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Abstract

We introduce an alternative method of continuous variable quantum erasing using a nonlinear
feed-forward. We demonstrate the effectiveness of this method by applying it to a
single-photon state that interferes with a vacuum state on a Beam splitter causing quantum
decoherence. Finally, we compare the effectiveness of the nonlinear method with the linear
method showing that the nonlinear method is indeed more effective.
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Abstrakt

Představíme alternativní metodu kvantového vymazávání spojité proměnné použitím
nelineární dopředné vazby. Ukážeme effektivitu této metody tím, že ji použijeme na jedno
fotonový stav, který interferuje s vakuuovým stavem na děliči svazků, což způsobuje
kvantovou decoherenci. Nakonec porovnáme efectivitu nelineární metody s lineární metodou a
ukážeme že nelineární metoda je doopravdy více efektivní.

Klíčová slova

kvantové smazávání ve spojitých proměnných, nelineární dopředná vazba, kvantová
dekoherence, Wingnerova kvazipravděpodobnostní distribuce
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Chapter I

Introduction

The quantum eraser experiment and its implications are quite an interesting part of quantum
mechanics, an area of physics already abundant with topics that pique our curiosity and test
the limits of human understanding. The origin of its inception comes from Young’s double-slit
experiment. This experiment, normally used to show the wave-like behaviour of light (that
being interference), is incredibly interesting when done with quantum systems. The reason is
an answer to a simple question: If a single photon went through the double-slit setup, which
of the two slits did it pass through? This type of experiment, trying to answer this question,
is called the ”Which-way” experiment . What makes it so interesting is that when we try to
detect this which-way information or are able to determine it, we lose the interference pattern
(The measured particle loses its wave-like qualities).

The first which-way experiment that tried to detect this information without causing
quantum decoherence was proposed by Albert Einstein [1]. However, Bohr later reported,
that this proposal conflicts with the principles of quantum mechanics. [2]. The earlier
explanation for this phenomenon was that this decoherence was due to phase changes by way
of scattering of the particle caused by the measurement. This idea went through a revaluation
when it was found out, that even if we detect this which-way information without inducting
random phases (e.g. by way of excitation and deexcitation of a microwave cavity) this
measurement still causes quantum decoherence [3]. The difference is that now we measure the
wave qualities of our system instead of particle qualities. In other words, instead of measuring
the exact position of the particle, we detect the position quadrature of the wave that the
particle acts as. This discovery opened up new possibilities. It was now possible to store this
information in another quantum system and “erase” it by making it inaccessible. This erasure
results in the recovery of the interference pattern making it a way to negate the quantum
decoherence caused by measurement [4]. A famous example of research that followed this
discovery is Wheeler’s delayed-choice experiment [5] that was later realized in different forms
by [6] and [7] and showed that we can store the which-way information and erase it at a later
time. Quantum erasing can also be realized in a continuous variable setting. This setting is
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concerned with the general mode of the quantum state of light with many photons, instead of
the which-way information of a single photon. The groundwork for this setting is done in [8]
and it further continued by showcasing the potential of using this quantum erasure to restore
quantum states, that have been disturbed during data storage in quantum information
processing [9] and finally by demonstrating this CV quantum eraser experimentally [10]. The
quantum erasure described by these papers used a method of linear feed-forward to displace
the measured state causing the which-way information to be no longer accessible. This was
expanded even more quite recently by the development of new technologies that had made it
possible to use nonlinear feed-forward [11]. Our thesis continues from this research by
introducing one such method of quantum erasure that utilizes nonlinear feed-forward, which
could lead to an even more effective restoration of quantum states.

