for the 

project with its corresponding parameters for optimal model performance. Therefore, we 

employ hyper parameter tuning in the training of this model to achieve the best parameters 

and order them with their score index. We then select the algorithm with the best score from 

the Score index and note the model’s tuning parameter. 

 

3.1.3.1 Linear regression 

  

 This is an algorithm in the supervised machine learning algorithms family where the 

value predicted as output is continuous and exhibits a constant slope. It is used for predictive 

analysis, such as a house’s cost, total sales, and calls. The primary goal of this algorithm is 

usually to answer the following questions:   

(1) Does a set of predictor variables (independent) predict the outcome variable 

satisfactorily? And 

(2) Which among the predictor variables have great significance in predicting the outcome 

variable, and to what extent do they impact the outcome variable? 
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 In linear regression, we establish a relationship between the dependent and 

independent variables using the best fit line, statistically referred to as a regression line. The 

following general equation represents the line: 

 

y = MX + b        

Equation 1: Linear equation 

Source: (Pierce, 2018) 

where, Y is the value under prediction, x is the independent (predictor) variable, m is the 

gradient, and b is the y-intercept.  

 There are two main types of linear regression simple regression and multivariable 

regression. Simple regression has only one independent variable (x) and one dependent 

variable (y), but multivariable regression has one dependent variable (y) and more than one 

independent variable (x). If we take the example of house prices, then price prediction based 

on only square feet is a simple regression. Price prediction based on square feet, bedrooms, 

bathrooms, area, balcony, etc. is multivariable linear regression.     

Let us visualize linear regression by the following graph: 

 

Figure 2: Linear Regression Graph 

Source: (kassambara, 2018) 
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            In the figure above, we have two variables, x, and y, which has multiple data points 

defining the relation between both variables. The blue line is called the regression line 

passing through all the data points. Now the question is, why it can be only one line? There 

might also multiple lines passing through data points. Well, that is the motto of linear 

regression to find the best fit line for our model. The principle behind the regression line is 

to minimize error, which can be done by the sum of square errors equation:    

SSE =  ∑ [∆]𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏  

∆ = [𝒚𝒚𝒊𝒊 − (𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝒙𝒙𝒊𝒊)] 

Equation 2: Sum of square error 

Source: (Weisberg, 2005) 

where, ∆ is distance between data points and blue line (regression line) which is defined as 

red line in figure above. 

 The equation does the sum of squared individual error of all data points from 1 to N. 

from the minimization of this equation; we can find only a blue line that can best fit for the 

model. 

 

3.1.3.2 Lasso Regression 

 

           Lasso stands for "Least absolute shrinkage and selection operator." It is a supervised 

machine learning that employs the concept of shrinkage. Shrinkage is where the data values 

are compressed towards a central point. The procedure encourages simple and spars model 

which have fewer parameters. This algorithm is perfectly suitable for the model having high-

level multilinearity or when it comes to automation of certain parts of model selection, 

variable selection, or parameter elimination (Glen, 2015).   

 The coefficients are established upon minimization of this equation: 

∑ [𝒚𝒚𝒊𝒊 − (𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝒙𝒙𝒊𝒊)]𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏  + 𝝀𝝀∑ |𝜷𝜷𝒋𝒋

𝒑𝒑
𝒋𝒋=𝟏𝟏 |                        

 Equation 3: Lasso regression 

Source: (The group lasso for logistic regression, 2008) 
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Where 𝜆𝜆 is a constant positive amount of shrinkage, which regulates the imposed penalty's 

strength and validity.  

βj = slope of regression line.  

When 𝜆𝜆=0, it is at a steady-state, and the estimates are equal to the one found in the standard 

linear regression. 

As 𝜆𝜆 increases, more and more coefficients are set to zero and eliminated. So, when l=∞, all 

coefficients are eliminated.  

As 𝜆𝜆 increases, bias and variance increase.  

 

Figure 3: Lasso regression 

Source: Author  

 The technique uses a penalized least squares as a basis for modeling and parameter 

sub-selection approach. Lasso regression helps us make feature selection by choosing the 

slop's magnitude value, which means wherever the slop value is close to zero, it will remove 

those features as they are not much important for our prediction. It will keep only essential 

features for prediction. It is useful in fitting high-dimensional data exhibiting high 

correlations in the predictors. It can, therefore, be thought of as a Hybrid variable selection 

procedure. (Bayesian and LASSO Regressions for Comparative Permeability Modeling of 

Sandstone Reservoirs, 2018).    
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3.1.3.3 Decision Tee  

 

 The decision tree is usually a supervised machine learning algorithm ideal for task 

regression and its classification. The decision tree's primary goal is to predict the value or 

class of specific variables depending on generated decision rules by algorithm from the 

training dataset. As per the name, this algorithm represents structure like a tree in which we 

have a variable as a root node to test on. Branches from root nodes are represented as a result 

of the test, and those branches have leaf nodes representing class or label. There are two 

decision tree types - categorical variable decision tree (targeted variable is categorical) and 

continuous variable decision tree (targeted variable is continuous). 

  

Splitting:  

 Decision tree decides by splitting their root nodes into sub-nodes. This splitting 

process continuously goes on until it is left with only homogenous nodes. There are multiple 

methods of splitting, which depend on the type of targeted variable. For categorical 

variables, we can use Gini impurity, information gain, and Chi-square. For continuous 

variables, we can use a reduction invariance. As we will focus on the continuous variable in 

the practical part, let us understand the reduction invariance.  

 
Figure 4: splitting in decision tree 

Source: Author 
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Reduction invariance: 

  This splitting method can be used for continuous variables only. It uses the generic 

statistical formula of standard deviation and variance to get the best split.   

Variance = ∑(𝒙𝒙−𝝁𝝁)𝟐𝟐

𝒏𝒏
 

Equation 4: variance 

Source: (Suzuki, 2019) 

where 𝝁𝝁 is the mean of the values, 𝒙𝒙 is the actual value, and 𝒏𝒏 is the number of values. 

 Variance is used to calculate the purity of a node. As much variance is low as purer 

a node will be if the node will be entirely pure, then variance value will be 0. 

Steps to split a decision tree using reduction invariance (Sharma, 2020): 

1. Calculate the variance of each node for each split. 

2. Calculate the weighted average variance of each split of child nodes. 

3. Pick the split with the lowest variance. 

4. Repeat until uniform and homogeneous nodes are realized.  

 

Pruning:  

  Overfitting is the most usual and significant problem in the decision tree. It is a 

situation when the model gives 100% accuracy for the training data set but for the testing 

data set. It might have a more considerable variance between the actual and predicted value. 

