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Abstrakt

Předkládaná disertačńı práce se věnuje generováńı náhodných struktur dvouvláknových

kompozitńıch materiál̊u. Prvńı část se zabývá známými obecnými principy a zákonitostmi

náhodných proces̊u. Celá úvodńı část je směřována k aplikaci náhodných proces̊u na

kompozitńı materiály jako je např. anizotropie nebo prostorová korelace. Jsou zde uve-

deny základńı a nejpouž́ıvaněǰśı známé modely pro generováńı náhodných struktur. Dále

je pak diskutována otázka popisu vnitřńı struktury kompozit̊u, zejména pak kompletńı

prostorové náhodnosti struktur a jej́ı detekce r̊uznými metodami. Teoretickou část pak

uzav́ırá detailńı popis autorem vytvořených čtyř algoritmů pro generováńı náhodných

struktur s nekonstantńım pr̊uměrem vláken ve vzorku.

Ve druhé, výpočtové části je uvedeno porovnáńı nasimulovaných vzork̊u pomoćı nových

algoritmů navzájem mezi sebou a s reálnými vzorky, které byly k dispozici. Toto porovnáńı

je provedeno metodami deskriptivńı statistiky. V neposledńı řadě jsou ověřeny předpoklady

normality a homogenity rozptylu u jednotlivých vzork̊u. Tyto předpoklady jsou zpravidla

nezbytné pro př́ıpadné daľśı zpracováńı dat, např. analýzy rozptylu.

Summary

This thesis is devoted to generating of non-periodic structures of two-fibre composite ma-

terial. The first part deals with the well-known principles and laws of random processes.

The whole introductory part tends to the application of random processes to the com-

posites, e.g. anizotropy or spatial correlation. The most frequently used and well-known

algorithms for generating non-periodic patterns are presented here. Next, the description

of inner microstructure is discussed together with the methods of detection of complete

spatial randomness. The theoretic part ends with detailed description of four algorithms

developed by the author for generating random structures with non-constant diameters

of fibres.

In the second computational part the comparison of simulated samples obtained by

new algorithms and real ones is presented. This comparison is made by mean of tech-

niques of a descriptive statistic. Moreover, the assumptions of normality and homogeneity

of samples are checked. These assumptions are usually necessary for contingent next com-

putations, e.g. analysis of variance.
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Preface

Motto: Člověk se nenauč́ı dělat matema-
tiku posloucháńım vybroušených výklad̊u
při vyučovaćıch hodinách, ale zejména
samostatnou praćı s matematickými poj-
my.
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Introduction
The study of composite materials has become a very important subject of research in the

materials engineering area. These materials are heterogeneous man-made mixtures of two

or more homogeneous phases bonded together. The first phase is called the matrix and is

usually a metal (e.g. aluminium, steel, titanium) or plastic (e.g. silicon, epoxide), while

the other is the reinforcement and is commonly either particles or fibres. In general, the

second-phase substance has much higher stiffness than the matrix.

It is expected that by combining two types of materials one will obtain the best prop-

erties of both substances. This material, the so-called composite material, has then con-

siderably better mechanical properties and higher performance than any single material

from which it is formed.

It is known that mechanical properties (e.g. ductility and fracture toughness) of par-

ticular composite materials depend not only on the shape and volume fraction of the com-

posites but also on the spatial and size distributions of the particles or fibres. Moreover,

variations in the production process (e.g. rolling, extrusion, centrifuging, temperature of

the mother matrix when the particles are added) can affect the mechanical properties of

the material.

This evidence shows that quantitative analysis of the microstructure of particulate

composite materials is of extreme importance for a better understanding of the rela-

tionship between inclusions and mechanical behavior and also for better control of the

production of the material.

Material scientists are primarily interested in relating the mechanical properties of the

composite to the microstructural features of the second-phase particles such as volume

fraction, size, shape and spatial variation. There is only one possible way to achieve this

aim when composites are concerned and this is to take a planar section of the material,

polish it and then record, with the use of a microscope, the features of interest (e.g.

location, size, shape) of each particle that appears in the section. This information is

then processed by image analysis techniques, which are described e.g. in [12]. These

techniques provide a large amount of data on the reinforced material that must be analyzed

by statistical methods. In particular, the currently fast growing area of spatial processes

has special relevance to the analysis.

The ultimate aim of investigating the statistical properties of patterns of composite

materials is to get some information and additional insight about the underlying mecha-

nisms that rule the way the different materials are formed. Since there are many features

relating to the material that can be analyzed, it is appropriate to say that this thesis

deals with the statistical description and analysis of spatial distributions of fibres held in

planar sections of composite materials.

Mathematical modeling of composite materials leads to solving PDEs with strongly

oscillating coefficients. The problem of large number of equations can be solved using
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homogenization, that replaces heterogeneous material by an equivalent homogeneous one.

This approach assumes periodic structure, which is not true in the reality.

Many methods devoting to the composites and their mathematical description of their

physical properties relies on the fact, that the structure is well known. Many materials,

meaning two-fibres composites, vary very ”widely” than to be imposed to be the sample

for mathematical modeling. Such structures can be seen in the following chapters in this

thesis.

The predictions of properties of a real random structure of a natural material is a

priory very difficult because of the amount of the effects that we are able to hold. And

this is the reason, we are still not able to exactly predict a behavior of such material.

One approach how to understand this phenomena is to understand to its inner struc-

ture. Once, we have at disposal real samples of a real media in the form of photographs

or bitmaps, we are able to simulate very similar patterns to the real ones.

In this thesis we give a brief summary of standard methods dealing with describing

and comparing of various random patterns. We introduce here a collection of methods

for describing a various random material. In literature we can find many algorithms and

methods for generating random patterns (meaning cross-sections of two-phase fibre com-

posites), see e.g. [8] or [9], but the only disadvantage of this is the fact, that they operate

only with the constant diameters of the fibres. Applying these methods we admittedly

obtain random samples, but such patterns do not correspond to the real ones because

of the diameters. In this theses we summarize the basic descriptors for random samples

and introduce four algorithms for generating non-periodic structures with non-constant

diameters. Such obtained samples will be consequently compared with real samples by

means of descriptive statistic techniques and standard microstructural descriptors.

The content of the thesis will be as follows: The theses consists of three parts. The

first part, called Theoretical Aspects, is divided into four sections. The first section, Mo-

dels for Random Multi-phase Materials, is devoted to the common description of random

spatial processes, their definition and properties. Moreover, the basic models for gener-

ating random patterns are presented here. The second one gives a brief summarization

about complete spatial randomness of samples and their description using second order

Ripley’s K function. In the third section the microstructural descriptors of composites

are presented and in the four one the new algorithms AI–AIV generating non-periodic

patterns with non-constant fibre diameters are introduced.

The second part of the thesis, called Statistical Computations, contains the compu-

tations dealing with developed algorithms AI–AIV and their comparing with the real

samples. At the beginning the real samples are described, then the methods of descrip-

tive statistics are applied on these simulated samples and the question of anizotropy is

discussed. At the end of this part the basic assumptions for further analysis, such as

normality and homogeneity, are presented.
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Part I

Theoretical Aspects

The winner takes it all...
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1 Models for Random Multi-phase

Materials

1.1 Introduction

The study of micromechanics in composite materials has been performed assuming pe-

riodicity in the distribution of the fibres. This approach provides simplifications which

lead to the possibility of analytical solutions or in the case of computational methods

it reduces its time. However, this approach represents an idealized material which may

be useful for computing effective elastic properties, but differs from the real one in some

aspects, see [20].

It has been shown that avoiding real, i.e. non-periodic distribution of fibres have not

so large negative effects to effective properties of material, but local (e.g. mechanical)

properties vary very intensive, see [28].

1.2 Random process – properties and definitions

The use of term random heterogeneous material or simply random medium rests on the

assumption that any sample of the medium is a realization of a specific random or stochas-

tic process (or random field). An ensemble is a collection of all the possible realizations

of a random medium generated by a specific stochastic process, see [37]. We let (Ω,F ,P)

be some fixed probability space, where Ω is a sample space, F is a σ-algebra of subsets of

Ω(set of events), and P is a probability measure.

1.2.1 Random process

When we analyze real materials in a microscopic scale, there exist many variables which

should be considered random, and which depend on spatial distributions of phases.

Let x ∈ Rd be a spatial location in a d−dimensional space and let us assume Z(x) is

a random variable. If we let x vary over a fixed set D ⊂ Rd, we can express the random

process Z(x) as, see [8], [20]:

{Z(x) : x ∈ D}.
To emphasize the source of randomness, the previous notation is sometimes written as

{Z(x, ω) : x ∈ D; ω ∈ Ω},

where (Ω,F ,P) is a probability space. If x ∈ R (i.e., the variable is function of one

spatial dimension), the term random process or stochastic process is often used instead of

random field or random function as in the case of d > 1.
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1.2.2 Types of random processes

According to [8], usually D is assumed to be a fixed, i.e. nonrandom subset of Rd, but

we shall assume more generally that D is a random set. Roughly formally speaking, we

shall assume that D as well as Z may vary from realization to realization, giving another

source of randomness to the problem, see [8] for details. Generally, depending on the

nature of the set D, four types of random processes can be defined:

• Time-space processes – are processes which variation is given in space D and time

interval 〈0; T 〉. This can be written:

{Z(x; t) : x ∈ D, t ∈ 〈0; T 〉}.
The special case of time-space processes are the so called time series, in which the set

D is the temporal dimension. Usually the fatique behaviour of composite materials

and mechanical properties are modelled using time series.

• Geostatistical data – when the spatial variable x varies continuously within D,

which is a subset of Rd and Z(x) is a random vector at location x ∈ D. Here,

measurements are taken at a fixed number of chosen locations. Most of the physical

properties can be seen as geostatistical data.

• Lattice data – when D is a fixed(regular or irregular) collection of countable many

points of Rd and Z(x) is a random vector at location x ∈ D. Here, measurements

are taken at a lattice and at each point on this lattice a measurement is collected.

Sometimes, measured properties are computed as mean values. Sometimes, like it

happens in finite element meshes, the same value of the property is considered for

a subdomain (the element of the lattice). In this case we are working with lattice

data, see figure 1.1.

Figure 1.1: An averaging example of the lattice data

• Point patterns – data in the form of a set of points, regularly or irregularly dis-

tributed within a region. Each item of data consists of the location of an event.

The random position of e.g. carbon or glass fibres in a fibre reinforced composite

is a good example of a point pattern. Point pattern analysis is concerned with the

location of events, and with answering questions about the distribution of those lo-

cations, specifically whether they are clustered, randomly or regularly distributed.
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Point pattern analysis is very sensitive to the definition of the study area, since

a regularly distributed pattern can be made to seem clustered by including large

margins within the study area.

Figure 1.2: Clustered point pattern on the left and regular point pattern on the right

1.2.3 Characteristics of random processes

Among basic numeric characteristics of a random process belong expected(mean) value

E(Z) and dispersion(variance) D(Z) of the stochastic process Z(x). But they are so

known terms in the theory of probability and statistics, that it is meaningless to mention

them here. Among next important characteristics belong next ones

Autocovariance function C(x,y) of Z(x), where(x,y) ∈ D ×D is defined as

C(x,y) = cov[Z(x), Z(y)] = E {[Z(x)− E(Z(x))][Z(y)− E(Z(y))]}

and has these properties

C(x,y) = C(y, x) and C(x,x) = D(Z(x)).

Autocorrelation function ρ(x,y) is defined for (x, y) ∈ D ×D as

ρ(x,y) =
C(x, y)

D(Z(x))D(Z(y))
, (x,y) ∈ D ×D

with properties

ρ(x,y) = ρ(y,x) and ρ(x,x) = 1.

Semivariance function γ(x,y) is defined for (x,y) ∈ D ×D as

γ(x, y) =
1

2
D[Z(y)− Z(x)], (x, y) ∈ D ×D

which has properties

γ(x,y) = γ(y,x), γ(x,y) ≥ 0 and γ(x,x) = 0.
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To the point-estimations of functions mentioned above, we should generally know a

big number of realizations of the process Z(x), x ∈ D. However, these realizations in

reality we do not have and the estimations we often compute only from a one realization

of Z(x). The obtained results are then independent to the position of the point x and

about a behavior of the process they give us no information. The easier situation is, when

the process is stationary in some kind of sense. It then leads to the terms variogram and

covariogram.

1.2.4 Variogram

Basic terms

1. The process Z(x) is said to be stationary to its mean if its mean is constant for

every x ∈ D.

2. Whether the autocovariance function is dependent only on the difference of argu-

ments, we say, that the process is stationary to its autocovariance, i.e. for ∀x ∈ D

and ∀h = (h1, . . . , hd) provided x + h ∈ D it holds

C(x,x + h) = C(h).

3. If the semivariance function is dependent only on the difference of arguments, we

say, that the process is stationary to its semivariance, i.e. for ∀x ∈ D and ∀h =

(h1, . . . , hd) provided x + h ∈ D it holds

γ(x,x + h) = γ(h).

In this case, the covariance, resp. semivariance function is said to be a covariogram,

resp. variogram(semivariogram). We denote these functions by the same letter as

covariance, resp. semivariance function, even they are different.

The random process Z(x) is weakly stationary if it fulfils conditions (1) and (2). Next,

the process is said to be intrinsically stationary(stationary), if it satisfy to conditions (1)

and (3). So, it means that from the weak stationarity it follows intrinsically stationarity,

but not conversely. Finally, one can say, that if the process is intrinsically stationary, then

we obtain

γ(h) =
1

2
E

{
[Z(x + h)− Z(x)]2

}
.

According to this formula, a variogram is computed and estimated. In other words,

the variogram gives us “amount of dissimilarity”. Similarly, covariogram C(h) measures

correlation dependency. Finally, it states

C(0) = γ(h) + C(h).

So, we can say, that total spatial variability expressed by variance, we can divide into two

parts - regular, described by covariogram, and random, described by variogram.
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Variogram Covariogram

γ(0) = 0 C(0) = C(x, x) = D(Z(x)) > 0

γ(−h) = γ(h) C(−h) = C(h)

γ(h) ≥ 0 |C(h)| ≤ C(0)

Table 1.1: Main properties of variogram and covariogram.

In the case D ⊂ R2, both C(h) and γ(h) are function of h = (h1, h2) or of a direction

α and the length h = ||h|| =
√

h2
1 + h2

2. If we consider C(h), resp. γ(h) in the direction

h, consequently both C(h) and γ(h) are functions only of h, i.e. distance of x + h and

x. Obtained functions we caption as directional covariogram, resp. directional var-

iogram and we write C(h) = C(h), resp. γ(h) = γ(h). From the properties introduced

in the Table 1.1 we can see they are even, so it is sufficient to compute the values only

for h > 0.

0 h

γ (h)

σ2=C(0)

C(h)

C(h)

γ(h)

Figure 1.3: The relation between variogram and covariogram.

Whether the variogram depends only on the distance h of the points x+h and x and

not also on the angle of the vector h, i.e. all the directional variograms are the same,

then the process is isotropic, otherwise anisotropic.

Experimental variogram

From the obtained values of a measurement we compute point-estimation γ̂(h) of the

variogram γ(h) and we get so called experimental variogram. In a plane we estimate so-

called omnidirectional variogram if we are sure about isotropic process, otherwise we

estimate directional variogram. In the second case we choose several directions(e.g.

horizontal, vertical and diagonals) during computations. According to [24] and references

therein, the omnidirectional variogram we obtain by averaging of appropriate directional

variograms. In the case, when the measurements are distributed regularly, e.g. rectangular

grid, which will be our case, then we compute directional variograms in horizontal and
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vertical directions and in the directions of both diagonals. For non-regular distributed

measurements, see literature, e.g. [8] and others.

The behavior of a variogram for “large” h

It is possible to prove, see [8] for details, that for the weak stationary process its vari-

ogram is a top-bounded function. Next, it holds for the weak stationary and intrinsically

stationary process

lim
h→∞

γ(h)

h2
= 0.

These properties allow us to decide, whether the process is weakly stationary, intrinsically

stationary or non-stationary. If the variogram γ(h) is non-bounded, then it is either

intrinsically stationary or non-stationary process. Next, if the limit mentioned above is

greater than zero, then the process is non-stationary, otherwise it is stationary one.

So, as the values of the variogram γ(h) for h →∞ have finite limit, then the appropri-

ate random process is weakly stationary, otherwise is intrinsically stationary. In the first

case, the variogram have to achieve its limit value in a finite distance, say a - so called

range, which denote the so called zone of an effect. The more a is bigger, the more a

zone of an effect is also bigger. Then, the graph of γ(h) is for h ≥ a equidistant with the

h−axes and this part is called as a sill. It means, that for h ≥ a, the values Z(x + h)

and Z(x) are uncorrelated and it holds γ(h) = C(0) for ∀h ≥ a. In the following figure

you can see the situation described above.

0 h

γ (h)

sill

a − range

σ2=C(0)

Figure 1.4: A typical variogram - explanation of the terms.
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The behavior of a variogram for “small” h (near an origin)

Now, we will study the behavior of a variogram near the origin, because it is important

for continuity and regularity of random process. In literature we can find four types of

behavior of a variogram near origin:

1. Quadratic shape. If γ(h) ≤ Ah2, then the process is differentiable and non-

similarity grows very fast.

2. Linear shape. If γ(h) is linear near an origin, then limh→0 γ(h) = 0. It is less

regular than in quadratic shape.

3. Discontinuity at origin. If limh→0 γ(h) 6= 0, then the process is neither regular

nor continuous at origin. It means, that the process is variable in short distances.

Non-continuity at origin is called as nugget effect. It indicates a variability of

small-scale-distances and usually it is caused by the factors such as a microstructure,

which is not measurable by given scale of sampling(short distance between two points

leads to large difference of measured values), see [8] for details.

4. Flat shape. In this case, the process is fully random. All values Z(x + h) and

Z(x) are uncorrelated for ∀h > 0. It is a limit case of total absence of a structure.

Figure 1.5: The behavior of variograms near origin: Quadratic shape, Linear shape,

Discontinuity in a origin-nugget effect and Flat shape
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1.2.5 Anisotropy

About isotropy, resp. anisotropy we can decide according directional variograms, i.e var-

iograms estimated in different directions. In the case, that these estimates are of the

same or similar shape and roughly the same parameters, then we consider the process

to be isotropy, otherwise anisotropy. In principle we distinguish geometric(affine)

anisotropy and zonal anisotropy.

Whether the estimates of directional variograms of the similar or the same shape differ

only in ranges, while the sill remains constant, then we have geometric anisotropy. But,

if the directional variograms differ in more parametres than only in ranges, then it is the

case of zonal anisotropy, see the following figures:

Figure 1.6: Geometric anisotropy Figure 1.7: Zonal anisotropy

During detecting of the anisotropy in a plane, it is necessary to estimate variograms

at least at four different directions to get rid of the doubt, that the anisotropy will not

be detected.

In the next figures the representation of the isotropy resp. anisotropy by means of the

ranges of variograms is displayed.

Figure 1.8: Isotropy Figure 1.9: Geometric anisotropy

In Appendix there are presented theoretical models of variograms, which are necessary

to next computations and estimations.
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Figure 1.10: Geometric anisotropy Figure 1.11: Zonal anisotropy

1.2.6 Spatial autocorrelation

Autocorrelation literally means that a variable is correlated with itself. The simplest

definition of autocorrelation states that pairs of subjects that are close to each other are

more likely to have values that are more similar, and pairs of subjects far apart from each

other are more likely to have values that are less similar. The spatial structure of the data

refers to any patterns that may exist. Clusters are examples of spatial structures that are

positively correlated, whereas negative correlation may be exhibited in a checkerboard

pattern where subjects appear to repulse each other. When data are spatially autocorre-

lated, it is possible to predict the value at one location based on the value sampled from a

nearby location when data using interpolation methods. The absence of autocorrelation

implies data are independent.

Moran’s I and Geary’s c are well known tests for spatial autocorrelation. They rep-

resent two special cases of the general cross-product statistic that measures spatial au-

tocorrelation. Moran’s I is produced by standardizing the spatial autocovariance by the

variance of the data. Geary’s c uses the sum of the squared differences between pairs

of data values as its measure of covariation. Both of these statistics depend on a spa-

tial structural specification such as a spatial weights matrix or a distance related decline

function.

The expected value of Moran’s I is −1/(n − 1). Values of I that exceed −1/(n − 1)

indicate positive spatial autocorrelation, in which similar values, either high values or low

values are spatially clustered. Values of I below −1/(n − 1) indicate negative spatial

autocorrelation, in which neighboring values are dissimilar.

The theoretical expected value for Geary’s c is 1. A value of Geary’s c less than 1

indicates positive spatial autocorrelation, while a value larger than 1 points to negative

spatial autocorrelation. The appropriate formulas for computations are:

I =
n

n∑
i=1

n∑
j=1

w(i, j)

n∑
i=1

n∑
j=1

{
w(i, j)

(
Z(xi)− Z(x)

)(
Z(xj)− Z(x)

)}

n∑
i=1

(
Z(xi)− Z(x)

)2
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and

c =
n− 1

2
n∑

i=1

n∑
j=1

w(i, j)

n∑
i=1

n∑
j=1

{w(i, j) (Z(xi)− Z(xj))}
n∑

i=1

(
Z(xi)− Z(x)

)2
,

where Z(x) = 1
n

∑n
i=1 Z(xi) and w(i, j) is the connectivity spatial weight between xi and

xj. More information about this contiguity and probabilistic relations, see Appendix.

1.3 Models for Spatial Point Patterns

The homogeneous Poisson process provides the natural starting point for a statistical in-

vestigation of an observed point pattern. Rejection of the complete spatial randomness

hypothesis does not come as a great surprise in many applications and we are naturally

confronted with the question ”What kind of pattern is it?” If the complete spatial random-

ness test suggests a clustered pattern, one may want to compare another characteristics,

e.g. second-order moments (Ripley’s K function), see later.

