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Abstract

The study investigates human decision-making behaviour within a game-based context and
endeavours to replicate said behaviour using the Generative Adversarial Imitation Learning
(GAIL) technique. In this gamified environment, inspired by a hunter-gatherer scenario, play-
ers have to ensure their survival in a challenging environment while accounting for their
episodic homeostasis and factoring in current and future climatic conditions, necessitating
the estimation of stochastic trade-offs. The initial phase of the study primarily centres on
the collection and analysis of data from healthy participants, thereby yielding valuable in-
sights into their gameplay dynamics and the cognitive processes underpinning their decision-
making. An overarching observation is that participants can seemingly differentiate between
cases where simple heuristics advance the game and those cases where prior and present in-
formation is necessary for informed action selection. Subsequently, the study pivots toward
predictive modelling, firstly by considering the task in a supervised learning paradigm as the
basis for behavioural cloning by utilizing a white-box decision tree algorithm. The trained de-
cision tree model attained a survival rate of 20%, proximity to the human benchmark of 21%,
whereas comparison with imitation-based evaluation metric, namely Monte Carlo Distance
(MCD) registered a score of 8.92 - a decent score considering the stochasticity of the game
and variability in human behaviour. On the other hand, GAIL regards the task in an inverse
reinforcement learning framework and attempts to imitate the behaviour, achieving a score
of 16% as a survival rate and an MCD score of 8.83, showcasing competitive performance and
effective imitation capabilities. The study also looks closely at how the GAIL model works us-
ing post hoc model explainability, more specifically, utilizing Shapley analysis and training a
decision tree on GAIL’s synthetic behavioural data, suggesting that GAIL is capable of learn-
ing complex strategies that are similar to those used by humans. This research contributes to
the understanding of resource management, risk assessment, and strategic thinking within a
game environment, and demonstrates the potential of GAIL for imitating human behaviour in a
tabular setting. Code can be found here: https://github.com/faizankshaikh/ForaGym

vii

https://github.com/faizankshaikh/ForaGym




Contents

Abstract vii

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background Knowledge 5
2.1 Basics of Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Hyperparameters of Decision Trees . . . . . . . . . . . . . . . . . . . . 5
2.2 Basics of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Hyperparameters of MLP . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Basics of Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Groundwork for Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Hyperparameters of GAIL . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Literature Review 11

4 Methodology 13
4.1 Problem Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Predictive modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Methods for Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Data Analysis and Results 21
5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Data Preprocessing and Feature Engineering . . . . . . . . . . . . . . . . . . . 26

5.3.1 Feature Engineering - Raw Features . . . . . . . . . . . . . . . . . . . 27
5.3.2 Feature Engineering - Derived Features . . . . . . . . . . . . . . . . . 27

5.4 Model Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.1 Model Architecture and Hyperparameters - Decision Tree . . . . . . . 28
5.4.2 Model Architecture and Hyperparameters - GAIL . . . . . . . . . . . . 28

5.5 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 Model Explanability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6.1 Explaining Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6.2 Explaining GAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Discussion 33

ix



Contents

7 Conclusion and Future Work 35

x



List of Figures

4.1 Task figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Pseudocode for PPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Frequency plot of the number of days left . . . . . . . . . . . . . . . . . . . . . 22
5.2 Frequency plot of the number of life points left . . . . . . . . . . . . . . . . . . 22
5.3 Stacked frequency plot of the number of days left along with the number of life

points left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Stacked frequency plot of the number of days left for a particular action taken 23
5.5 Stacked frequency plot of the number of life points left for a particular action

taken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 Violin plot of the probability of success for a particular action taken . . . . . . 24
5.7 Violin plot of the probability of threat for a particular action taken . . . . . . . 25
5.8 Correlation plot of all independent features . . . . . . . . . . . . . . . . . . . . 26
5.9 Architecture of GAIL’s generator . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.10 Generator Value loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.11 Discriminator Logloss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.12 Decision Tree trained on human behavioural data . . . . . . . . . . . . . . . . 30
5.13 Decision Tree trained on synthetic data obtained from GAIL . . . . . . . . . . 31
5.14 Shapley analysis of GAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1





1 Introduction

1.1 Motivation

Human decision-making behaviour has long been a subject of great interest and significance in
various domains, including psychology, economics, and artificial intelligence. Understanding
how individuals make choices and respond to dynamic environments is essential for developing
effective strategies and decision-support systems. In the realm of artificial intelligence and
machine learning, the ability to emulate human decision-making processes can lead to more
robust and adaptive algorithms.

The central focus of the game designed for the study is to ensure the survival of players
by maintaining their health above a specified threshold for a specific duration in an episode.
Accomplishing this goal necessitates making foraging decisions based on current and future
climate factors, which adds a layer of complexity and uncertainty to the decision-making pro-
cess. This thesis then delves into the investigation of human decision-making behaviour within
the game and aims to emulate this behaviour using Deep Learning, more specifically, Genera-
tive Adversarial Imitation Learning.

1.2 Outline

The study begins with an introduction (Chapter 1) that outlines the motivation behind this
research and provides an overview of the entire thesis structure. Following the introduction,
Chapter 2 presents the background knowledge necessary for understanding the subsequent
chapters. This includes an explanation of the basics of machine learning, deep learning, re-
inforcement learning, and imitation learning. Furthermore, it delves into the important hy-
perparameters associated with decision trees, multi-layer perceptrons (MLP), and Generative
Adversarial Imitation Learning (GAIL). Chapter 3 offers a literature review, providing insights
into prior work and research relevant to the thesis. Chapter 4 elaborates on the methodology
employed in this study. It describes the problem design and the process of predictive modelling,
while also exploring various methods for explainability in the context of the models utilized.
The empirical results and data analysis are presented in Chapter 5. This chapter includes details
about data collection, exploratory data analysis, data preprocessing, and feature engineering
techniques applied to the raw and derived features. Additionally, it discusses the model train-
ing and evaluation process, focusing on decision tree and GAIL models. The chapter concludes
with an in-depth evaluation of the model’s performance and explainability. Chapter 6 is dedi-
cated to the discussion of the obtained results and their implications, providing a critical anal-
ysis of the research findings. Furthermore, it discusses potential future work and directions
for further research in the field of imitation learning, predictive modelling, and explainability.
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1 Introduction

Finally, Chapter 7 concludes this thesis by summarizing the key findings and contributions
made in the study. It reiterates the importance of predictive modelling and explainability in
imitation learning and outlines the broader implications of the research.
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2 Background Knowledge

2.1 Basics of Machine Learning

A learning algorithm in machine learning refers to a computational method or process that
enables a system to automatically acquire knowledge or make predictions based on data. It
involves constructing a mathematical model by learning patterns and relationships from the
given input data. Generalization of new examples is crucial in machine learning because it en-
sures that the learned model can accurately predict outcomes for unseen or future data points.
The goal is not merely to fit the training data perfectly but to capture underlying patterns that
hold true for new instances as well.