We started by defining our system and constructing the continuous variable (or CV for short)
quantum eraser. This quantum eraser consists of a homodyne detector and a beam splitter,
where interference occurs between a single photon state and a vacuum state. We describe this
system using the phase-space representation by making use of the Wigner quasiprobability
distribution (Wigner function or WF for short). The nonlinear method of quantum erasure
uses the displacement operation that shifts the Wigner function. This is the same operation
that is used in the case of the linear method. The difference is, that in the case of the
nonlinear method, we displace the WF by a value that corresponds to the position of the
minimal value of this function. We found this minimal value numerically using software
(MatLab). The reason to focus on the minimal value is that we know that the negativity of
the Wigner function is a direct result of quantum interference and cannot be simulated
classically [12], so we want this negativity to be as high as possible. Finally, we used the
negativity as a metric to compare the nonlinear and the linear methods and showed that the
nonlinear correction is indeed more effective at restoring quantum qualities.
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Chapter II

Theory

2.1 Quantum Harmonic Oscilator

One of the fundamental cornerstones of physics is the Harmonic oscillator. A harmonic
oscillator is a system that experiences force proportional to the displacement when displaced
from its equilibrium. Our model is based on the electromagnetic oscillator. This oscillator is
described by a complex function called spatial-temporal mode which describes the wave’s
change in space (spatial) and time (temporal). A simple example of this function is a plane
wave

u(x, t) = u0 exp(i(kx − ωt)), (2.1.1)

where u0 is a polarization vector, ω frequency and k = w2

c2 wave vector. This mode can be
chosen at will as long as it obeys Maxwell’s equations. In classical physics, the state of this
mode would be described by complex amplitude α given by its magnitude |α| and phase argα.
In quantum mechanics, things get more complicated. The energy of the quantum harmonic
oscillator (QHO) is discreetly distributed into energy levels or states

Ê = ~ω(n̂ + 1
2), (2.1.2)

where ~ is Planck’s constant, the n̂ is a discrete number operator, whose eigenstate
corresponds to the energy and number of photons. This quantization of energy arises because
any bound system in quantum mechanics can only gain discreet energy levels [13]. For
simplicity, we will consider Planck’s constant

~ = 1. (2.1.3)

The n̂ operator is equal to
n = â†â, (2.1.4)
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where â† and â are the creation operator and the annihilation operator respectively. They
obey the commutation relation

[â, â†] = 1. (2.1.5)

When applied to a state of the QHO the annihilation operator lowers the energy level and the
creation operator increases it. Furthermore, The annihilation operator is analogical to
complex amplitude in a classical harmonic oscillator. We can therefore describe it similarly
using

â† = 1√
2

(x̂ + ip̂) (2.1.6)

â = 1√
2

(x̂ − ip̂), (2.1.7)

where we described these operators using hermitian and antihermitian parts, called
quadratures x̂ and p̂ respectively. However, since they obey the commutation relation
[x̂, p̂] = i we can use them as a sort of position and momentum analogy. When we describe
our QHO using this position and momentum, we start operating in a phase space, not too
different from the phase space used in classical physics. So, it makes sense to use the phase
space formulation of quantum mechanics. To this end, we will use the Wigner
quasiprobability distribution.

2.2 Wigner quasiprobability distribution

Another way to analyze the complex amplitude of an electromagnetic oscillator in classical
physics is by defining a distribution that describes it statistically. This distribution quantifies
the probability of finding a particular value of real and imaginary parts of complex amplitude
in their simultaneous measurement. As explained earlier, the real and imaginary parts of
complex amplitude can be described as an oscillator’s position and momentum. So this
distribution also quantifies the probability of finding a concrete pair of x̂ and p̂. In other
words, we get a distribution that calculates the probability of having a particular position
and momentum value for a chosen ensemble of particles or a type of phase-space distribution.
Analogous to this in quantum mechanics is the Wigner distribution (further abbreviated as
the WF-Wigner function). However, as we can deduce this will not be a simple one-to-one
analogy as we are limited by the uncertainty principle meaning we cannot simultaneously
know the value of two non-commuting variables.

