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Rok obhajoby práce: 2017

Abstrakt: Práce se zabývá regresńı analýzou pro kompozičńı data. Relativńı
charakter kompozičńıch dat, který je odlǐsuje od standardńıch mnohorozměrných
dat, vyžaduje speciálńı zacházeńı. Jedńım ze základńıch př́ıstup̊u ke statistické
analýze kompozičńıch dat, který je použit i v této práci, je vyjádřeńı kompozičńıch
dat ve vhodném souřadnicovém systému.

Nejprve je pozornost soustředěna na problematiku regresńıho modelu s kom-
pozičńı vysvětlovanou proměnnou. Pro kompozičńı data vyjádřená v ortonormál-
ńıch souřadnićıch je v práci vytvořen mnohorozměrný regresńı model a uvedeny
explicitńı vzorce pro odhady neznámých regresńıch parametr̊u a testové statistiky
pro ověřeńı jejich statistické významnosti. Dále je navržena jiná souřadnicová
reprezentace kompozičńıch dat, která umožňuje zjednodušit výpočty pro odhady
regresńıch parametr̊u a testové statistiky a vyhodnocena kvalita predikce v r̊uz-
ných souřadnicových systémech.

Druhá část této práce je věnována kalibračńımu problému pro kompozičńı
data. V práci je použit př́ıstup založený na lineárńım modelu s podmı́nkami typu
II. Je zde dokázána ekvivalence mezi lineárńımi modely s podmı́nkami typu II
a ortogonálńı regreśı. Dále je zde navržena procedura pro kalibraci kompozičńıch
měřeńı a prezentovány testy pro shodu dvou měřićıch př́ıstroj̊u (metod).

V posledńı části této práce je navržena procedura pro výběr kompozičńıch
složek, která zaručuje, že výsledná redukce dimenze kompozice nezp̊usob́ı pod-
statnou ztrátu informace o mnohorozměrné variabilitě datové struktuře.

Všechny teoretické výsledky jsou aplikovány při řešeńı reálných úloh.
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Background

Regression is a common statistical method for modelling and analysing the

relationship between the response and predictor variable(s). In the frame of the

parametric approach of the regression analysis, the linear relationship between

the variables is only investigated.

The regression techniques discussed in this thesis are performed on a spe-

cial kind of multivariate data known as compositional data, or compositions for

short. The definition for D-part composition as quantitative descriptions of the

parts of some whole, conveying relative information, dates from the 1986 and it

is given by Aitchison. This strictly positive data that quite often sum up into an

arbitrary constant, have the simplex SD with the Aitchison geometry, to be their

sample space. As it is well known, the simplex lacks the Euclidean vector space

structure. It is the underlying reason that the standard statistical methods, like

the regression analysis in our case, can not be applied directly on the composi-

tions. Hence, this fact led to the necessity to translate the compositions from the

simplex to the real space in order to apply standard statistical methods. The log-

ratio methodology presents a proper statistical approach that enable to express

the data isometrically in the real Euclidean space [4]. This approach permits one

to release the fixed constant sum constraint and follow natural principles of com-

positions. These principles consist of the scale invariance, permutation invariance

and subcompositional coherence [15, 66, 68]. The scale invariance provides the

same results of a statistical analysis irrespective of particular representation of the

positive vector whose parts carry relative contributions on a whole. Subcomposi-

tional coherence means that results for subcompositions are not in contradictions
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with those for compositions. Permutation invariance means that reordering parts

of a composition does not affect the included information.

Centered log-ratio (clr) coordinates represent historically the first isometric

mapping between the Aitchison geometry and the real space endowed with the

Euclidean geometry [4]. Clr coordinates are characterized by a zero sum of the

variables and, consequently, by a singular covariance matrix. Often it is prefer-

able to have orthonormal coordinates that avoid singularity of the covariance

matrix, therefore the isometric log-ratio (ilr) transformation was proposed [21].

The composition after the ilr transformation results in a vector of orthonormal

coordinates in the RD−1. Naturally, there are inverse transformations back to

simplex SD. Hence, the results can be interpreted either in the coordinates or on

the simplex.

First meaningful studies about the regression models for compositions [1, 2]

come from the 1980’s together with the log-ratio approach. Here are behind

the others, studied models where only the response random variables are com-

positional while the predictors are real fixed variables. Two types of regression

models depending on the distribution of the residuals are compared, namely the

logistic-normal and the Dirichlet regression models. The Dirichlet regression

model [36, 38] has showed to have too strong restrictive independence properties.

Additionally it is shown that the Dirichlet distribution [15, 68] can be approx-

imated by some distributions in the logistic-normal family. Further, some tests

about the significance of the model and its parameters are developed and dis-

cussed in [4].

Remarkable invention in the field of the regression analysis for compositional

data came in the paper of J.J. Egozcue et al. (2012). The expression of the

regression model in the orthonormal coordinates offers opportunity to use the

least squares (LS) method for obtaining the estimates of the unknown regression

parameters [18].

The LS problem is presented on both the simplex SD and in coordinates on

the RD−1.
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Important advantage of this approach is that one can solve independently

D−1 least squares problems. In addition the results from these D−1 univariate

regressions are the same as those from the multivariate approach. This result

from the fact that the response variables are not correlated. Obtained univariate

results are independent on the chosen orthonormal basis, i.e. the compositional

parameters and residuals after inverse ilr transformation do not depend on the

chosen orthonormal basis. Procedure for the LS estimation that is suggested there

should be consistent to the principle of working on coordinates [66]. Likewise

it appears in [24] that the sum of squares (total, explained and residual) and

the coefficient of determination of the multivariate model of the orthonormal

coordinates can be also partitioned: summing up the sum of squares and the

coefficient of determination from the D−1 univariate regression models gives the

same result as from the multivariate one.

In order to perform standard statistical inference like hypothesis testing, or

constructing confidence and prediction intervals and bounds for the unknown

regression parameters, etc., it is necessary to assume normal distribution of the

residuals from the model in coordinates. The normal distribution on the RD−1

is equivalent to the normal or logistic normal distribution on the SD [2, 56, 58].

Simultaneously, J.J. Egozcue et al. (2012) highlights the potentiality to perform

regression tests that are based on marginal normality of the residuals. Also it is

referred that the marginal tests depend on the chosen orthonormal basis on the

simplex. However, one will have to confront with the problem of the multiple

testing task. There is a need to develop more complex testing theory in the

compositional regression model. One particular aim of this dissertation thesis is

to study in depth the regression model with the compositional response. Namely,

here we present the benefits of the theory of the multivariate linear models. As

well we show on the different coordinate representation of such a multivariate

model, and on opportunity to choose the one that will enhance the interpretation

of the outcomes [see Section 4.2 for more].

Another type of the regression technique for compositions that is developed
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is the one based on the total least squares. This technique is also known as

the orthogonal regression, regression with errors in variables, or as a calibration

problem. A model is established just for the three-part compositions after the ilr

transformation and can be used for modelling the relationship between the parts

of compositions. Primary contribution to this quite new regression technique for

compositional data can be find in the papers [29, 31]. Authors there overcome

the standard TLS by the linear regression models with the type II constraints

[52]. An important requirement to build such a model is the assumption of

independence and homoscedasticity of the orthonormal coordinates. Otherwise,

when this is violated, then it is not satisfied the invariance of the results on the

simplex under the orthogonal rotation of the orthonormal coordinates. Namely,

when transforming the results of the analysis back on the simplex they will differ

from these obtained in the ilr space. A real world example in [29] shows that the

proposed method works for heteroscedastic orhtonormal coordinates too. The

linear model approach is favourable for finite samples, unlike, the TLS which is

an asymptotic approach. Moreover, the linear model approach enables to perform

the standard statistical inference, being difficult or sometimes impossible in the

frame of the TLS approach.

An iterative algorithm is proposed for the estimation of the calibration line

[29], [see Section 2.2 for more]. Advantages of this iteration procedure is that

it converges very quickly, and in addition, stable values of the estimates are

achieved in the first few iterations. Problems with numerical stability of the

proposed algorithm may occur if the angle between the calibration line and the

axis represented by the first orthonormal coordinate tends to be 90◦. Thus the

calibration line is estimated.

Furthermore, it is checked the model and its assumptions for adequacy and

validity for e.g. testing significance of calibration line’s parameters, overall test

of significance, verifying the quality of the estimated calibration line or deciding

whether the additional observation can be explained by the estimated line [31]

etc. Moreover, under the assumption of normality, there are suggested confidence
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regions for the calibration line parameters, i.e., the confidence interval for each of

the calibration line parameters, confidence ellipse for the vector of the calibration

parameters, pointwise and simultaneous confidence bounds for the calibration

line [31]. As well, there are constructed confidence ellipses for the location of

the unknown errorless results of measurement [29]. However, all these results are

done for 3-part compositions only.

In this thesis we will develop the calibration problem for D-part compositions

based on the linear model with the type II - constraints. The calibration is a pro-

cess whereby the scale of a measuring device or method is determined on a basis of

an experiment. There are two stages in the calibration process. In the first stage,

the calibration curve is specified. It describes a relationship between the quantity

values with measurement uncertainties provided by a measurement standard (a

measuring device or method with assigned correctness) and a calibrated one. The

second stage concerns the prediction of values for measurement standard based

on measurements by calibrated device. The values of measurement standard are

considered either fixed (non-random), or random. In the former case we speak

about controlled calibration, in the latter about random or natural calibration.

For more details see, e.g., [14, 62]. In this thesis we focus on determination of a

calibration line with random values of the standard.

It is quite surprising that the calibration problem is not reflected (except for

some introductory issues [29, 31]) in literature on compositional data analysis.

Different approach to compositional calibration is proposed in [80]. Here, the

calibration model is fitted by means of the generalized linear model with the

multi-Poisson distribution.

Very recent study in [44, 45] shows generalization of the TLS problem on

modeling the linear relationship between all D compositional parts. Again here

authors suggest to consider the special choice of the orthonormal coordinates

[30, 44, 45] which improves the interpretation of the model and the statistical in-

ference. The unknown regression parameters of the TLS problem are estimated

by means of the singular value decomposition (SVD) or the principal component
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analysis (PCA). The comparison of the estimates resulting from the both tech-

niques is done as well. Also robust modification is offered of the PCA estimation

technique, i.e. MM-estimators [35] of the location and shape. This technique is

emphasized under the robust version of the SVD [13] mainly because it is sim-

pler and less computationally complex. For performing statistical inferences the

authors suggest, to use bootstrap methods.

Through the history of regression modelling of the compositions also other

types of models are improved. Multiple regression models with the real response

variable and predictors that are compositional parts are studied firstly in sense

of the experiments with mixtures [73, 74]. The model in this point describes the

response as a linear or canonical polynomial function of the mixture variables, re-

lated with the compositional parts. Problems in such models are connected with

the constant sum constraint of the compositions which reflects in singularity. At-

tempt to overcome this difficulty is done with involving higher order polynomial

regression function than the primary considered linear regression function. Esti-

mates of the unknown regression parameters are obtained using the LS method.

However this method usually fails, that is affected by the approximate linear de-

pendence of the design matrix which leads to necessity to address for, e.g. the

ridge regression [40]. Another trouble being caused by the constant sum con-

straint is the interpretation of the estimated parameters from the mixture model:

it is impossible to alter one proportion without altering at least one of the other

proportions. Aitchison contribute to the field of the mixture models for composi-

tional data by implementation of the log-contrast, being the linear combination

of the logarithm of the parts and the regression parameters (except for the in-

tercept), with the requirement on the regression parameters to sum up into zero

[3, 4]. Worth mentioning circumstance is if one of the regression parameters in

the log-contrast model is equal to 1 and some other equal to -1, while the rest of

them are zero, than the model considers the log-ratio of the two parts associated

with the parameters being equal to 1 and -1. Regrettably, mentioned unwanted

consequences of the analysis are not completely removed.
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Little bit later, further approval in this field is done by Hron et al. (2012)

where the model with compositional predictors and non-compositional response is

developed. The authors propose to use the orthonormal coordinates as predictors,

and consequently the LS for estimation of the unknown regression parameters.

The problem with interpretation of the resulting parameters can be solved if

reasonable orthonormal basis for the ilr transformation is considered [30].

Special orthonormal coordinates in this case can be constructed on a such a

way that are directly connected with certain compositional part. Accordingly the

first orthonormal coordinate explains all the relative information about the first

part of the composition. The interpretation of the remaining D − 2 orthonor-

mal coordinates is definitely not straightforward, because they are not directly

connected to just one compositional part. Thus just the regression parameters

connected with the first predicor or the first orthonormal coordinate is crucial.

So, in order to interpret how the remaining D − 1 parts contribute to the re-

sponse variable D − 1 number of regression models are obtained. Let us shortly

describe how other D − 1 systems of orthonormal coordinates have to be con-

struct [see Section 1.2 for more]. On the beginning one needs to permute the

parts of the composition on a such a way that the first compositional part will be

replaced with the second compositional part. In this way permuted composition

is ilr transformed with the respect to another orthonormal basis, that is just an

orthogonal rotation of the previous orthonormal basis [21]. Once more we have a

model where only the first predictor is of concern, which this time carries all the

relative information about the second part. Briefly said, later in every further

step firstly, the permuted composition is created, such that the part on the first

place is replaced with the next one that remains to be interpreted. Again it is

ilr transformed with respect to such an orthonormal basis that will magnify the

interpretability of the desired part of the composition. The resulting orthonor-

mal coordinates are being predictors for the new model. Additionally, standard

statistical inference like the t-test about the significance of the regression param-

eters and the overall F-test can be done. The invariance of this test under the
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choice of the orthonormal basis is also discussed in [41]. One of the latest in the

area of regression analysis of the compositional data concerns the developments of

the models with compositional random response and compositional non-random

predictor variables [86] directly on the simplex SD. The algorithmic procedure

consisting of 4 steps is presented for building a linear regression model. Starting

point in the algorithm is to formulate a regression model in the Aitchison geom-

etry. One step concerns the application of the LS method on the simplex that

gives the estimates of the regression parameters. Another step is about evalu-

ating the regression model, where the observed squared correlation is taken as

a measure of goodness of fit. Goodness of prediction of the model is evaluated

by the cross-validated squared correlation coefficients based on the leave-one-out

method [77].

Furthermore, it is proved that results on the SD are equivalent with those on

the RD−1.

Statistical models for discrete compositions are firstly disccused in [2] and first

full analysis of such models can be find in [12]. Resent study of models for discrete

compostions by Bacon-Shone (2008) concerns overcoming of the restriction of the

total sum of the parts. An overview of log-linear models approach for contingency

tables can be find in [25].
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Goals of the Study

Regression analysis for the compositional data started to expand in the early

80’s. Great progress in this field has been done till now, but there are still some

topics that deserve special attention. Four types of regression models, depend-

ing on the type of the response and predictors variables can be distinguished: a

regression model with compositional response and non-compositional predictors,

a regression model with non-compositional response and compositional predic-

tors, a regression between parts of compositions, and a regression model with

compositional response and predictor variables.

The motivation for writing this thesis lies in satisfying the current needs for

further development in regression analysis for compositional data. Because the

branch is quite wide, the thesis is mainly focused on regression models with

compositional response, the calibration problem for compositions, and the sim-

plification of regression models with compositional data in terms of reducing

dimensionality of the compositions. The calibration problem is related to a re-

gression between parts and the TLS problem. The particular goals of the thesis

are the following:

• Formulate a multivariate regression model with a compositional response

and find explicit formulas for the estimators of the regression parameters

and proper test statistics. Find coordinate representation of compositional

data allowing to simplify the computation concerning regression parameters

estimation and hypothesis testing. Evaluate the quality of prediction in

different coordinate systems.

• Prove the equivalence between the TLS approach and the linear model
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with the type-II constraints. Propose a procedure for calibration of com-

positional measurements and suggest tests for conformity of two measuring

devices (methods).

• Propose a variable selection procedure for compositions that guarantees

that a reduction of the original composition to a subcomposition causes

only negligible change of the information.

• Apply theoretical results to real-world examples.

This dissertation thesis is based on the following published papers:

• Donevska S., Fǐserová E., Hron K. (2011). On the equivalence between

orthogonal regression and linear model with type-II constraints. Acta Uni-

versitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathe-

matica 50 (2), 19–27.

• Hron K., Filzmoser P., Donevska S., Fǐserová E. (2013). Covariance-based

variable selection for compositional data. Mathematical Geosciences 45 (4),

487–498.

• Donevska S., Fǐserová E., Hron K. (2016). Calibration of compositional

measurements. Communications in Statistics - Theory and Methods 45

(22), 6773–6788.

• Fǐserová E., Donevska S., Hron K., Bábek O., Váňkátová K. (2016).

Practical aspects of log-ratio coordinate representations in regression with

compositional Response. Measurement Science Review 16 (5), 235–243.

Statistical software that was used to preform the simulation study and as well,

for demonstrating the theoretical considerations on real world examples, is the

free available software R [70]. The known compositions packages robCompositions

[66], compositions [81], and as well, packages mvoutlier [28], StatDA [27] were

used.
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Part I

Research methods
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1. Compositional data

Compositional data are commonly represented in percentages or proportions.

These representations induce a constant sum constraint on the compositional

parts, i.e., 100 in the case of percentages and 1 when proportions are used. As

will be shown later, any representation of compositions does not alter information

carried by the data. These data can be find in many scientific area, e.g. in

biochemistry when it is examined a chemical composition of blood plasma, urine

and renal calculi [4, 20], in geochemistry when it is studied the composition of

the sedimentary rocks [43] or the composiiton of reservoir sediments [33], etc.

Statistical society was discussing for a long time whether it is appropriate to

perform standard statistical analysis on RD on the data carrying only relative in-

formation. Attention was divert when Pearson identified the problem of spurious

correlation [65, 69]. It is about the correlation of the ratios of the variables, he

showed that if y1, y2 and y3 are uncorrelated , than y1
y3

and y2
y3

are correlated.

Effort was done through the years to overcome the problem of the constrained

data when finally Aitchison in 1980’s revolutionize the field of statistics with the

statistical methodology respecting the nature of the compositions. He has point

out on the importance of the relative nature of the compositions, being data that

contain the only relevant information in the ratios between their parts [4, 65,

68]. Moreover, he has developed the theory of the simplex being a vector space

convenient for the compositions, this will be disscused in the following section.

Simultaneously, he gave the idea of the log-ratio transformations that enable

usage of standard multivariate statistical methods on the real space [4]. The last

section in this part presents the tools for exploratory analysis for compositions.
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1.1 Aitchison geometry

Compositional data [4] are strictly positive multivariate observations that

carry only relative information.

Compositions, denoted as y = (y1, y2, . . . , yD)′, have their own sample space the

simplex SD defined as

SD =

{
y = (y1, y2, . . . , yD)′|yi > 0, i = 1, 2, . . . , D;

D∑
i=1

yi = k

}
.

Crucial in this framework is the operation of closure for y = (y1, y2, . . . , yD)′ ∈

RD
+ , given by

C(y) =

(
ky1∑D
i=1 yi

,
ky2∑D
i=1 yi

, ...,
kyD∑D
i=1 yi

)′
,

with which we can express the compositions as a non-negative vectors summing

up into an arbitrary constant k > 0. Basically, information contained in the com-

position remains same it is just matter of change of the units. Such compositions

are compositionally equivalent, hence it is does not depend on the choice of k.

The vector space structure of the simplex SD is obtained with the following

two operations defined on it [15, 66]:

• perturbation of y ∈ SD by w ∈ SD, analogous to addition in the real space:

y ⊕w = C (y1w1, y2w2, ..., yDwD)′ ,

• power transformation or powering of y ∈ SD by a constant α ∈ R, analo-

gous to scalar multiplication in the real space:

α� y = C (yα1 , y
α
2 , ..., y

α
D)′ .
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Further it is desired to work with the compositions on the simplex on comparable

way as we do we the standard multivariate data on the real space. We demand to

compute the length of a composition, to determine angles between compositional

vectors or to find the distance between them. To obtain the Euclidean vector

space, the inner product, norm and distance are defined in the following way:

• the Aitchison inner product of compositions y,w ∈ SD,

〈y,w〉a =
1

2D

D∑
i=1

D∑
j=1

ln
yi
yj

ln
wi
wj
,

• the Aitchison norm of x ∈ SD

‖y‖a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
yi
yj

)2

=
√
〈y,y〉a,

• the Aitchison distance between w and y ∈ SD

da(y,w) = ‖y 	w‖a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
yi
yj
− wi
wj

)2

. (1.1)

1.2 Coordinate representation

The primary source of information in compositions is contained in (log-)ratio

between parts. Therefore, the representation by the log-ratio of compositional

parts seems to be convenient. As already mentioned there are certain log-ratio

transformations which translates the composition from the simplex into a coor-

dinate vector on the real space.

Firstly the centred log-ratio (clr) transformation was invented, which is map-

ping between the simplex SD and the Euclidean space RD, defined by,

clr(y) =

(
ln

y1

g (y)
, ln

y2

g (y)
, . . . , ln

yD
g (y)

)′
= h, y ∈ SD, h ∈ RD. (1.2)
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where g (y) = D

√∏D
j=1 yj is the geometric mean of the parts of the composition.

Obviously, there is a possibility of inverse clr transformation that back trans-

forms the real vector h ∈ RD into a composition y ∈ SD on the simplex, that is

reached by,

clr−1 (y) = C (exp (h1) , exp (h2) , . . . , exp (hD))′ .

Clr transformation actually, expresses the composition y ∈ SD in coordinates

with respect to the generating system on the simplex {v1,v2, . . . ,vD}, where

vj = C (exp (ej))
′ = C (1, 1, . . . , e, . . . , 1)′ , j = 1, 2, . . . , D.

