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Abstract 

We introduce an alternative method of continuous variable quantum erasing using a nonlinear 
feed-forward. We demonstrate the effectiveness of this method by applying it to a 
single-photon state that interferes with a vacuum state on a Beam splitter causing quantum 
decoherence. Finally, we compare the effectiveness of the nonlinear method with the linear 
method showing that the nonlinear method is indeed more effective. 
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Abstrakt 

Představíme alternativní metodu kvantového vymazávání spojité proměnné použitím 
nelineární dopředně vazby. Ukážeme effektivitu této metody tím, že j i použijeme na jedno 
fotonový stav, který interferuje s vakuuovým stavem na děliči svazků, což způsobuje 
kvantovou decoherenci. Nakonec porovnáme efectivitu nelineární metody s lineární metodou a 
ukážeme že nelineární metoda je doopravdy více efektivní. 
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Chapter I 

Introduction 

The quantum eraser experiment and its implications are quite an interesting part of quantum 
mechanics, an area of physics already abundant with topics that pique our curiosity and test 
the limits of human understanding. The origin of its inception comes from Young's double-slit 
experiment. This experiment, normally used to show the wave-like behaviour of light (that 
being interference), is incredibly interesting when done with quantum systems. The reason is 
an answer to a simple question: If a single photon went through the double-slit setup, which 
of the two slits did it pass through? This type of experiment, trying to answer this question, 
is called the "Which-way" experiment . What makes it so interesting is that when we try to 
detect this which-way information or are able to determine it, we lose the interference pattern 
(The measured particle loses its wave-like qualities). 

The first which-way experiment that tried to detect this information without causing 
quantum decoherence was proposed by Albert Einstein [1]. However, Bohr later reported, 
that this proposal conflicts with the principles of quantum mechanics. [2]. The earlier 
explanation for this phenomenon was that this decoherence was due to phase changes by way 
of scattering of the particle caused by the measurement. This idea went through a revaluation 
when it was found out, that even if we detect this which-way information without inducting 
random phases (e.g. by way of excitation and deexcitation of a microwave cavity) this 
measurement still causes quantum decoherence [3]. The difference is that now we measure the 
wave qualities of our system instead of particle qualities. In other words, instead of measuring 
the exact position of the particle, we detect the position quadrature of the wave that the 
particle acts as. This discovery opened up new possibilities. It was now possible to store this 
information in another quantum system and "erase" it by making it inaccessible. This erasure 
results in the recovery of the interference pattern making it a way to negate the quantum 
decoherence caused by measurement [4]. A famous example of research that followed this 
discovery is Wheeler's delayed-choice experiment [5] that was later realized in different forms 
by [6] and [7] and showed that we can store the which-way information and erase it at a later 
time. Quantum erasing can also be realized in a continuous variable setting. This setting is 
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concerned with the general mode of the quantum state of light with many photons, instead of 
the which-way information of a single photon. The groundwork for this setting is done in [8] 
and it further continued by showcasing the potential of using this quantum erasure to restore 
quantum states, that have been disturbed during data storage in quantum information 
processing [9] and finally by demonstrating this C V quantum eraser experimentally [10]. The 
quantum erasure described by these papers used a method of linear feed-forward to displace 
the measured state causing the which-way information to be no longer accessible. This was 
expanded even more quite recently by the development of new technologies that had made it 
possible to use nonlinear feed-forward [11]. Our thesis continues from this research by 
introducing one such method of quantum erasure that utilizes nonlinear feed-forward, which 
could lead to an even more effective restoration of quantum states. 

