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Abstract

The aim of this thesis is to design, construct and implement a custom inertial motion cap-
ture system. Though multiple techniques have been studied, the primary focus is placed on
inertial motion capture itself — its merits and demerits, key properties and components nec-
essary for construction of an inertial-based system. The preliminary information-gathering
is followed by the design, implementation and evaluation phases, which deal with presenting
the process of developing and testing the solution. The main contribution of the system im-
plementation is the construction of hardware motion capture devices, i.e. small, lightweight,
battery-powered wearable bands, which are completely wireless — both in terms of commu-
nication with the outside world as well as in their Qi-compliant charging capabilities.

Abstrakt

Cielom tejto prace je navrhnit, zhotovit a implementovat vlastny systém pre zachytavanie
pohybu zalozeny na inercialnych meracich jednotkach. V ramci budovania teoretického zak-
ladu bolo preskiimanych viacero metdd, avsak primarne bola pozornost venovana samot-
nému inercidlnemu snimanu — jeho kladom a nedostatkom, klicovym vlastnostiam a jed-
notlivym komponentom potrebnym pre zostrojenie systému na jeho baze. Tento dvodny
zber informaécii je nasledovany fazami ndvrhu, zhotovenia a zhodnotenia, ktoré sa zaobe-
raju procesom vyvoja a testovania daného rieSenia. Hlavnym prinosom realizacie systému
je zostrojenie zariadeni pre snimanie pohybu — jedna sa o malé, Tahké, batériovo napajané
zariadenia, ktoré su kompletne bezdrotové, ¢i uz z hladiska komunikécie s okolitym svetom,
alebo vdaka napdjaniu kompatibilnému so standardom Qi.
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Rozsireny abstrakt

V prvopocatkoch tvorby kreslenych filmov animatori zapasili so strnulostou a neprirodze-
nostou pohybov kreslenych postav. V roku 1917 si americky vyndlezca Max Fleischer
nechal patentovat Specidlnu techniku, ktorda mala revolucionalizovat proces animécie — tato
metdda dodnes nesie nazov rotoskopia. Podstata rotoskopie spocivala vo vyuziti zariadenia
zvaného rotoskop na premietanie hranych filmov na skleneni dosku a ru¢ného obkreslovania
zobrazovanych hercov ¢i zvierat — snimok po snimku. Hoci zdlhava a ¢asovo narocna, tato
technika polozila zédklady pre myslienku automatizicie rekonstrukcie snimaného pohybu —
stihrnne sa této oblast nazyva motion capture (skratene mo-cap).

Dnes, viac ako sto rokov od vynalezu rotoskopie, je pouzivanych mnoho konceptov
pre zachytavanie pohybu, umoznujtcich snimanie v réznych meritkach ¢i na réznych -
rovniach komplexnosti — sme rovnako schopni tspesne zachytdvat vzdialeny pohyb sub-
jektu v priestore, ako aj rozpoznéavat gesta rik ¢i sledovat kontrakcie mimickych svalov na
tvari. Principy, na ktorych st novodobé snimacie metdédy zalozené, st dvojseénd zbran,
prirodzene prindsajica svoje vyhody aj nevyhody — vécsSina technik, ako optické ¢i mag-
netické zachytavanie, je zavislych od nastavenia scény a Specidlneho, mnohokrat finan¢ne
naroc¢ého vybavenia. Prave inercidlne snimanie pohybu, zalozené na inercidlnych meracich
jednotkach, je technika nezavisld od lokacie snimania — popularita tejto metédy neustéale
rastie v dosledku zmensujtcich sa rozmerov i ndkladov na snimacie senzory.

Hlavnym cielom tejto prace je navrhntut, skonstruovat a otestovat vlastny zdklad pre
inercidlny mo-cap systém zalozeny na MPU-6050 jednotkéch, hostovanych mikrokontrolérmi
ESP32. Kapitoly 2 az 4 si venované tvorbe teroretického zdkladu. Kapitola 2 sa za-
obera popisom zakladnych principov, vyhod a nevyhod Styroch najpouzivanejsich sni-
macich technik: optickej, mechanickej, magnetickej a inercidlnej. V zavere kapitoly je
tento nahlad vyuzity pre zhrnutie aspektov, ktoré autori mo-cap systémov propaguji na
svojich vyrobkoch ako priaznivé voci konkurencii — tento zoznam sa stal smerodajnym pre
cely zvySok prace. Kapitola 3 poklada zaklad pre pracu s MPU-6050 a ESP32. MPU-6050
je zariadenie pre zachytavanie pohybu, kombinujice 3-osy MEMS gyroskop, 3-osy MEMS
akcelerometer a vstavany proprietarny procesor pre komplexné spracovanie nameranych
dat, nazyvany DMP (Digital Motion Processor). Toto zariadenie vyzaduje pripojenie na
externy mikrokontrolér, s ktorym komunikuje pomocou I?C rozhrania — pre tento tcel je
vyuzité prave ESP32 od firmy Espressif systems. Kapitola 4 sa zaobera komunikac¢nymi
technolégiami, ktoré ESP32 podporuje nativne (bez pridavnych komunikaénych modulov),
a taktiez predstavuje problematiku synchronizacie viacerych ESP32 zariadeni fungujtcich
v spolocnej sieti.

Vychadzajic z tohto teroretického zdkladu, kapitoly 5 az 7 predstavuju proces navrhu,
jeho prevod do implementécie a jej nasledné otestovanie. Vysledny systém pozostava zo
styroch separdtnych casti komunikujicich pomocou aplika¢ného protokolu MQTT: sen-
zorickych zariadeni, procesujicej aplikacie, vizualiza¢ného uzivatelského rozhrania a MQTT
brokeru. Senzorické naramky, ktorych tlohou je generovat data o pohybovych trajek-
toridch, st hlavnym prinosom tejto prace. Jedna sa o pomerne malé zariadenia o rozmeroch
8.65x30.0x30.0 mm, vaziace 8 gramov, zalozené na vlastnom navrhu dosky plosnych spojov.
Tieto naramky boli zostrojené tak, aby spdsobovali ¢o najmensiu prekazku v prirodzenom
pohybe: komunikécia aj nabijanie jednobunkovej li-polymér batérie, ktora sluzi ako zdroj
energie, st vykonavané bezdrotovo. S vonkajsim svetom naramky komunikuji pomocou
protokolu MQTT, zatial ¢o synchronizacia medzi zariadeniami navzajom prebieha pomo-
cou protokolu ESP-NOW. Nabijanie batérie je zabezpecené pomocou prijimaca CP2021,
kompatibilného so standardom Qi.



Hlavnou tlohou procesujicej aplikacie je zber a ukladanie dat generovanych zo sen-
zorickych zariadeni, zatial ¢o uzivatelské rozhranie, implementované v Javascriptovom frame-
worku Vue.js, sa stard o zobrazovanie orientacii senzorickych zariadeni v redlnom case ako
pomocou grafov, tak cez animécie prislusnych 3D modelov. Tieto aplikacie boli implemen-
tované tak, aby boli jednoducho rozsiritelné o nové vlastnosti.

Testovanie vysledného riesenia prebiehalo v dvoch fazach, ruéne aj automatizovane —
komponenty boli najprv testované samostatne, nasledne bol systém otestovany ako celok.
Za 1celom otestovania spravnosti interpretacie zachytenych pohybov boli vykonané celkovo
tri experimenty, pricom séria pohybov vykonand pre kazdy experiment bola zopakovand
niekolkokrat — z takychto sérii bol za pomoci algoritmu Dynamic Time Warping (DTW)
vytvoreny jeden reprezentativny profil pohybu, ktory bol nasledne vyhodnocovany. Pre
tento tcel bola procesujica aplikicia rozsirena o funkcionalitu modifikovanej verzie DTW,
pracujicej s multidimenzionalnymi ¢asovymi radami, kde je vyvoj jednotlivych dimenzii
v ¢ase navzajom previazany. Zaver tejto price sa zaoberd zhrnutim nedostatkov zistenych
pocas faze testovania, spdsobmi, ako by bolo mozné ich dopad minimalizovat, a taktiez
predstavenim funkcionalit, ktoré by systém v budicnosti mohol potencidlne obsahovat.
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Chapter 1

Introduction

The meaning of “to animate”, stemming from Latin “animare”, is “to give life to”. Ani-
mation is a term presently referring to the process of creating an illusion of movement of
an otherwise inanimate object, by displaying a sequence of frames, each containing a par-
tial change in the object’s pose. It seems to be rather fitting that the early endeavours to
accelerate the process of creating these frames — of “bringing objects to life” — inadvertently
gave life to a cutting-edge technique presently employed across a wide variety of domains:
motion capture, commonly referred to as mo-cap.

We have come a long way from these initial endeavours — at present, there are several
approaches to motion capture, enabling movement estimation on various levels of complex-
ity: ranging from determining the position and orientation of a body in a multidimensional
space, through recognizing hand gestures, to recording contractions of the mimic muscles
forming emotional expressions. Nonetheless, with each method having its own merits and
demerits, generally emerging from the very concepts they are built upon, the degree of
suitability for certain tasks naturally tends to differ for various mo-cap systems, especially
regarding the required scene setting. It is inertial motion capture, self-contained and non-
invasive, based on inertial measurement units, that has been gaining popularity in recent
years: both due to the ever-shrinking sensor cost and size, as well as the ability to capture
motion in situated environments.

The aim of this thesis is to lay the foundations of a custom inertial mo-cap system by
designing and constructing a hardware solution for sensing human movements, as well as
implementing a software for gathering the captured data. In Chapters 2 to 4, a prelimi-
nary knowledge base is established, including research into the concepts, technologies and
methods employed in the later parts of the thesis. More specifically, Chapter 2 deals with
the principles of various mo-cap techniques with the primary focus on inertial motion cap-
ture, along with determining the desired qualities based on a research into existing inertial
motion capture projects. Following the presented findings, Chapter 3 describes the hard-
ware components for the construction of custom inertial mo-cap devices, and Chapter 4
introduces potential candidates for the role of a carrier of internal communication.

Based on the knowledge acquired through studying these preliminaries, a proposal for
a custom inertial mo-cap system is created and presented in Chapter 5, whereas the process
of transforming this design into an actual realisation is described in Chapter 6. Chapter 7
concludes the thesis with testing and evaluation of the constructed solution, also suggesting
potential improvements for its future fine-tuning.



Chapter 2

Methods for motion capture

In the early days of cartoons, animators struggled with improving the stiff and unnatural
movements plaguing their creations. Then, in 1915, along came rotoscoping, a technique
poised to revolutionize the process of animation, patented by Max Fleischer. The essence
of this method lies in the employment of a device called a rotoscope for projecting a motion
picture film onto a glass panel, manually tracing the contents of each frame and copy-
ing postures of the projected actors or animals. Although lengthy and time-consuming,
this technique became instrumental in creating an illusion of a fluid, life-like movement in
illustrations [42].

As it stands, a century ago, rotoscoping laid foundations for the idea of motion re-
construction, nowadays coined as motion capture — a data-collecting technique utilized for
measuring an object’s position and orientation in physical space [30], extracting the cap-
tured motion into a representation allowing for further processing and analysis [42].

Almost twenty years ago, the authors of article [54] pointed out a staggering number
of approaches to capturing human motion, based on a variety of principles and present-
ing different performance characteristics, yet all developed for the same purpose. This
“boom” in available methods allowed for today’s systems to become more specialized, vary-
ing the complexity of the information being captured. It comes as no surprise that motion
capture graduated from the entertainment industry into areas such as computer vision,
robotics or medical and sport analysis.

Having briefly described how motion capture came to be, this chapter serves as a primer
to mo-cap methods, introducing presently available approaches in Section 2.1, although
primarily focusing on the fundamental principles of one method in particular — inertial
motion capture (Section 2.2).

2.1 Review of available approaches

As the authors of article [54] wrote, there is no silver bullet among the available motion
tracking technologies, as they all have their own strengths and weaknesses. Following review
of available mo-cap approaches is a summary of information comprising multiple primary
sources: [56], [42], [54], [30], [43], [29] and [49].

2.1.1 Optical motion capture

Optical motion capture — wvideo tracking — is a process of locating the position and ori-
entation of a subject by means of synchronized video cameras [56]. The stream of the



provided frames should be continuous, with each frame analyzed individually. Currently,
there are two fundamentally different approaches to optical motion capture: marker-based
and markerless.

Marker-based methods

As the name suggests, marker-based methods utilize markers — elements affixed to the strate-
gic points on the performer’s body. Several high-resolution cameras are then positioned
around the measurement workspace to track the motion of these markers during the sub-
ject’s performance. The subsequent reconstruction of the movement is based on matching
the markers from various vantage points provided by the cameras, using triangulation to
compute the markers positions in 3D space for each frame [30]. There are two types of
markers: either active, battery powered diodes emitting infra-red light (IR LEDs), or pas-
sive, coated by retro-reflective material designed to reflect incoming light back to its source,
in which case the cameras utilized for tracking are responsible for emitting the light them-
selves'. Marker type notwithstanding, to measure the infra-red light emitted /reflected, the
cameras must also be fitted with infrared pass filters [54]. The main problem with marker-
based optical methods lies in marker obstruction — to tackle this issue, redundant markers
are often employed. Even though this approach reduces the probability of error occurrence,
it also increases the processing latency [49, 30, 42].

Markerless methods

The traditional marker-based methods, along with mostly being restricted to indoor venues
only, are impractical when the markers themselves might hinder the activity to be captured,
e.g., sporting games. Due to this, markerless optical methods are a subject of extensive
research [49]. As of today, there are multiple approaches being developed, some of them
purely software-based (employing various computer vision processing algorithms), while
some require special hardware — e.g., a depth-sensitive camera, emitting infrared light to
perceive depth, such that each pixel also contains information about the distance to the
object [56]. In recent years, usage of the LIDAR (Light Detection and Ranging) technology
is also gaining attention — this method is based on calculating the Time of Flight (ToF) of a
near infrared light beam released from a laser and reflected off the surface of the surrounding
objects. Such 3D or Doppler LiDAR scans might then be further processed for detecting
clusters of moving points, detecting objects in motion [41, 27].

2.1.2 Mechanical motion capture

Mechanical motion capture involves tracking the rotation angles of the subject’s joints. To
this end, the performer is required to wear a skeletal-like structure consisting of rods con-
nected by sensorized joints — referred to as an ezoskeleton. This device was designed to
mimic the structure of a human body — rods for bones and joints for, well, joints — following
the performer’s movements, ideally having the angles formed between the rods match the
respective inter-segmental angles (i.e. angles between two body segments on either side of
joints). To measure these angles, each exoskeleton joint is equipped with electromechan-
ical transducers capable of converting displacement to voltage output through changes in
resistance (such as potentiometers) [30, 42]. Having collected data from the transducers,

Lusually through the means of infra-red LEDs placed around the camera lens



the relative position and rotation of the individual limbs may be calculated, followed by
inferring the pose of the entire body.

The main issue with this approach, apart from the obvious movement limitations caused
by the exoskeleton structure, lies within determining the absolute position of the performer
in regard to the surrounding environment — to achieve this, an external positioning tech-
nology has to be introduced into the system [49].

2.1.3 Electromagnetic motion capture

Electromagnetic motion systems are based on the principles of electromagnetism, employing
two main elements for determining the position and orientation of the performer: sensor
units, affixed to the performer’s body (along with a control unit), and stationary antennas,
referred to as transmitters. The main role of a transmitter is to generate three orthogonal
electromagnetic fields by having an electric current (either alternating or direct, based on
the system type) flow through a set of metallic coils — a process referred to as excitation.
Generally, three separate antennas are used — one for each spatial direction — however, it
is not unusual to have a transmitter consisting of three orthogonally oriented metal coils
enclosed within a single package [49, 30]. The type of the electromagnetic field produced
by the transmitter also influences how the sensing devices are to be designed: in AC-based
systems, they also consist of three orthogonal coils, yet in DC-based systems, these are
substituted with three magnetometers, measuring the magnitude of the magnetic field.
The control unit collects the voltage readings in each axis generated by the electromagnetic
induction within the devices, determining tridimensional vectors indicating the devices’
position and orientation with respect to the excitation (transmitter).

There is no known material able to block an electromagnetic field without being at-
tracted to the magnetic force itself” — this is an equally great advantage and disadvantage
at the same time. As the human body is incapable of blocking the electromagnetic field,
the issue of sensor obstruction, causing much heartache in optical mo-cap systems, seems to
no longer be an issue at all. On the other hand, new electromagnetic fields are being gener-
ated with the occurrence of metallic objects in the immediate vicinity of the transmitters,
and this interference is bound to skew the measurements [49].

