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Abstrakt 
P ř e d k l á d a n á diser tační práce se věnuje generování náhodných struktur dvouvláknových 

kompozi tn ích mater iá lů . P r v n í část se zabývá z n á m ý m i obecnými principy a zákoni tos tmi 

náhodných procesů. Celá úvodn í část je směřována k aplikaci n á h o d n ý c h procesů na 

kompozi tn í mate r iá ly jako je např . anizotropie nebo pros torová korelace. Jsou zde uve­

deny základní a nejpoužívanější známé modely pro generování n á h o d n ý c h struktur. Dále 

je pak d i sku tována otázka popisu vn i t řn í struktury kompozitu, ze jména pak komple tn í 

prostorové náhodnos t i struktur a její detekce různými metodami. Teoretickou část pak 

uzavírá detai lní popis autorem vytvořených čtyř a lgor i tmů pro generování n á h o d n ý c h 

struktur s nekons t an tn ím p r ů m ě r e m vláken ve vzorku. 

Ve druhé , výpočtové části je uvedeno porovnán í nas imulovaných vzorků pomocí nových 

a lgor i tmů navzájem mezi sebou a s reá lnými vzorky, k teré byly k dispozici. Toto porovnán í 

je provedeno metodami deskr ip t ivní statistiky. V neposlední ř adě jsou ověřeny p ředpoklady 

normality a homogenity rozptylu u jednot l ivých vzorků. Tyto p ředpok lady jsou zpravidla 

nezbytné pro p ř ípadné další zpracování dat, např . analýzy rozptylu. 

Summary 

This thesis is devoted to generating of non-periodic structures of two-fibre composite ma­

terial. The first part deals wi th the well-known principles and laws of random processes. 

The whole introductory part tends to the application of random processes to the com­

posites, e.g. anizotropy or spatial correlation. The most frequently used and well-known 

algorithms for generating non-periodic patterns are presented here. Next, the description 

of inner microstructure is discussed together wi th the methods of detection of complete 

spatial randomness. The theoretic part ends wi th detailed description of four algorithms 

developed by the author for generating random structures wi th non-constant diameters 

of fibres. 

In the second computational part the comparison of simulated samples obtained by 

new algorithms and real ones is presented. This comparison is made by mean of tech­

niques of a descriptive statistic. Moreover, the assumptions of normality and homogeneity 

of samples are checked. These assumptions are usually necessary for contingent next com­

putations, e.g. analysis of variance. 
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Preface 
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t iku posloucháním vybroušených výkladů 
při vyučovacích hodinách , ale zejména 
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Introduction 
The study of composite materials has become a very important subject of research in the 

materials engineering area. These materials are heterogeneous man-made mixtures of two 

or more homogeneous phases bonded together. The first phase is called the matrix and is 

usually a metal (e.g. aluminium, steel, titanium) or plastic (e.g. silicon, epoxide), while 

the other is the reinforcement and is commonly either particles or fibres. In general, the 

second-phase substance has much higher stiffness than the matrix. 

It is expected that by combining two types of materials one wi l l obtain the best prop­

erties of both substances. This material, the so-called composite material, has then con­

siderably better mechanical properties and higher performance than any single material 

from which it is formed. 

It is known that mechanical properties (e.g. ductili ty and fracture toughness) of par­

ticular composite materials depend not only on the shape and volume fraction of the com­

posites but also on the spatial and size distributions of the particles or fibres. Moreover, 

variations in the production process (e.g. rolling, extrusion, centrifuging, temperature of 

the mother matrix when the particles are added) can affect the mechanical properties of 

the material. 

This evidence shows that quantitative analysis of the microstructure of particulate 

composite materials is of extreme importance for a better understanding of the rela­

tionship between inclusions and mechanical behavior and also for better control of the 

production of the material. 

Material scientists are primarily interested in relating the mechanical properties of the 

composite to the microstructural features of the second-phase particles such as volume 

fraction, size, shape and spatial variation. There is only one possible way to achieve this 

aim when composites are concerned and this is to take a planar section of the material, 

polish it and then record, wi th the use of a microscope, the features of interest (e.g. 

location, size, shape) of each particle that appears in the section. This information is 

then processed by image analysis techniques, which are described e.g. in [12]. These 

techniques provide a large amount of data on the reinforced material that must be analyzed 

by statistical methods. In particular, the currently fast growing area of spatial processes 

has special relevance to the analysis. 

The ultimate aim of investigating the statistical properties of patterns of composite 

materials is to get some information and additional insight about the underlying mecha­

nisms that rule the way the different materials are formed. Since there are many features 

relating to the material that can be analyzed, it is appropriate to say that this thesis 

deals wi th the statistical description and analysis of spatial distributions of fibres held in 

planar sections of composite materials. 

Mathematical modeling of composite materials leads to solving P D E s wi th strongly 

oscillating coefficients. The problem of large number of equations can be solved using 
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homogenization, that replaces heterogeneous material by an equivalent homogeneous one. 

This approach assumes periodic structure, which is not true in the reality. 

Many methods devoting to the composites and their mathematical description of their 

physical properties relies on the fact, that the structure is well known. Many materials, 

meaning two-fibres composites, vary very "widely" than to be imposed to be the sample 

for mathematical modeling. Such structures can be seen in the following chapters in this 

thesis. 

The predictions of properties of a real random structure of a natural material is a 

priory very difficult because of the amount of the effects that we are able to hold. A n d 

this is the reason, we are still not able to exactly predict a behavior of such material. 

One approach how to understand this phenomena is to understand to its inner struc­

ture. Once, we have at disposal real samples of a real media in the form of photographs 

or bitmaps, we are able to simulate very similar patterns to the real ones. 

In this thesis we give a brief summary of standard methods dealing with describing 

and comparing of various random patterns. We introduce here a collection of methods 

for describing a various random material. In literature we can find many algorithms and 

methods for generating random patterns (meaning cross-sections of two-phase fibre com­

posites), see e.g. [8] or [9], but the only disadvantage of this is the fact, that they operate 

only wi th the constant diameters of the fibres. App ly ing these methods we admittedly 

obtain random samples, but such patterns do not correspond to the real ones because 

of the diameters. In this theses we summarize the basic descriptors for random samples 

and introduce four algorithms for generating non-periodic structures with non-constant 

diameters. Such obtained samples wi l l be consequently compared wi th real samples by 

means of descriptive statistic techniques and standard microstructural descriptors. 

The content of the thesis wi l l be as follows: The theses consists of three parts. The 

first part, called Theoretical Aspects, is divided into four sections. The first section, Mo­
dels for Random Multi-phase Materials, is devoted to the common description of random 

spatial processes, their definition and properties. Moreover, the basic models for gener­

ating random patterns are presented here. The second one gives a brief summarization 

about complete spatial randomness of samples and their description using second order 

Ripley's K function. In the third section the microstructural descriptors of composites 

are presented and in the four one the new algorithms A I - A I V generating non-periodic 

patterns wi th non-constant fibre diameters are introduced. 

The second part of the thesis, called Statistical Computations, contains the compu­

tations dealing with developed algorithms A I - A I V and their comparing wi th the real 

samples. A t the beginning the real samples are described, then the methods of descrip­

tive statistics are applied on these simulated samples and the question of anizotropy is 

discussed. A t the end of this part the basic assumptions for further analysis, such as 

normality and homogeneity, are presented. 
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1 Models for Random Multi-phase 
Materials 

1.1 Introduction 

The study of micromechanics in composite materials has been performed assuming pe­

riodicity in the distribution of the fibres. This approach provides simplifications which 

lead to the possibility of analytical solutions or in the case of computational methods 

it reduces its time. However, this approach represents an idealized material which may 

be useful for computing effective elastic properties, but differs from the real one in some 

aspects, see [20]. 

It has been shown that avoiding real, i.e. non-periodic distribution of fibres have not 

so large negative effects to effective properties of material, but local (e.g. mechanical) 

properties vary very intensive, see [28]. 

1.2 Random process - properties and definitions 

The use of term random heterogeneous material or simply random medium rests on the 

assumption that any sample of the medium is a realization of a specific random or stochas­

tic process (or random field). A n ensemble is a collection of all the possible realizations 

of a random medium generated by a specific stochastic process, see [37]. We let (íž, J7, P) 
be some fixed probability space, where Q is a sample space, T is a a-algebra of subsets of 

fž(set of events), and P is a probability measure. 

1.2.1 Random process 

When we analyze real materials in a microscopic scale, there exist many variables which 

should be considered random, and which depend on spatial distributions of phases. 

Let x G M,d be a spatial location in a d—dimensional space and let us assume Z(x) is 

a random variable. If we let x vary over a fixed set D C M.d, we can express the random 
process Z(x) as, see [8], [20]: 

{Z(x) : x G D}. 

To emphasize the source of randomness, the previous notation is sometimes written as 

{Z(x,u) : x G D; u G íl}, 

where (Q, J7, P) is a probability space. If a; G R (i.e., the variable is function of one 

spatial dimension), the term random process or stochastic process is often used instead of 

random field or random function as in the case of d > 1. 
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1.2.2 Types of random processes 

According to [8], usually D is assumed to be a fixed, i.e. nonrandom subset of Rd, but 

we shall assume more generally that D is a random set. Roughly formally speaking, we 

shall assume that D as well as Z may vary from realization to realization, giving another 

source of randomness to the problem, see [8] for details. Generally, depending on the 

nature of the set D, four types of random processes can be defined: 

• Time-space processes - are processes which variation is given in space D and time 

interval (0 ;T) . This can be written: 

{Z(x;t) :xeD, t G (0 ;T)} . 

The special case of time-space processes are the so called time series, in which the set 

D is the temporal dimension. Usually the fatique behaviour of composite materials 

and mechanical properties are modelled using time series. 

• Geo statistical data - when the spatial variable x varies continuously within D. 
which is a subset of M.d and Z(x) is a random vector at location x G D. Here, 

measurements are taken at a fixed number of chosen locations. Most of the physical 

properties can be seen as geostatistical data. 

• Lattice data - when D is a fixed(regular or irregular) collection of countable many 

points of M.d and Z(x) is a random vector at location x G D. Here, measurements 

are taken at a lattice and at each point on this lattice a measurement is collected. 

Sometimes, measured properties are computed as mean values. Sometimes, like it 

happens in finite element meshes, the same value of the property is considered for 

a subdomain (the element of the lattice). In this case we are working wi th lattice 

data, see figure 1.1. 

Figure 1.1: An averaging example of the lattice data 

• Point patterns - data in the form of a set of points, regularly or irregularly dis­

tributed within a region. Each item of data consists of the location of an event. 

The random position of e.g. carbon or glass fibres in a fibre reinforced composite 

is a good example of a point pattern. Point pattern analysis is concerned wi th the 

location of events, and wi th answering questions about the distribution of those lo­

cations, specifically whether they are clustered, randomly or regularly distributed. 
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Point pattern analysis is very sensitive to the definition of the study area, since 
a regularly distributed pattern can be made to seem clustered by including large 
margins within the study area. 

• • • 

• • • 

• • . • 

Figure 1.2: Clustered point pattern on the left and regular point pattern on the right 

1.2.3 Characteristics of random processes 

Among basic numeric characteristics of a random process belong expected(mean) value 
E ( Z ) and dispersion(variance) D ( Z ) of the stochastic process Z{x). But they are so 
known terms in the theory of probability and statistics, that it is meaningless to mention 
them here. Among next important characteristics belong next ones 

Autocovariance function C(x,y) of Z(x), where(x,y) G D x D is defined as 

C(x, y) = cov[Z(x), Z{y)\ = E{[Z(x) - E(Z(x))][Z(y) - E(Z(y))}} 

and has these properties 

C(x, y) = C(y, x) and C(x, x) = T>(Z(x)). 

Autocorrelation function p(x, y) is defined for (x, y) G D x D as 

C(x,y) 
p(x,y (x,y) G D x D 

with properties 

B(Z(x))B(Z(y)Y 

p(x,y) = p(y,x) and p(x,x) = l. 

Semivariance function ~f(x,y) is defined for (x,y) G D x D as 

7 (x , y) = l-V[Z(y) - Z{x)\, (x,y) G D x D 

which has properties 

j(x,y) = nr(y,x), 7(01,3/) > 0 and 7(03, x) = 0. 
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To the point-estimations of functions mentioned above, we should generally know a 
big number of realizations of the process Z(x), x G D. However, these realizations in 
reality we do not have and the estimations we often compute only from a one realization 
of Z(x). The obtained results are then independent to the position of the point x and 
about a behavior of the process they give us no information. The easier situation is, when 
the process is stationary in some kind of sense. It then leads to the terms variogram and 
covariogram. 

1.2.4 Variogram 

Basic terms 

1. The process Z(x) is said to be stationary to its mean if its mean is constant for 
every x G D. 

2. Whether the autocovariance function is dependent only on the difference of argu­
ments, we say, that the process is stationary to its autocovariance, i.e. for Vcc G D 
and V7i = (hi,..., hd) provided x + h G D it holds 

3. If the semivariance function is dependent only on the difference of arguments, we 

say, that the process is stationary to its semivariance, i.e. for Vcc G D and V / i = 

(hi,..., hd) provided x + h G D it holds 

In this case, the covariance, resp. semivariance function is said to be a covariogram, 
resp. variogram(semivariogram). We denote these functions by the same letter as 
covariance, resp. semivariance function, even they are different. 

The random process Z(x) is weakly stationary if it fulfils conditions (1) and (2). Next, 
the process is said to be intrinsically stationary (stationary), if it satisfy to conditions (1) 
and (3). So, it means that from the weak stationarity it follows intrinsically stationarity, 
but not conversely. Finally, one can say, that if the process is intrinsically stationary, then 
we obtain 

According to this formula, a variogram is computed and estimated. In other words, 
the variogram gives us "amount of dissimilarity". Similarly, covariogram C(h) measures 
correlation dependency. Finally, it states 

C(x,x + h) = C(h). 

j(x, x + h) = 7(7i). 

C(0) =j(h) + C(h). 

So, we can say, that total spatial variability expressed by variance, we can divide into two 
parts - regular, described by covariogram, and random, described by variogram. 
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Variogram Covariogram 

7(0) = 0 C(0) = C(x,x) = V(Z(x)) > 0 

7 ( - h ) = 7 (h) C7(-h) = C(h) 

7(h) > 0 |C7(h)|<67(0) 

Table 1.1: M a i n properties of variogram and covariogram. 

In the case .D C M 2 , both C(h) and 7(h) are function of h = (hi, h2) or of a direction 

a and the length h — \ \h\ \ = yh\ + h\. If we consider C(h), resp. 7(h) in the direction 

h, consequently both C(h) and 7(h) are functions only of h, i.e. distance of x + h and 

x. Obtained functions we caption as directional covariogram, resp. directional var­
iogram and we write C(h) = C(h), resp. 7(h) = j(h). From the properties introduced 

in the Table 1.1 we can see they are even, so it is sufficient to compute the values only 

for h > 0. 

Figure 1.3: The relation between variogram and covariogram. 

Whether the variogram depends only on the distance h of the points x + h and x and 

not also on the angle of the vector h, i.e. all the directional variograms are the same, 

then the process is isotropic, otherwise anisotropic. 