We started by defining our system and constructing the continuous variable (or C V for short) 
quantum eraser. This quantum eraser consists of a homodyne detector and a beam splitter, 
where interference occurs between a single photon state and a vacuum state. We describe this 
system using the phase-space representation by making use of the Wigner quasiprobability 
distribution (Wigner function or W F for short). The nonlinear method of quantum erasure 
uses the displacement operation that shifts the Wigner function. This is the same operation 
that is used in the case of the linear method. The difference is, that in the case of the 
nonlinear method, we displace the W F by a value that corresponds to the position of the 
minimal value of this function. We found this minimal value numerically using software 
(MatLab). The reason to focus on the minimal value is that we know that the negativity of 
the Wigner function is a direct result of quantum interference and cannot be simulated 
classically [12], so we want this negativity to be as high as possible. Finally, we used the 
negativity as a metric to compare the nonlinear and the linear methods and showed that the 
nonlinear correction is indeed more effective at restoring quantum qualities. 
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Chapter II 

Theory 

2.1 Quantum Harmonic Oscilátor 

One of the fundamental cornerstones of physics is the Harmonic oscillator. A harmonic 
oscillator is a system that experiences force proportional to the displacement when displaced 
from its equilibrium. Our model is based on the electromagnetic oscillator. This oscillator is 
described by a complex function called spatial-temporal mode which describes the wave's 
change in space (spatial) and time (temporal). A simple example of this function is a plane 
wave 

u(x, t) = uo exp(i(kx — cot)), (2-1.1) 
2 

where UQ is a polarization vector, OJ frequency and k = ^ wave vector. This mode can be 
chosen at will as long as it obeys Maxwell's equations. In classical physics, the state of this 
mode would be described by complex amplitude a given by its magnitude \a\ and phase arga. 
In quantum mechanics, things get more complicated. The energy of the quantum harmonic 
oscillator (QHO) is discreetly distributed into energy levels or states 

Ě = hw(ň + ^), (2.1.2) 

where h is Planck's constant, the n is a discrete number operator, whose eigenstate 
corresponds to the energy and number of photons. This quantization of energy arises because 
any bound system in quantum mechanics can only gain discreet energy levels [13]. For 
simplicity, we will consider Planck's constant 

h=l. (2.1.3) 

The ň operator is equal to 

n = a fa, (2-1.4) 
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where a) and a are the creation operator and the annihilation operator respectively. They 
obey the commutation relation 

[a,af] = l . (2.1.5) 

When applied to a state of the Q H O the annihilation operator lowers the energy level and the 
creation operator increases it. Furthermore, The annihilation operator is analogical to 
complex amplitude in a classical harmonic oscillator. We can therefore describe it similarly 
using 

a^ = ^=(x + ip) (2.1.6) 

a = ^=(x-ip), (2.1.7) 

where we described these operators using hermitian and antihermitian parts, called 
quadratures x and p respectively. However, since they obey the commutation relation 
[x,p] = i we can use them as a sort of position and momentum analogy. When we describe 
our QHO using this position and momentum, we start operating in a phase space, not too 
different from the phase space used in classical physics. So, it makes sense to use the phase 
space formulation of quantum mechanics. To this end, we will use the Wigner 
quasiprobability distribution. 

2.2 Wigner quasiprobability distribution 

Another way to analyze the complex amplitude of an electromagnetic oscillator in classical 
physics is by defining a distribution that describes it statistically. This distribution quantifies 
the probability of finding a particular value of real and imaginary parts of complex amplitude 
in their simultaneous measurement. As explained earlier, the real and imaginary parts of 
complex amplitude can be described as an oscillator's position and momentum. So this 
distribution also quantifies the probability of finding a concrete pair of x and p. In other 
words, we get a distribution that calculates the probability of having a particular position 
and momentum value for a chosen ensemble of particles or a type of phase-space distribution. 
Analogous to this in quantum mechanics is the Wigner distribution (further abbreviated as 
the WF-Wigner function). However, as we can deduce this will not be a simple one-to-one 
analogy as we are limited by the uncertainty principle meaning we cannot simultaneously 
know the value of two non-commuting variables. 

This Wigner function for a mixed state is formally written as 

1 r°° 
W(x,p) = - {x-y\g\x + y)e2tpydy, (2.2.1) 

vr J-oo 

where g is the density matrix, x and p are quadratures and y is an auxiliary variable used for 
integration. As can be deduced from this definition the W F utilizes the fact that if we know 
the form of the state in x representation we also know its form in p representation by 
applying a Fourier transform on it. A n important characteristic of WFs is that they can 
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attain negative values. This negativity is a direct result of quantum mechanical interference 
effects that arise when we try to describe nonclassically acting particles using a phase-space 
representation. This means that these negative values are physically relevant and we can use 
them as a metric of how "quantum" a given system is [14]. Wi th this in mind, we define our 
Wigner function as a quasiprobability distribution or a distribution that has its requirements 
slightly alleviated. This function is defined in such a way that its marginal distributions 
correspond to probability densities of the respective observables [15]. So we gain the 
expectation value in the x-representation by 