We can only skim some point processes models here. A large number of models have

been developed and described for clustered and regular alternatives. Details can be found

e.g. in [9], [8], etc. The models presented here were chosen for their representativeness

and for their importance in theoretical and applied statistics.

1.3.1 Poisson process

The Poisson point process is the simplest yet the most important random point pattern.

The reasons for this importance are, firstly, that typically the Poisson model is the ”null

model” implying complete lack of structure or external influence on the pattern, so de-

partures from this will reflect some practical feature in the production of the patterns.

The second aspect of the role of a Poisson process is that many more complex models

have the Poisson process as a constituent part.

A given point pattern may exhibit various kinds of interaction between its constituent

points. Thus, the points may occur in clusters or may exhibit great regularity. There may

be a threshold distance (also called hard-core distance) which is a minimal inter point

distance. These extreme features may even occur together in the same pattern. The aim

of point process statistics is to detect and to quantify such interactions. If none of the

above interactions is present, the point pattern can be thought of as completely random,

that is, its points are randomly distributed in the space, they form a Poisson process.

Models from the theory of point processes can be used both in comparison to the

original point pattern and also in representation of it. Clark and Evans (1954) describe

a random distribution as being a set of points on a given area, where it is assumed that

any point has had the same chance of occurring on any sub-area as any other point, that

any sub-area of specified size has had the same chance of receiving a point as any other
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sub-area of that size, and that the placement of each point has not been influenced by

that of any other point. Thus, randomness is dependent upon the boundaries of the space

chosen by the investigator. A set of points may be random with respect to a specified

area but decidedly non-random with respect to a larger space which includes the specified

area. In order to get meaningful results, the areas selected for the investigation should be

chosen with care.

Definition of the Poisson Process

The Poisson process is a formalization of the concept of randomness and is defined by the

following postulates.

• For some λ > 0, and any finite region A, N(A) has a Poisson distribution with mean

λ|A|.

• Given N(A) = n, the n events in A form an independent random sample from the

uniform distribution on A.

• For any two disjoint regions A and B, N(A) and N(B) are independent.

A spatial point pattern satisfying these criteria is also said to exhibit complete spatial

randomness, abbreviated to CSR. According to the first item, CSR therefore implies

that the intensity of events does not vary over the region (and consequently it explains

the reason why a random distribution of points in space may be referred to as a spatial

Poisson process). According to the second, CSR also implies that there are no interactions

amongst the events.

Note: The generalization of the Poisson process is the so called inhomogeneous Poisson

process. It differs from the homogeneous one in the fact, that the intensity λ is not

constant overall the domain, but varies spatially. It usually leads to clustering and we

refer to [9] for more information.

Regular Processes

1.3.2 Hard-Core Models

A hard-core point process is a point process in which the constituent points are forbidden

to lie closer together than a certain minimum distance, denoted throughout as τ , resulting

in an even or regular spatial distribution of points.

Regular patterns arise most naturally by the imposition of a minimum permissible

distance, τ say, between any two points. This may simply reflect the physical size of

the entities whose locations define the point pattern. Matèrn was the first(1960), who

described formally the hard-core models.
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Processes of this sort, which incorporate no further departure from complete spatial

randomness, are also commonly called simple inhibition processes. Monograph [8] pro-

vides a detailed descriptions of simple inhibition (or Hard-Core) point processes including

Matérn’s Models whose some definitions will be stated in the following two subsections.

Basically, these models describe two possible ways to obtain inhibited patterns from a

Poisson process.

Note: The theory of the Hard-Core models is so broad, that it can not be held everything

in this thesis. We will try, only, introduce only the basics of it.

Matérn’s Model I

Consider a Poisson process N0 on Rd with intensity ρ. Model I is formed by deleting

all pairs of points of the Poisson process that are separated by a distance of less than τ

whether or not either point of that pair had already been deleted. The remaining points

form a (more regular) process.

Matérn’s Model II

Let N0 be a homogeneous Poisson process on Rd with intensity ρ. Independently mark the

events s of N0 with numbers Z(s) from any absolutely continuous distribution function F .

An event s of N0 with mark Z(s) is deleted if there exists another event u with ||s−u|| < τ

and Z(u) < Z(s). The retained events form the (more regular) spatial point process.

Simple Sequential Inhibition Point Process

A simple sequential inhibition point process (SSI) is defined as the output of an algorithm

that repeatedly introduces particles at random into a bounded window A, discarding

those that would overlap a previously introduced particle, until some stopping criterion

is satisfied. It can be imagined in this way: Again, consider a Poisson process N0 on a

domain A with intensity ρ. We place a disc of a radius, say δ at random in a region A.

Then we determine the remaining points in A, for which we can place a disc of radius δ

that do not overlap with the first disc. Then we select the center point at which the next

disc at random from a uniform distribution of these points. We continue in this fashion,

choosing at each stage the disc center at random from the points at which the next disc

does not overlap with any of the previous discs. The process stops when a pre-specified

number of discs have been placed or no additional disc can be placed without overlapping

previously placed discs.

Summarizing

In [8] detailed information about hard-core models are presented. After the deeper

studium of spatial processes, one can see, that it is meaningless to delay with another
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types of spatial processes because of their non-similarity to fibre composites. From the

previous mentioned, it is clear, that fibre composites can not have CSR character, because

of their nonzero fibre diameters. So, it means, that for their modeling it is required to use

regular spatial processes. Later we show, the tests of CSR indicating regularity of fibre

reinforced composite materials.

Cluster Processes

1.3.3 Soft-Core (Cluster Point) Models

In contrast to hard-core models, soft-core models are those, where the number of neighbors

within some critical distance δ is smaller than expected under CSR, but the number is

not zero. These processes are sometimes called as cluster-point processes with spherically

shaped neighborhood. The construction of this processes is very simple, see [25] for details

and appropriate algorithms inside.

1.3.4 Cox Process

If the point intensity varies from sub-region to sub-region, thereby implying that some sub-

regions are more likely to contain points than others, then the resulting point distribution

will take on a ”patchy” appearance. This is what is called a Cox process (also named a

doubly stochastic Poisson process). The latter comes from the idea that such a process

can be thought of as arising from a two-step random mechanism.

Note: A generalization of a Poisson process is made by supposing that the intensity

measure is itself random, with the point process being Poisson conditional on the real-

ization of the intensity. In the simple homogeneous Poisson process, the intensity is the

same everywhere.
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2 Spatial Data Analysis

2.1 Introduction

As we said in the previous chapter, data in the form of a set of points, irregularly dis-

tributed within a region of space creates the so called spatial point pattern. In figure 1.2

we can see an example of clustered and regularized point pattern. Our next example of

a point pattern, shown in figure 2.1 introduces the idea of a multivariate point pattern.

In this example, the points represent cells of two different types (hence bivariate), e.g.

three-phase composite material reinforced by fibres made of two types of materials.

Figure 2.1: Multivariate point process – three-phase composite material

Further, edge effects play very important role in spatial statistics, see [9]. Edge effects

arise in spatial point pattern analysis when, as is often in practice, the region, say A, on

which the pattern is observed is part of a larger region on which the underlying process

operates. The essential difficulty is that unobserved events outside A may interact with

observed events within A.

In many publications, e.g. see [9], [32] or [30], many techniques how to avoid mistakes

by not including these edge effects are described, but in our accounts we will not consider

these effects from the reason of their exigence from the computational time point of view.

2.2 Complete spatial randomness (CSR)

Complete spatial randomness (CSR) data describes a point process whereby points are

placed within a volume in a completely uncorrelated, i.e. random fashion. Such a process

requires only one parameter, i.e. the density of points, λ within a volume. This model is,

that points are derived from a spatial Poisson process, see 1.3.1.

The study of such a point process is essential for the comparison of point data from

experimental sources to examine data sources for statistical correlations. As a statistical

testing method, the CSR distribution finds applications in areas.

For any finite region of space, the average number of points located within the volume

will be given by the density of the data multiplied by the volume of the region. However,
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for each individual sampling of the data, the number of points in the volume is governed

by a Poisson distribution.

According to [9], the hypothesis of CSR for a spatial point pattern asserts that

1. the number of events in any planar region A with area |A| follows the Poisson

distribution with mean λ|A|,
2. given n events xi in a region A, the xi are independent random sample from the

uniform distribution on |A|.
For more information see [30]. The constant λ is the so called intensity, or mean number of

events per unit area. According to the first item, CSR therefore implies that the intensity

of events does not vary over the plane. According to the second item, CSR also implies

that there are no interactions amongst the events.

Our interest in CSR is that it represents an idealized standard which, if strictly

unattainable in practice, may nevertheless be tenable as a convenient first approximation.

Most analyzes begin with a test of CSR and there are several reasons for this: Firstly,

a pattern for which CSR is not rejected scarcely merits any further formal statistical

analysis. Secondly, test are used as a means of exploring a set of data, because rejection

of CSR is of intrinsic interest. Thirdly, CSR acts as a dividing hypothesis to distinguish

between patterns which are broadly classifiable as a regular or clustered. Another use of

CSR is as a building block in the construction of more complex models.

2.3 Tests of complete spatial randomness

Although CSR is of limited scientific interest in itself, there are several good reasons why

we might begin an analysis with a test of CSR: rejection of CSR is a minimal prerequisite

to any serious attempt to model an observed pattern; tests are used to explore a set of

data and to assist in the formulation of plausible alternatives to CSR and of course CSR

operates as a dividing hypothesis between regular and clustered patterns.

Several different approaches will be taken to quantify types of spatial point pattern.

The general goal in the following subsections is to reduce the spatial data to informative

descriptives statistics that can help elucidate models that might be fitted to the real point

pattern.

Randomness tests are based on the following three methods:

• Quadrat tests

• Second-order methods

• Distance methods

Methods of the first type are the most appropriate in preliminary studies and they should

always be backed up by other tests. Problems of edge correction are avoided here for the

sake of simplicity.
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2.3.1 Quadrat methods

One type of descriptive statistic is based on quadrats (i.e. well defined areas, often

rectangular in a region of interest A). According to [8], usually, quadrats of random

location and orientation are sampled, the number of events in the quadrats are counted

(here the events are fibres) and statistics derived from the counts are computed. As well

as a count of fibres, the percent of area covered by the fibres in the quadrats might also

be recorded.

Random quadrats

We shall demonstrate using of random quadrats on the sample of fibre composite. Figure

2.2 depicts the positions of m = 36 squared quadrats in the extended study area. Note,

that no two quadrats overlap.

Figure 2.2: The sample of real composite showing 160 fibres placed in squared quadrats.

In computation, first of all, the fibres in each quadrant are enumerated. Table 2.1

gives the frequency distribution of the number of fibres per quadrat. Under CSR, the

number of fibres in a quadrat, say A1, of area |A1|, has a Poisson distribution with mean

λ|A1|, where λ is the intensity of the Poisson process. Table 2.1 also gives the expected

frequency distribution of number of fibres per quadrat under a Poisson distribution with

estimated mean λ (here λ = 160
6.6

≈ 4, 44). According to [8] or [9], one test for CSR is

Pearson’s χ2 goodness-of-fit test.

Note, that in reality, the distribution of fibres in a quadrats is driven by binomial

distribution, but from the computational point of view it is replaced by Poisson one,

which also states in definition in CSR. So, if we denote by n the number of points in a

sample, A =
⋃m

i=1 Ai the explored area and by n/m the expected number of fibres(their

centers) in each guadrat, then we can write

λ̂ =
n

|A|
and the chi-square statistic

Q =
m∑

i=1

(
ni − n

m

)2

n
m
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Figure 2.3: Graph of frequencies

Fibres per Observed Expected

quadrat frequency frequency

0 0 0,42

1 0 1,88

2 1 4,18

3 6 6,19

4 14 6,87

5 6 6,11

6 9 4,53

7 0 2,87

8 0 1,60

9 0 0,79

10 0 0,35

11 0 0,14

12 0 0,05

Table 2.1: Frequency distribution of num-

ber of fibres per quadrat.

is known to be asymptotically chi-squared distributed with m − 1 degrees of freedom,

under CSR hypothesis. But since n/m is simply the sample mean, i.e.

n

m
=

1

m

m∑
i=1

ni = n,

this statistic can also be written as

Q =
m∑

i=1

(ni − n)2

n
= (m− 1)

S2

n
,

where S2 = 1
m−1

∑m
i=1(ni−n)2 is the sample variance. For more detail see e.g. [3], [2], [22],

[21], [16] or [14]. In our example Pearson’s test statistic Q = 10, 10 < χ2
35(0, 975) = 20, 57

indicates significant departure from a Poisson distribution, i.e. CSR. So, the next question

is about regularity or clustering.

Regularity and clustering

Once CSR hypothesis is rejected, the next step in a spatial analysis may be to measure

the departure from CSR. According to [8], in table 2.2 we can see some characteristics for

identifying clustering or regularity.

Here, in the Table 2.2, X = 4, 444 is the sample mean of the quadrat counts and

S2 = 1, 284 is the sample variance.

The relative variance index I and the clumping index ICS were obviously motivated

by the equality of mean and variance of Poisson quadrat counts (mean-to-variance ratio).
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Description Index Estimator Realization

Relative variance index I
S2

X
0,289

Clumping index ICS
S2

X
− 1 -0,711

Cluster frequency index ICF
X

2

S2 −X
-6,247

Mean event index
∗
X X +

S2

X
− 1 3,733

Mean crowding index IP

∗
X

X
0,840

Morisita’s index Iδ

∑m
i=1 Xi(Xi − 1)

X(mX − 1)
0,843

Table 2.2: Indices for quadrats count data, see [8], [30].

It is clear, that the expected value of ICS is zero and value of I equals to one for Poisson

quadrat counts. Values of I greater than 1 and ICS greater than 0 would indicate that

the fibres are clustered. If ICS (our case) is less than 0 and I is less than 1, then the

fibres indicate a tendency for regular spacing. In [8] and [30] you can get more information

about a relation between ICS and ICF . Index ICF is meaningful for samples without

CSR. The mean event index
∗
X indicates an average number of events sharing a quadrat.

Mean crowding Index IP is often called as an index of patchiness. If IP is equal to 1, then

the distribution is random, regular for if IP > 1 and clustered if IP < 1. Morisita’s index

Iδ comes from the idea, that the point process consists of patches of differing intensities

and it measures variability between patches. The previous results we can see collected in

the Table 2.3 and according to thie methods we can say, that our sample is regular.

Index Random Regular Clustered

I = 1 < 1 > 1

ICS = 0 < 0 > 0

IP = 1 < 1 > 1

Iδ = 1 < 1 > 1

Table 2.3: The values of indexes for different types of patterns.
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Note: Of course, the natural question is: what constitutes ”big” or ”small”? To

answer this question, the behavior (i.e. sampling distribution) of I needs to be known

when the null hypothesis is true. If I is standardized as

T =
I − 1√

2
n−1

,

then T follows a t-distribution on n − 1 degrees of freedom approximately under the

hypothesis of complete randomness.

2.3.2 Second Order Methods

These tests are designed to detect deviation from randomness and consist of the use of

Monte-Carlo tests which are backed up by a graphical procedure.

Tests Based on Ripley’s K Function

Monte-Carlo statistics measure the discrepancies between the estimated function, i.e.

the empirical distribution function obtained from the pattern, K̂(t), and the expected

function that would be obtained in the case of randomness, E
[
K̂(t)

]
. This measure of

the discrepancy is calculated over a specific range of distances t.

Three statistics that measure possible discrepancies are:

KM = max
t0≤t≤tn

∣∣∣K̂(t)− E
[
K̂(t)

]∣∣∣ , LM = max
t0≤t≤tn

∣∣∣∣∣
√

K̂(t)−
√

E
[
K̂(t)

]∣∣∣∣∣ ,

LI =

∫ tn

t0

(√
K̂(t)−

√
E

[
K̂(t)

])2

dt.

The square-root transformation used in the latter two statistics was suggested as a vari-

ance stabiliser, see [32].

For two-dimensional patterns, it holds E
[
K̂(t)

]
= πt2, which is the expression K(t)

for a Poisson process. KM and LM measure the maximum discrepancy between observed

and expected values of K(t) over the range t0 to tn. These limits are chosen according to

the window size and also to the range of distances t, between the events, one is interested

in studying.

LI measures the integrated squared distance between

√
K̂(t) and

√
E

[
K̂(t)

]
over

the t0 to tn range and is thus an aggregated measure of discrepancy. The Monte Carlo

tests assess only deviation from randomness. The null hypothesis of randomness will be

rejected in the presence of either a clustered or an inhibited pattern. When that happens

the only way of finding out whether the pattern shows evidence of clustering or regularity

is by the use of a graphical procedure.
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As recommended in [30] and [9], a graphical procedure consists of comparing the K̂(t)

and E
[
K̂(t)

]
if known with the upper U(t) and lower L(t) simulation envelopes defined

by

U(t) = max
i

K̂i(t) and L(t) = min
i

K̂i(t),

where the empirical distribution functions K̂i(t) are obtained from each independent sim-

ulations. The simulated envelopes provide the acceptance region for a further nonpara-

metric test of the hypothesis that the process is Poisson.

Therefore, if in the plot K̂(t) lies entirely between U(t) and L(t) throughout its range

(i.e. K̂(t) lies between the simulated envelopes), there is no evidence to suggest any

departure from a CSR model. If K̂(t) lies entirely below L(t) it means that for the values

of t considered there were few points which were within distance t suggesting that there

must exist some sort of inhibition that keeps the points at a certain distance apart. As

a result, there are strong reasons to believe the events on the patterns to be regularly

distributed.

If the opposite happens, i.e. if K̂(t) lies entirely above both envelopes, it means that

for every value of t there are many points at most a distance t from each other. This

suggests that the points must be somehow clumped together and so giving strong evidence

of clustering in the pattern.

The less clear-cut case is when K̂(t) lies outside the envelopes for just part of the

range but inside them for other parts. This problem leads to the empirical study and it

is more detailed described in [32].

Tests Based on the F Function

The Monte Carlo statistics based on the F function are calculated by the following ex-

pressions:

FM = max
t0≤t≤tn

∣∣∣F̂ (t)− E
[
F̂ (t)

]∣∣∣ and FI =

∫ tn

t0

(
F̂ (t)− E

[
F̂ (t)

])2

dt.

From the first postulate of a Poisson process (that for some λ > 0, and any finite planar

region A, the number of points in A has a Poisson distribution with mean λ|A|), we

deduce that, for two dimensional spaces: F (t)=P(there is at least one event in the circle

centered at x0 with radius t)=1− exp(−λπt2). If we undertake a graphical procedure, we

arrive at the following result: Here, the plot’s interpretation is different from that of the

Ripley’s K function.

In the presence of a clustered pattern, there will be a smaller number of point-to-object

distances than would be the case in a Poisson process and so the estimated EDF, F̂ (t),

takes smaller values than the theoretical function, F (t) = 1 − exp(−λπt2) for all (or at

least for most) of the t range of distances considered. However, for a regular alternative

there will be a greater number of point-to-object distances than would be the case for

a random process (i.e. a Poisson process) and F̂ (t) would be much greater than F (t).
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Plotting F̂ (t) as the ordinate against t as the abscissa together with upper U(t) and lower

L(t) envelopes, helps identify the type of model appropriate for the spatial distribution

of the particles. The envelopes are obtained similarly to those for the nearest-neighbor

and K functions, however, their interpretation is different (essentially ”reversed”).

If the plot of F̂ (t) lies between U(t) and L(t) throughout its range it indicates no

evidence to suggest any deviation from a CSR model. If F̂ (t) lies beneath L(t), it means

that for the values of t considered there are very few points whose distance to their nearest

neighbor is at least t. This indicates that the particles in the pattern might somehow be

clumped together.

If F̂ (t) lies above both envelopes, it means that for every value of t there are many

points whose distance to any of the m fixed points are at least t. This suggests that the

points must somehow be restricted to a minimum distance apart, giving rise to regularly

distributed patterns.

An entirely similar procedure can be employed to determine CSR using J function,

[32].

2.3.3 Distance methods

Distance methods, also known as plotless sampling techniques, were introduced because of

the practical difficulties sometimes raised by quadrat sampling. Whereas quadrat methods

lend themselves to field sampling, some of the more powerful distance rely on having a

good map of all events. Distance methods make use of precise information on the locations

of events and have the advantage of not depending on arbitrary choices of quadrat size or

shape.

Nearest-neighbor methods

Here, event-to-event or point-to-event distances are computed and summarized. The

following Figure 2.4 illustrates various possibilities. Distances may be measured between

events and nearest-neighboring events (W ) or between sample points and nearest events

(X). Sometimes it is used the second nearest event X2. Sample points usually are located

randomly in the study area, but may be placed systematically. The distribution theory

for W and X under CSR is well known, see [8] for details. In R2, the density of the

positive random variable W is

g(w) = 2πλwe−πλw2

, w > 0.

The distance from a randomly placed sample point to the nearest event X, has the same

distribution as W .
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Figure 2.4: Types of nearest-neighbor distances X, X2, W .

Test statistics. Many statistics have been proposed for testing CSR, usually based on

random sample of n points or a random sample of n events. A summary of test statistics

and their asymptotic distributions under CSR is presented in the following Table, see

[8]. Distribution theory for those tests is based on independence of n nearest-neighbor

measurements randomly sampled from a region A. Some comments to the statistics

presented in the table below, you can see in the Appendix and in [8].
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Measurement Test statistic Distribution Author

W S1 =
1

m

m∑
i=1

Wi N( 1
2
√

λ
, 4−π

4λπm
) Clark & Evans

W S2 = 2πλ

m∑
i=1

W 2
i χ2

2m Skellam

X S3 = πλ
1

m

m∑
i=1

X2
i N

(
1, 1

m

)
Pielou

X S4 = m

∑m
i=1 X2

i

(
∑m

i=1 Xi)
2 By simulation Eberhardt

X S5 = 12

m2 log

mP
i=1

X2
i

m
−

m∑
i=1

log X2
i

7m + 1
χ2

N−1 Pollard

X, X2 S6 =

∑m
i=1

X2
i

X2
2,i

m
N

(
1
2
, 1

12
m

)
Holgate

X, X2 S7 =

∑m
i=1 X2

i∑m
i=1 X2

2,i

β(m, m) Holgate

X, W S8 =

∑m
i=1

X2
i

X2
i +W 2

i

m
N

(
1
2
, 1

12
m

)
Byth & Ripley

X, W S9 =

∑m
i=1 X2

i∑m
i=1 W 2

i

F2m, 2m Hopkins

Table 2.4: Nearest-neighbor statistics and their asymptotic distribution under CSR

To reduction of complex point patterns to a one-dimensional nearest-neighbor sum-

mary statistic results in a considerable loss of information. Nearest-neighbor statistics

indicate only departure from the CSR. Little is known about the behavior of these statis-

tics when CSR does not hold, see [8].

