VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

DIPLOMOVÁ PRÁCE

Brno, 2016

Bc. Jan Salášek

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV TELEKOMUNIKACÍ

DEPARTMENT OF TELECOMMUNICATIONS

ANALOGOVÉ FUNKČNÍ BLOKY FRAKTÁLNÍHO ŘÁDU

ANALOGUE FRACTIONAL-ORDER FUNCTION BLOCKS

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Jan Salášek

VEDOUCÍ PRÁCE SUPERVISOR

doc. Ing. Jaroslav Koton, Ph.D.

BRNO 2016

VYSOKÉ UČENÍ FAKULTA ELEKTROTECHNIKY TECHNICKÉ A KOMUNIKAČNÍCH V BRNĚ TECHNOLOGIÍ

Diplomová práce

magisterský navazující studijní obor Telekomunikační a informační technika

Ústav telekomunikací

Student: Bc. Jan Salášek *Ročník:* 2

ID: 146945 *Akademický rok:* 2015/16

NÁZEV TÉMATU:

Analogové funkční bloky fraktálního řádu

POKYNY PRO VYPRACOVÁNÍ:

Prostudujte problematiku návrhu kmitočtových filtrů fraktálního řádu. Popište přístupy návrhu z pohledu aproximace či přímého využití fraktálního pasivního prvku v obvodové struktuře. Na základě získaných znalostí navrhněte vlastní řešení fraktálních kmitočtových filtrů s vybranými aktivními prvky a vyhodnoťte jejich chování simulacemi ve vhodném software. Na základě získaných výsledků pak nejvhodnější řešení prakticky realizujte a ověřte experimentálním měřením.

DOPORUČENÁ LITERATURA:

[1] SOLTAN, A., RADWAN, A.G., SOLIMAN, A.M. Fractional order filters with two fractional elements of dependant order, Microelectronics Journal, roč. 43, s. 818-827, 2012.

[2] EL-KHAZALI, R. On the biquadratic approximation of fractional-order Laplacian operators, Analog. Integr. Circ. Sig. Process, roč. 82, s. 503-517, 2015.

Termín zadání: 1.2.2016

Termín odevzdání: 17.8.2016

Vedoucí práce: doc. Ing. Jaroslav Koton, Ph.D. Konzultant diplomové práce:

doc. Ing. Jiří Mišurec, CSc., předseda oborové rady

UPOZORNĚNÍ:

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

Práce se zabývá návrhem bloků filtru fraktálního řádu pomocí aproximace filtrem vyššího celočíselného řádu. Jsou použity aktivní filtry třetího řádu pro vytvoření filtru řádu $1+\alpha$, kde α je rovna od nuly do jedné. Jeden z filtrů je prakticky realizován a změřen.

KLÍČOVÁ SLOVA

analogový filtr, filtr fraktálního řádu, aproximace, univerzální proudový konvejor, univerzální napěťový konvejor

ABSTRACT

Thesis describes the design of the blocks of fractional-order filters approximation using a filter of higher order integer. Active filters of third-order are use to create filter of $1 + \alpha$ -order, where α is between zero to one. One of the filters is practically implemented and measured.

KEYWORDS

analog filter, fractional-order filter, approximation, universal current conveyor, universal voltage conveyor

SALÁŠEK, Jan *Analogové funkční bloky fraktálního řádu*: diplomová práce. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav telekomunikací, 2016. 61 s. Vedoucí práce byl doc. Ing. Jaroslav Koton, Ph.D.

PROHLÁŠENÍ

Prohlašuji, že svou diplomovou práci na téma "Analogové funkční bloky fraktálního řádu" jsem vypracoval(a) samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor(ka) uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této diplomové práce jsem neporušil(a) autorská práva třetích osob, zejména jsem nezasáhl(a) nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom(a) následků porušení ustanovení §11 a následujících autorského zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

Brno

podpis autora(-ky)

PODĚKOVÁNÍ

Rád bych poděkoval vedoucímu diplomové práce panu doc. Ing. Jaroslavu Kotonovi, Ph.D. za odborné vedení, konzultace, trpělivost a podnětné návrhy k práci.

Brno

podpis autora(-ky)

Faculty of Electrical Engineering and Communication Brno University of Technology Purkynova 118, CZ-61200 Brno Czech Republic http://www.six.feec.vutbr.cz

PODĚKOVÁNÍ

Výzkum popsaný v této diplomové práci byl realizován v laboratořích podpořených z projektu SIX; registrační číslo CZ.1.05/2.1.00/03.0072, operační program Výzkum a vývoj pro inovace.

Brno

podpis autora(-ky)

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

OBSAH

Ú	vod		12
1	Akt	civní prvky	13
	1.1	Operační zesilovač s proudovou zpětnou vazbou	13
	1.2	Proudový konvejor druhé generace	13
	1.3	Proudový konvejor s diferenčním napětovým vstupem	14
	1.4	Univerzální proudový konvejor	15
	1.5	Univerzální napěťový konvejor	15
2	Km	itočtové filtry	17
3	Fra	ktální obvody	18
	3.1	Aproximace fraktálního dvojpólu	18
	3.2	Aproximace přenosové funkce pomocí filtru vyššího řádu	20
4	Náv	rh filtru s operačními zesilovači s proudovou zpětnou vazbou	22
	4.1	Postup návrhu pro filtr s operačními zesilovači s proudovou zpětnou	
		vazbou a rozdílnými kondenzátory	22
	4.2	Postup návrhu pro filtr s operačnímy zesilovači s proudovou zpětnou	
		vazbou a shodnými kondenzátory	23
	4.3	Simulace	24
5	Str	uktura s univerzálními proudovými konvejory	27
	5.1	Obvodové řešení	27
	5.2	Simulace	28
6	Str	uktura s univerzálními napěťovými konvejory a univerzálním	
	\mathbf{pro}	udovým konvejorem	31
	6.1	Obvodové řešení	31
	6.2	Simulace	32
7	Str	uktura s proudovými konvejory s diferenčním napěťovým vstu-	
	pen	n a proudovými konvejory druhé generace	35
	7.1	Obvodové řešení	35
	7.2	Simulace	37
8	Str	uktura s univerzálními proudovými konvejory realizující filtr	
	typ	u horni propust	39
	8.1	Obvodové řešení	39

	8.2 Simulace	41
9	Praktická realizace	43
10	Závěr	48
Li	teratura	49
\mathbf{Se}	znam symbolů, veličin a zkratek	50
\mathbf{Se}	znam příloh	51
A	Seznam součástek	52
в	Návrh desky plošných spojů	54
С	Originální výsledky měření získané z obvodového analyzátoru	57
D	Fotografie desky	60
\mathbf{E}	Obsah přiloženého CD	61

SEZNAM OBRÁZKŮ

1.1	Schématická značka operačního zesilovače s proudovou zpětnou vazbou	13
1.2	Schématická značka proudového konvejoru druhé generace $\hfill .$. $\hfill .$	14
1.3	Schématická značka proudového konvejoru s rozdílovým napětovým	
	vstupem	15
1.4	Schématická značka univerzálního proudového konvejoru	16
1.5	Schématická značka univerzálního napěťového konvejoru	16
3.1	Filtr s pasivním dvojpólem fraktálního řádu	19
3.2	Příčková struktura aproximující dvojpól fraktálního řádu	19
3.3	Příčková struktura aproximující dvojpól fraktálního řádu	20
4.1	Filtr s operačními zesilovači s proudovou zpětnou vazbou	22
4.2	Modulová charakteristika	26
4.3	Odchylka modulové charakteristiky od ideální	26
5.1	Struktura s univerzálními proudovými konvejory	27
5.2	Modulová charakteristika	29
5.3	Fázová charakteristika	30
5.4	Odchylka simulace s reálnými prvky od simulace s ideálními prvky	30
6.1	Struktura s univerzálními napěťovými konvejory a univerzálním prou-	
	dovým konvejorem	31
6.2	Modulová charakteristika	33
6.3	Fázová charakteristika	34
6.4	Odchylka simulace s reálnými prvky od simulace s ideálními prvky	34
7.1	Struktura s proudovými konvejory s diferenčním napěťovým vstupem	
	a proudovými konvejory druhé generace	35
7.2	Modulová charakteristika	37
7.3	Fázová charakteristika	38
7.4	Odchylka simulace s reálnými prvky od simulace s ideálními prvky	38
8.1	Struktura s univerzálními proudovými konvejory realizující filtr typu	
	horní propust	39
8.2	Modulová charakteristika	41
8.3	Fázová charakteristika	42
8.4	Odchylka simulace s reálnými prvky od simulace s ideálními prvky . $\ .$	42
9.1	Změřená modulová charakteristika	44
9.2	Změřená fázová charakteristika	44
9.3	Porovnání změřené a simulované modulové charakteristiky pro $\alpha=0,3$	45
9.4	Porovnání změřené a simulované modulové charakteristiky pro $\alpha=0,5$	46
9.5	Porovnání změřené a simulované modulové charakteristiky pro $\alpha=0,7$	47
B.1	Návrh desky plošných spojů shora	54