Experimental variogram 

From the obtained values of a measurement we compute point-estimation j(h) of the 

variogram •y(h) and we get so called experimental variogram. In a plane we estimate so-

called omnidirectional variogram if we are sure about isotropic process, otherwise we 

estimate directional variogram. In the second case we choose several directions(e.g. 

horizontal, vertical and diagonals) during computations. According to [24] and references 

therein, the omnidirectional variogram we obtain by averaging of appropriate directional 

variograms. In the case, when the measurements are distributed regularly, e.g. rectangular 

grid, which wi l l be our case, then we compute directional variograms in horizontal and 
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vertical directions and in the directions of both diagonals. For non-regular distributed 

measurements, see literature, e.g. [8] and others. 

The behavior of a variogram for "large" h 

It is possible to prove, see [8] for details, that for the weak stationary process its vari­

ogram is a top-bounded function. Next, it holds for the weak stationary and intrinsically 

stationary process 

These properties allow us to decide, whether the process is weakly stationary, intrinsically 

stationary or non-stationary. If the variogram 'j(h) is non-bounded, then it is either 

intrinsically stationary or non-stationary process. Next, if the l imit mentioned above is 

greater than zero, then the process is non-stationary, otherwise it is stationary one. 

So, as the values of the variogram 'j(h) for h —> oo have finite l imit , then the appropri­

ate random process is weakly stationary, otherwise is intrinsically stationary. In the first 

case, the variogram have to achieve its limit value in a finite distance, say a - so called 

range, which denote the so called zone of an effect. The more a is bigger, the more a 

zone of an effect is also bigger. Then, the graph of j(h) is for h > a equidistant with the 

h—axes and this part is called as a sill. It means, that for h > a, the values Z(x + h) 
and Z(x) are uncorrected and it holds •y(h) = C(0) for \/h > a. In the following figure 

you can see the situation described above. 

0. 

Y (hf 

a2=C(0) 

s i l l 

0 h 

Figure 1.4: A typical variogram - explanation of the terms. 



1. MODELS FOR RANDOM MULTI-PHASE MATERIALS 10 

The behavior of a variogram for "small" h (near an origin) 

Now, we wi l l study the behavior of a variogram near the origin, because it is important 
for continuity and regularity of random process. In literature we can find four types of 
behavior of a variogram near origin: 

1. Quadratic shape. If 'j(h) < Ah2, then the process is differentiable and non-
similarity grows very fast. 

2. Linear shape. If ^y(h) is linear near an origin, then l i m ^ 0 7 ( ^ ) — 0. It is less 
regular than in quadratic shape. 

3. Discontinuity at origin. If l i m ^ 0 7 ( ^ ) 7̂  0, then the process is neither regular 
nor continuous at origin. It means, that the process is variable in short distances. 
Non-continuity at origin is called as nugget effect. It indicates a variability of 
small-scale-distances and usually it is caused by the factors such as a microstructure, 
which is not measurable by given scale of sampling(short distance between two points 
leads to large difference of measured values), see [8] for details. 

4. Flat shape. In this case, the process is fully random. A l l values Z(x + h) and 
Z(x) are uncorrelated for Wh > 0. It is a l imit case of total absence of a structure. 

Figure 1.5: The behavior of variograms near origin: Quadratic shape, Linear shape, 
Discontinuity in a origin-nugget effect and Flat shape 
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1.2.5 Anisotropy 

About isotropy, resp. anisotropy we can decide according directional variograms, i.e var-

iograms estimated in different directions. In the case, that these estimates are of the 

same or similar shape and roughly the same parameters, then we consider the process 

to be isotropy, otherwise anisotropy. In principle we distinguish geometric(affine) 
anisotropy and zonal anisotropy. 

Whether the estimates of directional variograms of the similar or the same shape differ 

only in ranges, while the sill remains constant, then we have geometric anisotropy. But , 

if the directional variograms differ in more parametres than only in ranges, then it is the 

case of zonal anisotropy, see the following figures: 

y(A) 

direction 2 

direction 1 

h 

a 2 0 

Figure 1.6: Geometric anisotropy Figure 1.7: Zonal anisotropy 

During detecting of the anisotropy in a plane, it is necessary to estimate variograms 

at least at four different directions to get r id of the doubt, that the anisotropy wi l l not 

be detected. 

In the next figures the representation of the isotropy resp. anisotropy by means of the 

ranges of variograms is displayed. 

h2 

h k 

h2 

) k 

Figure 1.8: Isotropy Figure 1.9: Geometric anisotropy 

In Appendix there are presented theoretical models of variograms, which are necessary 

to next computations and estimations. 
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h2 

Min. variation 

Figure 1.10: Geometric anisotropy Figure 1.11: Zonal anisotropy 

1.2.6 Spatial autocorrelation 

Autocorrelation literally means that a variable is correlated wi th itself. The simplest 

definition of autocorrelation states that pairs of subjects that are close to each other are 

more likely to have values that are more similar, and pairs of subjects far apart from each 

other are more likely to have values that are less similar. The spatial structure of the data 

refers to any patterns that may exist. Clusters are examples of spatial structures that are 

positively correlated, whereas negative correlation may be exhibited in a checkerboard 

pattern where subjects appear to repulse each other. When data are spatially autocorre-

lated, it is possible to predict the value at one location based on the value sampled from a 

nearby location when data using interpolation methods. The absence of autocorrelation 

implies data are independent. 

Moran's I and Geary's c are well known tests for spatial autocorrelation. They rep­

resent two special cases of the general cross-product statistic that measures spatial au­

tocorrelation. Moran's I is produced by standardizing the spatial autocovariance by the 

variance of the data. Geary's c uses the sum of the squared differences between pairs 

of data values as its measure of covariation. Bo th of these statistics depend on a spa­

t ial structural specification such as a spatial weights matrix or a distance related decline 

function. 

The expected value of Moran's I is — l / ( n — 1). Values of I that exceed — l / ( n — 1) 

indicate positive spatial autocorrelation, in which similar values, either high values or low 

values are spatially clustered. Values of I below — l / ( n — 1) indicate negative spatial 

autocorrelation, in which neighboring values are dissimilar. 

The theoretical expected value for Geary's c is 1. A value of Geary's c less than 1 

indicates positive spatial autocorrelation, while a value larger than 1 points to negative 

spatial autocorrelation. The appropriate formulas for computations are: 

I 

i=ij=i 
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and 
n n 

E E { 4 , j ) ( ^ . ) - W 
n — 1 i=ij=i 

r = 
2 E E « E ( z ( x i ) - z ( x ) ) 

i=l j=l i=l v J 

where Z(x) = - E I L i z(xi) a n d is the connectivity spatial weight between Xi and 
Xj. More information about this contiguity and probabilistic relations, see Appendix. 

1.3 Models for Spatial Point Patterns 

The homogeneous Poisson process provides the natural starting point for a statistical in­

vestigation of an observed point pattern. Rejection of the complete spatial randomness 

hypothesis does not come as a great surprise in many applications and we are naturally 

confronted wi th the question "What kind of pattern is it?" If the complete spatial random­

ness test suggests a clustered pattern, one may want to compare another characteristics, 

e.g. second-order moments (Ripley's K function), see later. 

We can only skim some point processes models here. A large number of models have 

been developed and described for clustered and regular alternatives. Details can be found 

e.g. in [9], [8], etc. The models presented here were chosen for their representativeness 

and for their importance in theoretical and applied statistics. 

1.3.1 Poisson process 

The Poisson point process is the simplest yet the most important random point pattern. 

The reasons for this importance are, firstly, that typically the Poisson model is the "nul l 

model" implying complete lack of structure or external influence on the pattern, so de­

partures from this wi l l reflect some practical feature in the production of the patterns. 

The second aspect of the role of a Poisson process is that many more complex models 

have the Poisson process as a constituent part. 

A given point pattern may exhibit various kinds of interaction between its constituent 

points. Thus, the points may occur in clusters or may exhibit great regularity. There may 

be a threshold distance (also called hard-core distance) which is a minimal inter point 

distance. These extreme features may even occur together in the same pattern. The aim 

of point process statistics is to detect and to quantify such interactions. If none of the 

above interactions is present, the point pattern can be thought of as completely random, 

that is, its points are randomly distributed in the space, they form a Poisson process. 

Models from the theory of point processes can be used both in comparison to the 

original point pattern and also in representation of it. Clark and Evans (1954) describe 

a random distribution as being a set of points on a given area, where it is assumed that 

any point has had the same chance of occurring on any sub-area as any other point, that 

any sub-area of specified size has had the same chance of receiving a point as any other 
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sub-area of that size, and that the placement of each point has not been influenced by 

that of any other point. Thus, randomness is dependent upon the boundaries of the space 

chosen by the investigator. A set of points may be random with respect to a specified 

area but decidedly non-random with respect to a larger space which includes the specified 

area. In order to get meaningful results, the areas selected for the investigation should be 

chosen wi th care. 

Definition of the Poisson Process 

The Poisson process is a formalization of the concept of randomness and is defined by the 

following postulates. 

• For some A > 0, and any finite region A, N(A) has a Poisson distribution wi th mean 

X\A\. 

• Given N(A) = n, the n events in A form an independent random sample from the 
uniform distribution on A. 

• For any two disjoint regions A and B, N(A) and N(B) are independent. 

A spatial point pattern satisfying these criteria is also said to exhibit complete spatial 

randomness, abbreviated to C S R . According to the first item, C S R therefore implies 

that the intensity of events does not vary over the region (and consequently it explains 

the reason why a random distribution of points in space may be referred to as a spatial 

Poisson process). According to the second, C S R also implies that there are no interactions 

amongst the events. 

Note: The generalization of the Poisson process is the so called inhomogeneous Poisson 
process. It differs from the homogeneous one in the fact, that the intensity A is not 

constant overall the domain, but varies spatially. It usually leads to clustering and we 

refer to [9] for more information. 

Regular Processes 

1.3.2 Hard-Core Models 

A hard-core point process is a point process in which the constituent points are forbidden 

to lie closer together than a certain minimum distance, denoted throughout as r , resulting 

in an even or regular spatial distribution of points. 

Regular patterns arise most naturally by the imposition of a minimum permissible 

distance, r say, between any two points. This may simply reflect the physical size of 

the entities whose locations define the point pattern. Matern was the first (1960), who 

described formally the hard-core models. 



1. MODELS FOR RANDOM MULTI-PHASE MATERIALS 15 

Processes of this sort, which incorporate no further departure from complete spatial 

randomness, are also commonly called simple inhibition processes. Monograph [8] pro­

vides a detailed descriptions of simple inhibit ion (or Hard-Core) point processes including 

Matern's Models whose some definitions wi l l be stated in the following two subsections. 

Basically, these models describe two possible ways to obtain inhibited patterns from a 

Poisson process. 

Note: The theory of the Hard-Core models is so broad, that it can not be held everything 

in this thesis. We wi l l try, only, introduce only the basics of it. 

Matern's Mode l I 

Consider a Poisson process N0 on M.D wi th intensity p. Mode l I is formed by deleting 

all pairs of points of the Poisson process that are separated by a distance of less than r 

whether or not either point of that pair had already been deleted. The remaining points 

form a (more regular) process. 

Matern's Mode l II 

Let N0 be a homogeneous Poisson process on M.D wi th intensity p. Independently mark the 

events s of N0 wi th numbers Z(s) from any absolutely continuous distribution function F. 
A n event s of Nq wi th mark Z(s) is deleted if there exists another event u wi th | \s—u\ \ < r 
and Z{u) < Z(s). The retained events form the (more regular) spatial point process. 

Simple Sequential Inhibition Point Process 

A simple sequential inhibit ion point process (SSI) is defined as the output of an algorithm 

that repeatedly introduces particles at random into a bounded window A, discarding 

those that would overlap a previously introduced particle, unti l some stopping criterion 

is satisfied. It can be imagined in this way: Again , consider a Poisson process TVo on a 

domain A wi th intensity p. We place a disc of a radius, say S at random in a region A. 
Then we determine the remaining points in A, for which we can place a disc of radius S 
that do not overlap wi th the first disc. Then we select the center point at which the next 

disc at random from a uniform distribution of these points. We continue in this fashion, 

choosing at each stage the disc center at random from the points at which the next disc 

does not overlap with any of the previous discs. The process stops when a pre-specified 

number of discs have been placed or no additional disc can be placed without overlapping 

previously placed discs. 

Summarizing 

In [8] detailed information about hard-core models are presented. After the deeper 

studium of spatial processes, one can see, that it is meaningless to delay wi th another 
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types of spatial processes because of their non-similarity to fibre composites. From the 

previous mentioned, it is clear, that fibre composites can not have C S R character, because 

of their nonzero fibre diameters. So, it means, that for their modeling it is required to use 

regular spatial processes. Later we show, the tests of C S R indicating regularity of fibre 

reinforced composite materials. 

Cluster Processes 

1.3.3 Soft-Core (Cluster Point) Models 

In contrast to hard-core models, soft-core models are those, where the number of neighbors 

wi thin some critical distance S is smaller than expected under C S R , but the number is 

not zero. These processes are sometimes called as cluster-point processes with spherically 
shaped neighborhood. The construction of this processes is very simple, see [25] for details 

and appropriate algorithms inside. 

1.3.4 Cox Process 

If the point intensity varies from sub-region to sub-region, thereby implying that some sub-

regions are more likely to contain points than others, then the resulting point distribution 

wi l l take on a "patchy" appearance. This is what is called a Cox process (also named a 

doubly stochastic Poisson process). The latter comes from the idea that such a process 

can be thought of as arising from a two-step random mechanism. 

Note: A generalization of a Poisson process is made by supposing that the intensity 

measure is itself random, wi th the point process being Poisson conditional on the real­

ization of the intensity. In the simple homogeneous Poisson process, the intensity is the 

same everywhere. 
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2 Spatial Data Analysis 
2.1 Introduction 

A s we said in the previous chapter, data in the form of a set of points, irregularly dis­

tributed within a region of space creates the so called spatial point pattern. In figure 1.2 

we can see an example of clustered and regularized point pattern. Our next example of 

a point pattern, shown in figure 2.1 introduces the idea of a multivariate point pattern. 
In this example, the points represent cells of two different types (hence bivariate), e.g. 

three-phase composite material reinforced by fibres made of two types of materials. 
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Figure 2.1: Multivariate point process - three-phase composite material 

Further, edge effects play very important role in spatial statistics, see [9]. Edge effects 
arise in spatial point pattern analysis when, as is often in practice, the region, say A, on 

which the pattern is observed is part of a larger region on which the underlying process 

operates. The essential difficulty is that unobserved events outside A may interact wi th 

observed events within A. 

In many publications, e.g. see [9], [32] or [30], many techniques how to avoid mistakes 

by not including these edge effects are described, but in our accounts we wi l l not consider 

these effects from the reason of their exigence from the computational time point of view. 

2.2 Complete spatial randomness (CSR) 

Complete spatial randomness (CSR) data describes a point process whereby points are 

placed within a volume in a completely uncorrelated, i.e. random fashion. Such a process 

requires only one parameter, i.e. the density of points, A within a volume. This model is, 

that points are derived from a spatial Poisson process, see 1.3.1. 

The study of such a point process is essential for the comparison of point data from 

experimental sources to examine data sources for statistical correlations. A s a statistical 

testing method, the C S R distribution finds applications in areas. 

