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Abstract 

The study investigates human decision-making behaviour wi th in a game-based context and 
endeavours to replicate said behaviour using the Generative Adversarial Imitation Learning 
(GAIL) technique. In this gamified environment, inspired by a hunter-gatherer scenario, play­
ers have to ensure their survival in a challenging environment while accounting for their 
episodic homeostasis and factoring in current and future climatic conditions, necessitating 
the estimation of stochastic trade-offs. The initial phase of the study primarily centres on 
the collection and analysis of data from healthy participants, thereby yielding valuable in ­
sights into their gameplay dynamics and the cognitive processes underpinning their decision­
making. A n overarching observation is that participants can seemingly differentiate between 
cases where simple heuristics advance the game and those cases where prior and present in ­
formation is necessary for informed action selection. Subsequently, the study pivots toward 
predictive modelling, firstly by considering the task i n a supervised learning paradigm as the 
basis for behavioural cloning by utilizing a white-box decision tree algorithm. The trained de­
cision tree model attained a survival rate of 20%, proximity to the human benchmark of 21%, 
whereas comparison wi th imitation-based evaluation metric, namely Monte Carlo Distance 
(MCD) registered a score of 8.92 - a decent score considering the stochasticity of the game 
and variability i n human behaviour. On the other hand, GAIL regards the task in an inverse 
reinforcement learning framework and attempts to imitate the behaviour, achieving a score 
of 16% as a survival rate and an M C D score of 8.83, showcasing competitive performance and 
effective imitation capabilities. The study also looks closely at how the G A I L model works us­
ing post hoc model explainability, more specifically, utilizing Shapley analysis and training a 
decision tree on GAIL 's synthetic behavioural data, suggesting that GAIL is capable of learn­
ing complex strategies that are similar to those used by humans. This research contributes to 
the understanding of resource management, risk assessment, and strategic thinking wi th in a 
game environment, and demonstrates the potential of GAIL for imitating human behaviour in a 
tabular setting. Code can be found here: h t t p s : / / g i t h u b . c o m / f a i z a n k s h a i k h / F o r a G y m 
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1 Introduction 

1.1 Motivation 

Human decision-making behaviour has long been a subject of great interest and significance in 
various domains, including psychology, economics, and artificial intelligence. Understanding 
how individuals make choices and respond to dynamic environments is essential for developing 
effective strategies and decision-support systems. In the realm of artificial intelligence and 
machine learning, the ability to emulate human decision-making processes can lead to more 
robust and adaptive algorithms. 

The central focus of the game designed for the study is to ensure the survival of players 
by maintaining their health above a specified threshold for a specific duration i n an episode. 
Accomplishing this goal necessitates making foraging decisions based on current and future 
climate factors, which adds a layer of complexity and uncertainty to the decision-making pro­
cess. This thesis then delves into the investigation of human decision-making behaviour wi th in 
the game and aims to emulate this behaviour using Deep Learning, more specifically, Genera­
tive Adversarial Imitation Learning. 

1.2 Outline 

The study begins wi th an introduction (Chapter 1) that outlines the motivation behind this 
research and provides an overview of the entire thesis structure. Following the introduction, 
Chapter 2 presents the background knowledge necessary for understanding the subsequent 
chapters. This includes an explanation of the basics of machine learning, deep learning, re­
inforcement learning, and imitation learning. Furthermore, it delves into the important hy-
perparameters associated wi th decision trees, multi-layer perceptrons (MLP), and Generative 
Adversarial Imitation Learning (GAIL). Chapter 3 offers a literature review, providing insights 
into prior work and research relevant to the thesis. Chapter 4 elaborates on the methodology 
employed i n this study. It describes the problem design and the process of predictive modelling, 
while also exploring various methods for explainability i n the context of the models utilized. 
The empirical results and data analysis are presented in Chapter 5. This chapter includes details 
about data collection, exploratory data analysis, data preprocessing, and feature engineering 
techniques applied to the raw and derived features. Additionally, it discusses the model train­
ing and evaluation process, focusing on decision tree and GAIL models. The chapter concludes 
wi th an in-depth evaluation of the model's performance and explainability. Chapter 6 is dedi­
cated to the discussion of the obtained results and their implications, providing a critical anal­
ysis of the research findings. Furthermore, it discusses potential future work and directions 
for further research i n the field of imitation learning, predictive modelling, and explainability. 
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1 Introduction 

Finally, Chapter 7 concludes this thesis by summarizing the key findings and contributions 
made in the study. It reiterates the importance of predictive modelling and explainability in 
imitation learning and outlines the broader implications of the research. 
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2 Background Knowledge 

2.1 Basics of Machine Learning 

A learning algorithm in machine learning refers to a computational method or process that 
enables a system to automatically acquire knowledge or make predictions based on data. It 
involves constructing a mathematical model by learning patterns and relationships from the 
given input data. Generalization of new examples is crucial in machine learning because it en­
sures that the learned model can accurately predict outcomes for unseen or future data points. 
The goal is not merely to fit the training data perfectly but to capture underlying patterns that 
hold true for new instances as well . 

Supervised learning is a category of machine learning where the algorithm learns from la­
belled examples, where the input data is accompanied by corresponding desired outputs. The 
algorithm's objective is to learn a mapping function that can predict the correct output for 
unseen inputs. 

There are several examples of supervised learning algorithms, including linear regression, 
logistic regression, support vector machines, and random forests. Each algorithm has its own 
characteristics and is suitable for different types of problems. In the context of supervised 
learning, an optimization algorithm aims to find the optimal values of the model's parameters 
by minimizing a specific objective function. This process involves adjusting the parameters 
iteratively based on the error or loss between the predicted and actual outputs. 

Decision Trees are a popular machine learning algorithm that uses a hierarchical structure to 
make predictions. They work by splitting the input space into regions based on feature values, 
forming a tree-like structure. A t each internal node, a splitting criterion is used to decide which 
feature to split on. The process continues recursively until the tree reaches a certain depth or 
a stopping criterion. 

2.1.1 Hyperparameters of Decision Trees 

Hyperparameters are adjustable parameters that are not learned from the data but are set by the 
user. These parameters control the behaviour of the learning algorithm and can significantly 
impact the performance and generalization ability of the model. Examples of hyperparame­
ters include the learning rate, regularization strength, and the number of hidden layers in a 
neural network. Hyperparameters in Decision Trees play a significant role in controlling the 
behaviour, complexity, and performance of the algorithm. 