Supervised learning is a category of machine learning where the algorithm learns from la-
belled examples, where the input data is accompanied by corresponding desired outputs. The
algorithm’s objective is to learn a mapping function that can predict the correct output for
unseen inputs.

There are several examples of supervised learning algorithms, including linear regression,
logistic regression, support vector machines, and random forests. Each algorithm has its own
characteristics and is suitable for different types of problems. In the context of supervised
learning, an optimization algorithm aims to find the optimal values of the model’s parameters
by minimizing a specific objective function. This process involves adjusting the parameters
iteratively based on the error or loss between the predicted and actual outputs.

Decision Trees are a popular machine learning algorithm that uses a hierarchical structure to
make predictions. They work by splitting the input space into regions based on feature values,
forming a tree-like structure. At each internal node, a splitting criterion is used to decide which
feature to split on. The process continues recursively until the tree reaches a certain depth or
a stopping criterion.

2.1.1 Hyperparameters of Decision Trees

Hyperparameters are adjustable parameters that are not learned from the data but are set by the
user. These parameters control the behaviour of the learning algorithm and can significantly
impact the performance and generalization ability of the model. Examples of hyperparame-
ters include the learning rate, regularization strength, and the number of hidden layers in a
neural network. Hyperparameters in Decision Trees play a significant role in controlling the
behaviour, complexity, and performance of the algorithm.

Let’s delve into the significance and use of the specific hyperparameters commonly associ-
ated with Decision Trees that are used in this work.

1. Splitting Criteria: The splitting criteria determine how the algorithm measures the
quality of a split at each internal node of the tree. Two commonly used criteria are Gini
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2 Background Knowledge

impurity and information gain. Gini impurity measures the probability of misclassify-
ing a randomly chosen element from a node if it were randomly labelled according to
the distribution of classes in that node. Information gain, on the other hand, quantifies
the reduction in entropy (or uncertainty) achieved by splitting on a particular feature.
The choice of splitting criteria depends on the problem and the desired behaviour of the
Decision Tree.

2. Max Depth: The max depth hyperparameter limits the maximum depth or length of the
Decision Tree. It controls the complexity of the tree and helps prevent overfitting, where
the model memorizes the training data too closely and fails to generalize well to unseen
data. By setting an appropriate max depth, we can find a balance between capturing
intricate relationships and avoiding excessive complexity.

3. Minimum Weight Fraction Leaf: This hyperparameter specifies the minimum frac-
tion of samples required to be present at a leaf node for further splitting to occur. It
helps control the granularity of the Decision Tree. Setting a higher value for this hyper-
parameter can result in fewer and larger leaf nodes, leading to a simpler tree structure.
Conversely, a lower value can create more leaf nodes, potentially capturing more spe-
cific patterns in the data. It is used to control the trade-off between model complexity
and capturing fine-grained details.

4. Minimum Impurity Decrease: The minimum impurity decrease hyperparameter de-
termines the threshold for splitting a node based on the decrease in impurity achieved. It
quantifies the minimum improvement required to justify a split. A higher value for this
hyperparameter results in fewer splits and a simpler tree, as only significant impurity
decreases will be considered for further partitioning. Lower values allow for more splits,
potentially capturing finer distinctions in the data. This hyperparameter helps control
the trade-off between simplicity and sensitivity to small impurity improvements.

By carefully tuning these hyperparameters, we can optimize the performance of Decision
Trees for a specific problem. It often involves a trial-and-error process or using techniques like
grid search or randomized search to explore different combinations of hyperparameter values
and select the ones that yield the best performance in terms of accuracy, precision, recall, or
other evaluation metrics.

2.2 Basics of Deep Learning

Deep learning is a subfield of machine learning that focuses on training artificial neural net-
works with multiple layers to learn and extract complex patterns from data. Neural networks
are computational models inspired by the structure and function of biological neurons in the
brain. They consist of interconnected layers of nodes (neurons) that process and transform
input data to produce output predictions.

Deep learning differs from traditional machine learning approaches by its ability to auto-
matically learn hierarchical representations of data. Deep neural networks can automatically

6



2.2 Basics of Deep Learning

learn and extract higher-level features from raw data, enabling them to capture intricate rela-
tionships and patterns that may be challenging to specify manually.

A typical structure of a multilayer perceptron (MLP) model, a type of neural network, in-
volves an input layer, one or more hidden layers, and an output layer. Each layer contains
multiple nodes (neurons) that perform computations on the input data. The hidden layers act
as intermediate representations, progressively transforming the input data to produce the final
output predictions.

Backpropagation is a key algorithm used to update the weights of the neural network based
on the calculated errors. It propagates the error from the output layer back to the hidden layers,
allowing the network to adjust its weights and improve its predictions.

2.2.1 Hyperparameters of MLP

Hyperparameters play a critical role in deep learning models, allowing fine-tuning and opti-
mization of the model’s performance. Let’s elaborate on the significance and use of the specific
hyperparameters mentioned in the context of multilayer perceptron (MLP) models:

1. Number of Hidden Layers: The number of hidden layers in an MLP determines the
depth of the network. Adding more hidden layers increases the model’s capacity to learn
complex patterns and representations from the data. However, an excessively deep net-
work may lead to overfitting, especially when training data is limited. Balancing model
complexity and generalization is crucial when deciding the appropriate number of hid-
den layers.