More information about mentioned statistics together with its detailed description you

can find namely in [8] and the first two of them is described below and the second one in

the Appendix.
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Two-tailed test of CSR — Clark-Evans test

This two-tailed test of CSR is in literature very known as the so called Clark-Evans test

of CSR. To construct a test of the CSR hypothesis based on the Clark & Evens statistic,

suppose that one starts with a sample pattern Sn = {si : i = 1, . . . , n} and constructs

the nn-distance (nearest-neighbour) for each point si ∈ Sn. Then it would seem most

natural to use all these distances {d1, . . . , dn} to construct the sample-mean statistic in

2.3.3. However, this would violate the assumed independence of nn-distances on which

this theory is based. To see this, it is enough to observe that if si and sj are mutual nearest

neighbors, so that di ≡ dj, then these are obviously not independent. More generally, if

sj is the nearest neighbor of si, then again di and dj must be dependent. However, if one

Figure 2.5: Cell of radius d

selects a subset of nn-distance values that contained no common points, such as those

shown in Figure 2.5, then this problem could be in principle avoided. The question is how

to choose independent pairs. Now we simply assume, that some “independent” subset

(W1, . . . , Wm) of these distance values has been selected (with m < n). Widely, it is for

computations the following rule

m =
n

2
.

By Wm we denote the sample-mean value

Wm =
1

m

m∑
i=1

Wi. (2.3.1)

By differentiating we obtain the probability density fW of W as

fW (w) = F ′
W (w) = 2πλwe−λπw2

. (2.3.2)

It can be shown, see [34], that mean and variance of this distribution are given respectively

by

E [W ] =
1

2
√

λ
, D [W ] =

4− π

4λπ
. (2.3.3)
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Next we observe from the properties of iid random samples that for the sample mean Wm

in 2.3.1 it holds

E
[
W̄m

]
=

1

m

m∑
i=1

E [Wi] =
1

m
(mE [W1]) = E [W1] =

1

2
√

λ
(2.3.4)

and similarly

D
[
W̄m

]
=

(
1

m

)2 m∑
i=1

D [Wi] =
1

m2
(mE [W1]) =

4− π

m(4λπ)
. (2.3.5)

From the central limit theorem we obtain

Wm ∼ N

(
1

2
√

λ
,

4− π

4λπm

)
(2.3.6)

and after standardization we can write

Zm =
Wm − E(Wm)√

D
[
Wm

] ∼ N(0; 1). (2.3.7)

and use it to construct tests of CSR. The standard test of CSR in most software

is a two-tailed test in which both the possibility of “significantly small” values of wm

(clustering) and “significantly large” values of wm (regularity) are considered. First,

recall the notion of upper-tail points, zα, for the standard normal distribution as defined

by P(Z ≥ zα) = α for Z ∼ N(0, 1). In these terms, it follows that for the standardized

mean in 2.3.6

P
(|Zm| ≥ zα/2

)
= P

[
(Zm ≤ −zα/2) ∨ (zα/2 ≤ Zm)

]
= α (2.3.8)

under CSR hypothesis. If we write the estimates of the mean and standard deviation

under CSR by

µ̂ =
1√
2λ̂

, σ̂m =

√
4− π

4πλ̂m
, (2.3.9)

then one can test the CSR hypothesis by constructing the following standardized sample

mean:

zm =
wm − µ̂

σ̂m

. (2.3.10)

If the CSR hypothesis is true, then zm should be a sample from N(0, 1). Hence a test of

CSR at the α−level of significance is then given by the rule:

Two-tailed CSR test: Reject the CSR hypothesis if and only if |zm| > zα/2.

The significance level α is also called the size of the test. Example results of this testing

procedure for a test of size α are illustrated in Figure 2.6. Here the two samples, zm, in

the tails of the distribution are seen to yield strong evidence against the CSR hypothesis,

while the sample in between does not.
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Figure 2.6: Two-tailed test of CSR.

One-tailed tests of clustering and regularity

As already noted, values of wm (and hence zm) that are too low to be plausible under

CSR are indicative of pattern more regular than random. Similarly, values too large

are indicative of patterns more clustered than random. In many cases, one of these

alternatives is more relevant than the other. So the key question here is whether our

pattern is significantly more clustered than random. Similarly, one can ask whether the

pattern is significantly more regular than random. Such questions lead naturally to one-

tailed versions of the test above. First, a test of clustering versus CSR hypothesis at the

α−level of significance is given by the rule:

Clustering versus CSR test: Conclude significant clustering if and only if zm < zα.

Example results of this testing procedure for a test of size α are illustrated in Figure 2.7

below. Here the standardized sample mean zm to the right is sufficiently low to conclude

the presence of clustering (at the α−level of significance), and the sample toward the

middle is not. In a similar manner, one can construct a test of regularity versus CSR

Figure 2.7: One-tailed test of clustering.

hypothesis at the α−level of significance using the rule:

Regularity versus CSR test: Conclude significant clustering if and only if zm > zα.

Example results for a test of size α are illustrated in Figure 2.8 below, where the sample

zm to the left is sufficiently high to conclude the presence of regularity (at the α−level of
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Figure 2.8: One-tailed test of regularity.

significance) and the sample toward the middle is not. While such tests are standard in

literature, it is important to emphasize that there is no “best” choice of α. The typical

values given by most statistical tests are listed in tables below.

Significance α zα/2

“Strong” 0,01 2,58

“Standard” 0,05 1,96

“Weak” 0,10 1,65

Table 2.5: Two-tailed significance

Significance α zα

’Strong” 0,01 2,33

’Standard” 0,05 1,65

’Weak” 0,10 1,28

Table 2.6: One-tailed significance

However, since these distinctions are admittedly arbitrary, another approach is often

adopted in evaluating test results. The question is easily answered by simply calculating

the probability of a sample value as zm for the standard normal distribution N(0, 1). If

the cumulative distribution function for the normal distribution is denoted by

Φ(z) = P(Z < z), (2.3.11)

then this probability, called p-value of the test, is given by

P(Z ≤ zm) = Φ(zm). (2.3.12)

Notice that unlike the significance level α above, the p-value for a test depends on the

realized sample value zm and hence is itself a random variable that changes from sample

to sample. More generally, the p-value can be defined as the largest level of significance

(smallest value of α) at which CSR would be rejected in favor of clustering based on the

given sample value zm.

Similarly, one can define p-value for a test of regularity in the same way. Hence, the

p-value in this case is

P(Z ≥ zm) = P(Z > zm) = 1−P(Z ≤ zm) = 1− Φ(zm), (2.3.13)

where the first equality follows from the fact that P(Z = zm) = 0 for continuous distrib-

utions.
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Finally, the corresponding p-value for the general two-tailed test is given by

P(|Z| ≥ zm) = 2Φ(−|zm|). (2.3.14)

Now we briefly present the computations mentioned above on a real sample of composite

material.

Following the previous statistics, our real example is really regular distributed. Of

course, it is clear, because of the nonzero diameters of fibres, which centers we are in-

vestigating. These results follow from the p-values of all statistics mentioned in Table

2.3.3.

Summary of nearest-neighbor methods

The reduction of point patterns to a one-dimensional nearest-neighbor summary statistics

results in a considerable loss of information. Information on individual nearest-neighbor

distances is lost. Because distances are measured only to the closest events, only the

smallest scales of pattern are considered, and information on larger scales of pattern is

unavailable. Nearest-neighbor statistics indicate only the direction of departure from

CSR. Little is known about the behavior of these statistics, when CSR does not hold.

Unlike quadrates methods, these statistics do not depend on some arbitrary choice

of quadrat size. In conclusion, because much of the spatial information is lost, and

because for non-CSR models it is debatable what these statistics are measuring, so nearest-

neighbor statistics for mapped data can not be recommended.

2.4 Ripley’s K function

Ripley’s K(t) function is a tool for analyzing a completely mapped spatial point processes

data, i.e. data on the locations of events. Here we describe K(t) for two-dimensional

spatial data. Completely mapped data include the locations of all events in a predefined

study area. Ripley’s K(t) function can be used to summarize a point pattern, estimate

parameters and fit models.

The K function is

K(t) = λ−1E[ number of events within distancet of a randomly chosen event ],

where λ is the density (number of fibres per unit area) of events. So, K(t) describes

characteristics of the point process at many distances scales. As we have said before,

another alternative summaries do not have these property.

K(t) does not uniquely define the point process in the sense that the two different

processes can have the same K(t) function. Also, processes with the same K(t) function

may have different nearest-neighbor distribution function. Nevertheless, the K function is

the basis of routine tools (for descriptive and testing purposes) widely used in the analysis

of spatial processes.
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For many point processes the expectation in the numerator of the K(t) function can be

analytically evaluated, so the K(t) function can be written in a close form. The simplest

and most commonly used, is K(t) for a homogeneous Poisson process (CSR):

K(t) = πt2.

Values of K(t) for a process are often compared with those for the Poisson process.

Values larger or smaller than πt2 respectively indicate a more clustered or more regular

process than the Poisson process. In [10], K(t) functions for various types of process are

presented in details.

2.4.1 Estimating K(t)

Given the locations of all events within a defined study area, K(t) is a ratio of a numerator

and the density of events λ. The density can be estimated as λ̂ = n/A, where n is the

observed number of points and A is the area of the study region. If edge effects are

ignored, then the numerator can be estimated by

1

n

n∑
i=1

n∑
j=1

I(dij < t),

where dij is the distance between the ith and jth points, and I(x) is the indicator function

with the value 1 if x is true and 0 otherwise. Edge effects arise because points outside

the boundary are not counted in the numerator, even if they are within distance t of a

point in the study area. Ignoring edge effects biases the estimator K̂(t), especially at

large values of t. A variety of edge-corrected estimators have been proposed, see e.g. [32],

[9], [8] or [30]. The most commonly used estimator is

K̂(t) = λ̂−1

n∑
i=1

n∑

j=1
i6=j

w(li, lj)
−1 I(dij < t)

n
=
|A|
n2

n∑
i=1

n∑

j=1
i6=j

w(li, lj)
−1I(dij < t).

As above, dij is the distance between the ith and jth points, and I(x) is the indicator

function. The weight function w(li, lj) provides the edge correction. It has the value of

1 when the circle centered at li and passing through the point lj (i.e. with a radius of

dij) is completely in the study area (i.e. if dij is larger than the distance from li to at

least one boundary). If part of the circle falls outside the study area, then w(li, lj) is the

proportion of the circumference of that circle that falls in the study area.The effects of

edge corrections are more important for large t, because large circles are more likely to

be outside the study area.
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Figure 2.9: A figure related to explanation to the Ripley’s K(t) function.

The explicit formula for w(li, lj) can be deduced if A is rectangular, see [30]. Although

K̂(t) can be determined for any t > 0, it is common practice to consider only t less than

one-half the shortest dimension of the study area.

The simplest use of Ripley’s K(t) function is to test CSR. If CSR of a studied process

holds, then K(t) = πt2 for all t. In practice, it is easier to use

L̂(t) =

√
K̂(t)

π
,

because D(L̂(t)) is approximately under CSR. Under CSR is then then L(t) = t. Devia-

tions from the expected value at each distance t are used to construct tests of CSR. One

approach is to test L(t)− t = 0 at each distance t.

To test whether the data comes from a CSR process, a Monte Carlo test based on the

Cramér-von Mises-type statistic

k =

∫ tmax

0

{√
K̂(t)−

√
K0(t)

}2

dt,

where K̂(t) is the estimated K-function of the observed pattern, K0(t) = πt2 is the K-

function under the hypothesis of CSR, and tmax is the maximum distance for which K̂(t)

is computed.

For a given spatial point pattern, D̂(t) = K̂(t) − πt2 can be used to evaluate its

compatibility with the CSR assumption. The sampling distribution of K̂(t) under the

CSR assumption is analytically intractable. However, when A is a rectangle, the variance

of K̂(t) can be explicitly expressed, see [9](Lotwick & Silverman) as

varLS(t) =
|A|2

n(n− 1)

(
2b(t)− a1(t) + (n− 2)a2(t)

)
,

where

a1(t) =
(0, 21Pt3 + 1, 3t4)

|A|2 , a2(t) =
(0, 24Pt5 + 2, 62t6)

|A|3 ,



2. SPATIAL DATA ANALYSIS 34

b(t) =
πt2

|A|
(

1− πt2

|A|
)

+
1, 0716Pt3 + 2, 2375t4

|A|2 ,

where P denotes the perimeter of A. All the above four equations are exact when t is

smaller than or equal to a quarter of the length of the shorter side of A, see [6]. As

suggested in [9], ±2
√

varLS(t) can be used as the upper/lower limits for D̂(t). If D̂(t)

lies within these limits for all the valid values of t, then the spatial point pattern under

investigation can be regarded as compatible to the CSR assumption; otherwise, a deviation

from CSR is suggested. In [9] it is suggested to draw a D-curve (D̂(t) and ±2
√

varLS(t)

against t) to visualize the CSR test result:

Figure 2.10: Point pattern following CSR.

Figure 2.11: Point pattern tending to regularity.

Figure 2.12: Point pattern tending to clustering.

Three typical spatial point patterns and their corresponding D-curves are shown in

previous Figures. In Figure 2.10, the CSR assumption is supported. The D-curves in

Figure 2.11 and 2.12 both suggest obvious deviation from the CSR assumption but in

opposite directions. This can be explained by investigating the physical meaning of K̂(t).

By definition, K̂(t) is essentially an average of point counts in circles of radius t. If the

point pattern under investigation tends to cluster for certain values of t, the point counts

in the circles will become much higher than the expectation under the CSR assumption
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because it is very probable that a large number of points aggregate “into” the circles.

However, if the point pattern has a tendency to regularity, the point counts in the circles

will be essentially lower then expectation because t may not be big enough for the circles

to “reach” enough number of points. In other words, if D̂(t) is smaller than the lower

bound, the pattern tends to regularity; or if D̂(t) is bigger than the upper bound, the

pattern tends to cluster; otherwise, the CSR assumption becomes applicable.

The most right graphs in the previous three pictures shows an acceptance region of a

5% test for CSR of n events in a square area A = [0, a]× [0, a], based on L̂(t), see [8]:

{(
t− 1, 42

√
|A|

n
, t +

1, 42
√
|A|

n

)
: 0 < t ≤ a

4

}
.
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3 Microstructural Descriptors

3.1 Introduction

In this chapter we give a brief review of some statistic methods that are used for describing

and distinguishing different structures of fibre composite materials.

3.2 Properties of random media

3.2.1 Homogenity and symmetry

The medium is strictly spatially stationary or strictly statistically homogeneous if the joint

probability distributions describing the stochastic process are translationally invariant, i.e.

invariant under a translation of the origin.

If descriptive functions depend generally on the absolute positions of inclusions, then

we say that the medium is statistically inhomogeneous. Figure 3.1 depicts two examples

of statistically inhomogeneous media, see [37].

Figure 3.1: Two examples of statistically inhomogeneous media. Density of the black

phase decreases in the upward direction (left panel) and radially from the center (right

panel).

The medium is said to be strictly statistically isotropic if the joint probability distri-

butions describing the stochastic process are rotationally invariant, i.e. invariant under

rotation of the spatial coordinates, see Figure 3.2.

3.2.2 Ergodicity

Usually, the further assumption which is introduced when estimating random fields is

the assumption of ergodicity of the field. A random field is said to be ergodic, when any

information about it can be obtained from a single realization. By the term “realization”

we understand the event for which a random variable obtains a definite and unique value,

see [20]. Thus, complete probabilistic information can be obtained from a single realization
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Figure 3.2: Two examples of portions of statistically homogeneous media. The medium

is anisotropic (left panel) and isotropic (right panel).

of the infinite medium. This suggests an ergodic hypothesis, i.e., the result of averaging

over all realizations of the ensemble is equivalent to averaging over the volume for one

realization in the infinite-volume limit. Thus, complete probabilistic information can be

obtained from a single realization of the infinite medium, see [37].

3.3 Statistic description of composites

This section provides some useful functions and formulas for the description of a composite

materials:

• indicator function

• n−point probability functions

• second order intensity function

• lineal-path function

• nearest-neighbor functions

• pair distribution function

For the sake of simplicity, we will in the next assume only 2D-cases, i.e. cross-section of

a material, which is a sufficient condition for us, because we consider “only” composites

with unidirectional (paralel) fibres.

Let us consider a composite material made of i = 1 . . . n (in our case n = 2) homoge-

neous and perfectly bounded phases. The volume fraction of the i−th phase we denote

by φi.

3.3.1 The indicator function

The use of the term random heterogeneous material rests on the assumption that any

sample of the medium is a realization of a specific random process. An ensemble is a
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collection of all the possible realizations of a random medium generated by a specific

stochastic process. Let us denote (Ω,F ,P) be some fixed probability space. Let each

point ω ∈ Ω corresponds to a realization of the random medium, see [37].

Each realization ω of the two-phase random composite random medium occupies the

region of space V ⊂ R2 that is partitioned into two disjoint random phases: phase 1

of a region V1(ω) and volume fraction φ1, and phase 2 of a region V2(ω) and volume

fraction φ2. The random sets V1(ω) and V2(ω) are the complements of each other, i.e.

V1(ω) ∩ V2(ω) = ∅ and V1(ω) ∪ V2(ω) = V. Figure 3.3 shows a portion of a realization of

a two-phase random medium. For a given realization ω, the indicator function I(r)(x, ω)

for phase r is given for x ∈ V by

I(r)(x, ω) =

{
1 if x ∈ Vr(ω),
0 otherwise.

Next we will denote by index r the following:

r =

{
m instead of 1 for a matrix,
f instead of 2 for a fiber.

For such system the indicators functions I(f)(x, ω) and I(m)(x, ω) are related by

I(f)(x, ω) + I(m)(x, ω) = 1.

Unless otherwise stated, we will drop ω from the notation (as it is usual) and write I(r)(x)

instead of I(r)(x, ω).

V
1

V
2

Figure 3.3: Two-phase fibre composite material with phases V1 and V2.

3.3.2 n−point probability functions

Now, we describe a set of general n−point probability functions, applicable to an arbitrary

two-phase composite.

Definitions

The probabilistic description of I(r)(x) is given by the probability that I(r)(x) is equal

to one, which we write as

P
{I(r)(x) = 1

}
.
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Given this probability, it follows that

P
{I(r)(x) = 0

}
= 1−P

{I(r)(x) = 1
}

.

One-point probability function. Using the indicator function as it has been defined

above, the probability of the location x belonging to phase r is defined by the ensemble

average (denoted by angular brackets 〈·〉) of the function I(r)(x), see [37]:

S
(r)
1 (x) ≡ 〈I(r)(x)

〉
= P{I(r)(x) = 1}.

The one-point probability function (also known as one-point correlation function) de-

scribed in equation above is normally difficult to compute. However, if the material is

assumed to be statistically homogeneous and ergodic, the following simplifications can be

considered, see [20]:

S
(r)
1 (x) = lim

V→∞

∫

V

I(r)(x) dx = φr,

where symbol φr denotes the volume fraction of the phase r.

If we sample the domain V with a set of locations xi with i = 1, . . . , n, then φr can

be estimated easily:

φ̂r =
1

n

n∑
i=1

S
(r)
1 (xi), r = f, m.

General n-point probability functions. Knowing a realization Vr(ω) is the same as

knowing I(r)(x, ω) for all x ∈ V. Therefore, we may regard the random set Vr(ω) as the

collection of all random variables I(r)(x) for x ∈ V. Hence, the probability law of Vr(ω) is

described by the finite-dimensional distributions of the random process
{I(r)(x) : x ∈ V

}
.

Since the I(r)(x) are either 0 or 1, this allows to specify the probabilities, see [37]:

P
{I(r)(x1) = j1, I(r)(x2) = j2, . . . , I(r)(xn) = jn

}
,

where each of numbers jk, k = 1, . . . , n is either 0 or 1.

The expectation of the product I(r)(x1)I(r)(x2) . . . I(r)(xn) is a very important aver-

age. Similarly, see see [37], as in the case of one-point probability function we get:

S(r)
n (x1,x2, . . . , xn) ≡ 〈I(r)(x1)I(r)(x2) . . . I(r)(xn)

〉
=

= P
{I(r)(x1) = 1, I(r)(x2) = 1, . . . , I(r)(xn) = 1

}
,

which features the probability that n points at positions x1, x2, . . . , xn are found in phase

r. According to see [37] we will refer to S
(r)
n as the n-point probability function for phase

r.
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It is possible to express the probability S
(f)
n of finding n points in phase formed by

fibres (f) in terms of the set of phase formed by matrix (m) by means of probabilities

S
(m)
1 , S

(m)
2 , . . . , S

(m)
n . It is not difficult to show that:

S(f)
n (x1, x2, . . . , xn) =

〈
n∏

j=1

[1− I(m)(xj)]

〉

= 1−
n∑

j=1

S
(m)
1 (xj) +

n∑

j<k

S
(m)
2 (xj,xk)

−
n∑

j<k<l

S
(m)
3 (xj, xk,xl) + · · ·+ (−1)nS(m)

n (x1,x2, . . . , xn).