Let's delve into the significance and use of the specific hyperparameters commonly associ­
ated wi th Decision Trees that are used i n this work. 

1. Splitting Criteria: The splitting criteria determine how the algorithm measures the 
quality of a split at each internal node of the tree. Two commonly used criteria are Gin i 
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2 Background Knowledge 

impurity and information gain. G in i impurity measures the probability of misclassify-
ing a randomly chosen element from a node i f it were randomly labelled according to 
the distribution of classes i n that node. Information gain, on the other hand, quantifies 
the reduction in entropy (or uncertainty) achieved by splitting on a particular feature. 
The choice of splitting criteria depends on the problem and the desired behaviour of the 
Decision Tree. 

2. Max Depth: The max depth hyperparameter limits the maximum depth or length of the 
Decision Tree. It controls the complexity of the tree and helps prevent overfitting, where 
the model memorizes the training data too closely and fails to generalize wel l to unseen 
data. By setting an appropriate max depth, we can find a balance between capturing 
intricate relationships and avoiding excessive complexity. 

3. Min imum Weight Fraction Leaf: This hyperparameter specifies the minimum frac­
tion of samples required to be present at a leaf node for further splitting to occur. It 
helps control the granularity of the Decision Tree. Setting a higher value for this hyper­
parameter can result i n fewer and larger leaf nodes, leading to a simpler tree structure. 
Conversely, a lower value can create more leaf nodes, potentially capturing more spe­
cific patterns i n the data. It is used to control the trade-off between model complexity 
and capturing fine-grained details. 

4. Min imum Impurity Decrease: The minimum impurity decrease hyperparameter de­
termines the threshold for splitting a node based on the decrease i n impurity achieved. It 
quantifies the minimum improvement required to justify a split. A higher value for this 
hyperparameter results in fewer splits and a simpler tree, as only significant impurity 
decreases w i l l be considered for further partitioning. Lower values allow for more splits, 
potentially capturing finer distinctions in the data. This hyperparameter helps control 
the trade-off between simplicity and sensitivity to small impurity improvements. 

By carefully tuning these hyperparameters, we can optimize the performance of Decision 
Trees for a specific problem. It often involves a trial-and-error process or using techniques like 
grid search or randomized search to explore different combinations of hyperparameter values 
and select the ones that yield the best performance in terms of accuracy, precision, recall, or 
other evaluation metrics. 

2.2 Basics of Deep Learning 

Deep learning is a subfield of machine learning that focuses on training artificial neural net­
works wi th multiple layers to learn and extract complex patterns from data. Neural networks 
are computational models inspired by the structure and function of biological neurons i n the 
brain. They consist of interconnected layers of nodes (neurons) that process and transform 
input data to produce output predictions. 

Deep learning differs from traditional machine learning approaches by its ability to auto­
matically learn hierarchical representations of data. Deep neural networks can automatically 
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2.2 Basics of Deep Learning 

learn and extract higher-level features from raw data, enabling them to capture intricate rela­
tionships and patterns that may be challenging to specify manually. 

A typical structure of a multilayer perceptron (MLP) model, a type of neural network, in ­
volves an input layer, one or more hidden layers, and an output layer. Each layer contains 
multiple nodes (neurons) that perform computations on the input data. The hidden layers act 
as intermediate representations, progressively transforming the input data to produce the final 
output predictions. 

Backpropagation is a key algorithm used to update the weights of the neural network based 
on the calculated errors. It propagates the error from the output layer back to the hidden layers, 
allowing the network to adjust its weights and improve its predictions. 

2.2.1 Hyperparameters of M L P 

Hyperparameters play a critical role in deep learning models, allowing fine-tuning and opti­
mization of the model's performance. Let's elaborate on the significance and use of the specific 
hyperparameters mentioned in the context of multilayer perceptron (MLP) models: 

1. Number of Hidden Layers: The number of hidden layers in an M L P determines the 
depth of the network. Adding more hidden layers increases the model's capacity to learn 
complex patterns and representations from the data. However, an excessively deep net­
work may lead to overfitting, especially when training data is limited. Balancing model 
complexity and generalization is crucial when deciding the appropriate number of hid­
den layers. 

2. Optimization Algorithm: The optimization algorithm determines how the network's 
weights are updated during training. Gradient descent is a common optimization algo­
rithm that calculates the gradient of the loss function wi th respect to the model's param­
eters and adjusts the weights i n the opposite direction of the gradient to minimize the 
loss. Adam is a popular variant of gradient descent that adapts the learning rate for each 
weight during training. It combines the advantages of different adaptive learning rate 
methods and uses estimates of the first and second moments of the gradients to adap-
tively adjust the learning rate. Adam tends to provide faster convergence and improved 
performance compared to traditional gradient descent methods, especially in large-scale 
deep learning tasks. 

3. Loss Function: The loss function quantifies the discrepancy between the predicted out­
puts and the actual ground truth. Cross-entropy or log loss is commonly used i n clas­
sification tasks. It measures the difference between predicted class probabilities and the 
true class labels. Cross-entropy loss encourages the model to assign higher probabilities 
to the correct classes, thereby promoting accurate classification. 

4. Learning Rate: The learning rate determines the step size taken during weight updates. 
Selecting an appropriate learning rate is crucial for effective training. If the learning 
rate is too high, the model may fail to converge or exhibit unstable behaviour. On the 
other hand, i f the learning rate is too low, the training process can become slow or get 
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2 Background Knowledge 

stuck i n suboptimal solutions. Techniques such as learning rate schedules or adaptive 
methods like Adam can help dynamically adjust the learning rate during training for 
better convergence. 

5. Batch Size: The batch size refers to the number of training examples processed in each 
iteration of the optimization algorithm. It affects both computational efficiency and the 
quality of weight updates. Larger batch sizes provide smoother convergence and more 
accurate gradient estimates but require more memory and computational resources. Smaller 
batch sizes can lead to faster computations but may have more noisy updates due to 
smaller sample sizes. Determining an appropriate batch size involves finding a balance 
between computational efficiency and the convergence characteristics of the model. 

By carefully selecting and tuning these hyperparameters, practitioners can optimize the per­
formance of deep learning models for specific tasks. Often, a combination of domain knowl­
edge, experimentation, and techniques like grid search or random search is employed to find 
the optimal set of hyperparameters that result in improved model accuracy, convergence speed, 
and generalization ability. 