Consequently, a composition y ∈ SD relying on the generating system {v1, . . . ,vD}

is expressed in terms of [4, 15, 66]

y =
D⊕
j=1

hj � vj =
D⊕
j=1

yj
g (y)

� vj =

=
y1

g (y)
� (e, 1, . . . , 1)′ ⊕ · · · ⊕ yD

g (y)
� (1, 1, . . . , e)′ .

The geometric mean in the denominator can be substituted by any constant,

which is possible because of the compositional equivalence.

The isometric property makes this transformation applicable for techniques

based on distances. This property also reflects the straightforward interpretation

of the clr transformed composition. Unfortunately, one disadvantage property of

this transformation that comes from the symmetry of the components of the vec-

tor of the clr coordinates is that leads to singular covariance matrix which causes

computational issues. Another disadvantage property that the clr transformation

dispose is that the clr coefficients do not satisfy the principle of subcompositional

coherence. This principle is of crucial importance whose meaning is that the

information carried in the composition should not be contradictory with the one

carried in the subcomposition. Every method before applied to the compositional
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data should meet this requirement. Here the geometric mean of a subcompostion

does not necessary have to be the same with the one we have for the full D-part

composition.

Despite of the disadvantage properties, the clr coordinates are still frequently

used because of an intuitive interpretation. For example, the compositional biplot

of the clr coordinates [7] can be constructed, that is an important visualization

tool for investigation of the compositional data structure. Here, the single clr

coordinates are usually interpreted in terms of the original compositional parts

[26, 79].

To avoid disadvantages of the clr coordinates, orthonormal coordinates with

respect to an orthonormal basis on the simplex were proposed [21]. The trans-

formation is called as the isometric log-ratio (ilr) transformation.

There exist many ways to obtain an orthonormal basis of the simplex. Unfor-

tunately, there is no canonical basis on the simplex, where by the interpretation

of the orthonormal coordinates is not that straightforward. The choice of the

method for construction of the basis may improve the interpretation of the result-

ing coordinates. Behind the commonly used methods belong the Gram - Schmidt

procedure [21] and the very intuitive - sequential binary partition (SBP) [22]. The

resulting coordinates coming from the SBP, called balances, give interpretation

in sense of grouped parts of the composition. In each of the D − 1 consecutive

steps of the SBP, partitioning of the parts into two non-overlapping, distinguished

groups is done. Groups of compositional parts are formed according to expert

knowledge, or can be formed blindly, without any preliminary knowledge about

the grouping of the parts.

Often used orthonormal basis leads to the (D − 1)×D matrix V, such that

VV′ = I(D−1), with the rows vectors [33]

vi =

√
D − i

D − i+ 1

(
0, . . . , 0, 1,− 1

D − i
, . . . ,− 1

D − i

)
, i = 1, 2, . . . , D. (1.3)
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This basis relates with the orthonormal coordinates [30],

ilr (y)i = zi =

√
D − i

D − i+ 1
ln

yi

D−i

√∏D
j=i+1 yj

, i = 1, 2, . . . , D − 1. (1.4)

There exist unique relationship between the ilr and the clr coordindates [66],

given by

z = hV′, (1.5)

where h ∈ RD is the clr transformed composition y ∈ SD. Moreover, for the first

coordinates of both systems it holds [66],

h1 =

√
D − 1

D
z1.

In this case, the first orthonormal coordinate z1 explains all the relative infor-

mation about the first compositional part y1 within the first given composition

[30]. Unfortunately, the remaining orthonormal coordinates do not have such

straightforward interpretation.

In order to obtain the interpretation for the remaining orthonormal coordi-

nates, we just need to make permutation of the compositional parts,

y(l) = (yl, y1, . . . , yl−1, yl+1, . . . , yD) =

=
(
y

(l)
1 , y

(l)
2 , . . . , y

(l)
l−1, y

(l)
l+1, . . . , y

(l)
D

)
, l = 1, 2, . . . D,

and subsequently apply the formula in (1.4) to the permuted compositions y(l), l =

1, 2, . . . , D. Thus the first orthonormal coordinate obtained for permuted com-

position y(l), l = 1, 2, . . . , D, contains all the relative information about the l-th

compositional part yl, l = 1, 2, . . . , D and, consequently

hl =

√
D − 1

D
z

(l)
1 , l = 1, 2, . . . , D. (1.6)

Behind all, it is also possible to back transform the ilr transformed composi-

tion, by the following formulas [29],
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y
(l)
1 = exp

(√
D − 1

D
z

(l)
1

)
,

y
(l)
i = exp

(
−

i−1∑
j=1

1√
(D − j + 1) (D − j)

z
(l)
j +

√
D − i

D − i+ 1
z

(l)
i

)
, i = 2, . . . , D − 1,

y
(l)
D = exp

(
−

D−1∑
j=1

1√
(D − j + 1) (D − j)

z
(l)
j

)
.

At the conclusion of this section it remains to be emphasized that the log-

ratio approach for the compositions is of fundamental importance since without

it the mass of the well known statistical techniques could not be applied on the

compositions.

1.3 Exploratory analysis

Standard descriptive statistics like the arithmetic mean, the variance or the

standard deviation are not compatible with the Aitchison geometry for composi-

tions, and therefore, should be substituted by another proper descriptive statistics

for compositions.

The basic measure of variability of a random composition y ∈ SD is the

variation matrix [4], defined as

T =

{
var

(
ln
yi
yj

)}D
i,j=1

. (1.7)

The elements of the variation matrix describe the variability of the random

log-ratio ln yi
yj

: the smaller the value of this variance, the more the log-ratio tends

to be a constant. The (normed) sum of the elements of the variation matrix is

called total variance,

totvar(y) =
1

2D

D∑
i=1

D∑
j=1

var

(
ln
yi
yj

)
, (1.8)
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expressing the total variability of the compositional data set. Note that

totvar(y) =
D∑
i=1

var(hi) =
D−1∑
i=1

var(z
(l)
i ), l = 1, 2, . . . , D, (1.9)

i.e. the total variance can also be computed using the variability of the clr

coordinates or the orthonormal coordinates, respectively [63].

Further, what worth to be mentioned for the purposes of the thesis is the compo-

sitional variation array, defined as the simplest and minimum way of summarizing

the patterns of location and variability within a compositional data set [5],

V =


0 var

(
ln y1

y2

)
var
(

ln y1
y3

)
· · · var

(
ln y1

yD

)
E
(

ln y2
y1

)
0 var

(
ln y2

y3

)
· · · var

(
ln y2

yD

)
. . . . . . . . . . . . . . . . . . . .

E
(

ln yD
y1

)
E
(

ln yD
y2

)
E
(

ln yD
y3

)
· · · 0

 ,

where in the upper triangle of the array the log-ratio variances and in the lower

triangle the log-ratio expectations are displayed. Moreover, if basic properties

of logarithm as well as those of expectation and variance of log-ratio are taken

into account, the following properties hold. It is sufficient to know variances

of log-ratios ln(yi/yj), i < j, because var
(

ln yi
yj

)
= var

(
− ln

yj
yi

)
, hence the co-

variance structure of a D-part composition is entirely determined by the D(D−1)
2

log-ratio variances. For the log-ratio expectations the triangular equality holds,

E
(

ln yi
ym

)
+ E

(
ln ym

yj

)
= E

(
ln yi

yj

)
.

Finally, it is possible to express the covariance structure of balances using

linear combinations of variances of log-ratios [30]. Taking the balances zi = z
(1)
i

given in (1.4) we obtain [30]

var(zi) =
1

D − i+ 1

D∑
p=i+1

var

(
ln
yi
yp

)

− 1

2(D − i)(D − i+ 1)

D∑
p=i+1

D∑
q=i+1

var

(
ln
yp
yq

)
. (1.10)
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2. Regression models

Two regression techniques for compositions are deeply examined in this thesis:

the regression with the compositional response and the calibration problem for

compositions. For each of these techniques, an overview of known results is

presented in the following sections. Firstly, some basics of the multivariate linear

regression models together with statistical inference on regression parameters are

recalled. The second section in this chapter is devoted to the total least squares

(TLS) problem for compositions. Here two possible approaches for the estimation

are presented, namely the maximum likelihood approach and the linear model

approach.

2.1 Multivariate regression with non-composit-

ional response

In this section we would like to point out that only here y will not denote

a composition but it will stand for a standard random vector. This notation is

used in order to follow the usual one in the statistical literature.

A multivariate regression model presents a regression model where multiple

response variables appear simultaneously. Consider we have q random variables

y1, y2, . . . , yq and for each of these we have n observations. Let us denote by

yj = (y1j, y2j, . . . , ynj)
′ , j = 1, 2, . . . , q, the observation vector that corresponds

to the random variable yj. For every vector yj we assume the following linear

model [47, 54]

yj = Xbj + εj, j = 1, 2, . . . , q, (2.1)
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and, simultaneously, for all vectors yj we assume the multivariate linear model

y = XB + ε, (2.2)

where y = (y1,y2, . . . ,yq) is the (n× q) dimensional matrix of response vec-

tors, X is the (n× k) dimensional design matrix which has full column rank,

B = (b1,b2, . . . ,bq) is the (k × q) dimensional matrix of the unknown regression

parameters, bj = (b1j, b2j, . . . , bkj)
′, j = 1, 2, . . . , q and ε = (ε1, ε2, . . . , εq) is the

(n× q) dimensional matrix of the random errors. Further, let us assume that the

multivariate responses yi· = (yi1, yi2, . . . , yiq)
′, i = 1, 2, . . . , n, are independent

with the same unknown variance-covariance matrix Σ, i.e.

cov(yi·,yj·) = 0, i 6= j,

var(yi·) = Σ, i = 1, 2, . . . , n.

In order to derive the estimator of B, to construct confidence intervals and

confidence regions for unknown regression parameters, or to do some tests for

significance of the regression coefficient, etc., the model (2.2) can be rewritten in

the following vectorized form [54]

vec
(
y
)

= (Iq ⊗X) vec (B) + vec (ε) , var[vec(y)] = Σ⊗ In,

where vec(y) = (y′1,y
′
2, . . . ,y

′
q)
′ and the symbol ⊗ denotes the Kronecker prod-

uct. Thus, the least squares estimator of vec(B) is obtained by minimizing the

square of the Mahalanobis distance of the residuals [54]

arg min
vec(B)

∥∥vec
(
y
)
− (Iq ⊗X) vec (B)

∥∥2

(Σ⊗In)
. (2.3)

The solution of the minimization problem (2.3), after de-vectorization, is

B̂ = (X′X)
−1

X′y. (2.4)

The estimator B̂ is the best linear unbiased estimator (BLUE) of the parameter

matrix B [54].
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One can notice that this estimator is invariant with respect to the variance-

covariance matrix of vec
(
y
)
.

However, the variance-covariance matrix of the vector vec(B̂) = (b̂′1, b̂
′
2, . . . , b̂

′
q)
′

var
[
vec(B̂)

]
= Σ⊗ (X′X)

−1
(2.5)

depends on Σ. Since the variance-covariance matrix Σ is unknown, it is necessary

to estimate it. The unbiased estimator of Σ is given by [54] Σ̂ = y′MXy/(n−k),

where MX = I − X(X′X)−1X′ is a projector on the orthogonal complement

of the vector space M(X) generated by the columns of the design matrix X,

i.e. M(X) = {Xu : u ∈ Rk}. Under normality, the estimators B̂ and Σ̂ are

statistically independent. Moreover, if n−k > q, then (n− k)Σ̂ has the Wishart

distribution Wq[n− k,Σ].

Let us note that the univariate approach (2.1) leads to the same estimators

of the regression parameters bj and of the variances σjj = {Σ}jj, j = 1, 2, . . . , q.

Specifically,

b̂i = (X′X)
−1

X′yi,

var(b̂i) = σii (X′X)
−1
,

σ̂ii = y′iMXyi/(n− k).

The theory of multivariate linear regression models [54] provide a range of

tests, that are easy to compute due to explicit formulas. Usually three basic

issues of hypotheses testing in a multivariate regression context are considered:

significance of covariates for the responses yj, j = 1, 2, . . . , q, point wise and

simultaneously, and verification that the predictor xi, i = 1, 2, . . . , k, contributes

to the explanation of the overall variability in y.

It is easy to see that hypothesis testing on single regression parameters as

well as on the whole vector parameter bj, j = 1, 2, . . . , q, that conveys contri-

butions of all covariates to the j-th response simultaneously can be performed

within univariate multiple regressions using standard t− and F− test statistics,
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respectively. Particularly, the test statistics for the null hypothesis bj = 0 can

be expressed as

Fj =
(n− k) b̂′jX

′Xb̂j

kσ̂jj
, (2.6)

which has F-distribution with k and n − k degrees of freedom under the null

hypothesis.

The case of significance testing of the i-th predictor, i = 1, 2, . . . , k, requires

already the multivariate setting. Symbolically, the null hypothesis about the i-th

predictor is expressed as H0i : Bi. = (bi1,bi2, . . . ,biq) = 0. The corresponding

test statistic is given by

Fi =
(n− q − k + 1) B̂i.

(
y′MXy

)−1
B̂′i.

q
{

(X′X)−1}
ii

, (2.7)

which is distributed as Fq,n−q−k+1 under the null hypothesis H0i.

Finally, in some cases even significance of the whole matrix of regression

parameters B, or a more general hypothesis H0 : AB = C, where A is a r × k

hypothesis matrix having full-row rank r ≤ k, and C is a r × q matrix, are of

interest. For this purpose a battery of tests is available, mostly used tests are

Pillai-Bartlett trace, Wilks’s Lambda, Hotelling-Lawley trace and Roy’s largest

root [47]. All of them are based directly or indirectly on p = min (r, q) non-

zero eigenvalues λj of the product matrix HE−1, where H is the matrix for the

hypothesis sums of squares and cross products, and E is the residual matrix, i.e.

E = (y −XB̂)′(y −XB̂) (2.8)

H = (AB̂−C)′[A(X′X)−1A′]−1(AB̂−C). (2.9)

The multivariate models enable to describe more complex designs, thus con-

cerning the association between the outcomes. Definitely, they are more efficient

tool for modelling convoluted designs than the univariate ones.

Further, testing in the multivariate models avoid problems with the multiple

testing. The tests for the univariate models are not simultaneous tests for all the
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regressions and they do not consider the influence of the correlations among the

responses, which can result in less powerful tests. Consequently, the univariate

tests cannot evaluate joint influence on all outcomes. Among the difficulties when

one uses the multivariate linear model approach is the necessity of disposing with

large number of observations and complex interpretation of the results.

2.2 Regression between parts of 3-part compo-

sitions

This section is focused on modelling the relationship within the composition,

i.e. between the compositional parts. The fundamental concept of the total

least squares (TLS) problem for 3-part compositions, proposed in [29, 31], is

summarized in the following.

Here the TLS procedure will be applied on the ilr transformed 3-part compo-

sitions.

The TLS in the simplest form attempts to fit a line that explains the set of n

two-dimensional data points in such way that the sum of the orthogonal squares

distances from the data points to the estimated line is minimal. The 3-part com-

positional data can be expressed as an (n×2)-dimensional data matrix (z1, z2) of

the corresponding orthonormal coordinates. The orthonormal coordinates follow

the model [19],

z1i = µi + ε1i, z2i = νi + ε2i, i = 1, 2, · · · , n, (2.10)

where µi and νi are the unobserved errorless recordings (true values) of z1i and

z2i, i = 1, 2, . . . , n, respectively, ε1i and ε2i are independent random errors with

zero mean and with variance equal to var(ε1i) = σ2
1 and var(ε2i) = σ2

2. In this

thesis we take σ2
1 = σ2

2 = σ2. Moreover, we assume that the errorless recordings

satisfy

νi = a+ bµi, i = 1, 2, . . . , n, (2.11)

where a is the unknown intercept and b is the unknown slope of the orthogonal
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regression line.

The TLS problem represents the following minimization problem

min
a,b

∑n
i=1(a+ bz1i − z2i)

2

b2 + 1
.

Standard calculus gives the minimum and we find estimators [16],

â = z2 − b̂z1, (2.12)

b̂ =
s2
z2
− s2

z1
+
√

(s2
z2
− s2

z1
)2 + 4s2

z1,z2

2sz1,z2
, (2.13)

where z1, z2 are sample means, s2
z1

, s2
z2

are sample variances, and sz1,z2 is a

sample covariance. Consequently, under the normality, the maximum likelihood

method gives the same estimators [8, 16, 50].

We have to point out that the maximum likelihood estimators and TLS solu-

tion are the same only in a considered special case, i.e., z1i and z2i are independent

normally distributed random variables with the same variance. If the variances

σ2
1 and σ2

2 are different such that σ2
1 = λσ2

2, where λ > 0 is known, the maximum

likelihood estimators are given by the expressions [16],

â = z2 − b̂z1,

b̂ =
λs2

z2
− s2

z1
+
√

(λs2
z2
− s2

z1
)2 + 4λs2

z2z1

2λsz2z1
.

It is shown in [50] that the estimators (2.12) and (2.13) are weakly consistent.

Conditions for strong consistency can be found in [83, 84]. General results on

consistency see, e.g., in [16, 34, 50].

In addition, if we consider that the variance σ2 is unknown, then its maximum

likelihood estimator results in [8, 50]

σ̂2 =

∑n
i=1

[(
z2i − â− b̂µ̂i

)2

+ (z1i − µ̂i)2

]
2n

,
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where the estimator µ̂i of the true value µi, i = 1, 2, . . . , n, is of the form

µ̂i =
z1i + b̂z2i − âb̂

1 + b̂2
. (2.14)

The estimator σ̂2 converges in probability to σ2/2. This particular inconsistency

causes no difficulty, the consistent estimator of σ2 is simply 2nσ̂2/(n − 2). Fur-

ther, the estimator µ̂i is also inconsistent. Finally, the estimator of the errorless

recordings νi, i = 1, 2, . . . , n, is

ν̂i = â+ b̂2µ̂i. (2.15)

Hence, we have shown how to obtain the predicted values (µ̂i, ν̂i)
′ when the

observed values are (z1i, z2i)
′, i = 1, 2, . . . , n.

One of the possible disadvantages of the maximum likelihood estimators, given

in this section, are their asymptotic properties; therefore they are not satisfac-

tory when making statistical inference with finite samples. Nevertheless, some

approximate procedures can be found in e.g. [46, 48, 50, 61].

Linear models with type-II constrains [32], based on the calibration line ap-

proach [53, 87, 88], overcome the difficulties of the TLS approach. The regression

model is of the form of

(
z1

z2

)
=

(
µ
ν

)
+ ε,

where the unknown regression parameters a, b, and the vector of the errorless

recordings µ,ν satisfy

ν = a1n + bµ, var(ε) = σ2I2n. (2.16)

Such constraints on regression parameters involving other unknown parameters

a and b are called type-II constraints. Evidently, this is a non-linear function of

the unknown parameters b and µ. Using linearization by the Taylor series locally
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at µ(0), ν(0), a(0) and b(0), when the second and higher derivatives are neglected,

the locally BLU estimators of µ, ν, a and b can be derived [29]:

µ̂ = z1 +
b(0)

[b(0)]
2

+ 1
M (0)

[
z2 − ν(0) − b(0)

(
z1 − µ(0)

)]
, (2.17)

ν̂ = z2 −
1

[b(0)]
2

+ 1
M (0)

[
z2 − ν(0) − b(0)

(
z1 − µ(0)

)]
, (2.18)

(
â

b̂

)
=

(
a(0)

b(0)

)
+

(
n, 1′µ(0)[

µ(0)
]′

1,
[
µ(0)

]′
µ(0)

)−1

×
(

1′
[
z2 − ν(0) − b(0)

(
z1 − µ(0)

)][
µ(0)

]′ [
z2 − ν(0) − b(0)

(
z1 − µ(0)

)]) , (2.19)

where

M (0) = In −
(
1,µ(0)

)( n, 1′µ(0)[
µ(0)

]′
1,
[
µ(0)

]′
µ(0)

)−1(
1′[
µ(0)

]′) . (2.20)

The accuracy characteristics of these estimators are the following. The covariance

matrices of the estimators µ̂ and ν̂ are

var [µ̂] = σ2In −
[
b(0)
]2
σ2

[b(0)]
2

+ 1
M (0), (2.21)

var [ν̂] = σ2In −
σ2

[b(0)]
2

+ 1
M (0). (2.22)

The cross-covariance matrix of the estimators µ̂ and ν̂ is

cov [µ̂, ν̂] =
b(0)σ2

[b(0)]
2

+ 1
M (0). (2.23)

The covariance matrix of the estimator (â, b̂)′ is

var

[(
â

b̂

)]
= σ2

([
b(0)
]2

+ 1
)( n, 1′µ(0)[

µ(0)
]′

1,
[
µ(0)

]′
µ(0)

)−1

(2.24)

and the cross-covariance matrix of the estimators (µ̂′, ν̂ ′)′ and (â, b̂)′ is

cov

[(
â

b̂

)
,

(
µ̂
ν̂

)]
= −σ2

(
n, 1′µ(0)[

µ(0)
]′

1,
[
µ(0)

]′
µ(0)

)−1(
b(0)1′, −1′

b(0)
[
µ(0)

]′
, −
[
µ(0)

]′) .
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One can see that the estimators µ̂, ν̂, â and b̂ depend on the unknown approxi-

mate values µ(0), ν(0), a(0) and b(0), therefore it is necessary to solve them on an

iterative manner. Accuracy characteristics can be evaluated using the resulting

estimates of the iterative procedure.