The reason is there is no limit for growth in the decision tree. Sometimes in the worst case, 

it gives 100% accuracy for training data set by making one leaf for each observation. This 

situation will affect accuracy while predicting the actual testing data set. Pruning is one of 

the well-known ways to avoid overfitting. Pruning methods remove the decision nodes from 

the leaf nodes without affecting the model's overall accuracy. This method uses statistical 

measures to eliminate the least reliable branches, which leads to faster classification and 

improvement in the prediction of outputs from the independent test data (Evaluation of 

Decision Tree Pruning Algorithms for Complexity and Classification Accuracy, 2010). We 

can easily understand difference between an unpruned tree and a pruned tree with simple 

example of bank loan approval from following figure.  
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Figure 5: pruned decision tree 

Source: Author 

 

3.2 Cross-Validation in Model Selection   
   

 Generally, in machine learning, we break down our data set into training and testing 

data for model creation. Even in the same algorithm, the model will give us different 

accuracy for the different test sets. Therefore, it is best practice to apply cross-validation to 

the machine learning model for better accuracy. Cross-validation is a popular statistical 

technique for algorithm selection. The main goal of the cross-validation is to assess how the 

model will perform with different data set. The idea behind cross-validation is to split data 

once or several times to estimate each algorithm's skill or model. The training set is used to 

train each algorithm, and the validation set is used to estimate the risk. In the end, we select 

the algorithm with the smallest estimated risk (A survey of cross-validation procedures, 

2010). 

  There are plenty of cross-validation methods such as k-fold cross-validation, holdout 

method, leave-p-out cross-validation, and leave-one-out cross-validation. We will focus on 

k-fold cross-validation as it is prevalent, suitable for extensive data set, and we are going to 

use in our practical part.   
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  Cross-validation Serves to verify that the algorithm selected is robust over random 

tests with the test data set. The expected score is supposed not to wander far away from the 

observed values after the hyper-parameter tuning.  

 

3.2.1 K-fold cross-validation  

  

 This technique is a widely adopted method for model selection. As per the name, this 

technique randomly divides data set into K folds approximately in equal size. This K part of 

the data will be used for the testing dataset, and the rest (k-1) part will be used as a training 

dataset. The model will be trained and tested for K number of times, and at the end of the 

process, we will get a K number of scores. The average number of this score will be 

considered as the average accuracy. We can also say the maximum accuracy of this model, 

the highest score we received, and the model's minimum accuracy is the lowest score in this 

process.    

 In K-fold cross-validation, K is a chosen number by us, which represents the number 

of folds. The choice of a number depends on our data size and system computation power. 

The number can be anything ideally between 5 and 10. We must choose numbers carefully 

because poor choice might lead our model to high variance and high bias. K< 5 might cause 

issues like that (A Comparative Study of Ordinary Cross-Validation, v-Fold Cross-

Validation and the Repeated Learning-Testing Methods, 1989). 

 

Advantages of K-fold CV 

• As K value increases, the estimated variance and bias reduces. 

• For the K value, the repetition of the process is limited, so less computation 

time.  

• Each data part gets to be trained and tasted precisely. 

 

Disadvantages of K-fold CV 

• It takes a considerable amount of time to evolve as the algorithm must rerun 

from scratch K times. 
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3.3 Hyper Parameter Tuning in Machine Learning 
  

 In machine learning, hyper parameter tuning is an important task to get optimal 

values of a model's parameter, which gives the maximum accuracy for a particular model. 

Different datasets have different hyper parameter settings, so it must be tuned for each 

dataset.   A hyper parameter is the machine learning element that automatically cannot be 

learned by model, but it can be done by a meta-process called - “hyper parameter tuning." 

Manually, it is difficult to keep track of the hyper parameter and frequently fit into training 

datasets; simultaneously; it is time-consuming. A grid search CV can solve this problem.   

 

3.3.1 Grid search CV 

  

 Grid search CV is one of the well-known methods for hyper parameter tuning. It is a 

function of the Scikit-learn library, which helps to loop through predefined hyper parameters 

and fit our model in the training dataset. The method will then list each parameter values' 

score, and we can select the best parameter from it. According to (Chih-Wei Hsu, 2003), it 

is highly recommended to use a grid search CV and cross-validation to archive the best 

parameter values. The grid search CV structure is like a dictionary (keys= parameter names, 

values= various possibilities for our combinations), and then it passed to our estimator 

object. 

  Grid Search CV serves the purpose well in our model as from the python data 

dictionary. This is the easiest way to validate and classify the parameters used in modeling 

the final price prediction model.   

 

3.4 Python for Data Science  
  

 There is plenty of programming language used in data science projects like Python, 

Java, R, SAS, SQL, etc. Python is open source, interpreted, and dynamic object-oriented, 

publicly available in 1991 (Hsu, 2018). It is widely used and suitable for data science tools 
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and applications. According to a “stake overflow survey” in 2019, python is fast-growing 

and second most loved programming language. 

 Python holds a unique attribute, and when it comes to performing analytical and 

quantitative tasks, it is very easy than other programming languages. According to engineers 

of academia and industry, python APIs are available for deep learning frameworks. 

Scientific packages have constructed python as incredibly productive and versatile (Bhatia, 

2012). 

 Hence, now we know what importance python has in the data science field, let us 

focus on some elegant features of python. 

• Python supports various platforms such as Windows, Linux, Mac, etc. 

• It makes the program easy to read and write. It is also easy to perform various 

machine learning algorithms and complex scientific calculations, thanks to 

elegant and simple syntax. 

• Python has the ultimate collection of libraries to perform various tasks like data 

manipulation, data analysis, and data visualization. 

• Python is an expressive language that makes possible applications to offer a 

programmable interface (Eppler, 2015). 

• In python, it is simple to an extension of code by appending new modules 

implemented in other compiled languages like C or C++. 

 Machine learning scientists prefer python as well in terms of application areas. When 

it comes to app development for NLP and machine analysis, developers switch to python 

due to the huge collection of libraries python provides, which helps solve complex business 

problems efficiently and construct a robust system data application. 

 

 

3.5 Essential Python Libraries for Data Science 
  

 Python libraries are a reusable bunch of functions and methods which we can include 

in our program to perform several actions without writing code. Python has improved 

libraries' support in recent years and became the best alternative for data manipulation 
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techniques. It is among the favorites for full-stack developers, which is also highly 

recommended for general-purpose programming (McKinney, 2012). 

 In a data science project, we need to go through all the stages like data cleaning, data 

visualization, model building, etc. Python has plenty of popular libraries for these tasks. Let 

us focus on some of them, which we are going to use in our practical part. 

 

3.5.1 NumPy: 

  

 NumPy (Numeric Python) is one of the most potent and open-source python libraries 

primarily used for numeric analysis. NumPy deals with numerical data and provides 

algorithms, data structures, and other utilities to perform scientific calculations and data 

storage. It is highly recommended to fast operation on arrays, sorting, selecting, 

mathematical functions, statistical operation, linear algebra, random simulation, etc. It was 

created by Jim Hugunin which was modified by Travis Oliphant in 2005 to incorporating 

features of competing NumPy-array into numeric (Oliphant, 2015). 