2.3 Basics of Reinforcement Learning 

Reinforcement learning (RL) is a branch of machine learning that focuses on training agents to 
make sequential decisions in an environment to maximize a cumulative reward signal. In RL, 
an agent interacts wi th an environment, taking actions based on its current state and receiving 
feedback i n the form of rewards or penalties. 

Reinforcement learning differs from traditional machine learning approaches in that it in ­
volves learning through trial and error. Instead of being provided wi th labelled examples or 
explicit instructions, RL agents learn by exploring and receiving feedback from the environ­
ment. 

A fundamental concept in RL is the Markov Decision Process (MDP). A n M D P is a mathe­
matical framework that models the RL problem. It consists of a set of states, actions, transition 
probabilities, rewards, and a discount factor. The M D P assumes the Markov property, which 
states that the future state depends only on the current state and action, disregarding the his­
tory of previous states and actions. 

Deep reinforcement learning (DRL) combines RL wi th deep learning techniques to tackle 
complex, high-dimensional problems. It involves using deep neural networks as function ap­
proximators to learn policies or value functions directly from raw sensory inputs. 

There are various algorithms in deep RL, including Proximal Policy Optimization (PPO). 
PPO is an actor-critic algorithm that uses an actor network to estimate the policy and a critic 
network to estimate the value function. It improves the policy by iteratively updating the actor 
using the policy gradient and the critic using the value loss. 

PPO is trained through a process of collecting trajectories in the environment, computing 
advantages based on the value estimates, and optimizing the policy using stochastic gradient 
ascent. It balances exploration and exploitation by clipping the policy update to prevent large 
policy changes. 
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2.4 Groundwork for Imitation Learning 

Hyperparameters of PPO include the learning rate, batch size, and the number of epochs 
which are already explained i n the Deep Learning subsection. These hyperparameters influ­
ence the convergence and performance of the algorithm. Additionally, PPO uses the value loss 
instead of log loss as the loss function for training the critic network. The value loss measures 
the mean squared error between the predicted and target values, helping the critic to estimate 
the expected return accurately. 

By understanding the concepts of RL, MDPs , and DRL, practitioners can leverage algorithms 
like PPO to develop agents that can learn and make optimal decisions in complex, dynamic en­
vironments. Tuning the hyperparameters and selecting appropriate loss functions are essential 
for achieving good performance in reinforcement learning tasks. 

2.4 Groundwork for Imitation Learning 

Imitation learning is a machine learning approach that aims to learn policies or behaviours by 
imitating expert demonstrations. It leverages the availability of expert demonstrations to guide 
the learning process and facilitate the acquisition of optimal behaviours. 

Imitation learning can be beneficial in solving reinforcement learning problems by providing 
a shortcut to policy learning. Rather than relying solely on trial and error exploration, imitation 
learning utilizes the knowledge and expertise of humans or expert demonstrators to bootstrap 
the learning process and accelerate convergence. 

There are different types of imitation learning, namely behavioural cloning and inverse rein­
forcement learning. Behavioural cloning involves learning a policy by directly mapping states 
to actions using the expert's demonstrations as labelled training data. In contrast, inverse rein­
forcement learning seeks to infer the underlying reward function from the expert's behaviour 
and then optimize a policy based on this inferred reward function. 

Generative adversarial imitation learning (GAIL) is an imitation learning method that com­
bines generative adversarial networks (GANs) wi th reinforcement learning. G A N s are neural 
network models that consist of a generator and a discriminator. The generator attempts to gen­
erate synthetic data that resembles the expert demonstrations, while the discriminator aims to 
distinguish between the generated data and the expert demonstrations. 

In GAIL , the generator model learns to generate action sequences based on observed states, 
aiming to imitate the expert's behaviour. The discriminator model, on the other hand, learns 
to distinguish between the generated actions and the expert's actions. The training process in ­
volves iteratively updating both the generator and discriminator models to improve the quality 
of generated actions and enhance the discriminator's ability to differentiate between real and 
generated actions. 

2.4.1 Hyperparameters of GAIL 

Hyperparameters play a crucial role in the effectiveness and performance of GAIL. Let's elab­
orate on the significance and use of the specific hyperparameters mentioned i n the context of 
GAIL: 
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2 Background Knowledge 

1. Architecture of Generator and Discriminator Models: The architecture of the gen­
erator and discriminator models determines their complexity and representational power. 
A more complex architecture, such as deeper or wider neural networks, can capture more 
intricate patterns and generate more accurate actions. However, overly complex mod­
els may also lead to overfitting or slow convergence. Finding the right balance between 
model complexity and generalization is essential when selecting the architectures for the 
generator and discriminator. 

2. Number of Updates per Round of Discriminator: GAIL uses an adversarial training 
approach, where both the generator and discriminator models are updated iteratively. 
The number of updates per round of the discriminator affects the training dynamics and 
the equilibrium between the generator and discriminator. Increasing the number of up­
dates per round may enhance the discriminator's ability to discriminate between real and 
generated actions. However, it can also make the training process more computationally 
expensive. Finding the optimal number of updates per round is crucial for achieving a 
stable and effective training process. 

Tuning these hyperparameters is essential to optimize the performance of GAIL. It often 
involves a trial-and-error process and experimentation to find the right values that lead to 
improved action generation and discriminator performance. It is important to strike a balance 
between model complexity, computational efficiency, and the ability to generate actions that 
resemble expert demonstrations accurately. 

Moreover, hyperparameter tuning can be guided by domain knowledge and previous expe­
rience wi th similar tasks. Techniques such as grid search or random search can be employed 
to explore different combinations of hyperparameter values and select the ones that yield the 
best performance, such as generating actions that closely match the expert's behaviour and 
achieving effective discrimination between real and generated actions. 