B.2	Návrh desky plošných spojů zezdola	54
B.3	Návrh desky plošných spojů - osazovací plán	55
B.4	Schéma realizovaného obvodu	56
C.1	Výsledek měření pro $\alpha=0,3$	57
C.2	Výsledek měření pro $\alpha=0,5$	58
C.3	Výsledek měření pro $\alpha=0,7$	59
D.1	Fotografie shora	60
D.2	Fotografie zezdola	60

SEZNAM TABULEK

3.1	Hodnoty prvků fraktálního dvojpólu	19
4.1	Hodnoty součástek pro různé kondenzátory	25
4.2	Hodnoty součástek pro shodné kondenzátory	25
5.1	Hodnoty součástek pro strukturu s univerzálními proudovými konvejory	28
5.2	Porovnání fáze ze simulace s teoretickou pro f_0	29
6.1	Hodnoty součástek pro strukturu s univerzálními napěťovými konvej-	
	ory a univerzálním proudovým konvejorem	33
6.2	Porovnání fáze ze simulace s teoretickou pro $f_0 \ldots \ldots \ldots \ldots \ldots$	33
7.1	Hodnoty součástek pro strukturu s proudovými konvejory s diferenč-	
	ním napěťovým vstupem a proudovými konvejory druhé generace $% \mathcal{A}$.	37
7.2	Porovnání fáze ze simulace s teoretickou pro f_0	38
8.1	Hodnoty součástek pro strukturu s univerzálními proudovými konvej-	
	ory realizujícími filtr typu horní propust	41
8.2	Porovnání fáze ze simulace s teoretickou pro f_0	42
9.1	Hodnoty součástek pro praktickou realizaci	43

ÚVOD

Tato práce se věnuje návrhu funkčních bloků fraktálního řádu. V práci bude popsán návrh pomocí aproximace aktivním filtrem třetího řádu typu dolní propust. V prvních dvou kapitolách budou uvedeny teoretické základy. Následovat bude postup návrhu hodnot jednotlivých součástek pro strukturu s operačním zesilovačem s proudovou zpětnou vazbou převzatou z [2], ale jiným postupem. Struktury s CFA navržené pomocí obou postupů budou simulovány pomocí programu Orcad a porovnány pro charakteristický kmitočet 100 kHz a jeden a půltý řád filtru.

V dalších kapitolách budou popsány čtyři struktury. Tři budou tvořit kmitočtový filtr typu dolní propust a jedna kmitočtový filtr typu horní propust. Bude proveden návrh pro charakteristický kmitočet 100 kHz a řády filtru 1,3, 1,5 a 1,7. Struktura skládající se z pěti proudových konvejorů bude postavena a změřena.

1 AKTIVNÍ PRVKY

Aktivní prvky umožňují vytvářet kmitočtové filtry zajímavých vlastností. V následujících kapitolách budou ukázána zapojení využívající aktivní prvky: operační zesilovač s proudovou zpětnou vazbou (CFA), univerzální proudový konvejor (UCC) a univerzální napěťový konvejor (UVC).

1.1 Operační zesilovač s proudovou zpětnou vazbou

Chování operačního zesilovače s proudovou zpětnou vazbou odpovídá chování proudového konvejoru druhé generace, kde je na bránu Z připojen sledovač napětí a jeho výstup je připojen na bránu O. [4] Vztah mezi branovými proudy a napětími je popsán rovnicemi (1.1), (1.2), (1.3), (1.4).

$$u_X = u_Y \tag{1.1}$$

$$i_Y = i_X \tag{1.2}$$

$$i_Z = i_X \tag{1.3}$$

$$u_O = u_Z \tag{1.4}$$

Obr. 1.1: Schématická značka operačního zesilovače s proudovou zpětnou vazbou

1.2 Proudový konvejor druhé generace

Jedná se o trojbran. Podle [4] je vztah mezi branovými proudy a napětími popsán rovnicemi (1.5), (1.6), (1.7). Proud může z brány Z vytékat, nebo do ní vtékat.

$$u_X = u_Y \tag{1.5}$$

$$i_Y = 0 \tag{1.6}$$

$$i_Z = \pm i_X \tag{1.7}$$

Obr. 1.2: Schématická značka proudového konvejoru druhé generace

1.3 Proudový konvejor s diferenčním napěťovým vstupem

Tento konvejor vychází z proudového konvejoru druhé generace. Změna spočívá v doplnění druhé brány Y. Podle [4] je vztah mezi branovými proudy a napětími popsán rovnicemi (1.8), (1.9), (1.10) a (1.11).

$$u_X = u_{Y+} - u_{Y-} \tag{1.8}$$

$$i_{Y+} = i_{Y-} = 0 \tag{1.9}$$

$$i_{Z+} = i_X \tag{1.10}$$

$$i_{Z-} = -i_X \tag{1.11}$$

Obr. 1.3: Schématická značka proudového konvejoru s rozdílovým napěťovým vstupem

1.4 Univerzální proudový konvejor

Univerzální proudový konvejor má tři napěťové vstupní brány Y1, Y2 a Y3 a čtyři výstupní proudové brány Z1+, Z1-, Z2+ a Z2-. Podle [4] je vztah mezi branovými proudy a napětími popsán rovnicemi (1.12), (1.13), (1.14), (1.15).

$$u_X = u_{Y1} - u_{Y2} + u_{Y3} \tag{1.12}$$

$$i_{Y1} = i_{Y2} = i_{Y3} = 0 \tag{1.13}$$

$$i_{Z1+} = i_{Z2+} = i_X \tag{1.14}$$

$$i_{Z1-} = i_{Z2-} = i_X \tag{1.15}$$

1.5 Univerzální napěťový konvejor

Obecný napětový konvejor byl doplněn o vstupní proudovou bránu YN, výstupní napětovou bránu ZN a pomocnou napětovou bránu W. Tím vznikl šestibran nazývaný univerzální napětový konvejor. Podle [4] je vzájemný vztah mezi branovými napětími popsán rovnicemi (1.16), (1.17), (1.18), (1.19) a (1.20). Propojením brány W se volí, jaký napětový konvejor vznikne. Dá se použít i jako další vstup.

$$i_X = i_{YP} - i_{YN} \tag{1.16}$$

$$u_{YP} = u_W \tag{1.17}$$

Obr. 1.4: Schématická značka univerzálního proudového konvejoru

$$u_{YN} = u_W \tag{1.18}$$

$$u_{ZP} = u_X \tag{1.19}$$

$$u_{ZN} = -u_X \tag{1.20}$$

Obr. 1.5: Schématická značka univerzálního napěťového konvejoru

2 KMITOČTOVÉ FILTRY

Kmitočtové filtry se z hlediska selektivity řadí do pěti druhů - dolní propust, horní propust, pásmová propust, pásmová zádrž a fázovací článek.[8]

Dolní propust propouští nízké kmitočty. Hranice propouštěných kmitočtů je dána mezním kmitočtem. Nad mezní kmitočet má útlum daný řádem filtru.[8]

Horní propust pracuje přesně obráceně než dolní propust. Kmitočty pod mezním kmitočtem tlumí.[8]

Pásmová propust má dva mezní kmitočty. Jeden určuje spodní mez propouštěných kmitočtů a druhý horní mez.[8]

Pásmová zádrž propouští nízké kmitočty až do meze dané jedním mezním kmitočtem a vysoké kmitočty od meze dané druhým mezním kmitočtem.[8]

Fázovacím článkem procházejí všechny kmitočty. Pouze se posouvá fáze signálu.[8]

3 FRAKTÁLNÍ OBVODY

Analogové frekvenční filtry jsou obvody, které realizují přenosovou funkci závislou na kmitočtu. Obvody se mohou skládat z odporů, kondenzátorů, cívek a aktivních prvků. Vždy musí být přítomen alespoň jeden kmitočtově závislý prvek. Cívky obvykle nejsou použity kvůli velkým rozměrům a parazitním vlastnostem. Přenosová funkce se dá popsat podílem polynomů. Pokud se k zápisu přenosové funkce použije obraz vytvořený pomocí Laplaceovy transformace, vznikne podíl polynomů. Nejvyšší mocnitel v přenosové funkci určuje řád filtru. Při použití dostupných součástek je možné vytvořit pouze filtr celého řádu. Pro některá použití je vhodnější použít neceločíselný řád.

