
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

BACHELOR'S THESIS

Brno, 2020 Jaromír Bača

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

END-TO-END ENCRYPTION PROTOCOL FOR IEEE
802.15.4
PROTOKOL S KONCOVÝM ŠIFROVÁNÍM PRO IEEE 802.15.4

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Jaromír Bača

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Ondřej Krajsa, Ph.D.

BRNO 2020

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Bachelor's Thesis
Bachelor's study field Information security

Department of Telecommunications
Student: Jaromír Bača ID: 133372
Year of
study: 3 Academic year: 2019/20

TITLE OF THESIS:

End-to-end encryption protocol for IEEE 802.15.4

INSTRUCTION:

Design and implement a secure key exchange protocol for the AES128 encryption algorithm. This protocol will
use the IEEE802.15.4 as data link protocol and the Atmel LighWeight Mesh as network protocol for
communication. Implement the proposed protocol as well as the data link and network protocols on the AVR
ATMega128RFA1 microcontroller. Measure the time required to exchange the key and the time required to
encrypt and decrypt the information. As a part of this work, perform a security analysis of the proposed protocol
and a comparison with similar techniques. Next, analyse and design a key exchange between the wireless node
and the Internet element using the proposed protocol.

RECOMMENDED LITERATURE:

[1]LAVANYA, M. a V. NATARAJAN. Lightweight key agreement protocol for IoT based on IKEv2. Computers and
Electrical Engineering [online]. Elsevier, 2017, 64 [cit. 2019-09-16]. DOI: 10.1016/j.compeleceng.2017.06.032.
ISSN 0045-7906.

[2] THAMES, Lane a Dirk SCHAEFER. Cybersecurity for Industry 4. 0: Analysis for Design and Manufacturing.
Cham: Springer, 2017. DOI: 10.1007/978-3-319-50660-9. ISBN 9783319506593.

Date of project
specification: 3.2.2020 Deadline for submission: 8.6.2020

Supervisor: Ing. Ondřej Krajsa, Ph.D.

 prof. Ing. Jiří Mišurec, CSc.
Subject Council chairman

WARNING:
The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

ABSTRACT
This thesis explores the topic of encryption of communication between low-voltage de-
vices that are controlled by microcontrollers. Two deRFnod development boards were
used in the work, which were equipped with AVR ATmega 128 RFA1 chips, which en-
able wireless communication. The application was developed and tested on these devices.
The final output of the work is the design of an application for asymmetric key exchange,
which is based on elliptic curves. This application is implanted in Atmel LightWeight,
where the issue of mutual communication between communicating points is also ad-
dressed. The generated key is also used to propagate communication using the AES
encryption algorithm, which is already implemented in the used LightWeigt protocol.
This encryption allows not only encryption of endpoints, but also of the communication
tunnel. Such protection provides users with anonymity of data and makes it impossible
or very difficult for potential attackers to physically locate devices based on knowledge
of data routing on the network.

KEYWORDS
Microcontrollers, Internet of Things, lightweight mesh, asymetry cryptpgraphy, elliptic
curves, AES

ABSTRAKT
Tato práce se zabývá problematikou šifrování komunikace mezi nízkonapěťovými zaří-
zeními, které jsou ovládány pomocí mikrokontrolerů. V rámci práce byly používány dvě
vývojové desky deRFnod, které byly osazeny čipy AVR ATmega 128 RFA1, které umož-
ňují bezdrátovou komunikaci. Na těchto zařízeních probíhal vývoj a testování aplikace.
Finálním výstupem práce je návrh aplikace pro asymetrickou výměnu klíčů, která je
založena na eliptických křivkách. Tato aplikace je implantována v Atmel LightWeight,
kde je i řešena otázka vzájemné komunikace mezi komunikujícími body. Vygenerovaný
klíč je dále použit pro širfování komunikace pomocí šifrovacího algoritmu AES, který je
již implementován ve využitém LightWeigt protokolu. Toto šifrování umožňuje nejenom
šifrování koncových bodů, ale i komunikačního tunelu. Taková ochrana poskytuje uži-
vatelům anonymitu dat a znemožňuje nebo velmi znesnadňuje potenciálním útočníkům
zařízení fyzicky lokalizovat na základě znalosti směrování dat v síti.

KLÍČOVÁ SLOVA
Mikrokontroléry, internet věcí, lightweight síť, asymetrická kryptografie, eliptické křivky,
AES

BAČA, Jaromír. Protokol s koncovým šifrováním pro IEEE 802.15.4. Brno, Rok, 34 p.
Semestral Project. Brno University of Technology, Fakulta elektrotechniky a komu-
nikačních technologií, Ústav telekomunikací. Advised by Ing. Ondřej Krajsa, Ph.D.