For any finite region of space, the average number of points located wi thin the volume 

wi l l be given by the density of the data multiplied by the volume of the region. However, 
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for each individual sampling of the data, the number of points in the volume is governed 

by a Poisson distribution. 

According to [9], the hypothesis of C S R for a spatial point pattern asserts that 

1. the number of events in any planar region A wi th area \A\ follows the Poisson 

distribution wi th mean \\A\, 

2. given n events X{ in a region A, the X{ are independent random sample from the 
uniform distribution on \A\. 

For more information see [30]. The constant A is the so called intensity, or mean number of 

events per unit area. According to the first item, C S R therefore implies that the intensity 

of events does not vary over the plane. According to the second item, C S R also implies 

that there are no interactions amongst the events. 

Our interest in C S R is that it represents an idealized standard which, if strictly 

unattainable in practice, may nevertheless be tenable as a convenient first approximation. 

Most analyzes begin wi th a test of C S R and there are several reasons for this: Firstly, 

a pattern for which C S R is not rejected scarcely merits any further formal statistical 

analysis. Secondly, test are used as a means of exploring a set of data, because rejection 

of C S R is of intrinsic interest. Thirdly, C S R acts as a dividing hypothesis to distinguish 

between patterns which are broadly classifiable as a regular or clustered. Another use of 

C S R is as a building block in the construction of more complex models. 

2.3 Tests of complete spatial randomness 

Although C S R is of l imited scientific interest in itself, there are several good reasons why 

we might begin an analysis wi th a test of C S R : rejection of C S R is a minimal prerequisite 

to any serious attempt to model an observed pattern; tests are used to explore a set of 

data and to assist in the formulation of plausible alternatives to C S R and of course C S R 

operates as a dividing hypothesis between regular and clustered patterns. 

Several different approaches wi l l be taken to quantify types of spatial point pattern. 

The general goal in the following subsections is to reduce the spatial data to informative 

descriptives statistics that can help elucidate models that might be fitted to the real point 

pattern. 

Randomness tests are based on the following three methods: 

• Quadrat tests 

• Second-order methods 

• Distance methods 

Methods of the first type are the most appropriate in preliminary studies and they should 

always be backed up by other tests. Problems of edge correction are avoided here for the 

sake of simplicity. 
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2.3.1 Quadrat methods 

One type of descriptive statistic is based on quadrats (i.e. well defined areas, often 

rectangular in a region of interest A). According to [8], usually, quadrats of random 

location and orientation are sampled, the number of events in the quadrats are counted 

(here the events are fibres) and statistics derived from the counts are computed. A s well 

as a count of fibres, the percent of area covered by the fibres in the quadrats might also 

be recorded. 

Random quadrats 

We shall demonstrate using of random quadrats on the sample of fibre composite. Figure 

2.2 depicts the positions of m = 36 squared quadrats in the extended study area. Note, 

that no two quadrats overlap. 

Figure 2.2: The sample of real composite showing 160 fibres placed in squared quadrats. 

In computation, first of all , the fibres in each quadrant are enumerated. Table 2.1 

gives the frequency distribution of the number of fibres per quadrat. Under C S R , the 

number of fibres in a quadrat, say Ai, of area | A i | , has a Poisson distribution with mean 

A|v4i |, where A is the intensity of the Poisson process. Table 2.1 also gives the expected 

frequency distribution of number of fibres per quadrat under a Poisson distribution wi th 

estimated mean A (here A = ^ w 4,44). According to [8] or [9], one test for C S R is 

Pearson's \ 2 goodness-of-fit test. 

Note, that in reality, the distribution of fibres in a quadrats is driven by binomial 

distribution, but from the computational point of view it is replaced by Poisson one, 

which also states in definition in C S R . So, if we denote by n the number of points in a 

sample, A = 1J™X A* the explored area and by n/m the expected number of fibres(their 

centers) in each guadrat, then we can write 

and the chi-square statistic 

i=i in 
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Figure 2.3: Graph of frequencies 

Fibres per Observed Expected 
quadrat frequency frequency 

0 0 0,42 

1 0 1,88 

2 1 4,18 

3 6 6,19 

4 14 6,87 

5 6 6,11 

6 9 4,53 

7 0 2,87 

8 0 1,60 

9 0 0,79 

10 0 0,35 

11 0 0,14 

12 0 0,05 

Table 2.1: Frequency distribution of num­

ber of fibres per quadrat. 

is known to be asymptotically chi-squared distributed wi th m — 1 degrees of freedom, 

under C S R hypothesis. But since n/m is simply the sample mean, i.e. 

n 
m m 

1 m 

i=l 
rii = n. 

this statistic can also be written as 

m 
'ni-nf S2 

—= — im — 1) — n n i=i 

where S2 = —^—r V ™ , l 
m—1 /—/i=l 

rii — n is the sample variance. For more detail see e.g. [3], [2], [22], 

[21], [16] or [14]. In our example Pearson's test statistic Q = 10,10 < ^ ( O , 975) = 20, 57 

indicates significant departure from a Poisson distribution, i.e. C S R . So, the next question 

is about regularity or clustering. 

Regularity and clustering 

Once C S R hypothesis is rejected, the next step in a spatial analysis may be to measure 

the departure from C S R . According to [8], in table 2.2 we can see some characteristics for 

identifying clustering or regularity. 

Here, in the Table 2.2, X = 4,444 is the sample mean of the quadrat counts and 

S2 = 1, 284 is the sample variance. 

The relative variance index I and the clumping index ICS were obviously motivated 

by the equality of mean and variance of Poisson quadrat counts (mean-to-variance ratio). 
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Description Index Estimator Realization 

Relative variance index I 
S2 

X 
0,289 

Clumping index ICS 
s 2 

X 
-0,711 

Cluster frequency index ICF 
x 2 

s 2 - x -6,247 

Mean event index 
* 

X 3,733 

Mean crowding index IP 
X 

T 
0,840 

Morisita's index h 
X(mX - 1) 

0,843 

Table 2.2: Indices for quadrats count data, see [8], [30]. 

It is clear, that the expected value of ICS is zero and value of I equals to one for Poisson 

quadrat counts. Values of / greater than 1 and ICS greater than 0 would indicate that 

the fibres are clustered. If ICS (our case) is less than 0 and I is less than 1, then the 

fibres indicate a tendency for regular spacing. In [8] and [30] you can get more information 

about a relation between ICS and ICF. Index ICF is meaningful for samples without 

C S R . The mean event index X indicates an average number of events sharing a quadrat. 

Mean crowding Index IP is often called as an index of patchiness. If IP is equal to 1, then 

the distribution is random, regular for if IP > 1 and clustered if IP < 1. Morisita 's index 

Is comes from the idea, that the point process consists of patches of differing intensities 

and it measures variability between patches. The previous results we can see collected in 

the Table 2.3 and according to thie methods we can say, that our sample is regular. 

Index Random Regular Clustered 

I = 1 < 1 > 1 

ICS = 0 < 0 > 0 

IP = 1 < 1 > 1 

Is = 1 < 1 > 1 

Table 2.3: The values of indexes for different types of patterns. 
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Note: Of course, the natural question is: what constitutes "big" or "small"? To 

answer this question, the behavior (i.e. sampling distribution) of / needs to be known 

when the null hypothesis is true. If I is standardized as 

n—1 

then T follows a t-distribution on n 

hypothesis of complete randomness. 

1 degrees of freedom approximately under the 

2.3.2 Second Order Methods 

These tests are designed to detect deviation from randomness and consist of the use of 

Monte-Carlo tests which are backed up by a graphical procedure. 

Tests Based on Ripley's K Function 

Monte-Carlo statistics measure the discrepancies between the estimated function, i.e. 

the empirical distribution function obtained from the pattern, K(t), and the expected 

This measure of function that would be obtained in the case of randomness, E 

the discrepancy is calculated over a specific range of distances t. 

Three statistics that measure possible discrepancies are: 

Kit) 

KM = max 
to "^tKtn 

K(t)-E K(t) LM = max 
t(,<t<tn 

E K(t) K(t) 

dt. 

The square-root transformation used in the latter two statistics was suggested as a vari­
ance stabiliser, see [32]. 

For two-dimensional patterns, it holds E K(t) = irt2, which is the expression K{t) 
for a Poisson process. KM and LM measure the maximum discrepancy between observed 

and expected values of K{t) over the range to to tn. These limits are chosen according to 

the window size and also to the range of distances t, between the events, one is interested 

in studying. 

Lj measures the integrated squared distance between K(t) over 'K(t) and W E 

the t 0 t ° tn range and is thus an aggregated measure of discrepancy. The Monte Carlo 

tests assess only deviation from randomness. The null hypothesis of randomness wi l l be 

rejected in the presence of either a clustered or an inhibited pattern. When that happens 

the only way of finding out whether the pattern shows evidence of clustering or regularity 

is by the use of a graphical procedure. 
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A s recommended in [30] and [9], a graphical procedure consists of comparing the K(t) 

and E 

by 

Kit) if known wi th the upper U(t) and lower L(t) simulation envelopes defined 

U(t) = maxKi(t) and L(t) = mm Ki(t), 

where the empirical distribution functions Ki(t) are obtained from each independent sim­

ulations. The simulated envelopes provide the acceptance region for a further nonpara-

metric test of the hypothesis that the process is Poisson. 

Therefore, if in the plot Kit) lies entirely between U(t) and Lit) throughout its range 

(i.e. K{t) lies between the simulated envelopes), there is no evidence to suggest any 

departure from a C S R model. If Kit) lies entirely below L(t) it means that for the values 

of t considered there were few points which were within distance t suggesting that there 

must exist some sort of inhibit ion that keeps the points at a certain distance apart. A s 

a result, there are strong reasons to believe the events on the patterns to be regularly 

distributed. 

If the opposite happens, i.e. if K(t) lies entirely above both envelopes, it means that 

for every value of t there are many points at most a distance t from each other. This 

suggests that the points must be somehow clumped together and so giving strong evidence 

of clustering in the pattern. 

The less clear-cut case is when K(t) lies outside the envelopes for just part of the 

range but inside them for other parts. This problem leads to the empirical study and it 

is more detailed described in [32]. 

Tests Based on the F Function 

The Monte Carlo statistics based on the F function are calculated by the following ex­

pressions: 

FM = max 
to<t<t, 

From the first postulate of a Poisson process (that for some A > 0, and any finite planar 

region A, the number of points in A has a Poisson distribution with mean A | A | ) , we 

deduce that, for two dimensional spaces: F(t)=P(there is at least one event in the circle 

centered at xo wi th radius t) = l — exp(—A7r£ 2). If we undertake a graphical procedure, we 

arrive at the following result: Here, the plot's interpretation is different from that of the 

Ripley's K function. 

In the presence of a clustered pattern, there wi l l be a smaller number of point-to-object 

distances than would be the case in a Poisson process and so the estimated E D F , F(t), 
takes smaller values than the theoretical function, F(t) = 1 — exp(—A7rt2) for all (or at 

least for most) of the t range of distances considered. However, for a regular alternative 

there wi l l be a greater number of point-to-object distances than would be the case for 

a random process (i.e. a Poisson process) and F(t) would be much greater than F(t). 

F(t)-E F(t) and Fj F(t)-E F{t) dt. 
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Plot t ing F(t) as the ordinate against t as the abscissa together wi th upper U(t) and lower 

L(t) envelopes, helps identify the type of model appropriate for the spatial distribution 

of the particles. The envelopes are obtained similarly to those for the nearest-neighbor 

and K functions, however, their interpretation is different (essentially "reversed"). 

If the plot of F(t) lies between U(t) and L(t) throughout its range it indicates no 

evidence to suggest any deviation from a C S R model. If F(t) lies beneath L(t), it means 

that for the values of t considered there are very few points whose distance to their nearest 

neighbor is at least t. This indicates that the particles in the pattern might somehow be 

clumped together. 

If F(t) lies above both envelopes, it means that for every value of t there are many 

points whose distance to any of the m fixed points are at least t. This suggests that the 

points must somehow be restricted to a minimum distance apart, giving rise to regularly 

distributed patterns. 

A n entirely similar procedure can be employed to determine C S R using J function, 

[32]. 

2.3.3 Distance methods 

Distance methods, also known as plotless sampling techniques, were introduced because of 

the practical difficulties sometimes raised by quadrat sampling. Whereas quadrat methods 

lend themselves to field sampling, some of the more powerful distance rely on having a 

good map of all events. Distance methods make use of precise information on the locations 

of events and have the advantage of not depending on arbitrary choices of quadrat size or 

shape. 

Nearest-neighbor methods 

Here, event-to-event or point-to-event distances are computed and summarized. The 

following Figure 2.4 illustrates various possibilities. Distances may be measured between 

events and nearest-neighboring events (W) or between sample points and nearest events 

( X ) . Sometimes it is used the second nearest event X 2 . Sample points usually are located 

randomly in the study area, but may be placed systematically. The distribution theory 

for W and X under C S R is well known, see [8] for details. In M 2 , the density of the 

positive random variable W is 

g(w) = 2n\we-*Xw\ w > 0. 

The distance from a randomly placed sample point to the nearest event X, has the same 
distribution as W. 
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O Event 
x Sample point 

Figure 2.4: Types of nearest-neighbor distances X, X2, W. 

Test statistics. Many statistics have been proposed for testing C S R , usually based on 

random sample of n points or a random sample of n events. A summary of test statistics 

and their asymptotic distributions under C S R is presented in the following Table, see 

[8]. Distr ibution theory for those tests is based on independence of n nearest-neighbor 

measurements randomly sampled from a region A. Some comments to the statistics 

presented in the table below, you can see in the Appendix and in [8]. 
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Measurement Test statistic Distribution Author 

W 
1 m 

m 
i=l 

NC 1 4 _ 7 r 1 Clark & Evans 

w 
m 

S2 = 2n\ wi 
i=l 

X2m Skellam 

X 
1 m 

m ^ 
N ( l , - i ) Pielou 

X SA = m ^ i = l \ 
( E r = i ^ ) 2 

B y simulation Eberhardt 

X 

m 
E x ? 

S5 = 12 i = 1 

7 m + 1 
Pollard 

x , x2 >->6 — 
m 

N ( | , I m ) Holgate 

x , x 2 

X^m Y2 

J7 \^2 
2^=1 A 2 , j 

/3(m, m) Holgate 

X , w ü8 — 
m 

N ( I , » B y t h & Ripley 

X , w X^m Y2 

q l^i=l 
9 YZ.wf 

^2m, 2m Hopkins 

Table 2.4: Nearest-neighbor statistics and their asymptotic distribution under CSR 

To reduction of complex point patterns to a one-dimensional nearest-neighbor sum­

mary statistic results in a considerable loss of information. Nearest-neighbor statistics 

indicate only departure from the C S R . Li t t le is known about the behavior of these statis­

tics when C S R does not hold, see [8]. 