/

oo 
W(x,p)dp= (X\Q\X) . (2.2.2) 

-oo 

The W F for a particular energy eigenstate |n) will have the following form 

( — 1 )n
 , 0 0, 

Wn{x,p) = K-^Ln{2{x2 + p2))e^x +P \ (2.2.3) 7T 

where Wn are the Laguerre polynomials. These polynomials are nontrivial solutions of 
Laguerre's differential equations. They are linked to Hermits polynomials (polynomials used 
to solve the wave function of QHO using Hilbert space operators) through the Wigner-Weyl 
transform, an invertible mapping between Hilbert space operators and functions in the phase 
space formulation. For our purposes, we only need the Laguerre polynomial for the ground 
and first excited state. 

L0(x) = 1, (2.2.4) 

L1(x) = -x + l. (2.2.5) 

We use them to derive the W F of the ground state. 

Wl0)(x,p) = -e-"2-P2. (2.2.6) 

And to derive the W F of the single-photon state. 

1 
W\l}(x,p) = -(2x2 + 2p2 - l)e-£2-P\ (2.2.7) 

7T 

2.3 Beam Splitter and Homodyne detector 

A beam splitter (BS) is a simple optical device we use in the thesis. It makes two incoming 
beams of light interfere to produce two emerging beams. This interference is also reversible as 
we can send the two beams back to the BS, where they produce the original beam. We can 
therefore describe this device as a two-input, two-output black box. The diagram of this 
device can be seen in Fig.II . l . The four modes are described by two annihilation operators a\ 
and a,2 on the input and operators and a'2 on the output. 
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a 2 

Figure II.1: The diagram of the beam splitter. This optical device always has two input pa
rameters (without comma) and two output parameters (with comma) 

The linear transformation (interference) that happens on the BS is then described as 

(2.3.1) 

where B is the unitary beam splitter matrix. This matrix describes the change of the 
incoming beams that we can describe as rotations 

( cos(*/2) s in(* /2) \ 

~ l - s i n ( * / 2 ) cos(*/2) J ' 
(2.3.2) 

Finally, we can represent this matrix in terms of transmission t and reflection r coefficients as 

*=C "«")• <2-s-3) 

which satisfies the following relation due to energy conservation 

t2 + r

2 = 1. (2.3.4) 

The interesting characteristic of the BS is that it always acts as a four-port device, even if 
there is only one beam on the input that gets split into two. This is an essential quantum 
feature of the BS that makes it so, even if our incoming beam has nothing to interfere with, it 
interferes with the vacuum state containing vacuum fluctuations. This is caused by the poorly 
understood spontaneous creation of "virtual particles" in a particle-antiparticle pair that 
randomly changes the amount of energy in space. [16]. In other words, we can understand 
this interaction with the vacuum state as a general interaction of our state with its 
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environment which results in some loss. 

Figure II.2: The diagram of the homodyne detector. The signal on the input is described by a 
and interacts with a coherent wave described by aio on the BS. We detect the photocurrents 
I\ and I2 on the output 

Another optical device used in our measurements is the Homodyne detector seen in Fig.II.2. 
It is an essential component used to measure the intensity of electromagnetic fields. The 
homodyne detector is constructed using a balanced BS, where the incoming beam interferes 
with a local oscillator (coherent laser beam), that we assume to be powerful enough to act 
classically (we neglect the quantum fluctuations). This causes the beam to split as expected. 
Next the photocurrents I\ and I2 of these two beams are measured using two detectors. 
These photocurrents are proportional to the photon numbers h\ and n2 respectively given by 

h oc (ni) = (a'1

t)(ai), h oc (n'2) = (2.3.5) 