2. Optimization Algorithm: The optimization algorithm determines how the network’s
weights are updated during training. Gradient descent is a common optimization algo-
rithm that calculates the gradient of the loss function with respect to the model’s param-
eters and adjusts the weights in the opposite direction of the gradient to minimize the
loss. Adam is a popular variant of gradient descent that adapts the learning rate for each
weight during training. It combines the advantages of different adaptive learning rate
methods and uses estimates of the first and second moments of the gradients to adap-
tively adjust the learning rate. Adam tends to provide faster convergence and improved
performance compared to traditional gradient descent methods, especially in large-scale
deep learning tasks.

3. Loss Function: The loss function quantifies the discrepancy between the predicted out-
puts and the actual ground truth. Cross-entropy or log loss is commonly used in clas-
sification tasks. It measures the difference between predicted class probabilities and the
true class labels. Cross-entropy loss encourages the model to assign higher probabilities
to the correct classes, thereby promoting accurate classification.

4. Learning Rate: The learning rate determines the step size taken during weight updates.
Selecting an appropriate learning rate is crucial for effective training. If the learning
rate is too high, the model may fail to converge or exhibit unstable behaviour. On the
other hand, if the learning rate is too low, the training process can become slow or get
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stuck in suboptimal solutions. Techniques such as learning rate schedules or adaptive
methods like Adam can help dynamically adjust the learning rate during training for
better convergence.

5. Batch Size: The batch size refers to the number of training examples processed in each
iteration of the optimization algorithm. It affects both computational efficiency and the
quality of weight updates. Larger batch sizes provide smoother convergence and more
accurate gradient estimates but require more memory and computational resources. Smaller
batch sizes can lead to faster computations but may have more noisy updates due to
smaller sample sizes. Determining an appropriate batch size involves finding a balance
between computational efficiency and the convergence characteristics of the model.

By carefully selecting and tuning these hyperparameters, practitioners can optimize the per-
formance of deep learning models for specific tasks. Often, a combination of domain knowl-
edge, experimentation, and techniques like grid search or random search is employed to find
the optimal set of hyperparameters that result in improved model accuracy, convergence speed,
and generalization ability.

2.3 Basics of Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning that focuses on training agents to
make sequential decisions in an environment to maximize a cumulative reward signal. In RL,
an agent interacts with an environment, taking actions based on its current state and receiving
feedback in the form of rewards or penalties.

Reinforcement learning differs from traditional machine learning approaches in that it in-
volves learning through trial and error. Instead of being provided with labelled examples or
explicit instructions, RL agents learn by exploring and receiving feedback from the environ-
ment.

A fundamental concept in RL is the Markov Decision Process (MDP). An MDP is a mathe-
matical framework that models the RL problem. It consists of a set of states, actions, transition
probabilities, rewards, and a discount factor. The MDP assumes the Markov property, which
states that the future state depends only on the current state and action, disregarding the his-
tory of previous states and actions.

Deep reinforcement learning (DRL) combines RL with deep learning techniques to tackle
complex, high-dimensional problems. It involves using deep neural networks as function ap-
proximators to learn policies or value functions directly from raw sensory inputs.

There are various algorithms in deep RL, including Proximal Policy Optimization (PPO).
PPO is an actor-critic algorithm that uses an actor network to estimate the policy and a critic
network to estimate the value function. It improves the policy by iteratively updating the actor
using the policy gradient and the critic using the value loss.

PPO is trained through a process of collecting trajectories in the environment, computing
advantages based on the value estimates, and optimizing the policy using stochastic gradient
ascent. It balances exploration and exploitation by clipping the policy update to prevent large
policy changes.

8



2.4 Groundwork for Imitation Learning

Hyperparameters of PPO include the learning rate, batch size, and the number of epochs
which are already explained in the Deep Learning subsection. These hyperparameters influ-
ence the convergence and performance of the algorithm. Additionally, PPO uses the value loss
instead of log loss as the loss function for training the critic network. The value loss measures
the mean squared error between the predicted and target values, helping the critic to estimate
the expected return accurately.

By understanding the concepts of RL, MDPs, and DRL, practitioners can leverage algorithms
like PPO to develop agents that can learn and make optimal decisions in complex, dynamic en-
vironments. Tuning the hyperparameters and selecting appropriate loss functions are essential
for achieving good performance in reinforcement learning tasks.

2.4 Groundwork for Imitation Learning

Imitation learning is a machine learning approach that aims to learn policies or behaviours by
imitating expert demonstrations. It leverages the availability of expert demonstrations to guide
the learning process and facilitate the acquisition of optimal behaviours.

Imitation learning can be beneficial in solving reinforcement learning problems by providing
a shortcut to policy learning. Rather than relying solely on trial and error exploration, imitation
learning utilizes the knowledge and expertise of humans or expert demonstrators to bootstrap
the learning process and accelerate convergence.

There are different types of imitation learning, namely behavioural cloning and inverse rein-
forcement learning. Behavioural cloning involves learning a policy by directly mapping states
to actions using the expert’s demonstrations as labelled training data. In contrast, inverse rein-
forcement learning seeks to infer the underlying reward function from the expert’s behaviour
and then optimize a policy based on this inferred reward function.

Generative adversarial imitation learning (GAIL) is an imitation learning method that com-
bines generative adversarial networks (GANs) with reinforcement learning. GANs are neural
network models that consist of a generator and a discriminator. The generator attempts to gen-
erate synthetic data that resembles the expert demonstrations, while the discriminator aims to
distinguish between the generated data and the expert demonstrations.

In GAIL, the generator model learns to generate action sequences based on observed states,
aiming to imitate the expert’s behaviour. The discriminator model, on the other hand, learns
to distinguish between the generated actions and the expert’s actions. The training process in-
volves iteratively updating both the generator and discriminator models to improve the quality
of generated actions and enhance the discriminator’s ability to differentiate between real and
generated actions.