2.2 Inertial motion capture

Briefly, one could summarize the inertial mo-cap systems as follows: in inertial motion cap-
ture, as the name indicates, recording the motion trajectories is based on a series of smart
devices containing inertial measurement units (IMUs) — self-contained units usually com-
prising inertial MEMS sensors — attached to a performer’s body, whereas the performer’s
position and orientation at a point in time are computed analytically through a process
similar to dead-reckoning [49]. Since this description contains terms which have yet to be
explained, and the goal is to dive deeply into the principles under which inertial motion
capture operates, the following sections shall start from the very basic definitions (Section
2.2.1), gradually building up to describing the system as a whole (Sections 2.2.2 and 2.2.3).

*https://www.uu.edu/dept/physics/scienceguys/2004Feb.cfm
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2.2.1 Ingredients of an inertial measurement unit

The following definitions are based on [35] and [37]. The term sensor might have already
been “thrown around” here and there, although its dictionary definition would be that of
a device which responds to a physical stimulus and transmits a resulting impulse®. As such,
a sensor is usually comprised of three chained components: a sensing section in direct
contact with the monitored environment, a processing circuitry responsible for converting
the physical property into a measuring (most often electrical) quantity, and an outputting
interface. A smart or intelligent sensor generates processed, actionable data instead of raw
output, employing a built-in microprocessor, usually transmitting the data through a net-
work to a collecting unit. An inertial sensor determines the position and orientation changes
with respect to the outer inertial reference system. A MEMS (micro-electro-mechanical sys-
tem) sensor is a microscopic device (generally ranging from 0.02 up to 1 mm) manufactured
using one of the microelectronic fabrication methods (such as etching or photolithography),
integrating micromechanical structures and electronic components onto a single substrate.

Having defined the necessary, let us revisit the aforementioned definition: inertial mo-
tion capture employs inertial measurement units (IMUs) for capturing motion trajectories.
These estimations are subsequently utilized for inferring the current position/orientation of
the performer based on their previously known position/orientation — i.e., essentially the
process of dead reckoning. To acquire these estimates, IMUs usually fuse the output data of
at least two (often three) types of MEMS sensors: accelerometers and gyroscopes, to derive
the object’s attitude, and magnetometers to estimate the heading angle [49]. The following
principles’ descriptions are based on [37] and [45].

MEMS accelerometer principle

A MEMS accelerometer is a sensor measuring either static or dynamic acceleration, i.e.,
the rate of change of the velocity of an object. Static acceleration is measured when no
other external forces are applied to the sensor, except for the standard acceleration of a
free fall (caused by the force of gravity), while dynamic acceleration is a result of vibrations
caused during movement.

29 -1g 0 1g 29

<+
Sensitivity axis

Figure 2.1: MEMS accelerometer — a proof mass suspended on springs, free to move along
one axis, denoted as the sensitivity axis. The Systéme International (SI) unit of accelera-
tion is m/s?, though G-force is also used, where 1g is approximately equal to 9.8 m/s?,
i.e. the conventional value of gravitational acceleration on Earth. Illustration source
vectornav.com.

A capacitive accelerometer operates on the principle of monitoring the position of a proof
mass, suspended on springs, free to move along a single axis as the device accelerates

3https://www.merriam-webster.com/dictionary/sensor
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(illustrated by Figure 2.1). These springs are attached to a fixed capacitor plate, setting
up the capacitive effect. As the proof mass moves under the force acting on the sensor, its
distance from the capacitor plate changes, resulting in a change of the capacitance.

MEMS gyroscope principle

A MEMS gyroscope is a sensor measuring the angular velocity of an object (rotating about
a specific axis) by means of what is known as Coriolis. Also known as the Coriolis effect,
this phenomenon refers to the deflection of an object moving within a rotating non-inertial
frame, caused by an inertial force called the Coriolis force. Similar to a MEMS accelerom-
eter, a mass suspended by strings attached to a capacitor plate is utilized to measure the
displacement resulting from the Coriolis effect (illustrated in Figure 2.2).

F=-2mwv

Figure 2.2: MEMS gyroscope — a proof mass (m) suspended on a string, with a driving
force on the x axis, forcing the mass to oscillate, with the angular velocity (w) applied
about the z axis. A displacement force (F') is being generated in the y axis as a result of
the Coriolis force. Illustration source vectornav.com.

MEMS magnetometer principle

A MEMS magnetometer is a sensor measuring magnetic fields operating on the principle of
the Hall effect: with an electric current flowing through a conductive plate, electrons flow
from one end of the plate to the other. Bringing a magnetic field near the plate causes
the electrons to defect from one side to the opposite end. In turn, this influx of electrons
induces a voltage, dependent on the strength of the applied magnetic field and its direction.

2.2.2 Interpreting the measurements

A single inertial MEMS sensor measures motion in regard to only one of the three principal
axes; in other words, it only has one Degree of Freedom (DOF) [55]. Typically, three such
sensors are positioned orthogonally to each other within a single package — these devices are
then referred to as 3-axis or 3DOF. Combining a 3-axis accelerometer and a 3-axis gyroscope
results in a 6-axis (6DOF) IMU, adding a 3-axis magnetometer results in a 9-axis (9DOF)
IMU.

What the three MEMS sensors described in the previous section have in common is that
they are extremely susceptible to estimation errors. A gyroscope is subject to a time-varying
bias due to inherent noise-causing imperfections, and even though it can be countered with
initial calibration, these errors tend to accumulate and the estimates will drift over time.
On the other hand, accelerometers are sensitive to all vibrations and magnetometers are
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naturally sensitive to any rogue magnetic forces. These inaccuracies prove to be an issue for
stand-alone sensors, however, one is able to effectively cancel these errors out by combining
their individual measurements [40, 55]. This might be taken care of by the IMU’s on-
board microprocessor — though such a process is usually comprised of multiple steps, often
employing proprietary black-box algorithms supplied by the IMU’s producers (revisited in
3.2.4) — however, there is also the possibility of employing self-implemented or third-party
methods by utilizing the raw data. For instance, in-depth descriptions of these can be found
in [55] and [24] — in short, these methods usually entail the following phases:

e Sensor calibration — for gyroscopes and accelerometers, this includes the removal of
zero-errors, e.g., recordings of non-zero values when the device is level, usually through
means of calculating an additive zero-offset (for example as many-times weighted
average of captured estimations) or using low-pass filters. Calibrating a magnetometer
requires reducing the jitter and minimizing the interference of surrounding magnetic
materials.

o Data fusion — fusing the angular rate (provided by a gyroscope) with incline (gravity
vector, provided by an accelerometer) and, optionally, magnetometer estimation for
more reliable heading data, usually through means of Extended Kalman filters or
complementary filters.

e Data representation — results are to be converted into a suitable representation.
There are multiple methods for representing the orientation of an object with respect
to a set of three orthogonal coordinate axes, thought the most commonly used are:

— Euler angles — according to the Euler’s rotation theorem, an arbitrary rotation
may be described by only three parameters®, with the rotation angles usually
denoted as (¢, 0,1) [40]. When changing the orientation of an object, these
elemental rotations are applied successively, with the order of axes depending on
the axis convention in use. If a convention involves repeatedly rotating about
one particular axis, it is called Eulerian, using Fuler angles (e.g., rotations are
applied to axes in order xzx). However, if rotating around all three axes of the
system, e.g., a permutation of xyz or zyz, the convention is named Cardanian
and the angles are, rather famously, known as yaw, pitch and roll [55].

— Quaternions — the main issue with Euler or Cardanian angles makes itself
known when one of the orientation axes becomes parallel to any of the remaining
ones (i.e., when the “gimbals line up”) due to the process of rotation. This is
referred to as the Gimbal lock singularity, causing a loss of one DOF within the
rotation system [40, 55]. On the other hand, quaternions do not suffer from
such shortcomings. A unit-vector quaternion, denoted as (a, b, ¢, d), is a vector
defined in four-dimensional space, composed of two components: a scalar value a
corresponding to the angle of rotation, and the vector part (b, ¢, d) corresponding
to the vector about which the rotation is to be performed [40].

2.2.3 Summary of properties

Due to the cost-effectiveness of today’s IMUs and the broad possibilities of research, IMU-
based motion capture has spanned to multiple spheres: from personal projects [52, 32],

‘https://mathworld.wolfram.com/EulersRotationTheorem.html
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through university-based complex solutions [24] to relatively expensive proprietary systems
such as Notch by Notch Interfaces’. Based on these, one can assume the following: IMU-
based mo-cap systems usually take the form of small bands worn on a body (with their
number depending on which body part’s movement one wishes to capture) and an arbi-
trary unit for collecting and post-processing the data. These systems are, above all else,
self-contained, adaptable and non-invasive, allowing for tracking of human motion in any
environment [56]. The following list is a compilation of desirable qualities for any mo-cap
system (described in [54] and [42]), along with the aspects authors of the above-mentioned
IMU-based systems described as favourable regarding their products:

e tiny dimensions — miniature dimensions of today’s MEMS sensors and micropro-
cessors allow for bands housing the devices to be light and small-sized,

¢ battery-powered — most IMUs are designed to be low-power, therefore small, prefer-
ably rechargeable batteries should be able to sustain them,

e wireless communication — with an additional microprocessor module allowing wire-
less data transmission, the bands do not have to be connected by wires,

e no hindrance to movement — due to the previous three characteristics, along
with requiring no external structures or suits, the bands pose no restrictions to the
performer’s movement,

e location-agnostic — no measurement workspace is needed, as they do not utilize any
additional equipment such as high-resolution cameras or magnetic transmitters.

*https://wearnotch.com/
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Chapter 3

Hardware components

Section 2.2 introduced the basic concepts and principles an inertial mo-cap system operates
on. The main objective of this chapter is to follow up and present the physical hardware
components required for assembling a smart device capable of capturing the movement tra-
jectory, pre-processing the data and delegating it, in accordance with the desired properties
specified in 2.2.3. Naturally, this device is to be built around an IMU — as dictated by the
specification of this thesis, this is to be the MPU-6050 by InvenSense (described in 3.2).
Since this IMU requires a connection to a hosting microcontroller, the specification further
dictates employing an ESP32 (3.3). Finally, this device is to be battery-powered, calling
for incorporating a charging circuit along with a battery — this shall be addressed in 3.4.

3.1 Terminology

Prior to commencing the presentation of the components themselves, a couple of terms,
which shall later be referenced, need to be defined. The following concepts are quite common
in the world of hardware.

System time. All integrated circuits depend on a clock source — an electronic circuit
generating an electrical signal with a precise frequency, usually utilizing the mechanical
resonance of a vibrating crystal [34]. Built upon the output of a clock source, often pre-
processed by a divider (also called a pre-scaler), are pulse-counting timers — counting the
steady stream of ticks produced by the source.

Register access management. The following paragraph is based on [44]. A register
is a type of fast memory located within a processing unit, utilized for temporarily storing
small amounts of data. Should one be interested in continuously receiving the contents
of a register upon its update, there are two different methods for finding out whether its
value has indeed changed — polling and hardware interrupts. Polling is a process in which
a processor periodically checks for updates, whereas with interrupts it does not need to
perform any checks, as it will be notified of the change by a hardware interrupt signal —
upon receiving such signal, the processor immediately stops the current process and jumps
to a function called interrupt service routine (ISR) to read the updated contents.

Serial communication. The following paragraph is based on [7]. Serial communica-
tion is a data transmission method, where data between devices is transferred bit by bit
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along a single communication bus. There are multiple serial protocols, although the most

frequently used are:

« I2C - devices employing the synchronous I2C (Inter-Integrated Circuit) protocol are in

a master-slave relationship (with the master being the connection initiator), where the
slave device might receive instructions from multiple masters, just as a single master
might command multiple slaves. I?C only requires two lines: a full-duplex connection
carrying the communication data (SDA) and a line carrying the clock signal generated
by a master to the slave devices (SCL). Data is transferred in the form of messages
broken into frames, with the first 7-bit frame always carrying the receiver’s address.

SPI - akin to I?C, devices communicating through SPI (Serial Peripheral Interface)
are also in a master-slave relationship; a master can control multiple slaves, however,
a slave device is permitted to have only one master. SPI requires four lines: Master
Output/Slave Input (MOSI) and vice versa (MISO), clock signal (CLK) and Slave
Select/Chip Select (SS/CS). As the receiving device is selected through the SS/CS
line, no special form of addressing is required and data is transferred without any
interruptions in a single continuous stream.

UART - unlike SPI and I?C, UART (standing for Universal Asynchronous Receiver/-
Transmitter) is not just a protocol, but a specialized hardware circuit. UART com-
munication is asynchronous — there is no synchronization signal transferred from one
device to the other, rather each of these devices generates their own. Only two wires
are needed for communication, interconnecting the Tz (transmitting) pin of one device
with the Rz (receiving) pin of the second device, and vice versa. Data is organized
into packets, each containing a start bit signalling the start of a packet, data bits
carrying the payload, parity bits for error detection and stop bits signaling the end of
the packet.

3.2 MPU-6050 motion tracking device

MPU-6050 is a wildly-used 6-axis IMU combining a 3-axis
MEMS gyroscope, 3-axis MEMS accelerometer, an embed-
ded temperature sensor and a Digital Motion Processor —
all in one tiny QFN-24 package. It was originally designed
by InvenSense specifically for integration into low-power
devices requiring complex calculations. With its propri-
etary MotionApps software, featuring 6-axis integration,
on-board processing of complex fusion algorithms and run-
time calibration, it is said to enable manufacturers to elim-
inate the need for custom complex solutions, guaranteeing
optimal motion performance. Figures 3.1, 3.2 and 3.3 show
MPU-6050’s orientation of axes, an overview of the building
blocks it is comprised of, as well as a summary of its inter-
nal registers, respectively — these represent the key build-
ing blocks and registers mentioned throughout the Sections
3.2.1 to 3.2.6, using the figures as preliminary references.

The following sections are based on [11], [12], [14] and [55].
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Figure 3.1: MPU-6050’s ori-
entation of axes of sensitivity
and polarity of rotation. Note
the pin 1 identifier (o) in the
top left corner. Source [11].
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Figure 3.2: A block diagram illustrating MPU-6050 building blocks and basic pin-

out:

MEMS accelerometer and gyroscope with ADCs, temperature sensor,

DMP

engine, I?C serial communication interfaces (primary and auxiliary), clocking, self-
test/sensor/configuration and interrupt registers, FIFO buffer, Bias and LDO and Charge

Pump. Source [11].

’ Register name ‘ Number | Function
SELF_TEST_[X,Y,A] 13-16 self-test registers
[X,Y,Z] [G,A] OFFS_USRI[H,L] 19-24 offset bias registers
SMPRT_DIV 25 sampling rate value
FIFO_EN 35 configuration for the FIFO buffer
INT_PIN_CFG 55 configuration for the interrupt pin
INT_ENABLE 56 flags for interrupt generation
INT_STATUS 58 interrupt statuses of the interrupt sources
ACCEL_[X,Y,Z]OUT_[H,L] 59-64 most recent accelerometer measurements
GYRO_[X,Y,Z]OUT_[H,L] 67-72 most recent gyroscope measurements
FIFO_COUNT_[H,L] 114-115 | number of samples in the FIFO buffer
FIFO_R_W 116 r/w data from/to the FIFO buffer
WHO_AM_I 117 upper 6 bits of the IC address

Figure 3.3: Final overview of the registers, their numbers and functions mentioned in the
following sections. A full list of officially accessible MPU-6050 registers can be acquired
through combining lists from [12] and [14].
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3.2.1 On-board MEMS sensors

As previously explained in 2.2.1, a 3-axis motion sensor measures movements regarding all
three principal axes, employing three instances of a measuring system; as shown in Figure
3.2, MPU-6050’s accelerometer and gyroscope are no different. Three separate proof masses
are used for the accelerometer — a concept also previously mentioned in 2.2.1, as the accel-
eration along one of the axes causes displacement of the corresponding proof mass, which
is then detected by the capacitive sensors — and the output analog values are digitized by
three on-board 16-bit analog-to-digital converters (ADCs) enabling simultaneous sampling.
The same applies to the gyroscope, which operates on the principle of the Coriolis Effect
(explained in 2.2.1). The resulting signal is subsequently amplified, demodulated, and fil-
tered to produce a voltage proportional to the angular rate, and, as with the accelerometer,
three dedicated 16-bit ADCs are employed in digitizing the output.

3.2.2 Storing the sensor outputs

The 16-bit sensor readings are generated at a frequency based on the value denoted as the
Sample Rate, calculated by dividing the gyroscope output rate by the value of SMPRT_DIV
register. These are then stored, one at a time, in dedicated 8-bit sensor registers (59 to 64
for accelerometer measurements and 67 to 72 for gyroscope measurements). Alternatively,
sensor readings might also be stored in the internal FIFO (First-In-First-Out) buffer with a
maximum capacity of 1024 bytes, which can be accessed via the FIFO_R_W register, provided
that the individual sensor’s corresponding flag in the FIFO_EN register is set to 1.