Where the operators and a'2 are given as 

1 1 
a'i = —^(a- aLO), a!2 = - ^ ( a + aLO), (2.3.6) 

where aLO denotes the complex amplitude of the local oscillator that we assume acts 

classically and a is the annihilation operator of the measured signal. Furthermore, the 

difference of the photocurrents I2\ = h — h is proportional to the difference in photon 

numbers. 

hi oc (n 2 i) = (n 2 - ni) = {a*LOa) + {aLOa)) (2.3.7) 

and so it is also proportional to the quadrature components. If we then set the reference 

phase of the L O oscillator to 0, the difference of photocurrents I2\ will be proportional to the 

position quadrature. 

hi oc (n 2 i) = V2\aLO\x. (2.3.8) 

[17]. Phase ir/2 then leads to the detection of p. It is appropriate to mention that this 
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detector measures quadratures in a wave base instead of a particle base by using 
electromagnetic interactions. This means that measuring a single-photon state this way does 
not result in the photon acting particle. 

2.4 Quantum eraser and displacement 

In quantum physics we have variables that do not commute, the prime example being 
position and momentum. When we measure or gain information about one of these variables 
we inevitably lose information about the other. This is the nature of quantum systems 
described by the Heisenberg uncertainty relation. The same principle is applicable to all 
non-commuting variables and measurements. In the case of the C V quantum eraser, we are 
primarily interested in quadrature operators x and p. However, we can use a binary quantum 
erasure, which is concerned with measuring one of two non-commuting states, to describe this 
concept more intuitively. A n example of this binary regime can be seen in Young's double-slit 
experiment. This experiment used originally to show the interference characteristic of waves 
is a prime example of how measurement destroys the quantum behaviour of systems. In the 
case of this experiment, the non-commuting part of the uncertainty experiment is the info 
The diagram of this experiment can be seen in Fig.II.3. 

If we send an ensemble of single photons through the double slits we observe that they create 
interference patterns and thus have the property of waves, a purely quantum behaviour. If 
we, however, try to find out through which of the two slits the photon went through (a 
Which-way experiment) the resulting pattern will not be an interference pattern and instead 
will show a pattern we would expect for a particle. This way the detection can be done in a 
number of ways as long as one complementary variable is measured. In the case of this 
double-slit experiment, it has been found that there is a way to measure this which-way 
information without producing any phase change on the centre of mass of the incoming 
particle. This is done by using excited atoms that give up its energy before going through a 
slit. Therefore we can detect this change of energy and gain the which-way information [18]. 
This is important as it is now possible to erase this which-way information by making it no 
longer accessible, which will in turn return the desired interference pattern. In this case, the 
erasure is done by inserting a field detector and it works as follows: Suppose that the state of 
the photon going through the first slit is \u) and the state of the photon going through the 
second slit is \d). In that case, the function of the which-way information disregarding 
detector is to become excited when the slits state (combination of \u) and \d)) is a symmetric 
combination (\u) + \d)) and to become deexcited when this state is an asymmetrical 
combination (\u) — \d)). When we analyze two ensembles of particles, one corresponding to 
the symmetric combination and one corresponding to the antisymmetric combination we will 
see that the maxima of the interference fringes of one set correspond to the minima of the 
other set. The interference restoration itself can be done by detecting the phase difference 
between the symmetrical and asymmetrical slit states. We can then dynamically move the 
screen (shown in Fig.II.3) in a way that makes the maxima of one set correspond to the 
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maxima of the other set restoring the interference pattern. 

We can now see that the purpose of quantum erasure is to make the measured information of 
the complementary variable not accessible and by doing so to restore its quantum qualities. 
The reason as to why this can be so beneficial is that by the proper use of this quantum 
erasure, we can restore quantum states, that have been disturbed due to their interaction 
with their environment. [9]. 