This Wigner function for a mixed state is formally written as

W (x̂, p̂) = 1
π

∫ ∞

−∞
〈x̂ − y| %̂ |x̂ + y〉 e2ip̂y dy, (2.2.1)

where %̂ is the density matrix, x̂ and p̂ are quadratures and y is an auxiliary variable used for
integration. As can be deduced from this definition the WF utilizes the fact that if we know
the form of the state in x representation we also know its form in p representation by
applying a Fourier transform on it. An important characteristic of WFs is that they can
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attain negative values. This negativity is a direct result of quantum mechanical interference
effects that arise when we try to describe nonclassically acting particles using a phase-space
representation. This means that these negative values are physically relevant and we can use
them as a metric of how ”quantum” a given system is [14]. With this in mind, we define our
Wigner function as a quasiprobability distribution or a distribution that has its requirements
slightly alleviated. This function is defined in such a way that its marginal distributions
correspond to probability densities of the respective observables [15]. So we gain the
expectation value in the x-representation by∫ ∞

−∞
W (x̂, p̂) dp̂ = 〈x̂| %̂ |x̂〉 . (2.2.2)

The WF for a particular energy eigenstate |n〉 will have the following form

Wn(x̂, p̂) = (−1)n

π
Ln(2(x̂2 + p̂2))e−(x̂2+p̂2), (2.2.3)

where Wn are the Laguerre polynomials. These polynomials are nontrivial solutions of
Laguerre’s differential equations. They are linked to Hermits polynomials (polynomials used
to solve the wave function of QHO using Hilbert space operators) through the Wigner-Weyl
transform, an invertible mapping between Hilbert space operators and functions in the phase
space formulation. For our purposes, we only need the Laguerre polynomial for the ground
and first excited state.

L0(x̂) = 1, (2.2.4)

L1(x̂) = −x̂ + 1. (2.2.5)

We use them to derive the WF of the ground state.

W|0〉(x̂, p̂) = 1
π

e−x̂2−p̂2
. (2.2.6)

And to derive the WF of the single-photon state.

W|1〉(x̂, p̂) = 1
π

(2x̂2 + 2p̂2 − 1)e−x̂2−p̂2
. (2.2.7)

2.3 Beam Splitter and Homodyne detector

A beam splitter (BS) is a simple optical device we use in the thesis. It makes two incoming
beams of light interfere to produce two emerging beams. This interference is also reversible as
we can send the two beams back to the BS, where they produce the original beam. We can
therefore describe this device as a two-input, two-output black box. The diagram of this
device can be seen in Fig.II.1. The four modes are described by two annihilation operators â1

and â2 on the input and operators â′
1 and â′

2 on the output.
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Figure II.1: The diagram of the beam splitter. This optical device always has two input pa-
rameters (without comma) and two output parameters (with comma)

The linear transformation (interference) that happens on the BS is then described as(
â′

1
â′

2

)
= B

(
â1

â2

)
, (2.3.1)

where B is the unitary beam splitter matrix. This matrix describes the change of the
incoming beams that we can describe as rotations

B =
(

cos(Ψ/2) sin(Ψ/2)
− sin(Ψ/2) cos(Ψ/2)

)
. (2.3.2)

Finally, we can represent this matrix in terms of transmission t and reflection r coefficients as

B =
(

t −r

r t

)
, (2.3.3)

which satisfies the following relation due to energy conservation

t2 + r2 = 1. (2.3.4)

The interesting characteristic of the BS is that it always acts as a four-port device, even if
there is only one beam on the input that gets split into two. This is an essential quantum
feature of the BS that makes it so, even if our incoming beam has nothing to interfere with, it
interferes with the vacuum state containing vacuum fluctuations. This is caused by the poorly
understood spontaneous creation of “virtual particles” in a particle-antiparticle pair that
randomly changes the amount of energy in space. [16]. In other words, we can understand
this interaction with the vacuum state as a general interaction of our state with its
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environment which results in some loss.

1

2

Figure II.2: The diagram of the homodyne detector. The signal on the input is described by â
and interacts with a coherent wave described by αLO on the BS. We detect the photocurrents
I1 and I2 on the output

Another optical device used in our measurements is the Homodyne detector seen in Fig.II.2.
It is an essential component used to measure the intensity of electromagnetic fields. The
homodyne detector is constructed using a balanced BS, where the incoming beam interferes
with a local oscillator (coherent laser beam), that we assume to be powerful enough to act
classically (we neglect the quantum fluctuations). This causes the beam to split as expected.
Next the photocurrents I1 and I2 of these two beams are measured using two detectors.
These photocurrents are proportional to the photon numbers n̂1 and n̂2 respectively given by

I1 ∝ 〈n̂1〉 = 〈â′†
1 〉〈â′

1〉, I2 ∝ 〈n̂′
2〉 = 〈â′†

2 〉〈â′
2〉. (2.3.5)

Where the operators â′
1 and â′

2 are given as

â′
1 = 1√

2
(â − αLO), â′

2 = 1√
2

(â + αLO), (2.3.6)

where αLO denotes the complex amplitude of the local oscillator that we assume acts
classically and â is the annihilation operator of the measured signal. Furthermore, the
difference of the photocurrents I21 = I2 − I1 is proportional to the difference in photon
numbers.