By leveraging the concepts of imitation learning and techniques like GAIL, practitioners can 
learn from expert demonstrations and accelerate the acquisition of optimal policies in rein­
forcement learning settings. Careful tuning of hyperparameters ensures effective training and 
improves the quality of generated actions and the discriminator's discrimination ability. 
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3 Literature Review 

Decision-making under uncertainty has received greater attention i n cognitive neuroscience 
[1], wi th several lines of evidence elucidating different variants of uncertainty, such as risk, 
ambiguity, and expected and unexpected forms of uncertainty [2]. Markov Decision Processes 
(MDPs) are one of the analytical tools used for enlightening decision-making under uncer­
tainty, especially when considering the sequential dynamics of decision-making [3]. The first 
part of our study is derived from Korn and Bach [4] as a hunter-gatherer game (i.e. M D P task), 
where they provide evidence for a trade-off between heuristic and optimal decision policies 
in human decision-making. The second part of our study focuses on modelling human be­
haviour through Deep Reinforcement Learning (DRL) and Decision Trees. Recent advances of 
DRL have led to artificial agents capable of producing behaviour that meets or exceeds human-
level performance in a wide variety of tasks [5]. We use DRL, more specifically, Generative 
Adversarial Imitation Learning [6] in order to mimic human behaviour. Decision trees [7] on 
the other hand, are widely used in settings where interpretable machine learning models are 
required [8]. Combining D R L wi th decision trees [9] can provide both performance and inter-
pretability that can be used to study human behaviour. This methodology is inspired by Pan, 
Menghai, et al [10], but applies it to a text-based game [4] through the lens of VIPER [9]. 
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4 Methodology 

4.1 Problem Design 

We developed a text-based hunter-gatherer game that simulates the challenges faced by indi­
viduals striving to survive. The primary objective of the game is for players in a particular forest 
to maintain their health above a certain threshold for a certain number of days. To achieve this, 
players must make critical decisions on a daily basis, choosing between foraging for food or 
waiting for the next day i n hopes of better environmental conditions, such as greater avail­
ability of food or less chance of facing threats. The game operates i n an RL setting, building 
upon the work of Korn et al [4]. The stimuli (i.e. the frontend) given to the participants is 
given in figure 4.1. The goal is to create an engaging and realistic environment where we can 
experimentally test the decision-making abilities of players. 

Forest example 

Example weather without threat Example weather with threat 
Decision Outcome Decision Outcome 

Success: gain 1 LP 

Success: gain 2 LP 

Fixation 
Min 0.5s 
Max 3 8s 
Mean 1.9s 

Figure 4.1: Task figure 

The game design encompasses five key components: 

1. Displaying the Initial State: A t the beginning of each gameplay session, the game 
presents players wi th the initial state, which includes two climate conditions which is 
chosen from one of the 72 forests. These climate conditions are categorized as relatively 
good or bad in comparison to each other. Each climate condition is characterized by 
three properties: forest quality (which is a probability value ranging from 0 to 1), threat 
encounter (which is again a probability value ranging from 0 to 1), and nutritional quality 
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4 Methodology 

(either 1 or 2 which signifies higher or lower gain i n health). This initial state sets the 
foundation for the players' survival journey. 

2. Displaying the Current State: The current state provides essential information for 
decision-making, which includes the number of days (ranging from 0 to 8, initialized 
as 8), the player's life points (ranging from 0 to 6, initialized as 4 or 5 randomly), and 
a randomly chosen climate condition for the particular forest chosen in the previous 
step. This information enables players to assess their current situation and strategize 
accordingly. 

3. Prompting User Action: After displaying the initial and current state, players are 
prompted to take action. They can choose between two options: foraging for food or 
waiting until the next day. This decision is crucial, as it directly affects the player's 
chances of survival. The prompt serves as a pivotal point where players must weigh 
the risks and benefits of each action in light of the current state and alternative forest 
conditions. 

4. Displaying Consequence of Actions: Once players make their decision, the game re­
veals the consequences of their particular action. There are a total of seven possible out­
comes that players may experience. For each climate condition, players may encounter 
successful foraging (the result of which is that the player gains life points based on nu­
tritional quality), failed foraging attempts (the result of which is that life points decrease 
by 2), or threat encounters (the result of which is that life points decrease by 3). A d d i ­
tionally, there is a separate consequence for choosing to wait, where life points decrease 
by 1. The numerical value of gain/loss of life points regulates the amount of risk the 
player is allowed to take depending upon the current state. These consequences pro­
vide immediate feedback to players, shaping their understanding of the impact of their 
decisions. 

5. Iterative Gameplay: If the player survives (i.e. life points greater than 0) and the 
episode has not yet ended (i.e. days left greater than 0), the game proceeds to the next 
step, allowing the player to continue their survival journey. This iterative gameplay 
structure allows for multiple opportunities for players to adapt their strategies, learn 
from their experiences, and explore different approaches to survival. 

Overall, the game design aims to provide an engaging and realistic simulation of the chal­
lenges faced by hunter-gatherers in a forest environment. By incorporating various environ­
mental factors, decision-making scenarios, and consequences, the game seeks to test players' 
survival instincts and strategic thinking, offering an immersive and rewarding experience. 

4.2 Predictive modelling 

We explored four distinct approaches, each contributing to our understanding and solution 
development. These approaches can be categorized as follows: 
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4.2 Predictive modelling 

1. Heuristic Methods: To establish a benchmark, we employed heuristic methods that en­
compassed several simple strategies, most notably: "just forage," "just wait," "random ac­
tion," and "hail mary." The first three heuristics involve straightforward decision-making 
based on fixed rules. The "hail mary" heuristic, on the other hand, involves waiting un­
til the player's life points reach a specific threshold, defined as 3 (see Appendix). These 
heuristic methods provided initial insights into survival strategies and offered compara­
tive metrics for evaluating more advanced approaches. 

2. Dynamic Programming (DP): Dynamic Programming (or more specifically, backwards 
induction) is an exact solution method that involves iteratively updating the action-value 
function for each state. This process begins from the final state and progresses towards 
the initial state. The update is based on the Bellman equation, which incorporates the 
immediate reward (R) and the discounted value ( V) of successor states, as mentioned in 
the equation below 

where, 

• s is the current state and s' is the next state 

• v-K(s) is the value of state s under policy TT. 

• 7r(o|s) is the probability of taking action a in state s. 

• p(s',r\s,a) is the probability of transitioning to state s' and receiving reward r 
after taking action a i n state s. 

• r is the reward received for taking action a in state s and transitioning to state s'. 

• VTT(S') is the value of state s' under policy TT. 

By leveraging DP, we aimed to optimize the decision-making process and determine the 
most effective actions for each state, taking into account the long-term consequences 
and potential rewards. We set the discount factor 7 to 1 and provide the full knowledge 
about the temporal domain of the task to the DP model 

3. behavioural Cloning: behavioural cloning entails training an agent to imitate the be­
haviour of an expert in a supervised manner. This approach involves learning a pol­
icy directly from expert demonstrations without explicitly considering the environmen­
tal dynamics or rewards. Our implementation of behavioural cloning utilized Decision 
Trees as the base algorithm, allowing us to gain white-box access to the internal working 
mechanism. By building a mapping between states (S) and actions (A) using a supervised 
learning approach, the agent attempted to replicate the expert's actions for each encoun­
tered state. 