More information about mentioned statistics together wi th its detailed description you 

can find namely in [8] and the first two of them is described below and the second one in 

the Appendix. 
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Two-tailed test of C S R — Clark-Evans test 

This two-tailed test of C S R is in literature very known as the so called Clark-Evans test 
of CSR. To construct a test of the C S R hypothesis based on the Clark & Evens statistic, 

suppose that one starts wi th a sample pattern Sn = {s^ : % = 1, . . . ,n} and constructs 

the nn-distance (nearest-neighbour) for each point Si G Sn. Then it would seem most 

natural to use all these distances {d\,..., dn} to construct the sample-mean statistic in 

2.3.3. However, this would violate the assumed independence of nn-distances on which 

this theory is based. To see this, it is enough to observe that if and Sj are mutual nearest 

neighbors, so that di = dj, then these are obviously not independent. More generally, if 

Sj is the nearest neighbor of Sj, then again di and dj must be dependent. However, if one 

Figure 2.5: Cell of radius d 

selects a subset of nn-distance values that contained no common points, such as those 

shown in Figure 2.5, then this problem could be in principle avoided. The question is how 

to choose independent pairs. Now we simply assume, that some "independent" subset 

(Wi,..., Wm) of these distance values has been selected (with m < n). Widely, it is for 

computations the following rule 
ii 

in 

B y Wm we denote the sample-mean value 

- m 

wm = -Y^wl. 
i=l 

B y differentiating we obtain the probability density fw of W as 

fw(w) = F{v(w) = 2ir\we-x™2. 

(2.3.1) 

(2.3.2) 

It can be shown, see [34], that mean and variance of this distribution are given respectively 

by 

E [W] 
1 

D [W] 
4 - 7T 

4A?r ' 
(2.3.3) 
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Next we observe from the properties of iid random samples that for the sample mean Wr 

in 2.3.1 it holds 

E [Wm] = - V E [Wi] = - (mE [Wr]) = E [Wx} = (2.3.4) 
L J m^—' m 2 V A 

and similarly 

- ^ D [ l f i ] = - ( m E [ ^ ] ) = - — . (2.3.5) 
m / ^ m2 m(4A7r) 

From the central limit theorem we obtain 

/ 1 4 - 7T \ 
Wm ~ N I - 7 = , (2.3.6) 

and after standardization we can write 

Zm = W n - ^ r n ) „ N ( 0 ; 1 } ( 2 3 7 ) 

and use it to construct tests of C S R . The standard test of C S R in most software 

is a two-tailed test in which both the possibility of "significantly small" values of wm 

(clustering) and "significantly large" values of wm (regularity) are considered. First, 

recall the notion of upper-tail points, za, for the standard normal distribution as defined 

by P(Z > za) = a for Z ~ N(0,1) . In these terms, it follows that for the standardized 

mean in 2.3.6 

P (\Zm\ > za/2) = P [(Zm < - z a / 2 ) V (za/2 < Zm)] = a (2.3.8) 

under C S R hypothesis. If we write the estimates of the mean and standard deviation 

under C S R by 
1 / 4 - 7 T 

fi=—=, am = W , (2.3.9) 
V 2A » 4:7i\m 

then one can test the C S R hypothesis by constructing the following standardized sample 
mean: _ 

Zm = (2.3.10) 

If the C S R hypothesis is true, then zm should be a sample from N(0,1) . Hence a test of 

C S R at the a—level of significance is then given by the rule: 

Two-tailed C S R test: Reject the CSR hypothesis if and only if \zm\ > za/2-

The significance level a is also called the size of the test. Example results of this testing 

procedure for a test of size a are illustrated in Figure 2.6. Here the two samples, zm, in 

the tails of the distribution are seen to yield strong evidence against the C S R hypothesis, 

while the sample in between does not. 
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Figure 2.6: Two-tailed test of CSR. 

One-tailed tests of clustering and regularity 

A s already noted, values of wm (and hence zm) that are too low to be plausible under 

C S R are indicative of pattern more regular than random. Similarly, values too large 

are indicative of patterns more clustered than random. In many cases, one of these 

alternatives is more relevant than the other. So the key question here is whether our 

pattern is significantly more clustered than random. Similarly, one can ask whether the 

pattern is significantly more regular than random. Such questions lead naturally to one-

tailed versions of the test above. First , a test of clustering versus C S R hypothesis at the 

a—level of significance is given by the rule: 

Clustering versus C S R test: Conclude significant clustering if and only if zm < za. 

Example results of this testing procedure for a test of size a are illustrated in Figure 2.7 

below. Here the standardized sample mean zm to the right is sufficiently low to conclude 

the presence of clustering (at the a—level of significance), and the sample toward the 

middle is not. In a similar manner, one can construct a test of regularity versus C S R 

Figure 2.7: One-tailed test of clustering. 

hypothesis at the a—level of significance using the rule: 

Regularity versus C S R test: Conclude significant clustering if and only if zm > za. 

Example results for a test of size a are illustrated in Figure 2.8 below, where the sample 

zm to the left is sufficiently high to conclude the presence of regularity (at the a—level of 
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w 

t 
No significant Significant 

regularity regularity 

Figure 2.8: One-tailed test of regularity. 

significance) and the sample toward the middle is not. Whi le such tests are standard in 

literature, it is important to emphasize that there is no "best" choice of a. The typical 

values given by most statistical tests are listed in tables below. 

Significance a Za/2 

"Strong" 0,01 2,58 

"Standard" 0,05 1,96 

"Weak" 0,10 1,65 

Significance a Za 

'Strong" 0,01 2,33 

'Standard" 0,05 1,65 

'Weak" 0,10 1,28 

Table 2.5: Two-tailed significance Table 2.6: One-tailed significance 

However, since these distinctions are admittedly arbitrary, another approach is often 

adopted in evaluating test results. The question is easily answered by simply calculating 

the probability of a sample value as zm for the standard normal distribution N(0,1) . If 

the cumulative distribution function for the normal distribution is denoted by 

$(z) = V{Z < z), 

then this probability, called p-value of the test, is given by 

V{Z < zm) = $(zm). 

(2.3.11) 

(2.3.12) 

Notice that unlike the significance level a above, the p-value for a test depends on the 

realized sample value zm and hence is itself a random variable that changes from sample 

to sample. More generally, the p-value can be defined as the largest level of significance 

(smallest value of a) at which C S R would be rejected in favor of clustering based on the 

given sample value zm. 

Similarly, one can define p-value for a test of regularity in the same way. Hence, the 

p-value in this case is 

ViZ > Zm) = P(Z > Zr, 1 - ViZ < Zrr 1 - &(Z„ (2.3.13) 

where the first equality follows from the fact that V(Z = zm) = 0 for continuous distrib­

utions. 
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Finally, the corresponding p-value for the general two-tailed test is given by 

P{\Z\>zm) = 2${-\zm\). (2.3.14) 

Now we briefly present the computations mentioned above on a real sample of composite 

material. 

Following the previous statistics, our real example is really regular distributed. Of 

course, it is clear, because of the nonzero diameters of fibres, which centers we are in­

vestigating. These results follow from the p-values of all statistics mentioned in Table 

2.3.3. 

Summary of nearest-neighbor methods 

The reduction of point patterns to a one-dimensional nearest-neighbor summary statistics 

results in a considerable loss of information. Information on individual nearest-neighbor 

distances is lost. Because distances are measured only to the closest events, only the 

smallest scales of pattern are considered, and information on larger scales of pattern is 

unavailable. Nearest-neighbor statistics indicate only the direction of departure from 

C S R . Li t t le is known about the behavior of these statistics, when C S R does not hold. 

Unlike quadrates methods, these statistics do not depend on some arbitrary choice 

of quadrat size. In conclusion, because much of the spatial information is lost, and 

because for non-CSR models it is debatable what these statistics are measuring, so nearest-

neighbor statistics for mapped data can not be recommended. 

2.4 Ripley's K function 

Ripley's K(t) function is a tool for analyzing a completely mapped spatial point processes 

data, i.e. data on the locations of events. Here we describe K(t) for two-dimensional 

spatial data. Completely mapped data include the locations of all events in a predefined 

study area. Ripley's K(t) function can be used to summarize a point pattern, estimate 

parameters and fit models. 

The K function is 

K(t) = A _ 1 E [ number of events wi thin distanced of a randomly chosen event ], 

where A is the density (number of fibres per unit area) of events. So, K(t) describes 

characteristics of the point process at many distances scales. A s we have said before, 

another alternative summaries do not have these property. 

K(t) does not uniquely define the point process in the sense that the two different 

processes can have the same K(t) function. Also, processes wi th the same K(t) function 

may have different nearest-neighbor distribution function. Nevertheless, the K function is 

the basis of routine tools (for descriptive and testing purposes) widely used in the analysis 

of spatial processes. 
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For many point processes the expectation in the numerator of the K(t) function can be 

analytically evaluated, so the K(t) function can be written in a close form. The simplest 

and most commonly used, is K(t) for a homogeneous Poisson process (CSR) : 

K{t) = Tit2. 

Values of K(t) for a process are often compared wi th those for the Poisson process. 

Values larger or smaller than -rrt2 respectively indicate a more clustered or more regular 

process than the Poisson process. In [10], K(t) functions for various types of process are 

presented in details. 

2.4.1 Estimating K{t) 

Given the locations of all events within a defined study area, K(t) is a ratio of a numerator 

and the density of events A. The density can be estimated as A = n/A, where n is the 

observed number of points and A is the area of the study region. If edge effects are 

ignored, then the numerator can be estimated by 

j n n 

n i=i j=i 

where d^ is the distance between the zth and jth points, and I(x) is the indicator function 

wi th the value 1 if x is true and 0 otherwise. Edge effects arise because points outside 

the boundary are not counted in the numerator, even if they are within distance t of a 

point in the study area. Ignoring edge effects biases the estimator K(t), especially at 

large values of t. A variety of edge-corrected estimators have been proposed, see e.g. [32], 

[9], [8] or [30]. The most commonly used estimator is 

i=l j=l i=l j=\ 

A s above, d^ is the distance between the i t h and j t h points, and I(x) is the indicator 

function. The weight function w(li,lj) provides the edge correction. It has the value of 

1 when the circle centered at U and passing through the point lj (i.e. wi th a radius of 

dij) is completely in the study area (i.e. if d^ is larger than the distance from k to at 

least one boundary). If part of the circle falls outside the study area, then w(li, lj) is the 

proportion of the circumference of that circle that falls in the study area.The effects of 

edge corrections are more important for large t, because large circles are more likely to 

be outside the study area. 
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Figure 2.9: A figure related to explanation to the Ripley's K(t) function. 

The explicit formula for w(k, lj) can be deduced if A is rectangular, see [30]. Al though 

K(t) can be determined for any t > 0, it is common practice to consider only t less than 

one-half the shortest dimension of the study area. 

The simplest use of Ripley's K(t) function is to test C S R . If C S R of a studied process 

holds, then K{t) = nt2 for all t. In practice, it is easier to use 

L(t) 

because D ( L ( t ) ) is approximately under C S R . Under C S R is then then L(t) = t. Devia­

tions from the expected value at each distance t are used to construct tests of C S R . One 

approach is to test L(t) — t — 0 at each distance t. 
To test whether the data comes from a C S R process, a Monte Carlo test based on the 

Cramer-von Mises-type statistic 

k{t)-y/K^)\ dt k 

where K(t) is the estimated if-function of the observed pattern, KQ(t) = nt2 is the K-
function under the hypothesis of C S R , and tmax is the maximum distance for which K(t) 
is computed. 

For a given spatial point pattern, D(t) = K(t) — nt2 can be used to evaluate its 

compatibility with the C S R assumption. The sampling distribution of K(t) under the 

C S R assumption is analytically intractable. However, when A is a rectangle, the variance 

of K(t) can be explicitly expressed, see [9](Lotwick & Silverman) as 

varLS(t) 
\A\ 

n(n — 1, 
2b(t)-ai(t) + ( n - 2 ) a 2 ( t ) 

where 

ai(t) 
(0 ,21Pt 3 + 1,3t4  

L4? 
a 2(t) 

(0, 2 4 P t 5 + 2, 62t 6 

\AT3 
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, . , TTt2 / TTt2 

+ 
1,0716P£ 3 + 2,2375£ 4 

\AT2 

where P denotes the perimeter of A. A l l the above four equations are exact when t is 

smaller than or equal to a quarter of the length of the shorter side of A, see [6]. A s 

suggested in [9], ±2y/varLs(t) can be used as the upper/lower limits for D(t). If D(t) 
lies wi thin these limits for all the valid values of t, then the spatial point pattern under 

investigation can be regarded as compatible to the C S R assumption; otherwise, a deviation 

from C S R is suggested. In [9] it is suggested to draw a D-curve {D(t) and ±2^varis{t) 
against t) to visualize the C S R test result: 
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Figure 2.10: Point pattern following CSR. 
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Figure 2.11: Point pattern tending to regularity. 
x 10 

: * x 
X 

X 

x x x x x 

x x $ x X x v * 
X x x X 

X 

x< x x x 
X x 

X 
X 

H 

x X 

50 100 

Figure 2.12: Point pattern tending to clustering. 

Three typical spatial point patterns and their corresponding D-curves are shown in 

previous Figures. In Figure 2.10, the C S R assumption is supported. The D-curves in 

Figure 2.11 and 2.12 both suggest obvious deviation from the C S R assumption but in 

opposite directions. This can be explained by investigating the physical meaning of K(t). 
B y definition, K(t) is essentially an average of point counts in circles of radius t. If the 

point pattern under investigation tends to cluster for certain values of t, the point counts 

in the circles wi l l become much higher than the expectation under the C S R assumption 
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because it is very probable that a large number of points aggregate "into" the circles. 

However, if the point pattern has a tendency to regularity, the point counts in the circles 

wi l l be essentially lower then expectation because t may not be big enough for the circles 

to "reach" enough number of points. In other words, if D(t) is smaller than the lower 

bound, the pattern tends to regularity; or if D(t) is bigger than the upper bound, the 

pattern tends to cluster; otherwise, the C S R assumption becomes applicable. 

The most right graphs in the previous three pictures shows an acceptance region of a 

5% test for C S R of n events in a square area A = [0, a] x [0, a], based on L(t), see [8]: 
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3 Microstructural Descriptors 
3.1 Introduction 

In this chapter we give a brief review of some statistic methods that are used for describing 

and distinguishing different structures of fibre composite materials. 

3.2 Properties of random media 

3.2.1 Homogenity and symmetry 

The medium is strictly spatially stationary or strictly statistically homogeneous if the joint 

probability distributions describing the stochastic process are translationally invariant, i.e. 

invariant under a translation of the origin. 

If descriptive functions depend generally on the absolute positions of inclusions, then 

we say that the medium is statistically inhomogeneous. Figure 3.1 depicts two examples 

of statistically inhomogeneous media, see [37]. 

• • • • 
• •• * 

• • • • • • • • . • • • 

Figure 3.1: Two examples of statistically inhomogeneous media. Density of the black 
phase decreases in the upward direction (left panel) and radially from the center (right 
panel). 

The medium is said to be strictly statistically isotropic if the joint probability distri­

butions describing the stochastic process are rotationally invariant, i.e. invariant under 

rotation of the spatial coordinates, see Figure 3.2. 