Following the concept explained in 3.1, there are two ways to manage accessing data
written to MPU-6050’s registers: either through a polling mechanism or with the help
of hardware interrupt signals generated on the INT pin (controlled by the INT_PIN_CFG
register). The interrupt status flags are stored in the INT_STATUS register, although in order
for the interrupts to be generated, each interrupt source must have its corresponding flag
set to 1 in the INT_ENABLE register. In particular, the DATA_RDY_INT flag is automatically
set to 1 whenever a Data Ready interrupt is generated, occurring each time the data has
been written to all sensor registers.

Regarding the internal FIFO buffer, it is also important to keep track of the number
of samples currently buffered, as indicated by the FIFO Count Registers (FIFO_COUNT_H
and FIFO_COUNT_L), mainly for two reasons: should the buffer be found empty or nearing
an overflow. If it is empty, reading the FIFO_R_W register results in receiving the last byte
that was previously read from the buffer. In contrast, when overflown, the status flag
FIFO_OFLOW_INT located in the INT_STATUS register shall be set to 1, the oldest data will
be lost and the most recent data shall be written to the buffer.

3.2.3 Device address and communication interface

MPU-6050’s registers are accessed via the I2C serial interface with a maximum bus speed
of 400kHz. As a rule, MPU-6050 acts as a slave device (explained in 3.1). The I2C 7-bit
address of MPU-6050 is determined as follows: the first six bits are always pre-set to binary
value 110100 (stored in register 117, with a rather fitting name WHO_AM_I), whereas the
value of the least significant bit is determined by the logic level of ADO pin: 0 when logical
low (resulting in an address 0x68), and 1 when logical high (0x69). This method, enabling
two MPU-6050 devices to be connected to the same I12C bus, is customary among many
I?C devices [7].
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3.2.4 Digital Motion Processor

There are two methods for extracting meaningful data from MPU-6050. As was already
mentioned in 3.2.2, one can acquire the raw accelerometer and gyroscope data from the sen-
sor registers or FIFO buffer and carry out all post-processing computations through one’s
own implementation. Alternatively, one can have the data pass through the sensor’s on-
board Digital Motion Processor (DMP).

DMP is MPU-6050’s internal processing unit, built with an instruction set designed for
very specific and complex mathematical operations necessary for orientation calculation [A7]
— its main purpose is generating fused sensor data without intervention from the hosting
system’s processor. However, the inner workings of DMP are not public — the MPU-6050’s
manufacturer did not release any information on the proprietary MotionFusion and run-
time calibration algorithms incorporated into its firmware, nor is there any official resource
on what the instruction set is and how it operates [47].

As it stands, DMP acquires digitized data from the on-board accelerometers and gy-
roscopes. According to the product specification [11], after processing the readings, DMP
writes the resulting data in the form of quaternions (explained in 2.2.2) either straight into
its dedicated DMP registers or to the internal FIFO buffer — however, such registers are not
specifically mentioned in the official register map [12], therefore one can merely assume that
the missing registers, such as numbers 109 to 113, are the ones referenced by the documen-
tation. Furthermore, DMP is also supposed to have an access to the INT pin, mentioned
in 3.2.2, enabling it to generate interrupt signals when processed data becomes available
— one must therefore assume that DMP is also one of the possible interrupt sources, even
though it is not officially mentioned. These assumptions shall be revisited in section 3.2.6.

3.2.5 Sensors calibration and testing

In 3.2.4, the subject of a MEMS sensor calibration has already been brought up — these
sensors, even when stationary, tend to produce false, non-zero readings. Although there
are several approaches to counter this issue, the general idea is to compute the average
offset biases, which are subsequently taken into account when final readings are produced
[24, 55]. These biases can be computed manually and inserted into MPU-6050s built-in
offset registers (19 to 24 in Figure 3.3) — they are then automatically applied to the raw
data in the sensor registers, before being sent to the FIFO buffer or to DMP for further
processing. In addition, per [14], MPU-6050’s DMP contains several patented’ black-box
algorithms dealing with further auto-calibration of its integrated sensors.

MPU-6050 also features a built-in method — called a self-test — for testing the mechani-
cal portions of the sensors along with the credibility of the produced readings. The self-test
can be activated through the self-test registers (13 to 16 in Figure 3.3): upon writing into
the self-test register of a sensor, the sensor is being actuated by the on-board electron-
ics, simulating an external force to produce the corresponding readings. These values are
then used for obtaining a self-test response, which is then compared to the factory trim —
a manufacturer-provided value incorporated into the MotionApps software, although it can
also be obtained manually — whereas in order for the sensor to pass the test, the percentage
difference of these values must be within the bounds specified in [11].

"mttps://patents.google.com/patent/US20120323520A1/en
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3.2.6 Available third-party firmware libraries

As previously mentioned in 3.2.4, very little is known about the inner workings of MPU-
6050’s DMP. However, through correlating MPU-6050’s I2C communication signals against
the manufacturer’s MotionApps MCU software, which comes in a pre-compiled binary form,
Jeff Rowberg was able to reverse-engineer enough information to create the very first wrap-
per over MPU-6050’s DMP functionality”, incorporating it into his open-source library
i2cdev [47]. Reviewing this library’s source code and header files®, one can summarize
that the initial speculations, presented in 3.2.4, were correct: the mystery registers 57
and 109 to 113 are indeed connected to the DMP’s functionality, as well as that the first
bit in the INT_ENABLE register, presumed to be unused, serves as a flag for enabling DMP
interrupts, meaning that the DMP truly is another interrupt source.

Nowadays, there are multiple open-source libraries being developed for communicat-
ing with MPU-6050, although all are based on Jeff Rowberg’s initial endeavours (such as
the dedicated library by ElectronicCats*). Apart from servicing the basic functionality for
configuring and controlling DMP, these libraries also provide additional utility functions
such as conversion of the output quaternions to obtain values for e.g. yaw-pitch-roll (2.2.2)
or gravity-free acceleration.

3.3 ESP32 microcontroller

In 2013, Espressif systems introduced ESP8266 [3], a low-cost System on a Chip (SoC)
based on a 32-bit RISC architecture capable of effectively embedding Wi-Fi capabilities
into other systems. Since its initial purpose was to act as a Serial to Wi-Fi adapter,
the original way of communicating with this SoC was to issue AT commands® over its UART
interface, usually through a USB to UART adapter. However, a dedicated community [3]
has seen other firmware options being flashed to ESP8266, turning it into a fully-fledged
microcontroller. Noting the ever-increasing popularity of ESP8266, Espressif released its
own ESP8266 software development kit (SDK) in 2014.

In 2016, ESP8266 was succeeded by ESP32 [19]. In contrast to its predecessor, this
SoC was specifically designed for integration into mobile and wearable devices, aiming
for ultra-low power consumption. ESP32 running on 3.3 V, housed in a tiny QFN-48
package, comes with a dual-core microprocessor operating at up to 240 MHz (compared to
the ESP8266’s single-core CPU operating at a maximal frequency of 160 MHz) with 448
ROM and 520 KB SRAM. It has 36 GPIO pins, with some of them having direct access to
the internal pull-up/pull-down or ADC/DAC circuitry.

There are multiple clock sources (3.1) one can utilize when working with ESP32: be it
an external crystal oscillator, an internal phase-locked loop (PLL), or an oscillating circuit.
As such, it is possible to have the master clock for both CPU cores — CPU_CLK, running as
high as 160 MHz in high performance mode — configured to employ any of these sources.
Derived from CPU_CLK is APB_CLK, a 20-bit peripheral clock, which in turn acts as a source
for the ESP32’s high resolution timer, measuring the passage of time at a resolution of 1 us.
This timer provides a utility function for obtaining the number of microseconds passed since
its initialization, which happens after the ESP32 start-up [20].

Zhttp://www.i2cdevlib.com/tools/analyzer/1
3https://github.com/jrowberg/i2cdevlib/blob/master/Arduino/MPU6050/MPU6050.h
“https://github.com/ElectronicCats/mpu6050
Salso known as ATtention commands, where every command starts with either AT or at
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3.3.1 Chips, modules and development kits

ESP32 comes in three forms: a bare-bone chip, a surface-mountable module or a develop-
ment board. Modules are small, shielded, printed circuit boards (PCB), upon which the bare
ESP32 chips, along with additional components, are soldered. There are multiple types of
modules differing from each other in terms of support for individual components, number
of exposed pins or even the number of CPUs, although all of them are ready-made solu-
tions for straightforward integration into final products. Perhaps the most popular among
ESP32 modules is ESP32-WROOM built on the ESP32-DOWDQG6 chip (Figure 3.4), with
an integrated 4 MB flash memory and an on-board printed antenna [21].

Built on top of the modules are the full-featured development boards used for initial
prototyping and testing of devices in design. These boards usually feature additional com-
munication interfaces and access to peripherals.

ESP-WROOM-32
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= [l 211-161007
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Figure 3.4: ESP32-WROOM module, with an on-board antenna (top part), contains a tiny
ESP32-DOWDQ6 chip along with an integrated flash memory, hidden under the shielding.
Images taken and edited from esp32.net.

3.3.2 Available communication methods

For wired, serial communication (explained in 3.1), ESP32 contains two I2C, two I2S, three
UART (in development boards, one is always utilized for a USB-TTL converter) and three
SPI bus interfaces (in ESP32-WROOM, one is utilized for the chip’s communication with
the module’s on-board flash memory).

ESP32 features a TCP/IP and full 802.11 b/g/n Wi-Fi MAC protocol implementation
for 2.4 GHz band. It can operate in Access point mode (AP, sometimes called Soft-AP) or in
a Station mode (STA) — i.e., either having other devices connected to it or being connected
to another device — as well as in a combined AP-STA mode, where the device acts as both
STA and AP at the same time [19]. Utilizing the Wi-Fi stack, Espressif has also developed
two special protocols for wireless communication among ESP devices — ESP-MESH and
ESP-NOW — which shall be further described in Section 4.2.3.

Whereas for wireless communication ESP8266 only offers Wi-Fi connectivity, ESP32
also integrates a Bluetooth 4.2 module, supporting both Classic Bluetooth and Bluetooth
Low Energy (further described in Section 4.2.4).
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3.3.3 Firmware flashing

The following section is based on [38]. Firmware deployment is realized through a process
known as flashing. ESP32 is reset when EN pin is dropped from high to low and back — when
GPI0O is held low on this reset, ESP32 enters into a ROM serial bootloader mode, waiting to
receive firmware in binary form through the UART interface. Development boards usually
contain a Micro-USB port along with USB-to-UART bridge, automatizing the whole process
of flashing — however, since ESP32 modules lack this functionality, an external USB-to-
UART converter is often used (provided that one wishes to avoid doing the whole process
manually, which is also possible). One such converter, probably the most commonly used,
is FTDI FT232R [22].

3.4 Battery and charging

The following paragraph is based on the information acquired from [39]. There are mul-
tiple types of rechargeable batteries, although Lithium-ion polymer (LiPo), with a typical
nominal voltage of 3.7V per cell [4], seems to be today’s most popular choice for wearable
devices. LiPo batteries are based on the same principle as Lithium-ion (Li-ion) batter-
ies, with cells comprised of positive and negative electrodes separated by a chemical called
an electrolyte. The most notable difference between Li-ion and LiPo lies in the type of
electrolyte material: in LiPo, it is a solid (or semi-solid) polymer, whereas in Li-ion it is
liquid. Although not as power-dense as Li-ions, LiPo batteries are extremely lightweight,
manufactured in all shapes and sizes.

A LiPo battery must be handled with extra care, as incorrect charging may result in
its permanent damage. To this end, these batteries often include a built-in protection
integrated circuit, preventing charging above the typical maximum safe voltage (4.2V) as
well as discharging below the typical minimum safe voltage (3V) [4]. Furthermore, it is
generally recommended to only charge these batteries through means of specialized charging
circuits.

Generally, there are two methods employed for interfacing the charging circuit with
the external power supply for charging the battery. The first option would be to utilize
a wired connection, i.e., a connector pair of a receptacle and a plug (a cylindrical coaxial
power connector, for instance), whereas the second option would be wireless power transfer.
Although there are multiple methods for wireless charging, the most popular standard —
Qi, developed by Wireless Power Consortium (WPC) — is based on the phenomenon of
electromagnetic induction. In this, there is a power receiver (PRx) and a power transmitter
(PTx), both containing a metal coil: PTx runs an AC through its coil, producing an alter-
nating magnetic field, which is then picked up by the PRx’s coil and transformed back into
an AC [16]. Converted into DC and pre-processed to meet the specified limits, it is then
fed to the charging circuit to charge the battery.
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Chapter 4

Wireless communication with
ESP32

Section 2.2.1 defined what a smart IMU-based device s, what it does, and how. Chapter 3
followed with a presentation of the hardware components such a device might be built of, as
well as establishing that ESP32 is to act as the main processing unit. However, in Section
2.2.3, it was also mentioned that a series of such devices is necessary if more than one point
on a body is to be tracked, and that the output of all these devices is to be transmitted to
a collecting unit to be processed. Hence, what has yet to be discussed are the implications
of combining multiple ESP32 devices into a single network, having them synchronize with
each other and communicate with the collecting unit.

Let us start with classifying such a network. Based on the properties defined in 2.2.3,
one should be dealing with a group of smart devices, attached to one human body, yet
communicating wirelessly, each recording physical data. This description fits like a glove
to that of a Wireless Body Area Network (WBAN) — a type of Wireless Sensor Network
(WSN), operating with devices placed inside, attached to or worn over a human body,
executing real-time data recordings of various body parameters. As devices within these
networks are referred to as nodes, this chapter shall henceforth follow this convention [34].

Since there seem to be next to none set-in-stone standards regarding the communication
technologies and dataflows utilized in WBANS, this chapter opens with a brief explanation
on when synchronization among ESP32 nodes might be necessary and how it might be
achieved (4.1). This is followed by a review of four commonly employed methods for
wireless communication with ESP32 devices, presenting their inner workings and underlying
architectures (4.2).

4.1 Synchronization of multiple ESP32 nodes

The following section is based on [34]. As it stands, it is quite usual for sensors to record
data over periods of time. Such data measurements are only meaningful when ordered by
their occurrence; within the context of a single ESP32 node, one only needs to have each
measurement accompanied by either a sequence number or a local timestamp to create
a series of orientation measurements in time. However, this is not as straightforward when
dealing with a network consisting of multiple nodes, each contributing a different aspect of
data. In such case, each of the ESP32 nodes provides a single proverbial cog in a wheel of
measurements grouped by their common timestamp; one obtains a whole set, a complete
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motion event, only after aggregating the corresponding orientation measurements recorded
by all nodes. This, however, means that data measured by different devices at the same
point in time must also be denoted by a timestamp of roughly the same value. Such
synchronization might be achieved in two ways: either by having the nodes ignore their
local time and create a common time scale for the whole network, or simply have each node
measure the time relatively to the beginning of a capturing event.

There are multiple methods for time synchronization in short-range WSNs, usually built
over common communication technologies such as Wi-Fi or Bluetooth. Authors of thesis
[34] focused on determining schemes enabling “as precise as possible” time synchronization
among low-energy hardware devices, situated in a short-range network. Their method of
choice is Reference Broadcast Synchronization (RBS), utilizing broadcast data transmissions
for comparing the local times of nodes. In this scheme, timestamps are not transmitted,
rather created upon the packet’s time of arrival, with the nodes subsequently comparing
these values, thus creating a form of a relative timescale within the network.

4.2 Available communication technologies

The following sections describe four representatives of wireless technologies often employed
in WSNs, all utilizing different underlying principles — three of them could be described
as state-of-the-art protocols specifically designed for low-power WSNs, while the remaining
one is very basic in nature. All of these enable short-range communication among multiple
ESP32 devices without any additional modules.

4.2.1 UDP-based communication

To start from the very basics, a review on what a communication through plain UDP (User
Datagram Protocol) has to offer was conducted, as this method has been successfully utilized
in similar projects, for example by Ivo Herzig in his thesis-turned-project Bewegungsfelder
[32]. UDP [6] operates on the transport layer of the TCP/IP stack, using IP as the underly-
ing protocol. It does not provide any guarantee for successful delivery of messages and there
is no mechanism for duplicates detection — as it is, UDP is primarily employed for its small
overhead and low latency, since it does not require any kind of acknowledgements from
the prospective receiving party before transmitting data. As opposed to TCP (Transport
Control Protocol), unicast, broadcast, as well as multicast communication is possible over
UDP.