4. Generative Adversarial Imitation Learning (GAIL): GAIL utilizes a combination of 
generative adversarial framework wi th imitation learning to learn a policy from expert 
demonstrations, where the expert is actual human behavioural data. The generator part 

(4.1) 
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4 Methodology 

of GAIL strives to generate actions that are indistinguishable from those of the expert, 
whereas the discriminator has to find the irregularities in the demonstrations and classify 
i f they are generated or real. The pseudocode for G A I L can be described as follows 

Algorithm 1 Generative Adversarial Imitation Learning 
l : Input: Expert trajectories r e , initial policy 7To and discriminator parameters 6>o 
2: for i = 0 , 1 , 2 , . . . do 
3: Sample trajectories T9 from 7Tj 
4: "Discr iminator update:** 

En [ V w log (Dw(s, a))} + ETE [Ww log (1 - Dw(s, a))} (4.2) 

"Explanation:** * The first term i n the update equation is the expected log-likelihood of 
the discriminator over the expert trajectories. This term encourages the discriminator 
to learn to classify real trajectories as real. * The second term in the update equation 
is the expected log-likelihood of the discriminator over the generated trajectories. This 
term encourages the discriminator to learn to classify generated trajectories as fake. * 
The Vfl term takes the gradient of the update equation wi th respect to the discriminator 
parameters 9. 

5-. " P o l i c y update:** 

En [Vo logvr 0 (a | s)Q(s, a)] - XV'eH (ir0), (4.3) 

where 
Q(s, a) = ETi [log (DWi+1(s, a)) \ s0 = s, a 0 = a] 

**Explanation:** * The first term in the update equation is the expected log-likelihood 
of the discriminator over the expert trajectories. This term encourages the policy to 
generate trajectories that are more likely to be classified as real by the discriminator. * 
The second term i n the update equation is the entropy of the policy 7Tj. The entropy is a 
measure of how random the policy is. 

6: end for 

It is worth noting that the generator part of GAIL is built upon the base algorithm of 
Proximal Policy Optimization (PPO), which is a popular reinforcement learning algo­
rithm. PPO optimizes the agent's policy using a surrogate objective function, which 
ensures that the policy update remains wi th in a specified proximity bound to prevent 
drastic policy changes. The pseudocode of PPO as described i n [11] is listed in figure 4.2 
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4.3 Methods for Explainability 

A l g o r i t h m 1 PPO-Cl ip  
1: Input; initial policy parameters %, initial value function parameters 0o 
2: for k = 0,1,2,,.. do 
3: Collect set of trajectories Vk = {ri} by running policy TTJ. = n{Bk) in the environment. 
4; Compute rcwards-to-go Rt. 
5: Compute advantage estimates, At (using any method of advantage estimation) based 

on the current value function V$h. 
(r. Update the policy by maximizing the PPO-Cl ip objective: 

typically via stochastic gradient ascent with Adam. 
7: Fit value function by regression on mean-squared error: 

<j>k+1 = argmin — £ £ (V„( i () - J?t) , 
1 S | rcT!k t-0 

typically via some gradient descent algorithm. 
8: end for 

Figure 4.2: Pseudocode for PPO 

The combination of PPO and the generative adversarial framework in GAIL enhances 
the agent's ability to learn from expert demonstrations and refine its policy through the 
adversarial training process 

4.3 Methods for Explainability 

In order to enhance the interpretability of deep reinforcement learning models, we adopted 
two methods that shed light on the inner workings of these complex systems. These methods 
enable us to gain insights into the learned policies and understand the contributions of different 
features wi th in the model. 

1. Shapley values: Shapley values are a powerful technique that assigns importance or 
contribution scores to the features or components of a deep neural network model. This 
approach quantifies the marginal contributions of each feature towards the model's out­
put prediction. This helps us understand which features are more influential and how 
they contribute to the overall predictions. 

2. Policy Extraction using Decision Trees: Drawing inspiration from explaining hu­
man behaviour through Decision Trees, we apply a similar methodology to train a Deci­
sion Tree model that emulates the behaviour of the trained deep reinforcement learning 
model. This process involves using the learned deep reinforcement learning model as 
a teacher and generating a dataset of state-action pairs. We then train a Decision Tree 
model in a supervised learning manner using this dataset, aiming to capture the deci­
sion rules and policies learned by the deep model. The resulting Decision Tree model 
serves as a transparent and interpretable representation of the complex deep reinforce­
ment learning model. By analyzing the structure of the Decision Tree and examining the 
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4 Methodology 

decision rules, we gain a deeper understanding of how the deep model makes decisions 
in different states. 

4.4 Evaluation Metrics 

To assess the effectiveness of our learning algorithms in the RL environment and evaluate 
their ability to imitate expert behaviours, we employed two key metrics that provide valuable 
insights into their performance. 

1. Survival Rate: The survival rate metric quantifies the agent's ability to survive until the 
last day i n the RL environment. For artificial agents, we calculated the mean and standard 
deviation of survival rate over 10,000 episodes over 10 intervals. A higher survival rate 
indicates a more successful and adaptive agent that can navigate the environment effec­
tively, make optimal decisions, and ensure its own survival. By measuring the survival 
rate, we can gauge the proficiency of the learning algorithms in tackling the challenges 
posed by the environment and their capacity to learn from past experiences to improve 
future decision-making. 

2. Monte Carlo Distance: Monte Carlo Distance is a way to measure how similar an 
agent's behaviour is to that of an expert. It helps us see how well the agent imitates the 

Imagine the expert and the agent are both navigating through a series of situations, 
making decisions at each step. The Monte Carlo Distance compares the actions they 
take i n these situations. Here's how it works: 

a) We gather trajectories (sequences of actions and observations) from both the expert 
and the agent. 

b) For each time step in the expert's trajectory, we calculate the probability of observ­
ing that specific action in the expert's trajectory. 

c) Next, we compare these probabilities to the actions taken by the agent. If the agent's 
actions are similar to the expert's actions, the Monte Carlo Distance w i l l be smaller. 

Monte Carlo distance can be mathematically defined as follows 

expert. 