Fraktální obvody jsou elektronické obvody, které realizují filtry neceločíselného řádu. Běžné filtry celočíselného řádu mají směrnici útlumu (3.1). Filtry fraktálního řádu mohou mít směrnici útlumu (3.2). Obdobně posun fáze pro běžný filtr celočíselného řádu je (3.3) a pro filtr fraktálního řádu (3.4).

$$k = n \cdot 20 dB/dek; n \subset Z \tag{3.1}$$

$$k = q \cdot 20dB/dek; q \subset N \tag{3.2}$$

$$\varphi = \frac{n \cdot 90}{2}; n \subset Z \tag{3.3}$$

$$\varphi = \frac{q \cdot 90}{2}; q \subset N \tag{3.4}$$

3.1 Aproximace fraktálního dvojpólu

Jedna možnost je aproximovat fraktální dvojpol pomocí řady sériově spojených paralelních RC článků. Pomocí tohoto dvojpólu lze snadno vytvořit frekvenční filtr. Podle [6] se dá pro fraktální impedanci $s^{0,3}$ použít aproximace (3.5). Tato aproximace platí pro 0,01 až 100 rad/s.

$$\frac{1}{s^{0,3}} \approx \frac{23.76s^4 + 224, 9s^3 + 129, 1s^2 + 4, 733s + 0,01052}{s^5 + 64, 51s^4 + 252, 2s^3 + 63, 61s^2 + 1,104s + 0,002267}$$
(3.5)

Podle [7] v tomto případě vychází součástky použité v dvojpólu nevhodných hodnot, velké kapacity a malé odpory. Hodnoty prvků jsou uvedeny v tabulce 3.1. Filtr s tímto dvojpólem je na obrázku 3.1. Schéma použité pro aproximaci je na obrázku ??. Přenos je zobrazen v grafu 3.3.

$R_1 = 0,3571\Omega$	$R_2 = 0,4867\Omega$	$R_3 = 1,09\Omega$	$R_4 = 2,7037\Omega$	$R_5 = 0,0011\Omega$
$C_1 = 46, 41mF$	$C_2 = 527, 9mF$	$C_3 = 3,6563F$	$C_4 = 22,8311F$	$C_5 = 370, 37kF$

Tab. 3.1: Hodnoty prvků fraktálního dvojpólu

Obr. 3.1: Filtr s pasivním dvojpólem fraktálního řádu

Obr. 3.2: Příčková struktura aproximující dvojpól fraktálního řádu

Obr. 3.3: Příčková struktura aproximující dvojpól fraktálního řádu

3.2 Aproximace přenosové funkce pomocí filtru vyššího řádu

Druhá možnost je aproximovat přenosovou funkci pomocí filtru vyššího řádu.[2][3] Přenosová funkce filtru typu dolní propust řádu $1 + \alpha$ je dána vzorcem (3.6).

$$K(s) = \frac{K_1}{s^{1+\alpha} + K_2}$$
(3.6)

Ve vzorci (3.6) je dán pro nízké kmitočty přenos K_1/K_2 a podle [3] mezní kmitočet (3.7).

$$\omega_{-3dB} = \left[K_2 \left(\sqrt{1 + \cos^2 \frac{(1+\alpha)\pi}{2}} - \cos \frac{(1+\alpha)\pi}{2} \right) \right]^{\frac{1}{n+\alpha}}$$
(3.7)

Podle [5] lze přenosovou funkci (3.6) aproximovat podle Butterwortha přenosovou funkcí (3.8), kde pro činitele K_i platí vztahy (3.9), (3.10) a (3.11).

$$K(s) = \frac{K_1}{s^{1+\alpha} + K_3 s^{\alpha} + K_2}$$
(3.8)

$$K_1 = 1 \tag{3.9}$$

$$K_2 = 0,2937\alpha + 0,71216 \tag{3.10}$$

$$K_3 = 1,068\alpha^2 + 0,161\alpha + 0,3324 \tag{3.11}$$

Přenosovou funkci (3.8) lze podle [2] aproximovat přenosovou funkcí (3.12), kde činitele a_i a b_i jsou dány vzorci (3.13), (3.14), (3.15), (3.16), (3.17), (3.18) a (3.19).

$$K(s) = \frac{K_1}{a_0} \frac{a_2 s^2 + a_1 s + a_0}{s^3 + b_2 s^2 + b_1 s + b_0}$$
(3.12)

$$a_0 = 2\,(1+\alpha) \tag{3.13}$$

$$a_1 = 5 - \alpha^2 \tag{3.14}$$

$$a_2 = 2(1 - \alpha) \tag{3.15}$$

$$b_0 = \frac{a_0 K_2 + a_K 3}{a_0} \tag{3.16}$$

$$b_1 = \frac{a_1 \left(K_2 + K_3\right) + a_2}{a_0} \tag{3.17}$$

$$b_2 = \frac{a_1 + a_0 K_3 + a_2 K_2}{a_0} \tag{3.18}$$

$$K(s) = \frac{K_1}{a_0} \frac{a_2 s^2 + a_1 s + a_0}{s^3 + b_2 s^2 + b_1 s + b_0}$$
(3.19)

4 NÁVRH FILTRU S OPERAČNÍMI ZESILO-VAČI S PROUDOVOU ZPĚTNOU VAZBOU

4.1 Postup návrhu pro filtr s operačními zesilovači s proudovou zpětnou vazbou a rozdílnými kondenzátory

Tento návrh je převzat z [2].

Obr. 4.1: Filtr s operačními zesilovači s proudovou zpětnou vazbou

Rezistory R_4 , R_5 , R_6 , R_7 , R_8 , R_9 mají shodnou hodnotu a dále budou značeny R. Jednotlivé časové konstanty τ_i se dají spočítat podle vzorců (4.1), (4.2) a (4.3).

$$\tau_1 = \frac{1}{b_2} \frac{1}{\omega_0} \tag{4.1}$$

$$\tau_2 = \frac{b_2}{b_1} \frac{1}{\omega_0} \tag{4.2}$$

$$\tau_3 = \frac{b_1}{b_0} \frac{1}{\omega_0} \tag{4.3}$$

Váhy G_i se dají spočítat podle vzorců (4.4), (4.5) a (4.6).

$$G_1 = \frac{K_1 a_2}{a_0 b_2} \tag{4.4}$$

$$G_2 = \frac{K_1 a_1}{a_0 b_1} \tag{4.5}$$

$$G_3 = \frac{K_1}{b_0}$$
(4.6)

Po zvolení hodnoty R lze dopočítat hodnoty C podle vzorce (4.7).

$$C_i = \frac{\tau_i}{R} \tag{4.7}$$

Nyní je potřeba zvolit hodnotu rezistoru R_{10} . Hodnoty rezistorů R_1 , R_2 a R_3 lze spočítat podle vzorce (4.8).

$$R_i = \frac{R_{10}}{G_i} \tag{4.8}$$

4.2 Postup návrhu pro filtr s operačnímy zesilovači s proudovou zpětnou vazbou a shodnými kondenzátory

Protože jsou kondenzátory vyráběny v méně početných řadách hodnot, je vhodnější při návrhu volit hodnoty kondenzátorů a dopočítat hodnoty rezistorů. Je-li vycházeno ze zapojení na obrázku (4.1) a jsou-li zvoleny všechny kondenzátory shodné kapacity, přenosová funkce má tvar (4.9).

$$K(s) = \frac{R_{9}R_{7}R_{10}R_{2}R_{1}R_{8} + p\left(R_{6}R_{9}R_{7}R_{10}R_{1}R_{3}CR_{8}\right) + p^{2}\left(R_{5}R_{6}R_{9}R_{7}R_{10}R_{2}R_{3}C^{2}R_{8}\right)}{R_{4}R_{7}R_{2}R_{1}R_{3}R_{8} + p\left(R_{4}R_{6}R_{9}R_{7}R_{2}R_{1}R_{3}C\right) + p^{2}\left(R_{4}R_{5}R_{6}R_{9}R_{2}R_{1}R_{3}C^{2}R_{8}\right) + p^{3}\left(R_{4}R_{5}R_{6}R_{9}CR_{7}R_{2}R_{1}R_{3}C^{3}R_{8}\right)}$$

$$(4.9)$$

Po úpravě vzorce (3.19) a dosazení $s = p/\omega$ lze získat vzorec (4.10) a ze vzorce (4.9) lze obdobně získat vzorec (4.11). Mezi vzorci (4.10) a (4.11) lze nalézt formální podobnost.