Remark 3.3.1. The probability that a point at x1 is in the phase f and a point at x2 is

in the phase m is given by

S
(fm)
2 (x1,x2) =

〈I(f)(x1)[1− I(f)(x2)]
〉

= S
(f)
1 (x1)− S

(f)
2 (x1,x2).

Geometrical interpretation of S
(r)
n . Let F

(r)
n be a polyhedron with n vertices located

at positions x1, . . . , xn. Then for statistically inhomogeneous media, S
(r)
n is the probability

that all n vertices of F
(r)
n with fixed positions x1,x2, . . . , xn lie in Vr. For statistically

homogeneous but anisotropic media, S
(r)
n is the probability that all n vertices of F

(r)
n lie

in Vr when the polyhedron is randomly placed in the volume at fixed orientation, i.e. over

all translations of the polyhedron. For statistically isotropic media, S
(r)
n can be interpreted

as the probability that all n vertices of F
(r)
n lie in Vr when the polyhedron is randomly

placed in the volume, i.e. over all translations and solid-body rotations of the polyhedron,

see [37].

Remark 3.3.2. As we said before, the medium is statistically homogeneous, if the joint

probability distributions describing the stochastic process are translationally invariant.

Then we can write, see [37], for n−point probability functions for phase r:

S(r)
n (x1, . . . , xn) = S(r)

n (x1 + y, x2 + y, . . . , xn + y)

= S(r)
n (x12, . . . , x1n),

for all n ≥ 1, where xjk = xk − xj and y is a constant vector. According to the previous

notation, we can write the probability functions S2(r) or S3(r, s, t) for two- or three-point

probability functions.

The one-point function S1 is obtained by randomly throwing a single point onto the

planar section many times and recording the fraction of times that it lands in one of the

phases, say fibres in Figure 3.4. Thus, S1 (if the number of attempts is sufficiently large)

is the probability that a single point falls in the white phase. The two-point correlation

function S2(r) is obtained by randomly throwing a line segment of length r into the

sample many times and recording the fraction of times that its end points land in the
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fibres, see Figure 3.4. By performing this experiment for all possible lengths r, one can

generate a graph of S2 as a function of r. Therefore, S2(r) is the probability that the

two end points of a line segment of length r fall in the fibres. Clearly, variations in S2(r)

contains more information than S1, which is just a constant. Similarly, S3(r, s, t) is the

probability that the three vertices of a triangle with sides of lengths r, s and t fall in

the fibres. The three-point probability S3 gives more information than S2. In general, Sn

gives the probability that n points with specified positions lie in the fibres, see Figure 3.4.

r

r

r

r

r

s

s

s
t

t

t

Figure 3.4: A scheme showing attempts at sampling for the correlation functions S1, S2

and S3 from a planar section.

The probability of finding the phase r at the point xi and the phase s at the point xj

(in other words, two-point probability function) can be expressed, see [20], [39], [38], [12],

[37].

S
(r,s)
2 (xi,xj) = 〈Ir(xi)Is(xj)〉.

Generally, we can define n-point probability functions as:

S(r1,...,rn)
n (x1, . . . , xn) = 〈Ir1(x1) . . . Irn(xj)〉,

which gives the probability of finding n points x1, . . . , xn randomly thrown into a medium

located in the phases r1, . . . , rn.

Hereafter, we limit our attention to functions of the order one and two, since higher-

order functions are quite difficult to determine in practice, see [38], [37]. Therefore,

description of a random medium will be provided by the one-point probability function

and by the two-probability function.

One-point probability function

As we said before, the one-point probability function S1 is obtained by randomly throwing

a single point onto the planar section many times and recording the fraction of times that

it lands in one of the phases.
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Two-point probability function

Let us remark S2(r) ≡ S2(x1, x2), where r = x1 − x2. As noted earlier, the two-point

(sometimes called autocorrelation function) S2(r) ≡ S
(1)
2 (r) for statistically homogeneous

media can be obtained by randomly tossing a line segments of length r ≡ |r| with a

specified orientation and counting the fraction of times the end points fall in phase 1.

The function S2(r) provides a measure of how the end points of a vector r are correlated.

For isotropic media, S2(r) attains its maximum value of φ1 at r = 0 and decays(usually

exponencially fast) to its asymptotic value φ2
1. For explanation of asymptotic properties

and bounds of S
(i)
n see [37], paragraph 2.2.4 for more details.
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Figure 3.5: Two-point probability function.

3.3.3 Lineal-path function

Another interesting and useful statistical measure is what we call the lineal-path function

L(r)(t), see [37]. For statistically isotropic media, it is defined as follows:

L(r)(t) = P(a line segment of length t lies wholly in a phase r, when
randomly thrown into the sample.)

The lineal-path function is a monotonically decreasing function of t, since the space avail-

able in phase r to a line segment of length t decreases with increasing t. At the extreme

values of L(r)(t) we have

L(0)(t) = Φr, L(r)(∞) = 0.

The “tail” of L(r)(t) (i.e., large t behavior) provides information about the largest lineal

paths in phase r. If we define L(12)(t) to be the probability that a line segment of length

t intersects any parts of the two-phase interface when randomly thrown into the sample,

then it is clear that

L(1)(t) + L(2)(t) + L(12)(t) = 1.

In the next figure we can see one realization of the lineal path function for fibres(left)

and for the matrix(right). By the blue curve represents this function obtained by Monte-

Carlo method and the red curve is smoothed the blue one.
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Figure 3.6: Lineal path function for fibres(left) and matrix(right).

Now, we will give brief definitions of functions which help identifying the type of

distributions found on spatial patterns. They consists of Ripley’s K function, which

can be classified as a second-order measure, and distance measures which include the G

(nearest neighbor), F (empty-space) and J functions.

3.3.4 Second order intensity function (Ripley’s K-function)

The most important function of second order is Ripley’s K− function, as was said in

Section 2. In that section is presented a detailed description of this function.

In the next figure we can see an example of the Ripley’s K-function for real compos-

ite. The shape of the function was computed as a mean of 15 real samples. In the left

figure there are plotted 15 K−functions corresponding to various samples of real com-

posite and on the right figure there is an average K−function with blue dotted function,

corresponding to CSR (Poisson process).

Figure 3.7: Ripley’s K(t) function for the real composite.
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3.3.5 Nearest neighbor function

The G or nearest neighbor distance distribution function is a relatively simple description

of the spatial distributions of the points based on the measurement of the distance from

a typical point of the pattern to its nearest neighbor. So, this statistic focuses on short-

range interactions between points, see [32]. The nearest neighbor distribution function

G(t) is defined for t ∈ R+ by:

G(t) = P(the circle of radius t, centered on an arbitrary object,
contains at least one other object).

According to [32], an equivalent definition of G(t) is defined by:

G(t) = P(the distance between an arbitrary object and its nearest neighbor,
is less than or equal to t).

An obvious way of estimating the G function from an observed pattern is simply to

calculate for each point within a sampling space the distance to its nearest neighbor and

we get an empirical G function, i.e.:

Ĝ(t) = n−1 × (number of points whose nearest neighbor distance is ≤ t)

A practical computation proceed as follows: We denote by n a number of points in a

certain region A and by yi denote the distance from the i−th point to the nearest other

point in A, i.e. the nearest neighbor point. The distances yi are called nearest neighbor

distances.

The simplest and most natural estimator of the G function is given by the proportion

of members of an event set for which the distance to the nearest other member of the set

{yi}n
i=1 is less than or equal t. It is provided by the following function:

Ĝ(t) = n−1#(yi < t),

where #(·) is the counting function which records the number of points in the specified

set. In the next figure we can see an average estimation of the G-function from the real

15 samples of composite:
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Figure 3.8: Estimation of the G(t) function for the real composite.
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3.3.6 Empty space function

Another descriptor of random pattern is the so called empty space distribution function

(also called F -function), which is closely related to the nearest neighbor function. A

definition of the F -function is given by:

F (t) = P(the distance between an arbitrary point and its nearest event is at most t),

especially for two-dimensional spaces the definition can be rewritten like this:

F (t) = P(the circle of radius t, centered on an arbitrary point
contains at least one event).

The empirical distribution function of the F function can be estimated by counting the

distances di (from each of the m fixed points to the nearest point in the sample) that are

less than t and dividing this total by the overall number of fixed points, m:

F̂ (t) = m−1#(di < t).

The choice of a number of m fixed points is not exactly defined. For example, according

to [9] it is recommended to place m fixed points into a k × k grid, where k ≈ √
n.

In the next figure we can see the estimation of the F function for real sample:
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Figure 3.9: Estimation of the F (t) function for the real composite.

The estimation of F (t) is complicated by the bounded nature of the pattern being

studied. As the distances t increase, the position of the nearest neighbor to a point will

only be known with certainty for those points lying within the interior of the study region.

Thus, edge effects play a significant role in the estimation of F (t). For a Poisson process

of intensity λ on a two dimensional space one obtains:

1− F (t) = exp(−λπt2), t ≥ 0

and therefore, just like for the nearest neighbor distribution function, F (t) is given by:

F (t) = 1− exp(−λπt2), t ≥ 0.
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Values of F (t) greater than the Poisson value suggest that there is regularity or ordering

in the point pattern; lower values suggest aggregation, see [32].

3.3.7 The J function

The J function was first introduced by Baddeley and van Lieshout who stated that the

strength and range of interpoint interactions in a spatial point process can be qualified

by the J(t) function given by, see [5]:

J(t) =
1−G(t)

1− F (t)
, t > 0 such that F (t) < 1,

where G(t) is the nearest-neighbor distance distribution function and F (t) is the empty-

space function of the process. The J function is a nonparametric measure of the type

of spatial interaction. The values of J(t) function less or greater than one are indicative

of clustering or regularity, respectively. If the point process is stationary and Poisson,

then F (t) ≡ G(t) and so J(t) = 1. Just as for the K function, J does not depend on

the intensity parameter, a feature that affects both F and G. Also note, that J(0) = 1.

In the next figure we can see an average of the J-function from 15 samples of the real

composite.
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Figure 3.10: The J(t) function for the real composite.

3.3.8 Pair distribution function

According to [20], the pair distribution function g(t) describes the probability of finding

an inclusion whose center lies in an infinitesimal circular region of radius dt about the

point t, provided that the coordinate system is located at the center of a second inclusion.

Next, according to [20] we can get the following relation between g(t) and K(t):

g(t) =
1

2πt

dK(t)

dt
.
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Although g(t) and K(t) are related, they provide quite different physical information.

The Ripley’s function K(t) can distinguish between different patterns and detect regu-

larities, whereas the pair distribution function g(t) describes the occurrence intensity of

inter-inclusion distances. In this function a local maxima indicates the most frequent

distances between points and a local minima the least frequent ones in the pattern.

The following discretized estimation of pair distribution function for our computations

was used, see [20]:

g(t) =
1

2πtρdt

1

N

N∑
i=1

ni(t),

where t is the radial distance from a fibre center, ρ the number of fibres per unit area, N

the total number of fibre centers in the region considered, ni the number of fibre centers

which lay within an annulus of radius t and thickness dt, with the same center as the

fibre i. If the values of g(t) are greater than one, the corresponding distances occur more

frequently than in a complete random pattern, and conversely for smaller values.

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

Figure 3.11: The pair distribution function of the real composite.
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4 Applied Algorithms

4.1 Basic Terms

The mechanical behavior of composite materials in strongly dependent on the geomet-

rical arrangement of distinct phases of the composite– microstructure. Unfortunately,

microstructure of real composite materials is typically quite complicated. To illustrate

this fact, we present a high-contrast micrograph of a part of the graphite fiber tow im-

pregnated by the polymer matrix, see figure 4.1.

Figure 4.1: A micrograph of a transverse plane section of a real graphite fiber tow.

Before starting our description of the developped algorithms it is natural to describe

the real composite, that was used as a ”starting” model. All of them come from the photos

of a real composite, that were gained from Ing. Jan Zeman, Ph.D from Czech Technical

Univerzity in Prague. To see a sample of sent photos see the following figures. For more

information about separating real structure from the photos see [12].



4. APPLIED ALGORITHMS 49

Figure 4.2: Original(up) and corrected figures(down).

In the upper pair of figures you can see two different real samples in the ”raw” state

and on the third and fourth figures the same samples with drawn circles representing

fibres with their centers. We used an Image Processing Toolbox for Matlab to the next

manipulation: First of all we determined surface areas of each white region representing

one fibre. In the second step we interleaved an ellipse with the same area by the given

region to get the center of a fibre(blue crosses) and then we placed a circle with the same

area and center as the ellipse(red circles). After this steps we have at disposal model of a

real material–non-constant diameters of fibres and non-periodic structure. From this data

we stated the distribution of fibre’s diameters that we used in the following algorithms.
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Figure 4.3: Histogram(left) and normal probability plot of fibre’s diameters.

The resulting distribution agrees with normal distribution N(71, 87; 20, 96).

It is good to remark, that major existing results dealing with generating random

structures come from the fact, that the centers of the fibres are not nearer then diameter

of a fibre, which is considered to be constant for all fibres in a sample. Algorithms

generating such structures are based on so called spatial point processes, see [26] and
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references therein. But, the previous ones differ from the algorithms presented later.

Newly developed algorithms enable to work with non-constant diameters of the fibres

with keeping the same volume fraction, i.e. the ratio of the area filled by fibres and total

area of a sample. For our set of fifteen samples the mean value for total volume fractions

amount 0,4869.

4.2 Algorithm AI

The main idea of this algorithm is based on stochastic process S(t, ω), see Appendix 13 for

more information. This process, more specifically its separate trajectories, has a character

of a ”wavy-random sinusoid curve”. In other words, they have different amplitudes and

periods. For the better imagination see figure 13.2 in Appendix.

Let D be a domain, representing our sample, into which we want to place fibres with

random diameters corresponding to the established distribution of the real samples.

Figure 4.4: To the description of the algorithm AI(left) and the final structure generated

by the algorithm AI(right).

A detailed procedure can be described in several steps. In the bottom of the picture

there is a green curve which forms the centers of the fibres with random diameter. This

green curve was received by means of one realization of the stochastic process S(t, ω) with

K = 3800. During putting the fibres on the line we also have to check overlapping of the

fibres. After the green line is filled we continue with a red one, which is generated as the

green one, but is shifted up. Again, the fibres are placed to the line and checked with

existing ones. In the case of overlapping(the arrows in the figure) they are shifted to the

”safe” distance. In this way we continue until the whole domain D is not filled up. In the

next figure there is finished a resulting structure of a two-phased fibre composite material

according to the algorithm AI. By a different choice of a number K in a expansion of
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the stochastic process S(t, ω) we change an amplitude and period of a curve. This fact

causes, that we are able to generate structures with various volume fraction and number

of fibres in a sample. Of course, it is possible to set a minimum distance between two

fibres. By means of this algorithm fifteen samples were generated for the purpose to the

next computations.

4.3 Algorithm AII

The principle of this algorithm we can describe as follows: Firstly, we generate one fibre

with random diameter and situate it approximately in the middle of the domain sample.

Then we choose a random direction and a distance, where we put a new fibre. This

procedure is repeated until the resulting volume fraction does not reach the requested

one. During every step we are checking whether a new fibre does not cross the existing

ones. In case of overlaying of fibres, new position is generated. For the better illustration

and result see the following pictures.

Figure 4.5: To the description of the algorithm AII(left) and the final structure generated

by the algorithm AII(right).

4.4 Algorithm AIII

It is based on the Brownian motion of the suspended particles in a liquid medium. The

simulation starts with generating a sample with complete periodic structure, i.e. con-

stant diameters of fibres and the same distance between them. The diameter must be

chosen in such a way, that the resulting volume fraction has the same value as in the

real samples. After such structure is generated, the diameters of all fibres are changed

according to the distribution of real samples. In a next step each Fibre is submitted to
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the Brownian motion. In other words, we choose a random direction and distance of

shifting a fibre. Simultaneously we check for the crossing with neighboring fibres and the

minimum distance between them. If it occurs, we change the direction and the distance

and the process is repeated. This is repeated until everything is all right. It is important

to note, that generated amplitude of vibrations are in tenths of fiber’s diameter, so they

are relative small. This fact corresponds to the real concept of the Brownian motion, but

we do not consider the collisions of particles and transmitting their quantity of motion

during collision of one particle into another one.

Figure 4.6: To the description of the algorithm AIII(left) and the final structure generated

by the algorithm AIII(right).

4.5 Algorithm AIV

The principle of this algorithm is similar to the algorithm AIII.

Figure 4.7: The final structure gener-

ated by the algorithm AIV.

The difference is in processing overlaying of

fibers: if the deflection of the fibre will cause

overlaying with neighboring fiber, the shifting is

canceled – the fiber stays in its old position. It

causes, that the final structure is not so random

as in the case of algorithm AIII, but the com-

puting time is several times shorter. The only

disadvantage of algorithms AIII and AIVis in

a fact, that the amount of fibres is the same for

all samples. We have to note that in each of the

previous algorithms, the diameters of the fibres

are driven by a known probability distribution.
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Part II

Statistical Computations

I have a dream...
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5 Disposal Data
According to the previous chapter, we had at disposal a file of fifteen square-shaped

samples of a real two-fibre composite material. On the basis of the data obtained from

these samples, we constructed four different algorithms (AI-AIV) generating analogous

inner structure with almost the same volume fraction. Briefly speaking, we simulated

fifteen different samples of the same size per each algorithm and therefore we have at

disposal a set of seventy-five samples – i.e. five types per fifteen realizations.

Our aim is now to compare samples generated by algorithms AI–AIV to real ones.

As a tool to this comparison we use e.g. descriptive statistics, methods of analysis of

variance, variograms, etc. All these techniques will be presented in the next chapters.



6. DESCRIPTIVE STATISTICS 55

6 Descriptive Statistics

6.1 Introduction

Descriptive statistics are used to describe the basic features of the data gathered from an

experimental study in various ways. They provide simple summaries about the sample

and the measures. Together with simple graphics analysis, they form the basis of virtually

every quantitative analysis of data. It is necessary to be familiar with primary methods of

describing data in order to understand phenomena and make intelligent decisions. Various

techniques that are commonly used are classified as:

• Graphical displays of the data in which graphs summarize the data or facilitate

comparisons.

• Tabular description in which tables of numbers summarize the data.

• Summary statistics (single numbers) which summarize the data.

The summary statistics we can divide among these groups:

• Location - mean median, mode

• Dispersion - range, standard deviation

• Moments - variance, skewness, kurtosis

To start an analysis based on the descriptive statistics we need to receive detailed data

from the samples. One of the possible ways is to imaginary divide requested sample by

10x10 grid into one hundred cells. After this procedure we compute a volume fraction in

each of the elementary cell and obtain a file of one hundred elementary volume fractions

indexed from 1 to 100. The previous ones will be the base of next computations.

6.2 Results

In the following picture we can see the idea presented in the previous section.

Figure 6.1: A sample with an abstract grid.
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As was said in the previous chapter, we simulated fifteen samples from each algorithm

AI–AIV and therefore we obtained fifteen sets per one hundred elements. Next step

is based on computation mean value for each element from the fifteen samples. This

operation leads to getting a data matrix 5x15 which we use for computation descriptive

statistics.

Now, let’s formulate it more formally. Let i be an index denoting the number of used

algorithm. It runs from one to five according to this table:

Algorithm i

Alg. AI 1
Alg. AII 2
Alg. AIII 3
Alg. AIV 4

Real sample 5

Next, let index j denotes the number of a sample generated by the given algorithm. In

our case it can assume a value from one to fifteen. Finally, index k represents a number

of the elementary cells in our sample, see the figure above.

Denote by the symbol Xi, i = 1, . . . , 5 a data object with components Xj,k
i , j =

1, . . . , 15, k = 1, . . . , 100 and by the symbol xk
i its mean value over all samples, i.e.

xk
i =

1

15

15∑
j=1

Xj,k
i .

Then, by fixation of the index i in a matrix xk
i , we obtain a statistic file of an amount 100,

where a classical methods of a descriptive statistic can be applied. For the right formulas

for the computation of the characteristics, see e.g. [29] or [33]. Let us denote by a symbol

fk
i the volume fraction in a cell ck

i (the notation of indexes is the same as above). Then

we obtain statistic files for volume fractions in each cell for all realizations overall. The

results are presented in the following table:

Mean Median Min. Max. Range Var. Std.Dev. Kurt. Skew.

Real 48,69 50,49 25,86 62,53 36,67 60,16 7,76 3,17 -0,73

AI 47,73 48,23 35,93 57,97 22,04 24,15 4,91 2,77 -0,36

AII 47,87 48,23 28,88 55,63 26,75 18,46 4,3 6,6 -1,32

AIII 48,34 47,94 32,96 67,49 34,53 46,57 6,82 2,78 0,38

AIV 48,44 47,78 34,45 64,73 30,28 53,48 7,31 2,44 0,15

Table 6.1: Computed values of descriptive statistics of all volume fractions for all samples.

The following figures display the difference between volume fraction in each elementary

cell in real samples (meaning their mean) and samples obtained by each algorithm. Each

algorithm AI–AIV is from the reason of clearness presented in a separated figure:



6. DESCRIPTIVE STATISTICS 57

0 10 20 30 40 50 60 70 80 90 100
25

30

35

40

45

50

55

60

65

Cell No.

Real
AI

0 10 20 30 40 50 60 70 80 90 100
25

30

35

40

45

50

55

60

65

Cell No.

Real
AII

0 10 20 30 40 50 60 70 80 90 100
25

30

35

40

45

50

55

60

65

Cell No.

Real
AIII



6. DESCRIPTIVE STATISTICS 58

0 10 20 30 40 50 60 70 80 90 100
25

30

35

40

45

50

55

60

65

Cell No.

Real
AIV

Figure 6.2: Comparing elementary volume fractions of each algorithm to the real one.

Next, we present descriptive statistics for the amount of fibres in the samples for each

algorithm AI–AIV and real samples, see table:

Mean Median Min. Max. Range Variation Std. Dev. Kurt. Skew.