The variance σ2 is usually unknown and can be unbiasedly estimated by [53]

σ̂2 =
(z1 − µ̂)′ (z2 − µ̂) + (z1 − ν̂)′ (z2 − ν̂)

n− 2
. (2.25)

In the following we outline the standard iterative algorithm for estimating

the calibration line, described in four main steps [29]. The first step consists of

determining initial values of the intercept a and the slope b of the calibration line

and the errorless recordings µ and ν. In case a specific prior information on the

true values of these parameters occurs, we should take it into account, otherwise

the choice should satisfy the relation (2.16), for example

a(0) =
z1jz2i − z1iz2j

z1j − z1i

, b(0) =
z2j − z2i

z1j − z1i

,

µ(0) = z1, ν
(0) = a(0)1n + b(0)µ(0),

where z1i = min {z1k :k = 1, 2, . . . , n}, z2j = max {z2k :k = 1, 2, . . . , n} and z2i,

z2j are the corresponding z2 coordinates. The choice of the initial values does

not have any impact on convergence of this algorithm. In the second step, we

calculate â, b̂, µ̂ and ν̂ for every data point (z1i, z2i)
′, i = 1, 2, . . . , n, using the

equations (2.17)-(2.20). Further, in the the third step we need to update the

initial values by the scheme

ν(0) = ν̂ + (̂b− b(0))(µ̂− µ(0)), µ(0) = µ̂, a(0) = â, b(0) = b̂. (2.26)

We repeat steps 2 and 3 until estimates converge, i.e. until changes in estimates

at each iteration are less than some pre-set tolerance. Estimates obtained from

this iterative algorithm converge usually very quickly, and they also preserve

the prescribed condition (2.16). Thus, linear models approach represents an

alternative technique for the TLS; however, the solution is only approximative
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due to linearization step. On the other hand, this technique enables to provide

further statistical inference. This means that under the assumption of normality

we can construct, e.g. approximative confidence domains or statistical tests.

36



Part II

Results
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3. Covariance - based variable

selection

Dimension reduction of data is often desired in order to simplify the multivari-

ate statistical analysis and as well, to simplify the interpretation of the results.

Usually when we want to know which variables to exclude, we ask the experts.

Regrettably, their choice may lead to major changes of the multivariate statistical

analysis results.

The first section in this chapter introduces some usefull features of the vari-

ation matrix. In the following section, we propose the covariance-based stepwise

procedure for variable selection for compositions that guarantees that the loss of

the information when moving from a composition to a subcomposition is rather

negligible. Subsequent two sections involve application of this procedure on real

world data from geochemistry. This chapter is mainly based on the article [43].

Obviously this stepwise variable selection is useful in regression analysis with

compositions as well. The reduction of dimension of compostions simplify the

regression analysis, which enable the analysis to be even faster and the final

results easier to interpret.

3.1 Properties of the variation matrix

The basic idea of the compositional variable reduction algorithm is to obtain

such a subcomposition that will give the same information about the multivari-

ate data structure like the initial composition. The information on compositional

variability is included in the variation matrix given by the expression (1.7). More-
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over, the total variability of the compositional data set is captured in the total

variance, which is equal to the sum of all elements of the variation matrix like

given in (1.8). Equivalently the total variance is equal to the sum of the variances

of the clr (orthonormal) coordinates as it is stated in (1.9).

Let us consider D-part composition y and its clr coordinates h given by (1.2)

and D-systems of orthonormal coordinates z(i), i = 1, 2, . . . , D, given by (1.4).

As a consequence of (1.6), the variance of the clr coordinate hi corresponds (up

to a constant) to the variance of z
(i)
1 . Also the covariance structure of the clr

coordinates can be analyzed, which has been done thoroughly in [4].

From (1.10), multiplied by (D − 1)/D to obtain clr variances, we can also

expect quite a strong relation between var(hi) and the sum of the i-th row (col-

umn) of the corresponding variation matrix T. This finding induces a useful

property, mentioned in the next theorem [43]. Particularly, it shows that ordered

variances of different clr coordinates (or, alternatively, of the first orthonormal

coordinates from (1.4) correspond to the same order of the sums in the variation

matrix connected with the related compositional parts.

Theorem 3.1. Consider the clr coordinates hi and hj, i 6= j, i, j ∈ {1, 2, . . . , D}

(or, equivalently, balances z
(i)
1 and z

(j)
1 from (1.4), corresponding to two different

orthonormal bases). Then var(hi)≥var(hj), if and only if

D∑
p=1

var

(
ln
yi
yp

)
≥

D∑
p=1

var

(
ln
yj
yp

)
.

Proof. Let var(hi)≥var(hj), i, j = 1, 2, . . . , D. According to (1.10), this is equiv-

alent to

D − 1

D2

D∑
p=1

var

(
ln
yi
yp

)
− 1

2D2

D∑
p=1
p6=i

D∑
s=1
s 6=i

var

(
ln
yp
ys

)
≥

D − 1

D2

D∑
p=1

var

(
ln
yj
yp

)
− 1

2D2

D∑
p=1
p 6=j

D∑
s=1
s6=j

var

(
ln
yp
ys

)
.
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Extending the left-hand side of this inequality by the term±
(

1
D2

)∑D
p=1 var

(
ln yi

yp

)
and using the relationship var

(
ln yp

ys

)
= var

(
ln ys

yp

)
, the left-hand side can be

rewritten in the form

1

D

D∑
p=1

var

(
ln
yi
yp

)
− 1

2D2

D∑
p=1

D∑
s=1

var

(
ln
yp
ys

)
.

Similarly we can adjust the right-hand side of the inequality, and thus var(hi) ≥

var(hj) if and only if

D∑
p=1

var

(
ln
yi
yp

)
≥

D∑
p=1

var

(
ln
yj
yp

)
.

This theorem can be used to identify compositional parts (“markers”) that

are responsible for larger clr variances. In particular, it allows to detect possible

sources of changes in the multivariate analysis of compositional data, like those

resulting from the compositional biplot [7]. Theorem 3.1 makes it possible to

identify the ordered contribution of the single compositional parts to the overall

variance with the corresponding clr coordinates. Using this fact, a stepwise algo-

rithm is introduced in the following that helps to derive a subcomposition with

a minimal loss concerning the total variance of the original composition.

3.2 Stepwise procedure

Let us consider a composition y = (y1, y2, . . . , yD)′. Without loss of generality,

let

var(h1) ≥ · · · ≥ var(hD),

which is, according to Theorem 3.1, equivalent to

D∑
p=1

var

(
ln
y1

yp

)
≥

D∑
p=1

var

(
ln
y2

yp

)
≥ · · · ≥

D∑
p=1

var

(
ln
yD
yp

)
.
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Since hD has the smallest variance, its contribution to the overall variance of the

compositional data set, totvar(y), is minimal. This is equivalent to the statement

that the aggregated variances of the log-ratios with the part yD have the smallest

contribution to the overall variance. Consequently, the part yD is not determining

the multivariate data structure and it can be omitted from the composition.

Hence, we arrive at a subcomposition y1 = (y1, y2, . . . , yD−1)′. In the next step

we perform a clr transformation on y1, calculate variances of the clr transformed

variables and again omit the part corresponding to the clr coordinate with the

smallest variance. So we continue until a certain number of parts is obtained,

and we stop at latest after D − 2 steps.

The order of the variances of the clr coordinates is generally not maintained

after omitting the part of composition y corresponding to the clr coordinate with

the smallest variance. In fact, as a simple consequence of Theorem 3.1, the order

of the clr variances when moving from a D-part to a (D− 1)-part composition is

maintained only under the assumption

var

(
ln
y1

yD

)
≥ var

(
ln
y2

yD

)
≥ · · · ≥ var

(
ln
yD−1

yD

)
.

Nevertheless, from simulations using real geochemical data (see next sections) it

follows that the ordering of the clr coordinates of the original composition accord-

ing to their variances is a relatively accurate indicator whether the corresponding

part of the original composition will be included in the final subcomposition or

not.

The prescribed number of parts of the target subcomposition is usually not

provided. Thus, an important question is when the selection of compositional

parts should be stopped. It is easy to see that the main idea of the above

algorithm is to select a subcomposition such that the loss in total variance of

the composition from the previous step is minimal. This inspires to find such

a criterion that compares the total variance of the subcomposition, obtained in

the i-th step of the algorithm, i = 1, 2, . . . , D − 2, with the total variance of

the composition from the previous step. In more detail, denote t̂otvar(yi) the
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total variance of the i-th subcomposition, estimated from the data. We want to

test whether its difference to the total variance totvar(yi−1) can be considered

as negligible (i.e., the null hypothesis is totvar(yi) = totvar(yi−1)) or rather as a

result of a systematic pattern (alternative hypothesis totvar(yi) < totvar(yi−1)).

Obviously, totvar(yi−1) is not known and also needs to be estimated from the data

(in the previous step of the algorithm), as it is the case with t̂otvar(yi). Here we

assume that totvar(yi−1) is fixed from the previous step of the algorithm, and

thus it can be considered as a given (non-random) number in the current step.

The following test statistic from [42],

U+
i =

t̂otvar(yi)− totvar(yi−1)√
2

n−1
tr(Σ̂2

i )
, (3.1)

is used for this purpose; the matrix Σ̂i stands for the sample covariance matrix of

the composition yi in (arbitrarily chosen) orthonormal coordinates. Small values

of U+
i favor the alternative, so we reject the null hypothesis, if U+

i realizes in

the critical region W = (−∞, uα〉, where uα denotes the α-quantile (preferably

α = 0,05) of the standard normal distribution (being inspired by the asymptotic

distribution of U+
i , see [42] for details). Thus, in each step of the algorithm we

compute the statistic U+
i , and the procedure is stopped when U+

i realizes for the

first time in W.

Practical properties of the proposed iterative procedure will be demonstrated

on real-world examples in the next sections.

3.3 Illustrative example: Kola

Firstly, we will demonstrate the results of the proposed stepwise algorithm at

the well-known Kola data [71]. This data set is the result of a large geochemical

mapping project, carried out from 1992 to 1998 by the Geological Surveys of

Finland and Norway, and the Central Kola Expedition, Russia. An area cov-

ering 188 000 km2 at the peninsula Kola in northern Europe was sampled. In
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total, around 600 samples of soil were taken in 4 different layers (moss, humus,

B-horizon, C-horizon), and subsequently analyzed by a number of different tech-

niques for more than 50 chemical elements. The project was primarily designed

to reveal the environmental conditions in the area. The data are available in the

package StatDA [27] of the software environment R [70].

Four experiments with this data set are realized, each of them having a pur-

pose to show on the benefits of the proposed stepwise procedure. The tasks for

each experiment are the following:

• observe the reduction in total variance when the procedure is applied on a

subset of the moss layer data set consisting of 15 out of 31 compositional

parts;

• investigate whether the test statistic is able to select appropriate composi-

tional parts when applied on a subset of the moss layer data set consisting

of 15 out of 31 compositional parts;

• check how the stepwise procedure behaves when we have different sizes of

the start composition;

• examine the results of the procedure after being applied on the whole moss

layer data set.

Below is described in detail how each of the tasks is solved.

First experiment

In the first experiment we are interested in observing the reduction in total

variance by the stepwise procedure. For this purpose we use all the 31

elements of the moss layer and select randomly 15 variables. Then the

stepwise algorithm is applied until a two-part subcomposition is reached

(i.e. here we are not using the proposed stopping criterion). After each

step the total variance is computed. The whole procedure is repeated 1000

times, and the results are shown in Figure 3.1.
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Figure 3.1: Total variances of subcompositions obtained from the stepwise al-
gorithm.

Each boxplot summarizes the total variances achieved by the given size

of the subcomposition. A decreasing sequence of the total variance (and

its variability among subcompositions of the given size, see whiskers of

the boxplots) is clearly visible. Subsequent steps of the algorithm result

in increasing relative differences of the median total variances. This is

important for obtaining significance at a certain step using the proposed

test statistic.

Note that this feature as well as the below mentioned properties are char-

acteristic for the stepwise procedure even in general, independent on the

concrete data set chosen.

Second experiment

In the second experiment we want to check if proposed test statistic is

able to select appropriate compositional parts. For this we again select

randomly 15 parts of the Kola moss data as a starting composition. Then
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the stepwise procedure is applied until the test statistic suggests to stop the

process. Repeating this experiment 1000 times results in a distribution of

the number of remaining parts, which is visualized by a barplot in Figure

3.2 (left).

8 9 10 11 12 13 14 15

Number of parts in target subcomposition

F
re

qu
en

cy

0
50

10
0

15
0

20
0

25
0

2 4 6 8 10 12 14

0
20

0
40

0
60

0
80

0
10

00

Considered top k clr variables

F
re

qu
en

cy

Figure 3.2: Barplot of the number of parts of the subcomposition resulting
from the stepwise procedure using the stopping-criterion (left); clr coordinates of
the initial composition, sorted according to decreasing variance, versus number
of times the corresponding compositional parts were included in the resulting
subcomposition (right).

The algorithm arrives typically at subcompositions with 10 to 12 parts, i.e.

around two thirds of the starting number of parts. The important question

is whether the resulting target compositions are indeed consisting of parts

with large clr variances of the initial compositions. Therefore, we sort the

parts of all 1000 initial subcompositions according to decreasing values of

their clr variances, and count how often the top k clr coordinates were in-

cluded in the target compositions, where k = 1, 2, . . . , 15. Figure 3.2 (right)

shows the result. The counts have to decrease for larger values of k because

of the possibly smaller total number of parts in the target compositions,

see Figure 3.2 (left). We can see that the initial clr coordinate with largest

variance (k = 1) was selected in all 1000 cases. This also holds for k up
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to 5, i.e., the top 5 clr coordinates were always selected. Then the counts

drop, partly because the resulting subcompositions were smaller than k,

and partly because not all considered k clr coordinates were selected. The

figure, however, clearly indicates that the important clr coordinates were in-

cluded in the target subcompositions, although Theorem 3.1 provides here

no theoretical guarantee.

3 4 5

D=5

Number of parts

F
re

qu
en

cy

0
20

0
40

0
60

0
80

0

6 7 8 9 10

D=10

Number of parts

F
re

qu
en

cy

0
10

0
20

0
30

0
40

0

9 10 11 12 13 14 15 16 17

D=20

Number of parts

F
re

qu
en

cy

0
50

10
0

15
0

20
0

25
0

10 11 12 13 14 15 16 17

D=25

Number of parts

F
re

qu
en

cy

0
50

10
0

20
0

30
0

Figure 3.3: Barplots of the number of parts of the subcomposition resulting from
the stepwise procedure using the stop-criterion with 5-part (upper left), 10-part
(upper right), 20-part (lower left) and 25-part (lower right) original compositions.

Third experiment

In the third simulation experiment we analyze the behaviour of the stepwise

procedure for different sizes of the starting composition. We use the same

simulation setting as before, but select as initial composition 5, 10, 20, and

25 parts of the Kola moss data, respectively. For each case 1000 simulations

are performed, and the distributions of the resulting numbers of parts in
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the target compositions are shown in Figure 3.3. If the starting composition

has only D = 5 parts (upper left), the procedure usually arrives at a target

composition again with 5 parts. On the other hand, if one starts with

D = 25 parts (lower right), the number of parts will be reduced to about

a half. This behaviour of shrinking larger compositions more and more is

very desirable for practice.
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Figure 3.4: Total variances of subcompositions obtained from the stepwise al-
gorithm for the whole moss layer data set (left), corresponding values of the test
statistic U+

i in (3.1) together with the cut-off value (right).

Forth experiment

In the last illustration we apply the stepwise procedure to the whole moss

layer data set consisting of 31 compositional parts. The total variances

of the resulting subcompositions are plotted in Figure 3.4. They quite

nicely correspond to the trend as indicated in Figure 3.1 (left). The right

picture shows the values of the test statistic U+
i given in (3.1), for each of

the i = 1, 2, . . . , 29 possible steps, and they reflect the same trend. The

algorithm will stop after the value of the test statistic falls below u0.05 =

−1.64 (horizontal line). This happens at step 19 of the algorithm, and thus

a 13-part subcompositions is remaining.
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3.4 Illustrative example: Baltic soil survey

In this section, we demonstrate the effect of the stepwise procedure using the

compositional biplot [7] as a visualization tool. Here we employ the Baltic Soil

Survey (BSS) data [72], which originate from a large-scale geochemistry project

carried out in northern Europe, in an area of about 1 800 000 km2. On an irregular

grid, 769 samples of agricultural soils have been collected. The samples came

from two different layers, the top layer (0-25 cm) and the bottom layer (50-75

cm). All samples were analyzed for the concentration of more than 40 chemical

compounds. The data sets of the top and bottom layer are available in the R

package mvoutlier [28]. Here we use the major elements (Al2O3, Fe2O3, K2O,

MgO, MnO, CaO, TiO2, Na2O, P2O5 and SiO2), plus LOI (Loss on ignition) of

the top layer, i.e. an 11-part composition. Note that the same elements were used

also in [26], where classical and robust biplots of both log- and clr-transformed

compositions were compared.
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Figure 3.5: Biplots of the BSS data with all major elements (left) and after
exclusion of Al2O3 and Fe2O3 (right).

Figure 3.5 (left) shows the classical compositional biplot of the initial 11-

part composition. If we apply the stepwise procedure, we arrive at a 9-part
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subcomposition. The elements Al2O3 and Fe2O3 were subsequently excluded with

the corresponding values of the test statistics U+
1 = −0.7185 and U+

2 = −1.4753,

respectively. The next step with an exclusion of TiO2 would already lead to

significance with a value of U+
3 = −2.2712. The resulting biplot (Figure 3.5,

right) shows that there is nearly no difference visible in the relations among the

remaining compositional parts (arrows in the biplot) compared to the original

biplot.

Thus, the multivariate data structure is widely preserved and the information

of the excluded elements is still contained in the remaining subcomposition.
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4. Regression with compositional

response

Regression analysis with compositional response is of great potential inter-

est in geochemistry [43] and also in medical applications [49], e.g., in human

metabolomics, where concentrations of metabolites are frequently influenced by

external factors (temperature, age of patients, etc.).

Despite this intensive care, there are still some practical aspects concerning

linear regression with compositional response that deserve to be further anal-

ysed. The first one concerns special orthonormal coordinate systems that enable

interpretation in terms of the original compositional parts (with respect to the

other parts in the actual composition) and were applied in a number of appli-

cations including regression modelling [30, 41, 49]. Although it is theoretically

sound to work exclusively in orthonormal coordinates, this particular choice of

coordinates seems to be also a bit impractical as for a D-part composition D

coordinate systems are needed. It can be shown that due to the relation between

these particular orthonormal coordinates and centred log-ratio coordinates (1.6)

that are formed by coefficients with respect to a generating system, it is possible

to get easily the same numerical outputs (or possibly up to a constant multiple)

concerning regression parameters estimation and hypotheses testing in multivari-

ate regression models by using just one coordinate system. The second aspect

concerns the relation between the mean square error (MSE) and the coefficient of

determination, obtained from a regression model in orthonormal coordinates, or

after applying a log-transformation to the original compositional data (in units
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that do not clearly indicate relative structure of components, like proportions or

percentages). This fact may be useful for further methodological developments,

similarly as it was the case of inequality between Euclidean distance in orthonor-

mal log-ratio coordinates (or, equivalently, the Aitchison distance [6] between the

original compositions) and Euclidean distance between log-transformed composi-

tions [66]. For example, the mentioned relation was successfully used for the case

of compositional data with an informative total (sum of parts), characterized by

so called T-spaces [67], where a log-transformation plays an important role of a

possible coordinate representation as an alternative to orthonormal log-ratio co-

ordinates plus a variable representing the total. Each of these aspects is examined

in the next sections. In the last section in this chapter we present an illustrative

example from geochemistry. The chapter is assembled from the article [33].

4.1 Multivariate regression model with compo-

sitional response

Regression with a D-part compositional response leads to a multivariate lin-

ear model with a (D − 1)-dimensional response variable formed by orthonormal

coordinates. Although by using orthonormal coordinates, it is possible to de-

compose the multivariate model into D − 1 multiple regressions [24], in general,

the multivariate approach has several advantages in comparison with a series of

univariate models.

Let us consider D-part compositional responses yi, i = 1, 2, . . . , n. Let us

denote zi· = (zi1, zi2 . . . , ziD−1)′, i = 1, 2, . . . , n, the corresponding orthonormal

coordinates given by (1.3) such that the first orthonormal coordinate zi1 ex-

plains all the relative information about the first compositional part yi1. In order

to obtain coordinates with similar interpretation for each of the compositional

parts yil, l = 1, 2, . . . , D, D different orthonormal coordinate systems are needed.

These are obtained by means of permutation of the first part of the composition

y. Moreover, there exists unique relationship between these coordinate systems,
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therefore, without loss of generality, we can focus just on the coordinates zi·.

According to (2.1) and (2.2), the multivariate linear model can be expressed

as

(z1, z2, · · · , zD−1) = X(b1,b2, . . . ,bD−1) + (ε1, ε2, . . . , εD−1),

or, equivalently, in the matrix form

z = XB + ε.

Here it is assumed that X is an (n × k) dimensional design matrix of full

column rank, bj, j = 1, 2, . . . , D − 1, is a k dimensional vector of unknown

regression parameters and ε is an [n× (D−1)] dimensional matrix of the random

errors. The multivariate responses zi· = (zi1, zi2, . . . , ziD−1)′, i = 1, 2, . . . , n, are

assumed to be independent with the same unknown variance-covariance matrix

Σ.

According to (2.4), the BLUE of the parameter matrix B is

B̂ = (X′X)
−1

X′(z1, z2, . . . , zD−1).