2.4.1 Hyperparameters of GAIL

Hyperparameters play a crucial role in the effectiveness and performance of GAIL. Let’s elab-
orate on the significance and use of the specific hyperparameters mentioned in the context of
GAIL:

9
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1. Architecture of Generator and Discriminator Models: The architecture of the gen-
erator and discriminator models determines their complexity and representational power.
A more complex architecture, such as deeper or wider neural networks, can capture more
intricate patterns and generate more accurate actions. However, overly complex mod-
els may also lead to overfitting or slow convergence. Finding the right balance between
model complexity and generalization is essential when selecting the architectures for the
generator and discriminator.

2. Number of Updates per Round of Discriminator: GAIL uses an adversarial training
approach, where both the generator and discriminator models are updated iteratively.
The number of updates per round of the discriminator affects the training dynamics and
the equilibrium between the generator and discriminator. Increasing the number of up-
dates per round may enhance the discriminator’s ability to discriminate between real and
generated actions. However, it can also make the training process more computationally
expensive. Finding the optimal number of updates per round is crucial for achieving a
stable and effective training process.

Tuning these hyperparameters is essential to optimize the performance of GAIL. It often
involves a trial-and-error process and experimentation to find the right values that lead to
improved action generation and discriminator performance. It is important to strike a balance
between model complexity, computational efficiency, and the ability to generate actions that
resemble expert demonstrations accurately.

Moreover, hyperparameter tuning can be guided by domain knowledge and previous expe-
rience with similar tasks. Techniques such as grid search or random search can be employed
to explore different combinations of hyperparameter values and select the ones that yield the
best performance, such as generating actions that closely match the expert’s behaviour and
achieving effective discrimination between real and generated actions.

By leveraging the concepts of imitation learning and techniques like GAIL, practitioners can
learn from expert demonstrations and accelerate the acquisition of optimal policies in rein-
forcement learning settings. Careful tuning of hyperparameters ensures effective training and
improves the quality of generated actions and the discriminator’s discrimination ability.
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3 Literature Review

Decision-making under uncertainty has received greater attention in cognitive neuroscience
[1], with several lines of evidence elucidating different variants of uncertainty, such as risk,
ambiguity, and expected and unexpected forms of uncertainty [2]. Markov Decision Processes
(MDPs) are one of the analytical tools used for enlightening decision-making under uncer-
tainty, especially when considering the sequential dynamics of decision-making [3]. The first
part of our study is derived from Korn and Bach [4] as a hunter-gatherer game (i.e. MDP task),
where they provide evidence for a trade-off between heuristic and optimal decision policies
in human decision-making. The second part of our study focuses on modelling human be-
haviour through Deep Reinforcement Learning (DRL) and Decision Trees. Recent advances of
DRL have led to artificial agents capable of producing behaviour that meets or exceeds human-
level performance in a wide variety of tasks [5]. We use DRL, more specifically, Generative
Adversarial Imitation Learning [6] in order to mimic human behaviour. Decision trees [7] on
the other hand, are widely used in settings where interpretable machine learning models are
required [8]. Combining DRL with decision trees [9] can provide both performance and inter-
pretability that can be used to study human behaviour. This methodology is inspired by Pan,
Menghai, et al [10], but applies it to a text-based game [4] through the lens of VIPER [9].
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4 Methodology

4.1 Problem Design

We developed a text-based hunter-gatherer game that simulates the challenges faced by indi-
viduals striving to survive. The primary objective of the game is for players in a particular forest
to maintain their health above a certain threshold for a certain number of days. To achieve this,
players must make critical decisions on a daily basis, choosing between foraging for food or
waiting for the next day in hopes of better environmental conditions, such as greater avail-
ability of food or less chance of facing threats. The game operates in an RL setting, building
upon the work of Korn et al [4]. The stimuli (i.e. the frontend) given to the participants is
given in figure 4.1. The goal is to create an engaging and realistic environment where we can
experimentally test the decision-making abilities of players.

Figure 4.1: Task figure

The game design encompasses five key components:

1. Displaying the Initial State: At the beginning of each gameplay session, the game
presents players with the initial state, which includes two climate conditions which is
chosen from one of the 72 forests. These climate conditions are categorized as relatively
good or bad in comparison to each other. Each climate condition is characterized by
three properties: forest quality (which is a probability value ranging from 0 to 1), threat
encounter (which is again a probability value ranging from 0 to 1), and nutritional quality
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(either 1 or 2 which signifies higher or lower gain in health). This initial state sets the
foundation for the players’ survival journey.

2. Displaying the Current State: The current state provides essential information for
decision-making, which includes the number of days (ranging from 0 to 8, initialized
as 8), the player’s life points (ranging from 0 to 6, initialized as 4 or 5 randomly), and
a randomly chosen climate condition for the particular forest chosen in the previous
step. This information enables players to assess their current situation and strategize
accordingly.

3. Prompting User Action: After displaying the initial and current state, players are
prompted to take action. They can choose between two options: foraging for food or
waiting until the next day. This decision is crucial, as it directly affects the player’s
chances of survival. The prompt serves as a pivotal point where players must weigh
the risks and benefits of each action in light of the current state and alternative forest
conditions.

4. Displaying Consequence of Actions: Once players make their decision, the game re-
veals the consequences of their particular action. There are a total of seven possible out-
comes that players may experience. For each climate condition, players may encounter
successful foraging (the result of which is that the player gains life points based on nu-
tritional quality), failed foraging attempts (the result of which is that life points decrease
by 2), or threat encounters (the result of which is that life points decrease by 3). Addi-
tionally, there is a separate consequence for choosing to wait, where life points decrease
by 1. The numerical value of gain/loss of life points regulates the amount of risk the
player is allowed to take depending upon the current state. These consequences pro-
vide immediate feedback to players, shaping their understanding of the impact of their
decisions.

5. Iterative Gameplay: If the player survives (i.e. life points greater than 0) and the
episode has not yet ended (i.e. days left greater than 0), the game proceeds to the next
step, allowing the player to continue their survival journey. This iterative gameplay
structure allows for multiple opportunities for players to adapt their strategies, learn
from their experiences, and explore different approaches to survival.