3.2.2 Ergodicity 

Usually, the further assumption which is introduced when estimating random fields is 

the assumption of ergodicity of the field. A random field is said to be ergodic, when any 

information about it can be obtained from a single realization. B y the term "realization" 

we understand the event for which a random variable obtains a definite and unique value, 

see [20]. Thus, complete probabilistic information can be obtained from a single realization 
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o o ° r °̂ 
< ° o o 5 o 

Figure 3.2: Two examples of portions of statistically homogeneous media. The medium 
is anisotropic (left panel) and isotropic (right panel). 

of the infinite medium. This suggests an ergodic hypothesis, i.e., the result of averaging 

over all realizations of the ensemble is equivalent to averaging over the volume for one 

realization in the infinite-volume limit . Thus, complete probabilistic information can be 

obtained from a single realization of the infinite medium, see [37]. 

3.3 Statistic description of composites 
This section provides some useful functions and formulas for the description of a composite 

materials: 

• indicator function 

• n—point probability functions 

• second order intensity function 

• lineal-path function 

• nearest-neighbor functions 

• pair distribution function 

For the sake of simplicity, we wi l l in the next assume only 2D-cases, i.e. cross-section of 

a material, which is a sufficient condition for us, because we consider "only" composites 

wi th unidirectional (paralel) fibres. 

Let us consider a composite material made of % — 1... n (in our case n — 2) homoge­

neous and perfectly bounded phases. The volume fraction of the %—th phase we denote 

by fa. 

3.3.1 The indicator function 

The use of the term random heterogeneous material rests on the assumption that any 

sample of the medium is a realization of a specific random process. A n ensemble is a 
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collection of all the possible realizations of a random medium generated by a specific 

stochastic process. Let us denote (f2,jF, P) be some fixed probability space. Let each 

point 10 G Q corresponds to a realization of the random medium, see [37]. 

Each realization to of the two-phase random composite random medium occupies the 

region of space V C M 2 that is partitioned into two disjoint random phases: phase 1 

of a region V\(uS) and volume fraction 0 i , and phase 2 of a region Vi(uS) and volume 

fraction <p2- The random sets V\(u) and V^o;) are the complements of each other, i.e. 

Vi(u) fl V2(u!) = 0 and V\{uS) U V^u;) = V. Figure 3.3 shows a portion of a realization of 

a two-phase random medium. For a given realization u, the indicator function X^r\x,oj) 
for phase r is given for x E V by 

[ 0 otherwise. 

Next we wi l l denote by index r the following: 

_ ( m instead of 1 for a matrix, 
1 / instead of 2 for a fiber. 

For such system the indicators functions I^(X,UJ) and X^m\x,uS) are related by 

l{f\x,cu) + l(m)(x,u;) = 1. 

Unless otherwise stated, we wi l l drop u from the notation (as it is usual) and write X^r\x) 

instead of T^r\x,co). 

o 

O 
Figure 3.3: Two-phase fibre composite material with phases V\ and V2. 

3.3.2 n—point probability functions 
Now, we describe a set of general n—point probability functions, applicable to an arbitrary 

two-phase composite. 
Definitions 

The probabilistic description of T^r\x) is given by the probability that X^r\x) is equal 

to one, which we write as 

P{l(r\x) = 1 } . 
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Given this probability, it follows that 

P {I(r\x) = 0} = 1 - P {I(r\x) = 1} . 

One-point probability function. Using the indicator function as it has been defined 

above, the probability of the location x belonging to phase r is defined by the ensemble 

average (denoted by angular brackets (•)) of the function X^^x), see [37]: 

S[V\x) EE (l(r)(x)) = P{l{r\x) = 1}. 

The one-point probability function (also known as one-point correlation function) de­

scribed in equation above is normally difficult to compute. However, if the material is 

assumed to be statistically homogeneous and ergodic, the following simplifications can be 

considered, see [20]: 

S[r)(x)= l im f X{r\x)dx = 0 r . 
v->°° Jv 

where symbol <pr denotes the volume fraction of the phase r . 

If we sample the domain V wi th a set of locations Xi wi th % = 1 , . . . , n, then <ftr can 

be estimated easily: 
- 1 n 

(j)r = - Y]s[r\xi), r = f,m. 
n ' 

i=i 

General n-point probability functions. Knowing a realization Vr(u>) is the same as 

knowing X^r\x,u) for all x G V. Therefore, we may regard the random set Vr(uS) as the 

collection of all random variables X^r\x) for x G V. Hence, the probability law of Vr(uS) is 

described by the finite-dimensional distributions of the random process {T^r\x) : x G V} . 
Since the X^-r\x) are either 0 or 1, this allows to specify the probabilities, see [37]: 

P { Z w 0 z i ) = J l , l ^ ( x 2 ) = j2,... ,l^(xn) = jn} , 

where each of numbers jk, k — 1 , . . . , n is either 0 or 1. 

The expectation of the product (xi)I^(x2) • • .X^r\xn) is a very important aver­

age. Similarly, see see [37], as in the case of one-point probability function we get: 

S^(Xl,x2,...,xn) ee ( l M ( a ; i ) I ( r ) N . . . I ( r ) W ) = 

= P {l^ix,) = l,l^(x2) = 1 , . . . , I « ( x n ) = 1} , 

which features the probability that n points at positions X\, x2,..., xn are found in phase 
r. According to see [37] we wi l l refer to Sn^ as the n-point probability function for phase 
r. 
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It is possible to express the probability Sn of finding n points in phase formed by 

fibres (/) in terms of the set of phase formed by matrix (m) by means of probabilities 

S[m\ S^, • • •, S^r\ It is not difficult to show that: 

SV\Xl,x2,...,xn) = ( f l i l - l ^ i x ^ 

n n 

= i-Y,slm)(xj) + '£s!r)(xj,xk) 
j=l j<k 

n 
- sim)(xj,xk,xl) + --- + (-l)nSim\xl,x2,...,xn). 

j<k<l 

Remark 3.3.1. The probability that a point at X\ is in the phase / and a point at x2 is 
in the phase m is given by 

S ? m \ X l , x 2 ) = ( Z ( / ) ( * i ) [ l - l V \ x 2 ) \ ) = S^\x1)-S^)(x1,x2). 

Geometrical interpretation of Sn* • Let Fn

r* be a polyhedron wi th n vertices located 
(r) 

at positions X i , . . . , xn. Then for statistically inhomogeneous media, Sn is the probability 
that all n vertices of Fn

r* wi th fixed positions x i : x2,..., xn lie in Vr. For statistically 
homogeneous but anisotropic media, Sn'* is the probability that all n vertices of Fn

r* lie 
in Vr when the polyhedron is randomly placed in the volume at fixed orientation, i.e. over 

(r) 

all translations of the polyhedron. For statistically isotropic media, Sn can be interpreted 
as the probability that all n vertices of Fn

r* lie in Vr when the polyhedron is randomly 
placed in the volume, i.e. over all translations and solid-body rotations of the polyhedron, 
see [37]. 
Remark 3.3.2. A s we said before, the medium is statistically homogeneous, if the joint 
probability distributions describing the stochastic process are translationally invariant. 
Then we can write, see [37], for n—point probability functions for phase r: 

S(£\xl,...,xn) = S£){x1 + y,x2 + y, ...,xn + y) 

= S£\x12,...,xln), 

for all n > 1, where Xjk = Xk — Xj and y is a constant vector. According to the previous 
notation, we can write the probability functions S2(r) or 63(r, s, t) for two- or three-point 
probability functions. 

The one-point function S i is obtained by randomly throwing a single point onto the 
planar section many times and recording the fraction of times that it lands in one of the 
phases, say fibres in Figure 3.4. Thus, Si (if the number of attempts is sufficiently large) 
is the probability that a single point falls in the white phase. The two-point correlation 
function S2(r) is obtained by randomly throwing a line segment of length r into the 
sample many times and recording the fraction of times that its end points land in the 



3. MICROSTRUCTURAL DESCRIPTORS 41 

fibres, see Figure 3.4. B y performing this experiment for all possible lengths r, one can 

generate a graph of S2 as a function of r. Therefore, S2(r) is the probability that the 

two end points of a line segment of length r fall in the fibres. Clearly, variations in S2(r) 
contains more information than Si, which is just a constant. Similarly, 63(r, s,t) is the 

probability that the three vertices of a triangle with sides of lengths r, s and t fall in 

the fibres. The three-point probability S3 gives more information than S2. In general, Sn 

gives the probability that n points with specified positions lie in the fibres, see Figure 3.4. 

Figure 3.4: A scheme showing attempts at sampling for the correlation functions Si, S2 

and S3 from a planar section. 

The probability of finding the phase r at the point Xi and the phase s at the point Xj 

(in other words, two-point probability function) can be expressed, see [20], [39], [38], [12], 

[37]. ' 
S t \ x l , X J ) = (lr(xl)l°(xA). 

Generally, we can define n-point probability functions as: 

S ^ - ^ \ x i , ...,xn) = (X^(xi)...X^(Xj)), 

which gives the probability of finding n points X i , . . . ,xn randomly thrown into a medium 

located in the phases r\,... ,rn. 
Hereafter, we limit our attention to functions of the order one and two, since higher-

order functions are quite difficult to determine in practice, see [38], [37]. Therefore, 

description of a random medium wi l l be provided by the one-point probability function 
and by the two-probability function. 

One-point probability function 

A s we said before, the one-point probability function Si is obtained by randomly throwing 

a single point onto the planar section many times and recording the fraction of times that 

it lands in one of the phases. 
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Two-point probability function 

Let us remark S2(r) = S2(xi,x2), where r = x\ — x2. A s noted earlier, the two-point 

(sometimes called autocorrelation function) S2(r) = S^fr) for statistically homogeneous 

media can be obtained by randomly tossing a line segments of length r = \r\ wi th a 

specified orientation and counting the fraction of times the end points fall in phase 1. 

The function S2(r) provides a measure of how the end points of a vector r are correlated. 

For isotropic media, S2(r) attains its maximum value of 0 i at r = 0 and decays (usually 

exponencially fast) to its asymptotic value 4>\. For explanation of asymptotic properties 

and bounds of Sn^ see [37], paragraph 2.2.4 for more details. 

0.551 1 1 1 1 1 1 1 

'0 100 200 300 400 500 600 700 800 

r 

Figure 3.5: Two-point probability function. 

3.3.3 Lineal-path function 

Another interesting and useful statistical measure is what we call the lineal-path function 
L^(t), see [37]. For statistically isotropic media, it is defined as follows: 

L^r\t) = P ( a line segment of length t lies wholly in a phase r, when 
randomly thrown into the sample.) 

The lineal-path function is a monotonically decreasing function of t, since the space avail­

able in phase r to a line segment of length t decreases with increasing t. A t the extreme 

values of L^r\t) we have 

Z/°)(£) = $ r , LW(oo) = 0. 

The "tail" of L^-r\t) (i.e., large t behavior) provides information about the largest lineal 

paths in phase r. If we define l / 1 2 ) ( £ ) to be the probability that a line segment of length 

t intersects any parts of the two-phase interface when randomly thrown into the sample, 

then it is clear that 

L^(t) + L^(t) + L^12\t) = l. 

In the next figure we can see one realization of the lineal path function for fibres(left) 

and for the matrix (right). B y the blue curve represents this function obtained by Monte-

Carlo method and the red curve is smoothed the blue one. 
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Now, we wi l l give brief definitions of functions which help identifying the type of 

distributions found on spatial patterns. They consists of Ripley's K function, which 

can be classified as a second-order measure, and distance measures which include the G 
(nearest neighbor), F (empty-space) and J functions. 

3.3.4 Second order intensity function (Ripley's i^-function) 

The most important function of second order is Ripley's K— function, as was said in 

Section 2. In that section is presented a detailed description of this function. 

In the next figure we can see an example of the Ripley's if-function for real compos­

ite. The shape of the function was computed as a mean of 15 real samples. In the left 

figure there are plotted 15 if—functions corresponding to various samples of real com­

posite and on the right figure there is an average if—function wi th blue dotted function, 

corresponding to C S R (Poisson process). 

Figure 3.7: Ripley's K(t) function for the real composite. 
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3.3.5 Nearest neighbor function 

The G or nearest neighbor distance distribution function is a relatively simple description 

of the spatial distributions of the points based on the measurement of the distance from 

a typical point of the pattern to its nearest neighbor. So, this statistic focuses on short-

range interactions between points, see [32]. The nearest neighbor distribution function 

G(t) is defined for t e M+ by: 

G(t) = P(the circle of radius t, centered on an arbitrary object, 
contains at least one other object). 

According to [32], an equivalent definition of G(t) is defined by: 

G(t) = P(the distance between an arbitrary object and its nearest neighbor, 
is less than or equal to t). 

A n obvious way of estimating the G function from an observed pattern is simply to 

calculate for each point wi thin a sampling space the distance to its nearest neighbor and 

we get an empirical G function, i.e.: 

G(t) = n _ 1 x (number of points whose nearest neighbor distance is < t) 

A practical computation proceed as follows: We denote by n a number of points in a 

certain region A and by yi denote the distance from the i—th point to the nearest other 

point in A, i.e. the nearest neighbor point. The distances yi are called nearest neighbor 
distances. 

The simplest and most natural estimator of the G function is given by the proportion 

of members of an event set for which the distance to the nearest other member of the set 

{yi}f=i is less than or equal t. It is provided by the following function: 

G(t) = n-1#(yl<t), 

where #(•) is the counting function which records the number of points in the specified 

set. In the next figure we can see an average estimation of the G-function from the real 

15 samples of composite: 

4 -

°60 70 80 90 100 110 120 

Figure 3.8: Estimation of the G(t) function for the real composite. 
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3.3.6 Empty space function 

Another descriptor of random pattern is the so called empty space distribution function 
(also called F-function), which is closely related to the nearest neighbor function. A 
definition of the F-function is given by: 

F{t) = P(the distance between an arbitrary point and its nearest event is at most t), 

especially for two-dimensional spaces the definition can be rewritten like this: 

F(t) = P(the circle of radius t, centered on an arbitrary point 
contains at least one event). 

The empirical distribution function of the F function can be estimated by counting the 

distances d{ (from each of the m fixed points to the nearest point in the sample) that are 

less than t and dividing this total by the overall number of fixed points, m: 

Fit) = m-l#(di < t). 

The choice of a number of m fixed points is not exactly defined. For example, according 

to [9] it is recommended to place m fixed points into a k x k grid, where k ~ y/n. 
In the next figure we can see the estimation of the F function for real sample: 

Figure 3.9: Estimation of the F{t) function for the real composite. 

The estimation of F(t) is complicated by the bounded nature of the pattern being 

studied. A s the distances t increase, the position of the nearest neighbor to a point wi l l 

only be known wi th certainty for those points lying within the interior of the study region. 

Thus, edge effects play a significant role in the estimation of F(t). For a Poisson process 

of intensity A on a two dimensional space one obtains: 

1 - F(t) = exp(-A7rt 2 ) , t > 0 

and therefore, just like for the nearest neighbor distribution function, F(t) is given by: 

F(t) = 1 - e x p ( - A 7 r t 2 ) , t > 0. 
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Values of F(t) greater than the Poisson value suggest that there is regularity or ordering 
in the point pattern; lower values suggest aggregation, see [32]. 