4.2.2 MQTT protocol

MQTT (Message Queuing Telemetry Transport) [17, 33] was introduced by IBM in 1999
and standardized by OASIS in 2013. It is a TCP/IP based', application layer, client-
server protocol; however, it does not follow your typical request/respond model, where
clients initiate communication sessions with servers to request their services. MQTT uses
the publish-subscribe messaging pattern — after establishing connections to MQTT servers
(called brokers), MQTT clients might register for a subscription of multiple information

!Even though MQTT clients are usually TCP /IP based, it can run over any network protocol providing
ordered, full-duplex connections
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channels (referred to as topics®), becoming the topic’s subscribers, or they might publish
messages to these topics, in which case they are called publishers. After receiving a message
bound to a certain topic, the broker distributes it to the topic’s subscribers — this allows
for decoupling of client applications, as a client does not need to specify the receivers of its
messages. Due to this, and due to its small transport overhead (fixed packet header length
of 2 bytes) and protocol exchanges minimized to reduce network traffic, MQTT is very-well
suited for communication with constrained devices.

For assessing whether a connection between a client and a broker is active, MQTT allows
one to specify a keep-alive interval, i.e., the maximum time interval permitted to elapse
between the client’s transmission of packets. In the absence of meaningful data flowing
through the connection, the client transmits a PINGREQ packet and the broker responds
with PINGRESP, confirming that the connection is indeed open and working.

When connecting to a broker, a client can also specify its last will and testament (LWT) —
a custom message which is to be published to the previously specified topic after the client’s
untimely demise, e.g, a network failure is detected by the broker, the client fails to commu-
nicate within the keep-alive time limit or the connection is closed without first transmitting
a DISCONNECT packet.

MQTT also provides three built-in QoS (Qualities of Service), bolstering the network
reliability:

e QoS 0 — referred to as at most once, where messages are delivered according to
the best efforts of the system, meaning that a message loss can occur. The publisher
does not store the message and no acknowledgements are sent by the receiver.

e QoS 1 — referred to as at least once, messages are assured to arrive, however, an oc-
currence of duplicates is a possibility. After the publisher transmits a message, it
waits for the receiver’s acknowledgement packet (PUBACK); if the response is not re-
ceived within the specified time, the sender re-transmits the message with parameter
DUP set to 1.

e QoS 2 — referred to as exactly once, messages are assured to arrive exactly once,
with no loss or duplicates. This is the slowest method, as it requires four messages
in total — PUBLISH, PUBREC, PUBREL and PUBCOMP. The sender stores and transmits
a message, upon which it awaits a PUBREC packet from the receiver. After receiving
the acknowledgement, the sender discards the original message, saves the PUBREC
message and responds with PUBREL message, waiting for the receiver to reply with
the PUBCOMP message. Only after receiving this message, all saved states can be
discarded. Whichever stage the process of transmission might be in, if a packet loss
occurs, the sender re-transmits the previous message.

In 2007, the first unofficial specification of MQTT-SN (MQTT For Sensor Networks)
[13] was introduced. It is specifically adapted for wireless sensor networks, focusing on low
bandwidth, and it is also optimized for deployment on battery-constrained devices. The key
difference between MQTT and MQTT-SN is that MQTT-SN uses UDP or Bluetooth as
an underlying transport protocol, as opposed to MQTT’s TCP.

2The MQTT topics do not need to be initialised prior to being published to, however, their names should
follow a certain structure — thus, a topic level separator, a forward slash, was introduced. If present, it
separates the topic name into multiple topic levels, creating a hierarchical structure of addresses.
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4.2.3 ESP-NOW protocol

Published by the Espressif Systems, ESP-NOW [15, 18] is a fast wireless communication
method developed for short-packet (with payload up to 250 bytes) transmission in networks
consisting of ESP8266 and ESP32 nodes, aiming for low-power consumption. Similar to
Wi-Fi, it operates in the 2.4 GHz ISM band, even utilizing the same channels; however, in
contrast, it is a peer-to-peer (P2P) protocol (similar to Wi-Fi Direct?), requiring a pairing
of nodes prior to communicating in unicast or multicast (only optional in broadcast) — once
complete, the pairing becomes persistent, i.e. if a node resets, it automatically restarts
communication with its peers. ESP-NOW also uses a quite peculiar way for the transmission
of packets within its network — in order to comprehend, one must dwell deeply into the
workings of the MAC layer frames, as the official ESP-NOW documentation is rather tight-
lipped. The following descriptions of MAC layer frames are based on [9].

Header

16 16 48 48 48 16 48 0-18496 32

Frame Control |ID| Add 1 | Add 2 | Add 3 |SC| Ad 4 Frame Data CRC

PV| Type Subtype | ToDS | FromDS |MF| Ret |PM|MD| WEP | Ord

Flags

Figure 4.1: Structure of a MAC layer frame, with field lengths in unit of bits, along with
detailed structure of the Frame Control field. Derived from [9].

As depicted in Figure 4.1, a MAC layer frame consists of 9 fields in total; yet only some
of them are particularly interesting:

e Frame Control field, perhaps the most important one, is subdivided into further 11
fields (Figure 4.1), with 8 flags:

— Based on the Type field, there are three types of frames specified in IEEE
802.11: management (value of 00), data (value of 01) and control (value of 10).
Data frames carry the actual data that is passed down from the higher-layer
protocols, with control frames assisting with their delivery. Management frames
are used by wireless stations to connect to or disconnect from the Basic Service
Set (BSS).

— Subtype field serves for subdividing the Type into more categories — there are
12 management frame subtypes, among them the action subtype (value of 1110):
as their name suggests, action frames are utilized for the triggering of actions.

— ToDS and FromDS flags identify whether the frame is a part of a wireless dis-
tribution system, or a part of a wireless system, in which case it could simply be
passing through, either entering or leaving, or it is a special frame only intended
for internal purposes.

3 A standard allowing two devices to establish a Wi-Fi connection directly, not requiring an access point.
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e Address 1 to Address 3 each contain 48-bit MAC address; their interpretation
depends on the setting of the aforementioned ToDS and FromDS fields — when both
flags are set to 0, indicating that it is a special packet for internal purposes, Address
1 contains the MAC address of the destination, Address 2 contains the MAC address
of the source and Address 3 contains the MAC address of the BSSID (Basic Service
Set Identifier).

e Frame Body is a variable-length field containing data specific to individual frame
types.

192 8 24 32 56-2040 32

MAC header Category Code OUI RV Vendor-specific Content CRC

8 8 24 8 8 0-2000

Element ID Length OUI | Type | V| Vendor-specific Body

Figure 4.2: Structure of a generic MAC layer vendor-specific action management frame.
Derived from [9].

With data frames, the Frame Body usually encapsulates headers and payloads of the
upper layers; however, as the management frames do not carry any application data, these
frames only contain a specialized frame body with a predefined structure. Figure 4.2 depicts
the structure of an action management frame:

e Category Code indicates the category of the frame, one of them being wvendor-
specific (value of 127).

e OUI indicates a public OUI, assigned by the IEEE, of the entity that has defined
the context of the vendor-specific action.

o Vendor-specific Content is further split into the Information Element fields (IE)
— variable-length components containing Element ID, Length, OUI and, finally,
a Body.

Having introduced the basic concepts, let us have a look specifically at the ESP-NOW
packet. According to [15], within ESP-NOW packets, the Type is set to 00, ToDS and FromDS
flags are set to 0 — a management type. Subtype is set to 1110 — an action subtype. Address
1 is set to the destination address, Address 2 is set to the source address and Address 3
is set to the broadcast address (0xff:0xff:0xff:0xff:0xff:0xff). Category Code is set
to 127, making it a vendor-specific category.

To summarize, ESP-NOW “hijacks” the vendor-specific action management frames
and encapsulates all user data within their Body fields, effectively cutting the overhead
of parsing headers of the upper layers of the TCP/IP stack. Combined with not requiring
a connection to either an access point or a DHCP server, it is no wonder that the la-
tency of ESP-NOW data transmission is unquestionably lower than with classical Wi-Fi
communication.
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4.2.4 Bluetooth Low Energy

Bluetooth Low Energy (BLE, also called Bluetooth Smart), is a Wireless Personal Area
Network (WPAN) system operating in the unlicensed 2.4 GHz Industrial Scientific Medici-
nal (ISM) band, integrated into Bluetooth 4.0 Core Specification in 2009 along with Classic
Bluetooth and Bluetooth high speed. It was designed especially for short-range communica-
tion with ultra-low power consumption, intending to replace the wires connecting portable
electronic devices — it comes as no surprise that it has become the technology of choice
for communication with wearable IoT devices with constraints on battery life. Information
presented in the following sections was mainly acquired from [8], [10], [34] and [26].

Architecture, layers and protocols

Similar to the models such as ISO/OSI and TCP/IP, BLE architecture, illustrated in Fig-
ure 4.3, also consists of a hierarchy of layers, encapsulated within two major components
— Controller and Host — enabling communication with applications. The format of com-
munication between Host and Controller is standardized by the Host-Controller Interface

(HCI).

Host

GATT

GAP

ATT ) ( SM

L2CAP

Host Controller Interface

LL

AN Y YN Y Y
)

PHY

Controller

Figure 4.3: Simplified BLE stack architecture. Based on the architecture overview of BLE
layers and protocols presented in [10].

As the lowest component of the stack, Controller encapsulates the two lowest layers:

o PHY (Physical layer), responsible for modulation and demodulation of analog signals
and analog-to-digital conversions,

o LL (Link layer), in charge of advertising, scanning, creating and maintaining connec-
tions, data encryption and packet filtering.

As a go-between, Host provides a high-level API for applications; implementing a variety
of functionalities, it is comprised of multiple network and transport protocols, with GATT
(Generic Attribute Profile) and GAP (Generic Access Profile) as the two topmost layers of
data and control hierarchy, respectively:
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e GAP protocol is responsible for overall connection functionality — handling proce-
dures such as device discovery and configuration, link establishment and termination,
as well as initiation of security features, utilizing the underlying SM (Security Man-
ager) protocol.

e GATT protocol. GATT utilizes ATT (Attribute protocol) as a transport mecha-
nism for exchanging data between devices. Data is structured hierarchically in sec-
tions known as services; these are collections of conceptually related information called
characteristics, which, in turn, group together attributes (units of generic label-value
data). Multiple services can be grouped together to form a profile, although these
terms are used interchangeably, as it is usual for profiles to only implement a sin-
gle service. Every service, characteristic and attribute must be uniquely labeled with
an UUID (Universally Unique ID) — a 16-bit (predefined) or 128-bit (custom) number.

Roles and connection modes

From a GATT standpoint, a single device can operate in two roles at the same time, even
within the context of the same connection: as a client or a server. A GATT client sends
requests to the server, intending to either:

(i) discover what services the server has to offer based on their UUIDs (called service
discovery),

(ii) receive the value of an attribute upon a read request,

(iii) update an attribute’s value upon a write request.

In contrast, a GATT server contains a database of values — a table of attributes, if you will
— with the ability to initiate its own asynchronous operations towards its subscribers:

(i) notify the subscribers of a change in an attribute’s value,

(ii) indicate, which is the same concept as notify, apart from the subscribers also sending
acknowledgements of the received notification (making it a blocking operation, since
the server waits for the incoming acknowledgements until a timer runs out).

From the standpoint of the GAP protocol, i.e., from the aspect of controlling a connec-
tion, the role of a BLE device depends on its attitude to establishing a connection link. If it
shuns connections, it is denoted as either a broadcaster or an observer — in other words, it
either has something to broadcast to the world (with no care about who might be listening),
or it merely wishes to passively observe its whereabouts. On the other hand, if a device
wishes to establish a connection, it can be either a peripheral or a central — a peripheral
sits at the peripherals of the BLE topology, advertising, until a central, usually placed at
the very center, decides to connect to it. If a connection is successfully established, a central
device becomes a master and a peripheral becomes a slave.

Considering the roles presented by the GAP protocol, there are two main modes de-
vices can communicate in a BLE network: connection-less and connection-oriented. In
the connection-less mode, also called a broadcaster-observer or an advertiser-scanner mode,
all transmissions of data packets occur on the advertising PHY channels, in what is called
advertising events (Figure 4.5) — in this manner, an entire conversation might be carried
out without establishing any lasting connection.
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Figure 4.4: At the start of each advertising event, the broadcaster (Adv) sends an advertising
packet corresponding to the advertising event type to its first advertising channel (Ch(k)),
and an observer (Scanner) might then make a request to the broadcaster, which may be
followed by a response. The advertising PHY channel changes (Ch(k+1)) on the next
advertising packet sent by the broadcaster in the same advertising event. Source [10].

On the other hand, in the connection-oriented mode, centrals, also called initiators,
listening for connectable advertising packets coming from peripherals, may make a con-
nection request using the same advertising PHY channel on which they received the con-
nectable advertising packet. The connection event is considered open while both the master
and slave keep on exchanging packets — in the event of being disconnected, both the client
and the server allow re-establishment of the connection (upon a trigger operation causing

a notification or indication).
1 1
1 1
< Connection event >
| |
| |

Advertising event

I
I

Adv Initiator

Adv Ch(k)

M->S H S->M H M->S H S->M ’: M->S H S->M ’

Data Ch(x) 1 Data Ch(x+1
e :4—)>|

Figure 4.5: If the peripheral (Adv) receives and accepts the request for a connection to be ini-
tiated coming from the central (Initiator), the advertising event is ended and a connection
event is started by the central, upon which the central becomes a master (M) and the pe-
ripheral becomes a slave (S). Source [10].

Available network topologies

In the Bluetooth 4.0 Core Specification [8], a slave node was restricted to a single connection
with a single master — it was explicitly forbidden from participating in multiple simultane-
ous connections with other masters. Hence, originally, the only possible network topology
for a BLE network was a star topology, with clients individually connected to a central
connection point [26]. This changed in Bluetooth 4.1 Core Specification [10], released in
2013, where a slave was allowed to be simultaneously connected to more than one master,
as well as operate as a slave at certain intervals and as a master at others, effectively keep-
ing parallel communications with surrounding nodes. This allowed for creating advanced
network topologies such as a mesh topology, where all nodes cooperate to distribute data
amongst each other, or a hybrid topology, which is, simply described, a freestyle.
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Chapter 5
Designing the mo-cap system

Up until now, every chapter served an introductory purpose. By studying the available
motion capture techniques in Chapter 2, the greatest advantage an inertial-based system has
over the other mo-cap methods was identified: it has the predisposition to be unobtrusive,
portable and cause no hindrance to the user’s movement. It all comes down to the hardware
solution: to obtain these qualities, the sensing devices must be light, small-sized and fully
wireless — i.e. battery-powered, as well as delegating the captured data wirelessly. These
findings were followed with Chapters 3 and 4: describing the hardware components such
devices might potentially be built on, along with presenting wireless technologies ESP32-
based devices might utilize for communication with each other, as well as with the outside
world. Having studied these preliminaries, a design of a custom inertial motion capture
system was created — it is, without further ado, presented in the following sections.

5.1 System architecture as a whole

For the sake of decoupling the individual responsibilities, the system is to be split into
four parts, each serving a different purpose (Figure 5.1): ESP32-based sensing devices gen-
erating motion data, console-based processing application acting as a wrapper over the
storage, browser-based visualising application serving as a graphical user interface (GUI),
and a collecting server providing a uniform communication interface among the three mod-
ules. Reasons for selecting the mentioned component platforms shall be revisited in their
respective design sections.

An introduction to the system workflow would be as follows: when powered up, each of
the devices establishes a connection with the collecting server and starts generating motion
data (B). Collecting server sends the data, unprocessed, to both applications (C, E) — in this
case, the GUI renders the stream in real-time and the processing application is in a stand-by
mode. Once one of the devices is physically activated by the user, synchronization (A) of
the devices is commenced (explained in 4.1). When finished, the capturing of the motion
tracking is activated — the processing application listens to the incoming stream and stores
the captured representation in the data storage (F). Using the GUI, these captures can be
replayed — in this case, the GUI asks (C, E) the processing application to pull the specified
file from the storage (F') and simulate the band, by re-transmitting the measurements from
the parsed file (E). Although this description is brief, it provides sufficient insight into
the inner workings of the system, enabling us to move on to designing the form the actual
communication between the components should take.
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Figure 5.1: Draft of the design of the system components. The synchronised sensing devices
(A) act as data generators, delegating the stream to the collecting server (B), in order to
be distributed for further processing by the processing application (E), or visualised by
the GUI (C).

5.1.1 Inter-component communication design

One can easily identify two different levels of communication streams in Figure 5.1: within
the parts of the components and between the components themselves, flowing through
the collecting server. Since communication within the components is, once again, discussed
in their respective sections, this section mainly focuses on selecting suitable communication
methods for inter-component data transmissions, based on the technologies reviewed in
Chapter 4. To keep the design as clean as possible, the preference lies in technologies able
to function on all three different component systems. As the collecting server is to delegate
data streams to applications — unprompted, upon receiving them from the ESP32 devices —
this technology should also enable bi-directional communication and provide quality of ser-
vice settings enabling packet-delivery guarantees. Considering these characteristics, MQTT
appears to be the best candidate. As mentioned in Section 4.2.2; apart from being widely
used in communication with smart, energy-constrained devices, it also implements publish-
subscribe pattern for full-duplex data transmissions between MQTT broker and its clients.
Furthermore, MQTT over Websockets — i.e., inserting MQTT packets into Websocket pack-
ets — brings support for direct MQTT functionality to browser-based applications.