Overall, the game design aims to provide an engaging and realistic simulation of the chal-
lenges faced by hunter-gatherers in a forest environment. By incorporating various environ-
mental factors, decision-making scenarios, and consequences, the game seeks to test players’
survival instincts and strategic thinking, offering an immersive and rewarding experience.

4.2 Predictive modelling

We explored four distinct approaches, each contributing to our understanding and solution
development. These approaches can be categorized as follows:
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4.2 Predictive modelling

1. Heuristic Methods: To establish a benchmark, we employed heuristic methods that en-
compassed several simple strategies, most notably: ”just forage,” ”just wait,” ”random ac-
tion,” and ”hail mary.” The first three heuristics involve straightforward decision-making
based on fixed rules. The ”hail mary” heuristic, on the other hand, involves waiting un-
til the player’s life points reach a specific threshold, defined as 3 (see Appendix). These
heuristic methods provided initial insights into survival strategies and offered compara-
tive metrics for evaluating more advanced approaches.

2. Dynamic Programming (DP): Dynamic Programming (or more specifically, backwards
induction) is an exact solution method that involves iteratively updating the action-value
function for each state. This process begins from the final state and progresses towards
the initial state. The update is based on the Bellman equation, which incorporates the
immediate reward (R) and the discounted value ( V) of successor states, as mentioned in
the equation below

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + vπ(s
′)] (4.1)

where,
• s is the current state and s′ is the next state
• vπ(s) is the value of state s under policy π.
• π(a|s) is the probability of taking action a in state s.
• p(s′, r|s, a) is the probability of transitioning to state s′ and receiving reward r

after taking action a in state s.
• r is the reward received for taking action a in state s and transitioning to state s′.
• vπ(s

′) is the value of state s′ under policy π.
By leveraging DP, we aimed to optimize the decision-making process and determine the
most effective actions for each state, taking into account the long-term consequences
and potential rewards. We set the discount factor γ to 1 and provide the full knowledge
about the temporal domain of the task to the DP model

3. behavioural Cloning: behavioural cloning entails training an agent to imitate the be-
haviour of an expert in a supervised manner. This approach involves learning a pol-
icy directly from expert demonstrations without explicitly considering the environmen-
tal dynamics or rewards. Our implementation of behavioural cloning utilized Decision
Trees as the base algorithm, allowing us to gain white-box access to the internal working
mechanism. By building a mapping between states (S) and actions (A) using a supervised
learning approach, the agent attempted to replicate the expert’s actions for each encoun-
tered state.

4. Generative Adversarial Imitation Learning (GAIL): GAIL utilizes a combination of
generative adversarial framework with imitation learning to learn a policy from expert
demonstrations, where the expert is actual human behavioural data. The generator part
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of GAIL strives to generate actions that are indistinguishable from those of the expert,
whereas the discriminator has to find the irregularities in the demonstrations and classify
if they are generated or real. The pseudocode for GAIL can be described as follows

Algorithm 1 Generative Adversarial Imitation Learning
1: Input: Expert trajectories τe, initial policy π0 and discriminator parameters θ0
2: for i = 0, 1, 2, . . . do
3: Sample trajectories τg from πi
4: **Discriminator update:**

Êτi [∇w log (Dw(s, a))] + ÊτE [∇w log (1−Dw(s, a))] (4.2)

**Explanation:** * The first term in the update equation is the expected log-likelihood of
the discriminator over the expert trajectories. This term encourages the discriminator
to learn to classify real trajectories as real. * The second term in the update equation
is the expected log-likelihood of the discriminator over the generated trajectories. This
term encourages the discriminator to learn to classify generated trajectories as fake. *
The ∇θ term takes the gradient of the update equation with respect to the discriminator
parameters θ.

5: **Policy update:**

Êτi [∇θ log πθ(a | s)Q(s, a)]− λ∇θH (πθ) , (4.3)

where
Q(s̄, ā) = Êτi

[
log

(
Dwi+1(s, a)

)
| s0 = s̄, a0 = ā

]
**Explanation:** * The first term in the update equation is the expected log-likelihood
of the discriminator over the expert trajectories. This term encourages the policy to
generate trajectories that are more likely to be classified as real by the discriminator. *
The second term in the update equation is the entropy of the policy πi. The entropy is a
measure of how random the policy is.

6: end for

It is worth noting that the generator part of GAIL is built upon the base algorithm of
Proximal Policy Optimization (PPO), which is a popular reinforcement learning algo-
rithm. PPO optimizes the agent’s policy using a surrogate objective function, which
ensures that the policy update remains within a specified proximity bound to prevent
drastic policy changes. The pseudocode of PPO as described in [11] is listed in figure 4.2
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4.3 Methods for Explainability

Figure 4.2: Pseudocode for PPO

The combination of PPO and the generative adversarial framework in GAIL enhances
the agent’s ability to learn from expert demonstrations and refine its policy through the
adversarial training process

4.3 Methods for Explainability

In order to enhance the interpretability of deep reinforcement learning models, we adopted
two methods that shed light on the inner workings of these complex systems. These methods
enable us to gain insights into the learned policies and understand the contributions of different
features within the model.

1. Shapley values: Shapley values are a powerful technique that assigns importance or
contribution scores to the features or components of a deep neural network model. This
approach quantifies the marginal contributions of each feature towards the model’s out-
put prediction. This helps us understand which features are more influential and how
they contribute to the overall predictions.

2. Policy Extraction using Decision Trees: Drawing inspiration from explaining hu-
man behaviour through Decision Trees, we apply a similar methodology to train a Deci-
sion Tree model that emulates the behaviour of the trained deep reinforcement learning
model. This process involves using the learned deep reinforcement learning model as
a teacher and generating a dataset of state-action pairs. We then train a Decision Tree
model in a supervised learning manner using this dataset, aiming to capture the deci-
sion rules and policies learned by the deep model. The resulting Decision Tree model
serves as a transparent and interpretable representation of the complex deep reinforce-
ment learning model. By analyzing the structure of the Decision Tree and examining the
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decision rules, we gain a deeper understanding of how the deep model makes decisions
in different states.