3.3.7 The J function 

The J function was first introduced by Baddeley and van Lieshout who stated that the 

strength and range of interpoint interactions in a spatial point process can be qualified 

by the J(t) function given by, see [5]: 

Jit) 
G(t) 
F(t) 

t > 0 such that F(t) < 1, 

where G(t) is the nearest-neighbor distance distribution function and F(t) is the empty-

space function of the process. The J function is a nonparametric measure of the type 

of spatial interaction. The values of J(t) function less or greater than one are indicative 

of clustering or regularity, respectively. If the point process is stationary and Poisson, 

then F(t) = G(t) and so J it) = 1. Just as for the K function, J does not depend on 

the intensity parameter, a feature that affects both F and G. Also note, that J(0) = 1. 

In the next figure we can see an average of the J-function from 15 samples of the real 

composite. 

10 20 30 90 

Figure 3.10: The J(t) function for the real composite. 

3.3.8 Pair distribution function 

According to [20], the pair distribution function g(t) describes the probability of finding 

an inclusion whose center lies in an infinitesimal circular region of radius dt about the 

point t, provided that the coordinate system is located at the center of a second inclusion. 

Next, according to [20] we can get the following relation between g(t) and K(t): 

git) 
1 dK(t) 

2irt dt 
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Although g(t) and K(t) are related, they provide quite different physical information. 

The Ripley's function K{t) can distinguish between different patterns and detect regu­

larities, whereas the pair distribution function g(t) describes the occurrence intensity of 

inter-inclusion distances. In this function a local maxima indicates the most frequent 

distances between points and a local minima the least frequent ones in the pattern. 

The following discretized estimation of pair distribution function for our computations 

was used, see [20]: 

where t is the radial distance from a fibre center, p the number of fibres per unit area, TV 

the total number of fibre centers in the region considered, rij the number of fibre centers 

which lay within an annulus of radius t and thickness dt, wi th the same center as the 

fibre %. If the values of g(t) are greater than one, the corresponding distances occur more 

frequently than in a complete random pattern, and conversely for smaller values. 
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Figure 3.11: The pair distribution function of the real composite. 
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4 Appl ied Algorithms 
4.1 Basic Terms 

The mechanical behavior of composite materials in strongly dependent on the geomet­

rical arrangement of distinct phases of the composite- micro structure. Unfortunately 

microstructure of real composite materials is typically quite complicated. To illustrate 

this fact, we present a high-contrast micrograph of a part of the graphite fiber tow im­

pregnated by the polymer matrix, see figure 4.1. 

Figure 4.1: A micrograph of a transverse plane section of a real graphite fiber tow. 

Before starting our description of the developped algorithms it is natural to describe 

the real composite, that was used as a "starting" model. A l l of them come from the photos 

of a real composite, that were gained from Ing. Jan Zeman, P h . D from Czech Technical 

Univerzity in Prague. To see a sample of sent photos see the following figures. For more 

information about separating real structure from the photos see [12]. 
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Figure 4.2: Original(up) and corrected figures (down). 

In the upper pair of figures you can see two different real samples in the "raw" state 

and on the thi rd and fourth figures the same samples wi th drawn circles representing 

fibres with their centers. We used an Image Processing Toolbox for Matlab to the next 

manipulation: First of all we determined surface areas of each white region representing 

one fibre. In the second step we interleaved an ellipse with the same area by the given 

region to get the center of a fibre (blue crosses) and then we placed a circle wi th the same 

area and center as the ellipse(red circles). After this steps we have at disposal model of a 

real material-non-constant diameters of fibres and non-periodic structure. From this data 

we stated the distribution of fibre's diameters that we used in the following algorithms. 

70 
Diameters 

0.003 0.001 

65 70 75 
Diameters 

Figure 4.3: Histogram(left) and normal probability plot of fibre's diameters. 

The resulting distribution agrees wi th normal distribution N(71,87; 20,96). 

It is good to remark, that major existing results dealing with generating random 

structures come from the fact, that the centers of the fibres are not nearer then diameter 

of a fibre, which is considered to be constant for all fibres in a sample. Algorithms 

generating such structures are based on so called spatial point processes, see [26] and 
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references therein. But , the previous ones differ from the algorithms presented later. 

Newly developed algorithms enable to work wi th non-constant diameters of the fibres 

wi th keeping the same volume fraction, i.e. the ratio of the area filled by fibres and total 

area of a sample. For our set of fifteen samples the mean value for total volume fractions 

amount 0,4869. 

4.2 Algorithm AI 
The main idea of this algorithm is based on stochastic process S(t, u), see Appendix 13 for 

more information. This process, more specifically its separate trajectories, has a character 

of a "wavy-random sinusoid curve". In other words, they have different amplitudes and 

periods. For the better imagination see figure 13.2 in Appendix. 

Let D be a domain, representing our sample, into which we want to place fibres wi th 

random diameters corresponding to the established distribution of the real samples. 

4-
Domain D 

Overlapping places 

T 3 7 

0 - W W 

ß3 Q®03QW^ß 

70 
Figure 4.4: To the description of the algorithm Al(left) and the final structure generated 
by the algorithm Al(right). 

A detailed procedure can be described in several steps. In the bottom of the picture 

there is a green curve which forms the centers of the fibres wi th random diameter. This 

green curve was received by means of one realization of the stochastic process S(t, ui) wi th 

K = 3800. During putting the fibres on the line we also have to check overlapping of the 

fibres. After the green line is filled we continue wi th a red one, which is generated as the 

green one, but is shifted up. Again , the fibres are placed to the line and checked wi th 

existing ones. In the case of overlapping (the arrows in the figure) they are shifted to the 

"safe" distance. In this way we continue unti l the whole domain D is not filled up. In the 

next figure there is finished a resulting structure of a two-phased fibre composite material 

according to the algorithm AI . B y a different choice of a number i f in a expansion of 
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the stochastic process S(t,u) we change an amplitude and period of a curve. This fact 

causes, that we are able to generate structures with various volume fraction and number 

of fibres in a sample. Of course, it is possible to set a minimum distance between two 

fibres. B y means of this algorithm fifteen samples were generated for the purpose to the 

next computations. 

4.3 Algorithm A l l 

The principle of this algorithm we can describe as follows: Firstly, we generate one fibre 

wi th random diameter and situate it approximately in the middle of the domain sample. 

Then we choose a random direction and a distance, where we put a new fibre. This 

procedure is repeated unti l the resulting volume fraction does not reach the requested 

one. During every step we are checking whether a new fibre does not cross the existing 

ones. In case of overlaying of fibres, new position is generated. For the better illustration 

and result see the following pictures. 

Figure 4.5: To the description of the algorithm All(left) and the final structure generated 
by the algorithm All(right). 

4.4 Algorithm AIII 
It is based on the Brownian motion of the suspended particles in a l iquid medium. The 

simulation starts wi th generating a sample wi th complete periodic structure, i.e. con­

stant diameters of fibres and the same distance between them. The diameter must be 

chosen in such a way, that the resulting volume fraction has the same value as in the 

real samples. After such structure is generated, the diameters of all fibres are changed 

according to the distribution of real samples. In a next step each Fibre is submitted to 
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the Brownian motion. In other words, we choose a random direction and distance of 

shifting a fibre. Simultaneously we check for the crossing wi th neighboring fibres and the 

minimum distance between them. If it occurs, we change the direction and the distance 

and the process is repeated. This is repeated unti l everything is all right. It is important 

to note, that generated amplitude of vibrations are in tenths of fiber's diameter, so they 

are relative small. This fact corresponds to the real concept of the Brownian motion, but 

we do not consider the collisions of particles and transmitting their quantity of motion 

during collision of one particle into another one. 

ooooooooooooo 
ooooooooooooo 
ooooooooooooo 
ooooooooooooo 
ooooooooooooo 
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Figure 4.6: To the description of the algorithm 
by the algorithm AHI(right). 
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4.5 Algorithm AIV 
The principle of this algorithm 
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Figure 4.7: The final structure gener­
ated by the algorithm AIV. 

is similar to the algorithm AIII. 
The difference is in processing overlaying of 

fibers: if the deflection of the fibre wi l l cause 

overlaying wi th neighboring fiber, the shifting is 

canceled - the fiber stays in its old position. It 

causes, that the final structure is not so random 

as in the case of algorithm AIII, but the com­

puting time is several times shorter. The only 

disadvantage of algorithms AIII and A l V i s in 

a fact, that the amount of fibres is the same for 

all samples. We have to note that in each of the 

previous algorithms, the diameters of the fibres 

are driven by a known probability distribution. 
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Part II 

Statistical Computations 

/ have a dream.. 
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5 Disposal Data 
According to the previous chapter, we had at disposal a file of fifteen square-shaped 

samples of a real two-fibre composite material. O n the basis of the data obtained from 

these samples, we constructed four different algorithms (AI-AIV) generating analogous 

inner structure with almost the same volume fraction. Briefly speaking, we simulated 

fifteen different samples of the same size per each algorithm and therefore we have at 

disposal a set of seventy-five samples - i.e. five types per fifteen realizations. 

Our aim is now to compare samples generated by algorithms A I - A I V to real ones. 

A s a tool to this comparison we use e.g. descriptive statistics, methods of analysis of 

variance, variograms, etc. A l l these techniques wi l l be presented in the next chapters. 
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6 Descriptive Statistics 
6.1 Introduction 
Descriptive statistics are used to describe the basic features of the data gathered from an 
experimental study in various ways. They provide simple summaries about the sample 
and the measures. Together with simple graphics analysis, they form the basis of virtually 
every quantitative analysis of data. It is necessary to be familiar with primary methods of 
describing data in order to understand phenomena and make intelligent decisions. Various 
techniques that are commonly used are classified as: 

• Graphical displays of the data in which graphs summarize the data or facilitate 
comparisons. 

• Tabular description in which tables of numbers summarize the data. 

• Summary statistics (single numbers) which summarize the data. 

The summary statistics we can divide among these groups: 

• Location - mean median, mode 

• Dispersion - range, standard deviation 

• Moments - variance, skewness, kurtosis 

To start an analysis based on the descriptive statistics we need to receive detailed data 
from the samples. One of the possible ways is to imaginary divide requested sample by 
10x10 grid into one hundred cells. After this procedure we compute a volume fraction in 
each of the elementary cell and obtain a file of one hundred elementary volume fractions 
indexed from 1 to 100. The previous ones wi l l be the base of next computations. 

6.2 Results 
In the following picture we can see the idea presented in the previous section. 

Figure 6.1: A sample with an abstract grid. 
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A s was said in the previous chapter, we simulated fifteen samples from each algorithm 

A I - A I V and therefore we obtained fifteen sets per one hundred elements. Next step 

is based on computation mean value for each element from the fifteen samples. This 

operation leads to getting a data matrix 5x15 which we use for computation descriptive 

statistics. 

Now, let's formulate it more formally. Let % be an index denoting the number of used 

algorithm. It runs from one to five according to this table: 

Algorithm i 
A l g . A I 1 

A l g . A l l 2 
A l g . AIII 3 
A l g . A I V 4 

Real sample 5 

Next, let index j denotes the number of a sample generated by the given algorithm. In 

our case it can assume a value from one to fifteen. Finally, index k represents a number 

of the elementary cells in our sample, see the figure above. 

Denote by the symbol X ; , % = 1, . . . ,5 a data object with components A"/ ' f c , j = 
1, . . . , 15, k — 1 , . . . , 100 and by the symbol x\ its mean value over all samples, i.e. 

1 ^ 

i=i 

Then, by fixation of the index % in a matrix x\, we obtain a statistic file of an amount 100, 

where a classical methods of a descriptive statistic can be applied. For the right formulas 

for the computation of the characteristics, see e.g. [29] or [33]. Let us denote by a symbol 

ff the volume fraction in a cell c\ (the notation of indexes is the same as above). Then 

we obtain statistic files for volume fractions in each cell for all realizations overall. The 

results are presented in the following table: 

Mean Median M i n . Max . Range Var. Std.Dev. K u r t . Skew. 

Real 48,69 50,49 25,86 62,53 36,67 60,16 7,76 3,17 -0,73 

A I 47,73 48,23 35,93 57,97 22,04 24,15 4,91 2,77 -0,36 

A l l 47,87 48,23 28,88 55,63 26,75 18,46 4,3 6,6 -1,32 

AIII 48,34 47,94 32,96 67,49 34,53 46,57 6,82 2,78 0,38 

A I V 48,44 47,78 34,45 64,73 30,28 53,48 7,31 2,44 0,15 

Table 6.1: Computed values of descriptive statistics of all volume fractions for all samples. 

The following figures display the difference between volume fraction in each elementary 

cell in real samples (meaning their mean) and samples obtained by each algorithm. Each 

algorithm A I - A I V is from the reason of clearness presented in a separated figure: 
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Figure 6.2: Comparing elementary volume fractions of each algorithm to the real one. 

Next, we present descriptive statistics for the amount of fibres in the samples for each 

algorithm A I - A I V and real samples, see table: 

Mean Median M i n . Max . Range Variation Std. Dev. K u r t . Skew. 

Real 164,60 164 145 189 44 167,40 12,94 2,04 0,14 

A I 164,93 163 155 177 22 45,21 6,72 1,89 0,21 

A l l 162,13 162 159 165 6 2,84 1,68 2,23 -0,22 

AIII 169,00 169 169 169 0 0,00 0,00 undef. undef. 

A I V 169,00 169 169 169 0 0,00 0,00 undef. undef. 

Table 6.2: Computed values of descriptive statistics for a total amount of fibres for several 
simulations computed by algorithms AI AIV. 

We can see, that the amount of fibres for real samples and samples generated by 

algorithms A I - A I I can vary, but for the algorithms A I I I - A I V is st i l l constant. It is 

caused by the fact, that we generate random structures from the starting position, where 

the amount of fibres is chose in such way to be the resulting volume fraction the same, 

see Figures 4.6 and 4.7. It is a difference in contrast to the algorithms A I or A l l , where 

we do not know a priori the numbers of fibres that wi l l be generated to a desired sample 

domain. 
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7 Anizotropy 
7.1 Var iogr ams 
Consider two data sets; we wi l l assume that common descriptive statistics for these two 

data sets are almost the same. According to this evidence the two data sets are almost 

identical. However, these two data sets are significantly different in ways that are not 

captured by the common descriptive statistics and histograms. Note that we can not say 

that data set A is "more variable" than data set B , since the standard deviations for the 

two data sets are the same. The variogram is a quantitative descriptive statistic that 

can be graphically represented in a manner which characterizes the spatial continuity of 

a data set. 

In this section we present results concerning with variograms. A theoretical funda­

mental is introduced in section 1.2.4. In our variogram analysis we computed directional 

variograms in directions 

wi th angle toleration 11,25° and one omnidirectional variogram. Their graphical repre­

sentation we can see in the next page. To the analysis we used gstat 2.3.3 software. B y 

help of implemented optimization methods we found out that the best fitting model is 

cosine model wi th nonzero nugget, see figure 11.8 in Appendix. 

0°; 22 ,5° ; 45°; 67,5°; 90°; 112,5°; 135°; 157,5° 

150 -

I 100 -

50 -

VF * 
201.456 Nug(0) + 11.637 Per(451.758) 

100 200 300 400 

d is tance 

500 600 700 800 

Figure 7.1: Omni-directional variogram for one real sample. 
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Figure 7.2: Directional variograms for one real sample. 
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Figure 7.3: Rose diagrams for samples generated by algorithm AI. 
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Figure 7.4: Rose diagrams for samples generated by algorithm All. 
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Figure 7.5: Rose diagrams for samples generated by algorithm AIII. 
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Figure 7.6: Rose diagrams for samples generated by algorithm AIV. 