Typeset by the thesis package, version 3.05; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Tato práce se zabývá problematikou šifrování komunikace mezi nízkonapěťovými za-
řízeními, které jsou ovládány pomocí mikrokontrolerů. V rámci práce byly používány
dvě vývojové desky deRFnod, které byly osazeny procesory AVR ATmega 128 RFA1,
které umožňují bezdrátovou komunikaci. Na těchto zařízeních probíhal vývoj a
testování aplikace. Finálním výstupem práce je návrh aplikace pro asymetrickou
výměnu klíčů, která je založena na eliptických křivkách. Tato aplikace je im-
plantována v Atmel LightWeight, kde je i řešena otázka vzájemné komunikace
mezi komunikujícími body. Vygenerovaný klíč je dále použit pro širfování komu-
nikace pomocí šifrovacího algoritmu AES, který je již implementován ve využitém
LightWeigt protokolu. Toto šifrování umožňuje nejenom šifrování koncových bodů,
ale i komunikačního tunelu. Taková ochrana poskytuje uživatelům anonymitu dat a
znemožňuje nebo velmi znesnadňuje potenciálním útočníkům zařízení fyzicky lokali-
zovat na základě znalosti směrování dat v síti.

Navržený algoritmus na výměnu klíčů, je založen na obecné teorii eliptických
křivek, která je popsána v kapitole 4.1. Návrh algoritmu je realizován v jazyce C a
v průběhu vývoje byl implementován a testován na vývojový deskách od německ-
ého výrobce Dresden Elektronik, GmbH. Vývoj aplikace probíhal v prostředí edi-
toru Code::Block a následně byl přenášen do prostředí editoru Atmel Studiu, který
umožňuje testování běhu algoritmu přímo na vývojové desce. Implementace vlast-
ního algoritmu do síťového protokolu LightWeight není zcela úspěšná. Nepodařilo se
sestavit úspěšnou komunikaci mezi dvěma komunikačními body. Ačkoliv jednotlivé
komponenty algoritmu na výměnu klíčů byly v průběhu návrhu vývoje úspěšně
testovány. Na důkaz tohoto tvrzení byly jednotlivé komponenty algoritmu vytvořeny
jako spustitelné soubory ve fromátu .exe a jsou součástí přílohy této práce.

DECLARATION

I declare that I have written the semestral project titled “Protokol s koncovým šifrováním
pro IEEE 802.15.4” independently, under the guidance of the advisor and using exclusively
the technical references and other sources of information cited in the project and listed
in the comprehensive bibliography at the end of the project.

As the author I furthermore declare that, with respect to the creation of this semestral
project, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

Contents

Introduction 7

1 Hardware 8
1.1 Mirocontrollers . 8
1.2 deRFnode 1TNP2 DBT . 8
1.3 Atmel Studio IDE . 10

2 Standard 802.15.4 11
2.1 Topology . 12

2.1.1 Star . 12
2.1.2 Mesh (Peer-to-peer) . 13

2.2 Atmel lightweight Mesh . 13

3 IKEv2 - Internet Key Exchange 14

4 Elliptic-curve Diffie–Hellman 15
4.1 Theory of elliptic curve . 16

5 Key exchange algorithm 19
5.1 Phase A . 19
5.2 Phase B . 24
5.3 Phase C . 25
5.4 Mathematical functions . 27

6 Implementation on LWM 28

Conclusion 29

Bibliography 30

List of acronyms 32

List of appendices 33

Introduction
The future belongs to automation. We have all come across concepts such as smart
cities, self-driving cars, or fully-automated factories that do not need human beings
to operate them. These things, which sounded like science fiction 20 years ago, are
becoming a reality today. In addition, due to falling hardware prices, automation
is not just a privilege for large corporations but is becoming increasingly common-
place.

One of the pillars of automation is the collection and flow of data, which intro-
duces a new concept—the Internet of Things. Under this term, we can imagine a
large number of small devices that are often not even connected to the mains and are
powered by batteries or solar panels. They use wireless networks to communicate
with the environment, and they use wireless networks that are specially designed
for these small devices due to their limited power options.

Each new technology brings advantages and disadvantages. The main problem
of wireless networks is their vulnerability to attacks. Input or output data can be
both tapped and altered, which can result in a number of situations, from unpleas-
ant to fatal. The logical response is to use some kind of network security, but given
the fact that most small devices are dedicated to and built on microcontrollers, it is
necessary to use an adequate lightweight solution.

Structure of the thesis
This bachelor’s thesis is divided into theoretical and practical parts and concludes
with a summary of what results were achieved. Microcontrollers are generally de-
scribed in the theoretical part. The next chapter is devoted to deRFnode develop-
ment boards, which were used during the work and in the Atmel Studio environment,
which was used to implement the design of the key exchange algorithm. The next
chapter of the theoretical section is a brief introduction to network theory for low-
power devices and the Lightweight Mesh protocol, which serves as a basis for the
implementation of the algorithm. The theoretical part concludes with chapters that
discuss the possibility of key exchange according to the IKEv2 standard and the
theory of elliptic curves, which also describes the calculation methodology.