$$K(p) = \frac{K_1}{b_0} \frac{p^2 \frac{a_2}{\omega_0^2 a_0} + p \frac{a_1}{\omega_0 a_0} + 1}{p^3 \frac{1}{\omega_0^3 b_0} + p^2 \frac{b_2}{\omega_0^2 b_0} + p \frac{a_1}{\omega_0 b_0} + 1}$$
(4.10)

$$K(p) = \frac{R_{10}R_9}{R_4R_3} \frac{p^2 \frac{C^2 R_3 R_5 R_6}{R_1} + p \frac{C R_3 R_6}{R_2} + 1}{p^3 C^3 R_5 R_6 R_9 + p^2 \frac{C^2 R_5 R_6 R_9}{R_7} + p \frac{C R_9 R_6}{R_8} + 1}$$
(4.11)

Porovnáním těchto vzorců lze dosáhnout šesti vzorců (4.12), (4.13), (4.14), (4.15), (4.16) a (4.17).

$$\frac{a_2}{\omega_0^2 a_0} = \frac{C^2 R_3 R_5 R_6}{R_1} \tag{4.12}$$

$$\frac{a_1}{\omega_0 a_0} = \frac{CR_3R_6}{R_2} \tag{4.13}$$

$$\frac{1}{\omega_0^3 b_0} = C^3 R_5 R_6 R_9 \tag{4.14}$$

$$\frac{b_2}{\omega_0^2 b_0} = \frac{C^2 R_5 R_6 R_9}{R_7} \tag{4.15}$$

$$\frac{b_1}{\omega_0 b_0} = \frac{CR_6R_9}{R_8} \tag{4.16}$$

$$\frac{K_1}{b_0} = \frac{R_{10}R_9}{R_3R_4} \tag{4.17}$$

Z těchto vzorců se jeví jako výhodné použít shodné hodnoty pro rezistory R_5 , R_6 a R_9 . Použití shodných hodnot není nutné, ale je zjednodušující. Dále budu uvažovat shodné hodnoty. Při použití různých hodnot musí být zachován jejich součin. Po zvolení velikosti kondenzátoru je možné vypočítat hodnoty rezistorů R_5 , R_6 , R_7 , R_8 a R_9 podle vzorců (4.18), (4.19) a (4.20).

$$R_5 = R_6 = R_9 = \frac{1}{\omega_0 C} \sqrt[3]{\frac{1}{b_0}}$$
(4.18)

$$R_7 = \frac{\omega_0^2 C^2 R_5 R_6 R_9}{b_2} \tag{4.19}$$

$$R_8 = \frac{\omega_0 C R_6 R_9}{b_2} \tag{4.20}$$

Nyní je potřeba zvolit hodnotu rezistorů R_4 a R_{10} . Musí být zvoleny tak, aby vyšly hodnoty rezistorů R_1 , R_2 a R_3 ve vhodných mezích vzhledem k parazitním vlastnostem výsledného obvodu. Rezistory R_1 , R_2 a R_3 budou vypočteny podle vzorců (4.21), (4.22) a (4.23).

$$R_3 = \frac{b_0 R_9 R_{10}}{K_1 R_4} \tag{4.21}$$

$$R_2 = \frac{\omega_0 a_0 C R_3 R_6}{a_1} \tag{4.22}$$

$$R_1 = \frac{\omega_0^2 a_0 C^2 R_3 R_5 R_6}{a_2} \tag{4.23}$$

4.3 Simulace

Byly vypočteny hodnoty součástek pro variantu s různými a se shodnými kondenzátory. Obě varianty pro charakteristický kmitočet 100 kHz a tři řády $1+\alpha$. Vypočtené hodnoty jsou v tabulkách 4.1 a 4.2. Hodnoty součástek, které bylo možno volit, byly zvoleny na základě simulace.

Modulová charakteristika pro filtr jeden a půltého řádu jsou zobrazeny v grafu 4.2. Pro porovnání je v grafu zanesen ideální průběh bez parazitních vlastností

	Hodnota pro koeficient α		
Součástka	$\alpha = 0, 3$	$\alpha = 0, 5$	$\alpha=0,7$
CFA	AD844	AD844	AD844
R	$5 \ k\Omega$	$5 \ k\Omega$	$5 \ k\Omega$
C_1	$114 \mathrm{ pF}$	$125 \mathrm{ pF}$	$130 \mathrm{\ pF}$
C_2	302 pF	$293 \mathrm{ pF}$	292 pF
C_3	$888 \ \mathrm{pF}$	821 pF	$783 \mathrm{\ pF}$
R_{10}	$5 \ k\Omega$	$5 \ k\Omega$	$5 \ k\Omega$
R_3	$26 \ k\Omega$	38,2 $k\Omega$	69,6 $k\Omega$
R_2	7,81 $k\Omega$	87,5 $k\Omega$	10,1 $k\Omega$
R_1	5,29 $k\Omega$	5,42 $k\Omega$	5,44 $k\Omega$

Tab. 4.1: Hodnoty součástek pro různé kondenzátory

Tab. 4.2: Hodnoty součástek pro shodné kondenzátory

	Hodnota pro koeficient α		
Součástka	$\alpha = 0, 3$	$\alpha = 0, 5$	$\alpha = 0, 7$
CFA	AD844	AD844	AD844
R_{10}	$6 \ k\Omega$	$6 \ k\Omega$	$6 \ k\Omega$
$R_5, R_6, R_9,$	15,6 $k\Omega$	15,5 $k\Omega$	15,5 $k\Omega$
R_7	5,69 $k\Omega$	6,24 $k\Omega$	6,48 $k\Omega$
R_8	5,50 $k\Omega$	5,91 $k\Omega$	6,11 $k\Omega$
R_3	49,5 $k\Omega$	50,4 $k\Omega$	50,5 $k\Omega$
R_2	25,8 $k\Omega$	31,0 $k\Omega$	37,0 $k\Omega$
R_1	88,7 $k\Omega$	143 $k\Omega$	27,1 $k\Omega$

součástek. V grafu 4.3 je pro lepší názornost zobrazen rozdíl mezi charakteristikou získanou ze simulace a ideálním průběhem. Varianta se shodnými kondenzátory se více odchyluje od ideálního průběhu. Její výhodnost spočívá ve snadnější volbě součástek. Kondenzátory se nevyrábí v takovém množství hodnot jako rezistory.

Obr. 4.2: Modulová charakteristika

Obr. 4.3: Odchylka modulové charakteristiky od ideální

5 STRUKTURA S UNIVERZÁLNÍMI PROUDO-VÝMI KONVEJORY

5.1 Obvodové řešení

Struktura s univerzálními proudovými konvejory je na obrázku 5.1. Tato struktura pracuje v proudovém režimu a tvoří filtr typu dolní propust. Její přenosová funkce je dána vzorcem (5.1).

Obr. 5.1: Struktura s univerzálními proudovými konvejory

$$K(p) = \frac{p^2 R_2 R_3 R_4 C_2 C_3 + R_6 + p R_3 R_5 C_3}{p^3 R_1 R_2 R_3 R_7 C_1 C_2 C_3 + p^2 R_2 R_3 R_7 C_2 C_3 + R_7 + p R_3 R_7 C_3}$$
(5.1)

Po úpravě vzorce (5.1) a dosazení $s=p/\omega$ lze získat vzorec (5.2)

$$K(p) = \frac{R_6}{R_7} \frac{p^2 \frac{R_2 R_3 R_4 C_2 C_3}{R_6} + p \frac{R_3 R_5 C_3}{R_6} + 1}{p^3 R_1 R_2 R_3 C_1 C_2 C_3 + p^2 R_2 R_3 C_2 C_3 + p R_3 C_3 + 1}$$
(5.2)

Mezi vzorci (4.10) a (5.2) lze nalézt formální podobnost a jejich porovnáním lze dosáhnout šesti vzorců (5.3), (5.4), (5.5), (5.6), (5.7) a (5.8).