Figure II.3: The diagram of the double-slit experiment. The microwave cavity is used to de
termine the "which-way" information. The field detector becomes excited or deexcited based 
on the type of combination of the slit states resulting in quantum erasure and restoration of 
the interference pattern. 1 

We so far discussed quantum erasure in the binary regime. However, in our thesis, we make 
use of a quantum eraser in a continuous variable regime. In the case of the C V regime, we 
look at the complementary pair of amplitude and phase quadrature of light, or in other 
words, the quadrature that can be described as the operators x and p of the light. The 
difference from the binary regime is that now instead of there being only two possible paths 
(two eigenstates), there is a continuous set of possible paths. The way of gaining this 
"which-way" information is by encoding the signal information into another state (marker 
state) using quantum nondemolition entangling coupling [19]. Then the way to erase this 
information is by applying a local unitary operation on the output state so that the measured 
quadrature information is no longer accessible. This can be done by using the operation of 
displacement. The displacement operator is generally described as 

D(a) = exp(aa f - a*a), (2-4.1) 

Greenberger, Daniel and Hentschel, Klaus and Weinert, Friedel. Compendium of Quantum Physics, p.547, 
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where a is the amount of displacement in optical phase space. So this operation shifts a 
localized state in phase space by a complex amplitude a. For example, if we split a beam, 
where on one output we measure the position quadrature q, then applying the displacement 
operation, dependent on the measured quadrature and scaled with the appropriate gain factor 
G, on the second output x will result in quantum erasure and restoration of quantum 
qualities. 

In this case, the displacement is linearly dependent on the measured quadrature q and so we 
call this process linear correction where the linear function is given as 

x + Gq, (2.4.2) 

fl = Gq. (2.4.3) 
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Chapter III 

Method and results 

3.1 Denning the model 

We consider a single mode of electromagnetic light in the single-photon state, passing through 
a BS, where it interacts with the second mode in the vacuum state. The reason is that a) a 
single photon forms a pure and simple quantum system and b) single photon states are an 
essential resource in C V quantum information theory. The quantum behaviour of this state 
can be seen from its Wigner function that, as expected, has negative values with the minimal 
value being —-, which can be seen in Fig.III.1. 

When the photon goes through the BS it is not split as a particle. Instead, it creates a 
superposed state of the photon passing and getting reflected. When we only look at the 
transmitted mode, the interaction between single-photon state Wu\(x,p) and vacuum state 
W\Q\(x,p) on the BS is equivalent to loss. Our ultimate goal is to negate this loss by erasing 
the information lost to the second channel. 

Wigner Function for Single-Photon State 

Position (x) Momentum (p) 

Figure III. 1: W F of a single photon state. Its minimal value is located in position W(0,0) and 
is equal to — ̂  
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The diagram of the model describing the C V quantum eraser can be seen in Fig.III.2. Wi th 
the interaction of the single-photon state and vacuum state on the BS comes some change in 
quadratures x and p. We denote the quadratures before BS of the single-photon state as Xin 

and p i n and of the vacuum state xo and po. After the BS the measured output has 
quadratures x m and pm and the second output has quadratures x o u t and p0ut> where we 
displace the position quadrature to get x n n . Wi th this notation, the BS will have the 
following effect on quadratures x and p. 

xOVLt = txin + rxo, (3.1.1) 

Pout = tp-m + rp0. (3.1.2) 

Therefore, the WFs of the ground and first excited state will now transform 

W|i)(»in,Pin) -> W|i)(fc£out + rxm,tpOVLt + rpm). (3.1.3) 

W\0)(x0,po) ->• W | 0 ) ( t K m - rxont,tpm - rpont). (3.1.4) 

Next, we add a way to detect the shift caused by the interference that we can later use for 
our correction. We achieve this by adding a homodyne detector that we described in section 
2.3. This detector will serve to measure the quadrature shift caused by the vacuum or in 
other words to measure the value of xm that we then mark as q. Finally, we add a way to 
displace the outcoming wave that we have not measured. In an experiment, this would have 
been done with a strong coherent light beam [10]. 

To summarize, the beam splitter takes the single-photon state and the vacuum state as its 
inputs and, based on its characteristics described by transmission and reflection coefficients, 
they interfere to create two outputs. On one of these outputs we measure the quadrature shift 
of the W F (this output describes the loss on this system) and then by the use of methods of 
quantum deletion we purposefully displace the second output in such a way that we get a W F 
as close as possible to the W F of single-photon on the start. From Fig.III. 1 we can see that 
this W F has its minimal value in position W(0, 0) so we aim to get a W F that is as negative 
as possible in this same position (alternative method not used in this thesis would be to use 
fidelity). 