7

1 Hardware
This thesis is practically oriented and uses several special software and hardware
instruments. In this chapter, the microcontrollers, which form the core of the used
deRFnode 1TNP2 DBT boards, are described in detail. The conclusion of the chap-
ter deals with the Atmel Studio 7 development environment.

1.1 Mirocontrollers
In today’s world, we are surrounded by various small smart devices that can record,
for example, ambient temperature, or simple machines that perform one or a limited
number of defined activities. All of these devices work thanks to the small, built-in
mini-computers we call microcontroller units (MCUs).

Although MCUs look like the processors known from PC assemblies, they are
fully functional computers. In the case of computational operations, no other pe-
ripheral input and output devices can be used. It is sufficient to provide them with
electricity. In addition to the CPU itself, they include RAM and EEPROM to store
the code that the computer executes. In this thesis, the ATmega128RFR2 chip is
used, which is directly embedded in the deRFnode 1TNP2 DBT development board.

They are equipped with serial ports for basic communication with peripherals,
which may be other MCUs or electronic devices such as sensors or servomotors. Se-
lected ports are grouped into interfaces, such as a Serial Peripheral Interface (SPI),
which allows full-duplex data communication between two microcontrollers. On one
side, there is a master that controls the slave microcontroller on the other. This
interface can be used for computer-to-MCU communication, but it requires a spe-
cial converter. Another well-known interface is the I2C, also known as a Two-Wire
Interface (TWI), which allows two devices to be connected in a series with two wires
at a time and communicate using address data.

Among the world’s leading manufacturers of MCUs are companies such as Texas
Instruments, Microchip Company (formerly Atmel), Intel Corp., and Fujitsu.

1.2 deRFnode 1TNP2 DBT
This is a development board that includes a radio module and an ATmega128 chip.
This board is designed for low-energy data networks such as 802.15.4. The board

8

has a number of interfaces such as USB, JTAG1, or TWI. In addition to being pow-
ered via a USB cable connected to a computer, the board can be powered with a 5V
DC plug. The board is also equipped with a battery pack for three AAA batteries,
which allow the board to operate without the need to connect to the power grid.

The board is produced in two variants: deRFgateway and deRFnode. The first
is equipped with an Ethernet interface. This board can be used as a network coor-
dinator that collects data from other nodes and sends it to a different network, in
this case, to an 802.3 Ethernet network. The second type, deRFnode, can serve as
a coordinator within a WSN2 network or as a reduced-function device node. The
board contains sensors that measure acceleration, temperature, and luminosity.

The main advantage of these boards is their variability. The radio module is
removable from the board and can be replaced with another compatible type from
Dresden Elektronik Verkehrstechni, GmbH. Another optional part is the software
used; we can choose between different network stacks from the manufacturer or
external developers.

Fig. 1.1: deRFgateway and deRFnode board (without radio modules) [2]

1Joint Test Action Group - industry standardized connector
2Wireless Sensor Network

9

1.3 Atmel Studio IDE
The software part of this term paper was realized in the Atmel Studio 7 integrated
development environment (IDE). This development environment is intended for the
development and debugging of applications written in C and C++ languages. The
Studio allows the programming of over 500 supported AVR and SAM microcon-
trollers via USB programmers, for example, Atmel ICE.

Fig. 1.2: Atmel Studio 7 IDE

10

2 Standard 802.15.4
The main motivation for the design of IEEE 802.15.4 was to create a communication
standard for WPAN networks that would be optimized for low-energy devices for
use in industrial automation. This standard serves as a basis for higher protocols,
such as ZigBee, WirelessHard, and 6LoWPAN. The OSI model defines the link and
physical layer parameters. Higher layer protocols are not specified.

Fig. 2.1: Lyers of 802.15.4 and higher protocols

The physical layer
The general task of the physical layer is to transmit data. This layer defines the
frequency band and modulation used. Within the physical layer, we distinguish a
total of three frequency bands with different transmission speeds and a number of
channels.

• Europe 868.0 – 868.8 MHz – pouze jeden kanál (0), 20 – 250kbit/s
• North America 902 – 928 MHz - 13 channels (1-14)
• Worldwide 2400–2483.5 MHz - 16 channels

Data link layer
The link layer ensures the correct addressing of forwarded data. Other tasks include,
for example, synchronization according to the beacon frame, which it transmits at
regular intervals and thus informs the user about the network presence.

11

2.1 Topology
The standard uses star and mesh topologies. Topologies consist of two basic types
of devices: full-function device (FFD) and reduced-function device (RFD).
FFD (Fully Function device)
This device can serve either as a network coordinator, a terminal coordinator, or a
terminal only. In the case of the first role, the device acts as a router and, in ad-
dition to network management, can forward data to other networks based on other
standards, such as Ethernet or WiFi.

RFD (Reduced Function device)
An RFD device is a feature with reduced functionality and only works as an endpoint
that receives or sends data to its coordinator, not to another point on the network.