 

NumPy basics 

• Create NumPy arrays and array attributes. 

• Array indexing and slicing. 

• Reshaping and concatenation.  

 

NumPy arithmetic and statistics basics  

• Computations and aggregations 

• Comparison and Boolean masks   

 

 The NumPy package has a significant object called “ndarray” (n-dimensional array). 

It is homogeneous and statistical data types and performs many operations in a compiled 

language (Leo (Liang-Huan) Chin, 2016). Now the question is, why would we use NumPy 

array when we can just use a python list? The list is very flexible and versatile, and excellent 

in python, but there are few significant benefits of using NumPy arrays over a python list. 



32 

 

Saves coding time 

• No for loops: many vector and matrix operation save coding time  

. We do not need to iterate through an array to apply a mathematical operation to each 

element of that array. We can do it with a single line of code. 

Example: 

Using python list, we need to use for loop to iterate through that list before you can multiply 

*= 6 operation to each element: 

for i in range (len(my_list)): 
     my list[i] *= 6 
 

Using NumPy array, we can apply that element directly to the entire array with a single code 

line. NumPy takes care of the rest of the operation behind the scenes, so we do not have to 

worry about it: 

my array *= 6 
 

 

Faster execution 

• Uses single data type for each element (all must be the same data type) in array 

to avoid type checking at runtime. 

• Uses contiguous blocks of memory. 

 

Uses less memory  

• No pointers, so type and item sizes are the same for each column. 

• In python list, there is an array with pointers to python object (4B+ per pointer 

and 16+ for a numerical object).  

• Compact data types like unit 8 and float 16. 

• Which depends on our task and precision of data. 
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3.5.2 Pandas 

  

 Pandas name is shorthand for “panel data”- a term for data sets with 

multidimensional structure. Another important machine learning library provides functions 

and rich data structure to make our data analysis task more manageable, fast, and expressive. 

Pandas have various methods for combining data, time-series functionality, grouping, and 

filtering. It also provides indexing functionality, which simplifies reshaping easier, data 

slicing, performing aggregation, and selecting a subset from a dataset (McKinney, 2012).  

 Pandas built on top of NumPy. That means pandas require NumPy. Pandas do not 

require other libraries like Matplotlib and SciPy, but it can be handy if combined with the 

latter. It is an excellent tool for data wrangling due to its robust design coupled with quick 

and easy data manipulation features. It has two handy data structures known as “pandas 

series” and “pandas data frame." They are core components of pandas that allow us to 

reshape, merge, split, train, and aggregate data. 

 

Pandas Series 

 It is a one-dimensional labelled array containing data types. These data types span 

from strings, doubles, integers, objects, and floats python objects. The axis labels represent 

the index. In short, it is just a column in memory that is either independent or belongs to a 

pandas data frame. A unique label is not necessary, but it must be a hashable type. The 

python object integrates label-based indexing as well. It provisions a host of methods for 

performing index-operations. 

 

Pandas Data frame 

  This is a two-dimensional, tabular data structure with more details regarding axis. 

The concept of a data frame is borrowed from the idea of spreadsheets. It is logically 

corresponding to a sheet of Excel that includes both rows and columns. The Data frame 

object contains an ordered collection of columns like a spreadsheet or an excel sheet. Each 

column holds a unique data type, but different columns may have different types (Bernd 

Klein, 2011).  
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Data frame operation in pandas 

• Read, view, and extract information; 

• Grouping and sorting; 

• Deals with duplicate and missing values; 

• Selection, filtering, and slicing; 

• Pivot table and functions; 

 The pandas library has been under development way since the python was made 

public.   It is established to narrow and possibly close the gap in the available data analysis 

tools between python, and the conventional domain-specific statistical computing platforms, 

software, and database languages (McKinney, january 2011). There are currently fewer 

pandas library releases, including plenty of new features, enhancements, bug fixing, and API 

changes. Data analysis among everything else takes the highlights when it comes to the use 

of pandas. Pandas ensure high functionality and superb flexibility while combined with other 

libraries and tools. 

 

3.5.3 Matplotlib  

  

 It is generally conceptualized as a plotting library for data visualization. It is a python 

package for 2D plotting that generates a production-graph. Any organization must visualize 

data and descriptive analysis; matplotlib provides very effective methods for these tasks. It 

supports both interactive plotting and non-interactive plotting to save the graphics into 

several formats like .pdf, .png, .jpeg, among others. It can also employ multi-window toolkits 

(GTK+, wxWidgets) and provide a conglomerate of plot types like line graphs, pie-charts, 

and bar charts histograms, and other professional-grade figures. Besides, it boasts high 

customization levels, flexibility, and convenience in use (Tosi, November 2009).   

Features of Matplotlib 

 

PyLab interface : 

  It allows users to create plots using code just like the MathWorks Package 

MATLABTM figure generates its code.  



35 

 

Matplotlib API: 

 Acts as the abstract interface over which plots are rendered. It is responsible for 

tuning the parameters and ensure what is given in the code is translated properly in the 

intended interface. 

 

Backends:  

 These play the primary role of interpreting the graphics to other devices connected 

to the computer or intended for display services.  

 Most professionals employ Matplotlib in generation postscript files for printing or 

publishing automatically. Some find the convenience of deploying the graphics on web 

applications that can dynamically generate specific nature files. Matplotlib library can also 

be called interactively from Tkinter's python shell on the Windows platform (John Huter, 27 

may, 2007).  

 

3.5.4 Scikit-Learn  

  

 This is a python library that makes various algorithms and functions that are used in 

machine learning available. David Cournapeau initially developed it as a google summer of 

code project in 2007. It is considered one of the best libraries for working with complex data.  

 Scikit learns built on NumPy, SciPy, and matplotlib. It contains several algorithms 

for data mining and machine learning tasks like (Hackeling, 2017): 

• Dimensionality reduction; 

• Data reduction methods (e.g. principal component analysis, feature selection); 

• Regression analysis (e.g. linear, logistic, and ridge); 

• Classification and clustering models (e.g. random forest, support vector 

machine, K-means); 

• Model tuning and selection (e.g. grid-search, cross-validation); 

• It also provides modules for pre-processing data, extracting features, optimizing 

hyper parameters, and evaluating models to solve real-world problems; 
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4. Practical part 
 

4.1  project tool  
  

 Python is straightforward to learn as it is a described programming language. It has 

extensive documentation and vibrant online support groups where support is easily found. It 

is also easy to use with minimal coding and realizing maximum computational power in 

exploring data, using graphics, and manipulating almost all variables on the go. I have 

employed python from the interface of Jupyter Notebooks, which is a very convenient tool 

for python beginners and experts. This brings the convenience of installing python and 

pandas at a go and accessing them through library import. 