I21 ∝ 〈n̂21〉 = 〈n̂2 − n̂1〉 = 〈α∗
LOâ〉 + 〈αLOâ†〉 (2.3.7)

and so it is also proportional to the quadrature components. If we then set the reference
phase of the LO oscillator to 0, the difference of photocurrents I21 will be proportional to the
position quadrature.

I21 ∝ 〈n̂21〉 =
√

2|αLO|x̂. (2.3.8)

[17]. Phase π/2 then leads to the detection of p̂. It is appropriate to mention that this
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detector measures quadratures in a wave base instead of a particle base by using
electromagnetic interactions. This means that measuring a single-photon state this way does
not result in the photon acting as a particle.

2.4 Quantum eraser and displacement

In quantum physics we have variables that do not commute, the prime example being
position and momentum. When we measure or gain information about one of these variables
we inevitably lose information about the other. This is the nature of quantum systems
described by the Heisenberg uncertainty relation. The same principle is applicable to all
non-commuting variables and measurements. In the case of the CV quantum eraser, we are
primarily interested in quadrature operators x̂ and p̂. However, we can use a binary quantum
erasure, which is concerned with measuring one of two non-commuting states, to describe this
concept more intuitively. An example of this binary regime can be seen in Young’s double-slit
experiment. This experiment used originally to show the interference characteristic of waves
is a prime example of how measurement destroys the quantum behaviour of systems. In the
case of this experiment, the non-commuting part of the uncertainty experiment is the info
The diagram of this experiment can be seen in Fig.II.3.

If we send an ensemble of single photons through the double slits we observe that they create
interference patterns and thus have the property of waves, a purely quantum behaviour. If
we, however, try to find out through which of the two slits the photon went through (a
Which-way experiment) the resulting pattern will not be an interference pattern and instead
will show a pattern we would expect for a particle. This way the detection can be done in a
number of ways as long as one complementary variable is measured. In the case of this
double-slit experiment, it has been found that there is a way to measure this which-way
information without producing any phase change on the centre of mass of the incoming
particle. This is done by using excited atoms that give up its energy before going through a
slit. Therefore we can detect this change of energy and gain the which-way information [18].
This is important as it is now possible to erase this which-way information by making it no
longer accessible, which will in turn return the desired interference pattern. In this case, the
erasure is done by inserting a field detector and it works as follows: Suppose that the state of
the photon going through the first slit is |u〉 and the state of the photon going through the
second slit is |d〉. In that case, the function of the which-way information disregarding
detector is to become excited when the slits state (combination of |u〉 and |d〉) is a symmetric
combination (|u〉 + |d〉) and to become deexcited when this state is an asymmetrical
combination (|u〉 − |d〉). When we analyze two ensembles of particles, one corresponding to
the symmetric combination and one corresponding to the antisymmetric combination we will
see that the maxima of the interference fringes of one set correspond to the minima of the
other set. The interference restoration itself can be done by detecting the phase difference
between the symmetrical and asymmetrical slit states. We can then dynamically move the
screen (shown in Fig.II.3) in a way that makes the maxima of one set correspond to the
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maxima of the other set restoring the interference pattern.

We can now see that the purpose of quantum erasure is to make the measured information of
the complementary variable not accessible and by doing so to restore its quantum qualities.
The reason as to why this can be so beneficial is that by the proper use of this quantum
erasure, we can restore quantum states, that have been disturbed due to their interaction
with their environment. [9].