2.1.1 Star

This type of topology consists of one network coordinator to which FFD or RFD
devices can be connected but only communicate with the network coordinator.

Fig. 2.2: Topologies Star and Mesh (Peer-to-peer) [1]

12

2.1.2 Mesh (Peer-to-peer)

If there is no requirement for the peer-to-peer topology to send data to other net-
works, there is no need to include a network coordinator. The advantage of this
solution is the possibility of building a network with a higher range than the net-
work coordinator radio module in the star topology. This is made possible by the ad
hoc capability where the data packet is forwarded from the sender to the recipient
through several intermediate nodes. However, this solution has a negative effect on
the energy consumption of the system.

2.2 Atmel lightweight Mesh
For our protocol design, Atmel’s Lightweight Mesh SDK was used in a low-power
wireless network. It can be applied to any system or development board that
works with an MCU with the hLow Power transceiver for 802.15.4, such as the
ATmega128RFA1 used in the deRFnode 1TNP2 DBT board. It is possible that,
based on this protocol, it could theoretically have up to 65,635 nodes [1].

13

3 IKEv2 - Internet Key Exchange
The purpose of this protocol is to secure communication between the two parties,
not only by securing the forwarded data but also by securing the communication
channel. Communication is thus secured against data theft or usage of fraudulent
data.

The principles of the IKEv2 are depicted in Figure 3.1. The protocol is divided
into three main parts. In the first part, there is a mutual exchange of keys based
on the Diffie–Hellman algorithm. Side A proposes various combinations of security
associations (SAs), which are a set of algorithms used to encrypt and authenticate
the subscribers, to side B. Side B chooses the most appropriate combination of SAs
based on its capabilities. In the second phase of the protocol, authentication of the
parties, key exchange, and activation of the agreed encryption algorithm according
to the selected SA take place. In the third phase, both parties receive an identifica-
tion tag (SPI), which confirms the identity of the forwarded data. The key exchange
is then used again to encrypt the transmitted data.

Fig. 3.1: IKEv2 key exchange [5]

14

4 Elliptic-curve Diffie–Hellman
The previous chapter described the methodology of key exchange. The key exchange
itself is realized by asymmetric cryptography, where both parties independently de-
termine the secret key from which they calculate the public key, using a one-way
mathematical function. With a one-way function, it is easy to calculate the public
key from the secret key, but to recalculate the secret key from the public key is
mathematically very difficult. This method was discovered by Whitfield Diffie and
Martin Hellman in the 1970s. Although it was later revealed that the method had
been invented a few years earlier by the British intelligence and security organization
GCHQ, this fact remained a secret until the 1990s, which is why this key exchange
protocol is known as the Diffie–Hellman protocol.

Tab. 4.1: Key size comparison between Diffe-Hellman algorithm and ECHD [5]

Key Size in bits

(by NIST reccomenditation)

Diffie-Hellman algorithm

(modulus size on bits)
ECC size

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512

This protocol can be used with different key lengths, as described in 4.1. Among
other things, a key size equivalent is added for a better overview, as recommended by
the National Institute of Standards and Technology (NIST). However, the key sizes
in the classic Diffie–Hellman protocol are unsuitable for application on low-power
devices because of the transmission of larger amounts of data, which negatively
affects power consumption and the need for more storage space. An elliptic curve-
based algorithm can be used to solve this problem. This algorithm’s main advantage
is a smaller key size when compared to the classic Diffie–Hellman algorithm, but
it maintains the same level of security. For example, a 224-bit key created by
an elliptical curve-based algorithm provides security equivalent to a 2048-bit key
generated by the Diffie–Hellman algorithm.

15

4.1 Theory of elliptic curve
This part of the thesis briefly describes the theory of elliptic curves. Although there
are other theories and computational methods, we confine ourselves to describing
an elliptic curve on the GF(p) type of division ring that uses modular arithmetic.
The theory described here is based on publications [8]. This theory was used as a
basis for creating a key exchange algorithm in this term paper.

An elliptic curve is a plane algebraic curve defined by equation 4.1, where the
values 𝑥 a 𝑦 represent the Cartesian coordinates of the chosen starting point, and 𝑎

and 𝑏 are the curve parameters.

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (4.1)

However, before calculating the other points on the curve, it is necessary to verify
that the proposed point lies on the curve. This can be easily verified using modified
equation 4.2, using modular arithmetic. If the right and left calculations are the
same, then it is confirmed that the point lies on the curve. The value p is a prime.
This verification was carried out within the framework of this term paper and im-
plemented by software; it is included in the appendices.

(𝑦2)mod 𝑝 = (𝑥3 + 𝑎𝑥 + 𝑏)mod 𝑝 (4.2)

The points on the elliptical curve are made up of an additive group; each addi-
tional point arises by adding the previous point and the starting point. It means,
logically, that there are two different methods to sum the two points accordingly,
whether the added points are the same or different.