To describe the displacement done by this system we use the operators shown in Fig.III.2. 
The quadrature of the marker state xm is measured by the homodyne detection to yield value 
denoted as q 

q = txo-rxin, (3.1.5) 

We can now apply the displacement operator on the output signal xout, which will shift it in 
regard to the measured position on the marker state q scaled by the gain factor G. 

£fin = ^out + Gq, (3.1.6) 
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Figure III.2: Schematic depiction of C V quantum erasing. H D is the homodyne detector. F F 
is the feed-forward and D is displacement where the displacement operation (D(x)) takes 
place. The measured position quadrature is marked q 

where Gq is the linear correction fi{q) the same as in equation (2.4.3). We then find the value 
of the gain factor by substituting equations (3.1.1) and (3.1.5) into (3.1.6) and adjusting 
appropriately 

xRn = xin(t-rG)+x0(r + tG). (3.1.7) 

While generally, a number of different displacements will result in some erasure of the 
which-way information, since our goal is to minimize the effect of the vacuum state on our 
system, we choose the gain factor in a way to negate the effect of the vacuum state. As we 
can see from the equation (3.1.7) this can be achieved by 

G = - - . (3.1.8) 

By inserting it into equation (2.4.3) we get 

fi(q) = -jQ- (3-1.9) 

So we measure the position quadrature on the marker state, then based on this measurement 
we use methods of feed-forward to displace the resulting W F using equation (3.1.8) which will 
result in the erasure of the which-way information and restoration of the quantum properties 
[10]. 

15 



3.2 Conditional W F and its characteristics 

With the whole model complete and described using the change of position quadratures, we 
can now describe it using the W F . This will also describe the loss we get as a result of the 
interference of single photon and vacuum state. We start by deriving a conditional W F , 
W(xout,pout\q), that describes the W F dependent on its starting quadratures under the 
condition that we measure a particular value of q. Essentially, this is the W F on the output is 
the result of interference of the original single-photon W F with the vacuum state resulting in 
a shift on its x-axis by q. This conditional function is equivalent to conditional probability 
and is derived in essentially the same way as 

W{xout,Pout\q) = -p^j , (3.2.1) 

where P (q) is the marginal distribution of variable q gained as 

/

oo /*oo 
/ W(xout,Pout, q)dxoutdpout (3.2.2) 

-oo J—oo 

and W (xout, Pout, Q) is the W F , which is a result of interference of single-photon and vacuum 
states and the measurement of q. We describe it as 

W(xQut,Pout,q) = / / W^itXru-rXout^Pm-rPou^W^itXout+rXm^Pout+rp^dXm^Pm, 
J — oo J—oo 

(3.2.3) 
where we trace over the quadratures xm and pm on the output of the BS. The Dirac's delta 
function subsides the xm as the measured value q. We now take relations (3.2.3) and (3.2.2) 
and input them all into equation (3.2.1) and evaluate the integrals. Since we will now work 
with only variables x o u t and pout we relabel them to x and p respectively. The conditional 
W F that is derived this way looks as: 

_ 1 r

2 ( 2 g 2 + 1) + Arqtx + 2t 2 (x 2 +p 2 ) - 1 ^ . ( 3 . 2 . 4 ) 
1 , m > vr - l + r 2 ( l + 2g2) + 2t 2 

With this conditional W F , we can finally look at how this shift caused by interference with 
the vacuum state looks based on what value of quadrature q we measured. For now, we are 
only interested in the shift of quadrature x and as such we will analyze our W F only on the 
x-plane with quadrature momentum being p = 0. We also choose the value of the 
transmission coefficient to be 0.9. 

The first thing that we can notice in Fig.III.3 (a) is that the difference between the positive 
shift and the negative one is just mirroring (it is symmetrical). In (b) we can notice that with 
bigger values of measured q there is a reduction of negativity of the W F . In the limit of 
infinity, the minimal value of this conditional W F eventually goes to zero. 