Figure II.3: The diagram of the double-slit experiment. The microwave cavity is used to de-
termine the ”which-way” information. The field detector becomes excited or deexcited based
on the type of combination of the slit states resulting in quantum erasure and restoration of
the interference pattern. 1

We so far discussed quantum erasure in the binary regime. However, in our thesis, we make
use of a quantum eraser in a continuous variable regime. In the case of the CV regime, we
look at the complementary pair of amplitude and phase quadrature of light, or in other
words, the quadrature that can be described as the operators x̂ and p̂ of the light. The
difference from the binary regime is that now instead of there being only two possible paths
(two eigenstates), there is a continuous set of possible paths. The way of gaining this
“which-way” information is by encoding the signal information into another state (marker
state) using quantum nondemolition entangling coupling [19]. Then the way to erase this
information is by applying a local unitary operation on the output state so that the measured
quadrature information is no longer accessible. This can be done by using the operation of
displacement. The displacement operator is generally described as

D̂(α) = exp (αâ† − α∗â), (2.4.1)
1Greenberger, Daniel and Hentschel, Klaus and Weinert, Friedel. Compendium of Quantum Physics, p.547,

fig.1
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where α is the amount of displacement in optical phase space. So this operation shifts a
localized state in phase space by a complex amplitude α. For example, if we split a beam,
where on one output we measure the position quadrature q, then applying the displacement
operation, dependent on the measured quadrature and scaled with the appropriate gain factor
G, on the second output x̂ will result in quantum erasure and restoration of quantum
qualities.

x̂fin = x̂ + Gq, (2.4.2)

In this case, the displacement is linearly dependent on the measured quadrature q and so we
call this process linear correction where the linear function is given as

fl = Gq. (2.4.3)
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Chapter III

Method and results

3.1 Defining the model

We consider a single mode of electromagnetic light in the single-photon state, passing through
a BS, where it interacts with the second mode in the vacuum state. The reason is that a) a
single photon forms a pure and simple quantum system and b) single photon states are an
essential resource in CV quantum information theory. The quantum behaviour of this state
can be seen from its Wigner function that, as expected, has negative values with the minimal
value being − 1

π , which can be seen in Fig.III.1.

When the photon goes through the BS it is not split as a particle. Instead, it creates a
superposed state of the photon passing and getting reflected. When we only look at the
transmitted mode, the interaction between single-photon state W|1〉(x̂, p̂) and vacuum state
W|0〉(x̂, p̂) on the BS is equivalent to loss. Our ultimate goal is to negate this loss by erasing
the information lost to the second channel.

Figure III.1: WF of a single photon state. Its minimal value is located in position W(0,0) and
is equal to − 1

π
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The diagram of the model describing the CV quantum eraser can be seen in Fig.III.2. With
the interaction of the single-photon state and vacuum state on the BS comes some change in
quadratures x̂ and p̂. We denote the quadratures before BS of the single-photon state as x̂in

and p̂in and of the vacuum state x̂0 and p̂0. After the BS the measured output has
quadratures x̂m and p̂m and the second output has quadratures x̂out and p̂out, where we
displace the position quadrature to get x̂fin. With this notation, the BS will have the
following effect on quadratures x̂ and p̂.

x̂out = tx̂in + rx̂0, (3.1.1)

p̂out = tp̂in + rp̂0. (3.1.2)

Therefore, the WFs of the ground and first excited state will now transform

W|1〉(x̂in, p̂in) → W|1〉(tx̂out + rx̂m, tp̂out + rp̂m). (3.1.3)

W|0〉(x̂0, p̂0) → W|0〉(tx̂m − rx̂out, tp̂m − rp̂out). (3.1.4)

Next, we add a way to detect the shift caused by the interference that we can later use for
our correction. We achieve this by adding a homodyne detector that we described in section
2.3. This detector will serve to measure the quadrature shift caused by the vacuum or in
other words to measure the value of x̂m that we then mark as q. Finally, we add a way to
displace the outcoming wave that we have not measured. In an experiment, this would have
been done with a strong coherent light beam [10].
To summarize, the beam splitter takes the single-photon state and the vacuum state as its
inputs and, based on its characteristics described by transmission and reflection coefficients,
they interfere to create two outputs. On one of these outputs we measure the quadrature shift
of the WF (this output describes the loss on this system) and then by the use of methods of
quantum deletion we purposefully displace the second output in such a way that we get a WF
as close as possible to the WF of single-photon on the start. From Fig.III.1 we can see that
this WF has its minimal value in position W (0, 0) so we aim to get a WF that is as negative
as possible in this same position (alternative method not used in this thesis would be to use
fidelity).