Addition of two identical points
This method, also known as doubling, is usually used to calculate the second point in
a sequence within a group, where the starting point is added to itself. The graphical
solution of this method is shown in Figure 4.1.

𝑆 = 3𝑥𝑃
2 + 𝑎

𝑦𝑃

mod 𝑝 (4.3)

𝑥𝑅 = 𝑠2 − 2𝑥𝑃 mod 𝑝 (4.4)

𝑦𝑅 = 𝑠(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃 mod 𝑝 (4.5)

16

Using these formulas, we can calculate a common point. By calculating the first
equation, we obtain the slope of the curve S. We then use this value to calculate the
coordinates 𝑥𝑅 and 𝑦𝑅.

Fig. 4.1: Doubling [8]

17

Addition of two different points
As in the previous case, we must first calculate the slope of the curve 𝑆 and then
coordinates 𝑥𝑅 and 𝑦𝑅. The figure below shows the graphical method of finding a
common point.

𝑆 = 𝑦𝑃 − 𝑦𝑄

𝑥𝑃 − 𝑥𝑄

(4.6)

𝑥𝑅 = 𝑠2 − (𝑥𝑃 + 𝑥𝑄) (4.7)

𝑦𝑅 = 𝑠 (𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃 (4.8)

−

Fig. 4.2: Addition point [8]

18

5 Key exchange algorithm
In this chapter, we gradually describe the operation of the key exchange algorithm.
The algorithm is based on elliptic curves and the Weierstrass calculation method,
which was described in Chapter 4. The application is written in C language, and
its development took place simultaneously on the platform Code::Blocks and Atmel
Studio IDE, where the application was also tested on development boards equipped
with AVR ATmega128RFA1 MCUs. The individual parts of the algorithm are de-
scribed here by generalized flowcharts, which present the function of the described
application, not the exact form. More detailed development diagrams are included
in the appendix. They are inserted into one sheet in pdf format and can be searched
using the entered term.

The key exchange is divided into three phases, which are illustrated in the figure
??. The task of the first phase is a random selection of input values; from these
values, this phase is further calculated by the group generator and its order. These
values are used for a successful key exchange between communicating points. The
second phase is responsible for the selection of the key, which is again selected in a
pseudo-random way; based on this key, the phase calculates a point on the elliptic
curve, which is used for sharing. The third phase of the key exchange can calculate
the common key from the received data, resp. a common point that serves as a key
in the future or an input value to the AES encryption block within the Lightweight
stack.

5.1 Phase A
This phase only works on the initiator side of the communication. Its task is to
select suitable values, which then go through several stages of testing to verify their
suitability. Furthermore, the algorithm is designed as a system of several loops that
run until all tests run properly and until the generated values are clearly usable for
a successful asymmetric key exchange.

The first part of this phase of the algorithm is the selection of a number that
represents a modulo value. According to the theory, it is given that this number must
be a prime number. Therefore, after a number is selected, a block included in the
algorithm tests whether or not the number is a prime. If it finds that the number
is not prime, the loop is repeated, i.e., re-selected and tested. If the selection is
successful, the selections of parameters a and b follow, representing the asymptotes
of the elliptic curve. Selected values are tested according to the equation:

19

Fig. 5.1: Key exchange algorithm scheme

20

(4 * 𝑎3 + 27 * 𝑏)mod 𝑝 ̸= 0. (5.1)

In the case of a negative test result, the loop is repeated until suitable values are
selected and until no equation results in zero. Both tests are designed as separate
blocks, which the main algorithm calls as needed. Figure 5.2 shows a run of an
application for testing a prime number, using a flowchart for illustration.

Fig. 5.2: Primality test algorithm

In the next part of this application phase, the coordinates of the first point,
which represent the group generator, are calculated. This step is mediated by a
block of code, renamed TheFirstPoint, and it is an essential element in assembling
a group of points. It is based on comparing values from two tables. The data from
these tables are outputs from separate XPart and YPart applications. Flowcharts
for these applications are included in the appendix. The calculation method is
illustrated in Table 5.1 and listing of algorithm. If the first match is recorded, the
resulting coordinates are stored in memory. These coordinates represent the first
point or group generator. TheFirstPoint computes the whole group in the same way.
Incremental value is added to the cycle, which increases with each point found. The
result of this value is the number of points, which represents the order of the group.

21

Fig. 5.3: Algorithm for compute the generator and order of group

22

Tab. 5.1: Method of points computation

.