7. ANIZOTROPY 65 

Figure 7.7: Rose diagrams for real samples. 
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7.2 Coefficients 
A s we said in the section 1.2.5, related to an anisotropy of a material, we distinguish 

geometric and zonal anisotropy, see figures in mentioned section. The most used parameter 

to describe geometric anisotropy is so called anisotropic ratio k, defined as 

range of min. variational axis ai ^ — ° — _ > i 
range of max. variational axis a2 ~ 

For an isotropic material, k — 1, i.e. an ellipse becomes to a circle wi th a\ = a2. In 

the following table we can see the values of anisotropic ratio for the real sample and for 

algorithms AI-AIVevaluated for each of fifteen realizations. 

Sample No. Real A lg . A I A lg . A l l A l g AIII Alg . A I V 

1 1,082 1,467 1,266 1,127 1,267 

2 1,278 1,207 1,299 1,587 1,424 

3 1,206 1,437 1,187 1,198 1,171 

4 1,199 1,275 1,520 1,529 1,122 

5 1,062 1,400 1,096 1,215 1,148 

6 1,191 1,492 1,280 1,390 1,586 

7 1,129 1,425 1,115 1,341 1,261 

8 1,147 1,235 1,093 1,268 1,136 

9 1,093 1,494 1,298 1,373 1,322 

10 1,152 1,722 1,225 1,725 1,424 

11 1,184 1,102 1,150 1,332 1,381 

12 1,561 1,222 1,447 1,415 1,194 

13 1,629 1,368 1,716 1,435 1,530 

14 1,432 1,008 1,532 1,345 1,157 

15 1,207 1,219 1,179 1,177 1,720 

Table 7.1: Computed values of anisotropic ratios for each algorithm. 

Next, we present summary descriptive statistics for the previous values. 

Mean Median M i n . Max . Range Variation Std.Dev. K u r t . Skew. 

Real 1,237 1,191 1,062 1,629 0,567 0,029 0,171 3,440 1,287 

A I 1,338 1,368 1,008 1,722 0,714 0,033 0,181 2,795 0,149 

A l l 1,294 1,266 1,093 1,716 0,623 0,034 0,184 2,905 0,915 

AIII 1,364 1,345 1,127 1,725 0,598 0,026 0,162 2,879 0,601 

A I V 1,323 1,267 1,122 1,720 0,598 0,034 0,184 2,479 0,728 

Table 7.2: Computed descriptive characteristics for anizotropic ratios. 
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Figure 7.8: Squares deviations. 

Now, we present a new characteristic-so called proportional coefficient, which we define 

as a ratio of area of the ellipse and a sum of squares of deviations variogram's ranges from 

an ellipse in estimated directions 
P 

V 

Because of the symmetry of an ellipse, it holds di+$ = di, so we can simplify the compu­
tation to the form 

V 
nab 

This coefficient practically determines the accuracy of fitting an ellipse of the rose diagram 

to the separate abscissae obtained from directional variograms. The bigger the coefficient 

is, the better fitting we have. In an ideal case, the denominator equals to zero and the 

coefficient tends to infinity. 
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Sample No. Real A lg . A I A lg . A l l A l g AIII A lg . A I V 

1 4,633 7,689 8,238 7,574 10,668 

2 16,677 3,363 3,328 5,608 6,438 

3 9,912 3,076 6,392 3,444 3,663 

4 30,474 3,516 20,044 6,811 4,349 

5 3,123 15,159 13,388 8,293 7,334 

6 10,829 2,634 23,661 6,227 21,840 

7 225,005 99,871 21,630 7,857 6,183 

8 2,350 8,511 9,971 2,313 21,578 

9 36,413 2,123 3,110 5,579 6,531 

10 2,448 8,177 22,844 8,619 10,816 

11 7,177 6,280 5,400 4,221 2,829 

12 3,747 3,483 9,648 6,087 8,130 

13 3,893 5,834 15,244 12,565 7,737 

14 22,125 14,422 39,081 4,222 32,633 

15 3,175 27,009 8,068 3,677 11,194 

Table 7.3: Computed values of proportional coefficients for each algorithm. 

Mean Median M i n . Max . Range Variation Std.Dev. K u r t . Skew. 

Real 25,465 7,177 2,350 225,00 222,655 3162,221 56,234 12,148 3,267 

A I 14,077 6,280 2,123 99,871 97,747 606,985 24,637 11,281 3,084 

A l l 14,003 9,971 3,110 39,081 35,971 97,513 9,875 3,653 1,067 

AIII 6,206 6,087 2,313 12,565 10,252 6,672 2,583 3,540 0,751 

A I V 10,795 7,737 2,829 32,633 29,804 68,432 8,272 4,340 1,506 

Table 7.4: Computed descriptive characteristics of proportional coefficients. 



8. ASSUMPTIONS FOR THE ANALYSIS 69 

8 Assumptions for the Analysis 
Among the most important properties in statistical analysis are its normality and 

homogeneity of variance. In the following we try find out, whether sets of elementary 

volume fractions in the samples satisfy these conditions. 

8.1 Normality 
If the number of members in each group is fairly large, then deviations from normality do 

not matter much at all because of the central limit theorem. In our case, every sample 

has 100 data. In our analysis of normality we choose eight different tests to clarify this 

phenomena. The tests are: Anderson-Darling test, Chi-squared test, D'Agostino's K -

squared test, Jarque-Bera test, Kolmogorov-Smirnov test, Lilliefors test, Ryan-Joiner test 

and Shapiro-Wilk test. Each of this tests is described in Appendix. 

Tst. Anderson-Darling Chi-Squared D'Agostino's K-squared Jarque-Bera 
No. AI A l l AIII A I V Real AI A l l AIII A I V Real AI A l l AIII A I V Real AI A l l AIII A I V Real 

1 X 

2 / / X X X X 

3 V / / / / / / / / / / / / / / / / 
4 V / / / / • / / / / / / / / / / / / / 
5 V / / / / X / / / / / / 
6 V / / / / / / / / / / / / / X / / / / X 

7 V X / / X / X / X / / / / / sf / / / 
8 V / / X X X X / / X / X / 
9 V / / X / / X X / / / / / 
10 V / / / / / / / / / / 
11 X / / / X X X / / / / / / / / / 
12 V X / / X / X / X X / / / X / / / X 

13 X / / X X 

14 V / X / / / 
15 / / / / / / / / / 

Tst. Kolmogorov-Smirnov Lilliefors Ryan-Joiner Shapiro-Wilk 
No. AI A l l AIII A I V Real AI A l l AIII A I V Real AI A l l AIII A I V Real AI A l l AIII A I V Real 

1 / / / / / / / / •/ •/ / •/ •/ •/ •/ / •/ •/ 
2 / / / / / / / / / X / / / X X / / / X •/ 
3 / / / / / / X / / / / •/ •/ / •/ •/ / / •/ 
4 / / / / / / X / / / / •/ / X / / / / •/ 
5 / / / / / / / / / / / / / / / / / / •/ 
6 / / / / / / / / / / / •/ •/ X •/ •/ / / •/ 
7 / / / / / / / / / / / X •/ •/ X •/ X / / X 

8 / / / / / / / / / X / •/ X / •/ •/ / X •/ 
9 / / / / / / / / / / / / X / / / / X •/ 
10 / / / / / / / / / / / / / / / / / •/ 
11 / / / / / / / / / X X •/ / / X •/ / / •/ 
12 / / / / / X / / / / / / X / / / / X 

13 / / / / / X / / / / X / X / / / / / / 
14 / / / / / / / / / / •/ / / / •/ / / •/ 
15 / / / 

Table 8.1: Resulting values obtained by various tests for verification of normality. 
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A s we can see, almost every data fulfils the normality, so we can say, that the values 

of elementary volume fractions satisfy to the normality condition. 

8.2 Homogeneity of Variances 
This section wi l l be denoted to the second important request - homogeneity of variances. 

This is very important for an A N O V A ( A n a l y s i s of Variance), due to F-tests, which this 

method is based on. A s in the previous, we wi l l study the homogeneity on the set of 

elementary volume fractions for each sample. We wi l l not compute the homogeneity for 

all five (real + 4 five) algorithms together, but always for real sample and one for some 

algorithm. To realize this, we need a pair of samples. We have four algorithms A I - A I V 
and real one. So, we wi l l have four sets of computing. We can use parametric tests, 

because we know, that our data are normally distributed. The tests we use: Bartlett 's 

test, Cochran test, Brown-Forsythe test, Levene test and O 'Br ien test. They are also 

described in Appendix. The results are in the table: 

Test Bartlett's Cochran Brown-Forsythe Levene O'Brien 
Alg. AI A l l AIII AIV AI A l l AIII A I V AI A l l AIII A I V AI A l l AIII A I V AI A l l AIII A I V 

1 / / X / / / X / / / / / X / 
2 X X X X X X X X X X X X X X X 

3 X X X X X X X X X X X X X X X 

4 / X X X X X X X X X X X X X X 

5 X X X X X X X X X X X 

6 X X X X X X 

7 X X X X X X X X X X X X X X X 

8 X X X X X 

9 X X X / / X / X 

10 X X X X X X X X X X X X X X X 

11 
12 X X X X X X X X X X X X X X X X 

13 X X X X X X X X X X 

14 
15 X X X X X X X X X X X 

Table 8.2: Resulting values obtained by various tests for verification of homogeneity. 

Explanat ion of this table: in the header of the table, e.g. A I means that we compare 

samples from real material and a sample generated by algorithm A I by the test that is 

above. The checkmark^ ) means that its variances are homogeneous, meaning it is not 

rejected, a cross(X) means an opposite. 

Here, according to this tests we can see, that these data do not have a character to be 

homogeneous in variance, generally. The "best" is A I and the "worst" one is AIII. So, 

for eventual analysis, we cannot use A N O V A , because the assumptions are not fulfilled. 

The only way is to use some nonparametric test, e.g. the two-sample Kolmogorov-Smirnov 
test. 
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8.2.1 Two-Sample Kolmogorov-Smirnov test 

In statistics, the Kolmogorov-Smirnov tes t (K-S test) is a form of minimum distance 

estimation used as a nonparametric test of equality of one-dimensional probability distri­

butions used to compare a sample wi th a reference probability distribution (one-sample 

K - S test), or to compare two samples (two-sample K - S test). 

The two-sample Kolmogorov-Smirnov statistic quantifies a distance between the em­

pirical distribution functions of two samples. The null distribution of this statistic is 

calculated under the null hypothesis that the samples are drawn from the same distribu­

tion. In each case, the distributions considered under the null hypothesis are continuous 

distributions. 

The two-sample K S test is one of the most useful and general nonparametric methods 

for comparing two samples, as it is sensitive to differences in both location and shape of 

the empirical cumulative distribution functions of the two samples. 

The aim of this computation is to check out, whether two samples(real and simulated) 

come from the same distribution. We wi l l by sequel apply the two-sample K - S test to the 

pair of samples combined from the real sample and simulated one from the algorithms 

A I - A I V . To the computation we use a Mat lab function k s t e s t 2 , see a guide book [35] 

about syntax, input and output arguments. 

Real - AI Real - A l l Real - AIII Real - AIV 
Sample No . Result p-Value Result p-Value Result p-Value Result p-Value 

1 / 0,140 X 0,013 / 0,193 X 0,021 
2 / 0,193 X 0,005 X 0,001 X 0,003 
3 / 0,443 / 0,677 / 0,140 / 0,261 
4 / 0,140 / 0,193 / 0,193 / 0,344 
5 X 0,021 X 0,013 X 0,031 X 0,031 
6 X 0,003 0,099 X 0,047 / 0,140 
7 0,443 X 0,013 / 0,099 0,069 
8 X 0,008 0,069 / 0,344 X 0,021 
9 / 0,443 V 0,193 / 0,140 / 0,261 
10 / 0,140 X 0,021 X 0,008 X 0,002 
11 X 0,000 / 0,069 X 0,008 / 0,069 
12 / 0,099 X 0,013 X 0,003 X 0,031 
13 / 0,261 / 0,099 X 0,013 X 0,005 
14 / 0,894 0,677 / 0,344 / 0,261 
15 0,556 0,794 0,677 0,677 

Table 8.3: Resulting values of the two-sample Kolmogorov-Smirnov test. 

In the table we can see whether the H0 hypothesis is rejected(X) or not( ). Beside 

these markers it is also present the p—Value for each test. It is clear, that if the p—Value is 

greater then the significance level a = 0,05, then we do not reject the null hypothesis (the 

samples come from the same distribution). 

Now, for a consideration of the two-sample K - S test we wi l l illustrate the mutual 

connection or similarity between algorithms A I - A I V . 
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AI - A l l AI - AIII AI - AIV 
Sample No . Result p-Value Result p-Value Result p-Value 

1 0,794 0,677 0,344 
2 0,261 0,140 0,261 
3 0,140 0,443 0,443 
4 / 0,140 0,193 0,193 
5 / 0,894 J 0,794 / 0,961 
6 / 0,140 / 0,344 / 0,344 
7 / 0,069 / 0,677 / 0,556 
8 / 0,794 / 0,261 / 0,961 
9 / 0,556 0,344 0,794 
10 0,344 0,261 0,140 
11 0,099 0,099 0,140 
12 0,794 0,443 0,894 
13 0,443 0,261 0,193 
14 / 0,140 / 0,261 / 0,140 
15 0,261 / 0,140 / 0,261 

Table 8.4: Two-sample Kolmogorov-Smirnov test for the algorithm AI. 

A l l - AIII A l l - AIV AIII - AIV 
Sample No . Result p-Value Result p-Value Result p-Value 

1 0,443 0,261 0,894 
2 0,961 / 0,794 / 0,556 
3 X 0,031 / 0,443 / 0,193 
4 / 0,443 / 0,677 / 0,961 
5 / 0,261 J 0,677 / 0,992 
6 / 0,794 0,894 / 0,961 
7 0,344 / 0,261 / 0,961 
8 J 0,261 / 0,443 / 0,443 
9 / 0,992 0,556 / 0,443 
10 0,894 0,794 / 0,556 
11 0,894 0,894 0,992 
12 0,099 0,677 0,443 
13 0,140 0,344 0,894 
14 / 0,961 0,992 0,677 
15 0,677 0,961 / 0,794 

Table 8.5: Two-sample Kolmogorov-Smirnov test for the algorithms All and AIII. 

From the upper table it seems there is no significant difference between A I and the 

remaining ones. Almost the same we can say in the case of the algorithm A l l , because the 

p—Values vary approximately from 0,1 to 0,95. A slight difference we can find in the last 

case, i.e. between AIII and A I V . Here, when looking at the p—Values we can say, that 

its variance is much more smaller - almost all values are greater then 0,6. It means, that 

there is quite no difference between AIII and A l V f r o m the statistical point of view. This 

fact was slightly indicated in the passage about describing algorithms. So, statistically 
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we can change these ones. The only difference is in the fact, that the algorithm AIII is 

approximately four times faster then A I V . 

8.3 Complete Spatial Randomness 
Now, we examine tests for the C S R hypothesis of a point pattern in our samples. This 

hypothesis states that the observed pattern was generated by a homogeneous Poisson 

process. According to [9], C S R operates as a dividing hypothesis between aggregated and 

regular patterns and its rejection is a minimum requirement for further modeling. 