 

4.2  Dataset  
  

 First, the datasets are downloaded directly from Google environment. There can be 

multiple ways to access data but, in this case, I assumed that we are getting data from the 

organization for which we prepare the size prediction model. I use the data source below:  

Dataset Name: Bengaluru-house-price-data 

Type: Comma Separated Values (CSV) 

 Location: https://www.kaggle.com/amitabhajoy/bengaluru-house-price-

data (Chakraborty, 2017) 

 This dataset is about city ‘Bengaluru, India’. So, we assume that we are building size 

prediction model for real estate organization in Bengaluru. After downloading the dataset, 

we will impot it into jupyter notebook. First, we will import required libraries in jupyter 

notebook by executing these commands.  

import numpy as np 
import pandas as pd 
from matplotlib import pyplot as plt 
%matplotlib inline 
import matplotlib 
matplotlib.rcParams["figure.figsize"]=(20,10) 
 

https://www.kaggle.com/amitabhajoy/bengaluru-house-price-data
https://www.kaggle.com/amitabhajoy/bengaluru-house-price-data
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These libraries will help us for our initial tasks for data cleaning and data visualizing. As we 

discussed in our literature review NumPy will help us for all numerical operation, Pandas 

will help us for all data frame operation and Matplotlib will help us for plotting visual graph. 

Each module assigned with their short form such as np for NumPy, pd for Pandas, plt for 

pyplot of Matplotlib. So, we don’t have to write full form when we execute commands with 

libraries. Now, we will read our dataset by executing following command.   

pd.read_csv("Bengaluru_House_Data.csv") 
 

 

Figure 6: Row dataset  

Source: Author  

 In our dataset we have different types of columns, from them total_sqft is dependent 

as our end goal is to predict home size. But other columns are independent, their value can 

influence total_sqft of house. Now, we will assign whole dataset as main data frame 

executing following command: 

Main_Data_Frame =pd.read_csv("Bengaluru_House_Data.csv") 
mdf0=Main_Data_Frame 
  

 Step by step we will make improvements in our row dataset and we will assign 

updated dataset a new name, which is also known as pipeline in data science term. For 

example, mdf0 is our row dataset, unnecessary columns will be removed from it and assign 

as mdf1. The reason for removing unnecessary columns is they doesn’t impact much on our 
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dependent variable and by removing these columns, we can reduce size and features of our 

dataset for ease of further operations. The code for dropping those columns is: 

mdf1=mdf0.drop(['area_type','society','balcony','availability'],axis 
= 'columns') 
mdf1.head() 

 

Figure 7: Unnecessary columns dropped from dataset 

Source: Author  

 Now, we left with only columns which are very important for prediction house size 

and these will be the columns which customer will use as input value to check house sizes 

in different locations. As we can see BHK unite in size columns, it stands for Bedroom-Hall-

Kitchen in Indian term. Price is in lakh unit and in Indian currency INR (1,00,000 INR is 

called 1 lakh).  We will proceed to data cleaning  task now. 

 

4.3  data cleaning 
  

 Data cleaning is part where data scientists spend majority of their time because 

usually row data are messy and it became critical to handle missing and unexpected values 

sometimes. That’s another reason why we dropped certain columns to keep it short and 

beginner friendly for this thesis. When it comes to data cleaning, the very first thing we 

should focus on is null values. To check null values in our data set I will execute following 

command: 

mdf1.isnull().sum() 
output:  

location       1 
size          16 
total_sqft     0 
bath          73 
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price          0 
dtype: int64 
 

 As we can see, we have only 16 null values for size and 73 null values for bath, which 

are negligible as compared to total rows 13320. We can use standard deviation or average to 

fill those values randomly, but it might be not accurate for our model. When null values are 

negligible, we should drop them instead of filling with average. So, in our case I will simply 

drop those rows by executing following command: 

mdf2=mdf1.dropna() 
mdf2.isnull().sum() 
output: 

location      0 
size          0 
total_sqft    0 
bath          0 
price         0 
dtype: int64 
 

 We dropped null values from our dataset and assigned name as mdf2 to the new 

dataset. Now, let us focus on size feature. As it contains values mixture of numbers and 

strings, we need to deal with it. To see unique values of size, I will execute unique command: 

mdf2['size'].unique() 
output: 

array(['2 BHK', '4 Bedroom', '3 BHK', '4 BHK', '6 Bedroom', '3 Bedroo
m', 
       '1 BHK', '1 RK', '1 Bedroom', '8 Bedroom', '2 Bedroom', 
       '7 Bedroom', '5 BHK', '7 BHK', '6 BHK', '5 Bedroom', '11 BHK', 
       '9 BHK', '9 Bedroom', '27 BHK', '10 Bedroom', '11 Bedroom', 
       '10 BHK', '19 BHK', '16 BHK', '43 Bedroom', '14 BHK', '8 BHK', 
       '12 Bedroom', '13 BHK', '18 Bedroom'], dtype=object) 
 

 As we can see from output, some of size values are measured in BHK unite and some 

of them are as bedroom. Technically both values are same as they indicates to number of 

bedrooms only. We cannot do numerical operation on string. Thus, we will create new 

feature BHK to keep only number of bedrooms. In order to create this feature, we need to 

split size values in two parts in numbers and strings. Then we will  use separated numbers 

in our BHK column. In Python lambda is very popular anonymous function which can takes 

pythonic expression as parameter. Lambda function is used as an application and whenever 

it uses, it generally means we want to apply this expression to constructed type. Lambda is 
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widely being used in mapping data and for loops as well (Boudreau, 2020). In our case, I 

will use following function to split our value: 

mdf2['bhk']= mdf2['size'].apply(lambda x: int(x.split(' ')[0])) 
 

In this function, we created new column bhk in data frame mdf2 by applying lambda function 

on size column. Simply, this lambda function tokenize whole value of size and split them 

with space (‘ ’) from which 1st part will be converted into int from string and will be assigned 

in bhk column. We can check bhk columns unique values by executing following function:  

mdf2['bhk'].unique() 
output: 

array([ 2,  4,  3,  6,  1,  8,  7,  5, 11,  9, 27, 10, 19, 16, 43, 14, 12, 

       13, 18], dtype=int64) 
 
 Now, it looks exactly how we wanted for our further operations and we can use bhk 

column instead of size. Let us focus on square feet feature. By executing following 

command, we can see what unique values total_sqft column contains. 

mdf2.total_sqft.unique() 
output: 

array(['1056', '2600', '1440', ..., '1133 - 1384', '774', '4689'], 
      dtype=object) 
 
total_sqft feature contains ranges of square feet, which is not appropriate for numerical 

operation for machine learning. So, we can simply tackle this problem by taking average of 

range and change it into single value. Following function will be applied to total_sqft column 

to detect all values which contains range values or any other type of values expect single 

number. 

def float_sqft(x): 
    try:  
        float(x) 
    except: 
        return False 
    return True 
This function take values as input and check if the value is float or not. If not then it will 

return as false, otherwise it will remain true. I will apply this function to total_sqft columns 

by executing following command: 

mdf2[~mdf2['total_sqft'].apply(float_sqft)] 
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Here, I used negate operator for function to return only values with range values. Output for 

this operation is represented in following figure. 