4.4 Evaluation Metrics

To assess the effectiveness of our learning algorithms in the RL environment and evaluate
their ability to imitate expert behaviours, we employed two key metrics that provide valuable
insights into their performance.

1. Survival Rate: The survival rate metric quantifies the agent’s ability to survive until the
last day in the RL environment. For artificial agents, we calculated the mean and standard
deviation of survival rate over 10,000 episodes over 10 intervals. A higher survival rate
indicates a more successful and adaptive agent that can navigate the environment effec-
tively, make optimal decisions, and ensure its own survival. By measuring the survival
rate, we can gauge the proficiency of the learning algorithms in tackling the challenges
posed by the environment and their capacity to learn from past experiences to improve
future decision-making.

2. Monte Carlo Distance: Monte Carlo Distance is a way to measure how similar an
agent’s behaviour is to that of an expert. It helps us see how well the agent imitates the
expert.

Imagine the expert and the agent are both navigating through a series of situations,
making decisions at each step. The Monte Carlo Distance compares the actions they
take in these situations. Here’s how it works:

a) We gather trajectories (sequences of actions and observations) from both the expert
and the agent.

b) For each time step in the expert’s trajectory, we calculate the probability of observ-
ing that specific action in the expert’s trajectory.

c) Next, we compare these probabilities to the actions taken by the agent. If the agent’s
actions are similar to the expert’s actions, the Monte Carlo Distance will be smaller.

Monte Carlo distance can be mathematically defined as follows

H
(
T, T ′) = − 1

n

n∑
i=1

log

[∑m
j=1Π{o′j} (oi) + 1

m+ |S| × |A|

]
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4.4 Evaluation Metrics

where:
T and T ′ are the expert and generated trajectories, respectively
n = number of timesteps in each trajectory
m = number of expert trajectories
oi = observation at timestep i in the expert trajectory

Π(o′j) = probability of observing oi in the jth expert trajectory
|S| = number of states in the environment
|A| = number of actions in the environment
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5 Data Analysis and Results

5.1 Data Collection

A total of 29 healthy individuals (14 male, 15 female) with a mean age of 23.93 ± 3.73 (mean
± standard deviation) participated. Each experiment for an individual consisted of four mini-
blocks, each containing 18 forests. Participants had the opportunity to win an incentive of €0.50
if they successfully survived a forest without being eliminated, as indicated in the problem
design. Each participant had the potential to complete 576 trials (72 forests multiplied by 8
days). The average number of trials per participant, excluding ”none” responses, was 361.45
± 23.22, resulting in a total of 10,482 decisions. These “none” responses are marked when
the participants go beyond the time limit to respond, and for these cases, a default “wait”
action is applied. On average, the probability of successfully surviving a forest was 22% ± 2.25.
Responses categorized as ”none” accounted for 0.02 ± 2.69 of all recorded responses.

5.2 Exploratory Data Analysis

To gain deeper insights into the collected data and understand the patterns and relationships
within the variables, we employed various data visualization techniques. These visualizations
allow us to explore the characteristics of the game environment and the decision-making be-
haviours of the human participants. The following visualizations were generated:

1. Frequency plot of the number of days left: This plot illustrates the distribution of
the number of days remaining in the game across the dataset. It provides an overview
of how frequently each number of days occurs and allows us to analyze the duration of
the game episodes as experienced by the human participants.
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5 Data Analysis and Results

Figure 5.1: Frequency plot of the number of days left

2. Frequency plot of the number of life points left: This plot showcases the distribution
of the number of life points remaining in the game. It provides insights into the variations
in life points and helps identify any trends or patterns in the health status of the human
participants throughout the episodes.

Figure 5.2: Frequency plot of the number of life points left

3. Stacked frequency plot of the number of days left along with the number of life
points left: This stacked plot presents the joint distribution of the number of days and
the number of life points remaining. It allows us to observe the relationship between
these two variables and explore how their values interact with each other during the
game as experienced by the human participants.
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5.2 Exploratory Data Analysis

Figure 5.3: Stacked frequency plot of the number of days left along with the number of life
points left

4. Stacked frequency plot of the number of days left for a particular action taken:
This visualization focuses on the distribution of the number of days remaining in the
game based on the actions taken by the human participants. It provides insights into
how their decision to forage or wait influences the duration of the game episodes.

Figure 5.4: Stacked frequency plot of the number of days left for a particular action taken

5. Stacked frequency plot of the number of life points left for a particular action
taken: Similar to the previous visualization, this plot showcases the distribution of the
number of life points remaining based on the actions taken by the human participants.
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It allows us to examine how their decisions impact their health status throughout the
game.

Figure 5.5: Stacked frequency plot of the number of life points left for a particular action taken

6. Violin plot of the probability of success for a particular action taken: This violin
plot displays the distribution of the probability of success for a specific action taken by
the human participants. It provides a visual representation of the variability in their
success rates and allows us to compare the effectiveness of different actions as observed
in their gameplay.

Figure 5.6: Violin plot of the probability of success for a particular action taken

7. Violin plot of the probability of threat for a particular action taken: This Violin
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plot presents the distribution of the probability of encountering a threat for a specific
action taken by the human participants. It helps us understand the potential risks as-
sociated with different actions and evaluate the participants’ ability to mitigate threats
based on their chosen actions.

Figure 5.7: Violin plot of the probability of threat for a particular action taken

8. Correlation plot of all independent features:
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Figure 5.8: Correlation plot of all independent features

By utilizing these data visualizations, we gain a better understanding of the game environ-
ment and the decision-making process of the human participants. These visual representations
allow us to identify patterns, trends, and correlations within the data, enabling us to make
informed interpretations and draw valuable insights from the behaviour and gameplay of the
human participants.