1 for(int64_t k = 0; k <= X_iter ; k++) // Give X’s
2 {
3 for(int64_t i = 0; i <= Y_iter ; i++) // Give Y’s
4 {
5 if (poleA[i] == poleB[k])
6 {
7 if(order == 0)
8 {
9

10 * Xfirst = k;
11 * Yfirst = i;
12 }
13

14 order ++;
15

16 }
17 }
18

19 }

Listing 5.1: Method of comparing teo arrays

The obtained coordinates of the group generator are further tested; the whole
group is calculated from the knowledge of the generator and the order of the group
using the PointComp application. It verifies that the points can be summed and that
the result is not a point at infinity. If the test finds an error, the application returns
to the beginning of the loop, where a selection is made again from the beginning

23

Modulo values and elliptic curve parameters. However, if the test is successful,
another test follows, which checks the coordinates of the last point of the group to
see if the X and Y coordinates lie on the curve. This solution was chosen due to
problems during the creation of the algorithm; despite appropriately selected and
tested input values, the calculated groups of points were non-parity and, therefore,
unusable for asymmetric key exchange. , the coordinates of the first point and the
order of the group.

5.2 Phase B
This phase has the task of selecting the key and calculating the point that repre-
sents the public key to be sent to the counterparty. The application is divided into
two subversions with respect to where it is used. When used on the communica-
tion initiator side, it contains only a block for generating a pseudo-random secret
key and calculating a sharing point. The version for the communication recipient
is essentially the same but also contains a block that calculates the first point and
order of the group by knowing the first number and the asymptote of the curve.
This solution was chosen to save energy on the development boards; for the ex-
change of the initial public parameters, it is enough to send the recipient only the
mentioned values of the module and parameters. This calculation is not verified in
any way. There is a confidence that the values received from the initiator are usable
for the calculation. If these values are forged, the key exchange cannot be successful.

The secret key selection algorithm block works with a pseudo-random number
that is created by a generator that is already part of the Lightweight stack used.
Within this block, the pseudo-random number is adjusted using a known group order
value, which is generated in Phase A. This is because the key’s value ranges from
one to the group order value. In addition, this block contains anti-risk treatment so
that the resulting key is not zero.

24

1 void SecretKey (int64_t *OrderG , int64_t * SecKey)
2 {
3 int64_t order , result ;
4

5 order = * OrderG ;
6

7 result = rand () % (order - 2);
8

9 /*
10 Uprage due to solution of PointComp algorithm (order - 2) =>

elimination of first point end zero -point
11 */
12

13 if(result == 2)
14 {
15 result += 1;
16 }
17 else if(result == 1)
18 {
19 result += 2;
20 }
21 else if(result == 0)
22 {
23 result += 3;
24 }
25 * SecKey = result ;
26 }

Listing 5.2: Algorithm for the secret key computation

5.3 Phase C
The final phase of the algorithm follows the mutual exchange of points, which rep-
resent the public keys. The first block of this application can recognize the order in
the group from the received key and thus obtain the secret key of the other party.
The second phase has the task of its own secret key, and the secret key obtained
from the received point is multiplied to obtain a common key. Subsequently, a com-
mon point is calculated from this key, which is used as the key base for the AES 128
encryption algorithm.

25

Fig. 5.4: Flowchart of Phase C

26

5.4 Mathematical functions
During calculations, the use of mathematical functions, such as power and modu-

lar arithmetic, is often required. All of these functions are contained in C. Although
these functions are compiled without objection, their properties are not suitable for
use in our algorithm, and their use could lead to incorrect results. The following
functions were defined to ensure reliability. The pow function, which has the task of
powering numbers, works with the double data type. However, we only work with
integers in our algorithm. If we use integers to input the pow function, it can have an
undesirable result in some situations, for example, giving the square of the number
5 as 24 instead of the correct result of 25. A simple power application was created
to work with integers and power negative numbers to prevent such problems. The
application was created as a separate module, which is called by the main program
as needed in the key exchange process.

Another mathematical application is an algorithm for calculating the remainder
using modular arithmetic. This function is similar to the power part of the C lan-
guage. However, this function does not work with negative numbers, which often
occur in our main algorithm during calculations. Therefore, an application was cre-
ated that, after calling and receiving inputs, performs a calculation and returns the
resulting value.

In addition to the need for the classical calculation of the remainder after divi-
sion, there is also a requirement for an inverse variant of the remainder calculation.
In the application, the whole loop is used to calculate as long as the remainder is
equal to 1. The number of iterations is also the result. Again, this application is
designed to work without problems, even with negative numbers.

The last of the mathematical applications is the prime number test. When the
main algorithm is initialized, the modulo value is selected using a pseudo-random
function. A pseudo-random selection generates any real number. However, for our
calculation, the modulo value must be a prime number. Therefore, a block is called
that tests the pseudo-random value, using the application shown in the following
figure.

1 int64_t power(int64_t *Num , int64_t * PowerNum)
2 {
3

4 int64_t result = (int64_t)(round(pow (*Num , * PowerNum)));
5

6 return result ;
7 }

Listing 5.3: Power function for provide exponentation

27

6 Implementation on LWM
In this chapter, we will introduce our communication protocol solution, which is
based on the prepared LightWeight Stack. During the development, the manufac-
turer’s manual was used. The main task of this protocol is the transfer of data
between the individual phases of our key exchange algorithm. We will gradually
explain the individual parts of the protocol, which will be presented here in the
form of code statements.