H (T, T') 
1 n E £ i n H } ( Q i ) + i 

i=l 
m+\S\ x 1̂4 
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4.4 Evaluation Metrics 

where: 

T and T' are the expert and generated trajectories, respectively 

n = number of timesteps in each trajectory 

m = number of expert trajectories 

Oi = observation at timestep i in the expert trajectory 

n(o j ) = probability of observing Oj in the j t h expert trajectory 

\S\ = number of states i n the environment 

I .A I = number of actions i n the environment 
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5 Data Analysis and Results 

5.1 Data Collection 

A total of 29 healthy individuals (14 male, 15 female) wi th a mean age of 23.93 ± 3.73 (mean 
± standard deviation) participated. Each experiment for an individual consisted of four mini-
blocks, each containing 18 forests. Participants had the opportunity to w i n an incentive of €0.50 
if they successfully survived a forest without being eliminated, as indicated i n the problem 
design. Each participant had the potential to complete 576 trials (72 forests multiplied by 8 
days). The average number of trials per participant, excluding "none" responses, was 361.45 
+ 23.22, resulting i n a total of 10,482 decisions. These "none" responses are marked when 
the participants go beyond the time limit to respond, and for these cases, a default "wait" 
action is applied. On average, the probability of successfully surviving a forest was 22% + 2.25. 
Responses categorized as "none" accounted for 0.02 + 2.69 of all recorded responses. 

5.2 Exploratory Data Analysis 

To gain deeper insights into the collected data and understand the patterns and relationships 
within the variables, we employed various data visualization techniques. These visualizations 
allow us to explore the characteristics of the game environment and the decision-making be­
haviours of the human participants. The following visualizations were generated: 

1. Frequency plot of the number of days left: This plot illustrates the distribution of 
the number of days remaining in the game across the dataset. It provides an overview 
of how frequently each number of days occurs and allows us to analyze the duration of 
the game episodes as experienced by the human participants. 
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5 Data Analysis and Results 

Figure 5.1: Frequency plot of the number of days left 

2. Frequency plot of the number of life points left: This plot showcases the distribution 
of the number of life points remaining in the game. It provides insights into the variations 
in life points and helps identify any trends or patterns in the health status of the human 
participants throughout the episodes. 

N u m b e r of l ife po in ts left 

Figure 5.2: Frequency plot of the number of life points left 

3. Stacked frequency plot of the number of days left along with the number of life 
points left: This stacked plot presents the joint distribution of the number of days and 
the number of life points remaining. It allows us to observe the relationship between 
these two variables and explore how their values interact wi th each other during the 
game as experienced by the human participants. 
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5.2 Exploratory Data Analysis 

Number of days left 

Figure 5.3: Stacked frequency plot of the number of days left along wi th the number of life 
points left 

4. Stacked frequency plot of the number of days left for a particular action taken: 
This visualization focuses on the distribution of the number of days remaining in the 
game based on the actions taken by the human participants. It provides insights into 
how their decision to forage or wait influences the duration of the game episodes. 

N u m b e r of d a y s left 

Figure 5.4: Stacked frequency plot of the number of days left for a particular action taken 

5. Stacked frequency plot of the number of life points left for a particular action 
taken: Similar to the previous visualization, this plot showcases the distribution of the 
number of life points remaining based on the actions taken by the human participants. 
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5 Data Analysis and Results 

It allows us to examine how their decisions impact their health status throughout the 
game. 

N u m b e r of l ife po in ts left 

Figure 5.5: Stacked frequency plot of the number of life points left for a particular action taken 

6. Viol in plot of the probability of success for a particular action taken: This viol in 
plot displays the distribution of the probability of success for a specific action taken by 
the human participants. It provides a visual representation of the variability in their 
success rates and allows us to compare the effectiveness of different actions as observed 
in their gameplay. 

wait forage 
Ac t i on 

Figure 5.6: V i o l i n plot of the probability of success for a particular action taken 

7. Viol in plot of the probability of threat for a particular action taken: This V i o l i n 
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5.2 Exploratory Data Analysis 

plot presents the distribution of the probability of encountering a threat for a specific 
action taken by the human participants. It helps us understand the potential risks as­
sociated wi th different actions and evaluate the participants' ability to mitigate threats 
based on their chosen actions. 

Ac t i on 

Figure 5.7: V i o l i n plot of the probability of threat for a particular action taken 

8. Correlation plot of all independent features: 

25 



5 Data Analysis and Results 

Figure 5.8: Correlation plot of all independent features 

By utilizing these data visualizations, we gain a better understanding of the game environ­
ment and the decision-making process of the human participants. These visual representations 
allow us to identify patterns, trends, and correlations wi th in the data, enabling us to make 
informed interpretations and draw valuable insights from the behaviour and gameplay of the 
human participants. 

5.3 Data Preprocessing and Feature Engineering 

Minimal preprocessing was done to the collected data i n general. For the decision tree, we 
prepared the data by performing a stratified train-test split wi th a ratio of 80:20. This resulted 
in approximately 8,400 state-action pairs in the training set. Whereas for training the GAIL 
model, we scaled all the features to a range of 0 to 1. Feature engineering plays a crucial role in 
extracting relevant information from the raw data and transforming it into meaningful features 
that can enhance the performance of machine learning models. In our study, we employed 
feature engineering techniques to derive insightful features from the data collected during the 
game and from the previous work from Korn et al [4]. These features can be categorized into 
two main groups: raw features and derived features. 
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5.3 Data Preprocessing and Feature Engineering 

5.3.1 Feature Engineer ing - Raw Features 

1. Number of days left: This feature represents the remaining number of days i n the 
episode. It provides information about the temporal aspect of the gameplay and allows 
us to analyze how the human participants strategize their actions based on the limited 
time available 

2. Number of life points left: This feature indicates the remaining life points of the par­
ticipants. It serves as a measure of their health status and reflects their ability to sustain 
themselves throughout the game. Analyzing this feature helps us understand how the 
participants manage their resources and make decisions to ensure their survival. 

3. Probability of threat encounter: This feature quantifies the likelihood of encountering 
threats i n the game environment. It is derived from the game's climate conditions and 
reflects the level of risk faced by the participants. Examining this feature enables us 
to assess how the participants consider the potential threats when deciding whether to 
forage or wait. 

4. Nutritional quality: This feature represents the nutritional value of the food obtained 
by foraging. It is an important factor in maintaining the health and well-being of the 
participants. Analyzing this feature allows us to explore the participants' prowess to 
ascertain the dynamicity of the climate. 