 

Figure 8: detected range values in ‘total_sqft’ column 

Source: Author 

 We have 190 rows which have range or other kind of values expect single number. 

To handle this problem, we will take average where values are in range and other type of 

values we will drop from dataset. I will create following function to convert range values 

into average. 

def sqft_to_numeric_value(x): 
    tokens = x.split('-') 
    if len(tokens)== 2: 
        return (float(tokens[0])+float(tokens[1]))/2 
    try: 
        return float(x) 
    except: 
        return None 
 

This function works by tokenizing values. It will take values as input and if values are in 

range, then it splits values in two tokens from (-) operator and return average of both. Else 

it return to original value in case of single numbers. Now I will apply this function to 

total_sqft column by executing following function: 
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mdf3=mdf2.copy() 
mdf3['total_sqft'] = mdf3['total_sqft'].apply(sqft_to_numeric_value) 
mdf3 
 

In this command, I created new dataframe mdf3 by copying mfd2 and applying 

(sqft_to_numeric_value) function. The output of mdf3 represented in following figure: 

 

Figure 9: Converted ‘total_sqft’ into single values 

Source: Author 

 As we can see, all values in total_sqft seems like single. But to cross check I will 

examine following command on row number 30 because it had range value, as we can see 

in figure 8.  

mdf3.loc[30] 
output: 

location      Yelahanka 

size              4 BHK 
total_sqft         2475 
bath                  4 
price               186 
bhk                   4 
Name: 30, dtype: object 
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Now, the value of total_sqft is 2475, which is average of  2100-2850. As our dataset is 

cleaned from null values and ununiformed values, we can proceed to next step of data 

science life cycle, which is feature engineering. 

 

4.4  Feature engineering  
  

 Feature engineering part is focused on creating new variables or features or modify 

them in a way, which can help us for our next task of outliner detection and removal. We 

have price of house feature in our dataset but it does not make much sense when we want to 

examine how price differs from location to location according to area. So, price per square 

feet is a common feature for any real estate organization. Considering this, I will create new 

column ‘price_per_sqft’ by executing following command: 

mdf4 = mdf3.copy() 
mdf4['price_per_sqft'] = mdf4['price']*100000/mdf4['total_sqft'] 
mdf4.head() 
 

This command will create new dataframe mdf4 which is copy of mdf3. But in mdf4 there is 

new column called  ‘price_per_sqft’, which is division of price and total_sqft columns. Here 

I multiplied price column with 100000 (1 lakh) which is unit of price in our dataset, so our 

price per square feet will  be normalized unit. Result for this command is represented in 

following figure: 

 

 

Figure 10: Added new feature - ‘price_per_sqft’ 

Source: Author 

 Our second feature is location. Let us focus on structure of location column. 
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len(mdf4.location.unique()) 
 
output: 1304 
 

we have 1304 types of different locations in our dataset, which is way more for model 

building process. Because in our future task we will convert all location as columns, that 

means we will have 1304 more columns. This is known as ‘curse of dimensionality’. 

According to (Bellman, 2010), curse of dimensionality is the problem caused by the 

exponential increase in volume associated with adding extra dimensions to Euclidean space.  

 To tackle this problem, one of the best solution is to come up with ‘other’ category. 

Which means there will be plenty of locations, which will have only 1 or 2 houses. So basic 

idea is to move all locations in other category, which have less than 10 homes. For this task, 

first I will execute following function to know which how many homes are available per 

location: 

mdf4.location=mdf4.location.apply(lambda x: x.strip()) 
 
location_stats =mdf4.groupby('location')['location'].agg('count').sor
t_values(ascending=False) 
location_stats 
 

first line of code is lambda function to strip any location, to remove extra spaces from 

beginning or end. In second line of code, I created variable called location states which will 

give statistics on location by grouping by locations. The result for this code is below: 

location 
Whitefield           535 
Sarjapur  Road       392 
Electronic City      304 
Kanakpura Road       266 
Thanisandra          236 
                    ...  
LIC Colony             1 
Kuvempu Layout         1 
Kumbhena Agrahara      1 
Kudlu Village,         1 
1 Annasandrapalya      1 
Name: location, Length: 1293, dtype: int64 
 

 Now, I will create variable called ‘location_states_less_than_10’ which will contain 

all location having less than 10 data points or homes by executing following code: 

location_stats_less_than_10 = location_stats[location_stats <= 10] 
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location_stats_less_than_10 
output: 

location 
BTM 1st Stage          10 
Basapura               10 
Sector 1 HSR Layout    10 
Naganathapura          10 
Kalkere                10 
                       .. 
LIC Colony              1 
Kuvempu Layout          1 
Kumbhena Agrahara       1 
Kudlu Village,          1 
1 Annasandrapalya       1 
Name: location, Length: 1052, dtype: int64 
 

As we can see there are 1052 location which have less than 10 homes and now all these 

location will be represented in other category. To perform this task, I will execute following 

lambda function: 

mdf4.location = mdf4.location.apply(lambda x: 'other' if x in locatio
n_stats_less_than_10 else x) 
len(mdf4.location.unique()) 
 
output: 242 
 

So, now we have only 242 unique location rows which are pretty decent for our future 

operations. Following figure represents dataframe with latest features. 
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Figure 11: Dataframe after feature engineering 

Source: Author 

 

4.5 Outlier detection and removal  
 

 Outliers are  the data points which are data errors or in some case they are not data 

errors but they represents the extreme variation in dataset. Although they are valid sometime, 

still it make sense to remove them otherwise they can create some issues for accuracy of 

model later on. So, this section will be focus on various type of outliers and their removal 

techniques.  

 In real estate domain, there are some basic concepts for square feet area per bedroom 

which cannot be less than some threshold value. This threshold values are decided by real 

estate owner or business manager. In our case we assume that we discussed with our business 

manager and by their opinion, there cannot be any bedroom with less than 300 square feet 

area. So, our task will be to detect data points with less than 300 square feet per bedroom. I 

will execute  this command and check if our dataset have this kind of errors: 
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Figure 12: Square feet per bedroom Outliers detection 

Source: Author 

 As we can see in above figure, we have 744 rows which have less than 300 square 

feet per bedroom, which is clearly data errors. To remove this data points from dataset I will 

execute following command: 

mdf5= mdf4[~(mdf4.total_sqft/mdf4.bhk<300)] 
mdf5.shape 
 
output: (12502, 7) 
 

This command creates new data frame mdf5 which is mdf4 with removed outliers of square 

feet per bedrooms.  