The main part of the protocol that controls individual calls and terminations is
the APP𝑇 𝑎𝑠𝑘𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑏𝑙𝑜𝑐𝑘.𝑇ℎ𝑖𝑠𝑏𝑙𝑜𝑐𝑘𝑖𝑠𝑐𝑎𝑙𝑙𝑒𝑑𝑓𝑟𝑜𝑚𝑡ℎ𝑒𝑚𝑎𝑖𝑛𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑜𝑜𝑝.𝐼𝑡𝑤𝑎𝑠𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦𝑡𝑜𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑚𝑒𝑡ℎ𝑜𝑑𝑓𝑜𝑟𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑐𝑜𝑑𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠.𝑇ℎ𝑖𝑠𝑤𝑎𝑠𝑑𝑜𝑛𝑒𝑢𝑠𝑖𝑛𝑔𝑡ℎ𝑒𝑠𝑤𝑖𝑡𝑐ℎ𝑐𝑜𝑚𝑚𝑎𝑛𝑑.𝑇ℎ𝑒𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑡𝑎𝑡𝑒𝑠𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑡ℎ𝑒𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑝ℎ𝑎𝑠𝑒𝑠𝑜𝑓𝑡ℎ𝑒𝑘𝑒𝑦𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑛𝑑𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑡𝑜𝑡ℎ𝑒𝑓𝑙𝑜𝑤𝑐ℎ𝑎𝑟𝑡5.1𝑖𝑛𝑡ℎ𝑒5.1.

𝑇ℎ𝑒𝑠𝑒𝑠𝑡𝑎𝑡𝑢𝑠𝑒𝑠𝑐𝑎𝑙𝑙𝑡ℎ𝑒𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠𝑜𝑓𝑡ℎ𝑒𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒, 𝑤ℎ𝑖𝑐ℎ𝑎𝑟𝑒𝑔𝑟𝑜𝑢𝑝𝑒𝑑𝑖𝑛𝑡𝑜𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑏𝑙𝑜𝑐𝑘𝑠𝑡ℎ𝑎𝑡𝑎𝑙𝑙𝑜𝑤𝑓𝑜𝑟𝑒𝑎𝑠𝑦𝑎𝑛𝑑𝑐𝑜𝑛𝑣𝑒𝑛𝑖𝑒𝑛𝑡𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛.

1 ECDH_PHASE_A (&mod , & a_parameter , & b_parameter , &X_first , &Y_first ,
&Order); ECDH_PHASE_BA (& Order , &X_first , &Y_first , & a_parameter ,

&mod , containerB);
2 ECDH_PHASE_BB (& Order , &X_first , &Y_first , & a_parameter , &mod ,

containerB);
3 ECDH_PHASE_C (& MSKey , &X_first , &Y_first , &X_obtain , &Y_obtain , &mod

, & a_parameter , &Order , &MutKEY , containerC);

Listing 6.1: Overview of states

The output of the last phase C is the key, which undergoes an adjustment, which
aims to increase its size and thus the security of communication.

1 XSEC = containerC [0];
2 YSEC = containerC [1];
3

4 powerValue = 8; // 16 bits value powered by value 8
5 KeyResult = power (&XSEC , & powerValue) + power (&YSEC , & powerValue);
6

7 NWK_SetSecurityKey (KeyResult); /// size array 128b

Listing 6.2: Obtaining key for AES

28

Conclusion
The main tasks of this work were to design an algorithm for asymmetric key ex-
change and implement it into the Lightweight mesh network stack. The output of
the work was an algorithm, which is divided into several phases and based on the
theory of cryptography on elliptic curves. It is completely autonomous in the se-
lection of input values, which changes with each established communication. This
feature prevents an unauthorized third party from reusing an existing key. The al-
gorithm is designed with the greatest possible modularity in mind. Thanks to this
philosophy, the resulting code is clear and very easy for future improvements. It will
not be necessary to implement the same function in more places; it will be enough
to modify only the inside of the block.

Unfortunately, the second task within this bachelor’s thesis was not completely
realized. Although the design followed the available instructions and sample ex-
amples, the issue of radio communication between the development boards was
not resolved by the time the work was submitted. The problem was likely in the
APP_TaskHandler block definition, which incorrectly calls the necessary functions
to transfer data between communicating points.

The main benefit of this work is acquaintance with microcontrollers and a solid
knowledge of the basics of the C language. None of these areas were known to
the author at the beginning of the work. The motivation for current and future
improvement in these areas is practical activities in everyday life or employment.