The estimator of B is invariant under a change of the variance-covariance matrix

Σ. With respect to (2.5), the variance-covariance matrix of vec(B̂) is

var
[
vec(B̂)

]
= Σ⊗ (X′X)

−1
,

furthermore the unbiased estimator of the variance-covariance matrix Σ is given

by Σ̂ = z′MXz/(n− k).

Under the assumption of normally distributed coordinate representation zi·

of the compositional response [57], hypotheses testing can be performed. In the

following we will present some tests introduced in Section 2.1 adjusted for the

study of multivariate regression model with compositional response.

To verifying the significance of the covariates for the ilr coordinate zj, j =

1, 2, . . . , D − 1, point wise and simultaneously, i.e. testing the null hypothesises

bj = 0, j = 1, 2, . . . , D − 1, the test statistic (2.6) can be used. In the following,
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this statistic will be denoted as F ilr
j in order to point out that the multivariate

model in orthonormal coordinates is considered.

Another test that can be taken into account is the test for the significance of

the i-th predictor, i = 1, 2, . . . , k, i.e. test of the hypothesis Bi. =
(
bi1, . . . , bi(D−1)

)
= 0. The test statistic for this case is derived from the relation (2.7) which results

in the following expression for the test statistic

F ilr
pred,i =

(n−D − k + 2) B̂i. (z
′MXz)−1 B̂′i.

(D − 1)
{

(X′X)−1}
ii

,

which is distributed as FD−1,n−D−k+2 under the null hypothesis H0i.

Lastly sometimes it is of interest to verify the significance of the whole matrix

of regression parameters B, or in other words to test the hypothesis AB = C,

where A is a q × k hypothesis matrix having full-row rank q ≤ k, and C is a

q ×D − 1 matrix. Therefore, we will use the well-known Pillai-Barttlet trace,

Wilk’s Lambda, Hotelling-Lawley trace and Roy’s largest root that rely on the

p = min(q,D− 1) non-zero eigenvalues λj of HE−1 where the matrices H and E

are given in (2.8) and (2.9).

The behaviour of these matrices in different coordinate systems is thus crucial

for statistical properties of the above test statistics. Obviously, all of them are

invariant under a change of a basis thus they follow the behaviour of the sample

covariance matrix under affine transformations [55].

4.2 Regression with compositional response in

different coordinate systems

Due to (1.6) that describes the relationship between single clr coefficients

and the first orthonormal coordinates from (1.4) it seems to be quite intuitive

possibility to replace orthonormal coordinates in the response simply by their clr

counterparts and then proceed with the regression analysis.

Nevertheless, due to singularity of the covariance matrix of clr coordinates it

is not possible to decompose the multivariate model into univariate ones as it was
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the case for orthonormal coordinates. Though, as it is shown below, even taking

multivariate regression in clr coordinates would yield the same results of the

respective test statistics as one would obtain by considering single orthonormal

coordinates, coming from D regression models.

In the following, the relation between clr and ilr coordinate systems (1.5) is

extensively used. Then the multivariate model can be also written in the form

h = XBclr + εclr, (4.1)

where h = (h1, (h2, . . . ,hD) is the (n ×D) dimensional matrix of response vec-

tors that stand for the clr coordinates given in (1.2). The variance - covariance

matrix of independent D-variate responses hi· is var(hi·) = Σclr = V′ΣilrV, i =

1, 2, . . . , n where V is the [(D− 1)×D] matrix, such that satisfies VV′ = I(D−1),

having the rows vectors given by the relation (1.3). The variance - covariance

matrix Σclr is a D ×D positive semi-definite matrix with the rank D − 1 unlike

Σilr, which is a full rank (D − 1) × (D − 1) positive definite matrix. Obviously,

Σilr = VΣclrV
′. The relationships between the parameter matrices and multi-

variate responses are the following

Bclr = BilrV,

Bilr = BclrV′,

h = zV,

y = hV′. (4.2)

Theorem 4.1. (i) The test statistics for the hypotheses Bilr
i· = 0 and Bclr

i· = 0

are the same for an arbitrary i = 1, 2, . . . , k, i.e. F ilr
pred,i = F clr

pred,i.

(ii) Let us denote βclr,l the l-th column vector of the parameter matrix Bclr in

the model with clr coordinates responses, and β
(l)
ilr,1 the first column vector of the

parameter matrix Bilr in the l-th model with orthonormal coordinates y(l) con-

sidered as multivariate responses. Then the test statistics for the null hypotheses

b
(l)
ilr,1 = 0 and bclr,l = 0 for an arbitrary l = 1, 2, . . . , D, are the same, i.e.

F
ilr,(l)
1 = F clr

l .
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Proof. Let us consider the first statement. According to the relations (4.2) and

(4.2), as well as from the fact that the matrix Σ̂clr is singular with the rank D−1,

the test statistic F clr
pred,i that arises from a general formula in [54] can be rewritten

as

F clr
pred,i =

(n− r(X)− r(Σ̂clr) + 1)B̂clr
i· Σ̂−clr(B̂

clr
i· )′

r(Σ̂clr){(X′X)−1}ii

=
(n−D − k + 2)B̂ilr

i· V(V′Σ̂ilrV)−V′(B̂ilr
i· )′

(D − 1){(X′X)−1}ii

=
(n−D − k + 2)B̂ilr

i· VV−L Σ̂−1
ilr (V′R)−V′(B̂ilr

i· )′

(D − 1){(X′X)−1}ii
,

where the matrix V′R is the right inverse of V′ and the matrix VL is the left

inverse of V, i.e.,

(V′R)
−

= Σ̂ilrV
(
V′Σ̂ilrV

)−
and V′ (V′R)

−
= ID,

V−L =
(
V′Σ̂ilrV

)−
V′Σ̂ilr and V−LV′ = ID−1

and A− denotes a generalized inverse of a matrix A, i.e., a matrix fulfilling the

property AA−A = A.

The desired equality F ilr
pred,i = F clr

pred,i is gained by pre-multiplying and post-

multiplying the matrix Σ̂ilr by VV′ = ID−1.

The statement (ii) is a direct consequence of (1.6).

Theorem 4.2. The test statistics for the null hypotheses Bilr = 0 and Bclr = 0,

as listed in Section 4.1, are the same.

Proof. The statement follows from invariance under a change of a basis of the

matrices E and H given by (2.8) and (2.9), Eilr = VEclrV
′, Eclr = V′EilrV,

Hilr = VHclrV
′, Hclr = V′HilrV, and the fact that the matrices HclrE

−
clr and

HilrE
−1
ilr have the same non-zero eigenvalues.
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The above findings can be used to perform parameter estimation and sig-

nificance testing in clr coordinates instead of taking D orthonormal coordinate

systems of type (1.4), when the interpretation in sense of the original compo-

sitional parts (with respect to the others) is required. Although methodically

working in orthonormal coordinates is preferred in any case, numerical outputs

are the same (test statistics) or differ just up to a constant resulting from (1.6).

Finally, note that the interpretation of the regression parameters can be en-

hanced by considering orthogonal coordinates, resulting from suppressing scaling

constants in orthonormal coordinates. Concretely, they are formed from (1.4)

by omitting scaling constants and replacing the natural logarithm by its binary

counterpart (or any other interpretable base of logarithm), i.e.

z∗i = log2

yi

D−i

√∏D
j=i+1 yj

, i = 1, 2, . . . , D − 1

[60]. By considering regression in clr coordinates, the parameters of the resulting

regression model in orthogonal coordinates, adapted to favour the l-th composi-

tional part (denoted as b
∗(l)
1 ), would be related through

b
∗(l)
1 = log2(e)

√
D

D − 1
b

(l)
ilr,1 = log2(e)

D

D − 1
bclr,l.

Consequently, by taking the j-th element of b
∗(l)
1 , i.e. b

∗(l)
1;j , for j = 1, 2, . . . , k, then

for a unit additive change in the j-th explanatory variable (by constant values

of the other covariates), the ratio of xl to the mean relative contributions of the

other parts grows (decreases) δ = 2b
∗(l)
1;j times.

4.3 Quality of prediction in log-ratio coordinates

versus log-transformed data

In practice, the simple log-transformation, zi = log(yi), i = 1, 2, . . . , D, is

often used in geochemistry, chemometrics and related fields for modelling data
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with strictly positive parts. Nevertheless, it has important consequences also in

the compositional context. If not just the relative structure of compositional

parts is of interest, but also their absolute abundances in the original units like

mg/l, cps, or monetary units [67], the log-transformation serves for an appropriate

coordinate representation of the data at hand. Namely, compositional data with

informative absolute values of parts induce an Euclidean vector space structure

again (we refer to T-space) that should be taken into account for the construction

of any relevant real coordinates.

An obvious consequence in the case of positive data (i.e., compositional data

with an informative total) is lack of scale invariance, but relative scale of composi-

tions (not absolute differences, but ratios form the source of dissimilarity between

compositional vectors) is still taken into account for statistical processing. Inter-

estingly, it is easy to see that the standard Euclidean distance of log-transformed

data is always greater or equal to the Aitchison distance between two composi-

tions y and w [6], defined as (1.1). To compare log-ratio and log-transformed

regression models one has to analyse, whether something similar holds also in the

regression context. Such a finding would be an important step to understand the

behaviour of regression models in different coordinate systems. For this purpose,

the matrix of sums of residual squares is taken for both the cases of orthonormal

coordinates and log-transformed compositions,

Eilr = (z−XB̂)′(z−XB̂) = z′MXz,

Elog = [log(y)]′MX log(y),

respectively. Here the symbol y denotes an n×D matrix with D-part composi-

tions in rows. The overall variability in data corresponds to the matrices of total

sum of squares

Tilr = z′MX1z = VTlogV
′, Tlog = [log(y)]′MX1 log(y).

The matrix E is commonly used to measure the discrepancy between the data and

a fitted model in case of multivariate regression [47]. Although also an alternative
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exists, based directly on the norm between the observed and predicted response

[24, 86], using directly E seems to be more coherent with the current regression

methodology. Particularly, the trace of E is of primary importance, because it

aggregates residual sums of squares of single response variables and leads to the

multivariate analogy of the residual sum of squares (RSS). The inequalities be-

tween the traces of matrices E and T for compositions in orthonormal coordinates

and by taking log-transformation are stated in the following theorem.

Theorem 4.3. The traces of the matrices Eilr (sums of residual squares) and Tilr

(total sum of squares) for compositions represented in orthonormal coordinates

are always less or equal than the traces of the matrices Elog and Tlog for log-

transformed compositions, i.e. the following inequalities hold

0 ≤ tr(Eilr) ≤ tr(Elog), 0 ≤ tr(Tilr) ≤ tr(Tlog).

Proof. The relationships between the ilr, clr coordinates and log-transformations

[4, 21] can be expressed as

z = hV′, h = MX1 log(y),

where V contains in its rows orthonormal basis in clr coordinates, i.e. it is a

(D − 1) × D matrix with the property VV′ = ID−1, and MX1 is a projection

matrix on the orthogonal complement of the vector spaceM(1) ⊂ RD generated

by the vector 1 of n ones, i.e., on the hyperplane formed by clr coordinates. Using

these equalities, the matrix Eilr can be rewritten as

Eilr = V[h]′MXhV′

= VMX1 [log(y)]′MX log(y)MX1V
′.

The matrix V contains basis of the vector space that is orthogonal to the vector

space M(1), and thus MX1V
′ = V′. Hence

Eilr = V[log(y)]′MX log(y)V′ = VElogV
′,
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and the trace of the matrix Eilr is tr(Eilr) = tr(ElogV
′V). The matrix Elog is

positive semidefinite, V′V is symmetric, and thus, the upper and lower bounds

for tr(Eilr) are [51]

λmin(V′V)tr(Elog) ≤ tr(Eilr) ≤ λmax(V′V)tr(Elog),

where λmin and λmax are the smallest and largest eigenvalues of the matrix V′V.

Since the matrix V′V is idempotent with the rank D−1, it has D−2 eigenvalues

λmax = 1 and one eigenvalue λmin = 0 [37]. Thus we have

0 ≤ tr(Eilr) ≤ tr(Elog).

Similarly we can prove the inequality for the trace of matrices of total sum of

squares.

Theorem 4.3 states that the trace of the matrix E obtained for orthonormal

coordinates is less or equal to that one for log-transformed compositions. Thus,

the mean squared error (MSE) for orthonormal coordinates is less or equal to the

MSE for log-transformed data. Since the same inequality holds also for the trace

of the matrix T, the relationship between the coefficients of determination R2
ilr

and R2
log does not exist in general. These measures of goodness of fit, defined as

R2
ilr = 1− tr(Eilr)

tr(Tilr)
, R2

log = 1− tr(Elog)

tr(Tlog)
,

thus reflect structural changes that arise by avoiding the scale invariance property

of compositions, i.e. when log-transformation is applied instead of taking the

orthonormal coordinates.

It is not difficult to demonstrate that there is no relation in general between

both coefficients R2
ilr and R2

log. For this purpose, let us consider two matrices of

response compositions,

y
1

=


1 5 1
9 2 2
1 8 3
1 2 5

 , y
2

=


1 5 1
9 2 2
1 8 3

10 2 5

 ,
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observed for the values x = 1, 2, 3, 4 of the explanatory variable. Note that both

matrices differ just by the entry on the position (4,1). Though, by taking linear

regression with an absolute term, the first case results in R2
ilr = 0.707 < 0.736 =

R2
log, while in the second one R2

ilr = 0.788 > 0.674 = R2
log is obtained.

Finally, it is worth to mention that the trace of any covariance matrix (residual

or total) is equal to the mean of the distances between the samples and the centre

on the simplex. This fact can be used to reformulate Theorem 4.3 in terms of

distances in the respective spaces, if appropriate.

4.4 Illustrative example: reservoir sediments in

the Czech Republic

The findings from the above sections are briefly illustrated using a geological

data set from lacustrine sediments of the Nové Mlýny reservoir in the Czech

Republic (underwater core NM1, WGS-84: 48◦53′8.771′′N, 16◦31′52.966′′E) [75].

Thirty-four samples from the core were air dried, manually ground in agate

mortar and subjected to element composition analysis using Energy Dispersive

X-ray Fluorescence (EDXRF) spectrometry. A PANalytical MiniPal 4.0 EDXRF

spectrometer with a Peltier-cooled silicon drift energy dispersive detector (Insti-

tute of Anorganic chemistry in Řež, Prague) was used. Signals of Al and Si were

acquired at 4 kV/200 µA with Kapton filter 151 under He flush; zn, Mn and Fe

at 20 kV/100 µA with Al filter in air 152 and Rb and Pb at 30 kV/200 µA with

Ag filter in air [59]. The EDXRF results are provided in counts per second (cps).

Fifteen elements Al, Si, P, Ti, K, Ca, Fe, Cr, Mn, Ni, Cu, zn, zr, Rb and

Pb were selected for further statistical processing using regression analysis. The

elements represent common lithophile elements, which are used for geochemical

description of common parameters of sediments and sedimentary rocks, such as

the grain size (Al, Si and Ti), degree of weathering (K, Al and Rb), heavy-mineral

composition (zr, Ti, Fe), organic production (P, Ca, Cu, zn), redox state (Mn,

Ni, Cu, zn) and anthropogenic impact by toxic compounds (Cr, Ni, zn, Pb).
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Figure 4.1: Regression model for iron using log-transformation (left) and using
orthogonal coordinates (right).

In this concrete case, both absolute and relative information were of simul-

taneous interest; the total concentrations of the elements in the Nové Mlýny

reservoir have been recently interpreted in [9]. Accordingly, in the following both

log-ratio coordinates and log-transformed compositions were employed.

In addition to other site-specific geological tasks the aim was to investigate

whether the distribution of these 15 elements in the core is random or organized.

For this purpose linear regression models with the polynomial trend (up to the

4th-degree) in depth, and with the response composition in clr coordinates and

log-transformed variables were taken. Particularly, the models 4.1 and

log(y) = XBlog + εlog,

where Blog = (blog,1, . . . , blog,15), were analyzed. The j-th row of the design matrix

X was considered in the following forms

(1, depthj), . . . , (1, depthj, . . . , depth4
j).

In all cases the simplest possible model that was consistent with data was chosen.
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Figure 4.2: Regression model for iron using log-transformation (left) and using
orthogonal coordinates (right).

By considering the regression outputs (realizations of test statistics F clr
l and F-

statistics to verify significance of the whole vector parameter bclr,l and blog,l,

respectively, T-statistics for significance testing of single regression parameters,

p-values, coefficients of determination and visualization of data together with

the corresponding regression functions), only zirconium (zr) didn’t show any

systematic pattern (i.e. does not change with changing depth) either for log-

transformation or clr coordinate of the response. A systematic increase/decrease

was observed in a majority of the elements but their clr coordinates usually in-

dicate a more complex (polynomial) underlying pattern.

A typical example is Fe (Figure 4.1) in which an increasing trend was ob-

served. For an easier interpretation, the response was expressed in orthogo-

nal coordinates. From regression outputs (the slope parameter estimate was

8.796·10−3 with standard error 0.710·10−3 and p-value� 0.001, MSEilr = 0.049,

R2
ilr = 0.845) it can be concluded that by the increase of depth by 1 cm the ratio of

Fe to the geometric mean of the other 14 elements increases approximately once

(δ = 1.009146 times, it means 1%); similarly, by considering log-transformed
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response (the slope parameter estimate was 3.766 · 10−3 with standard error

0.580 · 10−3 and p-value � 0.001, MSElog = 0.060, R2
log = 0.609), the increase

of depth by 1 cm means that the absolute amount of Fe (in cps) grows approxi-

mately once, exp{3.766 ·10−3} = 1.003773. From the lower value of MSEilr than

MSElog as indicated by Theorem 4.3 one can in general conclude that for given

scales the MSE values show always better fit in the ilr space (that would be no

longer the case for scaling-free R2 values). On the other hand, data configuration

for the clr representation suggests that the linear trend could be enhanced by a

more complex regression function, here polynomial of degree four. An extreme

case of this general feature is Si (Figure 4.2), in which the linear trend for the

response in clr coordinates is replaced by the polynomial one of degree four.
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Figure 4.3: Regression model for iron using log-transformation (left) and using
orthogonal coordinates (right).

It is important to mention that the depth range from 45 to 55 cm in the NM1

core is a transitional zone between lower pre-dam fluvial sediments and upper,

fully dam-reservoir ones [76]. This layer, strongly enriched in organic carbon, has

critical effect on the depth distribution of various elements, including P (sensitive
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to organic productivity), Si (sensitive to grain size) and Fe (sensitive to redox

conditions) (Figures 4.1, 4.2, 4.3). Distribution of these elements shows breaks

at the base or on top of this layer, i.e. at 55 or 45 cm depth, which can be

explained by their different geochemical behaviour. In particular, Si break is

related to decrease of grain size at a break in sedimentation style from fluvial to

lacustrine, Fe peak between 45 and 55 cm depth is likely related to diagenetic

sulphide precipitation under dysoxic/anoxic conditions (high organic carbon) and

P is related to increased organic productivity in water column of the lake.

Consequently, linear (= continuous in depth) regression trends are less likely

than those represented by a polynomial function (= discontinuous in depth). In

this respect, the clr data provide a better representation of the core stratigraphy.

Mathematically, this effect can be easily explained by the remaining elements in

the composition, which are incorporated in the denominator of the centred log-

ratio. This facilitates identifying geochemical patterns related to the geochem-

ical matrix in which the particular element is contained. On the other hand,

there are also some exceptions, like for phosphorus (P, Figures 4.3), where this

change seems to be better reflected by the log-transformed response (accordingly,

even two constant lines instead of one regression line were taken). In this case,

the piecewise constant model with the j-th row of the design matrix given as

(1, I[depthj ≥ 45 cm]), where the symbol I[depthj ≥ 45 cm] denotes a dummy

variable coded 1 for the j-th measurements in the depth 45 cm and more, and 0

otherwise, fitted best the data.

Based on the purpose of the analysis, one can consider purely relative in-

formation, or to take also absolute abundances of positive data into account.

Nevertheless, like here, such decision of the analyst should always follow also

previous expert knowledge on possible underlying processes in data.

64



5. Calibration problem for com-

positional data

The last chapter of this dissertation thesis is devoted to the calibration prob-

lem for compositions. On the very beginning we show that indeed the TLS and

the linear model with type-II constraints lead to the same estimates. The next

section handles a calibration for compositional measurements. The calibration

is usually used to express a linear relationship between errorless measurements

obtained by two methods (or, alternatively, by two measuring devices). In the

subsequent section, we derive the analogy between the compositional variation

array and the matrices of the predicted values and residual variances from uni-

variate calibrations, which are useful in descriptive statistics for compositions.

Consequently, tests for verification of conformity between two methods of mea-

surement are proposed. The quality of the above mentioned tests is verified by

means of simulations. Lastly, the theoretical results are applied to a real-world

example from biochemistry. This section is based on the papers [19, 20].

5.1 Equivalence between total least squares re-

gression and linear model with type-II con-

straints

Section 2.2 contents three possible approaches for estimation of the unknown

parameters in a model where the linear relationship between the compositional

parts is analysed. On the beginning we have presented the standard approaches
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to estimation, namely the TLS and the maximum likelihood method. Asymptotic

character of these approaches being their main disadvantage property has been

overcome when a calibration approach based on the linear model with type-II

constraints is used instead. In the following theorem we will point out on the

equivalence between the two mentioned approaches to TLS regression estimation,

namely the TLS approach and the linear model approach. This subsection relies

on the article [19]. As before, we assume that random errors have the same

variance σ2.