Real 164,60 164 145 189 44 167,40 12,94 2,04 0,14

AI 164,93 163 155 177 22 45,21 6,72 1,89 0,21

AII 162,13 162 159 165 6 2,84 1,68 2,23 -0,22

AIII 169,00 169 169 169 0 0,00 0,00 undef. undef.

AIV 169,00 169 169 169 0 0,00 0,00 undef. undef.

Table 6.2: Computed values of descriptive statistics for a total amount of fibres for several

simulations computed by algorithms AI–AIV.

We can see, that the amount of fibres for real samples and samples generated by

algorithms AI–AII can vary, but for the algorithms AIII–AIV is still constant. It is

caused by the fact, that we generate random structures from the starting position, where

the amount of fibres is chose in such way to be the resulting volume fraction the same,

see Figures 4.6 and 4.7. It is a difference in contrast to the algorithms AI or AII, where

we do not know a priori the numbers of fibres that will be generated to a desired sample

domain.
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7 Anizotropy

7.1 Variograms

Consider two data sets; we will assume that common descriptive statistics for these two

data sets are almost the same. According to this evidence the two data sets are almost

identical. However, these two data sets are significantly different in ways that are not

captured by the common descriptive statistics and histograms. Note that we can not say

that data set A is ”more variable” than data set B, since the standard deviations for the

two data sets are the same. The variogram is a quantitative descriptive statistic that

can be graphically represented in a manner which characterizes the spatial continuity of

a data set.

In this section we present results concerning with variograms. A theoretical funda-

mental is introduced in section 1.2.4. In our variogram analysis we computed directional

variograms in directions

0◦; 22, 5◦; 45◦; 67, 5◦; 90◦; 112, 5◦; 135◦; 157, 5◦

with angle toleration 11, 25◦ and one omnidirectional variogram. Their graphical repre-

sentation we can see in the next page. To the analysis we used gstat 2.3.3 software. By

help of implemented optimization methods we found out that the best fitting model is

cosine model with nonzero nugget, see figure 11.8 in Appendix.
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Figure 7.1: Omni-directional variogram for one real sample.
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Figure 7.2: Directional variograms for one real sample.
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Figure 7.3: Rose diagrams for samples generated by algorithm AI.
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Figure 7.4: Rose diagrams for samples generated by algorithm AII.
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Figure 7.5: Rose diagrams for samples generated by algorithm AIII.
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Figure 7.6: Rose diagrams for samples generated by algorithm AIV.
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Figure 7.7: Rose diagrams for real samples.
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7.2 Coefficients

As we said in the section 1.2.5, related to an anisotropy of a material, we distinguish

geometric and zonal anisotropy, see figures in mentioned section. The most used parameter

to describe geometric anisotropy is so called anisotropic ratio k, defined as

k =
range of min. variational axis

range of max. variational axis
=

a1

a2

≥ 1.

For an isotropic material, k = 1, i.e. an ellipse becomes to a circle with a1 = a2. In

the following table we can see the values of anisotropic ratio for the real sample and for

algorithms AI-AIVevaluated for each of fifteen realizations.

Sample No. Real Alg. AI Alg. AII Alg AIII Alg. AIV

1 1,082 1,467 1,266 1,127 1,267

2 1,278 1,207 1,299 1,587 1,424

3 1,206 1,437 1,187 1,198 1,171

4 1,199 1,275 1,520 1,529 1,122

5 1,062 1,400 1,096 1,215 1,148

6 1,191 1,492 1,280 1,390 1,586

7 1,129 1,425 1,115 1,341 1,261

8 1,147 1,235 1,093 1,268 1,136

9 1,093 1,494 1,298 1,373 1,322

10 1,152 1,722 1,225 1,725 1,424

11 1,184 1,102 1,150 1,332 1,381

12 1,561 1,222 1,447 1,415 1,194

13 1,629 1,368 1,716 1,435 1,530

14 1,432 1,008 1,532 1,345 1,157

15 1,207 1,219 1,179 1,177 1,720

Table 7.1: Computed values of anisotropic ratios for each algorithm.

Next, we present summary descriptive statistics for the previous values.

Mean Median Min. Max. Range Variation Std.Dev. Kurt. Skew.

Real 1,237 1,191 1,062 1,629 0,567 0,029 0,171 3,440 1,287

AI 1,338 1,368 1,008 1,722 0,714 0,033 0,181 2,795 0,149

AII 1,294 1,266 1,093 1,716 0,623 0,034 0,184 2,905 0,915

AIII 1,364 1,345 1,127 1,725 0,598 0,026 0,162 2,879 0,601

AIV 1,323 1,267 1,122 1,720 0,598 0,034 0,184 2,479 0,728

Table 7.2: Computed descriptive characteristics for anizotropic ratios.
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h

Figure 7.8: Squares deviations.

Now, we present a new characteristic-so called proportional coefficient, which we define

as a ratio of area of the ellipse and a sum of squares of deviations variogram’s ranges from

an ellipse in estimated directions

p =
P∑16
i=1 d2

i

.

Because of the symmetry of an ellipse, it holds di+8 = di, so we can simplify the compu-

tation to the form

p =
πab

2
∑8

i=1 d2
i

.

This coefficient practically determines the accuracy of fitting an ellipse of the rose diagram

to the separate abscissae obtained from directional variograms. The bigger the coefficient

is, the better fitting we have. In an ideal case, the denominator equals to zero and the

coefficient tends to infinity.
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Sample No. Real Alg. AI Alg. AII Alg AIII Alg. AIV

1 4,633 7,689 8,238 7,574 10,668

2 16,677 3,363 3,328 5,608 6,438

3 9,912 3,076 6,392 3,444 3,663

4 30,474 3,516 20,044 6,811 4,349

5 3,123 15,159 13,388 8,293 7,334

6 10,829 2,634 23,661 6,227 21,840

7 225,005 99,871 21,630 7,857 6,183

8 2,350 8,511 9,971 2,313 21,578

9 36,413 2,123 3,110 5,579 6,531

10 2,448 8,177 22,844 8,619 10,816

11 7,177 6,280 5,400 4,221 2,829

12 3,747 3,483 9,648 6,087 8,130

13 3,893 5,834 15,244 12,565 7,737

14 22,125 14,422 39,081 4,222 32,633

15 3,175 27,009 8,068 3,677 11,194

Table 7.3: Computed values of proportional coefficients for each algorithm.

Mean Median Min. Max. Range Variation Std.Dev. Kurt. Skew.

Real 25,465 7,177 2,350 225,00 222,655 3162,221 56,234 12,148 3,267

AI 14,077 6,280 2,123 99,871 97,747 606,985 24,637 11,281 3,084

AII 14,003 9,971 3,110 39,081 35,971 97,513 9,875 3,653 1,067

AIII 6,206 6,087 2,313 12,565 10,252 6,672 2,583 3,540 0,751

AIV 10,795 7,737 2,829 32,633 29,804 68,432 8,272 4,340 1,506

Table 7.4: Computed descriptive characteristics of proportional coefficients.
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8 Assumptions for the Analysis
Among the most important properties in statistical analysis are its normality and

homogeneity of variance. In the following we try find out, whether sets of elementary

volume fractions in the samples satisfy these conditions.

8.1 Normality

If the number of members in each group is fairly large, then deviations from normality do

not matter much at all because of the central limit theorem. In our case, every sample

has 100 data. In our analysis of normality we choose eight different tests to clarify this

phenomena. The tests are: Anderson-Darling test, Chi-squared test, D’Agostino’s K-

squared test, Jarque-Bera test, Kolmogorov-Smirnov test, Lilliefors test, Ryan-Joiner test

and Shapiro-Wilk test. Each of this tests is described in Appendix.

Tst. Anderson-Darling Chi-Squared D’Agostino’s K-squared Jarque-Bera

No. AI AII AIII AIV Real AI AII AIII AIV Real AI AII AIII AIV Real AI AII AIII AIV Real

1 X X X X X X X X X X X X X X X X X X X X
2 X X X X X X X X X X X X X X X X X X X X
3 X X X X X X X X X X X X X X X X X X X X
4 X X X X X X X X X X X X X X X X X X X X
5 X X X X X X X X X X X X X X X X X X X X
6 X X X X X X X X X X X X X X X X X X X X

7 X X X X X X X X X X X X X X X X X X X X
8 X X X X X X X X X X X X X X X X X X X X
9 X X X X X X X X X X X X X X X X X X X X
10 X X X X X X X X X X X X X X X X X X X X
11 X X X X X X X X X X X X X X X X X X X X
12 X X X X X X X X X X X X X X X X X X X X

13 X X X X X X X X X X X X X X X X X X X X
14 X X X X X X X X X X X X X X X X X X X X
15 X X X X X X X X X X X X X X X X X X X X

Tst. Kolmogorov-Smirnov Lilliefors Ryan-Joiner Shapiro-Wilk

No. AI AII AIII AIV Real AI AII AIII AIV Real AI AII AIII AIV Real AI AII AIII AIV Real

1 X X X X X X X X X X X X X X X X X X X X
2 X X X X X X X X X X X X X X X X X X X X
3 X X X X X X X X X X X X X X X X X X X X
4 X X X X X X X X X X X X X X X X X X X X
5 X X X X X X X X X X X X X X X X X X X X
6 X X X X X X X X X X X X X X X X X X X X
7 X X X X X X X X X X X X X X X X X X X X

8 X X X X X X X X X X X X X X X X X X X X
9 X X X X X X X X X X X X X X X X X X X X
10 X X X X X X X X X X X X X X X X X X X X
11 X X X X X X X X X X X X X X X X X X X X
12 X X X X X X X X X X X X X X X X X X X X

13 X X X X X X X X X X X X X X X X X X X X
14 X X X X X X X X X X X X X X X X X X X X
15 X X X X X X X X X X X X X X X X X X X X

Table 8.1: Resulting values obtained by various tests for verification of normality.
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As we can see, almost every data fulfils the normality, so we can say, that the values

of elementary volume fractions satisfy to the normality condition.

8.2 Homogeneity of Variances

This section will be denoted to the second important request – homogeneity of variances.

This is very important for an ANOVA(Analysis of Variance), due to F-tests, which this

method is based on. As in the previous, we will study the homogeneity on the set of

elementary volume fractions for each sample. We will not compute the homogeneity for

all five(real + 4 five) algorithms together, but always for real sample and one for some

algorithm. To realize this, we need a pair of samples. We have four algorithms AI–AIV

and real one. So, we will have four sets of computing. We can use parametric tests,

because we know, that our data are normally distributed. The tests we use: Bartlett’s

test, Cochran test, Brown-Forsythe test, Levene test and O’Brien test. They are also

described in Appendix. The results are in the table:

Test Bartlett’s Cochran Brown-Forsythe Levene O’Brien

Alg. AI AII AIII AIV AI AII AIII AIV AI AII AIII AIV AI AII AIII AIV AI AII AIII AIV

1 X X X X X X X X X X X X X X X X X X X X
2 X X X X X X X X X X X X X X X X X X X X

3 X X X X X X X X X X X X X X X X X X X X

4 X X X X X X X X X X X X X X X X X X X X

5 X X X X X X X X X X X X X X X X X X X X
6 X X X X X X X X X X X X X X X X X X X X
7 X X X X X X X X X X X X X X X X X X X X

8 X X X X X X X X X X X X X X X X X X X X
9 X X X X X X X X X X X X X X X X X X X X
10 X X X X X X X X X X X X X X X X X X X X

11 X X X X X X X X X X X X X X X X X X X X
12 X X X X X X X X X X X X X X X X X X X X

13 X X X X X X X X X X X X X X X X X X X X

14 X X X X X X X X X X X X X X X X X X X X
15 X X X X X X X X X X X X X X X X X X X X

Table 8.2: Resulting values obtained by various tests for verification of homogeneity.

Explanation of this table: in the header of the table, e.g. AI means that we compare

samples from real material and a sample generated by algorithm AI by the test that is

above. The checkmark(X) means that its variances are homogeneous, meaning it is not

rejected, a cross(X) means an opposite.

Here, according to this tests we can see, that these data do not have a character to be

homogeneous in variance, generally. The ”best” is AI and the ”worst” one is AIII. So,

for eventual analysis, we cannot use ANOVA, because the assumptions are not fulfilled.

The only way is to use some nonparametric test, e.g. the two-sample Kolmogorov-Smirnov

test.
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8.2.1 Two-Sample Kolmogorov-Smirnov test

In statistics, the Kolmogorov–Smirnov test(K–S test) is a form of minimum distance

estimation used as a nonparametric test of equality of one-dimensional probability distri-

butions used to compare a sample with a reference probability distribution (one-sample

K–S test), or to compare two samples (two-sample K–S test).

The two-sample Kolmogorov–Smirnov statistic quantifies a distance between the em-

pirical distribution functions of two samples. The null distribution of this statistic is

calculated under the null hypothesis that the samples are drawn from the same distribu-

tion. In each case, the distributions considered under the null hypothesis are continuous

distributions.

The two-sample KS test is one of the most useful and general nonparametric methods

for comparing two samples, as it is sensitive to differences in both location and shape of

the empirical cumulative distribution functions of the two samples.

The aim of this computation is to check out, whether two samples(real and simulated)

come from the same distribution. We will by sequel apply the two-sample K-S test to the

pair of samples combined from the real sample and simulated one from the algorithms

AI–AIV. To the computation we use a Matlab function kstest2, see a guide book [35]

about syntax, input and output arguments.

Real - AI Real - AII Real - AIII Real - AIV
Sample No. Result p-Value Result p-Value Result p-Value Result p-Value

1 X 0,140 X 0,013 X 0,193 X 0,021
2 X 0,193 X 0,005 X 0,001 X 0,003
3 X 0,443 X 0,677 X 0,140 X 0,261
4 X 0,140 X 0,193 X 0,193 X 0,344
5 X 0,021 X 0,013 X 0,031 X 0,031
6 X 0,003 X 0,099 X 0,047 X 0,140
7 X 0,443 X 0,013 X 0,099 X 0,069
8 X 0,008 X 0,069 X 0,344 X 0,021
9 X 0,443 X 0,193 X 0,140 X 0,261
10 X 0,140 X 0,021 X 0,008 X 0,002
11 X 0,000 X 0,069 X 0,008 X 0,069
12 X 0,099 X 0,013 X 0,003 X 0,031
13 X 0,261 X 0,099 X 0,013 X 0,005
14 X 0,894 X 0,677 X 0,344 X 0,261
15 X 0,556 X 0,794 X 0,677 X 0,677

Table 8.3: Resulting values of the two-sample Kolmogorov-Smirnov test.

In the table we can see whether the H0 hypothesis is rejected(X) or not(X). Beside

these markers it is also present the p−Value for each test. It is clear, that if the p−Value is

greater then the significance level α = 0, 05, then we do not reject the null hypothesis(the

samples come from the same distribution).

Now, for a consideration of the two-sample K-S test we will illustrate the mutual

connection or similarity between algorithms AI–AIV.
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AI - AII AI - AIII AI - AIV
Sample No. Result p-Value Result p-Value Result p-Value

1 X 0,794 X 0,677 X 0,344
2 X 0,261 X 0,140 X 0,261
3 X 0,140 X 0,443 X 0,443
4 X 0,140 X 0,193 X 0,193
5 X 0,894 X 0,794 X 0,961
6 X 0,140 X 0,344 X 0,344
7 X 0,069 X 0,677 X 0,556
8 X 0,794 X 0,261 X 0,961
9 X 0,556 X 0,344 X 0,794
10 X 0,344 X 0,261 X 0,140
11 X 0,099 X 0,099 X 0,140
12 X 0,794 X 0,443 X 0,894
13 X 0,443 X 0,261 X 0,193
14 X 0,140 X 0,261 X 0,140
15 X 0,261 X 0,140 X 0,261

Table 8.4: Two-sample Kolmogorov-Smirnov test for the algorithm AI.

AII - AIII AII - AIV AIII - AIV
Sample No. Result p-Value Result p-Value Result p-Value

1 X 0,443 X 0,261 X 0,894
2 X 0,961 X 0,794 X 0,556
3 X 0,031 X 0,443 X 0,193
4 X 0,443 X 0,677 X 0,961
5 X 0,261 X 0,677 X 0,992
6 X 0,794 X 0,894 X 0,961
7 X 0,344 X 0,261 X 0,961
8 X 0,261 X 0,443 X 0,443
9 X 0,992 X 0,556 X 0,443
10 X 0,894 X 0,794 X 0,556
11 X 0,894 X 0,894 X 0,992
12 X 0,099 X 0,677 X 0,443
13 X 0,140 X 0,344 X 0,894
14 X 0,961 X 0,992 X 0,677
15 X 0,677 X 0,961 X 0,794

Table 8.5: Two-sample Kolmogorov-Smirnov test for the algorithms AII and AIII.

From the upper table it seems there is no significant difference between AI and the

remaining ones. Almost the same we can say in the case of the algorithm AII, because the

p−Values vary approximately from 0,1 to 0,95. A slight difference we can find in the last

case, i.e. between AIII and AIV. Here, when looking at the p−Values we can say, that

its variance is much more smaller – almost all values are greater then 0,6. It means, that

there is quite no difference between AIII and AIVfrom the statistical point of view. This

fact was slightly indicated in the passage about describing algorithms. So, statistically
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we can change these ones. The only difference is in the fact, that the algorithm AIII is

approximately four times faster then AIV.

8.3 Complete Spatial Randomness

Now, we examine tests for the CSR hypothesis of a point pattern in our samples. This

hypothesis states that the observed pattern was generated by a homogeneous Poisson

process. According to [9], CSR operates as a dividing hypothesis between aggregated and

regular patterns and its rejection is a minimum requirement for further modeling.

8.3.1 The Quadrat Test of Randomness

It is the simplest and the most widely used method to investigate deviations from ran-

domness and it is based on counting the numbers of points(centers) in each quadrat of

a grid overlaid on the section of interest. The approach used to calculate the quadrat

test involves analyzing the variation in the numbers of points in selected sub-areas of the

region under investigation. This is called the quadrat method, see 2.3.1. The comparison

will be as follows: For each sample we compute Pearson’s test statistic Q and compare it

with the critical value. In our cases we choose n = 10, i.e. the 10x10 grid (an assumption

n2 > 6 should be fulfilled). The results are in the following table. It holds, under CSR,

Real AI AII AIII AIV

1 35,45 33,04 37,75 33,31 34,59

2 34,69 41,90 30,77 37,28 33,11

3 34,20 30,65 33,30 31,90 37,74

4 39,97 40,75 36,19 24,06 25,27

5 26,70 34,23 26,93 25,73 35,67

6 26,96 47,56 45,29 26,16 30,84

7 35,53 46,29 37,99 25,58 31,28

8 32,38 29,12 35,08 31,76 28,17

9 36,89 36,10 30,85 29,38 33,98

10 38,95 48,47 33,97 29,55 22,21

11 23,54 34,78 32,84 29,20 37,67

12 34,35 43,46 30,03 31,85 34,54

13 36,75 37,67 42,84 25,38 34,20

14 30,39 38,52 31,54 25,84 41,82

15 39,09 55,13 31,20 26,42 27,20

Table 8.6: Pearson’s statistics Q for the quadrat test of randomness.

the Pearson’s test statistic has χ2−distribution with f = n2 − 1 = 102 − 1 = 99 degrees

of freedom.
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If the value for Q is less than the 100α/2 percentile of the chi-squared distribution with

n2−1 degrees of freedom, the test rejects the stationary Poisson point process hypothesis

in favour of regularity at level α. If it is greater than the 100(1 − α/2) percentile, then

the same hypothesis is rejected at level α, this time in favour of clustering(meaning that

the variability in the process is greater than that for the Poisson process).

According to [32], a constant problem in designing a study using quadrats is to estab-

lish what would be a suitable size for the quadrat. Various suggestions have been made

as to the optimal size, however, most authors agree that the size of the quadrats depends

on the specific problem in hand, like the type and range of the events’ interactions with

each other.

In our case, n = 10, so χ2
99(0.025) = 73, 36 and χ2

99(0, 975) = 128, 42. Since in our

case, all values of Pearson’s test statistic Q are smaller than 73,36, it indicates significant

departure from the CSR.

8.3.2 Tests Based on Ripley’s K Function

Now, we present to check non-CSR not directly the Ripley’s K−function, but the D̂− and

L̂−functions, which are defined by means of the Ripley’s K−function. They are defined

as, see 2.4.1

D̂ = K̂(t)− πt2 and L̂(t) =

√
K̂(t)

π
.
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Figure 8.1: Comparison of D̂−functions.

From the preceding figures it is clear a big departure from the CSR, especially around

the beginning. It is caused by the fact, that no two fibres can overlap, so the distance of

their centers is greater than the sum of the mutual radii of the fibres. The same situation

occurs in the distance approximately 180. The behavior of the L− and D− curves between
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Figure 8.2: Comparison of L̂−functions.

75–180 indicates the CSR, but, as we can see in figures 2.10–2.12, therefore suggesting

some evidence of deviation from randomness towards a regularity.

8.3.3 Clark-Evans Test

The Clark-Evans test is based on the index of the degree of the non-randomness for

a spatial configuration. It consists of comparing the observed mean nearest neighbor

distance to that expected for a random configuration of the same density.

As was pointed out in the subsection 2.3.3, the results of this Clark-Evans test de-

pend on the particular sample of the nn-distances chosen. If we proceed a Clark-Evens

test several times, always with different set of samples, we obtain different Z-values. The

results of this simulated sampling scheme yield a distribution of Z-values that is approx-

imately normal. While this normality property is again a consequence of the Central

Limit Theorem, it should not be confused with the normal distribution in 2.3.6 upon

which the Clark-Evans test is based (that requires n to be sufficiently large). However,

this normality property does suggest that a 50% sample(m = n/2) in this case yields a

reasonable amount of independence among nn-distances, as it was intended to do.

On the next figure we can see a realization of Z-values for the real media:

Now, we present the Z-means of all samples obtained by simulating algorithms AI–

AIV and of the real ones.