29

Bibliography
[1] ATmega256RFR2 ATmega128RFR2 ATmega64RFR2 Datasheet. [online],

2014. In: . Atmel (now Microchip Corporation), s. 611 [cit. 2019-12-02].
Available from: http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
8393-MCU_Wireless-ATmega256RFR2-ATmega128RFR2-
ATmega64RFR2_Datasheet.pdf

[2] User manual - deRFnode / deRFgateway, 2014. Dres-
den Elektronik, 56 s. Available from: https://www.dresden-
elektronik.de/funktechnik/uploads/media/deRFnode_deRFgateway-BHB-
en_10.pdf

[3] MANN, Burkhard, 2003. C pro mikrokontroléry: ANSI-C, kompilátory C, spojo-
vací programy - linkery, práce s ATMEL AVR a MSC-51, příklady programování
v jazyce C, nástroje pro programování, tipy a triky ... Praha: BEN - technická
literatura. ISBN 80-730-0077-6.

[4] MATOUŠEK, David, 2006. Práce s mikrokontroléry ATMEL AT89C2051:
[měření, řízení a regulace pomocí několika jednoduchých přípravků]. Práce s
mikrokontroléry ATMEL AVR ATmega16. Praha: BEN - technická literatura.
ISBN 80-730-0048-2.

[5] LAVANYA, M. and V. NATARAJAN, 2017. Lightweight key
agreement protocol for IoT based on IKEv2. 64, 580-594. DOI:
10.1016/j.compeleceng.2017.06.032. ISSN 00457906. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0045790617319286

[6] HEROUT, Pavel, 2011. Učebnice jazyka C. Dotlač 6. vyd. České Budějovice:
Kopp nakladatelství. ISBN 978-80-7232-383-8.

[7] LEVICKÝ, Dušan, 2016. Kryptografia a bezpečnosť komunikačných sietí. Košice:
Elfa. ISBN 978-80-8086-254-1.

[8] BURDA, Karel, 2015. Úvod do kryptografie. Brno: Akademické nakladatelství
CERM, 66 s. ISBN 978-80-7204-925-7.

[9] Cybersecurity for industry 4.0, 2017. New York, NY: Springer Berlin Heidelberg.
ISBN 978-331-9506-593.

[10] C Program for Extended Euclidean algorithms [online], In: . [cit. 2019-12-
19]. Available from: https://www.geeksforgeeks.org/c-program-for-basic-and-
extended-euclidean-algorithms-2/

30

[11] Secure Hash Algorithm (SHA-1) [online], In: . [cit. 2019-12-19]. Avail-
able from: http://www.hoozi.com/post/b3mf9/secure-hash-algorithm-sha-1-
reference-implementation-in-c-c

31

List of acronyms
AES Advanced Encrypt S
JTAG Joint Test Action Group
AVR Alf and Vegard’s RISC processor
SHA Secure Hash Algorithm
IEEE Institute of Electrical and Electronics Engineers
ISP In System Programming
WSN Wireless Sensor Network
IoT Interner of Things
MCU Interner of Things
EEPROM Electrically Erasable Programmable Read-Only Memory
ESP Encapsulating security protocol
NHC Next header protocol
AH Authentication header
LKA LightWeight key agreement
ISAKMP Internet Security Association and Key Management Protocol

32

List of appendices
Flowcharts
• Recognizer.pdf
• RecognizerSecKey.pdf
• SecretKey.pdf
• SumTwoPoints.pdf
• TheFirstPoint.pdf
• VerifyOfPoint.pdf
• XPart.pdf
• YPart.pdf
• Common_Key.pdf
• ECDH Equations.pdf
• ECDH Overview flowchart.pdf
• ECDH_PHASE_A.pdf
• ECDH_PHASE_BA.pdf
• ECDH_PHASE_BB.pdf
• ECDH_PHASE_C.pdf
• checkValAB.pdf
• PointComp.pdf
• primeTester.pdf
Flowcharts
• PHASE A (EXE) autonomous.exe
• PHASE A (EXE) manual.exe
Source of code
• Common_Key.c
• ECDH_Functions.h
• ECDH_PHASE_A.c
• ECDH_PHASE_BA.c
• ECDH_PHASE_BB.c
• ECDH_PHASE_C.c
• checkValAB.c
• InverseMod.c
• LamdaDiff.c
• LamdaSame.c
• modulo.c
• PointComp.c
• power.c
• primeTester.c

33

• Recognizer.c
• RecognizerSecKey.c
• SecretKey.c
• SumTwoPoints.c
• TheFirstPoint.c
• VerifyOfPoint.c
• XDiff.c
• XPart.c
• XSame.c
• YDiff.c
• YPart.c
• YSame.c

34

	Introduction
	Hardware
	Mirocontrollers
	deRFnode 1TNP2 DBT
	Atmel Studio IDE

	Standard 802.15.4
	Topology
	Star
	Mesh (Peer-to-peer)

	Atmel lightweight Mesh

	IKEv2 - Internet Key Exchange
	Elliptic-curve Diffie–Hellman
	Theory of elliptic curve

	Key exchange algorithm
	Phase A
	Phase B
	Phase C
	Mathematical functions

	Implementation on LWM
	Conclusion
	Bibliography
	List of acronyms
	List of appendices