5.3.2 Feature Engineer ing - Derived Features 

1. Probability of successfully foraging: This derived feature is calculated as the prod­
uct of the probability of forest quality and the complement of the probability of threat 
encounter. It provides an estimate of the likelihood of successfully obtaining food while 
considering the risks involved. This feature offers insights into the participants' evalua­
tion of the forest conditions and their ability to overcome potential threats when foraging 

2. Safe state: This derived feature is defined as "True" i f the number of life points left 
is greater than the number of days left, indicating that the participants have sufficient 
resources to survive without the need to forage further. Conversely, i f the number of life 
points is equal to or less than the number of days left, the safe state is labelled as "False." 
This feature helps identify situations where participants can adopt a more conservative 
strategy and avoid unnecessary risks by waiting instead of foraging. 

By incorporating these raw and derived features, we aim to capture various aspects of the 
gameplay and the decision-making process of the human participants. These features provide 
valuable insights into their resource management, risk assessment, and strategic thinking, en­
abling us to build more robust and interpretable machine learning models for analyzing their 
behaviour i n the game environment. 
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5 Data Analysis and Results 

5.4 Model Training and Evaluation 

5.4.1 M o d e l Architecture and Hyperparameters - Decision Tree 

We trained the decision tree wi th a maximum depth of 5 and used entropy as the splitting cri­
terion. Addi t ional ly to ensure interpretability and minimize feature redundancy \ we pruned 
the tree by setting the minimum weighted fraction of the sum total of weights of leaf nodes to 
5% and the minimum impurity decrease required to induce a split to 0.02. 

5.4.2 M o d e l Architecture and Hyperparameters - GAIL 

Training the GAIL model was challenging due to the stochasticity of the task. After numerous 
experiments, we settled on the architecture described as follows 

• The generator architecture was based on a modified version of PPO as described i n Stable-
Baselines3 2 . The diagram 5.9 visualizes the network architecture of the generator. 

• The network architecture of the discriminator was kept simple - an M L P model wi th two 
hidden layers, each wi th 32 neurons. 

• The batch size for training GAIL was set to 256 

• Learning rate of the generator was set to 3x10-4 and the learning rate of the discriminator 
was set to 1x10-3 and the optimization algorithm for both was Adam 

• The number of updates per round for the discriminator was set to 2 

Input 

Hidden (128) 

H i d d e n ( 1 2 S ) Hidden (128) 

Figure 5.9: Architecture of GAIL 's generator 

'Refer the documentation for Decision Trees here https://scikit-learn.org/stable/modules/ 

generated/sklearn.tree.DecisionTreeClassifier.html 
2Refer the documentation for PPO here https://stable-baselines3.readthedocs.io/en/master/ 

modules/ppo.html 
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5.5 Model Evaluation 

The generator was first pretrained for 50 epochs on the environment without relying on hu­
man behavioural data. This ensured that the model gets reliably trained and the mode collapse 
issue is reduced. After this, the learning rate for generator was reduced by a factor of 10, and 
the generator was trained in tandem wi th the discriminator for the remaining 250 epochs, the 
discriminator model reached 0.55 log loss and the generator model reached 0.43 value loss. The 
loss graphs of the two models can be viewed in 5.10 and 5.11 

Figure 5.10: Generator Value loss Figure 5.11: Discriminator Logloss 

5.5 Model Evaluation 

Table 5.1 includes several approaches and algorithms, highlighting the following key points: 

• The first four entries represent heuristic approaches that serve as a benchmark for com­
parison. These heuristics are utilized to establish a baseline, and the objective is for the 
trained machine learning models to outperform these approaches. 

• The Backwards Induction approach is regarded as the best algorithm due to its possession 
of complete information about the environment. This approach achieves a survival rate 
of 28%, indicating the maximum achievable performance for an agent. 

• Humans demonstrate a survival rate of approximately 21%. The goal for the trained 
models is to approach this level of performance, as it represents the capacity of human 
decision-making wi th in the given problem domain. 

• The Decision Tree algorithm trained wi th behavioural Cloning achieves a score of 16, 
which is considered a respectable performance. This indicates that the model is capable 
of capturing patterns and making informed decisions based on the observed behaviour 
from the training data. 

• GAIL achieves a survival rate of 15%. Although GAIL 's survival rate is slightly lower in 
comparison to Decision Trees, its ability to closely imitate the desired behaviour makes 
it a competitive approach as demonstrated by the Monte Carlo distance score. 
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5 Data Analysis and Results 

Sr. Approach Algorithm Survival M C D 
No. Rate (%) 
1 Heuristic Always Wait 0 -
2 Heuristic Always Forage 12 -
3 Heuristic Ha i l Mary Play 14 -
4 Heuristic Random Actions 9 -
5 Backwards Induction Dynamic Programming 28 -
6 Human benchmark - 21 -
7 behavioural Cloning Decision Tree 20 8.92 
8 Inverse RL GAIL 16.5 8.83 

Table 5.1: Comparison of approaches 

5.6 Model Explanability 

5.6.1 Explaining Decision Tree 

After training the decision tree on the human participants, we can visualize it in order to de­
scribe the collective human strategy as seen 5.12. As decision trees are inherently explainable, 
they are extremely useful tools when it comes to explainable M L 

wait 
S- forage 

l i fe_points_left < = 1.5 
s amp l e s = 100.0% 

va lue = [0.483, 0.517] 
c lass = fo rage 

27 .2% 45 .8% 
[0.724, 0.276] [0 .333, 0.667] 

wa i t fo rage 

Figure 5.12: Decision Tree trained on human behavioural data 

The decision tree shows two main sub-strategies: 
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5.6 Model Explanability 

• Players are more likely to forage i f they have very low life points, indicating that they 
are on the verge of death. This suggests that players are wi l l ing to take risks in order to 
increase their chances of survival. 

• Players are more likely to wait i f they have enough life points to wait out the episode, 
also known as being in a safe state. This suggests that players are more risk-averse when 
they have a higher chance of survival. 

After these two main sub-strategies, the decision tree becomes less clear. However, one 
insight is that players seem to depend on the probability of success when making their decision. 
For example, i f the probability of success is high, players are more likely to forage, even i f they 
have a safe amount of life points. This suggests that players are more likely to take risks i f they 
believe that they are likely to be successful. 