Theorem 5.1. Let us consider the TLS regression model that is given by (2.10)

and (2.11) where z1i and z2i, i = 1, 2, . . . , n, are independent random variables

with the same variance σ2. The estimates of the calibration line coefficients,

obtained from the iterative algorithm (2.19), converge to the TLS estimates given

by relations (2.12) and (2.13). Moreover, under the assumption of normality,

the estimates from the iterative algorithm converge to the maximum likelihood

estimates.

Proof. The estimators obtained from the iterative algorithm are the BLUEs in

the linearized model (2.19). The nonlinear model (2.16) can also be expressed as

(
z1

z2

)
=

(
µ

a1n + bµ

)
+ ε, var(ε) = σ2I,

or, simply as

Z = f (θ) + ε,

where Z = (z′1, z
′
2)′, θ = (a, b, µ1, · · · , µn)′, ε = (ε′1, ε

′
2)′, and finally f (θ) is

a nonlinear function of the unknown parameter θ. Hence, the least squares

minimization function is

2n∑
i=1

(Zi − fi (θ))2 =
n∑
i=1

[
(z1i − µi)2 + (z2i − a− bµi)2]. (5.1)

Since the model is nonlinear, we linearize the function f (θ) by the Taylor series
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locally at θ(0), when the second and higher derivatives are neglected. Thus, the

resulting linearized model is given by

Z = f
(
θ(0)
)

+ϕ(0)4θ + ε,

where ϕ(0) =
∂f (θ)

∂θ′
|
θ=θ(0) and 4θ = θ − θ(0). Now the BLUE of 4θ can be

derived by the least squares method as

4̂θ =
([
ϕ(0)

]′
ϕ(0)

)−1 [
ϕ(0)

]′ [
Z− f

(
θ(0)
)]
.

Hence, θ̂ = 4̂θ + θ(0). If 4̂θ
(k)

is calculated in the kth iteration from the

iterative algorithm, the values of θ(0) are determined according to (2.26) when the

estimated values of θ from the (k − 1)th iteration are used. Thus, the estimate

in the kth iteration is

θ̂
(k)

= 4̂θ
(k)

+ θ(0).

If the starting point θ(0) is sufficiently good chosen, then the iterative algo-

rithm converges, i.e., 4̂θ
(k)

converges to zero and θ̂
(k)

converges to a point that

minimizes (5.1).

The TLS estimators minimize, over all a and b, the quantity

n∑
i=1

[
(z1i − µ̂i)2 + (z2i − ν̂i)2] =

n∑
i=1

[
(z1i − µ1i)

2 + (z1i − a− bµi)2] , (5.2)

where (ẑ1i, ẑ2i) given by (2.14) and (2.15) is the closest point to an observed point

(z1i, z2i) on the calibration line νi = a+ bµi.

The functions (5.1) and (5.2) minimize the same problem and, thus if the it-

erative algorithm converges, obtained estimates of the calibration line coefficients

converge to the TLS estimates. The rest of the proof follows from the fact that

under normality the maximum likelihood and the TLS estimators are the same.
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5.2 Calibration problem

A calibration line describes the linear relationship between the errorless mea-

surements obtained by measuring the same object by two different methods. Al-

gorithms for fitting a calibration line and statistical inference in case of three-part

compositions are derived in [29, 31] and these are presented in Section 2.2. For

D-part compositions, the calibration problem can be partitioned into D(D−1)/2

partial calibration problems, performed on log-ratios of compositional parts. In

other words, the calibration is performed for the corresponding coordinate of all

possible two-part subcompositions separately.

Let there be n different compositions that have D parts which are measured

using two methods A and B with the same precision. Let R = {r = 1, 2, . . . , D−

1, s = r+1, r+2, . . . , D} be the set of subscripts. For two-part subcompositions

(yr, ys) and (wr, ws), corresponding to the measurements obtained by methods A

and B, respectively, the log-ratios are formed and arranged in data matrices

(ZA
rs,Z

B
rs) =


ln y1r

y1s
ln w1r

w1s

ln y2r
y2s

ln w2r

w2s

...
...

ln ynr

yns
ln wnr

wns

 , (5.3)

where (r, s) ∈ R (note that multiplying the log-ratios by 1/
√

2 ilr coordinate

would be formed). Let us assume that ZA
rs and ZB

rs represent a realization of

a normally distributed n-dimensional random vector zArs ∼ Nn(µrs, σ
2In) and

zBrs ∼ Nn(νrs, σ
2In), respectively. Let µrs = (µ1rs, µ2rs, . . . , µnrs)

′ denote the

vector of errorless measurement results of zArs, and νrs = (ν1rs, ν2rs, . . . , νnrs)
′ the

vector of errorless measurement results of zBrs, where (r, s) ∈ R. Moreover, these

measurement results are taken to be mutually independent. Thus, the calibration

line (2.16) can be expressed as

νrs = ars1n + brsµrs, (5.4)

where (r, s) ∈ R, and 1n stands for the vector of n ones. The parameter ars
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represents a systematic deviation of log-ratios between parts r and s obtained by

measurement methods A and B, and brs denotes the scaling factor between them.

The BLUE of µrs, νrs, ars and brs, denoted as µ̂rs, ν̂rs, ârs and b̂rs, are

obtained by the iterative procedure described in Section 2.2 [29], applied to single

log-ratios. For the estimation of the unknown model parameters and of the

variance - covariance matrices we use the formulas (2.17) - (2.24). Of course, they

can be used after appropriate adjustment i.e. after substituting z1 and z2 by zArs

and zBrs respectively, a by ars, b by brs, µ and ν by µrs and νrs respectively and

as well substituting their initial values µ(0) and ν(0) by µ
(0)
rs and ν

(0)
rs respectively.

5.3 Exploratory analysis of calibration results

From the theoretical point of view, it is interesting that the fitted calibration

lines can be also used to predict the values of the method B by the method A and

vice versa. For this purpose, let us define the matrices of the predicted averages

M(j), j = 1, 2, as

M(j) =


0 m̂

(j)
12 m̂

(j)
13 · · · m̂

(j)
1D

m̂
(j)
21 0 m̂

(j)
23 · · · m̂

(j)
2D

...
...

...
...

...

m̂
(j)
D1 m̂

(j)
D2 m̂

(j)
D3 · · · 0

 ,

where for j = 1 the elements of M(1) are the averages of method B as predicted by

the averages of method A. Particularly, elements of M(1) are defined as predicted

averages using the fitted calibration line (5.4) when the parameters are marked

with superscript (1),

m̂(1)
rs = â(1)

rs + b̂(1)
rs z

A
rs, zArs =

1

n

n∑
i=1

ln
xir
xis
. (5.5)

Conversely, the elements of M(2) are the averages of method A as predicted by

the averages of method B, i.e., the elements of M(2) are defined as predictions

using the fitted calibration line

µrs = a(2)
rs 1n + b(2)

rs νrs,

69



specifically

m̂(2)
rs = â(2)

rs + b̂(2)
rs z

B
rs, zBrs =

1

n

n∑
i=1

ln
yir
yis
. (5.6)

Further, the matrix of residual variances is defined as

T∗ =


0 σ̂2

12 σ̂2
13 · · · σ̂2

1D

σ̂2
21 0 σ̂2

23 · · · σ̂2
2D

...
...

...
...

...
σ̂2
D1 σ̂

2
D2 σ̂

2
D3 · · · 0

 ,

where σ̂2
rs is the estimate of the residual variance (2.25) for r, s = 1, 2, . . . , D, r 6=

s.

In the following, some properties of matrices M(1), M(2) and T∗ are estab-

lished that will reveal their close connection to the variation array, described in

Section 1.3. These matrices are useful for exploratory analysis of calibration re-

sults and for testing conformity of two methods as well, which will be discussed

in more detail in the next section.

Lemma 5.1. Elements m̂
(1)
rs and m̂

(2)
rs are sample means of the log-ratios of the

measurements of the parts (r, s) obtained by the measuring devices B and A,

respectively, i.e., m̂
(1)
rs = zBrs and m̂

(2)
rs = zArs.

Proof. By substituting the relation of â
(1)
rs given by (2.12) into (5.5) we obtain

the statement for the elements of the matrix M(1). Validity for the matrix M(2)

can be shown in the same way.

As a direct consequence of Lemma 5.1 the following properties are fulfilled:

i) For the elements of the matrices M(j), j = 1, 2, the triangular equality

holds, i.e.,

m̂(j)
rs = m̂

(j)
rl + m̂

(j)
ls , r, s, l = 1, 2, . . . , D.

ii) Matrices M(j), j = 1, 2, are antisymmetric, i.e., m̂
(j)
rs = −m̂(j)

sr and m̂
(j)
rr = 0,

r, s = 1, 2, . . . , D.
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Similarly, it is a direct consequence of the logarithm properties that the matrix

of residual variances T∗ is symmetric. Thus we can conclude that the elements

of the above matrices have the same properties as the elements of the variation

array.

The above findings can be used for descriptive statistics based on the results

of the calibration problem. In particular, we can compare elements of matrices

M(1) and M(2). If the elements are the same, or nearly so, then both methods

yield on average the same values for observations with the given compositional

parts (recall the fact that all relevant information in a composition is contained

in log-ratios of the parts). Taking just the i-th row/column of M(1) − M(2)

(or its sum) into account, we can observe this effect for the i-th compositional

part. In addition, the smaller the values in T∗, the stronger the systematic

relation between the corresponding log-ratios of the two methods. Summing up

the rows/columns of T∗, this pattern can be compared for the single compositional

parts. Finally, in the next section some tests for conformity of two measurement

methods will be introduced.

5.4 Tests for conformity of two measurement

methods

When matrices M(1), M(2) and T∗ are estimated, it is natural to use them

to construct tests, related either to log-ratios or to the original compositional

parts, that handle the calibration problem. In the following we will assume

that the sample of ilr transformed compositions follow a normal distribution.

As a simple consequence, each log-ratio of the composition follows a normal

distribution as well. Basic tasks in a calibration problem are to test whether

two measurement methods give the same results and whether they measure with

some predetermined precision. Here we propose five different tests that can be

splitted into three families. The first family includes tests Frs, T
1
rs and T 2

rs; the

second one corresponds to Trs; and the third one to Crs. The first two families
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are suitable for identification of a significant systematic difference between results

obtained by two methods; the third one for verification that the methods follow

the same prescribed precision.

Two measurement methods give the same result if and only if the calibration

line passes through the origin at angle of 45 degrees. As we have explained in the

previous section, for D-part compositions we fit D(D − 1)/2 partial calibrations

lines. Hence, the problem is to test the null hypothesis that all intercepts a
(1)
rs = 0

and all slopes b
(1)
rs = 1, (r, s) ∈ R, simultaneously. The test statistic for each

hypothesis H0rs : a
(1)
rs = 0, b

(1)
rs = 1 individually, according to [31], is given as

Frs =

[(
â

(1)
rs

b̂
(1)
rs

)
−
(

0
1

)]′ [
v̂ar

(
â

(1)
rs

b̂
(1)
rs

)]−1 [(
â

(1)
rs

b̂
(1)
rs

)
−
(

0
1

)]
. (5.7)

The symbol v̂ar[(â
(1)
rs , b̂

(1)
rs )′] stands for the covariance matrix of the estimator

(â
(1)
rs , b̂

(1)
rs )′, where the estimated value of dispersion σ2

rs (2.25) is plugged into

the formula (2.24). Under the null hypothesis, the statistic Frs is distributed as

F2,n−2. For testing the whole set of hypotheses H0rs, (r, s) ∈ R, simultaneously,

it is necessary to use some techniques for multiple comparisons. In order to retain

a prescribed significance level α for all tests simultaneously, the significance level

for each test must be less than α. The Bonferroni-adjusted α-level of significance

αadj = 2α
D(D−1)

for each test is one of the most commonly used approaches. Apply-

ing the Bonferroni correction, we reject H0rs when frs ≥ F2,n−2 (1− αadj), where

frs is a realization of the test statistic Frs. Equivalently, the hypothesis H0rs is

rejected if p-value ≤ αadj.

In the case we reject some of H0rs we want to identify which of the components

a
(1)
rs or b

(1)
rs is responsible for the rejection. This is done by performing multiple

tests of intercepts and slopes separately. Therefore, in order to test whether the

intercepts are significantly different from zero, i.e., to test a
(1)
rs = 0, (r, s) ∈ R,
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simultaneously, the test statistic [31]

T 1
rs =

â
(1)
rs

√
n [µ̂rs]

′ µ̂rs − [1′µ̂rs]
2

σ̂rs

√(
b̂

(1)
rs + 1

)
[µ̂rs]

′ µ̂rs

, (5.8)

can be used. Under the null hypothesis T 1
rs has the tn−2 distribution. The hy-

pothesis a
(1)
rs = 0 is rejected if |t1rs| ≥ tn−2

(
1− αadj

2

)
, where t1rs is a realization of

T 1
rs, or else if p-value≤ αadj. The test that the slopes are significantly different

from 1, i.e., to test b
(1)
rs = 1, (r, s) ∈ R, simultaneously, is done by using the test

statistic [31]

T 2
rs =

(
b̂

(1)
rs − 1

)√
n [µ̂rs]

′ µ̂rs − [1′µ̂rs]
2

σ̂rs

√
n
(
b̂

(1)
rs + 1

) , (5.9)

which is distributed as tn−2, if the hypothesis is true. Conditions for rejection of

hypotheses are the same as for the intercept.

Another way of hypothesis testing that the two measurement methods give

the same results is based on matrices of predicted averages M(1) and M(2). Both

methods give the same results if and only if the matrices M(1) and M(2) are the

same. Hence, the problem is to test the hypothesis that all elements of matrices

M(1) and M(2) are the same, i.e., to test H
′

0rs: µrs = νrs for all (r, s) ∈ R,

simultaneously. Thus, according to Lemma 5.1, test statistics are of the form

Trs =
m̂

(1)
rs − m̂(2)

rs

σ̂rs

√
n/2, (5.10)

(r, s) ∈ R. Under the null hypothesis the test statistic Trs follows the tn−2

distribution. We reject H
′

0rs if |trs| ≥ tn−2

(
1− αadj

2

)
, where trs is a realization of

the test statistic Trs.

The testing procedures, introduced above, can be split into two natural fam-

ilies. The first family is formed by tests Frs, T
1
rs, T

2
rs, the second by tests Trs.

The second family with the test Trs represents a new proposed alternative to the

73



first family with the test Frs. For both proposed families of tests, if we reject

the null hypothesis, then there exist significant systematic differences between

the methods. By proposed multiple comparisons, we directly obtain for which

log-ratios of parts the methods give different values. Moreover, for the test Frs

we also employ the fitted calibration line, i.e., the line that describes a linear

relationship between log-ratios of parts for both methods. On the contrary, the

advantage of tests Trs is their simplicity. They only require calculation of sample

means and sample deviations of log-ratios of parts. However, under significant

systematic differences between log-ratios of some parts for both methods, these

tests do not provide information on the linear relationship expressed by the cor-

responding calibration lines. Quality of both the proposed test Frs and Trs will

be compared in the following section.

Finally, with the third family of tests, we will discuss a problem of precision of

two measurement devices (methods). In order to verify that the methods follow

a prescribed precision (the same for both methods), we provide multiple tests on

elements of matrix T∗, H
′′

0rs: σ2
rs = σ2

rs0 versus H
′′

1rs: σ2
rs 6= σ2

rs0. Here we use

χ2-tests on variance,

Crs = σ̂2
rs

n− 2

σ2
rs0

. (5.11)

In the case that H
′′

0rs is true the test statistic Crs is distributed as χ2
n−2. Hypoth-

esis H
′′

0rs is rejected if crs ≤ χ2
n−2

(αadj

2

)
or crs ≥ χ2

n−2

(
1− αadj

2

)
for crs taken to

be a realization of Crs.

All the tests proposed in this section are uniformly more powerful if one uses,

e.g., the modified Bonferroni adjustment, known as Holm-Bonferroni adjustment

[39], which consists of a three step algorithm. In the first step p-values are com-

puted and arranged in ascending order, thus constituting an increasing sequence

of p-values, i.e., p(1) < p(2) < · · · < p(k), where k is the number of comparisons

made (here D(D− 1)/2). Subsequently they are compared with the correspond-

ing adjusted α-levels of significance calculated as α
k−j+1

, j is the position in the

sequence of p-values. We are starting with comparing the first p-value with the
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appropriate adjusted α-level of significance. The algorithm stops when it finds

such a p-value that exceeds the adjusted α-level of significance, i.e., when it

finds minimum j such that p(j) >
α

k−j+1
. Finally, in the last step a conclusion

about the acceptance or rejection of the hypotheses is done, i.e., reject hypothe-

ses corresponding with p-values p(1), . . . , p(j−1) and do not reject the remaining

hypotheses. For other possible methods for addressing multiple testing see, e.g.,

[11, 78].

5.5 Simulation study

In this section we compare the quality of the both proposed tests Frs and Trs

by simulations. We will explore probability of rejecting the conformity between

the two methods with respect to chosen difference between the results of mea-

surement. In the first study, the differences are added to the log-ratios between

parts to identify properties of the proposed tests in general. In the second study,

the differences come from perturbation of compositions with three, five and ten

parts to verify the proposed methodology for calibration of compositional mea-

surements.

We will consider 30 samples of three-part compositions that are obtained by

two different methods A and B. The data matrices zArs and zBrs were generated

in a natural way, a normally distributed error term was added to the true mean.

Observations were considered independent and each having the same precision

σ = 0.1 and σ = 0.5. The true mean values µrs of log-ratios between parts r and s

for the method A were considered such that µ12 takes on values from the interval

(2.1, 2.8), µ13 = µ12 + 1 and µ23 = µ12 − 1. The true mean values νrs for the

method B were considered either the same as for the method A, i.e., νrs = µrs,

or as linear functions of µrs. Coefficients of linear functions were chosen in the

interval 〈2, 4〉.

5000 simulations were done for each case and hypotheses H0rs : ars = 0, brs =

1 (test Frs) and H ′0rs : µ̄rs = ν̄rs (test Trs) for r = 1, 2, s = 2, 3, r < s,
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simultaneously, were tested on the significance level 0.05. Obtained empirical

probabilities of rejection of the null hypotheses for the case when mean values

of log-ratios of parts were considered the same for both methods are presented

in Table 5.1. In the other cases, mean values νrs of the log-ratios of parts for

method B were considered as linear functions of the mean values µrs for method

A and hypotheses were rejected in all provided tests regardless of adjustment and

precision (0.05/3 = 0.017 for the Bonferroni-adjusted 0.05-level of significance;

0.05/3 = 0.017, 0.05/2 = 0.025 and 0.05 for the Holm-Bonferroni adjustments).

Bonferroni adjustment Holm-Bonferroni adjustment
σ = 0.1 σ = 0.5 σ = 0.1 σ = 0.5

(r, s) Trs Frs Trs Frs Trs Frs Trs Frs

(1, 2) 0.0190 0.0260 0.0228 0.4030 0.0190 0.0260 0.0228 0.5198
(1, 3) 0.0190 0.0260 0.0228 0.4030 0.0228 0.0360 0.0336 0.3136
(2, 3) 0.0140 0.0250 0.0248 0.3950 0.0140 0.0280 0.0262 0.4228

Table 5.1: Empirical probabilities of rejecting the hypothesis H0rs : ars = 0, brs =
1 (test Frs) and H ′0rs : µ̄rs = ν̄rs (test Trs) for r = 1, 2, s = 2, 3, r < s, simulta-
neously, on significance level 0.05 for data simulated with the same mean values
for both methods.

In Table 5.1 we can see that the results differ for different accuracy of ob-

servations. For relatively precise observations (parameters are estimated with

sufficient precision), both proposed tests give similar results with the Bonferroni

and Holm-Bonferroni adjustments. Conformity of the two methods between log-

ratios of two parts is rejected with probability less than 0.023 and 0.036 for tests

Trs and Frs, respectively. The test Trs also gives a small empirical probability of

rejecting conformity for less precise observations (σ = 0.5), less than 0.034 for

each partial test. This is due to the fact that this statistic only tests the confor-

mity of averages. On the contrary, the statistic Frs tests whether the calibration

line passes through the origin at an angle of 45 degrees. Simulation for the mean

values from the short interval with greater variance shows that although the data

were simulated with the same mean for both methods, the greater variance re-

sults in a significant difference in both estimated mean values and calibration line.

The test Trs does not detect this, i.e., mean value averages are not significantly
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different.

Summarizing obtained results, both proposed tests detect with certainty the

situation in which methods disagree. For relatively precise observations, both

tests give similar results and can be used for verification of conformity of methods.

However, for cases with less accuracy, the test Trs does not detect nonconformity

sufficiently sensitively. In this case the test Frs is more sensitive.

Now, we will investigate the probability of rejecting the conformity between

the two methods with respect to differences c > 0 added to compositional mea-

surements. Thirty samples of three-, five-, and ten-part compositions obtained

by the two methods A and B were generated in the following way. In the case of

three-part compositions, in the first step, two data matrices of the order 2 × 30

were generated from a two-dimensional normal distribution with the mean equal

to equidistant 30 points from the interval 〈−3, 3〉 and with the variance matrix

0.01I. Next, the inverse ilr transformation was applied to obtain two samples

with sample size 30 of three-part compositions (denoted as yA and yB). Finally,

the compositions yB were perturbated by (c, 1, 1) with a constant c from the

interval (0, 10). If c = 1, compositions yB do not change after the perturbation,

and thus the compositional measurements obtained by methods A and B are the

same. If c 6= 1, the first part of compositions yB is multiplied by c and other parts

remain unchanged, i.e., compositional measurements obtained by the methods A

and B are different. Then the proposed procedure for the calibration was used.