And here we can see the extremes from the previous table for a better clarify. If we

choose a significant level of 0,05, the critical value zα/2 = z0,025 = 1, 96 and thus we reject

the hypothesis of CSR. Since zα = z0,05 = 1, 65, we conclude significant uniformity of the

patterns.
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Figure 8.3: Histogram of the Z-means for the real material.

Real AI AII AIII AIV

1 12,457 12,367 12,472 13,612 13,029

2 12,827 11,251 12,383 13,975 13,716

3 11,342 12,938 12,864 13,651 13,540

4 10,586 12,476 12,849 13,606 13,334

5 13,101 12,218 12,796 13,251 13,366

6 12,625 11,193 12,075 13,740 13,211

7 10,316 12,422 12,298 13,287 13,523

8 14,062 10,979 12,484 13,675 13,201

9 13,207 11,749 12,279 13,890 13,512

10 10,401 11,728 12,299 13,538 13,053

11 13,456 11,149 12,926 13,739 13,481

12 12,052 12,114 12,493 13,272 13,504

13 14,067 12,544 12,287 13,810 13,133

14 11,398 11,609 12,293 13,463 13,177

15 12,270 11,160 12,490 13,230 12,800

Table 8.7: The values of the mean values obtained by Monte-Carlo simulation of the

Clark-Evans test.

Minimum Maximum

Real 10,316 14,067

AI 10,979 12,938

AII 12,075 12,926

AIII 13,230 13,975

AIV 12,800 13,716

Table 8.8: Extremes of the mean values obtained by Monte-Carlo simulation of the Clark-

Evans test.
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8.3.4 Skellam statistic

As a second example of distance methods we present Skellam statistic. A theory, concern-

ing to this, are in the Appendix. The results obtained by this method are below: And

Real AI AII AIII AIV

1 445,96 453,67 452,01 481,20 479,57

2 468,99 400,88 441,36 504,86 488,83

3 390,72 482,46 461,85 486,18 494,10

4 362,57 453,55 467,44 485,92 484,93

5 481,53 446,36 457,60 484,58 475,39

6 459,40 406,96 426,79 498,39 475,45

7 364,61 463,54 443,61 478,93 487,03

8 541,02 390,66 444,18 485,95 477,93

9 489,81 425,82 442,38 494,32 481,45

10 366,78 434,08 452,05 491,20 478,54

11 496,99 406,91 460,92 492,22 477,35

12 427,88 445,93 441,40 469,35 484,12

13 523,05 467,34 438,24 497,28 477,37

14 404,41 420,55 456,61 483,42 483,16

15 435,36 402,12 452,35 478,79 459,57

Range 178,45 91,79 40,65 35,52 34,53

Table 8.9: The values of the Skellam statistic for all samples.

the extremes are: Similarly, as in the case of the Clark-Evans test, we have α = 0, 05 and

.

Minimum Maximum Range

Real 362,57 541,02 178,45

AI 390,66 482,46 91,79

AII 426,79 467,44 40,65

AIII 469,35 504,86 35,52

AIV 459,57 494,10 34,53

Table 8.10: Extremes of the Skellam statistic for all algorithms.

approximately n = 165, see Table 6.2 and then χ2
2n(0, 025) = χ2

330(0, 025) = 281, 6 and

χ2
330(0, 975) = 382, 2. From the values in the previous table and the value of χ2

330(0, 975),

we can deduce rejecting CSR, because the minimum values are greater than the criti-

cal value. The only exception is the real sample. When we look at the ranges, we can

easy compare, which algorithms are more random than the others. In our case the most

random are the real ones and on the other hand, the smallest variability has algorithm

AIV.
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9 Computational Circumstances
The programs for all computations and simulations were written in Matlab R14. The

used PC’s hardware parameters were CPU 1100MHz and 256MB of RAM.
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Part III

Appendix

Thank you for the music...
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10 Distance Methods
Among the simplest of these is based on the observation that if one simply looks at

distances between points and their nearest neighbors in A, then this provides a natural

test statistic that requires no artificial partitioning scheme. More precisely, for any given

points, s = (s1, s2) and v = (v1, v2) in A we denote the Euclidean distance between s and

v by

d(s, v) =
√

(s1 − v1)2 + (s2 − v2)2

and denote each point pattern of size n in A by Sn = (si : i = 1, ..., n), then for any point

si ∈ Sn, the nearest neighbor distance (nn-distance) from si to all other points in Sn is

given by

di = di(Sn) = min{d(si, sj) : sj ∈ Sn, j 6= i}.

10.1 Skellam’s Statistic

To make ideas of nearest-neighbor distances precise, we have to determine the probability

Figure 10.1: Cell of radius d

distribution of nn-distance under CSR and compare the observed nn-distance with this

distribution. To begin, suppose that the implicit reference region A is large, so that for

any given point density λ, we may assume that cell-counts are Poisson distributed under

CSR. Now suppose that s is a randomly selected point in a pattern realization of this

CSR process, and let the random variable, say D, denote nn-distance from s to the rest

of the pattern. To determine the distribution of D, we next consider a circular region

Cd of radius d around s, as shown in Figure 10.1. Then, according to the picture, the

probability that D is at least equal to d is precisely the probability that here are no other

points in Cd. Hence, if we now let Cd(s)− {s}, then this probability is given by

P(D > d) = e−λπd2

(10.1.1)

and that’s why we finally obtain

FD(d) = 1− e−λπd2

. (10.1.2)
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As we can see, this is an instance of the Rayleigh distribution. Next, for a random

sample of n nearest-neighbor distances {W1, . . . ,Wm} from this distribution, the scaled

sum (Skellam’s statistics)

Sw = 2λπ

m∑
i=1

W 2
i (10.1.3)

is chi-square distributed with 2n degrees of freedom. So, finally, this statistic provides a

test of the CSR hypothesis based on nearest neighbors.
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11 Theoretical Models of

Variograms

11.1 Valid Models

The experimental variogram obtained from measured data is in practice impossible to

use for the next analysis. So, we have to approximate point-estimated variogram by a

theoretic model of the variogram. But the values of the variogram we cannot approximate

by an arbitrary function. In other words, a theoretical variogram is not an arbitrary

function, but it has to fulfil some conditions (it is similar to a density function of a

random variable). The most important condition is, that it must not be negative. It

is quite difficult to prove, that the model of a variogram must be conditionally negative

definite, see e.g. [8] for detailed information and proves. To check this condition is very

difficult, so we always try to use predefined models of variograms, as will be described in

the following section.

11.2 Review of the Most Used Models

Models of variograms we can divide according behavior near origin and “infinity” into

several groups.

1. Models with sill – spherical, quadratic, gaussian, exponential, linear

2. Models without sill – power, logarithm

3. Models with oscillating sill – sine, cosine

4. Pure random model

The first three types of models we can remark a nugget. The models with a sill are

weakly stationary, whereas unbounded models are intrinsically stationary.
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11.2.1 Models with Sill

Spherical Model

γ(h) =





0, h = 0

C0 + C1

(
3h
2a
− 1

2

(
h
a

)3
)

, 0 < h ≤ a

C0 + C1, h > a

Figure 11.1: Spherical model

Quadratic Model

γ(h) =





0, h = 0

C0 + C1

(
2h

a
− (

h
a

)2
)

, 0 < h ≤ a

C0 + C1, h > a

Figure 11.2: Quadratic model
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Exponential Model

γ(h) =

{
0, h = 0

C0 + C1
(
1− exp

(−h
d

))
, h > 0

a ≈ 3d

Figure 11.3: Exponential model

Gaussian Model

γ(h) =

{
0, h = 0

C0 + C1

(
1− exp

(−h
d

)2
)

, h > a
a ≈

√
3d

Figure 11.4: Gaussian model
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Linear Model

γ(h) =





0, h = 0

C0 + C1
h
a
, 0 < h ≤ a

C0 + C1, h > a

Figure 11.5: Linear model

11.2.2 Models Without Sill

Power Model

γ(h) =

{
0, h = 0

C0 + C1h
α, h > 0

α ∈ (0, 2)

Figure 11.6: Power model

Logarithmic Model

γ(h) =

{
0, h = 0

C0 + C1 ln h, h > 0
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11.2.3 Oscillating Models

Sine Model

γ(h) =

{
0, h = 0

C0 + C1

(
1− sin gh

gh

)
, h > 0

g =
π

ω

Figure 11.7: Sine model

Cosine Model

γ(h) =

{
0, h = 0

C0 + C1(1− cos gh), h > 0
g =

π

ω

Figure 11.8: Cosine model
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11.2.4 Pure Random Model

γ(h) =

{
0, h = 0

C0, h > 0

Figure 11.9: Pure random model
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12 Spatial Autocovariance

12.1 Global Moran’s and Geary’s Indexes

As was written in Chapter 1, both indexes describe global spatial autocorrelation of the

process. There were also introduced the computational formulas for them.

Of course, that the values both indexes depend on the w(i, j), which is specified by

the spatial weighting scheme chosen. In literature are presented several approaches of

choosing these weights. The most popular is to choose

w(i, j) =
A

||xi − xj||m ,

where ||xi − xj|| is the distance of the points xi and xj; m is a parameter chosen by the

user and A is a constant. Usually we put m = A = 1.

The variances of I and c will differ according to the data model employed. According

to [7], under an assumption of normality we obtain

E(I) =
1

n− 1
, D(I) =

n2S1 − nS2 + 3S2
0

S2
0(2n− 1)

−
(

1

n− 1

)2

,

where auxiliary variables S0 =
n∑

i=1

n∑
j=1

w(i, j), S1 = 1
2

n∑
i=1

n∑
j=1

(w(i, j) + w(j, i))2 and S2 =

n∑
i=1

(
n∑

j=1

w(i, j) +
n∑

j=1

w(j, i)

)2

.

Standardized random variable

z =
I − E(I)√

D(I)
∼ N(0, 1)

and it is possible to test significance of Moran’s index I.

Similarly, for the Geary’s index c we have

Ec = 1, D(c) =
(n− 1)(2S1 + S2)− 4S2

0

2S2
0(n + 1)

,

where S0, S1 and S2 have the same meaning as in the case of Moran’s index. The next

technique of testing of significance is the same as above.
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13 Stochastic Processes: A

Spectral Approach

13.1 White Noise Process

Gaussian white noise process is a good approximation of many real-world situations and

generates mathematically tractable models, especially in physics and electrotechnics. But

on the other side, it has many applications in many others area. We will use it in one of

our algorithm for generating a random structure.

The White Noise Process: A white noise process is a random process of random

variables that are uncorrelated, have mean zero, and a finite variance.

Formally, Wt is a white noise process if E(Wt) = 0, D(Wt) = λ, and E(WtWj) = 0 for

all t 6= j.

A common, slightly stronger condition is that they are independent from one another;

this is an independent white noise process.

Often one assumes a normal distribution for the variables, in which case the distribu-

tion was completely specified by the mean and variance; these are ”normally distributed”

or ”Gaussian” white noise processes. From the previous it follows, that white noise process

is not continuous process and that is the reason why we are not able to draw it. For more

information see e.g. [17], [23], [27] or [13].

13.2 Karhunen-Loève Expansion

As we said before, we would like to apply some properties of stochastic processes to

develop an algorithm for generating random structure. This tool is called a spectral

decomposition of a stochastic process. A theoretically appealing approach is to expand it

in a Fourier-type series as

w(x, ω) =
∞∑

n=0

√
λnξn(ω)Φn(x),

where {ξn(ω)} is a set of random variables to be determined, λn is some constant and

{Φn(x)} is an orthonormal set of deterministic functions. This is exactly what the

Karhunen-Loève expansion achieves. The Karhunen-Loève expansion of a stochastic

process is based on the following analytical properties of its covariance function.

Let w(x, ω) be a random process, function of the position vector x defined over domain

D, with ω belonging to the space of random events Ω. Next, let w̄(x) = E [w(x, ω)]

denotes the expected value of w(x, ω) over all possible realizations of the process and

C(x1, x2) denotes its covariance function. By definition of the covariance function, it

is bounded, symmetric and positive definite. This fact simplifies the ensuing analysis
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considerably in that it guarantees a number of properties for the eigenfunctions and the

eigenvalues that are solution to the previous equation:

• The set Φi(x) of eigenfunctions is orthogonal and complete.

• For each eigenvalue λk, there correspond at most a finite number of linearly inde-

pendent eigenfunctions.

• There are at most a countably infinite set of eigenvalues.

• The eigenvalues are all positive numbers.

• The kernel C(x1, x2) admits of the following uniformly convergent expansion.

C(x1, x2) =
∞∑

n=0

λnΦn(x1)Φn(x2),

where λn and Φn(x) denote the eigenvalues and eigenvectors of the appropriate covariance

kernel, which we obtain by solving the following Fredholm equation of a second type
∫

D

C(x1, x2)Φ(x2) dx2 = λΦ(x1).

Due to the symmetry and the positive definiteness of the covariance kernel, see [13], its

eigenfunctions are orthogonal and form a complete set. They can be normalized according

to the following criterion ∫

D

Φn(x)Φm(x) dx = δnm,

where δnm is the Kronecker delta. Then, w(x, ω) can be written as

w(x, ω) = w̄(x) + α(x, ω),

where α(x, ω) is a process with zero mean and covariance function C(x1, x2). The process

α(x, ω) can be expanded in terms of the eigenfunctions Φn(x) as

α(x, ω) =
∞∑

n=0

ξn(ω)
√

λnΦn(x). (13.2.1)

Thus, the random process w(x, ω) can be written as

w(x, ω) = w̄(x) +
∞∑

n=0

ξn(ω)
√

λnΦn(x),

where E [ξn(ω)] = 0, E [ξn(ω)ξm(ω)] = δnm and λn, Φn(x) are solution to the integral

equation. Truncating the series in previous equation at the Kth term, gives

w(x, ω) = w̄(x, ω) +
K∑

n=0

ξn(ω)
√

λnΦn(x), (x, ω) ∈ D × Ω.
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An explicit expression for ξn(ω) can be obtained by multiplying equation 13.2.1 by Φn(x)

and integrating over the domain D. That is

ξn(ω) =
1√
λn

∫

D

α(x, ω)Φn(x) dx.

It can be proved, that E [(w − wk)
2(x, ω)] → 0 for K → ∞. The most important value

of spectral decomposition lies in the fact, that spatial random deviations we can express

as a sum of deterministic functions in spatial coordinates multiplied by random variables,

which are independent on these coordinates.

13.3 Brownian Motion

Brownian motion(also Wiener process) plays a very important role in probability theory,

the theory of stochastic processes, physics, finance, etc. Brownian motion is named after

the biologist Robert Brown whose research dates to the 1820s. Wiener(1923) was the first

to put Brownian motion on a firm mathematical basis.

Brownian Motion: A stochastic process B = (Bt, t ∈ 〈0,∞)) is called (standard)

Brownian motion or a Wiener process if the following conditions are satisfied:

1. B0 = 0 and it has continuous sample paths

2. For 0 < t0 < t1 < . . . < tn the increments Bt1 −Bt0 , . . . , Btn −Btn−1 independent

3. For every t > 0 and h > 0, Bt+h−Bt has a normal distribution with zero mean and

variance h, i.e. Bt+h −Bt ∼ N(0, h).

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

t

X
t

Figure 13.1: Three realizations of the Brownian motion.

Next, for a Brownian motion Bt it holds:
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1. E [B2
t ] = t

2. E [BtBs] = min {t, s} , t ≤ 0, s ≤ 0

3. E [(Bt −Bs)
2] = |t− s|.

Now, we return to the spectral decomposition of a stochastic process. According to [19]

or [13], for the Brownian motion defined on the set D = 〈0, T 〉 it can be proved, that for

eigenvalues and eigenfunctions stand the following relations

Φn(t) =
√

2 sin

(
x√
λn

)
, λn =

4T 2

π2(2n + 1)2
, n = 0, 1, 2, . . . , t ∈ 〈0, T 〉.

Brownian motion we can then then write

Bt =
∞∑

n=0

2
√

2T

π(2n + 1)
sin

(
(2n + 1)πt

2T

)
ξn(ω).

From the previous it follows that replacing the previous sum by the only finite members

we get also trajectory similar to the Brownian motion, but it will be ”smoother” than

then real one.

Now we use Karhunen-Loève expansion of Brownian motion with finite number of

members (K < ∞) for a introduction of a new stochastic process S(t, ω) defined on an

interval 〈0, T 〉. This process we later use for simulation of a random structure:

S(t, ω) =
K∑

n=0

sin

(
(2n + 1)πt

2T

)
ξn(ω),

where {ξn}∞n=1 is a sequence of mutually independent random variables. The process

S(t, ω) has a character of a ”white noise process” and for our simulation is quite sufficient.

In the following picture we can see the realizations of the process with different K:
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0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

K=10
K=5
K=15
K=20

Figure 13.2: Trajectories of a stochastic process S(t, ω) for different K.

13.4 Brownian Bridge

A Brownian bridge is a continuous-time stochastic process whose probability distribution

is the conditional probability distribution of a Brownian motion B(t) given the condition

that W (0) = W (1) = 0.

The expected value of the bridge is zero, with variance t(1 − t), implying that the

most uncertainty is in the middle of the bridge, with zero uncertainty at the nodes. The

covariance of W (s) and W (t) is s(1− t) if s < t. The increments in a Brownian bridge are

not independent. If W (t) is a standard Wiener process (i.e., for t ≥ 0, B(t) is normally

distributed with expected value 0 and variance t, and the increments are stationary and

independent), then W (t) − tW (1) is a Brownian bridge. Conversely, if B is a Brownian

bridge and Z is an independent standard Gaussian random variable, then the process

W (t) = B(t)+ tZ is a Brownian motion for t ∈ [0, 1]. More generally, a Brownian motion

W (t) for t ∈ [0, T ] can be decomposed into

x(t) = B

(
t

T

)
+

t√
T

Z.
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0 0.2 0.4 0.6 0.8 1
−1
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1

t

B
t

Figure 13.3: Three realizations of the Brownian bridge.

A Brownian bridge is the result of Donsker’s theorem in the area of empirical processes.

It is also used in the Kolmogorov-Smirnov test in the area of statistical inference. A

standard Brownian motion satisfies W (0) = 0 and is therefore ”tied down” to the origin,

but other points are not restricted. In a Brownian bridge process on the other hand, not

only is B(0) = 0 but we also require that B(1) = 0, that is the process is ”tied down” at

t = 1 as well. Just as a literal bridge is supported by pylons at both ends, a Brownian

Bridge is required to satisfy conditions at both ends of the interval [0, 1]. (In a slight

generalization, one sometimes requires B(t1) = a and B(t2) = b where t1, t2, a and b are

known constants.)

Suppose we have generated a number of points W (0), W (1), W (2), W (3), etc. of a

Brownian motion path by computer simulation. It is now desired to fill in additional

points in the interval [0, 1], that is to interpolate between the already generated points

W (0) and W (1). The solution is to use a Brownian bridge that is required to go through

the values W (0) and W (1).

For the general case when W (t1) = a and W (t2) = b, the distribution of W at time

t ∈ (t1, t2) is normal, with mean

a +
t− t1
t2 − t1

(b− a) and variance
(t− t1)(t2 − t)

t2 − t1
.
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14 Selected Distributions

14.1 Weibull Distribution

In probability theory and statistics, the Weibull distribution is a continuous probability

distribution. It is often used to describe the size distribution of particles.

14.1.1 Motivating the Weibull model

Assume a CSR pattern(Poisson process) of intensity λ(λ= mean number of events per

unit area). Let X be a number of events in an area of size A = πr2. Then X ∼ Po(λA),

where

P(X = x) =
(λA)xe−λA

x!
, x = 0, 1, 2, . . . .

Let the random variable R denotes the distance from a randomly selected point(cross-

mark) to the nearest event(dot). Hence,

Figure 14.1: Circle of radius r in area A centered on a randomly selected point.

P(R > r) = P(no events occur inside the circle of radius r) =
= P(no events occur in an area A = πr2) =
= P(X = 0), where X ∼ Po(λA) =
= exp(−λA) =
= exp(−λπr2).

Therefore the cumulative distribution function of R is F (r) = P(R ≤ r) = 1−exp−λπr2.

Hence the probability density function of R is

f(r) =
dF (r)

dr
= 2λπre−λπr2

, r ≥ 0.
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14.1.2 Properties of Weibull Distribution

A continuous random variable R which has the probability distribution function

f(r) = 2λπre−λπr2

, r ≥ 0, λ > 0,

follows a Weibull distribution. We derive the expectation as follows. By definition we

have

E [R] =

∫ ∞

0

rf(r) dr =

∫ ∞

0

2λπr2e−λπr2

dr.

Let y = λπr2, hence r =
√

y
λπ

and dr = dy
2
√

λπy
. Recall, the gamma function Γ(k) has the

form

Γ(k) =

∫ ∞

0

zk−1e−z dz.

It may be shown, that Γ(k) = (k − 1)Γ(k − 1) and Γ(1/2) =
√

π. Using these facts we

find that

E [R] =

∫ ∞

0

2y
e−y

2
√

λπy
dy =

∫ ∞

0

1√
λπ

√
ye−y dy =

1√
λπ

Γ

(
3

2

)
=

=
1√
λπ

1

2
Γ

(
1

2

)
=

1√
λπ

1

2

√
π =

1

2
√

λ
.

Next, we use a similar approach to find E [R2]

E
[
R2

]
=

∫ ∞

0

2λπr3e−λπr2

dr =

∫ ∞

0

1√
λπ

√
ye−y

√
y√
λπ

dy =

=
1

λπ

∫ ∞

0

ye−y dy =
1

λπ
Γ(2) =

1

λπ
.

Then we obtain

D [R] = E
[
R2

]− E2[R] =
1

λπ
− 1

4λ
=

4− π

4λπ
.

The obtained mean value and variance were utilized in the Clark-Evans test of CSR.