$$\frac{a_2}{\omega_0^2 a_0} = \frac{R_2 R_3 R_4 C_2 C_3}{R_6} \tag{5.3}$$

$$\frac{a_1}{\omega_0 a_0} = \frac{R_3 R_5 C_3}{R_6} \tag{5.4}$$

$$\frac{1}{\omega_0^3 b_0} = R_1 R_2 R_3 C_1 C_2 C_3 \tag{5.5}$$

$$\frac{b_2}{\omega_0^2 b_0} = R_2 R_3 C_2 C_3 \tag{5.6}$$

$$\frac{b_1}{\omega_0 b_0} = R_3 C_3 \tag{5.7}$$

$$\frac{K_1}{b_0} = \frac{R_6}{R_7} \tag{5.8}$$

Z těchto vzorců lze vyjádřit hodnoty jednotlivých součástek. Hodnoty kondenzátorů C_1, C_2, C_3 a rezistoru R_4 budou zvoleny. Hodnoty součástek R_1, R_2, R_3, R_5, R_6 a R_7 budou vypočteny pomocí vzorců (5.9), (5.10), (5.11), (5.12), (5.13) a (5.14).

$$R_1 = \frac{1}{C_1 b_2 \omega_0}$$
(5.9)

$$R_2 = \frac{b_2}{C_2 b_1 \omega_0} \tag{5.10}$$

$$R_3 = R_1 R_2 R_3 C_1 C_2 C_3 \tag{5.11}$$

$$R_5 = \frac{R_4 a_1 b_2}{a_2 b_1} \tag{5.12}$$

$$R_6 = \frac{b_2 R_4 a_0}{a_2 b_0} \tag{5.13}$$

$$R_7 = \frac{b_2 R_4 a_0}{K_1 a_2} \tag{5.14}$$

5.2 Simulace

Podle vzorců (5.9), (5.10), (5.11), (5.12), (5.13) a (5.14) byly vypočítány hodnoty součástek pro simulaci filtru s $\alpha = 0, 3, \alpha = 0, 5$ a $\alpha = 0, 7$. Hodnoty všech kondenzátorů byly zvoleny 1 nF. Hodnoty zbylých rezistorů byly určeny na základě simulace tak, aby byl minimální vliv parazitních vlastností. Hodnoty součástek jsou v tabulce 5.1.

Tab. 5.1: Hodnoty součástek pro strukturu s univerzálními proudovými konvejory

	Hodnota pro koeficient α		
Součástka	$\alpha = 0, 3$	$\alpha = 0, 5$	$\alpha = 0,7$
R_1	560 Ω	620 Ω	$1,1 \ k\Omega \parallel 1,6 \ k\Omega$
R_2	$1,5 \ k\Omega$	$1,5 \ k\Omega$	$1,5 \ k\Omega$
R_3	$4,3 \ k\Omega$	$3,9 \ k\Omega$	$3,9 \ k\Omega$
R_4	$100 \ \Omega$	100 Ω	100 Ω
R_5	$330 \ \Omega$	$430 \ \Omega$	$680 \ \Omega$
R_6	910 $\Omega \parallel 1 \ k\Omega$	680 Ω	$1,3 \ k\Omega$
R_7	$1 \ k\Omega \parallel 1,1 \ k\Omega$	750 Ω	$1,3 \ k\Omega$

Výsledná modulová charakteristika je v grafu 5.2 a fázová charakteristika v grafu 5.3. Odchylka modelu simulující reálné prvky a modelu simulující ideální prvky je v grafu 5.4. V tabulce 5.2 je porovnání fázového posuvu při charakteristickém kmitočtu získaný simulací a teoreticky.

Obr. 5.2: Modulová charakteristika

	teoretická	simulace
$\alpha = 0, 3$	$-58,5^{\circ}$	$-35,6^{\circ}$
$\alpha = 0, 5$	$-67,5^{\circ}$	$-38,6^{\circ}$
$\alpha = 0, 7$	$-76,5^{\circ}$	$-45,9^{\circ}$

Tab. 5.2: Porovnání fáze ze simulace s teoretickou pro $f_{\rm 0}$

Obr. 5.3: Fázová charakteristika

Obr. 5.4: Odchylka simulace s reálnými prvky od simulace s ideálními prvky

6 STRUKTURA S UNIVERZÁLNÍMI NAPĚŤO-VÝMI KONVEJORY A UNIVERZÁLNÍM PROU-DOVÝM KONVEJOREM

6.1 Obvodové řešení

Struktura s univerzálními napěťovými konvejory a univerzálním proudovým konvejorem je na obrázku 6.1. Tato struktura pracuje v napěťovém režimu a tvoří filtr typu dolní propust. Její přenosová funkce je dána vzorcem (6.1).

Obr. 6.1: Struktura s univerzálními napěťovými konvejory a univerzálním proudovým konvejorem

$$K(p) = \frac{p^2 R_2 R_3 R_5 R_8 R_9 R_{10} C_2 C_3 + p R_3 R_5 R_7 R_9 R_{10} C_3 + R_5 R_7 R_8 R_{10}}{p^3 R_1 R_2 R_3 R_4 R_7 R_8 R_9 C_1 C_2 C_3 + p^2 R_2 R_3 R_5 R_7 R_8 R_9 C_2 C_3 + p R_3 R_5 R_7 R_8 R_9 C_3 + R_5 R_8 R_7 R_9}$$
(6.1)

Po úpravě vzorce (6.1) a dosazení $s = p/\omega$ lze získat vzorec (6.2)

$$K(p) = \frac{R_6}{R_7} \frac{p^2 \frac{R_2 R_3 R_4 C_2 C_3}{R_6} + p \frac{R_3 R_5 C_3}{R_6} + 1}{p^3 R_1 R_2 R_3 C_1 C_2 C_3 + p^2 R_2 R_3 C_2 C_3 + p R_3 C_3 + 1}$$
(6.2)

Mezi vzorci (4.10) a (6.2) lze nalézt formální podobnost a jejich porovnáním lze dosáhnout šesti vzorců (6.3), (6.4), (6.5), (6.6), (6.7) a (6.8).

$$\frac{a_2}{\omega_0^2 a_0} = \frac{R_2 R_3 R_9 C_2 C_3}{R_7} \tag{6.3}$$

$$\frac{a_1}{\omega_0 a_0} = \frac{R_3 R_9 C_3}{R_8} \tag{6.4}$$

$$\frac{1}{\omega_0^3 b_0} = \frac{R_1 R_2 R_3 R_4 C_1 C_2 C_3}{R_5} \tag{6.5}$$

$$\frac{b_2}{\omega_0^2 b_0} = R_2 R_3 C_2 C_3 \tag{6.6}$$

$$\frac{b_1}{\omega_0 b_0} = R_3 C_3 \tag{6.7}$$

$$\frac{K_1}{b_0} = \frac{R_{10}}{R_9} \tag{6.8}$$

Z těchto vzorců lze vyjádřit hodnoty jednotlivých součástek. Hodnoty kondenzátorů C_1, C_2, C_3 a rezistoru R_1 a R_4 budou zvoleny. Hodnoty součástek R_2, R_3, R_5 , a R_7 budou vypočteny pomocí vzorců (6.9), (6.10), (6.11), (6.12), (6.13) a (6.14).

$$R_2 = \frac{b_2}{C_2 b_1 \omega_0} \tag{6.9}$$

$$R_3 = \frac{b_1}{C_3 b_0 \omega_0} \tag{6.10}$$

$$R_5 = R_1 R_4 C_1 b_2 \omega_0 \tag{6.11}$$

$$R_7 = \frac{b_2 R_{10} a_0}{K_1 a_2} \tag{6.12}$$

$$R_8 = \frac{R_{10}b_1a_0}{K_1a_1} \tag{6.13}$$

$$R_9 = \frac{R_{10}b_0}{K_1} \tag{6.14}$$

6.2 Simulace

Podle vzorců (6.9), (6.10), (6.11), (6.12), (6.13) a (6.14) byly vypočítány hodnoty součástek pro simulaci filtru s $\alpha = 0, 3, \alpha = 0, 5$ a $\alpha = 0, 7$. Hodnoty všech kondenzátorů byly zvoleny 1 nF. Hodnoty zbylých rezistorů byly určeny na základě simulace tak, aby byl minimální vliv parazitních vlastností. Hodnoty součástek jsou v tabulce 6.1.

Výsledná modulová charakteristika je v grafu 6.2 a fázová charakteristika v grafu 6.3. Odchylka modelu simulující reálné prvky a modelu simulující ideální prvky je v grafu 6.4. V tabulce 6.2 je porovnání fázového posuvu při charakteristickém kmitočtu získaný simulací a teoreticky.