Analogously we proceeded with five- and ten-part compositions.

Similarly as in the first study, 5000 simulations were done and conformity

of the two methods were tested on significance level 0.05. Recall that only log-

ratios with the part y1 were affected by the constant c; remaining log-ratios are

unchanged for both methods. Thus, if log-ratios of parts include y1, differences

between log-ratios of the corresponding compositional measurements for methods

A and B are increasing for c going to zero or infinity; otherwise, they are stable.

The boxplots of log-ratios of parts including and not including y1 with respect to

the constant c are demonstrated in Figure 5.1. Resulting empirical probabilities
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Figure 5.1: Boxplots of log-ratios of parts y1 and y2 (top), and y2 and y3 (bottom)
with respect to constant c chosen for perturbation of composition (y1, y2, y3) by
(c, 1, 1).

of rejecting conformity of three-part compositional measurements with respect to

the constant c are presented in Figures 5.2 and 5.3.

In Figure 5.2, results for tests Frs and Trs on a single log-ratio between parts

r and s on the 0.05/3=0.017 Bonferroni-adjusted 0.05-level of significance are

demonstrated together with multiple tests Frs and Trs (tests on all log-ratios

simultaneously). The power of tests for Holm-Bonferroni correction is the same

for three-part compositions and therefore the results are not presented. We can

see that probabilities of rejection remain stable for log-ratio of parts x2 and x3.

The empirical probability of type I error for single tests F23, T23 is not greater

than 0.020 and 0.053 for the Bonferroni-adjusted and Holm-Bonferroni-adjusted

level, respectively. The overall probability of type I error is 0.043 and 0.051 for the

tests Trs and Frs, respectively. Thus the test Trs is a bit conservative. Further,

we can see that the tests F12, F13 and T12, T13 detect with high probability the

situation in which log-ratios between parts y1, y2, and y1, y3, of the two methods

differ. In the case of compositions with higher number of parts, more powerful

corrections seem to be necessary.

In Figure 5.3 we can see that the power of both overall tests systematically
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decrease with increasing number of parts. Furthermore, the overall probability of

the type I error slightly increases; in the case of ten-part, it is less than 0.068 and

0.056 for test Frs and Trs, respectively. It is also easy to see that the test Trs is

more powerful. Because of symmetry of results for c ∈ (0, 1) and c > 1 and easier

comparability, only the case of c ∈ (0.7, 1〉 is plotted. Thus,the above results

confirm that the proposed tests work well up to a moderate number of parts,

nevertheless, for compositions with more parts an alternative approach seems to

be necessary.

5.6 Illustrative example: blood plasma

Proposed approaches from the previous sections are used to analyze a real-

world data set from clinical biochemistry that consists of 10 samples of blood

plasma with concentrations (in mmol/l) of four selected amino-acids, alanine

(part 1), glycine (part 2), leucine (part 3), and isoleucine (part 4), containing an

aliphatic chain. These samples are obtained by two different methods: external

standard (method A) and internal standard (method B) (see Table 5.2). The task

is to analyze whether there is a significant difference between measurement results

from the external and internal standards and whether both methods measure with

the same given reasonable precision of 0.1mmol/l (a common standard error for

all log-ratios of the composition). Note that with these data, not the absolute

values of concentrations but rather their relative contributions to the overall

composition of blood plasma are of interest. Thus, although the observations are

not represented by a constant sum constraint (like 1 or 100), they are typical

compositional data.

At the beginning, data matrices (5.3) of log-ratios were computed; in addition,

their elements were multiplied by 1/
√

2. Calibration lines for log-ratios of parts

of internal standard (method B) subject to external standard (method A) are

estimated by the iterative algorithm described in Section 2.2 with accuracy more

than ε = 10−9. Note that the calibration lines are determined with different

precisions (see Table 5.3).
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External standard method

n 1 2 3 4
1 0.158 0.108 0.041 0.020
2 0.244 0.086 0.050 0.029
3 0.243 0.182 0.078 0.039
4 0.264 0.094 0.077 0.041
5 0.186 0.192 0.061 0.039
6 0.137 0.134 0.053 0.036
7 0.143 0.089 0.043 0.026
8 0.258 0.156 0.074 0.040
9 0.211 0.117 0.067 0.042
10 0.441 0.195 0.220 0.084

Internal standard method

n 1 2 3 4
1 0.449 0.235 0.168 0.044
2 0.560 0.151 0.165 0.050
3 0.379 0.217 0.175 0.047
4 0.455 0.124 0.190 0.053
5 0.324 0.256 0.152 0.052
6 0.237 0.178 0.131 0.047
7 0.329 0.157 0.142 0.045
8 0.508 0.236 0.211 0.059
9 0.355 0.145 0.163 0.054
10 0.649 0.194 0.307 0.097

Table 5.2: Measurement results of 10 samples of blood plasma with concentra-
tions (in mmol/l) of four selected amino-acids, alanine (part 1), glycine (part 2),
leucine (part 3), and isoleucine (part 4), from external standard method (left)
and internal standard method (right).

Elements of the matrices M(j), j = 1, 2, are calculated using (5.5) for j = 1

and (5.6) for j = 2. Elements of the matrix T∗ are obtained by (2.25),

M(1) =


0 0.7947 0.8447 2.0350

-0.7947 0 0.0500 1.2403
-0.8447 -0.0500 0 1.1903
-2.0350 -1.2403 -1.1903 0

 ,

M(2) =


0 0.5119 1.1660 1.7629

-0.5119 0 0.6542 1.2510
-1.1660 -1.5595 0 0.5969
-1.7629 -1.2510 -0.5969 0

 ,

T∗ =


0 0.0007 0.0068 0.0001

0.0007 0 0.0032 0.0012
0.0068 0.0032 0 0.0080
0.0001 0.0012 0.0080 0

 .

By computing the difference between matrices M(1) and M(2),

M(1) −M(2) =


0 0.2828 -0.3213 0.2721

-0.2828 0 -0.6042 -0.0107
0.3213 1.5095 0 0.5934

-0.2721 0.0107 -0.5934 0

 ,
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parts
(r, s)

calibration line

standard errors of (ârs, b̂rs)
iterations

(1, 2) zB12 = 0.2629 + 1.0391zA12 7
(0.0225, 0.0362)

(1, 3) zB13 = 0.0600 + 0.6729zA13 15
(0.1710, 0.1441)

(1, 4) zB14 = 0.2601 + 1.0068zA14 7
(0.0424, 0.0239)

(2, 3) zB23 = −0.5040 + 0.8469zA23 9
(0.0486, 0.0651)

(2, 4) zB24 = −0.1072 + 1.0771zA24 9
(0.0731, 0.0569)

(3, 4) zB34 = 0.9158 + 0.4599zA34 25
(0.1229, 0.1992)

Table 5.3: Estimates of the calibration line parameters for the amino-acids data.

and summing up absolute values of elements in rows (or columns) of M(1)−M(2)

(0.8762, 0.8977, 2.4242, 0.8762), we observe the highest differences between log-

ratios with leucine (part 3). From the row sums of the variation matrix T∗

(0.0076, 0.0051, 0.0180, 0.0093) we can tentatively conclude that the strongest

relation between log-ratios of the two measurement methods corresponds to those

with glycine (part 2).

Furthermore, we can interpret the elements m̂
(1)
rs and m̂

(2)
rs (predictions from

the estimated calibration lines) as averages of the log-ratio between the parts

r and s obtained by external standard and internal standard methods, respec-

tively (see Lemma 5.1), e.g. m̂
(1)
12 = 0.7947 represents the average of log-ratios

between alanine and glycine obtained from external standard. The precision of

both methods when considering the log-ratios between the parts r and s is given

by σ̂rs , e.g., σ̂12 =
√

0.0007 = 0.0265 stands for the precision of the methods for

log-ratio between alanine and glycine.

In order to get the required information about conformity of both methods,

the proposed multiple tests from the previous section are applied. At first, it is

necessary to verify normality for log-ratios of compositional data. The Shapiro-

Wilk normality test with p-values of 0.6000, 0.6550, 0.9230, 0.4658, 0.6248, 0.4562
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(external standard) and 0.4250, 0.2504, 0.9728, 0.6319, 0.8179, 0.6549 (internal

standard) ensures that normality of transformed compositional samples cannot

be rejected, although the sample size is not very large (as is common in medical

applications). Next we can proceed to multiple tests for identification of system-

atic differences between both methods. The resulting values of the test statistics

Trs and Frs, calculated according to (5.7) and (5.10), respectively, are displayed

in Table 5.4.

It is easy to see that p-values of the test statistics Trs and Frs, except for the

log-ratio between glycine and isoleucine, are less than 0.0001. Each of these p-

values is thus less than the Bonferroni adjusted 0.05-level of significance, 0.0083 =

0.05
6

, and also smaller than the Holm-Bonferroni adjusted 0.05-levels of significance

(0.0083, 0.0100, 0.0125, 0.0167, 0.0250, 0.0500). Hence, there is a statistically

significant difference between the results from the external and internal standards;

it means that the two methods do not give us the same results when all log-ratios

of parts are measured except, for the pair (2, 4).

The differences within log-ratios (considering both methods) are modeled us-

ing the calibration lines given in Table 5.3. It remains to verify whether the cali-

bration line can be simplified, i.e., to reveal the source of differences between the

methods. For this purpose we use the multiple t-tests using the test statistics T 1
rs

and T 2
rs, given by (5.8) and (5.9), respectively; results are collected in Table 5.4.

The hypothesis that the slope of calibration line is equal to 1 cannot be rejected

(all p-values of the test statistics T 2
rs are higher than the Bonferroni-adjusted, or

the Holm-Bonferroni-adjusted 0.05-level of significance); however the intercept for

most of the log-ratios is significantly different from zero (p-values of T 1
12, T

1
14, T

1
23

and T 1
34 are less than 0.0083 - the Bonferroni adjustment, and also they are less

than 0.0083, 0.0100, 0.0125 and 0.0167, respectively - the Holm-Bonferroni ad-

justment). In particular, the log-ratios between alanine and glycine, alanine and

isoleucine, and leucine and isoleucine, respectively, are systematically higher for

the internal standard than those obtained by the external standard; the estimated

differences are equal to the estimates of intercept in proper calibration line (see
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Table 3) â12 = 0.2629, â14 = 0.2601, â34 = 0.9158 corresponding to the above

mentioned log-ratios. On the other hand, the log-ratios of glycine and leucine for

internal standard method are systematically smaller than those obtained by the

external standard method; the estimated difference is â23 = −0.5040.

parts
(r, s)

Trs
p-value

Frs
p-value

T 1
rs

p-value
T 2
rs

p-value
Crs

p-value

(1, 2) 22.5300 244.6636 11.7921 1.0904 0.6305
<< 0.0001 << 0.0001 << 0.0001 0.3072 0.0006

(1, 3) −8.7043 54.7259 0.3271 −2.1150 5.4527
<< 0.0001 << 0.0001 0.7520 0.0673 0.5834

(1, 4) 50.6504 1274.0529 6.1389 0.2863 0.1155
<< 0.0001 << 0.0001 0.003 0.7820 << 0.0001

(2, 3) −23.9906 337.9413 −10.0091 −2.2686 2.5374
<< 0.0001 << 0.0001 << 0.0001 0.0530 0.0801

(2, 4) −0.6820 1.1317 −1.4953 1.3806 0.9908
0.5145 0.7383 0.1732 0.2048 0.0034

(3, 4) 14.8754 186.3208 6.7900 −2.4700 6.3674
<< 0.0001 << 0.0001 0.0001 0.0387 0.7877

Table 5.4: Results of the test statistics and their corresponding p-values for the
amino-acids data.

Finally, we will analyze the (common) accuracy of both methods. To ver-

ify that the methods measure with prescribed precision 0.1 we use multiple

χ2-tests with the test statistics Crs. From Table 5.4 we can see that the p-

values corresponding to the test statistics C12, C14, C24 are smaller than the

Bonferroni-adjusted 0.05-level of significance (α = 0.0083). Taking the Holm-

Bonferroni adjustment into account, the conclusion is the same. Hence, the

accuracy of measurement is significantly higher for the log-ratios of alanine and

glycine, alanine and isoleucine, and glycine and isoleucine, respectively, with esti-

mated accuracies obtained from the matrix T∗ equal to σ̂12 =
√

0.0007 = 0.0265,

σ̂14 =
√

0.0001 = 0.01, and σ̂24 =
√

0.0012 = 0.0346.

The above results using tests, performed on the log-ratios, have also a direct

consequence for parts of the original composition. In particular, multiple tests us-

ing Trs and Frs statistics revealed significant differences in measuring the compo-

sitional parts using the two methods (also by taking into account the exceptional
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behavior of the log-ratio between glycine and isoleucine). For each of the compo-

sitional parts, two of the corresponding log-ratios show a significant shift using

statistics T 1
rs - this thus seems to be the main reason for the difference between

the external and internal standards for measurement of the amino-acids com-

pounds (and corresponds to the theoretical principle of both methods). Finally,

by comparing the Crs statistics with the entries of matrix T∗, we can conclude

that leucine was determined with the lowest precision using both methods. This

fact might be related to a bigger molecule of leucine, which affects the precision

of the measurement. In general, the more log-ratios containing a certain com-

positional part show a significant difference between both methods, the stronger

relative difference between the methods can be assigned to that compositional

part itself. Although we do not provide the corresponding statistical tests here,

a graphical visualization of rejections (for all the mentioned tests) could provide

a good insight into calibration behavior of the original compositional parts, in

particular when compositions with more parts are involved in the analysis.
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Figure 5.2: Probabilities of rejecting the conformity of three-part compositional
measurements obtained by two methods with respect to constant c on the 0.017
Bonferroni-adjusted 0.05-level of significance. Results from tests Frs (top) and
Trs (bottom) on a single log-ratio between parts r, s together with multiple tests.
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Figure 5.3: Overall probabilities of rejecting the conformity of three-, five-, and
ten-part compositional measurements obtained by two methods with respect to
constant c for multiple tests Frs (top) and Trs (bottom) on significance level 0.05
with the Bonferroni and the Holm-Bonferroni adjustments.
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Conclusion
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The thesis is focused on regression analysis with compositional data. In prac-

tice, for example in geosciences, compositions usually have high number of parts.

Therefore, it is convenient to reduce the number of compositional parts before

performing regression analysis for compositions. The proposed procedure for

variable selection reduces the dimension of the compositions, and, consequently,

it simplifies the statistical analysis and the interpretation of the results is easier

to understand. This procedure provides only negligible loss of information about

the multivariate data structure.

An intuitive selection of parts based on expert knowledge of subject mat-

ter specialists may lead to major changes of the multivariate statistical analysis

results. For example, experts are interested in the analyses of certain geochemi-

cal processes and select elements for the statistical analysis which are somehow

related to these processes. In this selection they may miss variables that are re-

sponsible for the substantial information about the multivariate data structure,

and their omission changes the statement about the resulting subcomposition.

Note that such an approach to variable selection differs from the known problem

of subcompositional incoherence of the original composition with a (prescribed)

unit-sum representation of the compositional vector [4, 17], that is against the

general definition of compositional data as multivariate observations where the

only relevant information is contained in the ratios between the parts [23].

The proposed stepwise procedure for excluding compositional parts allows to

arrive at a subcomposition that still retains the important information contained

in the multivariate data structure. The goal of this procedure is to retain the

total variance from one step to the next, and it is stopped before a significant

reduction would occur. The larger the original composition, the more reduction

of the number of parts is made. Examples have demonstrated that indeed those

“marker” variables are selected, and an omission of these variables would have re-

sulted in substantial changes of multivariate statistical analyses of compositional

data.

Between the targets stated on the beginning of this thesis it is to contribute

88



in the field of regression analysis with compositional response. Although regres-

sion analysis with compositional response represents one of the most tasks of

compositional data analysis, there are still some aspects that deserve to be anal-

ysed in more detail. One of the aspects elaborated here, concerns the particular

coordinate representation useful for the estimation and interpretation of regres-

sion parameters. Further aspect discussed in this thesis deals with the quality

of prediction by considering (or not) also absolute abundances instead of purely

relative information conveyed by compositional data. They both have in com-

mon that even clr coordinates and the simple log-transformation are nowadays

rather suppressed in compositional data analysis, they might be useful for some

specific tasks and also help to understand differences between various method-

ological viewpoints. Particularly, clr coordinates simplify the computation of the

regression coefficients instead of considering D different regression models with

orthonormal coordinates, just the principal difference between both options aris-

ing from a singularity of a covariance matrix for clr coordinates needs to be taken

into account. Clr coordinates cannot be considered separately due to their zero

sum constraint, while this is not the case for orthonormal coordinates. The the-

ory was endowed with a real data example from sedimentology, where interesting

patterns were revealed. From this perspective, we believe that the presented

methodological outputs are useful steps for a practical analysis of compositional

data.

The last aim of this thesis concerns the calibration problem of compositional

measurements. The calibration problem (sometimes also referred to the orthogo-

nal regression, the total least squares, or the regression with errors-in-variables)

belongs to basic tasks in statistical analysis. In the thesis, an alternative ap-

proach to the orthogonal regression by means of linear models with the type-II

constraints was used. The equivalence between this approach and the standard

orthogonal regression estimation was proved under assumptions of independent

random errors with equal variances leads. Because all the relevant information

in a composition is contained in log-ratios, the multivariate problem can be con-
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verted into univariate calibration of single log-ratios that are easy to handle and

interpret. It means, for D-part compositions, the calibration problem can be

partitioned into D(D − 1)/2 partial univariate calibration problems, performed

on log-ratios of compositional parts. Hence, the calibration line is fitted to the

corresponding coordinate of all possible two-part subcompositions separately. As

a result of calibration, an analogy between the compositional variation array

and the matrices of the predicted values and residual variances from univariate

calibrations was derived, which is a popular tool in descriptive statistics of com-

positional data. Further, tests for conformity of two measurement methods were

proposed. Particularly, tests for the identification of a significant systematic dif-

ference between results obtained by two methods and for the verification that the

methods follow the same prescribed precision. All proposed tests are univariate,

and, thus the multiple comparison approach was used to summarize results into

a multivariate decision. Theoretical results were applied to a real example from

biochemistry.
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1. Abstract

This thesis is focused on regression analysis for compositional data. Relative

nature of compositional data that distinguishes them from the standard multivari-

ate data call for a special treatment. Since for the most of the statistical techniques

there is still not developed stay-in the simplex approach, the log-ratio methodol-

ogy presents a proper statistical approach that enable to express the data in a

coordinate system.

Firstly, a regression model with compositional response variable is studied.

A multivariate regression model is built for the compositional data expressed in

orthonormal coordinates. The explicit formulas for the estimators of regression

parameters and as well test statistics for the verification of their significance are

provided. Further, new coordinate representation of the compositional data allow-

ing to simplify the computation concerning regression parameters estimation and

hypothesis testing is proposed and as well, the quality of prediction in different

coordinate system is evaluated.

The second part of this thesis is devoted to the calibration problem for com-

positions. Here the calibration approach based on linear models with the type-II

constraints is used. The equivalence between the linear model with type-II con-

straints and the total least squares regression is proved. A procedure for calibra-

tion of compositional measurements is proposed and tests for conformity of two

measuring devices (methods) are presented.

In the last part of the thesis, a variable selection procedure for compositions

that guarantees that a reduction of the original composition to a subcomposition

causes only negligible change of the information is presented.

All theoretical results are applied to real-world examples.

Key words: compositional data; regression with compositional response; calibra-

tion; total least squares; linear model with type-II constraints; variable selection
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2. Abstract v českém jazyce

Práce se zabývá regresńı analýzou pro kompozičńı data. Relativńı charak-

ter kompozičńıch dat, který je odlǐsuje od standardńıch mnohorozměrných dat,

vyžaduje speciálńı zacházeńı. Jedńım ze základńıch př́ıstup̊u ke statistické analýze

kompozičńıch dat, který je použit i v této práci, je vyjádřeńı kompozičńıch dat ve

vhodném souřadnicovém systému.

Nejprve je pozornost soustředěna na problematiku regresńıho modelu s kom-

pozičńı vysvětlovanou proměnnou. Pro kompozičńı data vyjádřená v ortonormál-

ńıch souřadnićıch je v práci vytvořen mnohorozměrný regresńı model a uvedeny

explicitńı vzorce pro odhady neznámých regresńıch parametr̊u a testové statistiky

pro ověřeńı jejich statistické významnosti. Dále je navržena jiná souřadnicová

reprezentace kompozičńıch dat, která umožňuje zjednodušit výpočty pro odhady

regresńıch parametr̊u a testové statistiky a vyhodnocena kvalita predikce v r̊uz-

ných souřadnicových systémech.

Druhá část této práce je věnována kalibračńımu problému pro kompozičńı data.

V práci je použit př́ıstup založený na lineárńım modelu s podmı́nkami typu II. Je

zde dokázána ekvivalence mezi lineárńımi modely s podmı́nkami typu II a orto-

gonálńı regreśı. Dále je zde navržena procedura pro kalibraci kompozičńıch měřeńı

a prezentovány testy pro shodu dvou měřićıch př́ıstroj̊u (metod).

V posledńı části této práce je navržena procedura pro výběr kompozičńıch

složek, která zaručuje, že výsledná redukce dimenze kompozice nezp̊usob́ı pod-

statnou ztrátu informace o mnohorozměrné variabilitě datové struktuře.
Všechny teoretické výsledky jsou aplikovány při řešeńı reálných úloh.