5.6.2 Explaining GAIL 

The decision tree trained on synthetic data from the GAIL model reveals two main sub-strategies 
similar to the strategy of human participants: forage when low health and wait when safe. The 
GAIL model also considers other factors which might be important to survive (and to imitate 
human behaviour), such as low probability of threat encounters, high probability of success 
and higher number of days left. 

This finding suggests that GAIL agents are capable of learning complex strategies that are 
similar to those used by humans. This has important implications for the development of arti­
ficial intelligence agents that can interact wi th the environment in a safe and efficient manner. 

probability success <= 0.313 
samples = 100.0% 

value = [0.613, 0.387] 
class = wait - ^ . ^ ^ ^ ^ 

life_points left <= 2 
41.6% 

[0.821, 0.179] 
wait 

safe state <= 0.5 
" 58.4% 

[0.465. 0.535] 

13.7% 
[0.569, 0.431] 

27.9% 
[0.945, 0.055] 

life points left <= 3.5 ̂  
37.6% 

[0.269, 0.731] 

probability success <= 0,474 
20.7% 

[0.821, 0.179] 

20.6% "" probability_success< 
- - - 1 9 ] [ 0 - £ 0 2 ] 

= 0 - 4 9 13.8% 7.0% 
[0.954, 0.046] [0.561, 0.439] 

wait wait 

life points left <= 4.5 
13.4% 

[0.629, 0.371] 

^ 

• 3.6% 
[0.0, 1.0] 

forage 

8.7% 4.7% 
[0.447, 0.553] [0.964, 0.036] 

forage wait 

Figure 5.13: Decision Tree trained on synthetic data obtained from GAIL 

The Shapley values in figure 5.14 represent the marginal contribution of each feature to the 
GAIL agent's decision-making process. The top three features are life points left, days left, 
and probability of success. As can be seen, the life points left have the largest Shapley values, 
indicating that it is one of the most important features for the GAIL. Days left and probability of 
success are also important features, but they have a marginally smaller impact on the decisions. 
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0.00 0.05 0.10 0.15 0.20 0.25 

mean( |SHAP value|) (average impact on model output magnitude) 

Figure 5.14: Shapley analysis of GAIL 
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6 Discussion 

The discussion section encapsulates the outcomes and implications derived from the study's 
application of the Reinforcement Learning (RL) Paradigm to assess human decision-making 
capabilities wi th in the intricate framework of a challenging game environment. The utiliza­
tion of this paradigm yielded insightful revelations regarding the diverse array of strategies 
employed by players. It became evident that the likelihood of survival was notably influenced 
by stochastic elements, emphasizing the necessity for a larger participant cohort to enhance 
the robustness and precision of population-level estimations. 

One of the key takeaways from the study was the efficacy of Decision Trees, specifically 
when equipped wi th well-crafted derived features. These Decision Trees exhibited a dual ad­
vantage: not only did they provide understandable and interpretable explanations of player 
strategies, but they also demonstrated a level of performance that could be considered on par 
wi th the more complex G A I L model. The Decision Tree's capacity to distill intricate decision­
making dynamics into comprehensible insights is noteworthy and lends itself to practical ap­
plications where transparent explanations of strategic choices are imperative. 

Conversely, the Generative Adversarial Imitation Learning (GAIL) model showcased a dis­
tinct strength in capturing the underlying behavioral intricacies of the participants. However, 
this heightened capacity was accompanied by a trade-off in terms of immediate interpretability. 
The G A I L model's intricate nature necessitated post-hoc efforts to expound upon its outcomes, 
which could potentially limit its real-time applications in scenarios requiring prompt insights. 

A n innovative avenue emerged through the process of amalgamating the GAIL model's find­
ings wi th the Decision Trees, demonstrating a promising approach to balance the dual as­
pects of performance and explainability. This harmonious synthesis offered a potential bridge 
between the complex modeling techniques and the need for transparent understanding of 
decision-making dynamics. 

In conclusion, the study not only shed light on the multifaceted nature of decision-making 
strategies in challenging environments but also highlighted the strengths and trade-offs asso­
ciated wi th different modeling approaches. The combined insights from Reinforcement Learn­
ing, Decision Trees, and GAIL techniques contribute to a more comprehensive understanding 
of human decision-making, paving the way for informed applications in various fields. 
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7 Conclusion and Future Work 

This study investigated human decision-making behaviour i n a game-based setting and demon­
strated the potential of GAIL for imitating human behaviour in a tabular setting. The study also 
that the application of the RL Paradigm effectively evaluated human decision-making capabil­
ities i n the challenging game environment. However, players exhibited diverse strategies, and 
survival odds were influenced by chance, necessitating a larger sample size for better popula­
tion estimation. The results also showed that GAIL is capable of learning complex strategies 
that are similar to those utilized by humans, but it lacks immediate interpretability. Disti l l ing 
GAIL through Decision Trees improved interpretability, presenting a promising approach for 
balancing performance and explainability. 

Evident ways of extension of the work would be to first gather more informative data by 
prompting players to explain their decisions, providing valuable context for deeper insights 
into decision-making processes. One line of work which is gaining traction i n the RL com­
munity is to train the models in a framework called Reinforcement Learning from Human 
Feedback, where the data collected from the participants is the explicit ranking of the model's 
actions instead of supervised data. We attempted to transform the supervised data to a feedback 
mechanism, which showed promising preliminary results, but a more thorough exploration is 
necessary. 

Secondly, from the model perspective, investigating GAIL 's instability is a must. The archi­
tecture of adversarial training is inherently unstable as mentioned in the G A N literature, but 
we attempted to remedy it by pretraining the generator on the game environment. Another 
suggestion would be to carry out trials wi th diffusion models, which is the current state-of-
the-art techniques for generative modelling for computer vision. Although there have been 
attempts to replicate their success for RL, our usecase is a bit more nuanced (aka RL for tabular 
data) and so we decided not to test it for the scope of the thesis. Another cutting-edge work 
is to utilize foundation models as a baseline pretrained model and finetune them on the down­
stream task. We aim to examine foundation models for our task i n the near future. From an 
explainability perspective, one extension could be to explore soft decision trees. 

Thirdly, the game could be modified to encompass multi-agent learning. This would uncover 
complex decision-making dynamics in group settings and would help understand agent inter­
actions and their impact on outcomes. This is our current focus and preliminary work has been 
described here (link to slides). 

By addressing these future research directions, we can gain a deeper understanding of decision­
making in game environments and advance the development of more interpretable and human-
aligned A I systems. 
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