	Hodnota pro koeficient α		
Součástka	$\alpha = 0, 3$	$\alpha = 0, 5$	$\alpha = 0, 7$
R_1	$1 \ k\Omega$	$1 \ k\Omega$	$1 \ k\Omega$
R_2	1,5 $k\Omega$	1,5 $k\Omega$	1,5 $k\Omega$
R_3	$4,4 \ k\Omega$	4,1 $k\Omega$	$3,9 \ k\Omega$
R_4	$220 \ \Omega$	$220~\Omega$	220 Ω
R_5	$387~\Omega$	352 Ω	$339 \ \Omega$
R_7	5,19 $k\Omega$	7,65 $k\Omega$	$14 \ k\Omega$
R_8	1,56 $k\Omega$	1,75 $k\Omega$	$2 \ k\Omega$
R_9	1,06 $k\Omega$	1,09 $k\Omega$	$1,1 \ k\Omega$
R_{10}	$1 \ k\Omega$	$1 \ k\Omega$	$1 \ k\Omega$

Tab. 6.1: Hodnoty součástek pro strukturu s univerzálními napětovými konvejory a univerzálním proudovým konvejorem

Tab. 6.2: Porovnání fáze ze simulace s teoretickou pro $f_{\rm 0}$

	teoretická	simulace
$\alpha = 0, 3$	$-58,5^{\circ}$	$-32,1^{\circ}$
$\alpha = 0, 5$	$-67,5^{\circ}$	$-34,5^{\circ}$
$\alpha = 0,7$	$-76,5^{\circ}$	$-50,7^{\circ}$

Obr. 6.2: Modulová charakteristika

Obr. 6.3: Fázová charakteristika

Obr. 6.4: Odchylka simulace s reálnými prvky od simulace s ideálními prvky

7 STRUKTURA S PROUDOVÝMI KONVEJ-ORY S DIFERENČNÍM NAPĚŤOVÝM VSTU-PEM A PROUDOVÝMI KONVEJORY DRUHÉ GENERACE

7.1 Obvodové řešení

Struktura s proudovými konvejory s diferenčním napěťovým vstupem a proudovými konvejory druhé generace je na obrázku 7.1. Tato struktura pracuje v napěťovém režimu a tvoří filtr typu dolní propust. Její přenosová funkce je dána vzorcem (7.1).

Obr. 7.1: Struktura s proudovými konvejory s diferenčním napěťovým vstupem a proudovými konvejory druhé generace

$$K(p) = \frac{p^2 R_2 R_3 R_5 R_6 R_7 C_2 C_3 + p(R_3 R_4 R_6 R_7 C_2 + R_2 R_5 R_6 R_7)}{+R_5 R_6 R_7 + R_4 R_6 R_7 - R_4 R_6 R_7}$$
(7.1)
$$\frac{p^3 R_1 R_2 R_3 R_4 R_5 R_6 C_1 C_2 C_3 + p^2 R_1 R_2 R_4 R_5 R_6 C_1 C_2 + pR_1 R_4 R_5 R_6 C_1 + R_4 R_5 R_6 + R_4 R_5 R_6}{+R_4 R_5 R_6}$$

Po úpravě vzorce (7.1) a dosazení $s=p/\omega$ lze získat vzorec (7.2)

$$\frac{K(p) = \frac{R_5 R_6 R_7 + R_4 R_6 R_7 - R_4 R_5 R_7}{R_4 R_5 R_6}}{p^2 \frac{R_2 R_3 R_5 R_6 R_7 C_2 C_3}{R_5 R_6 R_7 - R_4 R_5 R_7} + p \frac{R_4 R_5 R_6}{R_5 R_6 R_7 - R_4 R_5 R_7}}{p^3 R_1 R_2 R_3 C_1 C_2 C_3 + p^2 R_1 R_2 C_1 C_2 + p R_1 C_1 + 1}}$$
(7.2)

Mezi vzorci (4.10) a (7.2) lze nalézt formální podobnost a jejich porovnáním lze dosáhnout šesti vzorců (7.3), (7.4), (7.5), (7.6), (7.7) a (7.8).

$$\frac{a_2}{\omega_0^2 a_0} = \frac{R_2 R_3 R_5 R_6 R_7 C_2 C_3}{R_5 R_6 R_7 + R_4 R_6 R_7 - R_4 R_5 R_7}$$
(7.3)

$$\frac{a_1}{\omega_0 a_0} = \frac{R_3 R_4 R_6 R_7 C_3 + R_2 R_5 R_6 R_7 C_2}{R_5 R_6 R_7 + R_4 R_6 R_7 - R_4 R_5 R_7}$$
(7.4)

$$\frac{1}{\omega_0^3 b_0} = R_1 R_2 R_3 C_1 C_2 C_3 \tag{7.5}$$

$$\frac{b_2}{\omega_0^2 b_0} = R_1 R_2 C_1 C_2 C_3 \tag{7.6}$$

$$\frac{b_1}{\omega_0 b_0} = R_1 C_1 \tag{7.7}$$

$$\frac{K_1}{b_0} = \frac{R_5 R_6 R_7 + R_4 R_6 R_7 - R_4 R_5 R_7}{R_4 R_5 R_6}$$
(7.8)

Z těchto vzorců lze vyjádřit hodnoty jednotlivých součástek. Hodnoty kondenzátorů C_1, C_2, C_3 a rezistoru R_7 budou zvoleny. Hodnoty součástek R_1, R_2, R_3, R_4, R_5 , a R_6 budou vypočteny pomocí vzorců (7.9), (7.10), (7.11), (7.12), (7.13) a (7.14).

$$R_1 = \frac{b_1}{C_1 b_0 \omega_0}$$
(7.9)

$$R_2 = \frac{b_2}{C_3 b_1 \omega_0} \tag{7.10}$$

$$R_3 = \frac{1}{C_3 b_2 \omega_0} \tag{7.11}$$

$$R_4 = \frac{b_0 a_0 R_7}{K_1 b_1 a_2} \tag{7.12}$$

$$R_5 = \frac{R_7 b_0 a_0}{K_1 b_2 (a_1 - a_2 b_2)} \tag{7.13}$$

$$R_6 = \frac{R_7 a_0 b_0}{K_1 (a_2 b_2^2 - a_1 b_2 - a_2 b_1 + a_0)}$$
(7.14)

	Hodnota pro koeficient α		
Součástka	$\alpha = 0, 3$	$\alpha = 0, 5$	$\alpha=0,7$
R_1	$4,44 \ k\Omega$	4,06 $k\Omega$	$3.92 \ k\Omega$
R_2	1,51 $k\Omega$	1,46 $k\Omega$	1,46 $k\Omega$
R_3	569 Ω	$624~\Omega$	647 Ω
R_4	665 Ω	1,18 $k\Omega$	$2,3 \ k\Omega$
R_5	987 Ω	581 Ω	496 Ω
R_6	$637~\Omega$	$605 \ \Omega$	653 $k\Omega$
R_7	$1 \ k\Omega$	$1 \ k\Omega$	$1 \ k\Omega$
C_1, C_2, C_3	$1 \mathrm{nF}$	$1 \mathrm{nF}$	$1 \mathrm{nF}$

Tab. 7.1: Hodnoty součástek pro strukturu s proudovými konvejory s diferenčním napěťovým vstupem a proudovými konvejory druhé generace

7.2 Simulace

Podle vzorců (7.9), (7.10), (7.11), (7.12), (7.13) a (7.14) byly vypočítány hodnoty součástek pro simulaci filtru s $\alpha = 0, 3, \alpha = 0, 5$ a $\alpha = 0, 7$. Hodnoty všech kondenzátorů byly zvoleny 1 nF. Hodnota rezistoru R_7 byla určena na základě simulace tak, aby byl minimální vliv parazitních vlastností. Hodnoty součástek jsou v tabulce 6.1.

Výsledná modulová charakteristika je v grafu 7.2 a fázová charakteristika v grafu 7.3. Odchylka modelu simulující reálné prvky a modelu simulující ideální prvky je v grafu 7.4. V tabulce 7.2 je porovnání fázového posuvu při charakteristickém kmitočtu získaný simulací a teoreticky.

Obr. 7.2: Modulová charakteristika

Obr. 7.3: Fázová charakteristika

Obr. 7.4: Odchylka simulace s reálnými prvky od simulace s ideálními prvky

	teoretická	simulace
$\alpha = 0, 3$	$-58,5^{\circ}$	$-64,1^{\circ}$
$\alpha = 0, 5$	$-67,5^{\circ}$	-57,0°
$\alpha = 0,7$	$-76,5^{\circ}$	-73,7°

Tab. 7.2: Porovnání fáze ze simulace s teoretickou pro f_0

8 STRUKTURA S UNIVERZÁLNÍMI PROUDO-VÝMI KONVEJORY REALIZUJÍCÍ FILTR TYPU HORNÍ PROPUST

8.1 Obvodové řešení

Struktura s univerzálními proudovými konvejory realizující filtr typu horní propust je na obrázku 8.1. Tato struktura pracuje v proudovém režimu. Její přenosová funkce je dána vzorcem (8.1).