Kĺıčová slova: kompozičńı data; regrese s kompozičńı vysvětlovanou proměnnou;

kalibrace; ortogonálńı regrese; lineárńı regresńı model s podmı́nkami typu II; výběr

proměnných
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3. Introduction

Regression is a common statistical method for modelling and analysing the

relationship between the response and predictor variable(s). In the frame of the

parametric approach of the regression analysis, the linear relationship between the

variables is only investigated.

The regression techniques discussed in this thesis are performed on a special

kind of multivariate data known as compositional data, or compositions for short.

The definition for D-part composition as quantitative descriptions of the parts of

some whole, conveying relative information, dates from the 1986 and it is given

by Aitchison. This strictly positive data that quite often sum up into an arbitrary

constant, have the simplex SD with the Aitchison geometry, to be their sample

space. As it is well known, the simplex lacks the Euclidean vector space structure.

The log-ratio methodology presents a proper statistical approach that enable us

to express the data isometrically in the real Euclidean space [1].

Regression analysis for the compositional data started to expand in the early

80’s. Great progress in this field has been done till now, but there are still some

topics that deserve special attention. Four types of regression models, depending

on the type of the response and predictors variables can be distinguished: a re-

gression model with compositional response and non-compositional predictors, a

regression model with non-compositional response and compositional predictors,

a regression between parts of compositions, and a regression model with composi-

tional response and predictor variables.

The motivation for writing this thesis lies in satisfying the current needs for fur-

ther development in regression analysis for compositional data. Because the branch

is quite wide, the thesis is mainly focused on regression models with compositional

response, the calibration problem for compositions, and the simplification of re-

gression models with compositional data in terms of reducing dimensionality of

the compositions. The calibration problem is related to a regression between parts

and the TLS problem.
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4. Recent state summary

4.1 Compositional data

Compositional data, or compositions are strictly positive multivariate observa-

tions that carry only relative information.

Compositions, denoted as y = (y1, y2, . . . , yD)′, have their own sample space the

simplex SD defined as

SD =

{
y = (y1, y2, . . . , yD)′|yi > 0, i = 1, 2, . . . , D;

D∑
i=1

yi = k

}
.

Crucial in this framework is the operation of closure for y = (y1, y2, . . . , yD)′ ∈ RD
+ ,

given by

C(y) =

(
ky1∑D
i=1 yi

,
ky2∑D
i=1 yi

, ...,
kyD∑D
i=1 yi

)′
,

with which we can express the compositions as a non-negative vectors summing

up into an arbitrary constant k > 0. Basically, information contained in the com-

position remains same it is just matter of change of the units. Such compositions

are compositionally equivalent, hence it is does not depend on the choice of k.

The vector space structure of the simplex SD is obtained with the following

two operations defined on it [3, 22]:

• perturbation of y ∈ SD by w ∈ SD, analogous to addition in the real space:

y ⊕w = C (y1w1, y2w2, ..., yDwD)′ ,

• power transformation or powering of y ∈ SD by a constant α ∈ R, analogous

to scalar multiplication in the real space:

α� y = C (yα1 , y
α
2 , ..., y

α
D)′ .

Further it is desired to work with the compositions on the simplex on comparable

way as we do we the standard multivariate data on the real space. We demand to
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compute the length of a composition, to determine angles between compositional

vectors or to find the distance between them. The Aitchison inner product, norm

and distance were invented to satisfy these purposes [3, 22, 23]. Moreover, these

functions form the Aitchison geometry on the simplex.

There are certain log-ratio transformations which translates the composition

from the simplex into coordinate vector on the the real space.

Firstly the centred log-ratio (clr) transformation was invented, which is map-

ping between the simplex SD and the Euclidean space RD, defined by,

clr(y) =

(
ln

y1

g (y)
, ln

y2

g (y)
, . . . , ln

yD
g (y)

)′
= h, y ∈ SD, h ∈ RD. (4.1)

where g (y) = D

√∏D
j=1 yj is the geometric mean of the parts of the composition.

Clr transformation actually, expresses the composition y ∈ SD in coordinates

with respect to the generating system on the simplex.

The isometric property makes this transformation applicable for techniques

based on distances. This property also reflects the straightforward interpretation

of the clr transformed composition. Unfortunately, one disadvantage property of

this transformation that comes from the symmetry of the components of the vector

of the clr coordinates is that leads to singular covariance matrix which causes

computational issues. Another disadvantage property that the clr transformation

dispose is that the clr coefficients do not satisfy the principle of subcompositional

coherence. This principle is of crucial importance whose meaning is that the

information carried in the composition should not be contradictory with the one

carried in the subcomposition. Every method before applied to the compositional

data should meet this requirement. Here the geometric mean of a subcompostion

does not necessary have to be the same with the one we have for the full D-part

composition.

Despite of the disadvantage properties, the clr coordinates are still frequently

used because of an intuitive interpretation. For example, the compositional biplot

of the clr coordinates [2] can be constructed, that is an important visualization

tool for investigation of the compositional data structure. Here, the single clr

coordinates are usually interpreted in terms of the original compositional parts

[8, 24].

To avoid disadvantages of the clr coordinates, orthonormal coordinates with

respect to an orthonormal basis on the simplex were proposed [5]. The transfor-

mation is called as isometric log-ratio (ilr) transformation.
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There exist many ways to obtain an orthonormal basis of the simplex. Unfor-

tunately, there is no canonical basis on the simplex, where by the interpretation of

the orthonormal coordinates is not that straightforward. The choice of the method

for construction of the basis may improve the interpretation of the resulting coordi-

nates. Behind the commonly used methods belong the Gram - Schmidt procedure

[5] and the very intuitive - sequential binary partition (SBP) [6]. The resulting

coordinates coming from the SBP, called balances, give interpretation in sense of

grouped parts of the composition. In each of the D − 1 consecutive steps of the

SBP, partitioning of the parts into two non-overlapping, distinguished groups is

done. Groups of compositional parts are formed according to expert knowledge,

or can be formed blindly, without any preliminary knowledge about the grouping

of the parts.

Often used orthonormal basis leads to the (D − 1) × D matrix V, such that

VV′ = I(D−1), with the rows vectors [11]

vi =

√
D − i

D − i+ 1

(
0, . . . , 0, 1,− 1

D − i
, . . . ,− 1

D − i

)
, i = 1, 2, . . . , D. (4.2)

This basis relates with the orthonormal coordinates [11],

ilr (y)i = zi =

√
D − i

D − i+ 1
ln

yi

D−i

√∏D
j=i+1 yj

, i = 1, 2, . . . , D − 1. (4.3)

There exist unique relationship between the ilr and the clr coordindates [22],

given by

z = hV′,

where h ∈ RD is the clr transformed composition y ∈ SD. Moreover, for the first

coordinates of both systems it holds [22],

h1 =

√
D − 1

D
z1.

In this case, the first orthonormal coordinate z1 explains all the relative infor-

mation about the first compositional part y1 within the first given composition

[11]. Unfortunately, the remaining orthonormal coordinates do not have such

straightforward interpretation.

In order to obtain the interpretation for the remaining orthonormal coordinates,

we just need to make permutation of the compositional parts,
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y(l) = (yl, y1, . . . , yl−1, yl+1, . . . , yD) =

=
(
y

(l)
1 , y

(l)
2 , . . . , y

(l)
l−1, y

(l)
l+1, . . . , y

(l)
D

)
, l = 1, 2, . . . D,

and subsequently apply the formula in (4.3) to the permuted compositions y(l), l =

1, 2, . . . , D. Thus the first orthonormal coordinate obtained for permuted compo-

sition y(l), l = 1, 2, . . . , D, contains all the relative information about the l-th

compositional part yl, l = 1, 2, . . . , D and, consequently

hl =

√
D − 1

D
z

(l)
1 , l = 1, 2, . . . , D. (4.4)

4.2 Regression analysis for compositional data

In the thesis we firstly devote to regression model with compositional response.

Remarkable invention in the field of the regression analysis for compositional

data came in the paper of J.J. Egozcue et al. (2012). Here the regression model

is expressed in the orthonormal coordinates which offers opportunity to use the

least squares (LS) method for obtaining the estimates of the unknown regression

parameters [4, 7].

The LS problem is presented on both the simplex SD and in coordinates on

the RD−1.
Secondly we deal with the calibration problem for compositions. The calibra-

tion is a process whereby the scale of a measuring device or method is determined

on a basis of an experiment. There are two stages in the calibration process. In the

first stage, the calibration curve is specified. It describes a relationship between the

quantity values with measurement uncertainties provided by a measurement stan-

dard (a measuring device or method with assigned correctness) and a calibrated

one. The second stage concerns the prediction of values for measurement standard

based on measurements by calibrated device. The values of measurement standard

are considered either fixed (non-random), or random. In the former case we speak

about controlled calibration, in the latter about random or natural calibration. In

this thesis we focused on determination of a calibration line with random values
of the standard. The calibration problem is handled with linear model approach

namely with linear model with type two constraints. The linear model approach as

an alternative approach of the total least squares problem for 3-part composition
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is studied already in [10, 11]. Generalization of the total least squares for D-part

composition can be find in [14, 15].

5. Thesis objectives

The particular goals of the thesis are the following:

• Formulate a multivariate regression model with a compositional response

and find explicit formulas for the estimators of the regression parameters

and proper test statistics. Find coordinate representation of compositional

data allowing to simplify the computation concerning regression parameters

estimation and hypothesis testing. Evaluate the quality of prediction in

different coordinate systems.

• Prove the equivalence between the TLS approach and the linear model with

the type-II constraints. Propose a procedure for calibration of compositional

measurements and suggest tests for conformity of two measuring devices

(methods).

• Propose a variable selection procedure for compositions that guarantees that

a reduction of the original composition to a subcomposition causes only

negligible change of the information.

• Apply theoretical results to real-world examples.
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6. Theoretical framework and ap-

plied methods

6.1 Covariance - based variable selection for com-

positoinal data

The basic measure of variability of a random composition y ∈ SD is the vari-

ation matrix [1], defined as

T =

{
var

(
ln
yi
yj

)}D
i,j=1

.

The elements of the variation matrix describe the variability of the random log-

ratio ln yi
yj

: the smaller the value of this variance, the more the log-ratio tends to

be a constant. The (normed) sum of the elements of the variation matrix is called

total variance,

totvar(y) =
1

2D

D∑
i=1

D∑
j=1

var

(
ln
yi
yj

)
, (6.1)

expressing the total variability of the compositional data set. Note that

totvar(y) =
D∑
i=1

var(hi) =
D−1∑
i=1

var(z
(l)
i ), l = 1, 2, . . . , D, (6.2)

i.e. the total variance can also be computed using the variability of the clr coor-

dinates or the orthonormal coordinates, respectively [21].

Further, what worth to be mentioned for the purposes of the thesis is the compo-

sitional variation array, defined as the simplest and minimum way of summarizing

the patterns of location and variability within a compositional data set [1],

V =


0 var

(
ln y1

y2

)
var
(

ln y1
y3

)
· · · var

(
ln y1

yD

)
E
(

ln y2
y1

)
0 var

(
ln y2

y3

)
· · · var

(
ln y2

yD

)
. . . . . . . . . . . . . . . . . . . .

E
(

ln yD
y1

)
E
(

ln yD
y2

)
E
(

ln yD
y3

)
· · · 0

 , (6.3)
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where in the upper triangle of the array the log-ratio variances and in the lower

triangle the log-ratio expectations are displayed.

The variance of the orthonormal coordinates zi, i = 1, . . . , D in (4.3) is given

by the relation [11],

var(zi) =
1

D − i+ 1

D∑
p=i+1

var

(
ln
yi
yp

)

− 1

2(D − i)(D − i+ 1)

D∑
p=i+1

D∑
q=i+1

var

(
ln
yp
yq

)
. (6.4)

As a consequence of (4.4), the variance of the clr coordinate hi corresponds (up

to a constant) to the variance of z
(i)
1 .

From (6.4), multiplied by (D−1)/D to obtain clr variances, we can also expect

quite a strong relation between var(yi) and the sum of the i-th row (column) of

the corresponding variation matrix T. This finding induces a useful property:

[var(hi)≥var(hj)] ⇔

[
D∑
p=1

var

(
ln
yi
yp

)
≥

D∑
p=1

var

(
ln
yj
yp

)]
,

i 6= j, i, j = 1, 2, . . . , D,

where hi are the clr coordinates given in (4.1). Particularly, it shows that ordered

variances of different clr coordinates (or, alternatively, of the first orthonormal

coordinates from (4.3)) correspond to the same order of the sums in the variation

matrix connected with the related compositional parts. Thus, can be used to iden-

tify compositional parts (“markers”) that are responsible for larger clr variances.

It is possible to identify the ordered contribution of the single compositional parts

to the overall variance with the corresponding clr coordinates. Using this fact, a

stepwise algorithm was introduced in the thesis that helps to derive a subcomposi-

tion with a minimal loss concerning the total variance of the original composition.

In each step of the algorithm we can omit one part of the composition that has

the smallest contribution to the overall variability (6.1),(6.2). The algorithm will

stop once we will reach 2-part composition or we can use a stop criteria for the

algorithm that will recommend us where the reduction of parts should stop. We

use the following stop criterion
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U+
i =

t̂otvar(yi)− totvar(yi−1)√
2

n−1
tr(Σ̂2

i )
,

the matrix Σ̂i stands for the sample covariance matrix of the composition yi in

(arbitrarily chosen) orthonormal coordinates. Small values of U+
i favor the al-

ternative, so we reject the null hypothesis, if U+
i realizes in the critical region

W = (−∞, uα〉, where uα denotes the α-quantile (preferably α = 0,05) of the

standard normal distribution.

6.2 Multivariate regression with compositional

response

Let us consider in the following y will not stand for a composition but will

stand for a standard random vector. This notation is used in order to follow the
usual one in the statistical literature.

A multivariate regression model presents a regression model where multiple

response variables appear simultaneously. Consider we have q random variables

y1, y2, . . . , yq and for each of these we have n observations. Let us denote by

yj = (y1j, y2j, . . . , ynj)
′ , j = 1, 2, . . . , q, the observation vector that corresponds to

the random variable yj. For every vector yj we assume the following linear model

[16, 19]

yj = Xbj + εj, j = 1, 2, . . . , q, (6.5)

and, simultaneously, for all vectors yj we assume the multivariate linear model

y = XB + ε, (6.6)

where y = (y1,y2, . . . ,yq) is the (n× q) dimensional matrix of response vec-

tors, X is the (n× k) dimensional design matrix which has full column rank,

B = (b1,b2, . . . ,bq) is the (k × q) dimensional matrix of the unknown regression

parameters, bj = (b1j, b2j, . . . , bkj)
′, j = 1, 2, . . . , q and ε = (ε1, ε2, . . . , εq) is the

(n× q) dimensional matrix of the random errors. Further, let us assume that the

multivariate responses yi· = (yi1, . . . , yiq)
′, i = 1, 2, . . . , n, are independent with

the same unknown variance-covariance matrix Σ, i.e.

cov(yi·,yj·) = 0, i 6= j,

var(yi·) = Σ, i = 1, 2, . . . , n.
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In order to derive the estimator of B, to construct confidence intervals and

confidence regions for unknown regression parameters, or to do some tests for

significance of the regression coefficient, etc., the model (6.6) can be rewritten in

the following vectorized form [19]

vec
(
y
)

= (Iq ⊗X) vec (B) + vec (ε) , var[vec(y)] = Σ⊗ In,

where vec(y) = (y′1, . . . ,y
′
q)
′ and the symbol ⊗ denotes the Kronecker product.

Thus, the least squares estimator of vec(B) is obtained by minimizing the square

of the Mahalanobis distance of the residuals [19]

arg min
vec(B)

∥∥vec
(
y
)
− (Iq ⊗X) vec (B)

∥∥2

(Σ⊗In)
. (6.7)

The solution of the minimization problem (6.7), after de-vectorization, is

B̂ = (X′X)
−1

X′y. (6.8)

The estimator B̂ is the best linear unbiased estimator (BLUE) of the parameter

matrix B [19].

One can notice that this estimator is invariant with respect to the variance-

covariance matrix of vec
(
y
)
.

However, the variance-covariance matrix of the vector vec(B̂) = (b̂′1, b̂
′
2, . . . , b̂

′
q)
′

var
[
vec(B̂)

]
= Σ⊗ (X′X)

−1
(6.9)

depends on Σ. Since the variance-covariance matrix Σ is unknown, it is necessary

to estimate it. The unbiased estimator of Σ is Σ̂ = y′MXy/(n − k), where

MX = I−X(X′X)−1X′ is a projector on the orthogonal complement of the vector

spaceM(X) generated by the columns of the design matrix X, i.e. M(X) = {Xu :

u ∈ Rk}. Under normality, the estimators B̂ and Σ̂ are statistically independent.

Moreover, if n− k > q, then (n− k)Σ̂ has the Wishart distribution Wq[n− k,Σ].

Let us note that the univariate approach (6.5) leads to the same estimators

of the regression parameters bj and of the variances σjj = {Σ}jj, j = 1, 2, . . . , q.

Specifically,

b̂i = (X′X)
−1

X′yi,

var(b̂i) = σii (X′X)
−1
,
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σ̂ii = y′iMXyi/(n− k).

The theory of multivariate linear regression models [19] provide a range of tests,

that are easy to compute due to explicit formulas. Usually three basic issues of

hypotheses testing in a multivariate regression context are considered: significance

of covariates for the responses yj, j = 1, 2, . . . , q, point wise and simultaneously,

and verification that the predictor xi, i = 1, 2, . . . , k, contributes to the explanation

of the overall variability in y.

The multivariate models enable to describe more complex designs, thus con-

cerning the association between the outcomes. Definitely, they are more efficient

tool for modelling convoluted designs than the univariate ones.

Further, testing in the multivariate models avoid problems with the multiple

testing. The tests for the univariate models are not simultaneous tests for all the

regressions and they do not consider the influence of the correlations among the

responses, which can result in less powerful tests. Consequently, the univariate

tests cannot evaluate joint influence on all outcomes. Among the difficulties when

one uses the multivariate linear model approach is the necessity of disposing with

large number of observations and complex interpretation of the results.

Regression with a D-part compositional response leads to a multivariate lin-

ear model with a (D − 1)-dimensional response variable formed by orthonormal

coordinates zi, i = 1, 2, . . . , D − 1, given by 4.3). Although by using orthonormal

coordinates, it is possible to decompose the (multivariate model into D − 1 mul-

tiple regressions [7], in general, the multivariate approach has several advantages

in comparison with a series of univariate models.

According to (6.5) and (6.6), the multivariate linear model can be expressed as

(z1, z2, · · · , zD−1) = X(b1,b2, . . . ,bD−1) + (ε1, ε2, . . . , εD−1),

or, equivalently, in the matrix form

z = XB + ε.

Here it is assumed that X is an (n× k) dimensional design matrix of full column

rank, bj, j = 1, 2, . . . , D − 1, is a k dimensional vector of unknown regression

parameters and ε is an [n × (D − 1)] dimensional matrix of the random errors.

The multivariate responses zi· = (zi1, zi2, . . . , ziD−1)′, i = 1, 2, . . . , n, are assumed

to be independent with the same unknown variance-covariance matrix Σ. Regres-

sion with a D-part compositional response leads to a multivariate linear model

with a (D− 1)-dimensional response variable formed by orthonormal coordinates.
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Although by using orthonormal coordinates, it is possible to decompose the mul-

tivariate model into D − 1 multiple regressions [7], in general, the multivariate

approach has several advantages in comparison with a series of univariate models.

According to (6.8), the BLUE of the parameter matrix B is

B̂ = (X′X)
−1

X′(z1, z2, . . . , zD−1).

The estimator of B is invariant under a change of the variance-covariance matrix

Σ. The variance-covariance matrix of vec(B̂) is given in (6.9).

To verifying the significance of the covariates for the ilr coordinate zj, j =

1, 2, . . . , D − 1, point wise and simultaneously, i.e. testing the null hypothesises

bj = 0, j = 1, 2, . . . , D − 1, the following test statistic can be used

F ilr
j =

(n− k) b̂′jX
′Xb̂j

kσ̂jj
, (6.10)

which has F-distribution with k and n − k degrees of freedom under the null

hypothesis.

Another test that can be taken into account is the test for the significance of the

i-th predictor, i = 1, 2, . . . , k, i.e. test of the hypothesis Bi. =
(
bi1, bi2, . . . , bi(D−1)

)
= 0. The test statistic for this case is

F ilr
pred,i =

(n−D − k + 2) B̂i. (z
′MXz)−1 B̂′i.

(D − 1)
{

(X′X)−1}
ii

, (6.11)

which is distributed as FD−1,n−D−k+2 under the null hypothesis H0i.

Lastly sometimes it is of interest to verify the significance of the whole matrix of

regression parameters B, or in other words to test the hypothesis AB = C, where

A is a q × k hypothesis matrix having full-row rank q ≤ k, and C is a q ×D − 1

matrix. Therefore we will use the well-known Pillai-Barttlet trace, Wilk’s Lambda,

Hotelling-Lawley trace and Roy’s largest root that rely on the p = min(q,D − 1)

non-zero eigenvalues λj of HE−1 where the matrices H and E are

E = (y −XB̂)′(y −XB̂)

H = (AB̂−C)′[A(X′X)−1A′]−1(AB̂−C).

Due to (4.4) that describes the relationship between single clr coefficients and

the first orthonormal coordinates from (4.3) it seems to be quite intuitive possibility

to replace orthonormal coordinates in the response simply by their clr counterparts

and then proceed with the regression analysis.
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Nevertheless, due to singularity of the covariance matrix of clr coordinates it

is not possible to decompose the multivariate model into univariate ones as it

was the case for orthonormal coordinates. Though, as it is shown below, even

taking multivariate regression in clr coordinates would yield the same results of

the respective test statistics as one would obtain by considering single orthonormal

coordinates, coming from D regression models.