To describe the displacement done by this system we use the operators shown in Fig.III.2.
The quadrature of the marker state xm is measured by the homodyne detection to yield value
denoted as q

q̂ = tx̂0 − rx̂in, (3.1.5)

We can now apply the displacement operator on the output signal x̂out, which will shift it in
regard to the measured position on the marker state q̂ scaled by the gain factor G.

x̂fin = x̂out + Gq, (3.1.6)
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FF

HD

BS

D

Figure III.2: Schematic depiction of CV quantum erasing. HD is the homodyne detector. FF
is the feed-forward and D is displacement where the displacement operation (D̂(x)) takes
place. The measured position quadrature is marked q

where Gq is the linear correction fl(q) the same as in equation (2.4.3). We then find the value
of the gain factor by substituting equations (3.1.1) and (3.1.5) into (3.1.6) and adjusting
appropriately

x̂fin = x̂in(t − rG) + x̂0(r + tG). (3.1.7)

While generally, a number of different displacements will result in some erasure of the
which-way information, since our goal is to minimize the effect of the vacuum state on our
system, we choose the gain factor in a way to negate the effect of the vacuum state. As we
can see from the equation (3.1.7) this can be achieved by

G = −r

t
. (3.1.8)

By inserting it into equation (2.4.3) we get

fl(q) = −r

t
q. (3.1.9)

So we measure the position quadrature on the marker state, then based on this measurement
we use methods of feed-forward to displace the resulting WF using equation (3.1.8) which will
result in the erasure of the which-way information and restoration of the quantum properties
[10].
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3.2 Conditional WF and its characteristics

With the whole model complete and described using the change of position quadratures, we
can now describe it using the WF. This will also describe the loss we get as a result of the
interference of single photon and vacuum state. We start by deriving a conditional WF,
W (x̂out, p̂out|q), that describes the WF dependent on its starting quadratures under the
condition that we measure a particular value of q. Essentially, this is the WF on the output is
the result of interference of the original single-photon WF with the vacuum state resulting in
a shift on its x-axis by q. This conditional function is equivalent to conditional probability
and is derived in essentially the same way as

W (x̂out, p̂out|q) = W (x̂out, p̂out, q)
P (q) , (3.2.1)

where P (q) is the marginal distribution of variable q gained as

P (q) =
∫ ∞

−∞

∫ ∞

−∞
W (x̂out, p̂out, q) dx̂outdp̂out (3.2.2)

and W (x̂out, p̂out, q) is the WF, which is a result of interference of single-photon and vacuum
states and the measurement of x̂m as q. We describe it as

W (x̂out, p̂out, q) =
∫ ∞

−∞

∫ ∞

−∞
W|0〉(tx̂m−rx̂out, tp̂m−rp̂out)W|1〉(tx̂out+rx̂m, tp̂out+rp̂m) dx̂m, dp̂m,

(3.2.3)
where we trace over the quadratures x̂m and p̂m on the output of the BS. The Dirac’s delta
function subsides the x̂m as the measured value q. We now take relations (3.2.3) and (3.2.2)
and input them all into equation (3.2.1) and evaluate the integrals. Since we will now work
with only variables x̂out and p̂out we relabel them to x and p respectively. The conditional
WF that is derived this way looks as:

W (x, p|q) = 1
π

r2(2q2 + 1) + 4rqtx + 2t2(x2 + p2) − 1
−1 + r2(1 + 2q2) + 2t2 e−x2−p2.(3.2.4)

With this conditional WF, we can finally look at how this shift caused by interference with
the vacuum state looks based on what value of quadrature q we measured. For now, we are
only interested in the shift of quadrature x and as such we will analyze our WF only on the
x-plane with quadrature momentum being p = 0. We also choose the value of the
transmission coefficient to be 0.9.