Obr. 8.1: Struktura s univerzálními proudovými konvejory realizující filtr typu horní propust

$$K(p) = \frac{p^3 R_1 R_2 R_3 R_6 C_1 C_2 C_3 + p^2 R_2 R_3 R_4 C_2 C_3 + p R_3 R_5 C_3}{p^3 R_1 R_2 R_3 R_7 C_1 C_2 C_3 + p^2 R_2 R_3 R_7 C_2 C_3 + p R_3 R_7 C_3 + R_7}$$
(8.1)

Po úpravě vzorce (8.1) lze získat vzorec (8.2).

$$K(p) = \frac{R_3}{R_7} \frac{p^3 R_1 R_2 R_6 C_1 C_2 C_3 + p^2 R_2 R_4 C_2 C_3 + p R_5 C_3}{p^3 R_1 R_2 R_3 C_1 C_2 C_3 + p^2 R_2 R_3 C_2 C_3 + p R_3 C_3 + 1}$$
(8.2)

Podle [5] lze vzorec (4.10) upravit dosazením s = 1/s na vzorec (8.3) popisující přenos filtru typu horní propust.

$$K(s) = \frac{K_1}{a_0} \frac{a_0 s^3 + a_1 s^2 + a_2 s}{b_0 s^3 + b_1 s^2 + b_2 s + 1}$$
(8.3)

Dosazením $s = p/\omega_0$ do tohoto vzorce vznikne (8.4).

$$K(p) = \frac{K_1}{a_0} \frac{\frac{a_0}{\omega_0^3} p^3 + \frac{a_1}{\omega_0^2} p^2 + \frac{a_2}{\omega_0} p}{\frac{b_0}{\omega_0^3} p^3 + \frac{b_1}{\omega_0^2} p^2 + \frac{b_2}{\omega_0} p + 1}$$
(8.4)

Mezi vzorci (8.4) a (8.2) lze nalézt formální podobnost a jejich porovnáním lze dosáhnout sedmi vzorců (8.5), (8.6), (8.7), (8.8), (8.9), (8.10) a (8.11).

$$\frac{K_1}{a_0} = \frac{R_3}{R_7}$$
(8.5)

$$\frac{a_2}{\omega_0} = R_5 C_3 \tag{8.6}$$

$$\frac{a_1}{\omega_0^2} = R_2 R_4 C_2 C_3 \tag{8.7}$$

$$\frac{b_0}{\omega_0^3} = R_1 R_2 R_3 C_1 C_2 C_3 \tag{8.8}$$

$$\frac{b_2}{\omega_0} = R_3 C_3 \tag{8.9}$$

$$\frac{b_1}{\omega_0^2} = R_2 R_3 C_2 C_3 \tag{8.10}$$

$$\frac{a_0}{\omega_0^3} = R_1 R_2 R_6 C_1 C_2 C_3 \tag{8.11}$$

Z těchto vzorců lze vyjádřit hodnoty jednotlivých součástek. Hodnoty kondenzátorů C_1, C_2, C_3 budou zvoleny. Hodnoty součástek $R_1, R_2, R_3, R_4, R_5, R_6$ a R_7 budou vypočteny pomocí vzorců (8.12), (8.13), (8.14), (8.15), (8.16), (8.17) a (8.18).

$$R_1 = \frac{b_0}{C_1 b_1 \omega_0} \tag{8.12}$$

$$R_2 = \frac{b_1}{C_2 b_2 \omega_0} \tag{8.13}$$

$$R_3 = \frac{b_2}{C_3\omega_0} \tag{8.14}$$

$$R_4 = \frac{a_1 b_2}{C_3 b_1 \omega_0} \tag{8.15}$$

$$R_5 = \frac{a_2}{C_3\omega_0} \tag{8.16}$$

$$R_6 = \frac{a_0 b_2}{C_3 b_0 \omega_0} \tag{8.17}$$

$$R_6 = \frac{b_2 a_0}{C_3 K_1 \omega_0} \tag{8.18}$$

	Hodnota pro koeficient α		
Součástka	$\alpha = 0, 3$	$\alpha = 0, 5$	$\alpha=0,7$
R_1	570 Ω	$624 \ \Omega$	$647~\Omega$
R_2	1,68 $k\Omega$	1,72 $k\Omega$	1,74 $k\Omega$
R_3	4,45 $k\Omega$	4,06 $k\Omega$	3,91 $k\Omega$
R_4	7,41 $k\Omega$	6,96 $k\Omega$	$6,59 \ k\Omega$
R_5	2,23 $k\Omega$	1,59 $k\Omega$	955 Ω
R_6	$11 \ k\Omega$	11,2 $k\Omega$	12,2 $k\Omega$
R_7	11,6 $k\Omega$	12,2 $k\Omega$	13,3 $k\Omega$
C_1, C_2, C_3	$1 \mathrm{nF}$	$1 \mathrm{nF}$	$1 \mathrm{nF}$

Tab. 8.1: Hodnoty součástek pro strukturu s univerzálními proudovými konvejory realizujícími filtr typu horní propust

8.2 Simulace

Podle vzorců (8.12), (8.13), (8.14), (8.15), (8.16), (8.17) a (8.18) byly vypočítány hodnoty součástek pro simulaci filtru s $\alpha = 0, 3, \alpha = 0, 5$ a $\alpha = 0, 7$. Hodnoty všech kondenzátorů byly zvoleny 1 nF. Hodnoty součástek jsou v tabulce 8.1.

Výsledná modulová charakteristika je v grafu 8.2 a fázová charakteristika v grafu 8.3. Odchylka modelu simulující reálné prvky a modelu simulující ideální prvky je v grafu 8.4. V tabulce 8.2 je porovnání fázového posuvu při charakteristickém kmitočtu získaný simulací a teoreticky.

Obr. 8.2: Modulová charakteristika

Obr. 8.4: Odchylka simulace s reálnými prvky od simulace s ideálními prvky

	teoretická	simulace
$\alpha = 0, 3$	$58,5^{\circ}$	$73,7^{\circ}$
$\alpha = 0, 5$	$67,5^{\circ}$	89,2°
$\alpha = 0,7$	$76,5^{\circ}$	$102,0^{\circ}$

Tab. 8.2: Porovnání fáze ze simulace s teoretickou pro f_0

9 PRAKTICKÁ REALIZACE

Pro praktickou realizaci byla zvolena struktura s univerzálními proudovými konvejory. Realizovány byly postupně filtry typu dolní propust řádů 1,3, 1,5 a 1,7. Pro všechny tři filtry byla použita jedna deska plošného spoje, na které byly pouze měněny rezistory R_1 , R_2 , R_3 , R_5 , R_6 a R_7 . Kondezátory C_1 , C_2 a C_3 měly vždy hodnotu 1nF. Filtrační kondezátory byly voleny dle katalogového listu. Jako aktivní prvky byly použity proudové konvejory v podobě integrovaného obvodu UCCX-0349_SMD. Každý integrovaný obvod obsahuje jeden univerzální proudový konvejor a jeden proudový konvejor druhé generace. Protože realizovaná struktura umožňuje zjednodušit dva univerzální proudové konvejory na proudové konvejory druhé generace, stačí použit tři integrované obvody UCCX-0349_SMD. Schéma realizovaného obvodu je na obrázku B.4 v příloze. Vstup nevyužitého proudového konvejoru byl ošetřen rezistorem. Všechny rezistory a kondenzátory byly použity typu SMD velikosti 1206. Jednotlivé hodnoty jsou uvedeny v tabulce 5.1. Pokud nebyl dostupný vhodný rezistor, byly použity dva rezistory zapojené paralelně.

K měření byl použit obvodový analyzátor Agilent 4395A. Analyzátor má výstup i vstup pracující v napěťovém režimu. Měřený obvod má vstup i výstup v proudovém režimu. Na výstup analyzátoru byl připojen převodník napětí - proud a na vstup převodník proud - napětí. Originální výsledky měření tak, jak je zobrazil obvodový analyzátor, jsou na obrázcích C.1, C.2 a C.3.

Modulová charakteristika je zobrazena v grafu 9.1. V grafu je vidět podobné zakřivení pro všechny měřené hodnoty α . Prudký nárůst modulu ve vysokých kmitočtech nevadí. V této části charakteristiky již filtr nevykazuje podobnost s ideálním filtrem fraktálního řádu, a tedy tato část není zajímavá. V grafu 9.2 je zobrazena fázová charakteristika.