14.2 Fischer-Snedecor’s Distribution

The following section provide an overview of the F distribution.

Background of the F distribution.

The F distribution has a natural relationship with the chi-square distribution. If χ1 and

χ2 are both chi-squared with m and n degrees of freedom respectively, then the statistic

F below is F distributed:

F (m, n) =

χ1

m
χ2

n

.



14. SELECTED DISTRIBUTIONS 97

Definition of the F distribution.

Fischer-Snedecor distribution with m and n degrees of freedom has probability density

function

fm,n(x) =





Γ(m+n
2 )

Γ(m
2 )Γ(n

2 )

(
m
n

)m
2 x

m−2
2

(1+(m
n )x)

m+n
2

, y > 0;

0, y ≤ 0,

where Γ(·) is the Gamma function, defined by

Γ(x) ≡ lim
n→∞

n−1∏
v=0

n! nx−1

x + v
= lim

n→∞
n! nx−1

x(x + 1)(x + 2) . . . (x + n− 1)
≡

∫ ∞

0

e−ttx−1 dt.

The integral definition is valid only for x > 0 (2nd Euler integral).

The most common application of the F distribution is in standard tests of hypotheses in

analysis of variance and regression.

The next figure shows that the F distribution exists on the positive real numbers and

is skewed to the right.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F(10;10)
F(5;3)

Figure 14.2: Examples of Fischer-Snedecor probability functions.

The mean, variance, skewness and kurtosis are, see [1]:

µ =
n

/
(n− 2) for n ≥ 2

σ2 =
2n2(m + n− 2)

m(n− 2)2(n− 4)
for n > 4

a3 =
(2(n + 2m− 2)

n− 6

√
2(n− 4)

m(m + n− 2)
for n > 6

a4 =
12(−16 + 20n− 8n2 + n3 + 44m− 32mn + 5n2m− 22m2 + 5mn2)

m(n− 6)(n− 8)(n + m− 2)
for n > 8.
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Note.

• It can be proved, that for m+n joint independent variables X1, . . . , Xm, Y1, . . . , Yn

with the same distribution N(0; 1), the variable

Y =
n(X2

1 + . . . + X2
m)

m(Y 2
1 + . . . + Y 2

n )

has Fischer-Snedecor’s distribution with probability function fm,n.

• If X ∼ F(m,n), then Y = limn→∞ mX has the chi-square distribution χ2
m.

• If X ∼ F(m,n), then
1

X
∼ F(n,m).

• If X ∼ t(ν) has Student’s distribution, then X2 ∼ F(m = 1, n = ν).

• For the critical values of the F distribution it holds

Fα(m,n) =
1

F1−α(m,n)
.

• A generalization of the (central) F-distribution is the noncentral F-distribution. It

is the distribution of the test statistic in analysis of variance problems when the

null hypothesis is false. One uses the noncentral F-distribution to find the power

function of such a test.

14.3 F-Tests

An F-Test is any statistical test in which the test statistic has an F-distribution if the

null hypothesis is true.

14.3.1 Two-Sample F-Test

In order to compare two methods, it is often important to know whether the variabilities

for both methods are the same. In order to compare two variances v1 and v2, one has to

calculate the ratio of the two variances. This ratio is called the F-statistic (in honor of

R.A. Fisher) and follows an F distribution:

F =
v1

v2

.

The null hypothesis H0 assumes that the variances are equal and the ratio F is therefore

one. The alternative hypothesis H1 assumes that v1 and v2 are different, and that the

ratio deviates from unity. The F-test is based on two assumptions:

• the samples are normally distributed,

• the samples are independent of each other.
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When these assumptions are fulfilled and H0 is true, the statistic F follows a F-distribution.

The following is a decision table for the application of the two-sample F-test.

One-tailed test Two-tailed test

Hypothesis

H0 : σ2
1 ≥ σ2

2

H1 : σ2
1 < σ2

2

H0 : σ2
1 ≤ σ2

2

H1 : σ2
1 > σ2

2

H0 : σ2
1 = σ2

2

H1 : σ2
1 6= σ2

2

Test statistics F=
s2
2

s2
1

F=
s2
1

s2
2

F=
larger sample variance

smaller sample variance

Deg. of freedom df1=n1 − 1 df2=n2 − 1

Rejection reject H0 if F>Fα reject H0 if F>Fα/2

Table 14.1: A decision table for the two-sample F-test.

Remarks:

• When the normality assumption is not fulfilled, one should use a non-parametric

method. In general the F-test is more sensitive to deviations from normality than

the t-test.

• The F-test can be used to check the equal variance assumption needed for the two

sample t-test, but the non-rejection of H0 does not imply that the assumption (of

equal variance) is valid, since the probability of the type II error is unknown.

• Note that when there are only two groups for the F-test, F = t2, where t is the

Student’s t statistic.

Types of Errors

In general, there are two different types of error that can occur when making a decision:

• the error of the first kind (”Type I errors”) are those errors which occur when we

reject the null hypothesis although the null hypothesis is true.

• the error of the second kind (”Type II errors”) arise when we accept the null

hypothesis although the alternative hypothesis is true.
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Reality

H0=true H0=false

Our H0=true OK Error Type II

Decision H0=false Error Type I OK

Table 14.2: To the explanation of the Type I and Type II error.

In summary:

• Rejecting a null-hypothesis when it should have been accepted creates a Type I

error.

• Accepting a null-hypothesis when it should have been rejected creates a Type II

error.

• In either case, a wrong decision or error in judgment has occurred.

• Decision rules (or tests of hypotheses), in order to be good, must be designed to

minimize errors of decision.

• Minimizing errors of decision is not a simple, because for any given sample size,

any effort to reduce one type of error is generally associated with an increase in the

other type of error.

• In practice, one type of error may be more serious than the other.

• In such cases, a compromise should be reached in favor of limiting the more serious

type of error.

• The only way to minimize both types of error is to increase the sample size; and

such a move may or may not be feasible.

14.3.2 N-sample F-Test

In the case of multiple-comparison ANOVA problems, the F-test is used to test if the

variance measuring the differences between groups in a certain pre-defined grouping of

observations is large compared to the variance measuring the differences within the groups:

a large value would tend to suggest that grouping is good or valid in some sense or that

there are real differences between the groups. The formula for an F-test is:

F =
(explained variance)

(unexplained variance)
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or

F =
(between-group variability)

(within-group variability)
,

where the quantities on the top and bottom of this ratio are each unbiased estimates of

the within-group variance on the assumption that the between group variance is zero. An

F test in ANOVA can only tell you if there is a relationship between two variables – it

can’t tell you what that relationship is. Mathematically, this means it can only tell you if

one of the means of the groups is different from another one. It can’t tell you which mean

is different. More information about F-Test in ANOVA see e.g. [3], [2], [21], [16] or [15].
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15 Ellipse Fitting
In the analysis of an izotropy we need to fit an ellipse-so called rose diagram to the

set of points obtained by directional variograms. We will focus on least-square fitting, see

[11] and references therein for details. Least-squares techniques center on finding the set

of parameters that minimize some distance between the data points and the ellipse.

The equation describing a general conic by an implicit second order polynomial can

be written as

F (a,x) = a · x = ax2 + bxy + cy2 + dx + ey + f = 0, (15.0.1)

where a = [a, b, c, d, e, f ]T and x = [x2, xy, y2, x, y, 1]T . F (a,x) is called algebraic distance

of a point (x, y) to the conic F (a,x) = 0. The fitting of a general conic may be approached

by minimizing the sum of squared algebraic distances

D(a) =
N∑

i=1

F (xi)
2 (15.0.2)

of the curve to the N data points xi. In order to fit ellipses specifically while retaining the

efficiency of solution of the linear least-squares problem 15.0.2, we would like to constrain

the parameter vector a so that the conic that it represents is forced to be an ellipse. The

appropriate constraint is well known, namely, that the discriminant of quadratic members

be negative(see e.g. [29]), i.e.

b2 − 4ac < 0.

However, this constrained problem is difficult to solve in general as the Karush-Kuhn-

Tucker conditions(necessary for a solution in nonlinear programming to be optimal, see

e.g. [36]), do not guarantee a solution.

Although the imposition of this inequality constraint is difficult in general, in this case

we have a freedom to arbitrarily scale the parameters so we may simply incorporate the

scaling into the constraint and impose the equality constraint 4ac − b2 = 1. This is a

quadratic constraint which may be expressed in the matrix form aT Ca = 1 as

aT




0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




a = 1 (15.0.3)

Now, the constrained ellipse fitting problem reduces to

min
a
‖Da‖2 subject to the constraint aTCa = 1, (15.0.4)

where the design matrix D is defined as D = [x1,x2, . . . ,xN ]T . Introducing the Lagrange

multiplier λ and differentiating, we arrive at the system of simultaneous equations

2DTDa− 2λCa = 0

aTCa = 1. (15.0.5)



15. ELLIPSE FITTING 103

This may be rewritten as a system

Sa = λCa (15.0.6)

aTCa = 1, (15.0.7)

where S is the scatter matrix DTD. This system is readily solved by considering the

generalized eigenvectors of 15.0.6. If (λi,ui) solves 15.0.6, then so does (λi, µui) for any

µ and from 15.0.7 we can find the value of µi as µ2
i u

T
i Cui = 1, giving

µi =

√
1

uT
i Cui

=

√
1

uT
i Sui

. (15.0.8)

Finally, setting âi = µiui solves 15.0.5.

We note that the solution of the eigensystem 15.0.6 gives six eigenvalue-eigenvector

pairs (λi,ui). Each of these pairs gives rise to a local minimum if the term under the

square root of 15.0.8 is positive. In general, S is positive definite, so the denominator

uT
i Sui is positive for all ui. Therefore, the square root exists if λi > 0, so any solutions to

15.0.5 must have positive generalized eigenvalues. It can be proved, that the minimization

‖Da‖2 subject to 4ac − b2 = 1 yields exactly one solution, which corresponds, by virtue

of the constraint, to an ellipse, see [11].
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16 Normality Tests
In statistics, normality tests are used to determine whether a random variable is

normally distributed, or not.

One application of normality tests is to the residuals from a linear regression model.

If they are not normally distributed, the residuals should not be used in Z tests or in any

other tests derived from the normal distribution, such as t tests, F tests and chi-square

tests. If the residuals are not normally distributed, then the dependent variable or at least

one explanatory variable may have the wrong functional form, or important variables may

be missing, etc. Correcting one or more of these systematic errors may produce residuals

that are normally distributed.

Normality tests include D’Agostino’s K-squared test, the Jarque–Bera test, the Ander-

son–Darling test, the Cramér–von-Mises criterion, the Lilliefors test for normality (itself

an adaptation of the Kolmogorov–Smirnov test), the Shapiro–Wilk test, the Pearson’s

chi-square test and the Shapiro–Francia test for normality.

Instead of using formal normality tests, another option is to compare a histogram of

the residuals to a normal probability curve. The actual distribution of the residuals (the

histogram) should be bell-shaped and resemble the normal distribution. This might be

difficult to see if the sample is small. In this case one might proceed by regressing the

measured residuals against a normal distribution with the same mean and variance as

the sample. If the regression produces an approximately straight line, then the residuals

can safely be assumed to be normally distributed. Among other graphical tools are the

quantile-quantile plot and the normal probability plot.

16.1 Jarque–Bera Test

In statistics, the Jarque-Bera test is a goodness-of-fit measure of departure from normality,

based on the sample kurtosis and skewness. This test is based on the fact that skewness

and kurtosis of normal distribution equal to zero. Therefore, the absolute value of these

parameters could be a measure of deviation of the distribution from normal. The test

statistic JB is defined as

JB =
n

6

(
S2 +

(K − 3)2

4

)
,

where n is the number of observations (or degrees of freedom in general); S is the sample

skewness, K is the sample kurtosis, defined as

S =
µ3

σ3
=

µ3

(σ2)3/2
=

1
n

∑n
i=1 (xi − x)3

(
1
n

∑n
i=1 (xi − x)2)3/2

,

K =
µ4

σ4
=

µ4

(σ2)2 =
1
n

∑n
i=1 (xi − x)4

(
1
n

∑n
i=1 (xi − x)2)2 .
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where µ3 and µ4 are the third and fourth central moments, respectively, x is the sample

mean, and σ2 is the second central moment, the variance. Therefore, this can be consid-

ered as a sort of portmanteau test, since the four lowest moments about the origin are

used jointly for its calculation.

The statistic JB has an asymptotic chi-square distribution with two degrees of freedom

and can be used to test the null hypothesis that the data are from a normal distribution.

The null hypothesis is a joint hypothesis of the skewness being zero and the excess kurtosis

being 0, since samples from a normal distribution have an expected skewness of 0 and an

expected excess kurtosis of 0 (which is the same as a kurtosis of 3). As the definition of

JB shows, any deviation from this increases the JB statistic. The Jarque-Bera test is an

asymptotic test, and should not be used with small samples.

16.2 Ryan-Joiner Test

This test basically compares the unknown distribution with a normal distribution to see

if they differ in shape. A correlation coefficient r is used as the test statistic and the

closer r is to 1.0 the greater confidence we have that the unknown distribution is indeed

normal. The exact values of r for a given confidence interval depend upon the number of

points considered.

The Ryan-Joiner test, which is similar to Shapiro-Wilk test, is based on regression

and correlation. The test tends to work well in identifying a distribution as not normal

when the distribution under consideration is skewed. It is less discriminating when the

underlying distribution is a t-distribution and non-normality is due to kurtosis. We can

use the Ryan-Joiner statistic RJ to test the hypothesis, H0: the data {x1, ..., xn} are a

random sample of size n from a normal distribution, H1: the data are a random sample

from some other distribution. The test statistic RJ is the correlation between the data

and the normal scores. If the data are a sample from a normal distribution then the

normal probability plot will be close to a straight line. The correlation RJ will be close to

one and if the data are sampled from a non-normal distribution then the plot will exhibit

some degree of curvature, resulting in a smaller correlation RJ . Small values of RJ are

therefore regarded as strong evidence against H0. The Ryan-Joiner test is given by the

formula for the correlation coefficient, namely

RJ =

∑n
i=1(Yi − Y )(bi − b)√∑n

i=1(Yi − Y )2
∑n

i=1(bi − b)2

.

Since b = 0, RJ can be simplified to

RJ =

∑n
i=1(Yi − Y )bi√∑n

i=1(Yi − Y )2
∑n

i=1 b2
i

,

where Yi are the ordered observations in a sample of size n and bi is the pth percentage

point of the standard normal distribution, that is, bi = Φ−1(pi) =
√

2erf−1(2p− 1), where
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Φ−1(·) is the inverse cumulative distributive function, or quantile function, which can be

expressed in terms of the inverse error function. This quantile function is sometimes

called the probit function. The values pi can be obtained by pi =
i− 3

8

n+ 1
4

. The statistic RJ

can be used to provide an indication of how non-normal the revisions are. This will be

particularly true with larger samples. The test has the desirable feature of linking together

a graphical display of the data with a simple, objective test statistic. Some may object to

the use of the term correlation coefficient since the bi are not random variables. However,

given any set of points in the plane, one can use the correlation coefficient associated with

those points as a descriptive measure of how close they are to a straight line. In this

sense, RJ can be thought of as a correlation coefficient. Since RJ does not arise from

sampling a bivariate distribution, it is not the same as the usual correlation coefficient.

Approximate critical values CV (n) of RJ were obtained from Monte Carlo simulations.

The results were then smoothed, and for α = 0, 05 it holds

CV (n) = 1, 0063− 0, 1288√
n

− 0, 6118

n
+

1, 3505

n2
.

More detailed description of this test you can find in [31].

16.3 D’Agostino’s K-squared Test

In statistics, D’Agostino’s K2 test is a goodness-of-fit measure of departure from normality,

based on transformations of the sample kurtosis and skewness. The test statistic K2 is

obtained as follows: In the following derivation, n is the number of observations (or degrees

of freedom in general); a3 is the sample skewness, a4 is the sample kurtosis, defined as

a3 =
µ3

σ3
=

µ3

(σ2)3/2
=

1
n

∑n
i=1 (xi − x)3

(
1
n

∑n
i=1 (xi − x)2)3/2

,

a4 =
µ4

σ4
=

µ4

(σ2)2 =
1
n

∑n
i=1 (xi − x)4

(
1
n

∑n
i=1 (xi − x)2)2 ,

where µ3 and µ4 are the third and fourth central moments, respectively, x is the sample

mean, and σ2 is the second central moment, the variance.

Transformed Skewness

First, calculate Z (a3), a transformation of the skewness a3, that is approximately normally

distributed under the null hypothesis that the data are normally distributed. However,

in practice it can be used only for large sample. Denote by

U(a3) =
a3√
D(a3)

= a3 ·
√

(n + 1)(n + 3)

6(n− 2)
,
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b =
3(n2 + 27n− 70)(n + 1)(n + 3)

(n− 2)(n + 5)(n + 7)(n + 9)
,

W 2 =
√

2 (b− 1)− 1, δ =
1√

ln(W )
, α =

√
2

W 2 − 1
,

Z (a3) = δ ln


U(a3)

α
+

√(
U(a3)

α

)2

+ 1




Transformed Kurtosis

Next, calculate Z(a4), a transformation of the kurtosis a4 that is approximately normally

distributed under the null hypothesis that the data are normally distributed.

E [a4] =
3(n− 1)

n + 1
, D[a4] =

24n(n− 2)(n− 3)

(n + 1)2(n + 3)(n + 5)
, U(a4) =

a4 − E [a4]

D[a4]
.

Next, compute the skewness of the kurtosis:

B =
6(n2 − 5n + 2)

(n + 7)(n + 9)

√
6(n + 3)(n + 5)

n(n− 2)(n− 3)
,

A = 6 +
8

B

[
2

B
+

√
1 +

4

B2

]
,

Z(a4) =




(
1− 2

9A

)
− 3

√√√√ 1− 2
A

1 + U(a4)
√

2
A−4




√
9A

2
.

Omnibus K2 statistic

Now, we can combine Z(a3) and Z(a4) to define D’Agostino’s Ombibus K2 test for nor-

mality:

K2 = Z(a3)
2 + Z(a4)

2.

K2 is approximately distributed as χ2 with 2 degrees of freedom. The null hypothesis we

reject, if K2 ≥ χ2
2(α). It is sufficient for n ≥ 20. More tests utilizing the previous statistics

are presented in [2].

16.4 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov statistic is defined as

D = supx|Fn(x)− F (x)|.

The Kolmogorov-Smirnov statistic belongs to the supremum class of EDF statistics. This

class of statistics is based on the largest vertical difference between F (x) and Fn(x). The
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Kolmogorov-Smirnov statistic is computed as the maximum of D+ and D−, where D+

is the largest vertical distance between the EDF and the distribution function when the

EDF is greater than the distribution function, and D− is the largest vertical distance

when the EDF is less than the distribution function.

D+ = maxi

(
i
n
− U(i)

)
D− = maxi

(
U(i) − i−1

n

)
D = max (D+, D−)

The empirical cumulative distribution function Fn for n iid observations xi is defined

as

Fn(x) =
1

n

n∑
i=1

{
1 if xi ≤ x,
0 otherwise.

The Kolmogorov–Smirnov statistic for a given cumulative distribution function F (x) is

Dn = sup
x
|Fn(x)− F (x)|,

where F (x) is the hypothesized distribution or another empirical distribution. By the

Glivenko–Cantelli theorem, if the sample comes from distribution F (x), then Dn converges

to 0 almost surely, i.e.

P
(

lim
n→∞

Dn = 0
)

= 1.

The Kolmogorov distribution is the distribution of the random variable

K = sup
t∈[0,1]

|B(t)|,

where B(t) is the Brownian bridge. The cumulative distribution function of K is given

by

P(K ≤ x) = 1− 2
∞∑
i=1

(−1)i−1e−2i2x2

=

√
2π

x

∞∑
i=1

e−(2i−1)2π2/(8x2).

Under null hypothesis that the sample comes from the hypothesized distribution F (x),
√

nDn
n→∞−−−→ sup

t
|B(F (t))|

in distribution, where B(t) is the Brownian bridge. If F is continuous then under the

null hypothesis
√

nDn converges to the Kolmogorov distribution, which does not depend

on F . This result may also be known as the Kolmogorov theorem. The goodness-of-fit

test or the Kolmogorov–Smirnov test is constructed by using the critical values of the

Kolmogorov distribution. The null hypothesis is rejected at level α if
√

nDn > Kα,

where Kα is found from

P(K ≤ Kα) = 1− α.

The asymptotic power of this test is 1. If the form or parameters of F (x) are determined

from the Xi, the inequality may not hold. In this case, Monte Carlo or other methods are

required to determine the rejection level α.
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16.5 Anderson-Darling Test

The Anderson-Darling statistic and the Cramér-von Mises statistic belong to the quadratic

class of EDF statistics. This class of statistics is based on the squared difference (Fn(x)−
F (x))2. Quadratic statistics have the following general form:

Q = n

∫ +∞

−∞
(Fn(x)− F (x))2ψ(x)dF (x).

The function ψ(x) weights the squared difference (Fn(x)−F (x))2. The Anderson-Darling

statistic (A2) is defined as

A2 = n

∫ +∞

−∞
(Fn(x)− F (x))2 [F (x) (1− F (x))]−1 dF (x).

Here the weight function is ψ(x) = [F (x) (1− F (x))]−1. The Anderson-Darling statistic

is computed as

A2 = −n− 1

n

n∑
i=1

[(2i− 1) log F (xi) + (2n + 1− 2i) log(1− F (xn−i+1))]

H0: The data follow the specified distribution.

HA: The data do not follow the specified distribution.

The hypothesis regarding the distributional form is rejected at the chosen significance

level (alpha) if the test statistic, A2, is greater than the critical value computed by aux-

iliary formulas, see [4] for details.

If testing for normal distribution of the variable X:

1. The data Xi, for i = 1, . . . n, of the variable X that should be tested is sorted from

low to high.