Establishing the MQTT roles and topic structures

The collecting server will act as an MQTT broker, while the sensing devices, along with
both applications, shall take on the role of MQTT clients. Following the proposed workflow,
three areas of topics, which need to be covered, can be identified: motion data measurements
and capturing commands generated by the sensing devices, commands triggered by GUI,
as well as the processing application’s responses. Mirroring these, nine topics are listed
(Figure 5.2), adhering to the best practices of MQTT topic structuring (4.2.2). The first
part of the topic name — m_t, short for “motion tracking” — is common for each of the
areas, signalizing the topic’s affiliation with the motion capture system. The second part
delimits the origin of the transmitted message — band for data from sensing devices', v_app

D of the device sending the message shall be located inside payload

28



for the visualising application and p_app for the processing application — whereas the last
part describes the content of the payload being transmitted.

Transmits

band status (on/off)
capturing status (on/off)
generated motion data

Topic
m_t/band/status
m_t/band/capturing
m_t/band/data
m_t/v_app/get_status

Origin

sensing device
sensing device
sensing device

trigger for 6.

trigger for 7.

trigger for 8. and 9.
processing app status (on/off)
names of stored filenames
stored data for replaying
replaying status (on/off)

visualising app
visualising app
visualising app
processing app
processing app
processing app
processing app

m_t/v_app/get_filenames
m_t/v_app/get_replay
m_t/p_app/status

m_t/p_app/filenames
m_t/p_app/replay/data
m_t/p_app/replay/status

© XN O W= o

Figure 5.2: A list of MQTT topics designed for inter-component communication. Topics 0
to 2 are employed by the sensing devices for indicating their connection status, transmitting
the generated motion data, as well as triggering the start of their capturing for storage.
Topics 3 to 5, reserved for the visualising application, serve as user-triggered commands
for polling responses from the processing application (topics 6 to 9), such as its connection
status or names of the stored motion data files.

Designing the communication sequences

Although some of the messages are stand-alone, most serve as triggers, designed to prompt
the receivers to execute an action — as such, these request-reply pairs create sequences, each
starting its own context within both of the applications. The following paragraphs describe
three such sequences.

Initialization of GUI. Upon start-up, GUI polls the topics the processing application
subscribes to, to determine its connection status, as well as to request a list of filenames
stored in the storage. If active, the processing application responds immediately; if inac-
tive, the GUI shall receive these messages as soon as the processing application establishes
connection with the broker.

Figure 5.3: Sequence of messages transmitted after the GUI successfully connects to the bro-

rocessin,
GUI collecting server processiig
application
m_t/v_app/get_status N m_t/v_app/get_status N
m_t/p_app/status: on m_t/p_app/status: on
m_t/v_app/get_filenames m_t/v_app/get_filenames
---------------------------------- > iR R e e LR R R Rl
get o
m_t/p_app/filenames m_t/p_app/filenames %-
.................................. <_..-.-.-.-.-.-_-_.-.-.-.-....._-_.

ker, with the processing application in an active state.
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Capturing. Triggering one of the sensing devices starts a chain of actions within the sys-
tem. As illustrated by Figures 5.4 and 5.5, the device transmits a change of the capturing
status. If toggled from inactive to active, the processing application is alerted to start
collecting the incoming data measurements; if vice versa, the processing application closes
the recorded collection, stores it within the storage and dispatches a message for the visu-
alising application to update the list of filenames.

collecting server sensoric device
m_t/band/status: on
< ...............................................
oo, . Dot/bamd/data . 2))
\
m_t/band/capturing: on HW trigger
L T, e <«
m_t/band/data
€ e T ]
m_t/band/capturing: off HW trigger
O<----1 e rr L T L Dt =S RMEEEEEPPRERRRRREE <«
m_t/band/status: off
< ...............................................

Figure 5.4: Sequence of messages covering the communication between the broker and
a sensing device. Upon establishing the connection, the band makes an announcement
about its connection status change and starts transmitting the motion data. The red circle
serves as a reference — this message triggers events depicted in Figure 5.5.

. ocessin,
GUI collecting server pr oS &
application
<---O
m_t/band/capturing: on m_t/band/capturing: on
T e T >
m_t/band/data m_t/band/data
SRR R e R LR R R, R LR L LR EEEEE >
m_t/band/capturing: off m_t/band/capturing: off
store  emm—
m_t/p_app/filenames m_t/p_app/filenames -
et R PR LECEEEEEEEEREEERREEEPEPPEPE

Figure 5.5: Triggered by finishing the capturing of motion data (depicted in Figure 5.4),
the processing application stores the data in a file and transmits the filename to the GUI.

Replaying stored events. Provided that there are any existing pre-recorded measure-
ment events, the user can trigger their replay through the GUI (5.6). The processing
application responds with a sequence of messages: announcing the change in replaying
status, transmitting the data itself, and closing the replaying session.
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application
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m_t/v_app/get_replay: filename m_t/v_app/get_replay: filename
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m_t/p_app/replay/status: on

Figure 5.6: Sequence of messages covering the replaying functionality. After GUI requesting
a file to be replayed, the processing application reads the file from the storage and re-
transmits its contents.

Having introduced the main structure of the system, along with resolving how individ-
ual components are to communicate with each other, a presentation on the components
themselves can be commenced.

5.2 Designing the application components

This section deals with further introducing the workflows the two application components
are to follow, in order to reveal more information on the tasks they are intended to process.

5.2.1 Processing application and storage proposal

Figure B.1 depicts the design of the workflow the processing application is to follow. As il-
lustrated, it is mainly built around facilitating sequences of messages designed in the pre-
vious section. The algorithm runs in a loop, listening to the incoming MQTT messages,
whereas the original sender of the message is pivotal to the direction the flow is to take —
i.e., to the left side of the flowchart, dedicated to the band data processing, or to the right,
responding to the messages from GUI.

As for the storage itself, it was decided that the data shall be stored in actual separate
files — i.e., one file per one capturing session — in the underlying filesystem. The other
possible approach — although intended for more robust systems — would be using one of
the time-series database technologies, such as InfluxDB?, as the motion trajectories could
potentially be treated as temporal sequences.

5.2.2 Graphical user interface design

For the sake of being cross-platform, the GUI shall be implemented as a web application.
Traditionally, these applications are comprised of two separate parts, communicating using
HTTP protocol: a backend server, carrying the computing load, and a frontend graphical
interface. However, since the objective is to render data in real-time, it makes little sense
for the stream to be first sent to the server, only to be delegated to the frontend. Therefore,
it was decided that the communication responsibility is to be delegated to the client, thus

’https://www.influxdata.com/
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reducing the backend to a single purpose only — serve the frontend application and its static
files when requested by a web browser.

Akin to the processing application, the workflow the frontend is intended to follow —
depicted in Figure B.2 — is a loop designed to process incoming MQTT messages. In con-
trast, whereas the processing application can only be interacted with through the MQTT
interface, this application also listens to the user input. The draft for this user interface,
illustrated in Figure 5.7, is designed as a simple dashboard, allowing the user to view
the actual real-time orientation of the devices as 3D models.

motion tracker X server stream capturing

Band ID : X toggle reset Band ID : X show clear

timestamps

Measurement files show refresh
[00-00-0000 00:00:01] placeholder_file_01
» [00-00-0000 00:00:02] placeholder_file_02
[00-00-0000 00:00:03] placeholder_file_03
Logs show refresh

[00-00-0000 00:00:03] [log] [p_app] placeholder log from processing application

» [00-00-0000 00:00:04] [log] [v_app] placeholder log from visualising application
[00-00-0000 00:00:05] [err] [band] placeholder error from band ID X

Figure 5.7: Draft of the initial design of the graphical user interface comprised of the fol-
lowing components: (1) status and control panel, (2) 3D model of the device mirroring its
current orientation, (3) chart displaying orientation progress of a sensing device, (4) mea-
surements panel for replay triggering and (5) logging panel for tracking the logs.

5.3 Sensing devices design

This section encompasses an all-in proposal for the ESP32/MPU-6050-based sensing de-
vices, describing the hardware solution design (5.3.1) along with proposing an algorithm
for the firmware realisation (5.3.2).

5.3.1 Hardware solution design

The following sections (referencing Sections 3.2 to 3.4) shall introduce the plans for inter-
facing ESP32 with MPU-6050 and a power source in terms of circuit and PCB design. This
is commenced by presenting the powering and charging solution, along with the additional
supporting components it requires, gradually building up to the communication between
ESP32 and MPU-6050 itself. All diagrams for circuit and PCB design were assembled in
EasyEda® online tool and a complete circuit diagram can be found in Appendix C.

3https://easyeda.com/
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Battery and charging circuit

Not beating around the bush, it was decided that a rechargeable single-cell LiPo battery
with a built-in protection circuit shall be used, as they come small-sized and lightweight.
Li-ion and LiPo batteries are usually charged with the help of a specialized charging circuit
— one of the most frequently used appears to be TP4056 [5]. Housed in 8-pin SOP package,
it supports 8 V as the maximum voltage input while outputting a constant voltage of 4.2'V.
It guards the battery from over-discharging (by cutting itself from the battery output
in the event of the battery being discharged below 2.4 V) and overcharging, also offering
a short-circuit protection. Figure 5.8 illustrates the circuit design for integrating TP4056
into the device — thought inspired by [5], some of the pins are left unused or grounded,
as the functionality they had to offer was redundant. PROG pin is used for indicating
the maximum amount of constant current the battery is to be charged at, as determined
by the resistance of the resistor connected from this pin to ground (R9). A 2k resistor
was selected, which, according to [5], results in a current of 0.58 A at 4.2V — the reason for
this choice shall be further explained in Section 5.3.1.
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Figure 5.8: Diagram of TP4056 circuit application, inspired by [5]. TEMP pin, usually
connected to the battery’s thermistor output, is not used, therefore it is grounded. STDBY
and CHRG pins indicate the state of the process of charging, finished or ongoing, respectively
— it was decided to only indicate the process of charging, therefore STDBY is not connected.
The QI label, acting as a power source, shall be further explained in Section 5.3.1, along
with the value of resistor R9.
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Wireless charging

As far as the interface between the charging circuit and the external power supply goes,
a wireless power transfer was opted for, as it was found prudent to avoid dependency
on a single connector type — this, however, requires the integration of a secondary coil
and a Qi-compliant wireless power receiver with all supporting circuitry. It was decided
to use CP2021 [2], a single-chip wireless receiver housed in a QFN-16 package, with built-
in rectifier for AC-DC transformation and 5V power output. As this chip often comes
in the form of a stand-alone PCB module with all external components already included
(along with a receiver coil), this variant was opted for rather than integrating the bare chip
into the circuit. Revisiting Section 5.3.1, the QI label indicates that the power input of
TP4056 originates from CP2021. As CP2021 outputs 2.5 W, the TP4056’s output power
should be similar — this was achieved by using a 2k resistor for PROG pin, as TP4056’s
constant voltage output is 4.2V (4.2V x 0.58 A = 2.436 W).
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Powering ESP32 and MPU-6050

Having resolved what battery to use and how it is to be charged, let us now have a look at
powering ESP32 and MPU-6050 themselves — as the LiPo batteries have a typical maximum
voltage of 4.2V [39], ESP32 runs at 3.3V [19] and MPU-6050s typical operating range is
between 2.375V and 3.46 V [11], a single 3.3V regulator should be sufficient for regulating
the voltage for the whole circuit. It was opted to use MCP1702 [1] in a 3-Pin SOT-23A
package. This is a CMOS low-dropout (LDO) regulator with a typical input voltage rang-
ing between 2.7 and 13.2V, also offering short-circuit, overcurrent and overtemperature
protection — with 2.7V, this regulator also serves as a overdischarge protection for the bat-
tery. The design for integration of MCP1702 is illustrated in Figure 5.9. In order for the
user to be able to switch the device on and off at will, i.e., cut the regulator and the rest
of the components from the battery source, a DPDT (double pole double throw, controlling
two independent circuits) switch was added (S1)*.
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Figure 5.9: Diagram of MCP1702 circuit application, inspired by [1]. With only three pins
(VIN, VOUT, GND) and two decoupling capacitors, integration of MCP1702 into any circuit
is rather straightforward. The S1 switch shall serve as the main device switch, cutting
the components from power source. Label EN indicates a connection to ESP32’s EN pin,
label RST shall be explained in 5.3.1.

ESP32 and MPU-6050 circuit integration

Having finalized the charging and powering solution, let us now have a look at the external
components required by MPU-6050 and ESP32 — their design for circuit integration is
illustrated by Figures 5.10 (inspired by Sparkfun breakboard design®) and 5.11. As these
two devices are to communicate through an I?C interface (3.2.3), this is realized through
labels MPU_SDA and MPU_SCL, connecting MPU-6050’s SDA and SCL pins with ESP32’s 1021
and 1022 respectively. Furthermore, utilizing hardware interrupts was opted for instead
of polling (explained in 3.1), for letting ESP32 know when to read data from MPU-6050,
therefore MPU-6050’s INT pin is connected directly to ESP32’s I025 pin.

As for ESP32, it was decided that the WROOM module (introduced in 3.3.1) would be
used, since it does most of the heavy lifting in terms of providing the external components
necessary for the ESP32-DOWDQ6 chip to function properly. As described in Section
3.3.3, ESP32 modules lack a USB-to-UART bridge — therefore the external FTDI FT232R
(Figure 5.12) would be used, as indicated by labels FTDI_RX and FTDI_TX connecting TX
and RX pins on ESP32 and FTDI connector. The DTR and CTS pins are connected to

‘http://www.hqdz123.com/en/product/toggleswitch/mini/7940. html
Shttps://cdn.sparkfun.com/datasheets/Sensors/IMU/Triple_Axis_Accelerometer-
Gyro_Breakout_-_MPU-6050_v12.pdf)
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ESP32’s EN (through label RST, mentioned in 5.3.1) and GPI00 pins respectively, enabling
an automatic flashing routine. In order for this to work, the S1 switch (Figure 5.9) must
be in the up position, cutting the EN pin from VCC.

MPU-6050_C24112
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Figure 5.10: Diagram of MPU-6050 circuit application inspired by the Sparkfun breakout
board design. Pins ADO, AUX_DA and AUX_CL are not used, it was opted to employ the device’s
default I?C address and no auxiliary sensors are used.
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Figure 5.11: Diagram of ESP32 circuit integration. Resistor voltage divider (the resistor
pair of R1 and R2, connected in series) on the ADC pin SENSOR_VP is used for determining
the battery level. The SMD side button (B1) serves as an interface for controlling MPU-
6050, which is connected through I2C.
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Figure 5.12: Diagram of standard FTDI FT232R connector layout, described in [22]. CTS

and DTR flow control pins (connected to GPI00 and EN respectively) are generated in order
to simulate conditions needed for driving ESP32 into the bootloader mode for flashing.
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Printed circuit board design

First of all, making the device as small as possible in size was sought after, by determining
its minimum possible dimensions regarding the components described in Sections 5.3.1 to
5.3.1. This was started by taking into account the dimensions of ESP32 WROOM module —
at 25.5 mm in length, it is by far the largest component to be integrated. Having discovered
this length limit, a Qi coil and a LiPo battery with dimensions as close to this as possible
had to be found — a 28 x 28 mm coil was chosen, which, rounding up, brought the device
to the minimum of 30 x 30 mm in size. As such, this also established the length and width
of a PCB to be striven for. Figure 5.13 illustrates a list containing the dimensions of all
components — based on this, it was endeavoured to determine the optimal placement for
the components which need to be soldered onto the PCB, along with pads for connecting
the external components (LiPo battery, COP02021 and the coil), with respect to the best-
practices of PCB designing. After designing the PCB itself, the external components had
to be stacked underneath the PCB, to have the device as thin as possible — this is also
why it was opted for to use simple pads instead of connectors such as JST. The final PCB
design, based on the circuits displayed in the previous sections, is illustrated in Figure 5.14,
whereas the result of the stacking endeavour, the “component hamburger”, can be admired
in Figure 5.15.

component (package/model) | length (mm) | width (mm) | height (mm)
ESP32 WROOM 25.5 18.0 3.0
LiPo battery (301525) 25.0 15.0 3.0
COPO2021 15.0 10.0 1.3

Qi coil 28.0 28.0 0.4
DPDT switch (MSK-22D10) 0.1 3.5 3.5
SMD button (TS-018) 4.7 2.4 1.9
MCP1702 (3-Pin SOT-23A) 3.0 2.5 1.1
TP4056 (SOP-8) 4.9 6.0 1.52
capacitors (0805) 2.0 1.25 0.60 - 1.25
resistors (0805) 2.0 1.25 0.50
leds (0805) 2.0 1.25 0.8- 1.0

Figure 5.13: A list of all components and their dimensions comprising the sensing device.
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Figure 5.14: Final PCB design, with the top side (left) containing pads for ESP32 WROOM
(U1), MPU-6050 (U5) and leds (LED1 to LED3). The bottom side (right) contains pads for
resistors (R1 to R11) and capacitors (C1 to C9), along with TP4056 charging circuit (U3),
MCP1702 regulator (U2), FTDI connector (U4), battery (H1), COPO2021 (H2), THT switch
(81) and SMD button (B1).
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Figure 5.15: A sideways view of the final components arrangement. Soldered on top of
the PCB, there is a layer containing ESP32, MPU-6050 and all three leds. Soldered on
the bottom side, there is a layer containing all capacitors, resistors, TP4056, MCP1702 and
both the SMD button and the THT switch. Stacked beneath this layer is the LiPo battery
with COPO02021 PCB, with all of this covered by the secondary coil’s ferrite sheet, as well
as the coil itself. Altogether, this amounts to dimensions of circa 8.65 x 30.0 x 30.0 mm.