Porovnání výsledku měření s ideálním průběhem a s průběhem simulace z kapitoly 5 je v grafech 9.3, 9.4 a 9.5.

Obr. 9.1: Změřená modulová charakteristika

Obr. 9.2: Změřená fázová charakteristika

Obr. 9.3: Porovnání změřené a simulované modulové charakteristiky pro $\alpha=0,3$

Obr. 9.4: Porovnání změřené a simulované modulové charakteristiky pro $\alpha=0,5$

Obr. 9.5: Porovnání změřené a simulované modulové charakteristiky pro $\alpha=0,7$

10 ZÁVĚR

Práce se zabývala strukturami filtrů třetího řádu aproximující filtry fraktálního řádu typu dolní propust. Vždy při návrhu konkrétních hodnot bylo počítáno s charakteristickým kmitočtem 100 kHz. Pro strukturu převzatou z [2] se mnou navržený postup jeví jako horší. Sice usnadňuje výběr kondenzátorů, volí se na začátku a všechny stejné, ale v simulaci se více projevily parazitní vlastnosti CFA. Porovnání je vidět v grafu 4.2.

Struktura složená z univerzálních proudových konvejorů, popsána v kapitole 5, vykazuje dobré vlastnosti. V simulaci má menší odchylku od idealizovaného modelu než struktura používající UVC i UCC popsaná v kapitole 6. Toto je vidět v grafech 5.4 a 6.4. Pro praktickou realizaci byla zvolena struktura s univerzálními proudovými konvejory.

Prakticky realizovaný filtr je vidět na fotografiích D.1 a D.2. Byl navržen pro mezní kmitočet 100 kHz a pro řády 1,3, 1,5 a 1,7. Měření bylo provedeno na jedné DPS. Mezi měřeními byly vyměněny potřebné rezistory. Modulové a fázové charakteristiky jsou vidět v grafech 9.1 a 9.2. Je vidět velký rozdíl v okolí mezního kmitočtu mezi změřenou charakteristikou a charakteristikou získanou simulací. Naměřený prudký nárůst modulu ve vysokých kmitočtech nevadí. Charakteristika reálného filtru se blíží charakteristice fraktálního filtru pouze okolo mezního kmitočtu. Ve vysokých kmitočtech použitá aproximace už neplatí, a proto je tato oblast nezajímavá.

LITERATURA

- SUCHÁNEK T. Kmitočtový filtr. Brno: VUT v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav Telekomunikací, 2009. 44s. Vedoucí práce Ing. Ladislav Káňa
- [2] PSYCHALINOS, Costas. Design of Fractional-Order Filters Using CFOAs: Research Notes. Patras, 2014.
- [3] MAUNDY, B., A. S. ELWAKIL a T. J. FREEBORN. On the practical realization of higher-order filters with fractional stepping. 2010.
- [4] KOTON, Jaroslav. Aplikace proudových a napětových konvejorů v nefiltračních obvodech. Brno, 2012. Habilitační práce.
- [5] T. Freeborn, B. Maundy, A. Elwakil, *Field programmable analogue array implementation of fractional step filters* 2010.
- [6] HARTLEY, T., LORENZO, C., QAMMER, H. K. Chaos in a Fractional Order Chua's System, IEEE Trans. on CAS-I: Fund. Theory and Applications, Vol. 42, No. 8, 1995. ISSN 1057-7122.
- [7] PETRŽELA, J., SLEZÁK, J. Aproximace fraktálních dvojpólů v kmitočtové oblasti. Elektrorevue [online]. 2011, č. 1. ISSN: 1213-1539. Dostupné z: http://www.elektrorevue.cz/
- [8] HÁJEK, K a SEDLÁČEK, J. Kmitočtové filtry. 1. vyd. Praha: BEN technická literatura, 2002, 535 s. ISBN 80-730-0023-7.

SEZNAM SYMBOLŮ, VELIČIN A ZKRATEK

au	časová konstanta
С	kondenzátor
CCII	proudový konvejor druhé generace
CFA	operační zesilovač s proudovou zpětnou vazbou
DPS	deska plošných spojů
DVCC	proudový konvejor s diferenčním napěťovým vstupem
f	kmitočet
G	vodivost
К	přenos filtru
р	Laplaceův operátor
R	rezistor
S	normovaný Laplaceův operátor
SMD	součástka pro povrchovou montáž
UCC	univerzální proudový konvejor
UVC	univerzální napěťový konvejor
ω_0	mezní kmitočet

SEZNAM PŘÍLOH

A	Seznam součástek	52
в	Návrh desky plošných spojů	54
\mathbf{C}	Originální výsledky měření získané z obvodového analyzátoru	57
D	Fotografie desky	60
\mathbf{E}	Obsah přiloženého CD	61

A SEZNAM SOUČÁSTEK

Součástka	Hodnota	Pouzdro
C1	1nF	C1206
C2	1nF	C1206
C3	1nF	C1206
C4	dle katalogového listu UCCX-0349_SMD	A/3216-18R
C5	dle katalogového listu UCCX-0349_SMD	A/3216-18R
C6	dle katalogového listu UCCX-0349_SMD	C1206
C7	dle katalogového listu UCCX-0349_SMD	C1206
C8	dle katalogového listu UCCX-0349_SMD	C1206
C9	dle katalogového listu UCCX-0349_SMD	C1206
C10	dle katalogového listu UCCX-0349_SMD	C1206
C11	dle katalogového listu UCCX-0349_SMD	C1206
C12	dle katalogového listu UCCX-0349_SMD	C1206
C13	dle katalogového listu UCCX-0349_SMD	C1206
C14	dle katalogového listu UCCX-0349_SMD	C1206
C15	dle katalogového listu UCCX-0349_SMD	C1206
C16	dle katalogového listu UCCX-0349_SMD	C1206
C17	dle katalogového listu UCCX-0349_SMD	C1206
IC1	UCCX-0349_SMD	PLCCSM44
IC2	UCCX-0349_SMD	PLCCSM44
IC3	UCCX-0349_SMD	PLCCSM44
R1	560 Ω nebo 620 Ω nebo 1,1 $k\Omega\parallel$ 1,6 $k\Omega$	R1206
R2	1,5 $k\Omega$ nebo 1,5 $k\Omega$ nebo 1,5 $k\Omega$	R1206
R3	4,3 $k\Omega$ nebo 3,9 $k\Omega$ nebo 3,9 $k\Omega$	R1206
R4	$100 \ \Omega$	R1206
R5	330 Ω nebo 430 Ω nebo 680 Ω	R1206
R6	910 $\Omega\parallel 1~k\Omega$ nebo 680 Ω nebo 1,3 $k\Omega$	R1206
R7	1 $k\Omega\parallel 1,1~k\Omega$ nebo 750 Ω nebo 1,3 $k\Omega$	R1206
R8	dle katalogového listu UCCX-0349_SMD	R1206
R9	dle katalogového listu UCCX-0349_SMD	R1206
R10	dle katalogového listu UCCX-0349_SMD	R1206
R11	dle katalogového listu UCCX-0349_SMD	R1206
R12	dle katalogového listu UCCX-0349_SMD	R1206
R13	dle katalogového listu UCCX-0349_SMD	R1206
R14	dle katalogového listu UCCX-0349_SMD	R1206
R15	dle katalogového listu UCCX-0349_SMD	R1206
R16	dle katalogového listu UCCX-0349_SMD	R1206

R17	$1 \ k\Omega$
X1	BNC konektor
X2	BNC konektor

R1206

B NÁVRH DESKY PLOŠNÝCH SPOJŮ

Obr. B.1: Návrh desky plošných spojů shora

Obr. B.2: Návrh desky plošných spojů zezdola

Obr. B.3: Návrh desky plošných spojů - osazovací plán

Obr. B.4: Schéma realizovaného obvodu

 \mathbf{C}

ORIGINÁLNÍ VÝSLEDKY MĚŘENÍ ZÍSKANÉ Z OBVODOVÉHO ANALYZÁTORU

Obr. C.1: Výsledek měření pro $\alpha=0,3$

Obr. C.2: Výsledek měření pro $\alpha=0,5$

Obr. C.3: Výsledek měření pro $\alpha=0,7$

D FOTOGRAFIE DESKY

Obr. D.1: Fotografie shora

Obr. D.2: Fotografie zezdola

E OBSAH PŘILOŽENÉHO CD

- Elektronická verze tohoto dokumentu
- Schéma vytvořené v programu Eagle 6.4.0
- Návrh DPS vytvořený v programu Eagle 6.4.0