We can now analyze the W F on the output where we make no measurements and so do not 
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Figure III.3: (a) Figure comparing positive (q > 0)and negative shifts (q < 0) of the W(x,p\q) 
function, (b) Differences based on the increasing value of q of the W(x,p\q) function. The 
transmission for all of these functions is 0.9 

use any corrections. We gain this W F from the conditional one as 

/

oo 
W(x,p\q)P(q)dq. (3.2.5) 

-oo 

And after adjustment 

W(x,p) = -(-l + 2r2+ t2(p2+ x2))e-p2-x\ (3.2.6) 
7T 

We focus on the value of this W F in position W(0,0) as this is where we want the most 
negativity. In Fig.III.4 we can see the resulting dependency of the value in this position based 
on transmission. 

17 



0 4 

0.3 

0 2 

0.1 

" f t 

•£ ° 

-0.1 

-0.2 

-0.3 

-0.4 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

t 

Figure III.4: Dependancy of values in position W(0, 0) of the unmeasured W F on transmis
sion t. It shows the amount of loss in relation to the transmission coefficient of the BS 

This function describes the loss caused by interference on the BS. When we have a 
transmission of 0 (and so reflectivity of 1) all we get after the BS is a vacuum state as the 
photon just gets reflected and we lose all quantum information. So after the BS the value of 
W(0, 0) is ^ or the same for the vacuum state. Similarly, for a value of t = 1, the photon goes 
through the BS uninterrupted and as a result, we again get the pure state of a single photon 
that has its value in W(0, 0) equal to — - and so in this case, there is no loss. 

3.3 Corrections 

Now that we have examined the resulting W F based on our measurement it is time to try to 
use the methods of displacement and quantum erasing to correct or shift the resulting W F 
and with that mitigate the losses caused by the vacuum state. To get the resulting shifted 
W F we apply the displacement operation on the conditional W F by using equation (3.2.6) 
resulting in 

/
CO 

W(x-f(q),p\q)P(q)dq, (3.3.1) 
-oo 

where f{q) is our chosen correction. As described earlier the standard way this correction is 
chosen is (3.1.9), where the dependency on the measured q is linear. We try to improve this 
method by introducing an alternative method using a nonlinear correction. 

Instead of just using the parameters of the BS, as is the case with linear correction, we opted 
to apply a displacement operation that shifts the W F by a value that corresponds to the 
position of its minimum. By doing this we effectively take this minimal value and shift it 
back into our desired position of W(0, 0). So if we derive a function fn(q) that for each 
measured q finds the position xmin where our conditional W F is minimal we can then use this 
function as a nonlinear correction. We did this numerically by finding the minimal value of 
the conditional W F based on measured values of q going from (—7, 7) with each step being 
0.01. In the Fig.3.3 we can see a plot of this function. It is worth reminding that we still 
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assume the value of transmission to be 0.9. As we can see this function is at first glance quite 

3 

-3 1 ' ' ' ' ' ' ' 1 

- 8 - 6 ^ - 2 0 2 4 6 8 

q measured 

Figure III.5: Dependence of x m j n ( for which W(xmin, 0) is minimal) on measured shift in 
quadrature q for t=0.9 

similar to a linear dependence. This similarity makes sense when we consider that the linear 
correction alone is quite effective and what we are technically doing is merely fine-tuning it. 
To further show how this function varies for its linear counterpart we plot their value 
difference based on q. The result of this is in Fig.III.6. 

- 4 - 2 0 2 4 

q measured 

Figure III.6: The difference between nonlinear fn and linear correction // (3.1.9) based on 
measured quadrature q 

It is now worth looking at what these corrections do to our conditional W F W(x,p\q). We 
will only look at our Winger function on the x-plane because we are not shifting the 
momentum in any way. The results of these corrections are shown in Fig.III.7 and Fig.III.8 

We can see that while the linear correction does shift the conditional W F it overdoes it and 
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Figure III.7: Wigner function for q = 1.5 and t = 0.9 with no correction 
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Figure III.8: Comparison of linear and nonlinear correction for q = 1.5 and t = 0.9 

we get a resulting function that has its minimal value slightly off our desired location. 
However, with our method, since we measure exactly how we need to shift our function we 
get its minimal value right into the "sweet" spot that is the position of (0,0). However, the 
real test of the usefulness of our method is to look at the standard W F and see how effective 
these methods are for values of transmission t going from 0 to 1. 