5.3.2 Firmware design

Having dealt with the hardware part, this section focuses on describing the firmware pro-
posal. It begins with explaining the reasons behind the device synchronization, moving on
to introducing the workflow itself.

Device synchronization design

As described in Section 5.1, triggering any of the devices is to commence the process of
storing the motion data — however, prior to this, the devices need to be re-synchronised.
In Section 4.1, the subject of synchronization in WSNs was briefly approached — to correctly
interpret time-dependent data, timestamping has to be introduced into the system. Data
collected by individual devices at the same point in time should be labeled by a timestamp
of approximately the same value — with a large enough timestamp offset, measurements
could be skewed irreparably.

Because of the capturing trigger, the synchronization strategy can be at-demand rather
than automatic. Thus, it was decided that the bands are not going to be required to
share any form of time scale, be it absolute or relative to each other; however, the RBS’s
“timestamping upon the time of arrival” served as an inspiration for the following scheme.
Upon reception of the synchronization message, each device shall read and store the time
elapsed since its initialization, provided by the ESP32’s high resolution timer (3.3). Then,
until another re-synchronization is triggered, every motion measurement’s timestamp shall
be calculated as the difference between the time of measurement creation and the stored
time value. This makes for what one could possibly call an “event-relative” synchronization
strategy.
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Workflow proposal

Having established that a cooperation of devices in the form of synchronization must be
incorporated into the firmware, this section proceeds with designing the firmware workflow
algorithm itself. To further aid the description, a flowchart illustrating this algorithm
is shown in Figure B.3. Taking into account previously written sections on the design
of the sensing devices, four functionalities need to be configured within the initial setup:
connection to Wi-Fi, initialization of the synchronization technology, connection to MQTT
broker and MPUG6050 initialization. To establish both Wi-Fi and MQTT communication,
one has to provide the microcontroller with additional information such as SSID, broker
address and credentials. Since hard-coding these into the firmware requires re-flashing
a new version every time a credentials update is needed, it was opted to design a solution
employing a Wi-Fi captive portal with ESP32 turning into an access point. As a result,
sign-in information can be updated dynamically and every time a sign-in fails, this portal
is activated, allowing the user to check the entered information.

After successful configuration, the main program loop is run. Every iteration starts with
checking for synchronization packets — if received, the timestamping process is reset. Next,
state of the SMD button is checked: if it is not pressed, the algorithm continues along the
main branch. In contrast, if pressed, and it can be categorized as a long press, the device
resets back to the setup mode — however, with a short press, device synchronization is acti-
vated. Once the devices have been synchronized and MQTT message announcing a change
in the capturing status is sent to the broker, the flow is redirected back to the main branch.
Next follows a DMP interrupt check — if there is an interrupt, i.e., MPU-6050 announces
motion measurements were generated, these are read from the FIFO using the I2C interface,
parsed and sent in an MQTT data message.
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Chapter 6

Implementation

Having finalized the system design in Chapter 5, the current chapter follows by introducing
the implementation of the individual system components. Mirroring the presented workflow
designs, the previously glanced-over details are now filled in with actual technologies utilized
for realizing the components.

6.1 MQTT topic payloads

In Section 5.1.1, it was established that MQTT protocol shall be used for the inter-
component communication. Since the only responsibility of the collecting server is to del-
egate MQTT messages, any existing implementation of an MQTT broker might be used —
for the purposes of this thesis, the terminal mosquitto broker by Eclipse was utilized.

Following the design of the structure of MQTT topics from Section 5.1.1, this section
introduces the actual structure of their payloads. It was decided that the JSON (JavaScript
Object Notation) format would be used — it is both human-readable and machine-friendly
and most of the modern programming languages support parsing of JSON files, either
natively (JavaScript, Python) or with the aid of third-party libraries. These structures are
listed in Listing 6.1 in their true form, as they appear within the implementations of MQTT
clients of the components themselves.

// band - topics, v_app - GUI, p_app - processing

’m_t/band/status’ : {’id’: str, ’status’: bool}

’m_t/band/capturing’ : {’status’: bool}

'm_t/band/data’ : {’ts’: str, ’id’: str, ’ypr’: [float], ’q’: [floatl}
‘m_t/v_app/get_status’ : 7’

'm_t/v_app/get_filenames’ : {’filter’: str}

‘m_t/v_app/get_replay’ : {’filename’: str}

‘m_t/p_app/status’ : {’status’: bool}

'm_t/p_app/filenames’ : {’filenames’: [strl}

'm_t/p_app/replay/status’ : {’status’: bool}

'm_t/p_app/replay/data’ : {’ts’: str, ’id’: str, ’ypr’: [float], ’q’: [floatl]l}

© 0w N o Ul A W N e

=
= o

Listing 6.1: Structures of payloads being carried within the individual MQTT topics —
JSONSs, usually in key-value pairs, though the actual values are substituted with their
expected data types. Although simple string and boolean values dominate across
the payloads, keys ypr (standing for yaw-pitch-roll) and q (quaternion) are both represented
with lists of floats, whereas filenames contain a list of strings.
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6.2 Implementing the applications

Mirroring Section 5.2, more details on the implementation of the tasks the application
components are to process are revealed.

6.2.1 Implementation the processing application

This section references 5.2.1. The processing application was implemented in Python 3.7,
using the typing module — due to introducing function and variable type annotations into
the implementation, the services of mypy static type checker were regularly employed, thus
minimizing the run-time error encounters. Inspired by the Notch motion capture system
(mentioned in 2.2.2), the motion measurements are stored inside .csv files, parsed with
the help of Pandas library.

me : MQTTClient cd : CapturingDirector

| '
add(cd, 1, store)

m : MQTTMessage

on_ message()

data = get_ data()

cs : CapturingStorage

notify(r, data)

1
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Figure 6.1: Sequence diagram illustrating registration of CapturingDirector instance’s
method store for subscription of event r. After the on_message() callback is evoked,
MQTTMessage instance is created, parsing the incoming data. If not faulty, cd is notified
and an instance of CapturingStorage is created, storing the message.

callback(data)

MQTT functionality is central to the whole application: living in client.py in the mqtt
module, it is realized through the Eclipse Paho MQTT client library, implementing version
5.0 of the MQTT protocol. Since this client is asynchronous — i.e., processing and maintain-
ing the network connection is performed in the background, whereas notifications of status
changes and message receptions are provided to the application through employing callbacks
— a custom Observer-like functionality is incorporated into this scheme, allowing for com-
plete separation of the MQTT from the rest of the application. Although the MQTTClient
serves as a simple Paho client wrapper — registering a callback for the _on_message method
— it also acts as the Observer pattern’s subject. Upon receiving a message and instantiating
the MQTTMessage class, it delegates the notification to all its observers, by calling the pre-
viously specified callback methods (Figure 6.1). Through this interface, CaptureDirector
class, contained within the capturing module, binds its methods to MQTTClient callbacks
— these house the actual implementations for responding to the contents of the MQTT mes-
sages, allowing the processing application to execute the defined tasks. It uses the services
of CaptureStorage class, which acts as a wrapper over the storage files.
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6.2.2 Implementation of the graphical user interface

This section references 5.2.2. Since the plan was to delegate all communication and
rendering responsibilities to the application frontend, the backend only needs to serve
the HTML and JavaScript files — consequently, the server-side was implemented in Flask',
a lightweight Python framework running on WSGI?. For the client-side, Vue.js [25, 31] was
opted for — this is a Model-View-View-Model (MVVM) JavaScript framework specialised
for building single-page applications. In Vue, each application is comprised of a hierarchy
of nested, self-contained components, whereas each such component lives in its own .vue
file, having its own separate state and a HTML-based template.

fommmeeesssoeeeeosoees R -
h h v
logger.js mqtt_client.js consts.js <-;
A A A
v \ 4 Y
Measurement .
. BandRow.vue LogViewer.vue
Files.vue
\ 4 A4
BandStream BandStream
Graph.vue Render.vue
——————————— R GLEEE TP SEPEEEFEPEE FEEEEE E

Figure 6.2: Scheme of Vue components and modules hierarchy found in the frontend im-
plementation. These mirror the draft design of the user interface illustrated in Figure 5.7.
App.vue is at the top level, whereas MeasurementFile.vue and LogViewer.vue encapsu-
late measurement and log panels, respectively. BandRow.vue serves as a wrapper over
BandStreamGraph.vue (which employs Highcharts library for rendering the interactive
graphs) and BandStreamRender.vue, which renders the 3D representation of measure-
ments orientation using Three.js. Module consts.js, containing configuration data, is
imported by each of these components, whereas logger. js and mgtt. js are injected into
the application instance itself.

Following the graphical mock design, the application was split into six components, being
serviced by three custom-made modules — Figure 6.2 illustrates the hierarchy of the compo-
nents, as well as their dependency on the modules. For rendering the 3D device model and
its animations, the services of the Three.js library based on WebGL were employed [28],
whereas Highcharts®, a SVG-based library, was used for rendering the interactive charts.
Finally, since Vue.js modules need to be minimized to a single file along with all their de-
pendencies prior to being deployed to the server, the Webpack® bundling tool was used.
Final look of the graphical user interface is depicted in Appendix D.

https://flask.palletsprojects.com/en/1.1.x/

2an interface forwarding requests from servers such as Apache to Python web applications
3https://www.highcharts.com/

‘https://webpack.js.org/
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Client-side MQTT functionality

Since Vue in version 3.0 was used — a relatively new release of the framework — it proved to
be almost impossible to find compatible, ready-to-use modules facilitating MQTT function-
ality. Thus, a custom implementation was created, with the help of Eclipse’ Paho library”.
This library, akin to its Python-based counterpart, is also asynchronous — incorporating
such behaviour into a Vue application is, however, not as straightforward, since these call-
backs can only be registered once and the events need to be further delegated to multiple
Vue components. There are several approaches to solving this, although it all comes down
to choosing the correct location for the implementation, as well as the method for notifying
the components upon change. For one, these callbacks can be registered at the top level
component, with it passing the data to all its children. Passing could be done through
props — this could, however, be considered an anti-pattern, since such realisation becomes
unmaintainable with deeply nested components [31]. Should one wish to avoid implement-
ing MQTT functionality at the top-level component altogether, this responsibility can be
claimed by a dedicated mixin®, passing the messages with the help of Vue’s event bus, or
even employing the services of Vuex'.

//store/index. js
import { reactive, inject } from ’vue’;
import { mqtt_client } from ’Q/js/mqtt_client’

//create a symbol primitive

const MQTTStateSymbol = Symbol(’mqtt_client’);

const createMQTTState = () => reactive({mgtt_client: mqtt_client});
const useMQTTState = () => inject (MQTTStateSymbol);

© N s W N =

export { MQTTStateSymbol, createMQTTState, useMQTTState }

=
o

Listing 6.2: An abstract from the store module. Importing mqtt_client, this instance is
registered to Vue’s reactivity system using a symbol primitive. The useMQTTState function
is defined, facilitating the injection of this symbol as a dependency.

Finally, it was decided that the same approach as with the processing application would
be used. A custom mqtt module was created, containing a class with methods registered to
MQTT callbacks, along with implementing its own Observer pattern. An instance of this
class, called mqtt_client, is created and directly exported from the module. In the module
store, this instance is imported and, using a symbol primitive ®, two functions are imple-
mented: one enabling the injection of this symbol as a dependency, and one utilizing the
symbol for binding the imported mqtt_client instance to Vue’s reactivity system (List-
ing 6.2). Using the latter, the main application instance serves as a dependency provider
(Listing 6.3), creating a common state. Using the first, this dependency is injected into
the components, employing their setup options (executed before the components are even
created) — thus, each component gains access to a single mqtt_client instance. Upon
being mounted (inside the mounted lifecycle hook), each of the components then creates

*https://www.eclipse.org/paho/index.php?page=clients/js/index.php

Sessentially a component without HTML template

"state management library for Vue applications, creating a global singleton containing a shared state
8an instance of the Symbol class, guarantying a return value to be unique
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subscriptions to the MQTT-related events it needs to be notified of — usually corresponding
to the reception of messages to specific topics — also specifying a callback method bound to
the instance itself, which is to be run when the event is observed (Listing 6.4).

//main. js

import { createApp } from ’vue’;

import App from ’@/App.vue’;

import { MQTTStateSymbol, createMQTTState } from ’@/store’;

const app = createApp(App);
app.provide (MQTTStateSymbol, createMQTTState()); //provide to app instance
app.mount (’#app’) ;

[ TN T N O R

Listing 6.3: Importing symbol primitive along with the createMQTTState function from the
custom store module, the main application instance provides the mqtt_client instance
as a dependency.

1 | //App.vue

2 | import { useMQTTState } from ’@/store’;

3

4 | export default {

5 setup (O {

6 return {

7 mqtt_client: useMQTTState() .mqtt_client

8 }

9 },

10 mounted() {

11 this.mqtt_client.addMQTTListener (

12 MQTT_TOPICS.MT_BAND_STATUS, //event for subscription
13 this.updateBandStatus.bind(this) //bind to the component
14 )

15 },

16 |}

Listing 6.4: Within the component option setup, the useMQTTState function is utilized,
injecting the mqtt_client instance into the component. In mounted, this instance can
be accessed through this, and the component can register its method to be called upon
receiving a message to a specific topic.

6.3 Sensing device realisation

Although this section is based on the design proposed in Section 5.3, it also heavily leans
on the information summarized in Chapters 3 and 4. Here, the process of transforming
the PCB design into a fully functional, battery-powered device is described, followed by
a presentation of the firmware implementation.
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6.3.1 Hardware solution

This section references 5.3.1. Having generated a ger-
ber file (an open vector format file containing infor-
mation on each physical board layer of a PCB de-
sign) based on the PCB design created in EasyEDA,
the double-sided PCBs were manufactured by JL-
CPCB. After assessing the resulting boards, it was con-
cluded that soldering the SMD components with a sim-
ple soldering iron — without using a paste — should
be sufficient, as none of the packages appear small
enough for this to pose an issue. This assumption was,
however, proven incorrect while soldering MPU-6050"s
QFN-24 package with dimensions of 4 x 4 x 0.9 mm
(further mentioned in Section 7.1.2) — luckily, the com-
plications were far from severe and Figure 6.3 depicts
a complete assembly of a sensing device’s PCBs, with
all SMD and THT components attached. Following
up, the next step was to attach the 25 x 15 x 3mm
LiPo battery and CP2021 wireless receiver (stand-alone
components can be found in Figure 6.4), to pads H1
and H2, respectively, both located at the bottom side Figure 6.3: A final PCB as-
of the PCB. Stacking these underneath the PCB made sembly with all SMD and THT
for a real-live interpretation of the component “ham- components soldered on, directly
burger” (Figure 5.15). Finally, to protect the compo- mirroring the PCB design illus-
nents, a simple 32 x 32 x 10 mm case was 3D-printed — trated by Figure 5.14.

final set-up of the device is shown in Figure 6.4.

Figure 6.4: On the left there are the external components — copper wire coil attached
to the CP2021 module and a LiPo battery. On the right, there is the sensing device
realisation in various stages — a bare PCB (right), a component “hamburger” with LiPo
battery and CP2021 attached, covered by the ferrite shield and the coil (left) and the fully-
operational device contained within a 3D-printed box (top). The coins are for scale.
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6.3.2 Firmware implementation

The description of the firmware, which was implemented in C++ using PlatformlIO, is split
into two parts: the first focuses on selecting an appropriate communication technology
for sharing short-range synchronization messages among multiple sensing devices, whereas
the second contains information on the implementation of Wi-Fi, MQTT and MPU-6050
functionalities described in the firmware design in Section 5.3.2.