2. The mean X and standard deviation s are calculated from the sample of X.

3. The values Xi are standardized as

Yi =
Xi −X

s

4. With the standard normal CDF Φ, A2 is calculated using

A2 = −n− 1

n

n∑
i=1

(2i− 1)(log Φ(Yi) + log(1− Φ(Yn+1−i)))

5. A∗2, an approximate adjustment for sample size, is calculated using

A∗2 = A2

(
1 +

0.75

n
+

2.25

n2

)
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6. If A∗2 exceeds 0.752 then the hypothesis of normality is rejected for a 5% level test.

Note:

1. If s = 0 or any Φ(Yi) = (0 or 1) then A2 cannot be calculated and is undefined.

2. Above, it was assumed that the variable Xi was being tested for normal distribution.

Any other theoretical distribution can be assumed by using its CDF. Each theoret-

ical distribution has its own critical values, and some examples are: lognormal,

exponential, Weibull, extreme value type I and logistic distribution.

3. Null hypothesis follows the true distribution (in this case, N(0,1)).

16.6 Chi-Squared Test

The Chi-Squared test is used to determine if a sample comes from a population with a

specific distribution. This test is applied to binned data, so the value of the test statistic

depends on how the data is binned. Although there is no optimal choice for the number

of bins k, there are several formulas which can be used to calculate this number based on

the sample size N . For example, it can be used the following empirical formula:

k ∼ + log2 N.

The data can be grouped into intervals of equal probability or equal width. The first

approach is generally more acceptable since it handles peaked data much better. Each

bin should contain at least 5 or more data points, so certain adjacent bins sometimes

need to be joined together for this condition to be satisfied. The Chi-Squared statistic is

defined as

χ2 =
k∑

i=1

(Qi − Ei)
2

Ei

,

where Qi is the observed frequency for bin i, and Ei is the expected frequency for bin i

calculated by

Ei = F (x2)− F (x1),

where F (·) is the CDF of the probability distribution being tested, and x1, x2 are the

limits for bin i. The hypotheses are:

H0: The data follow the specified distribution.

HA: The data do not follow the specified distribution.

The hypothesis regarding the distributional form is rejected at the chosen significance

level (α) if the test statistic is greater than the critical value defined as

χ2
1−α(k − 1)

meaning the Chi-Squared inverse CDF with k − 1 degrees of freedom and a significance

level of α.
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16.7 Shapiro-Wilk Test

In statistics, the Shapiro–Wilk test tests the null hypothesis that a sample x1, . . . , xn came

from a normally distributed population. The test statistic is

W =

(∑n
i=1 aix(i)

)2

∑n
i=1(xi − x)2

,

where x(i) (with parentheses enclosing the subscript index i) is the i-th order statistic,

i.e., the i−th smallest number in the sample; x = (x1 + · · · + xn)/n is the sample mean

and the constants ai are given by

(a1, . . . , an) =
m>V −1

(m>V −1V −1m)1/2
,

where

m = (m1, . . . , mn)>

and m1, . . . ,mn are the expected values of the order statistics of independent and iden-

tically-distributed random variables sampled from the standard normal distribution, and

V is the covariance matrix of those order statistics.

The user may reject the null hypothesis if W is too small. Accuracy is claimed for

samples size from 3 to 5000. Sample size less than three will not produce a Shapiro-Wilk

statistic.

16.8 Lilliefors test

In statistics, the Lilliefors test, is an adaptation of the Kolmogorov–Smirnov test. It is

used to test the null hypothesis that data come from a normally distributed population,

when the null hypothesis does not specify which normal distribution, i.e. does not specify

the expected value and variance.

The test proceeds as follows: First estimate the population mean and population

variance based on the data. Then find the maximum discrepancy between the empiri-

cal distribution function and the cumulative distribution function (CDF) of the normal

distribution with the estimated mean and estimated variance. Just as in the Kolmogorov-

Smirnov test, this will be the test statistic. Finally, we confront the question of whether

the maximum discrepancy is large enough to be statistically significant, thus requiring

rejection of the null hypothesis. This is where this test becomes more complicated than

the Kolmogorov-Smirnov test. Since the hypothesized CDF has been moved closer to

the data by estimation based on those data, the maximum discrepancy has been made

smaller than it would have been if the null hypothesis had singled out just one normal

distribution. Thus we need the ”null distribution” of the test statistic, i.e. its probability

distribution assuming the null hypothesis is true. This is the Lilliefors distribution. To

date, tables for this distribution have been computed only by Monte Carlo methods.
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17 Homogeneity Tests
The homogeneity of variance assumption is one of the critical assumptions underlying

most parametric statistical procedures such as the analysis of variance and it is important

to be able to test this assumption.

Figure 17.1: Plot with random data show-

ing homoscedasticity.

In statistics, a sequence or a vector of ran-

dom variables is homoscedastic if all random

variables in the sequence or vector have the

same finite variance. This is also known as

homogeneity of variance. The complementary

notion is called heteroscedasticity. In a scat-

terplot of data, homoscedasticity looks like an

oval (most x values are concentrated around

the mean of y, with fewer and fewer x val-

ues as y becomes more extreme in either di-

rection). If a scatterplot looks like any geo-

metric shape other than an oval, the rules of

homoscedasticity may have been violated. Sometimes, so called outliers may be present

in the sample and then it is suitable to remove such points and not include them into

the analysis. More information about this problems you can find in any more extensive

statistic book, see e.g. [3], [2], [21] or [14].

17.1 Bartlett’s Test

Bartlett’s test is used to test if k samples have equal variances. Equal variances across

samples is called homoscedasticity or homogeneity of variances. Some statistical tests,

for example the analysis of variance, assume that variances are equal across groups or

samples. The Bartlett test can be used to verify that assumption.

Bartlett’s test is sensitive to departures from normality. That is, if your samples

come from non-normal distributions, then Bartlett’s test may simply be testing for non-

normality. The Levene test and Brown-Forsythe test are alternatives to the Bartlett test

that are less sensitive to departures from normality.

Bartlett’s test is used to test the null hypothesis, H0 that all k population variances

are equal against the alternative that at least two are different.

If there are k samples with size ni and sample variance S2
i then Bartlett’s test statistic

is

X2 =
(N − k) ln(S2

p)−
∑k

i=1(ni − 1) ln(S2
i )

1 + 1
3(k−1)

(∑k
i=1(

1
ni−1

)− 1
N−k

) ,

where N =
∑k

i=1 ni and S2
p = 1

N−k

∑
i(ni − 1)S2

i is the pooled estimate for the variance.
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The test statistic has approximately a χ2
k−1 distribution. Thus the null hypothesis

is rejected if X2 > χ2
k−1,α (where χ2

k−1(α) is the upper tail critical value for the χ2
k−1

distribution).

17.2 Brown-Forsythe Test

In statistics, when a usual one-way ANOVA is performed, it is assumed that the group

variances are statistically equal. If this assumption is not valid, then the resulting F-test

is invalid. The Brown-Forsythe test is a statistical test for the equality of group variances

based on performing an ANOVA on a transformation of the response variable.

Suppose we have k samples of response data, where yij represents the value of i-th

observation (i = 1, 2, . . . , n) on the j−th factor level (j = 1, 2, . . . , k). The hypotheses of

Brown-Forsythe test can be expressed as:

H0 : σ1 = σ2 = . . . = σk

H1 : σp 6= σq, for at least one pair (p, q), 1 ≤ p, q ≤ k.

Transformation

The transformed response variable is constructed to measure the spread in each group.

Define zij as the following

zij = |yij − ỹj| ,
where ỹj is the median of group j. In order to correct for the artificial zeros that come

about with odd numbers of observations in a group, any zij that equals zero is replaced

by the next smallest zij in group j. The Brown-Forsythe test statistic is the model F

statistic from a one way ANOVA on zij:

F =
(N − k)

(p− 1)

∑k
j=1 nj(zj − z)2

∑k
j=1

∑nj

i=1(zij − zj)2
,

where k is the number of groups, nj is the number of observations in group j, and N is

the total number of observations. If the variances are indeed heterogeneous, techniques

that allow for this may be used instead of the usual ANOVA.

Under the null hypothesis of homogeneous variances, Brown-Forsythe statistic will

have approximately an F distribution with k− 1 and N − k degrees of freedom. The test

rejects the hypothesis that the variances are equal if

F > Fα(k − 1, N − k).
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17.3 Levene’s Test

Levene’s test is an inferential statistic used to assess the equality of variance in different

samples. Some common statistical procedures assume that variances of the populations

from which different samples are drawn are equal. Levene’s test assesses this assumption.

It tests the null hypothesis that the population variances are equal. If the resulting

p−value of Levene’s test is less than some critical value α (typically .05), the obtained

differences in sample variances are unlikely to have occurred based on random sampling.

Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a

difference between the variances in the population.

Procedures which typically assume homogeneity of variance include analysis of vari-

ance and t-tests. Advantage of Levene’s test is no requirement of normality assumption.

Levene’s test is often used before a comparison of means. When Levene’s test is significant,

modified procedures are used that do not assume equality of variance.

W =
(N − k)

(k − 1)

∑k
i=1 Ni(Zi· − Z··)2

∑k
i=1

∑Ni

j=1(Zij − Zi·)2
,

where

• W is the result of the test;

• k is the number of different groups to which the samples belong,

• N is the total number of samples,

• Ni is the number of samples in the i−th group,

• Yij is the value of the j−th sample from the i−th group,

• Zij = |Yij − Y i·| with Y i· the median of group i,

• Z·· = 1
N

∑k
i=1

∑Ni

j=1 Zij is the mean of all Zij,

• Zi· = 1
Ni

∑Ni

j=1 Zij is the mean of the Zij for group i.

The significance of W is tested against Fα(k − 1, N − k), where F is the F-test, k − 1

and N − k are the degrees of freedom and α is the chosen level of significance. The test

rejects the hypothesis that the variances are equal if

F > Fα(k − 1, N − k).

Levene’s test may also test a meaningful question in its own right if a researcher is inter-

ested in knowing whether population group variances are different.
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Comparison with the Brown-Forsythe test

The Brown-Forsythe test uses the median instead of the mean. Although the optimal

choice depends on the underlying distribution, the definition based on the median is

recommended as the choice that provides good robustness against many types of non-

normal data while retaining good statistical power. If one has knowledge of the underlying

distribution of the data, this may indicate using one of the other choices. Brown and

Forsythe performed Monte Carlo studies that indicated that using the trimmed mean

performed best when the underlying data followed a Cauchy distribution (a heavy-tailed

distribution) and the median performed best when the underlying data followed a Chi-

square distribution with four degrees of freedom (a heavily skewed distribution). Using

the mean provided the best power for symmetric, moderate-tailed, distributions.

Another modifications of Levene’s test are presented in [18].

17.4 O’Brien Test

In the Obrien’s test the data are transforming to

yij =
(nj − 1, 5)nj(xij − xj

2)− 0, 5
∑nj

j=1(xij − xi)

(nj − 1)(nj − 2)

and uses the F distribution performing an one-way ANOVA using y as the dependent

variable.

17.5 Hartley’s Test

In statistics, Hartley’s test, also known as the Fmax test, is used in the analysis of variance

to verify that different groups have a similar variance, an assumption needed for other

statistical tests. The requirement is that the samples have to be of an equal size.

The test involves computing the ratio of the largest group variance, max(s2
j) to the

smallest group variance, min(s2
j).

Fmax =
max(s2

j)

min(s2
j)

.

The resulting ratio, Fmax, is then compared to a critical value from a table of the sampling

distribution of Fmax. If the computed ratio is less than the critical value(ν = n1− 1), the

groups are assumed to have similar or equal variances.

Hartley’s test assumes that data for each group are normally distributed. This test,

although convenient, is quite sensitive to violations of the normality assumption. Alterna-

tives to Hartley’s test that are robust to violations of normality are O’Brien’s procedure,

and the Brown-Forsythe test.
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17.6 Cochran’s Test

Similarly, as in the case of Hartley’s test, it also requires the frequencies in each group to

be the same, i.e. n1 = . . . = nk. Cochran’s test statistic is

Gmax =
max(s2

j)∑k
i=1 s2

i

.

Large values of Gmax leads to the rejection of the null hypothesis. The critical values are

tabulated.
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18 Monte-Carlo Method
Monte Carlo methods are a class of computational algorithms that rely on repeated

random sampling to compute their results. Monte Carlo methods are often used when

simulating physical and mathematical systems. Because of their reliance on repeated

computation and random or pseudo-random numbers, Monte Carlo methods are most

suited to calculation by a computer. Monte Carlo methods tend to be used when it is

infeasible or impossible to compute an exact result with a deterministic algorithm.

Monte Carlo simulation methods are especially useful in studying systems with a

large number of coupled degrees of freedom, such as fluids, disordered materials, strongly

coupled solids, and cellular structures. More broadly, Monte Carlo methods are useful for

modeling phenomena with significant uncertainty in inputs, such as the calculation of risk

in business. These methods are also widely used in mathematics: a classic use is for the

evaluation of definite integrals, particularly multidimensional integrals with complicated

boundary conditions.

There is no single Monte Carlo method; instead, the term describes a large and widely-

used class of approaches. However, these approaches tend to follow a particular pattern:

1. Define a domain of possible inputs.

2. Generate inputs randomly from the domain.

3. Perform a deterministic computation using the inputs.

4. Aggregate the results of the individual computations into the final result.

For example, the value of π can be approximated using a Monte Carlo method:

1. Draw a square on the ground, then inscribe a circle within it.

2. Uniformly scatter some objects of uniform size throughout the square. For example,

grains of rice or sand.

Figure 18.1: To the computation of π by Monte-Carlo method.
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3. Count the number of objects in the circle, multiply by four, and divide by the total

number of objects in the square.

4. The proportion of objects within the circle versus objects within the square will

approximate π/4, which is the ratio of the circle’s area to the square’s area, thus

giving an approximation to π.

Notice how the π approximation follows the general pattern of Monte Carlo algorithms.

First, we define a domain of inputs: in this case, it’s the square which circumscribes our

circle. Next, we generate inputs randomly (scatter individual grains within the square),

then perform a computation on each input (test whether it falls within the circle). At the

end, we aggregate the results into our final result, the approximation of π. Note, also, two

other common properties of Monte Carlo methods: the computation’s reliance on good

random numbers, and its slow convergence to a better approximation as more data points

are sampled. If grains are purposefully dropped into only, for example, the center of the

circle, they will not be uniformly distributed, and so our approximation will be poor. An

approximation will also be poor if only a few grains are randomly dropped into the whole

square. Thus, the approximation of π will become more accurate both as the grains are

dropped more uniformly and as more are dropped.

In our thesis we used Monte-Carlo method for obtaining empirical F−, G−, J− and

K−functions.

For this section was used the material from the web site www.wikipedia.com and

references therein. This section has only informative character and does not directly

relate to this thesis.
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19 Conclusion
The main aim of this thesis was to explore the use of statistical methods for the

analysis of spatial distributions of particles in composite materials. The second aim was

to provide better analyzes of patterns of finite sized events in finite regions. Moreover,

the possible extensions and directions of further research are indicated.

The most common spatial patterns arising in composite materials can be classified into

one of three main types. Random, when the particles’ distribution do not obey to any

specific requirement and, as a result, the particles or fibres will be randomly dispersed

inside the matrix of the material. Clustered, when the particles tend to be grouped

together forming several distinct aggregations. Regular, if the particles are distributed

in a systematic way, especially when there is some sort of inhibition keeping them at a

certain minimum distance from each other (the so-called threshold distance).

The self-contained file of methods for describing a random material is presented here.

Spatial statistical techniques can be used to analyze patterns by detecting deviations from

randomness. Complete spatial randomness (CSR) is considered to be the null hypothesis

of the statistical tests and the interest lies in finding alternative types of patterns towards

either clustering or regularity, from a random pattern. To find out this fact, Clark–Evans

test and Skellam statistic were determined. In both cases, the CSR was rejected. This

implies from the reality, that no two fibres cannot be nearer than the sum of their radii.

In other words, penetration of fibres can not occur in the real situation.

In order to undertake this research, we started by acquainting ourselves with the

features and characteristics of composite materials - the one of interest in this research.

Evidence shows that the way the particles or fibres, that are dispersed inside a matrix

of material affect the materials’ quality and performance. Therefore, one of the objectives

of materials scientists is to find the particles’ spatial distribution. The only feasible

approach is to observe two dimensional cross-sections of the material. This is done by

analyzing the pattern formed by the intercepted fibres and from the results obtained, infer

the type of the distribution.

In the simulations, the three dimensional space was considered to be the parallelepiped

with squared base which is intercepted at planes parallel to its edges and, as a consequence,

the cross-sections were represented as squares. The bitmaps of such real samples were

obtained from Klokner Institute of the Czech Technical Univerzity in Prague by Ing.

Jan Zeman, Ph.D. The analyzes performed on the two dimensional patterns employed

standard and recently developed statistical methods. They consist e.g. of the Kolmogorov-

Smirnov test, quadrat and Clark–Evans tests as well as Monte Carlo tests using statistics

based on Ripley’s K function, nearest neighbor G function, empty space F and J functions.

A detailed description of these standard tools, originally implemented to analyze and

model spatial point patterns, was provided in the early chapters of this thesis.

From a review study we found, that of all the above functions, Ripley’s K is the

function whose statistic provides the most effective of all tests (especially the test based
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on the square root transformation of K, i.e. L - function). This function was followed,

in order of effectiveness, by the G and F (being G most effective against regularity and

F against clustering) and the J functions. Note that the effectiveness is measured by the

power of these functions at detecting deviations from randomness.

A problem encountered when estimating any of the above functions is, that the finite

sample region is commonly assumed as being infinite. As a consequence, events that lay

near the boundary of the region might have their nearest neighbor events outside the

border and these will not be included in the analysis. It creates the so-called edge effect

problem and causing bias in the functions’ estimates.

Several methods have been introduced to correct the edge effects, see [9], [25] or

[8]. Depending on the function to be estimated, authors seemed to have concentrated

on different approaches to this problem. Evidently, it depends on the function to be

estimated and also on the shape of the study region. Briefly, it can be viewed in the

literature that the Doguwa-Upton or the Ohser- Stoyan estimators gave the least biased

Ripley’s K function’s estimator and could also be applied to any shaped finite region. For

the same reasons as for the choice of Ripley’s K function estimator is recommend, the

Floresroux-Stein estimator is suitable for estimating the G, F and J functions. In our

analysis, the edge correctors were not used for the sake of simplicity and also from the

reason, that it was not the main aim of this thesis to investigate them.

In literature, see e.g. [9] we can find many point processes that are very similar to

ours, that represents the centers of the fibres, but they assume the equal sized circles,

which is not true in the reality. For patterns formed from different sized events (in

our case different sized circles), the best approach is to simulate several random patterns

consisting of events whose sizes follow the same distribution as the real ones. The required

functions are then calculated from each of those simulated patterns and their average is

obtained. The functions thus achieved, will give the best approximation to the values of

theoretical functions corresponding to random patterns, whose events have the same size

distribution.

The main part of the thesis was devoted to the detailed description of developed

algorithms AI–AIV. The new algorithms were created in such way to be similar to the

real patterns as much as possible. The main mathematical properties of them was the

theme of the second part.

The second part was devoted to the statistical computations and comparisons by mean

of descriptive statistics. Moreover, the assumptions of homogeneity and normality were

implemented. All the results are presented in tables, from which the difference of various

algorithms is clear. The last part, named Appendix contains auxiliary techniques used in

the second part.
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20 Perspectives
Now, we briefly outline the possibilities for the next research. A very interesting and

challenging topic is the deeper analysis of the algorithms generating random structures

as the real one. It is conditioned by having at disposal real samples, resp. bitmaps of

them. It would be suitable to include to the algorithms such parameters, which will be

able in some ranges to influence the final structure to the reason of the best fitting of

the real samples. Next challenging improvement can be made by using edge correctors

for the computations of F, G, J and K functions and their better comparison in order

to the refitting of algorithms generating structures similar to the real ones as much as

possible. Such obtained structures can be then used as a base for computations of the

e.g. equations of mathematical physic and their subsequent use to the general domain.
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I’m nothing special,
in fact I’m a bit of a bore.

If I tell a joke,
you’ve probably heard it before.

But I have a talent,
a wonderful thing,

’cause everyone listens,
when I start to sing,

I’m so grateful and proud.
All I want is to sing it out loud...

Nejsem nič́ım zvláštńı,
vlastně jsem sṕı̌s nudná.

Když řeknu vtip,
zřejmě jste ho už slyšeli.

Ale mám nadáńı –
úžasnou věc,

protože všichni zpozorńı,
jakmile začnu zṕıvat.

Jsem tak vděčná a hrdá
a chci to vyzṕıvat nahlas...

...ABBA–never dying and unequalled texts in their songs. Their songs wrote the whole

life. That is a pity, for their ending in 1981. The three parts of this thesis are commented

by ABBA’s songs. The chosen citations are according to the author´s best consideration

leading to the best characterization of the parts.

The A BBA pop-group in the seventieth.

When all is said and done...
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MATLAB 2000, HUMUSOFT Praha.

[25] Ohser, S., Mücklich, F.: Statistical Analysis of Microstructures in Material Science.

John Wiley & Sons, Chichester, 2000.

[26] Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tesselations. John Wiley &

Sons, Chichester, 1999.

[27] Øksendal, B.: Stochastic Differential Equations. Springer-Verlag Berlin Heidelberg

New York, Germany, 2000.



BIBLIOGRAPHY 125
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[29] Rektorys, K. & kol.: Přehled užité matematiky I, II. Prometheus, Praha, 2000.

[30] Ripley, B.D.: Spatial Statistics. John Wiley & Sons, New Jersey, 2004.

[31] Ryan, T.A., Joiner, B.L.: Normal probability plots and tests for normality, 1976.

[32] Sofia Mucharreira de Azeredo Lopes: Statistical Analysis of Particle Distributions

in Composite Materials. PhD thesis, University of Sheffield, 2000.
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