The first thing that we can notice in Fig.III.3 (a) is that the difference between the positive
shift and the negative one is just mirroring (it is symmetrical). In (b) we can notice that with
bigger values of measured q there is a reduction of negativity of the WF. In the limit of
infinity, the minimal value of this conditional WF eventually goes to zero.

We can now analyze the WF on the output where we make no measurements and so do not
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Figure III.3: (a) Figure comparing positive (q > 0)and negative shifts (q < 0) of the W (x̂, p̂|q)
function. (b) Differences based on the increasing value of q of the W (x, p|q) function. The
transmission for all of these functions is 0.9

use any corrections. We gain this WF from the conditional one as

W (x, p) =
∫ ∞

−∞
W (x, p|q)P (q) dq. (3.2.5)

And after adjustment

W (x, p) = 1
π

(−1 + 2r2 + t2(p2 + x2))e−p2−x2
. (3.2.6)

We focus on the value of this WF in position W (0, 0) as this is where we want the most
negativity. In Fig.III.4 we can see the resulting dependency of the value in this position based
on transmission.
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Figure III.4: Dependancy of values in position W (0, 0) of the unmeasured WF on transmis-
sion t. It shows the amount of loss in relation to the transmission coefficient of the BS

This function describes the loss caused by interference on the BS. When we have a
transmission of 0 (and so reflectivity of 1) all we get after the BS is a vacuum state as the
photon just gets reflected and we lose all quantum information. So after the BS the value of
W (0, 0) is 1

π or the same for the vacuum state. Similarly, for a value of t = 1, the photon goes
through the BS uninterrupted and as a result, we again get the pure state of a single photon
that has its value in W (0, 0) equal to − 1

π and so in this case, there is no loss.

3.3 Corrections

Now that we have examined the resulting WF based on our measurement it is time to try to
use the methods of displacement and quantum erasing to correct or shift the resulting WF
and with that mitigate the losses caused by the vacuum state. To get the resulting shifted
WF we apply the displacement operation on the conditional WF by using equation (3.2.6)
resulting in

W (x, p) =
∫ ∞

−∞
W (x − f(q), p|q)P (q) dq, (3.3.1)

where f(q) is our chosen correction. As described earlier the standard way this correction is
chosen is (3.1.9), where the dependency on the measured q is linear. We try to improve this
method by introducing an alternative method using a nonlinear correction.

Instead of just using the parameters of the BS, as is the case with linear correction, we opted
to apply a displacement operation that shifts the WF by a value that corresponds to the
position of its minimum. By doing this we effectively take this minimal value and shift it
back into our desired position of W (0, 0). So if we derive a function fn(q) that for each
measured q finds the position xmin where our conditional WF is minimal we can then use this
function as a nonlinear correction. We did this numerically by finding the minimal value of
the conditional WF based on measured values of q going from 〈−7, 7〉 with each step being
0.01. In the Fig.3.3 we can see a plot of this function. It is worth reminding that we still
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assume the value of transmission to be 0.9. As we can see this function is at first glance quite

Figure III.5: Dependence of xmin(for which W (xmin, 0) is minimal) on measured shift in
quadrature q for t=0.9

similar to a linear dependence. This similarity makes sense when we consider that the linear
correction alone is quite effective and what we are technically doing is merely fine-tuning it.
To further show how this function varies for its linear counterpart we plot their value
difference based on q. The result of this is in Fig.III.6.

Figure III.6: The difference between nonlinear fn and linear correction fl (3.1.9) based on
measured quadrature q

It is now worth looking at what these corrections do to our conditional WF W (x, p|q). We
will only look at our Winger function on the x-plane because we are not shifting the
momentum in any way. The results of these corrections are shown in Fig.III.7 and Fig.III.8

We can see that while the linear correction does shift the conditional WF it overdoes it and
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x quadrature

Figure III.7: Wigner function for q = 1.5 and t = 0.9 with no correction

x quadrature x quadrature

Figure III.8: Comparison of linear and nonlinear correction for q = 1.5 and t = 0.9

we get a resulting function that has its minimal value slightly off our desired location.
However, with our method, since we measure exactly how we need to shift our function we
get its minimal value right into the “sweet” spot that is the position of (0,0). However, the
real test of the usefulness of our method is to look at the standard WF and see how effective
these methods are for values of transmission t going from 0 to 1.