Synchronizing multiple sensing devices

In order for the synchronization scheme proposed in Section 5.3.2 to function, the com-
munication technology distributing the command must be predictable, fast and not, so
to say, “go around” losing packets needlessly. In Section 4.2, four possible candidates for
wireless communication with ESP32 modules were presented, although considering these
requirements, ESP-NOW (4.2.3) is theoretically bound to outperform both MQTT (4.2.2)
and UDP (4.2.1) protocols in terms of speed, due to running at a lower TCP/IP layer
(MAC, in contrast to UDP’s transport and MQTT’s application layer), as well as facili-
tating a point-to-point connection. Thus, the decision falls between ESP-NOW and BLE
(4.2.4). To resolve which of these to pick, it was decided that their performance is to be
evaluated by conducting an experimental comparison, regarding an average round-trip time
(RTT)? and mean time between failures (MTBF)!’. The methodology for experimenting
with each of the technologies is to be as follows: a minimal functioning sample, enabling
communication between two ESP32 devices at a distance of two meters, shall be proposed,
implemented and deployed. For each such implementation, 1010 packets carrying a se-
quence number are to be transmitted (intervals of 250 ms) and acknowledged. A truncated
mean (discarding the 10 highest and 10 lowest latencies) of these RTTs is to be calculated,
along with MTBF, noting the time between packets missing from the sequence. Finally,
the results of the individual technologies shall be compared to each other. Given the above,
we start by describing the proposed communication workflows for each of the technologies:

ESP-NOW sample. After the initial pairing of the master and slave nodes, the master
broadcasts a message, noting the time. After receiving the message, the slave replies with
an acknowledgement carrying the same number — upon receiving this acknowledgement
packet, the master checks whether the received sequence number is equal to the expected
number and notes the time; if the numbers do not match, a warning is printed.

BLE sample. Here the connection-oriented mode is used, employing the non-blocking
asynchronous notify operation. A peripheral node, possessing a service with two dis-
tinct characteristics, advertises itself. When creating a connection to the peripheral node,
the central node makes a subscription to be notified upon a change of a characteristic. Once
the connection is established, the peripheral updates its characteristic’s value and notes
the time. Upon receiving the update notification, the central responds by writing to the sec-
ond one of the peripheral’s characteristics — after receiving this message, the same process
as with ESP-NOW is repeated, i.e. checking the sequence number and noting the time.

9 truncated mean of times elapsed between transmitting a packet and receiving an acknowledgement
Opredicted elapsed time between two failures, i.e. how often is a packet lost in this case
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Results of runs with each of the technologies are shown by the box plot (with the x axis
in logarithmic scale) in Figure 6.5 and summarized by the table in Figure 6.7. Although
unexpected for both protocols, within the sample of 1010 packets containing a sequence
number, each was acknowledged with the correct number — this means that no packet
was lost, therefore there is no need for the MTBF metric to be calculated. In contrast,
the difference between the average RTTs of these protocols is vast — at 3,564.93 ps, ESP-
NOW clearly outperforms BLE with its 31,238.16 ps. As indicated by the upper quartiles,
75% of all ESP-NOW messages were acknowledged before the mark of 4,223 pis, as opposed
to BLE’s 37,199 ps. In short, ESP-NOW runs circles around BLE at the proposed setting
and implementation — at their worst for both, two ESP-NOW round trips could be taken
for a single BLE round trip to be finished.

BLE

ESP-NOW

2000 5000 10 000 20 000 50 000
round-trip time [ps]

Figure 6.5: Box plot for comparison of 990 round-trip times (in microseconds, in logarith-
mic scale) for packets transmitted over ESP-NOW (purple) and BLE (blue). ESP-NOW
outperforms BLE. The exact values of whiskers, quartiles and the median are listed in
Figure 6.7.

ESP-NOW
optimized

ESP-NOW

I T T
1000 2000 3000 10 000

rount-trip time [ps]

Figure 6.6: Box plot for comparison of 990 round-trips times (in microseconds, in loga-
rithmic scale) for the original packets transmitted over ESP-NOW (purple) and optimized
ESP-NOW (red). The exact values of whiskers, quartiles and the median are listed in
Figure 6.7.

Initially, it was expected that BLE would become the technology of choice — however,
after proving the contrary, ESP-NOW was studied even more extensively. Consequently,
an issue opened in 2019 came up at the official ESP-IDF repository'!, theorizing that
the ESP-NOW default setting for a bit rate of 1 Mbps can be bypassed by editing the data

"https://github.com/espressif/esp-idf/issues/3238
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rate directly at the underlying Wi-Fi level. The suggested procedure was to enable the trans-
mission of frames with a fixed bit rate (72.2 Mbps for 20 MHz, 150 Mbps for 40 MHz, rather
than the default 1 Mbps) and disable AMPDU (Aggregated MAC Protocol Data Unit),
which is responsible for aggregating multiple short MAC frames, naturally causing a delay.
Even though this method has not yet been officially incorporated into the library, it is said
to significantly reduce the ESP-NOW latency in data-transmissions — thus, look into how
much of an improvement this fix might make was in order. Incorporating the suggested
editions into the sample, the same procedure was followed as in the previous two experi-
ments — even this time, there were no packets lost. As shown in Figure 6.6, when compared
to the original ESP-NOW wvalues, this optimization makes for even shorter RTTs, with
the average being 2,312.31 ps — considering that this is a round-trip time, one could specu-
late that a single trip might be around staggering 1150 s, probably getting close to what
a wired connection might take. Since 75% of all RT'Ts were below the 2,764 s mark, it was
decided that these suggestions shall be incorporated into the final form of the ESP-NOW
synchronization.

BLE ESP-NOW | ESP-NOW optimized
upper whisker | 56,135.00 7,270.00 5,380.00
3rd quartile 37,199.00 4,223.00 2,794.00
median 29,127.00 2,280.50 1,097.00
1st quartile 23,608.00 2,180.00 1,055.00
lower whisker | 18,327.00 2,111.00 997
lost packets 0 0 0
MTBF — —
average RTT 31,238.16 3,564.93 2,312.31

Figure 6.7: Table summarizing statistics for the plots in Figures 6.5 and 6.6, in s. The num-
ber of packets for each of the protocols used for the computations was 990. As there were
no packets lost, MTBF is not calculated.

Implementing the firmware workflow

Following the flowchart, the first thing to be dealt with is the implementation of Wi-Fi
captive portal and establishing Wi-Fi connection. This was a prerequisite for three other
technologies, as they all require Wi-Fi communication — OTA, ESP-NOW and MQTT -
and afterwards, MPU-6050 itself could be initialized. While the libraries used for the imple-
mentation of these functionalities shall be described in the paragraphs below, there is one
more library, quite stand-alone from the firmware event chain, that needs to be mentioned
— for distinguishing the length of a button press, related to the SMD button mapped to
ESP32’s GPI013, the OneButton library'? was employed.

Wi-Fi and captive portal. To this end, ESP-WiFiSettings library'® was used, which
facilitates an out-of-the-box captive portal functionality, along with storing multiple Wi-
Fi credentials and dynamic custom parameters in ESP32’s flash memory with the aid of
SPIFFS.h library. Although the captive portal is programmed to start when credentials
could not be read, or whenever the connection to Wi-Fi is lost, it can also be triggered

“https://github.com/mathertel/OneButton
Bhttps://github.com/Juerd/ESP-WiFiSettings
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artificially, through method resetAndEnterConfigPortal(). Figure 6.8 depicts the final
implementation of the captive portal, using a personal cell phone.

Over The Air updates. Even though the FTDI
FT232R’s services were employed for initial firmware
flashing, it was decided to also add the Over The
Air (OTA) updates functionality. The OTA routines
were incorporated using the ArduinoOTA library'* —
although not previously planned in design, enabling
the upload of new firmware wirelessly, instead of hav-
ing to connect through the USB-to-UART converter,
is extremely practical.

ESP-NOW synchronization. Although the im-
plementation of ESP-NOW synchronization was de-
scribed in Section 6.3.2, this realisation was stand-
alone, thus it had to be integrated into the the ex-
isting firmware. To initialize ESP-NOW, the Wi-
Fi mode has to be configured to WIFI_AP_STA, hav-
ing the device act as both an ESP-NOW access
point and Wi-Fi station, simultaneously (Section
4.2.3).  This is followed by commanding the de-
vice to enter the promiscuous mode and change
Wi-Fi AP channel to match the STA channel, along
with setting the internal bit rate, through function
esp_wifi_internal_set_fix_rate, to a fixed pre-
defined value (WIFI_PHY_RATE_MCS7_SGI, represent-
ing 72.2Mbps for 20 MHz, 150 Mbps for 40 MHz).
After this, ESP-NOW can be initialized using the

wll LTE 8

192.168.4.1
esp32-4¢62f5

LogIn

Restart device

Configuration

'WiFi network name (SSID):
(Micinky
rescan

WiFi password:

Language:
(English

O Protect the configuration portal with a WiFi password
(default: 0)

WiFi password for the i ion portal:
ahojsvete

maqtt_host:
(192.168.0.66

mattr_port:

matt_login:

maqtt_password:

device_id:

device_count:

esp_now.h header file included in ESP-IDF'°. ESP- Figure 6.8: Captive portal for en-
NOW handling within the main program loop re- tering Wi-Fi credentials, hosted on
quires checking for packets addressed to the broad- ESP32’s webserver.

cast MAC address, upon which re-synchronization of

timestamping is executed.

MQTT client. For implementation of the MQTT client, the services of the PubSubClient
library'® were employed, and, to avoid hard-coding MQTT configuration details, custom
parameters for the MQTT broker address, port and optional sign-in credentials were added
to the captive portal implementation.

MPU-6050 control. As the very last step in the setup part, I?C a communication with
MPU-6050 has to be established: MEMS sensors had to be re-calibrated and DMP initial-
ized. Both of these functionalities, as well as all related data processings, were covered by

Yhttps://www.arduino.cc/reference/en/libraries/arduinoota/
https://github.com/espressif/esp-idf
%nttps://www.arduinolibraries.info/libraries/pub-sub-client
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the open-source ElectronicCats MPU6050 library'”. Prior to starting the library’s offset cal-
ibration process (explained in Section 3.2.5), the initial offset values had to be determined
— to this end, the procedure specified in i2cdev forums'® was followed. The PCB was laid
on a flat, horizontal surface and flashed with the suggested firmware, recording 1000 raw
measurements for each of the sensors and calculating their mean values. These measure-
ments were then incorporated into the final firmware implementation. Finishing the setup,
in the main program loop, upon an interrupt on ESP32’s GPI025, measurements in a form
of quaternions are read from MPU-6050’s FIFO. Along with a corresponding timestamp,
these are then formatted as JSON with the help of ArduinoJson.h and sent over MQTT
for further processing.

"https://github.com/ElectronicCats/mpu6050
Bhttps://www.i2cdevlib.com/forums/topic/96-arduino-sketch-to-automatically-calculate-
mpu6050-offsets/
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Chapter 7

Solution testing and evaluation

This chapter focuses on describing the procedures conducted for testing the functionality
of the implemented mo-cap system: both manual and automated, continuous and post-
development, component-based as well as system-wide. Creating some of these tests also
inspired the addition of features previously unaccounted for in the initial design: the sensing
device self-test procedure described in Section 7.1.2, MQTT-based logging mentioned in
section 7.2, and the sequence fusion functionality presented in Section 7.2.2. The very end
of the chapter is dedicated to summarizing the properties of the realized mo-cap system,
proposing possible improvements, as well as presenting ideas for the future development.

7.1 Testing the system components

This section covers the implementation of automated tests used during the applications
development, as well as the manual procedures for testing the hardware of sensing devices.
The automated tests are all located within their own tests module.

7.1.1 Testing the applications

Since the whole system revolves around the components communicating using the MQTT
protocol, the testing initiative was primarily focused on this functionality. The initial
testing endeavours were achieved through Eclipse’s mosquitto terminal clients, although
this manual approach became tedious as the system started to grow. To decouple the
individual components, a testing Python 3.7 module was built, containing a mock MQTT
client class based on the Paho library. By itself, this client only provided the basic methods
for connecting to the broker and receiving messages — in short, it was made to be extended
with additional functionality.

Since the applications were being developed in parallel with the sensing devices, the
very first automated testing endeavours were focused on implementing a device simulator
capable of generating random motion measurements. The resulting script, based on the
mock MQTT client class, is living in bands_simulator.py file. It is capable of generating
data seemingly incoming from multiple devices using the threading library, also providing
messages to start or stop the capturing process. This script handles continuous testing of
both the processing application’s storing capabilities, as well as the GUI’s model rendering
and chart plotting — consequently, it covers all applications’ interactions reliant on the
output of the sensing devices. This served as an inspiration for implementing analogous
scripts simulating the applications themselves, thus further decoupling their development.
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Two separate scripts were created, both extending the mock MQTT client’s function-
ality: processing_app_asserter.py, testing the processing app’s responds to the GUI
requests, and gui_asserter.py, performing the same for the GUI. The first is comprised
of a sequence of tests mirroring the app’s flowchart shown in Appendix B.1, whereas each
test depends on the assert result of its predecessor. Shown in the left part of Figure 7.1,
the sequence might be compared to a finite-state machine with a sink error state: actions
performed by the the script act as states and the application’s responses serve as transitions.
The same approach was taken for the GUI — apart from conducting manual and visual in-
spections of the interface, a sequence of tests following the same flow (shown in the right
part of Figure 7.1) was implemented. In contrast to the processing app test, this sequence
is commenced and controlled through simulating the user input using Selenium WebDriver
bindings to Python'.
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Figure 7.1: FSM-like diagrams illustrating the procession of automated tests for the pro-
cessing application (left) and the graphical user interface (right).

7.1.2 Testing the sensing devices

Testing the sensing device included inspection of the actual hardware realisation, as well as
firmware, mainly focusing on the MPU-6050 functionality.

Solder joins inspection

Having soldered every component onto the PCB, basic inspections were carried out, such
as ruling out the presence of any obvious short circuits and cold solder joints, using a mul-

"https://pypi.org/project/selenium/
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timeter in the continuity setting. Confirming that the soldering endeavours seem to be
in order, a basic LED sample firmware was flashed into the device (a process mentioned
in 3.3.3), using FTDI FT232R USB-to-UART converter, along with an additional power
supply provided by a DC-DC converter (12 V step down to 3.3 V). With the LEDs blinking
merrily (Figure 7.2), thus verifying that ESP32 is indeed working as intended, the basic
firmware was modified to communicate with MPU-6050, initializing its DMP and printing
the generated motion data to Serial Monitor. This phase required some cosmetic fixes, as at
first MPU-6050 was not detected by ESP32 — since MPU-6050’s pins are quite close to each
other, applying too much tin could result in bridging, therefore being rather stingy with
the solder did not pay off. Once all pins were properly soldered, MPU-6050 was detected
by ESP32.

Figure 7.2: Flashing a simple LED blink firmware into the PCB in order to test whether
ESP32 is working properly, using FTDI FT232R (right) with external power supply pro-
vided by DC-DC converter (left).

Charging solution inspection

Following up, the next step was to inspect the 25 x15x3 mm LiPo battery and CP2021 wire-
less receiver. To test whether the charging branch of the design is functional, the voltage of
the battery cell was measured at first, with the readings noted. Afterwards, the device was
put on a Qi-compliant wireless charger — the red LED on the top side of the PCB turned on
and held, indicating that TP4056 circuit was working and charging (Figure 7.3). Letting
a couple of minutes pass by, the device was removed from the charger and the battery’s volt-
age was measured once more — it increased, therefore the charging branch of the hardware
realisation was also deemed functional.

Figure 7.3: Testing the charging functionality of the sensing device, through having it charge
using a Qi-compliant wireless transmitter. The green led on the wireless charger indicates
that a wireless device was detected, whereas the red led on the sensing device, mapped to
TP4056’s chrg pin, indicates that the charging circuit is working and the battery is being
charged.
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MEMS sensor testing

To test the mechanical and electrical portions of MPU-6050’s accelerometers and gyro-
scopes within MPU-6050 itself, self-test procedure (explained in Section 3.2.5) was executed.
To this end, an extension of the firmware was implemented, inspired by Kris Winer’s self-
test example” — before initializing the DMP, the factory trim values are computed manually,
and then the device’s self-test registers (13-16) are used for triggering the simulation. Read-
ing the self-test response, a percentage deviation from the factory trim values is calculated,
following the formula specified in [12]. Since the results for each of the axes were within
the tolerance range of 14% specified in [11], it was concluded that MPU-6050’s internal
accelerometer and gyroscope should be functioning as expected.

Device communication testing

As the last inspection, the final implementation of the firmware was flashed into two devices,
to be able to test their communication capabilities, both with the MQTT broker and with
each other. Turning the devices on with the THT switch, first the blue LEDs lighted up,
indicating a successful connection to Wi-Fi. As the first band messages got delivered to
the broker, communication with the rest of the system was validated. Thus, ESP-NOW
synchronization was the last functionality to test — upon pushing the SMD button on one
of the devices, both of their green LEDs lighted up, indicating ESP-NOW synchronization
(and data capturing) was active, as illustrated by Figure 7.4. After this, the timestamps
of the messages delegated to the broker from both devices got reset, marking the end of
the device testing.