 Now, it’s time to focus on price per square feet feature which we created in feature 

engineering chapter. Following command will be describe stats of price_per_sqft column: 

mdf5.price_per_sqft.describe() 
 
output: 

count     12456.000000 
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mean       6308.502826 
std        4168.127339 
min         267.829813 
25%        4210.526316 
50%        5294.117647 
75%        6916.666667 
max      176470.588235 
Name: price_per_sqft, dtype: float64 
 

From the above statistical data, we observe that min price per square feet is 267.82 which is 

very rare in city like Bengaluru. Also, maximum price is 176470 which is extremely high 

but it might be possible for some luxurious house in prime location. Even though these are 

not errors, we need to remove this data points to make our data normally distributed. 

Otherwise, these extreme values might lead our model to wrong conclusion. In order to 

elimination of this values I will create following function: 

def price_per_sqft_outlier_elimination(df): 
    df_out =pd.DataFrame() 
    for key, subdf in df.groupby('location'): 
        m=np.mean(subdf.price_per_sqft) 
        st = np.std(subdf.price_per_sqft) 
        reduced_df =subdf[(subdf.price_per_sqft>(m-st)) & (subdf.pric
e_per_sqft<=(m+st))] 
        df_out =pd.concat([df_out,reduced_df],ignore_index=True) 
    return df_out 
 

 This function removes extreme values based on standard deviation. In our case we 

are assuming that our data should be normally distributed and most of data points should lie 

between mean and one standard deviation. Basic function of this function is it will take a 

dataframe as an input and group by location. Groping data by location is very important 

because price differs from location to location. So, per location I am getting ‘subdf’ (sub 

dataframe) for which I am calculating m (mean) and std (standard deviation). Then I am 

filtering data points which are beyond one standard deviation. So, anything above (m - std) 

and anything below (m + std) I will keep it in my reduced_df  and I will keep appending 

those dataframe per location and it will give me output dataframe as df_out. Now, I will 

apply this function on mdf5 and create new dataframe mdf6 by following command: 

mdf6=price_per_sqft_outlier_elimination(mdf5) 
mdf6.shape 
 
output: (10241, 7) 
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As per our output of new dataframe, we removed 2,261 data points with extreme values. 

 Now, we proceed to check if we have any outliers in our feature of bedrooms. There 

might be many cases where 2bhk homes have higher price than 3bhk in same location. There 

might be many reason for that such as property’s age and condition. But for our case we 

need to check if we have that data points or no in any random location. If we have, than it is 

necessary to remove or decrease those values for better accuracy of our model. For this task, 

I will create matplotlib PyPlot function to visualize our data in more  convenient way: 

def plot_scatter_distribution(df,location): 
    bhk2 = df[(df.location == location) & (df.bhk == 2)] 
    bhk3 = df[(df.location == location) & (df.bhk == 3)] 
    matplotlib.rcParams['figure.figsize'] = (15,10) 
    plt.scatter(bhk2.total_sqft,bhk2.price,  marker = '*',color ='blu
e', label = '2 BHK', s = 80) 
    plt.scatter(bhk3.total_sqft,bhk3.price, color ='orange', label = 
'3 BHK', s = 80) 
    plt.xlabel("Total Square Feet Area") 
    plt.ylabel("Price") 
    plt.title(location) 
    plt.legend() 
    plt.grid() 
 

This function will take dataframe and location as input and it will plot scatterplot for 2bhk 

vs 3 bhk. For example, if we take ‘Sarjapur road’ as location then our command and result 

will look like this: 

plot_scatter_distribution(mdf6, "Sarjapur  Road") 
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Figure 13: Price outliers of bhk detected 

Source: Author 

 As we can see from above figure there are many data points of 3bhk which has less 

price than 2bhk. Our goal is to minimize those data points. To tackle this issue, I will create 

following function: 

def bedroom_outliers_elimination(df): 
    exclude_indices = np.array([]) 
    for location, location_df in df.groupby('location'): 
        bhk_stats = {} 
        for bhk, bhk_df in location_df.groupby('bhk'): 
            bhk_stats[bhk] ={ 
                'mean' : np.mean(bhk_df.price_per_sqft), 
                'std' : np.std(bhk_df.price_per_sqft), 
                'count': bhk_df.shape[0] 
                 
            } 
        for bhk, bhk_df in location_df.groupby('bhk'): 
            stats = bhk_stats.get(bhk-1) 
            if stats and stats['count']>5: 
                exclude_indices = np.append(exclude_indices,bhk_df[bh
k_df.price_per_sqft<(stats['mean'])].index.values) 
    return df.drop(exclude_indices, axis = 'index') 
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 This function takes dataframe as an input. First it generate for loop for grouping 

dataframe (location_df) by location in which it generates another for loop to grouping 

dataframe (bhk_df) by bhk. For each bhk it will compute mean, standard deviation and count. 

Then, I created another for loop which will filter data points based on our desired filter (for 

example, price of 3bhk home should not be less then mean of 2bhk home). Now, I will apply 

this function to mdf6 and create new dataframe mdf7 by executing following command: 

mdf7 = bedroom_outliers_elimination(mdf6) 
mdf7.shape 
 
output: (7329, 7) 
 
In our new dataframe mdf7, we remain with 7329 rows. To cross check result of our function, 

I will plot same scatterplot as figure 13, but with new dataframe. 

plot_scatter_distribution(mdf7, "Sarjapur  Road") 
 

 

Figure 14: Price outliers of bhk removed 

Source: Author 
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   As we can see from above figure, we minimized price outliers of bhk compared to 

figure 13. It is very critical to remove them all but in my opinion this kind of abnormalities 

are fine to have because it is not necessary that 3bhk are always expensive than 2bhk in real 

life.  

 Now, I will plot a histogram with help of matplotlib to visualize density of homes 

per square feet by executing following code: 

matplotlib.rcParams["figure.figsize"] =(20,10) 
plt.hist(mdf7.price_per_sqft,rwidth = 0.9, color="teal") 
plt.xlabel("Price Per Square Feet") 
plt.ylabel("Count") 
 

 

Figure 15: House density of price per square feet 

Source: Author 

 As we can see from above figure, most of our house are in price range of 0-10000 

per square feet. This is a gaussian curve that means now our data is normally distributed.   

 Now, let us explore bathroom feature. To see unique values of bathrooms I will 

execute following function: 

mdf7.bath.unique() 
 
output: 

array([ 4.,  3.,  2.,  5.,  8.,  1.,  6.,  7.,  9., 12., 16., 13.]) 
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As we can see we have huge amount of bathrooms like 13 and 16 as well. Here we need to 

check some criteria of how many bathrooms a particular house can have. In that case, 

business manager comes in frame to decide this criteria. For our task, business requirement 

is that one house cannot have more bathrooms than bedrooms+2. Because in real life, if we 

have 3bhk apartment we cannot have 6 bathrooms. If we have these types of house in our 

dataset, we will consider it as outliers and remove them. Following command and result will 

help us to check if we have house having more bathrooms than bedrooms+2 

 

Figure 16: bathroom outliers detected 

Source: Author 

 We have only 4 bathrooms outliers. To remove them I will create new dataframe 

mdf8 by executing following command: 

mdf8=mdf7[mdf7.bath<mdf7.bhk+2] 
mdf8.shape 
 
output: (7251, 7) 
  

 Now we removed all outliers from our dataframe. So, I will drop unnecessary 

columns and create a new dataframe mdf9 by executing following function: 

mdf9 = mdf8.drop(['size','price_per_sqft'], axis = 'columns') 
mdf9.head() 
output: 
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Figure 17: Final dataframe after all outliner removal 

Source: Author 

 Above figure represents final dataset after all process of data cleaning, feature 

engineering and outliers removals. This dataframe contains 7251 rows and 5 columns. This 

dataset is now ready for model building and machine learning process. 