3.4 Generalization to an arbitrary transmission value

The final step of our work is to show how these correcting methods work based on arbitrary
values of transmission. For linear correction, this is quite straightforward as we can use the
relation (3.3.1) for different values of t. But we can also simplify it even more by evaluating
the equation given by (3.3.1) where we assume x = 0 and p = 0. This value is all we need to
compare the effectivity of our corrections, since by just comparing them in relation to
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transmission, we can see which correction gives us more negative values in this position. We
first need to derive this correction for our method as well. That is slightly more complicated
than in the case of linear correction since we do not have a formal prescription of our
function. We circumvent this by calculating our integral given by relation (3.3.1) numerically,
where we are again only interested in the value in position W (0, 0), where we for each value
of transmission t sum together the average minimal values of our WF (since we already know
that our method shifts minimal values into position W (0, 0)) for all measured positions q that
are of course each multiplied by the differential.

The comparison is shown in Fig.III.9.

Figure III.9: Comparison of values in W(0,0) based on transmission for linear, nonlinear and
no corrections

The crucial part of this graph is the comparison of linear and nonlinear methods. As we can
see at worst in the case of transmission going towards zero the final value of the WF will also
go to zero and at best with transmission going toward 1 both methods expectedly go towards
the value of − 1

π . It is interesting to note that for t = 0 the linear correction is not defined
while the nonlinear is. This does not necessarily mean that the nonlinear method is better as
in this case, we lose all quantum interference anyway. The more interesting behaviour can be
seen for t going roughly from 0.4 to 0.9 where the nonlinear method gives us slightly more
negative values with the maximum difference being approximately 0.0104 or roughly an 8%
improvement. This clearly shows us that the nonlinear method is indeed more efficient than
the linear one and so there is a point in examining it more for more complex systems to see
just how better it potentially can be.
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Chapter IV

Conclusion

In this work, we have shown that adding nonlinear feed-forward to CV quantum erasing
enhances our ability to obtain a quantum state with negative Wigner function. This was
previously done using a linear correction. This function, dependent on the measured shift of
position in phase-space q, when used to displace the WF (this operation being the quantum
erasure) resulted in a WF with larger negativity. Our contribution was coming up with an
alternative method of correction to improve this mitigation of quantum decoherence. We did
this by displacing the WF by the value corresponding to its minimum position. This shifts
the minimal value of the WF into the position of W (0, 0) or the same position, where the WF
of the single-photon state has its minimal value. We defined this function numerically using
MatLab by writing an algorithm that found the position of x where the WF was minimal in
relation to the measured quadrature q. This function was our nonlinear correction that we
then compared to the linear correction used by the standard. For this, we defined a metric to
compare the effectiveness of these methods. We have chosen to compare the negativity in
position W (0, 0) based on different values of transmission. The reason for this is, that our
goal was to have a final WF on the output be as close as possible to the WF of the
single-photon state on the input and also because the negativity cannot be classically
simulated [12]. This WF has its minimal value − 1

π in position W|1〉(0, 0). Therefore the closer
we are to this negativity in the same position at the output WF, then the better the
correction in restoring it to its beginning state. After comparing these two methods we
arrived at the conclusion that the nonlinear correction is indeed better at restoring the
negativity for the medium values of transmission even for this admittedly simple system.
While this difference is quite small, with the biggest difference being 0.0104, we were working
with a system, where we can expect that fine-tuning will not have that much of a big impact.
The crucial result is that there definitely is a difference and therefore, it is worth trying to use
this method on more complex systems. This is also the direction in which our further
research will lead. For some next steps, we can use different states. Squeezed vacuum states
can replace the vacuum state and we can generalize the single-photon state to multiple
photons. Adding more optical devices or using a different detection (measuring x̂ and p̂
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simultaneously) can also be potentially tried and we can also examine a different metric to
compare the effectiveness of these corrections (E.g. purity, fidelity). So in conclusion our work
has revealed an interesting new path of research that can hopefully with further work lead to
some intriguing destinations.
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