5.3 Data Preprocessing and Feature Engineering

Minimal preprocessing was done to the collected data in general. For the decision tree, we
prepared the data by performing a stratified train-test split with a ratio of 80:20. This resulted
in approximately 8,400 state-action pairs in the training set. Whereas for training the GAIL
model, we scaled all the features to a range of 0 to 1. Feature engineering plays a crucial role in
extracting relevant information from the raw data and transforming it into meaningful features
that can enhance the performance of machine learning models. In our study, we employed
feature engineering techniques to derive insightful features from the data collected during the
game and from the previous work from Korn et al [4]. These features can be categorized into
two main groups: raw features and derived features.
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5.3 Data Preprocessing and Feature Engineering

5.3.1 Feature Engineering - Raw Features

1. Number of days left: This feature represents the remaining number of days in the
episode. It provides information about the temporal aspect of the gameplay and allows
us to analyze how the human participants strategize their actions based on the limited
time available

2. Number of life points left: This feature indicates the remaining life points of the par-
ticipants. It serves as a measure of their health status and reflects their ability to sustain
themselves throughout the game. Analyzing this feature helps us understand how the
participants manage their resources and make decisions to ensure their survival.

3. Probability of threat encounter: This feature quantifies the likelihood of encountering
threats in the game environment. It is derived from the game’s climate conditions and
reflects the level of risk faced by the participants. Examining this feature enables us
to assess how the participants consider the potential threats when deciding whether to
forage or wait.

4. Nutritional quality: This feature represents the nutritional value of the food obtained
by foraging. It is an important factor in maintaining the health and well-being of the
participants. Analyzing this feature allows us to explore the participants’ prowess to
ascertain the dynamicity of the climate.

5.3.2 Feature Engineering - Derived Features

1. Probability of successfully foraging: This derived feature is calculated as the prod-
uct of the probability of forest quality and the complement of the probability of threat
encounter. It provides an estimate of the likelihood of successfully obtaining food while
considering the risks involved. This feature offers insights into the participants’ evalua-
tion of the forest conditions and their ability to overcome potential threats when foraging

2. Safe state: This derived feature is defined as ”True” if the number of life points left
is greater than the number of days left, indicating that the participants have sufficient
resources to survive without the need to forage further. Conversely, if the number of life
points is equal to or less than the number of days left, the safe state is labelled as ”False.”
This feature helps identify situations where participants can adopt a more conservative
strategy and avoid unnecessary risks by waiting instead of foraging.

By incorporating these raw and derived features, we aim to capture various aspects of the
gameplay and the decision-making process of the human participants. These features provide
valuable insights into their resource management, risk assessment, and strategic thinking, en-
abling us to build more robust and interpretable machine learning models for analyzing their
behaviour in the game environment.

27



5 Data Analysis and Results

5.4 Model Training and Evaluation

5.4.1 Model Architecture and Hyperparameters - Decision Tree

We trained the decision tree with a maximum depth of 5 and used entropy as the splitting cri-
terion. Additionally, to ensure interpretability and minimize feature redundancy 1, we pruned
the tree by setting the minimum weighted fraction of the sum total of weights of leaf nodes to
5% and the minimum impurity decrease required to induce a split to 0.02.

5.4.2 Model Architecture and Hyperparameters - GAIL

Training the GAIL model was challenging due to the stochasticity of the task. After numerous
experiments, we settled on the architecture described as follows

• The generator architecture was based on a modified version of PPO as described in Stable-
Baselines3 2. The diagram 5.9 visualizes the network architecture of the generator.

• The network architecture of the discriminator was kept simple - an MLP model with two
hidden layers, each with 32 neurons.

• The batch size for training GAIL was set to 256

• Learning rate of the generator was set to 3x10-4 and the learning rate of the discriminator
was set to 1x10-3 and the optimization algorithm for both was Adam

• The number of updates per round for the discriminator was set to 2

Figure 5.9: Architecture of GAIL’s generator

1Refer the documentation for Decision Trees here https://scikit-learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeClassifier.html

2Refer the documentation for PPO here https://stable-baselines3.readthedocs.io/en/master/
modules/ppo.html

28

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html


5.5 Model Evaluation

The generator was first pretrained for 50 epochs on the environment without relying on hu-
man behavioural data. This ensured that the model gets reliably trained and the mode collapse
issue is reduced. After this, the learning rate for generator was reduced by a factor of 10, and
the generator was trained in tandem with the discriminator for the remaining 250 epochs. the
discriminator model reached 0.55 log loss and the generator model reached 0.43 value loss. The
loss graphs of the two models can be viewed in 5.10 and 5.11

Figure 5.10: Generator Value loss Figure 5.11: Discriminator Logloss

5.5 Model Evaluation

Table 5.1 includes several approaches and algorithms, highlighting the following key points:

• The first four entries represent heuristic approaches that serve as a benchmark for com-
parison. These heuristics are utilized to establish a baseline, and the objective is for the
trained machine learning models to outperform these approaches.

• The Backwards Induction approach is regarded as the best algorithm due to its possession
of complete information about the environment. This approach achieves a survival rate
of 28%, indicating the maximum achievable performance for an agent.

• Humans demonstrate a survival rate of approximately 21%. The goal for the trained
models is to approach this level of performance, as it represents the capacity of human
decision-making within the given problem domain.

• The Decision Tree algorithm trained with behavioural Cloning achieves a score of 16,
which is considered a respectable performance. This indicates that the model is capable
of capturing patterns and making informed decisions based on the observed behaviour
from the training data.

• GAIL achieves a survival rate of 15%. Although GAIL’s survival rate is slightly lower in
comparison to Decision Trees, its ability to closely imitate the desired behaviour makes
it a competitive approach as demonstrated by the Monte Carlo distance score.

29



5 Data Analysis and Results

Sr.
No.

Approach Algorithm Survival
Rate (%)

MCD

1 Heuristic Always Wait 0 -
2 Heuristic Always Forage 12 -
3 Heuristic Hail Mary Play 14 -
4 Heuristic Random Actions 9 -
5 Backwards Induction Dynamic Programming 28 -
6 Human benchmark - 21 -
7 behavioural Cloning Decision Tree 20 8.92
8 Inverse RL GAIL 16.5 8.83

Table 5.1: Comparison of approaches

5.6 Model Explanability

5.6.1 Explaining Decision Tree

After training the decision tree on the human participants, we can visualize it in order to de-
scribe the collective human strategy as seen 5.12. As decision trees are inherently explainable,
they are extremely useful tools when it comes to explainable ML

Figure 5.12: Decision Tree trained on human behavioural data

The decision tree shows two main sub-strategies:
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• Players are more likely to forage if they have very low life points, indicating that they
are on the verge of death. This suggests that players are willing to take risks in order to
increase their chances of survival.