 

4.6  Machine learning model building 
 

 This chapter is focused on building a machine learning model. Various machine 

learning methods will be applied on our dataset such as ‘one-hot-encoding’ and ‘train test 

split’. Cross validation and hyperparameter tuning process will be discussed in this section 

to select best machine learning algorithm and their best parameter as well.  

 

4.6.1 One-hot-encoding 

 

 In our final dataset, we have 5 columns from which location is containing text data. 

For machine learning process, it is necessary to have numerical data only otherwise it cannot 

be proceed further. One of the best method for transforming categorical feature into 

numerical feature is ‘one-hot-encoding’, it is also known as dummies method. To perform 

one-hot-encoding on our dataset I will execute following command: 

dummies = pd.get_dummies(mdf9.location) 
dummies.head() 
output: 
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Figure 18: dummy columns created for location 

Source: Author 

 As we can see from above figure, all 242 location categories are converted into 

dummy columns, which are stored in separate dataframe called ‘dummies’. If data value in 

particular column represent 1 then it means that home is located there and the rest columns 

values will be 0. Now, I will join both dataframe dummies and mfd9 together using concat 

function as shown below: 

mdf10 = pd.concat([mdf9,dummies.drop('other', axis = 'columns')], axi
s = 'columns') 
 
mdf11 = mdf10.drop('location', axis = 'columns') 
mdf11.head(3) 
 

In first line of code, I created new dataframe mdf10 which join mdf9 and dummies dataframe 

together.  I also dropped column ‘other’ because in dummies we can live with 1 less column 

and we can know it’s value from values of other columns. For example, if the rest of columns 

will be 0, then we can assume that the home will be in other category. In second line I created 

new dataframe mdf11 by dropping location column from the previous dataframe because 

now we have all location as columns so it does not make sense to have them in row. The 

result of above code is represented in following figure: 
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Figure 19: Converted location into numerical category with one-hot-encoding 

Source: Author 

Actual shape of the mdf11 is: 

mdf11.shape 
output: (7251, 245) 
 
 

4.6.2 Train-Test split 

  

 Train-test method is used to estimate performance of machine learning algorithm. 

We can also train the model using entire dataset but it is not an idol approach. Because our 

model already seen whole data so it will give 100% accuracy on machine learning algorithm. 

That is why train test split method idol strategy when dataset is huge. Basic concept of train-

test split is we divide our dataset in two parts- training data and testing data, ratio can be 

anything, but 80:20 is most common and we will take the same in our case. We will train 

model with 80% of data and test model accuracy with 20% of data.  

 Before we divide our dataset into training and testing, I will create dependent and 

independent variable from dataset. In our case, house size is dependent variable as we are 

going to predict it based on other variable and rest of the variables will be independent. The 

code for this is: 

X = mdf11.drop('total_sqft', axis = 'columns') 
y = mdf11.total_sqft 
 
X is defined as independent variable and dropped total_sqft column from it. Y is defined as 

dependent variable, which contains only total_sqft column.  
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 Now, I will import train-test split method from Scikit learn model selection library 

by executing following code: 

from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size = 0.
2, random_state = 10) 
 

We divided our data and used 20% as test data and remaining 80% as training data. Random 

state parameter is set as 10 so train-test data will remain same each time. If we do not provide 

random state variable or set as 0, then data will be randomly changed each time when we 

execute this code.  

 

4.6.3 Machine learning algorithms and accuracy estimation 

  

 Our model is ready to train by machine learning algorithm now. First, I will try linear 

regression algorithm and examine score of model. I will import linear regression model from 

scikit learn linear model and code for this is: 

from sklearn.linear_model import LinearRegression 
lr_clf = LinearRegression() 
lr_clf.fit(X_train,y_train) 
lr_clf.score(X_test,y_test) 
print("The trained Linear Regression Model has a score of : " + str(l
r_clf.score(X_test,y_test))) 
 
 

 

output: 

The trained Linear Regression Model has a score of : 0.85253305552204
74 
 

 We got pretty decent score from linear regression algorithm but it was for only one 

random split, which might have different score for other split. So, here I would like to import 

K-fold cross validation method and perform shuffle-split method to get more reliable results 

of particular algorithm. I have elaborated detail theoretical concept and principal of K-fold 

cross validation in literature review part in chapter 3.2.1. the code for this task is below: 

from sklearn.model_selection import ShuffleSplit 
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from sklearn.model_selection import cross_val_score 
 
cv = ShuffleSplit(n_splits =5, test_size = 0.2, random_state = 0) 
 
print("The output correlation array is as shown below; ") 
 
cross_val_score(LinearRegression(), X, y ,cv = cv) 
 
output: 
The output correlation array is as shown below;  

 
array([0.83006819, 0.74838861, 0.84647633, 0.76505671, 0.74945186]) 
 
 I set shuffle-split as 5 which means our data will be split in to 5 random parts and 

will be shuffled each time and will return to their individual scores. We have observed from 

above score that linier regression is giving us very high accuracy in every splits. But in real 

life project it is very important to compare other algorithms as well to obtain as much higher 

accuracy as we can. So, my text step will be to compare lasso regression and decision tree 

regressor algorithm with linear regression. Along with it, I will import grid search cv to come 

up with best parameter of each algorithm. Theoretical concepts and principal of grid search 

cv is described in literature review part in chapter 3.3.1. the code for this task is below: 

from sklearn.model_selection import GridSearchCV 
from sklearn.linear_model import Lasso 
from sklearn.tree import DecisionTreeRegressor 
 
def look_for_best_model_and_tuning_parameters(X,y): 
    algos = { 
        'Linear_Regression': 
        { 
            'model' :LinearRegression(), 
            'params': 
            { 
                'normalize': [True, False] 
            } 
        }, 
         
         
        'Lasso Model' : 
        { 
            'model': Lasso(), 
            'params': 
            { 
                'alpha' : [1, 2], 
                'selection' : ['random', 'cyclic'] 
            } 
        }, 
         
        'Decision Tree Model' :  
        { 
            'model':DecisionTreeRegressor(), 
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            'params':  
            { 
                'criterion' :['mse', 'friedman_mse'], 
                'splitter' : ['best','random'] 
            } 
        }         
    } 
     