Figure 7.4: Two mo-cap bands positioned on a subject’s arm. The blue LEDs indicate
an active Wi-Fi connection, the green ESP-NOW synchronization.

7.2 Testing the system as a whole

This section describes testing of the system as a whole, focusing on monitoring the compo-
nents interaction, as well as the overall motion capture capabilities.
7.2.1 Debugging the inter-component communication

While debugging the interaction messages between the individual components, a decision
was made to aggregate all debugging logs at one place. For this purpose, a new MQTT topic

“https://github.com/kriswiner/MPU6050/blob/master/MPU6050BasicExample.ino
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— m_t/debug, shown in Listing 7.1 — was established and shared across the components.
Within a log message delegated to the MQTT broker under this topic, each component
notes itself as a log source, also stating the timestamp, type of the log and the payload.
Although with this setting it was possible to assign the log-aggregation responsibility to
any of the components, the GUI seemed as the best candidate for their visualisation.

1 |// single debug topic
2 | ’m_t/debug’ : {’source’: str, ’type’: str, ’message’: str, ’ts’: str}

Listing 7.1: A new MQTT topic, shared by all components.

7.2.2 Experimenting with motion capture

This section describes the experiments conducted to test the system’s overall motion capture
functionality — each of these consisted of generating motion data with the help of sensing
devices, storing them with the processing application and visualising the plots with the help
of the GUI. Prior to presenting the experiment methodology itself, two preliminary things
need to be explained: interpretation of the captured measurements and captured sequence
fusion.

Interpretation of the captured measurements. Although the visualisation applica-
tion uses quaternions for 3D renderings, within this section the angle rotations shall be
expressed in the form of Cardanian angles, i.e., yaw-pitch-roll (explained in Section 2.2.2).
Looking back to MPU-6050’s orientation of the axes and polarity of rotation shown in Fig-
ure 3.1 in Section 3.2, as well as at the implementation for obtaining yaw-pitch-roll values
by the ElectronicCats library®, it was determined that yaw represents the rotation angle
about the z axis, pitch about the y axis and roll about z axis. Although DMP generates
measurements with the frequency of 100 Hz, the sensing devices are pre-set to delegate
the data over MQTT with the frequency of 5Hz — this means that every timestamp on
the plot line represents a step of 0.2s.

Fusing the captured measurement sequences. As the results of a single run for each
of the experiments cannot be considered representative of the device’s capabilities, it was
decided that each run shall be repeated at least five times, with the resulting sequences
fused into a single profile. Consequently, a fusion method needs to be selected — here,
the problem lies in the measurements being time-dependent, i.e. forming an ordered set
of observations each recorded at a specific time — a time series [23]. Although the same
hand motions shall be repeated, the individual stages can potentially be performed faster
or slower within the repetitions. Authors of the article [53], dealing with a similar issue,
experimented with two possible techniques (Figure 7.5): the first was a simple mean of val-
ues matched on common timestamps (also called Fuclidean matching); the second, the one
they determined to be more suitable, was matching the values to compute the mean of
with the help of Dynamic Time Warping (DTW). DTW is a distance measure commonly
used for finding the optimal alignment of sequences along with their similarity estimation,
due to its ability to cope with time deformations [48, 46]. According to the authors of
article [50], there are two ways of extending the DTW to the multidimensional space — they

3https://github.com/ElectronicCats/mpu6050/blob/master/src/MPU6050_6Axis_MotionApps_V6_12.h
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coined these as dependent and independent warping. A decisive factor when opting between
these two is the degree of dependency of the respective dimensions regarding their evolu-
tion in time. If the events recorded in the time series effect all dimensions simultaneously
— i.e., they are tightly-coupled — it is recommended to employ the dependent variant. Since
recording x and y axis accelerations of a pen’s writing tip is set as a tightly-coupled exam-
ple by the authors, it was decided that this method shall be used for the combination of
the multivariate measurement sequences generated for the experiments. For this purpose,
the services of the tslearn library” were employed, as the authors claim that it contains an
implementation for dependent warping”. The alignment path of two sequences, computed
through the means of tslearn’s dtw_path method, shall serve as a mapping for fusing the
sequences into a single profile.

Figure 7.5: Comparison of Eudlidean matching (left) to DTW matching (right).

Without further ado, two types of experiments were conducted: the first (Experiment A)
focused on the evolution of measurements with the device staying level, whereas the second
type (Experiments B to D) inspected how the devices are affected in relation to rotation
about each of the axes individually. The shared methodology for the latter was loosely
inspired by [24] — originally, the authors of this article conducted these experiments to
verify their approach to fusing the raw data of MPU9150’s sensors, as they did not use its
DMP. Likewise to the methodology, the ideal results for the latter-type experiments should
also match. The angle of the inspected axis of rotation should start at the initial position
of 0°, rotating up to a degree dependent on the type of rotation (~60° to 90°). At this
point, the angle should stop increasing and start rotating in the opposing direction instead,
reaching the same degree on the opposite side. Changing the direction once more, it should
be rotated back to the initial rotation — all the while, the rest of the axes should stay at
0°. However, due to the nature of human wrist movements, these angles are not going to
be precise, and some degree of displacement on all axes is bound to occur. Consequently,
what shall be evaluated with this type of experiments is how close the actual results come
to the ideal case.

Experiment A: testing the device’s drift

At first, the device’s behaviour in a static position was tested — as MPU-6050 does not
include a magnetometer, the expected behaviour for this IMU would be an ever-present
drift in the yaw angle. In Section 3.2.5, it was mentioned that DMP incorporates patented
auto-calibration algorithms, balancing the inherent drift of the MEMS sensors to some
degree. Laying the device on an even surface, it was noted that this calibration process
takes 26 seconds at an average (shown in Figure 7.6) of five runs — i.e., roughly after

‘https://github.com/tslearn-team/tslearn
Shttps://github.com/tslearn-team/tslearn/issues/142
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26 seconds, the readings seemingly stabilize, though this process might also take longer®.
Although the pitch and roll angles truly hold their values, the drift in the yaw angle is still
present, albeit minimized in comparison to the pre-balance readings.
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Figure 7.6: Plot showing the profile of five runs of angle measurements evolution generated
from the very start of the device activation up to 330 timestamps, i.e. 66s. The stabilization
of the yaw angle appears to occur around the point of 26 s (130th timestamp).

Experiment B: testing the yaw rotation

The steps for testing the yaw rotation, also illustrated in Figure 7.7, were as follows:

Step 1: The arm with the band reaches forwards, with the palm facing down and fingers
stretched; once level with the ground, motion capturing is to be triggered.

Step 2: Slowly, the hand is bent at the wrist inwards, pointing the fingers to the left, with
the rest of the arm staying as static as possible, the palm still facing the ground.

Step 3: The wrist is bent outwards, passing the initial position, with the fingers pointing
as far right as possible.

Step 4: The hand is returned to the original position and motion capturing is stopped.

step 4

step 1 l |step .: step 3

Figure 7.7: Approximate illustration of steps for the yaw experiment.

The resulting plot is shown in Figure 7.8. Although the curve of the inward bend in Step 2
seems to correspond with the expectations, i.e., it follows the ~ 60 ° wrist bend depicted in

Shttps://wired.chillibasket.com/2015/01/calibrating-mpu6050
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Figure 7.7, the same can no be said for Step 3, representing an outward bend. Here, the fault
is put on the structure of a human hand — due to the muscles, bones, and tendons making
up the human wrist, it was, naturally, impossible to bend the wrist to the same degree
as with the inward turn. It also appears that, inadvertently, the arm was not completely
static, allowing the wrist a slight diversion from the original pitch values — this is primarily
visible in Step 3. Finally, the noise in Step 4 is most probably a result of an attempt to stop
the motion capturing — the slight hand movements are caused by a force being applied to
the SMD button, deviating the hand from the original position. Regardless of the outliers,
it appears that the device’s reactions to yaw rotation correspond with the expectations.
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Figure 7.8: Sequence of orientations of a human hand. The steps within the plot are to
correspond with the yaw experiment steps also shown in Figure 7.7.

Experiment C: testing the pitch rotation

The steps for testing the pitch rotation, also shown in Figure 7.7, were as follows:

Step 1: Identical to Step 1 of Experiment B.

Step 2: With the fingers still pointing forwards, the whole arm is rotated clockwise, so that
the palm becomes perpendicular to the ground — the thumb is pointing up.

Step 3: The arm is rotated counterclockwise, passing the initial position and stopping with
the palm once again perpendicular to the ground, the thumb pointing down.

Step 4: Identical to Step 4 of Experiment B.

Figure 7.9: Approximate illustration of steps for the pitch experiment.

The resulting plot is shown in Figure 7.9. This time, the yaw and roll axes seem almost
unaffected, but for tiny tremors in Step 3 — rotating the wrist inwards requires the whole arm
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to rotate, which might cause a slight diversion from the original position. All in all, as this
rotation comes more naturally to the human hand, there are far less tremors present within
the curves, compared to the previous experiment. Learning from the previous experience,
the hand was steadied before motion capturing was turned off, which resulted in an almost
ideal sequence of measurements in Step 4. Consequently, the course of the pitch rotation
seems to have followed the rotations performed in Figure 7.10.
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Figure 7.10: Sequence of orientations of a human hand. The steps within the plot are to
correspond with the pitch experiment steps also shown in Figure 7.9.

Experiment D: testing the roll rotation
The steps for testing the roll rotation, also illustrated in Figure 7.11, were as follows:
Step 1: Identical to Step 1 of Experiments B and C.

Step 2: Slowly, the hand is bent downwards at the wrist, performing a wrist flexion with
the fingers stretched towards the ground.

Step 3: The hand is bent upwards, performing a wrist extension — passing the initial
position and moving on, stopping with the fingers pointing to the ceiling.

Step 4: Identical to Step 4 of Experiments B and C.

Figure 7.11: Approximate illustration of steps for the roll experiment.

The plot of the corresponding measurements is shown in Figure 7.11. Since flexions and ex-
tensions seem, once again, like a more natural movement for the human wrist, the yaw
and pitch axes are almost unaffected, but for Step 2 — it is suspected that during the wrist
flexion step, the elbow joint was inadvertently being bent, thus allowing the roll angle to

58



pass 90° mark, as well as diverting the yaw and pitch angles. Nevertheless, the roll rotation
seems to have followed the rotations performed in Figure 7.12 as well.
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Figure 7.12: Sequence of orientations of a human hand. The steps within the plot are to
correspond with the roll experiment steps also shown in Figure 7.11.

7.3 Solution evaluation, possible usage and improvements

To summarize, the previous chapters described the proposal for the inertial mo-cap sys-
tem, as well as the processes required for converting those ideas into actual hardware and
software realisations. Up until now, this chapter described the steps taken for verifying
that the solution is indeed functioning as expected. Since the system was deemed func-
tional based on the results of the conducted experiments, the following sections deal with
the discoveries made during these testing endeavours, suggesting potential solutions for
improvements, along with presenting the possible directions the future development of the
system might take, building on the foundations created as part of this thesis.

7.3.1 Improving the measurements accuracy

Although partially improved through the DMP’s patented motion recognition algorithms,
yaw’s drift remains an issue should the devices be required to function for extended periods
of time. Consequently, such a case would call for incorporating a magnetometer into the
device, configured as a slave device on MPU-6050’s AUX SDA/SCL lines — however, according
o [47], this approach requires some of the computations to be carried out on the host
processor, as the MPU-6050’s DMP lacks the computational power required for 9-axis
fusion. A better approach would be to substitute MPU-6050 with MPU-9250", which
contains a 3-axis digital compass — this would also solve the problem of the yaw’s orientation
being relative to the initial position of the device, rather than absolute akin to pitch and
roll. The main issues with this motion tracking device are that it is three times more
expensive than MPU-6050, and it also seems to lack the community’s support in terms of
the number of open-source third-party libraries working with its DMP.

Another approach, perhaps worth experimenting on, would be bypassing the DMP
altogether, executing the whole process of accelerometer, gyroscope and magnetometer data
fusion on the host processor. To this end, either Kalman or Magdwick AHRS filters could
be employed, although a preliminary comparative study would probably be required. To
further enhance the accuracy of the measurements, multiple motion tracking devices could
be incorporated onto the PCB, with their results being averaged, thus also minimizing
the impact of measurement outliers.

"https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/
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7.3.2 Reducing the sensing device dimensions

Although already small, the device could be made even smaller, perhaps allowing for a bat-
tery of greater dimensions and capacity. Initially, the dimensions of the device were derived
from the ESP32 WROOM module’s length (Section 5.3.1) — however, this module encom-
passes many technologies redundant to the proposed mo-cap system’s purposes. This could
be remedied by utilizing a bare ESP32-DOWDQ6 chip, incorporating it, along with its min-
imal circuit scheme, straight into the device’s custom PCB design. Furthermore, the most
obvious optimization would be substituting the 0805 SMD packages used for the comple-
mentary components with smaller variants, such as 0603.

7.3.3 Extending the functionality

Although the processing application’s functionality is now basic in nature, there are many
ways in which it can be extended. The DTW-based sequence fusion, initially implemented
for experimental purposes, could easily be incorporated into the application as a new feature
for creating representative profiles of specific movements. Since DTW primarily determines
a similarity measure of two sequences, a gesture recognition system could potentially be built
on top of a database of such profiles. These classification tasks could further be improved
by substituting the multivariate DTW method with QDTW — Quaternion Dynamic Time
Warping, making use of the specific properties of the quaternion space [36] — thus utilizing
the quaternions produced by DMP, instead of the processed yaw-pitch-roll values. It is
not unusual for DTW to be employed in such tasks — for instance, the authors of article
[51] experimented with combining these two methods, developing a two-level hierarchical
classifier for tennis-shot recognition. Although simply listing a couple of new features, this
suggests that there are many directions the future development of the proposed mo-cap
system may take.
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Chapter 8

Conclusion

The main objective of this thesis was to propose and construct foundations for a custom
motion capture system, using the MPU-6050 inertial motion devices hosted by the ESP32
microcontrollers. Chapter 2 served as a primer on motion capture in general: introduc-
ing various motion capture techniques, their principles, merits and demerits. Chapter 3
presented the properties of ESP32 and MPU-6050 themselves, whereas Chapter 4 dealt
with the communication technologies supported by ESP32. Drawing from this information
base, Chapter 5 introduced the design of the custom mo-cap system — its components, their
individual roles and responsibilities, as well as the interaction schemes they take part in.
The process of transforming this proposal into an actual hardware and software realisation
was described in Chapter 6 — mirroring the design, the implementations of each of the com-
ponents were described separately, filling in the details about the technologies employed for
this purpose. Finally, Chapter 7 focused on describing the procedures taken for testing and
validating the mo-cap system: both continuous and post-development, on the component
as well as the system level, using manual and automated procedures alike.

Having reviewed the structure of the thesis, let us now proceed with summarizing the
developed solution. The constructed mo-cap system is comprised of four separate com-
ponents: the sensing devices, the processing application, the graphical user interface and
the MQTT broker facilitating all inter-component communication. The sensing bands are
based on a custom PCB, powered by a tiny single-cell LiPo battery — due to this, they are
reasonably lightweight, weighing 8 g at just 8.65 x 30.0 x 30.0 mm in size. To be unobtru-
sive, they were made completely wireless — communicating through MQTT, synchronizing
through ESP-NOW, with Qi-compliant wireless charging facilitated through the CP2021
module with a receiver coil. The motion data generated by these devices are delegated to
the MQTT broker, stored by the Python 3.7 processing application and visualised by the
Vue.js graphical interface, using a 3D band model.

On the whole, the system was made to be modular and easily extendable with new fea-
tures — as discussed in Chapter 7, one such feature, originally employed for experimenting
purposes, was the integration of motion sequence fusion based on the multivariate Dynamic
Time Warping method, for creating representative profiles of the captured, time-dependent
motion series. Although there are many possible directions for future development of the
implemented mo-cap system, this functionality, along with the ability to store and replay
the captured movements, might be utilized for laying the foundations for a gesture recog-
nition system, which seems to be the most engaging outcome.
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Appendix A

CD contents

CD
| demonstration
HD_video_links.txt - links to the videos in HD quality
videos - video demonstrations of the solution
images - screens and photos of the solution
| docs
circuits - the sensing device circuit schematic
flowcharts - design flowcharts of the system components
thesis - thesis text and its source codes
| README.md - map of the CD contents
| _source
firmware - source codes for the firmware
processing_app - source codes for the processing app
visualising_app
server - source codes for the backend
client - source codes for the frontend
tests - source codes for the automated tests
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Appendix B

Component flow designs
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Figure B.1: Workflow algorithm design for the processing application.
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Figure B.3: Workflow algorithm design for the sensoric device.
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Implementation of GUI
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