• Players are more likely to wait if they have enough life points to wait out the episode,
also known as being in a safe state. This suggests that players are more risk-averse when
they have a higher chance of survival.

After these two main sub-strategies, the decision tree becomes less clear. However, one
insight is that players seem to depend on the probability of success when making their decision.
For example, if the probability of success is high, players are more likely to forage, even if they
have a safe amount of life points. This suggests that players are more likely to take risks if they
believe that they are likely to be successful.

5.6.2 Explaining GAIL

The decision tree trained on synthetic data from the GAIL model reveals two main sub-strategies
similar to the strategy of human participants: forage when low health and wait when safe. The
GAIL model also considers other factors which might be important to survive (and to imitate
human behaviour), such as low probability of threat encounters, high probability of success
and higher number of days left.

This finding suggests that GAIL agents are capable of learning complex strategies that are
similar to those used by humans. This has important implications for the development of arti-
ficial intelligence agents that can interact with the environment in a safe and efficient manner.

Figure 5.13: Decision Tree trained on synthetic data obtained from GAIL

The Shapley values in figure 5.14 represent the marginal contribution of each feature to the
GAIL agent’s decision-making process. The top three features are life points left, days left,
and probability of success. As can be seen, the life points left have the largest Shapley values,
indicating that it is one of the most important features for the GAIL. Days left and probability of
success are also important features, but they have a marginally smaller impact on the decisions.
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Figure 5.14: Shapley analysis of GAIL
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6 Discussion

The discussion section encapsulates the outcomes and implications derived from the study’s
application of the Reinforcement Learning (RL) Paradigm to assess human decision-making
capabilities within the intricate framework of a challenging game environment. The utiliza-
tion of this paradigm yielded insightful revelations regarding the diverse array of strategies
employed by players. It became evident that the likelihood of survival was notably influenced
by stochastic elements, emphasizing the necessity for a larger participant cohort to enhance
the robustness and precision of population-level estimations.

One of the key takeaways from the study was the efficacy of Decision Trees, specifically
when equipped with well-crafted derived features. These Decision Trees exhibited a dual ad-
vantage: not only did they provide understandable and interpretable explanations of player
strategies, but they also demonstrated a level of performance that could be considered on par
with the more complex GAIL model. The Decision Tree’s capacity to distill intricate decision-
making dynamics into comprehensible insights is noteworthy and lends itself to practical ap-
plications where transparent explanations of strategic choices are imperative.

Conversely, the Generative Adversarial Imitation Learning (GAIL) model showcased a dis-
tinct strength in capturing the underlying behavioral intricacies of the participants. However,
this heightened capacity was accompanied by a trade-off in terms of immediate interpretability.
The GAIL model’s intricate nature necessitated post-hoc efforts to expound upon its outcomes,
which could potentially limit its real-time applications in scenarios requiring prompt insights.

An innovative avenue emerged through the process of amalgamating the GAIL model’s find-
ings with the Decision Trees, demonstrating a promising approach to balance the dual as-
pects of performance and explainability. This harmonious synthesis offered a potential bridge
between the complex modeling techniques and the need for transparent understanding of
decision-making dynamics.

In conclusion, the study not only shed light on the multifaceted nature of decision-making
strategies in challenging environments but also highlighted the strengths and trade-offs asso-
ciated with different modeling approaches. The combined insights from Reinforcement Learn-
ing, Decision Trees, and GAIL techniques contribute to a more comprehensive understanding
of human decision-making, paving the way for informed applications in various fields.
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7 Conclusion and Future Work

This study investigated human decision-making behaviour in a game-based setting and demon-
strated the potential of GAIL for imitating human behaviour in a tabular setting. The study also
that the application of the RL Paradigm effectively evaluated human decision-making capabil-
ities in the challenging game environment. However, players exhibited diverse strategies, and
survival odds were influenced by chance, necessitating a larger sample size for better popula-
tion estimation. The results also showed that GAIL is capable of learning complex strategies
that are similar to those utilized by humans, but it lacks immediate interpretability. Distilling
GAIL through Decision Trees improved interpretability, presenting a promising approach for
balancing performance and explainability.

Evident ways of extension of the work would be to first gather more informative data by
prompting players to explain their decisions, providing valuable context for deeper insights
into decision-making processes. One line of work which is gaining traction in the RL com-
munity is to train the models in a framework called Reinforcement Learning from Human
Feedback, where the data collected from the participants is the explicit ranking of the model’s
actions instead of supervised data. We attempted to transform the supervised data to a feedback
mechanism, which showed promising preliminary results, but a more thorough exploration is
necessary.

Secondly, from the model perspective, investigating GAIL’s instability is a must. The archi-
tecture of adversarial training is inherently unstable as mentioned in the GAN literature, but
we attempted to remedy it by pretraining the generator on the game environment. Another
suggestion would be to carry out trials with diffusion models, which is the current state-of-
the-art techniques for generative modelling for computer vision. Although there have been
attempts to replicate their success for RL, our usecase is a bit more nuanced (aka RL for tabular
data) and so we decided not to test it for the scope of the thesis. Another cutting-edge work
is to utilize foundation models as a baseline pretrained model and finetune them on the down-
stream task. We aim to examine foundation models for our task in the near future. From an
explainability perspective, one extension could be to explore soft decision trees.

Thirdly, the game could be modified to encompass multi-agent learning. This would uncover
complex decision-making dynamics in group settings and would help understand agent inter-
actions and their impact on outcomes. This is our current focus and preliminary work has been
described here (link to slides).

By addressing these future research directions, we can gain a deeper understanding of decision-
making in game environments and advance the development of more interpretable and human-
aligned AI systems.
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