     
     
     
    scores = [] 
    cv = ShuffleSplit(n_splits = 5, test_size = 0.2, random_state = 0
) 
    for algo_name, config in algos.items(): 
        gs = GridSearchCV(config['model'], config['params'], cv = cv, 
return_train_score=False) 
        gs.fit(X,y) 
        scores.append({ 
            'model' : algo_name, 
            'best_score' :gs.best_score_, 
            'best_params' : gs.best_params_, 
        }) 
    return pd.DataFrame(scores,columns=['model','best_score','best_pa
rams']) 
 

In this code, first I imported grid search cv, lasso regression model and decision tree model 

from scikit learn. Then I defined a function which takes x(independent variable) and 

y(dependent variable) as input and it goes by each algorithms and their parameters. In last 

part, I created score object to store scores of each algorithms in a dataframe. Gs will 

configure each algorithm and their parameters and cv is set for 5 times shuffle-split. I will 

execute following command to apply this function on our dataset: 

print("The Optimum Models that can Characterise the Approximate Size 
of a home are tabulated below ") 
look_for_best_model_and_tuning_parameters(X,y) 
 
output: 

 

Figure 20: Scores and parameters values comparison of algorithms  

Source: Author 
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4.6.4 Function for home size prediction  

  

 As we can see from above figure, linear regression is winner for this model with 

highest accuracy score of  78.78%.  So, I will use linear regression algorithm to build 

house size prediction model. We have already created lr_clf (linear regression model) 

previously, so I will just create a function home_size_estimation  and use this lr_clf model 

in it. The code for this task is below: 

def home_Size_Estimation(location,price,bath,bhk): 
    loc_index = np.where(X.columns == location)[0][0] 
     
     
    x = np.zeros(len(X.columns)) 
    x[0] = price 
    x[1] = bath 
    x[2] = bhk 
    if loc_index >= 0: 
        x[loc_index] = 1 
    return lr_clf.predict([x])[0] 
 

Above function takes location, price, bath and bhk as input and return estimated size of 

house.  

 

4.6.5 Exporting model   

  

 Finally, our size house prediction model is built. We will interpret results of this 

function in result and discussion part of this thesis. For now, I will export this model into 

pickle file by executing following code: 

import pickle 
with open('House_Price_Model.pickle', 'wb') as f: 
    pickle.dump(lr_clf,f) 
 

It is very simple to export our model in pickle file, we just define model name and dump  

model classifier in it. This pickle file does not contain actual data but it contains only 

coefficients, intercepts and other parameters. Other than the model we also need columns 

information as we can see in our home_size_estimation function location and index of 

columns are very important. For storing those column, I will use json file and execute 

following command: 
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import json 
columns={ 
    'data_columns' : [col.lower() for col in X.columns] 
} 
with open("columns.json", "w") as f: 
    f.write(json.dumps(columns)) 
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5.  Results and discussion 
 

5.1 Result interpretation of house size estimation function 
  

 To predict area occupied by a home, we have to call a function 

‘home_size_estimation’. Parameters of the function are illustrated as below: 

Home_size_estimation(location, price, bath, bhk). 

 This model will ask for inputs from customer and will predict size of home by given 

values. Let us assume, customers have already their decided budget of 20 lakh INR. As per 

their family size they are looking for 3 bath and 3 bhk apartment. But their main concern is 

location as they are confused in three location and they want to know which location will 

offer them bigger house. So, here we have results for 3 different location: 

1)home_Size_Estimation('Raja Rajeshwari Nagar',20,3,3) 
  Output: 2607.9527865108266 
 

2) home_Size_Estimation('Whitefield',20,3,3) 
   Output: 2533.4277211332465 
 

3) home_Size_Estimation('Sarjapur  Road',20,3,3) 
   Output: 2433.19471401022 
 

 As we can see from the output, the customer would go for ‘Raja Rajeshwari Nagar’ 

because this area provides bigger size of house then other 2 in the same price. They can also 

change the criteria and the output will keep changing accordingly as well.  

 

5.2 Discussion 
  

 My main motivation for thesis was to create a unique yet very interesting and 

valuable approach to make improvements in real estate industry with the help of data science 

techniques. As per our results, I obtained it by building a home size prediction model. As we 

all know, some reputed real estate websites have house price prediction model but the most 

valuable thing we look other than price is the size of house. Because generally, customers 
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get approval of their bank loan before buying any property and their budget is fixed and 

there is no reason to look for house price anymore. So, their main concern will be to choose 

best and specious house from their desired location. In this case, this feature of size 

prediction will be very helpful and flexible to decide location of the house.  

 Even though our model have pretty high accuracy of 78.78%, there are certain 

limitations and ideas to improve accuracy score. The limitations are features in our data as 

size does not depends on only bedrooms and baths. There might be many luxurious houses 

with gardens, garages and terrace which influence house size a lot. Our dataset was only 

about one city and limited features. But we can take it on next level by increasing data size 

with multiple cities and analysing their other features as well. We also removed null values 

and outliers from our dataset to keep it short for this thesis, but in real world these values 

can be filled with various techniques as per business requirements. There are various 

algorithm such as XG boost and RNN (recurrent neural network) which can be applied in 

order to get more accurate score.  

 After working on this research topic, I came to know a fact that house price or size 

are just a number which depends on a lots of factor and have their own limitations. For 

example, house price cannot be only decided by size, feature and location of the house. It is 

also dependent on quality and age of the house. This problem also can be solved by image 

processing of the house with the help of technologies of data science, artificial intelligence 

and neural network. This is very interesting approach to focus on and might be my future 

research topic.  
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6. Conclusion  
  

 The bachelor thesis objective was to study literature publications and web resources 

to know modern data science and machine learning techniques along with various python 

libraries for building a home size prediction model. This bachelor thesis represents life cycle 

of a real-world data science project which includes various stages like accessing raw data, 

data cleaning, feature engineering, outliers detection and removal, machine learning 

methods and algorithm and finally model creation. In the second chapter of this thesis, I 

discussed goal of the study and in depth methodologies used to achieve desired results from 

this process.  

 The third chapter of the study demonstrate literature review to understand theorical 

concepts of topics like machine learning methods and algorithms, python and its libraries 

with used references and bibliography. In the fourth chapter of this study, I conducted 

practical part based on methodologies to obtain objectives of this thesis. The main use of 

‘home size estimation function’ and its results to make wise decision to buy a house are 

discussed in the fifth chapter of the study results and discussion.  

 To sum up, data science is a must have technology for development of any 

organization or just for staying in market as well. Because every day there are new data 

science techniques and machine learning algorithms are being discovered which makes easy 

to develop new business strategies and technological development for better human life. In 

my opinion, every business or industry should approach new data driven technologies. 

Whether it is a new startup or a giant organization, whether it is product based company or 

service based company, they should use their data wisely to make smart decisions which not 

only impact society economically but socially as well. Finally, I conclude my thesis and 

affirm that I have accomplished all the objectives which were assigned to me.     
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