3.4 Generalization to an arbitrary transmission value 

The final step of our work is to show how these correcting methods work based on arbitrary 
values of transmission. For linear correction, this is quite straightforward as we can use the 
relation (3.3.1) for different values of t. But we can also simplify it even more by evaluating 
the equation given by (3.3.1) where we assume x = 0 and p = 0. This value is all we need to 
compare the effectivity of our corrections, since by just comparing them in relation to 
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transmission, we can see which correction gives us more negative values in this position. We 
first need to derive this correction for our method as well. That is slightly more complicated 
than in the case of linear correction since we do not have a formal prescription of our 
function. We circumvent this by calculating our integral given by relation (3.3.1) numerically, 
where we are again only interested in the value in position W(0, 0), where we for each value 
of transmission t sum together the average minimal values of our W F (since we already know 
that our method shifts minimal values into position W(0, 0)) for all measured positions q that 
are of course each multiplied by the differential. 

The comparison is shown in Fig.III.9. 
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Figure III.9: Comparison of values in W(0,0) based on transmission for linear, nonlinear and 
no corrections 

The crucial part of this graph is the comparison of linear and nonlinear methods. As we can 
see at worst in the case of transmission going towards zero the final value of the W F will also 
go to zero and at best with transmission going toward 1 both methods expectedly go towards 
the value of — - . It is interesting to note that for t = 0 the linear correction is not defined 
while the nonlinear is. This does not necessarily mean that the nonlinear method is better as 
in this case, we lose all quantum interference anyway. The more interesting behaviour can be 
seen for t going roughly from 0.4 to 0.9 where the nonlinear method gives us slightly more 
negative values with the maximum difference being approximately 0.0104 or roughly an 8% 
improvement. This clearly shows us that the nonlinear method is indeed more efficient than 
the linear one and so there is a point in examining it more for more complex systems to see 
just how better it potentially can be. 
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Chapter IV 

Conclusion 

In this work, we have shown that adding nonlinear feed-forward to C V quantum erasing 
enhances our ability to obtain a quantum state with negative Wigner function. This was 
previously done using a linear correction. This function, dependent on the measured shift of 
position in phase-space q, when used to displace the W F (this operation being the quantum 
erasure) resulted in a W F with larger negativity. Our contribution was coming up with an 
alternative method of correction to improve this mitigation of quantum decoherence. We did 
this by displacing the W F by the value corresponding to its minimum position. This shifts 
the minimal value of the W F into the position of W(0, 0) or the same position, where the W F 
of the single-photon state has its minimal value. We defined this function numerically using 
MatLab by writing an algorithm that found the position of x where the W F was minimal in 
relation to the measured quadrature q. This function was our nonlinear correction that we 
then compared to the linear correction used by the standard. For this, we defined a metric to 
compare the effectiveness of these methods. We have chosen to compare the negativity in 
position W(0, 0) based on different values of transmission. The reason for this is, that our 
goal was to have a final W F on the output be as close as possible to the W F of the 
single-photon state on the input and also because the negativity cannot be classically 
simulated [12]. This W F has its minimal value —^ in position WM \ (0 ,0) . Therefore the closer 
we are to this negativity in the same position at the output W F , then the better the 
correction in restoring it to its beginning state. After comparing these two methods we 
arrived at the conclusion that the nonlinear correction is indeed better at restoring the 
negativity for the medium values of transmission even for this admittedly simple system. 
While this difference is quite small, with the biggest difference being 0.0104, we were working 
with a system, where we can expect that fine-tuning will not have that much of a big impact. 
The crucial result is that there definitely is a difference and therefore, it is worth trying to use 
this method on more complex systems. This is also the direction in which our further 
research will lead. For some next steps, we can use different states. Squeezed vacuum states 
can replace the vacuum state and we can generalize the single-photon state to multiple 
photons. Adding more optical devices or using a different detection (measuring x and p 
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simultaneously) can also be potentially tried and we can also examine a different metric to 

compare the effectiveness of these corrections (E.g. purity, fidelity). So in conclusion our work 

has revealed an interesting new path of research that can hopefully with further work lead to 

some intriguing destinations. 
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