Then the multivariate model can be also written in the form

h = XBclr + εclr, (6.12)

where h = (h1,h2, . . . ,hD) is the (n×D) dimensional matrix of response vectors

that stand for the clr coordinates given in (4.1). The variance-covariance matrix of

independent D-variate responses hi· is var(hi·) = Σclr = V′ΣilrV, i = 1, 2, . . . , n

where V is the [(D− 1)×D] matrix, such that satisfies VV′ = I(D−1), having the

rows vectors given by the relation (4.2). The variance-covariance matrix Σclr is a

D × D positive semi-definite matrix with the rank D − 1 unlike Σilr, which is a

full rank (D − 1) × (D − 1) positive definite matrix. Obviously, Σilr = VΣclrV
′.

The relationships between the parameter matrices and multivariate responses are

the following

Bclr = BilrV,

Bilr = BclrV′,

h = zV,

y = hV′.

In the thesis is shown that if we consider the model (6.12), the test statistics

given by the relation (6.10) and (6.11) can be used for testing hypothesis sig-

nificance of covariates for the clr coordinate hj, j = 1, 2, . . . , D point wise and

simultaneously, and verification that the predictor xi, ı = 1, 2, . . . , k, contributes

to the explanation of the overall variability. Follows that it is possible to perform

parameter estimation and significance testing in clr coordinates instead of taking

D orthonormal coordinate systems of type (4.3), when the interpretation in sense

of the original compositional parts (with respect to the others) is required. Al-

though methodically working in orthonormal coordinates is preferred in any case,

numerical outputs are the same (test statistics) or differ just up to a constant

resulting from (4.4).

Finally, note that the interpretation of the regression parameters can be en-

hanced by considering orthogonal coordinates, resulting from suppressing scaling
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constants in orthonormal coordinates. Concretely, they are formed from (4.3)

by omitting scaling constants and replacing the natural logarithm by its binary

counterpart (or any other interpretable base of logarithm), i.e.

z∗i = log2

yi

D−i

√∏D
j=i+1 yj

, i = 1, 2, . . . , D − 1

[20]. By considering regression in clr coordinates, the parameters of the resulting

regression model in orthogonal coordinates, adapted to favour the l-th composi-

tional part (denoted as b
∗(l)
1 ), would be related through

b
∗(l)
1 = log2(e)

√
D

D − 1
b

(l)
ilr,1 = log2(e)

D

D − 1
bclr,l.

Consequently, by taking the j-th element of b
∗(l)
1 , i.e. b

∗(l)
1;j , for j = 1, 2, . . . , k, then

for a unit additive change in the j-th explanatory variable (by constant values of

the other covariates), the ratio of yl to the mean relative contributions of the other

parts grows (decreases) δ = 2b
∗(l)
1;j times.

To compare log-ratio and log-transformed regression models one has to analyse,

whether something similar holds also in the regression context. Such a finding

would be an important step to understand the behaviour of regression models

in different coordinate systems. For this purpose, the matrix of sums of residual

squares is taken for both the cases of orthonormal coordinates and log-transformed

compositions,

Eilr = (z−XB̂)′(z−XB̂) = z′MXz,

Elog = [log(y)]′MX log(y),

respectively. Here the symbol y denotes an n×D matrix with D-part compositions

in rows. The overall variability in data corresponds to the matrices of total sum

of squares

Tilr = z′MX1z = VTlogV
′, Tlog = [log(y)]′MX1 log(y).

The matrix E is commonly used to measure the discrepancy between the data and

a fitted model in case of multivariate regression [16]. Although also an alternative

exists, based directly on the norm between the observed and predicted response [7],

using directly E seems to be more coherent with the current regression methodol-

ogy. Particularly, the trace of E is of primary importance, because it aggregates
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residual sums of squares of single response variables and leads to the multivariate

analogy of the residual sum of squares (RSS). The following relation between the

traces of matrices E and T for compositions in orthonormal coordinates and by

taking log-transformation holds:

0 ≤ tr(Eilr) ≤ tr(Elog), 0 ≤ tr(Tilr) ≤ tr(Tlog).

Thus the trace of the matrix E obtained for orthonormal coordinates is less or equal

to that one for log-transformed compositions. Thus, the mean squared error (MSE)

for orthonormal coordinates is less or equal to the MSE for log-transformed data.

Since the same inequality holds also for the trace of the matrix T, the relationship

between the coefficients of determination R2
ilr and R2

log does not exist in general.

These measures of goodness of fit, defined as

R2
ilr = 1− tr(Eilr)

tr(Tilr)
, R2

log = 1− tr(Elog)

tr(Tlog)
,

thus reflect structural changes that arise by avoiding the scale invariance property

of compositions, i.e. when log-transformation is applied instead of taking the

orthonormal coordinates.

6.3 Calibration problem for compositional data

The total least squares (TLS) presents regression technique that deals with

modelling the relationship within the composition, i.e. between the compositional

parts. This technique is also known as the orthogonal regression, regression with

errors in variables, or as a calibration problem. A model is established just for the

three-part compositions after the ilr transformation and can be used for modelling

the relationship between the parts of compositions. Primary contribution to this

quite new regression technique compositional data can be find in the papers [10,

12]. Authors there overcome the standard TLS by the linear regression models

with the type II constraints [17].

An important requirement to build such a model is the assumption of indepen-

dence and homoscedasticity of the orthonormal coordinates. Otherwise, when this

is violated, then it is not satisfied the invariance of the results on the simplex under

the orthogonal rotation of the orthonormal coordinates. Namely, when transform-

ing the results of the analysis back on the simplex they will differ from these

obtained in the ilr space. Linear models with type-II constrains [9], based on the
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calibration line approach [18, 25], overcome the difficulties of the TLS approach.

The linear regression model is of the form of

(
z1

z2

)
=

(
µ
ν

)
+ ε,

where z1 and z2 are the orthonormal coordinates, and where the unknown regres-

sion parameters a, b, and the vector of the errorless recordings µ,ν satisfy

ν = a1n + bµ, var(ε) = σ2I2n. (6.13)

Such constraints on regression parameters involving other unknown parameters a

and b are called type-II constraints. Evidently, this is a non-linear function of the

unknown parameters b and µ. Using linearization by the Taylor series locally at

µ(0), ν(0), a(0) and b(0), when the second and higher derivatives are neglected, the

locally BLU estimators of µ, ν, a and b are derived in [10].

The variance σ2 is usually unknown and can be unbiasedly estimated by [18]

σ̂2 =
(z1 − µ̂)′ (z2 − µ̂) + (z1 − ν̂)′ (z2 − ν̂)

n− 2
. (6.14)

The linear model approach is favourable for finite samples, unlike, the TLS which is

an asymptotic approach. Moreover, the linear model approach enables to perform

the standard statistical inference, being difficult or sometimes impossible in the

frame of the TLS approach.

An iterative algorithm is proposed for the estimation of the calibration line

[10]. Advantages of this iteration procedure is that it converges very quickly, and

in addition, stable values of the estimates are achieved in the first few iterations.

Problems with numerical stability of the proposed algorithm may occur if the angle

between the calibration line and the axis represented by the first orthonormal

coordinate tends to be 90◦. Thus the calibration line is estimated.
Moreover, we have shown in the thesis that indeed the TLS and the linear

model with type-II constraints lead to the same estimates.

In the thesis is discussed the calibration problem for compositions. For D-part

compositions, the calibration problem can be partitioned into D(D− 1)/2 partial

calibration problems, performed on log-ratios of compositional parts. In other

words, the calibration is performed for the corresponding coordinate of all possible

two-part subcompositions separately.

Let there be n different compositions that have D parts which are measured

using two methods A and B with the same precision. Let R = {r = 1, 2, . . . , D −
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1, s = r+ 1, r+ 2, . . . , D} be the set of subscripts. For two-part subcompositions

(yr, ys) and (wr, ws), corresponding to the measurements obtained by methods A

and B, respectively, the log-ratios are formed and arranged in data matrices

(ZA
rs,Z

B
rs) =


ln y1r

y1s
ln w1r

w1s

ln y2r
y2s

ln w2r

w2s

...
...

ln ynr

yns
ln wnr

wns

 ,

where (r, s) ∈ R (note that multiplying the log-ratios by 1/
√

2 ilr coordinate

would be formed). Let us assume that ZA
rs and ZB

rs represent a realization of

a normally distributed n-dimensional random vector zArs ∼ Nn(µrs, σ
2In) and

zBrs ∼ Nn(νrs, σ
2In), respectively. Let µrs = (µ1rs, µ2rs, . . . , µnrs)

′ denote the vec-

tor of errorless measurement results of zArs, and νrs = (ν1rs, ν2rs, . . . , νnrs)
′ the

vector of errorless measurement results of zBrs, where (r, s) ∈ R. Moreover, these

measurement results are taken to be mutually independent. Thus, the calibration

line (6.13) can be expressed as

νrs = ars1n + brsµrs, (6.15)

where (r, s) ∈ R, and 1n stands for the vector of n ones. The parameter ars

represents a systematic deviation of log-ratios between parts r and s obtained

by measurement methods A and B, and brs denotes the scaling factor between

them. The formulas for the BLUE’s of the unknown model parameters and as well

instruction for the iterative procedure for estimation can be find in [10].

From the theoretical point of view, it is interesting that the fitted calibration

lines can be also used to predict the values of the method B by the method A and

vice versa. For this purpose, let us define the matrices of the predicted averages

M(j), j = 1, 2, as

M(j) =


0 m̂

(j)
12 m̂

(j)
13 · · · m̂

(j)
1D

m̂
(j)
21 0 m̂

(j)
23 · · · m̂

(j)
2D

...
...

...
...

...

m̂
(j)
D1 m̂

(j)
D2 m̂

(j)
D3 · · · 0

 ,

where for j = 1 the elements of M(1) are the averages of method B as predicted by

the averages of method A. Particularly, elements of M(1) are defined as predicted

averages using the fitted calibration line (6.15) when the parameters are marked
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with superscript (1),

m̂(1)
rs = â(1)

rs + b̂(1)
rs z

A
rs, zArs =

1

n

n∑
i=1

ln
xir
xis
.

Conversely, the elements of M(2) are the averages of method A as predicted by the

averages of method B, i.e., the elements of M(2) are defined as predictions using

the fitted calibration line

µrs = a(2)
rs 1n + b(2)

rs νrs,

specifically

m̂(2)
rs = â(2)

rs + b̂(2)
rs z

B
rs, zBrs =

1

n

n∑
i=1

ln
yir
yis
.

Further, the matrix of residual variances is defined as

T∗ =


0 σ̂2

12 σ̂2
13 · · · σ̂2

1D

σ̂2
21 0 σ̂2

23 · · · σ̂2
2D

...
...

...
...

...
σ̂2
D1 σ̂

2
D2 σ̂

2
D3 · · · 0

 ,

where σ̂2
rs is the estimate of the residual variance (6.14) for r, s = 1, 2, . . . , D, r 6= s.

The the matrices M(j), j = 1, 2 and T∗ fulfil the following properties:

i) For the elements of the matrices M(j), j = 1, 2, the triangular equality holds,

i.e.,

m̂(j)
rs = m̂

(j)
rl + m̂

(j)
ls , r, s, l = 1, 2, . . . , D.

ii) Matrices M(j), j = 1, 2, are antisymmetric, i.e., m̂
(j)
rs = −m̂(j)

sr and m̂
(j)
rr = 0,

r, s = 1, 2, . . . , D.

Similarly, it is a direct consequence of the logarithm properties that the matrix of

residual variances T∗ is symmetric. Thus we can conclude that the elements of

the above matrices have the same properties as the elements of the variation array

given by (6.3).

The above findings can be used for descriptive statistics based on the results

of the calibration problem. Consequently, some tests for conformity of two mea-

surement methods can be introduced.
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The test statistic for each hypothesis H0rs : a
(1)
rs = 0, b

(1)
rs = 1 individually,

according to [12], is given as

Frs =

[(
â

(1)
rs

b̂
(1)
rs

)
−
(

0
1

)]′ [
v̂ar

(
â

(1)
rs

b̂
(1)
rs

)]−1 [(
â

(1)
rs

b̂
(1)
rs

)
−
(

0
1

)]
.

The symbol v̂ar[(â
(1)
rs , b̂

(1)
rs )′] stands for the covariance matrix of the estimator

(â
(1)
rs , b̂

(1)
rs )′ [10]. Under the null hypothesis, the statistic Frs is distributed as F2,n−2.

For testing the whole set of hypotheses H0rs, (r, s) ∈ R, simultaneously, it is nec-

essary to use some techniques for multiple comparisons. In order to retain a

prescribed significance level α for all tests simultaneously, the significance level

for each test must be less than α. The Bonferroni-adjusted α-level of significance

αadj = 2α
D(D−1)

for each test is one of the most commonly used approaches. Apply-

ing the Bonferroni correction, we reject H0rs when frs ≥ F2,n−2 (1− αadj), where

frs is a realization of the test statistic Frs. Equivalently, the hypothesis H0rs is

rejected if p-value ≤ αadj.

In the case we reject some of H0rs we want to identify which of the components

a
(1)
rs or b

(1)
rs is responsible for the rejection. This is done by performing multiple

tests of intercepts and slopes separately. Therefore, in order to test whether the

intercepts are significantly different from zero, i.e., to test a
(1)
rs = 0, (r, s) ∈ R,

simultaneously, the test statistic [12]

T 1
rs =

â
(1)
rs

√
n [µ̂rs]

′ µ̂rs − [1′µ̂rs]
2

σ̂rs

√(
b̂

(1)
rs + 1

)
[µ̂rs]

′ µ̂rs

,

can be used. Under the null hypothesis T 1
rs has the tn−2 distribution. The hypoth-

esis a
(1)
rs = 0 is rejected if |t1rs| ≥ tn−2

(
1− αadj

2

)
, where t1rs is a realization of T 1

rs,

or else if p-value≤ αadj. The test that the slopes are significantly different from 1,

i.e., to test b
(1)
rs = 1, (r, s) ∈ R, simultaneously, is done by using the test statistic

[12]

T 2
rs =

(
b̂

(1)
rs − 1

)√
n [µ̂rs]

′ µ̂rs − [1′µ̂rs]
2

σ̂rs

√
n
(
b̂

(1)
rs + 1

) ,

which is distributed as tn−2, if the hypothesis is true. Conditions for rejection of

hypotheses are the same as for the intercept.
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Another way of hypothesis testing that the two measurement methods give

the same results is based on matrices of predicted averages M(1) and M(2). Both

methods give the same results if and only if the matrices M(1) and M(2) are the

same. Hence, the problem is to test the hypothesis that all elements of matrices

M(1) and M(2) are the same, i.e., to test H
′

0rs: µrs = νrs for all (r, s) ∈ R,

simultaneously. The test statistics for this hypothesis are of the form

Trs =
m̂

(1)
rs − m̂(2)

rs

σ̂rs

√
n/2,

(r, s) ∈ R. Under the null hypothesis the test statistic Trs follows the tn−2 distri-

bution. We reject H
′

0rs if |trs| ≥ tn−2

(
1− αadj

2

)
, where trs is a realization of the

test statistic Trs.

In order to verify that the methods follow a prescribed precision (the same

for both methods), we provide multiple tests on elements of matrix T∗, H
′′

0rs:

σ2
rs = σ2

rs0 versus H
′′

1rs: σ
2
rs 6= σ2

rs0. Here we use χ2-tests on variance,

Crs = σ̂2
rs

n− 2

σ2
rs0

.

In the case that H
′′

0rs is true the test statistic Crs is distributed as χ2
n−2. Hypothesis

H
′′

0rs is rejected if crs ≤ χ2
n−2

(αadj

2

)
or crs ≥ χ2

n−2

(
1− αadj

2

)
for crs taken to be a

realization of Crs.

All the tests proposed in this section are uniformly more powerful if one uses,

e.g., the modified Bonferroni adjustment, known as Holm-Bonferroni adjustment

[13], which consists of a three step algorithm. In the first step p-values are com-

puted and arranged in ascending order, thus constituting an increasing sequence of

p-values, i.e., p(1) < p(2) < · · · < p(k), where k is the number of comparisons made

(here D(D − 1)/2). Subsequently they are compared with the corresponding ad-

justed α-levels of significance calculated as α
k−j+1

, j is the position in the sequence

of p-values. We are starting with comparing the first p-value with the appropriate

adjusted α-level of significance. The algorithm stops when it finds such a p-value

that exceeds the adjusted α-level of significance, i.e., when it finds minimum j

such that p(j) >
α

k−j+1
. Finally, in the last step a conclusion about the acceptance

or rejection of the hypotheses is done, i.e., reject hypotheses corresponding with

p-values p(1), . . . , p(j−1) and do not reject the remaining hypotheses.
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7. Original results and summary

The thesis is focused on regression analysis with compositional data. In prac-

tice, for example in geosciences, compositions usually have high number of parts.

Therefore, it is convenient to reduce the number of compositional parts before

performing regression analysis for compositions. The proposed procedure for vari-

able selection reduces the dimension of the compositions, and, consequently, it

simplifies the statistical analysis and the interpretation of the results is easier to

understand. This procedure provides only negligible loss of information about the

multivariate data structure.
An intuitive selection of parts based on expert knowledge of subject matter

specialists may lead to major changes of the multivariate statistical analysis results.

For example, experts are interested in the analyses of certain geochemical processes

and select elements for the statistical analysis which are somehow related to these

processes. In this selection they may miss variables that are responsible for the

substantial information about the multivariate data structure, and their omission

changes the statement about the resulting subcomposition.

The proposed stepwise procedure for excluding compositional parts allows to

arrive at a subcomposition that still retains the important information contained

in the multivariate data structure. The goal of this procedure is to retain the

total variance from one step to the next, and it is stopped before a significant

reduction would occur. The larger the original composition, the more reduction of

the number of parts is made.

Although regression analysis with compositional response represents one of the

most tasks of compositional data analysis, there are still some aspects that deserve

to be analysed in more detail. One of the aspects elaborated here, concerns the

particular coordinate representation useful for the estimation and interpretation

of regression parameters. Further aspect discussed in this thesis deals with the

quality of prediction by considering (or not) also absolute abundances instead of

purely relative information conveyed by compositional data. They both have in

common that even clr coordinates and the simple log-transformation are nowadays

rather suppressed in compositional data analysis, they might be useful for some

specific tasks and also help to understand differences between various method-

ological viewpoints. Particularly, clr coordinates simplify the computation of the

regression coefficients instead of considering D different regression models with or-

thonormal coordinates, just the principal difference between both options arising
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from a singularity of a covariance matrix for clr coordinates needs to be taken

into account. Clr coordinates cannot be considered separately due to their zero

sum constraint, while this is not the case for orthonormal coordinates. From this

perspective, we believe that the presented methodological outputs are useful steps

for a practical analysis of compositional data.

The last aim of this thesis concerned the calibration problem of compositional

measurements. The calibration problem belongs to basic tasks in statistical anal-

ysis. In the thesis, an alternative approach to the total least squares by means

of linear models with the type-II constraints was used. The equivalence between

this approach and the standard total least squares estimation was proved under

assumptions of independent random errors with equal variances leads. Because

all the relevant information in a composition is contained in log-ratios, the mul-

tivariate problem can be converted into univariate calibration of single log-ratios

that are easy to handle and interpret. It means, for D-part compositions, the cali-

bration problem can be partitioned into D(D− 1)/2 partial univariate calibration

problems, performed on log-ratios of compositional parts. Hence, the calibration

line is fitted to the corresponding coordinate of all possible two-part subcomposi-

tions separately. As a result of calibration, an analogy between the compositional

variation array and the matrices of the predicted values and residual variances

from univariate calibrations was derived, which is a popular tool in descriptive

statistics of compositional data. Further, tests for conformity of two measurement

methods were proposed. Particularly, tests for the identification of a significant

systematic difference between results obtained by two methods and for the verifi-

cation that the methods follow the same prescribed precision. All proposed tests

are univariate, and, thus the multiple comparison approach was used to summarize

results into a multivariate decision.
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• Donevska S., Fǐserová E., Hron K. (2016). Calibration of compositional

measurements. Communications in Statistics - Theory and Methods 45 (22):

6773–6788.

26
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stepwise procedure for compositional data (presentation)

27



Bibliography

[1] Aitchison J. (1986) The statistical analysis of compositional data. London:
Chapman and Hall.

[2] Aitchison J., Greenacre M. (2002). Biplots of compositional data. Applied
Statistics 51, 375–392.

[3] Buccianti A., Mateu-Figueras G., Pawlowsky-Glahn V., eds. (2006). Compo-
sitional data analysis in the geosciences: From Theory to Practice, London:
Geological Society.

[4] Daunis-i-Estadella J., Egozcue J. J., Pawlowsky-Glahn V. (2002). Least
squares regression in the simplex. In Proceedings of IAMG02. The eigth annual
conference of the International Association for Mathematical Geology, Bayer,
U., Burger, H.,and Skala, W., editors, volume I and II, International Asso-
ciation for Mathematical Geology, Selbstverlag der Alfred-Wegener-Stiftung,
Berlin 411–416.

[5] Egozcue J.J., Pawlowsky-Glahn V., Mateu-Figueras G., Barceló-Vidal C.
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[12] Fǐserová E., Hron K. (2012). Statistical inference in orthogonal regression for
three-part compositional data using a Linear model with Type-II constraints.
Communications in Statistics 41, 2367–2385.

28



[13] Holm S. (1979). A simple sequentially rejective multiple test procedure. Scan-
dinavian Journal Of Statistics 2, 65–70.
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