8.3.1 The Quadrat Test of Randomness 

It is the simplest and the most widely used method to investigate deviations from ran­

domness and it is based on counting the numbers of points(centers) in each quadrat of 

a grid overlaid on the section of interest. The approach used to calculate the quadrat 

test involves analyzing the variation in the numbers of points in selected sub-areas of the 

region under investigation. This is called the quadrat method, see 2.3.1. The comparison 

wi l l be as follows: For each sample we compute Pearson's test statistic Q and compare it 

wi th the critical value. In our cases we choose n = 10, i.e. the 10x10 grid (an assumption 

n2 > 6 should be fulfilled). The results are in the following table. It holds, under C S R , 

Real A I A l l AIII A I V 

1 35,45 33,04 37,75 33,31 34,59 

2 34,69 41,90 30,77 37,28 33,11 

3 34,20 30,65 33,30 31,90 37,74 

4 39,97 40,75 36,19 24,06 25,27 

5 26,70 34,23 26,93 25,73 35,67 

6 26,96 47,56 45,29 26,16 30,84 

7 35,53 46,29 37,99 25,58 31,28 

8 32,38 29,12 35,08 31,76 28,17 

9 36,89 36,10 30,85 29,38 33,98 

10 38,95 48,47 33,97 29,55 22,21 

11 23,54 34,78 32,84 29,20 37,67 

12 34,35 43,46 30,03 31,85 34,54 

13 36,75 37,67 42,84 25,38 34,20 

14 30,39 38,52 31,54 25,84 41,82 

15 39,09 55,13 31,20 26,42 27,20 

Table 8.6: Pearson's statistics Q for the quadrat test of randomness. 

the Pearson's test statistic has x2~distribution wi th / = n2 — 1 = 10 2 — 1 = 99 degrees 
of freedom. 
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If the value for Q is less than the lOOa/2 percentile of the chi-squared distribution wi th 

n2 — 1 degrees of freedom, the test rejects the stationary Poisson point process hypothesis 

in favour of regularity at level a. If it is greater than the 100(1 — a/2) percentile, then 

the same hypothesis is rejected at level a, this time in favour of clustering(meaning that 

the variability in the process is greater than that for the Poisson process). 

According to [32], a constant problem in designing a study using quadrats is to estab­

lish what would be a suitable size for the quadrat. Various suggestions have been made 

as to the optimal size, however, most authors agree that the size of the quadrats depends 

on the specific problem in hand, like the type and range of the events' interactions wi th 

each other. 

In our case, n = 10, so Xgg(0.025) = 73,36 and Xgg(0,975) = 128,42. Since in our 

case, all values of Pearson's test statistic Q are smaller than 73,36, it indicates significant 

departure from the C S R . 

8.3.2 Tests Based on Ripley's K Function 

Now, we present to check non-CSR not directly the Ripley's if—function, but the D— and 

L—functions, which are defined by means of the Ripley's if—function. They are defined 

as, see 2.4.1 

Figure 8.1: Comparison of D—functions. 

From the preceding figures it is clear a big departure from the C S R , especially around 

the beginning. It is caused by the fact, that no two fibres can overlap, so the distance of 

their centers is greater than the sum of the mutual radii of the fibres. The same situation 

occurs in the distance approximately 180. The behavior of the L— and D— curves between 
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Figure 8.2: Comparison of L—functions. 

75-180 indicates the C S R , but, as we can see in figures 2.10-2.12, therefore suggesting 

some evidence of deviation from randomness towards a regularity. 

8.3.3 Clark-Evans Test 

The Clark-Evans test is based on the index of the degree of the non-randomness for 

a spatial configuration. It consists of comparing the observed mean nearest neighbor 

distance to that expected for a random configuration of the same density. 

A s was pointed out in the subsection 2.3.3, the results of this Clark-Evans test de­

pend on the particular sample of the nn-distances chosen. If we proceed a Clark-Evens 

test several times, always wi th different set of samples, we obtain different Z-values. The 

results of this simulated sampling scheme yield a distribution of Z-values that is approx­

imately normal. Whi le this normality property is again a consequence of the Central 

L imi t Theorem, it should not be confused with the normal distribution in 2.3.6 upon 

which the Clark-Evans test is based (that requires n to be sufficiently large). However, 

this normality property does suggest that a 50% sample(m = n/2) in this case yields a 

reasonable amount of independence among nn-distances, as it was intended to do. 

O n the next figure we can see a realization of Z-values for the real media: 

Now, we present the Z-means of all samples obtained by simulating algorithms A I -
A I V and of the real ones. 

A n d here we can see the extremes from the previous table for a better clarify. If we 

choose a significant level of 0,05, the critical value za/2 = -20,025 = 1, 96 and thus we reject 

the hypothesis of C S R . Since za = ,20,05 = 1, 65, we conclude significant uniformity of the 

patterns. 
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Figure 8.3: Histogram of the Z-means for the real material. 

Real A I A l l AIII A I V 

1 12,457 12,367 12,472 13,612 13,029 

2 12,827 11,251 12,383 13,975 13,716 

3 11,342 12,938 12,864 13,651 13,540 

4 10,586 12,476 12,849 13,606 13,334 

5 13,101 12,218 12,796 13,251 13,366 

6 12,625 11,193 12,075 13,740 13,211 

7 10,316 12,422 12,298 13,287 13,523 

8 14,062 10,979 12,484 13,675 13,201 

9 13,207 11,749 12,279 13,890 13,512 

10 10,401 11,728 12,299 13,538 13,053 

11 13,456 11,149 12,926 13,739 13,481 

12 12,052 12,114 12,493 13,272 13,504 

13 14,067 12,544 12,287 13,810 13,133 

14 11,398 11,609 12,293 13,463 13,177 

15 12,270 11,160 12,490 13,230 12,800 

Table 8.7: The values of the mean values obtained by Monte-Carlo simulation of the 
Clark-Evans test. 

M i n i m u m M a x i m u m 

Real 10,316 14,067 

A I 10,979 12,938 

A l l 12,075 12,926 

AIII 13,230 13,975 

A I V 12,800 13,716 

Table 8.8: Extremes of the mean values obtained by Monte-Carlo simulation of the Clark-
Evans test. 
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8.3.4 Skellam statistic 

A s a second example of distance methods we present Skellam statistic. A theory, concern­

ing to this, are in the Appendix. The results obtained by this method are below: A n d 

Real A I A l l AIII A I V 

1 445,96 453,67 452,01 481,20 479,57 

2 468,99 400,88 441,36 504,86 488,83 

3 390,72 482,46 461,85 486,18 494,10 

4 362,57 453,55 467,44 485,92 484,93 

5 481,53 446,36 457,60 484,58 475,39 

6 459,40 406,96 426,79 498,39 475,45 

7 364,61 463,54 443,61 478,93 487,03 

8 541,02 390,66 444,18 485,95 477,93 

9 489,81 425,82 442,38 494,32 481,45 

10 366,78 434,08 452,05 491,20 478,54 

11 496,99 406,91 460,92 492,22 477,35 

12 427,88 445,93 441,40 469,35 484,12 

13 523,05 467,34 438,24 497,28 477,37 

14 404,41 420,55 456,61 483,42 483,16 

15 435,36 402,12 452,35 478,79 459,57 

Range 178,45 91,79 40,65 35,52 34,53 

Table 8.9: The values of the Skellam statistic for all samples. 

the extremes are: Similarly, as in the case of the Clark-Evans test, we have a = 0, 05 and 

M i n i m u m M a x i m u m Range 

Real 362,57 541,02 178,45 

A I 390,66 482,46 91,79 

A l l 426,79 467,44 40,65 

AIII 469,35 504,86 35,52 

A I V 459,57 494,10 34,53 

Table 8.10: Extremes of the Skellam statistic for all algorithms. 

approximately n = 165, see Table 6.2 and then x | n (0,025) = X33o(0>025) = 281,6 and 

xl 3 o(0, 975) = 382, 2. From the values in the previous table and the value of X33o(0> 975), 

we can deduce rejecting C S R , because the minimum values are greater than the criti­

cal value. The only exception is the real sample. When we look at the ranges, we can 

easy compare, which algorithms are more random than the others. In our case the most 

random are the real ones and on the other hand, the smallest variability has algorithm 

A I V . 
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9 Computational Circumstances 
The programs for all computations and simulations were written in Mat lab R14. The 

used P C ' s hardware parameters were C P U 1100MHz and 256MB of R A M . 
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Appendix 

^fianfiyou for the music. 
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10 Distance Methods 
Among the simplest of these is based on the observation that if one simply looks at 

distances between points and their nearest neighbors in A, then this provides a natural 

test statistic that requires no artificial partitioning scheme. More precisely, for any given 

points, s — (si, s2) and v = (v\, v2) in A we denote the Euclidean distance between s and 

v by 

d(s,v) = A / ( S I - W 1 ) 2 + (s2-v2)2 

and denote each point pattern of size n in A by Sn = ( S J : i — 1 , n ) , then for any point 

Si G Sn, the nearest neighbor distance (nn-distance) from s$ to all other points in Sn is 

given by 

di = di(Sn) = mm{d(si, Sj) : Sj e Sn, j ^ i}. 

10.1 Skellam's Statistic 
To make ideas of nearest-neighbor distances precise, we have to determine the probability 

Figure 10.1: Cell of radius d 

distribution of nn-distance under C S R and compare the observed nn-distance wi th this 

distribution. To begin, suppose that the implicit reference region A is large, so that for 

any given point density A, we may assume that cell-counts are Poisson distributed under 

C S R . Now suppose that s is a randomly selected point in a pattern realization of this 

C S R process, and let the random variable, say D, denote nn-distance from s to the rest 

of the pattern. To determine the distribution of D, we next consider a circular region 

Cd of radius d around s, as shown in Figure 10.1. Then, according to the picture, the 

probability that D is at least equal to d is precisely the probability that here are no other 

points in Cd- Hence, if we now let Cd(s) — {s}, then this probability is given by 

P(D > d) = e~Xnd2 (10.1.1) 

and that's why we finally obtain 

FD(d) = 1 - e " w 2 . (10.1.2) 
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A s we can see, this is an instance of the Rayleigh distribution. Next, for a random 

sample of n nearest-neighbor distances {Wi,..., Wm} from this distribution, the scaled 

sum (Skellam's statistics) 
m 

Sw = 2XnJ2Wi (10.1.3) 
i=l 

is chi-square distributed wi th 2n degrees of freedom. So, finally, this statistic provides a 

test of the C S R hypothesis based on nearest neighbors. 
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11 Theoretical Models of 
Variograms 

11.1 Valid Models 

The experimental variogram obtained from measured data is in practice impossible to 

use for the next analysis. So, we have to approximate point-estimated variogram by a 

theoretic model of the variogram. But the values of the variogram we cannot approximate 

by an arbitrary function. In other words, a theoretical variogram is not an arbitrary 

function, but it has to fulfil some conditions (it is similar to a density function of a 

random variable). The most important condition is, that it must not be negative. It 

is quite difficult to prove, that the model of a variogram must be conditionally negative 

definite, see e.g. [8] for detailed information and proves. To check this condition is very 

difficult, so we always try to use predefined models of variograms, as wi l l be described in 

the following section. 

11.2 Review of the Most Used Models 
Models of variograms we can divide according behavior near origin and "infinity" into 

several groups. 

1. Models with sill - spherical, quadratic, gaussian, exponential, linear 

2. Models without sill - power, logarithm 

3. Models with oscillating sill - sine, cosine 

4. Pure random model 

The first three types of models we can remark a nugget. The models wi th a sill are 

weakly stationary, whereas unbounded models are intrinsically stationary. 
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11.2.1 Models with Sil l 
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Figure 11.1: Spherical model 

Quadratic Mode l 
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Figure 11.2: Quadratic model 
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Figure 11.3: Exponential model 
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Figure 11.4: Gaussian model 
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Linear Mode l 
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Figure 11.5: Linear model 

11.2.2 Models Without Sil l 
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Figure 11.6: Power model 

Logarithmic Mode l 
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11.2.3 Oscillating Models 

Sine Mode l 

Figure 11.7: Sine model 

Cosine Mode l 

Figure 11.8: Cosine model 
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11.2.4 Pure Random Model 
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Figure 11.9: Pure random model 
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12 Spatial Autocovariance 
12.1 Global Moran's and Geary's Indexes 

A s was written in Chapter 1, both indexes describe global spatial autocorrelation of the 

process. There were also introduced the computational formulas for them. 

Of course, that the values both indexes depend on the w(i,j), which is specified by 

the spatial weighting scheme chosen. In literature are presented several approaches of 

choosing these weights. The most popular is to choose 

C \ A 

I *^ i *^ j I 

where II £C'• j 11 IS the distance of the points cCj and Xj\ m is a parameter chosen by the 

user and A is a constant. Usually we put m = A = 1. 

The variances of I and c wi l l differ according to the data model employed. According 

to [7], under an assumption of normality we obtain 

E(i) = ^ - , D ( / ) _ » * f t - « 4 + ^ 
n - 1' w S g ( 2 n - 1) \ n - 1 

n n n n 
where auxiliary variables So = E wihj)i &i = \ E J2(w(hJ) + w(j^))2 a n d ^ 2 

1=1^ = 1 i=l j=l 
, 2 

n I n n 
E E + E w C M ) 
i=i y = i j=i 

Standardized random variable 

I - E ( J ) 

y/W) 
N(0,1) 

and it is possible to test significance of Moran's index / . 
Similarly, for the Geary's index c we have 

E C _ 1 ' D ( C ) " 2Sg(»+l) ' 

where 5*0, 5*1 and 5*2 have the same meaning as in the case of Moran's index. The next 

technique of testing of significance is the same as above. 
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13 Stochastic Processes: A 
Spectral Approach 

13.1 White Noise Process 
Gaussian white noise process is a good approximation of many real-world situations and 

generates mathematically tractable models, especially in physics and electrotechnics. But 

on the other side, it has many applications in many others area. We wi l l use it in one of 

our algorithm for generating a random structure. 

The White Noise Process: A white noise process is a random process of random 

variables that are uncorrelated, have mean zero, and a finite variance. 

Formally, Wt is a white noise process if E(Wt) = 0, D ( W t ) = A, and E(WtWj) = 0 for 

a l l * ^ j . 

A common, slightly stronger condition is that they are independent from one another; 

this is an independent white noise process. 

Often one assumes a normal distribution for the variables, in which case the distribu­

tion was completely specified by the mean and variance; these are "normally distributed" 

or " Gaussian" white noise processes. From the previous it follows, that white noise process 

is not continuous process and that is the reason why we are not able to draw it. For more 

information see e.g. [17], [23], [27] or [13]. 

A s we said before, we would like to apply some properties of stochastic processes to 

develop an algorithm for generating random structure. This tool is called a spectral 

decomposition of a stochastic process. A theoretically appealing approach is to expand it 

in a Fourier-type series as 

where {£n(w)} is a set of random variables to be determined, A„ is some constant and 

{$ n (cc)} is an orthonormal set of deterministic functions. This is exactly what the 

Karhunen-Loeve expansion achieves. The Karhunen-Loeve expansion of a stochastic 

process is based on the following analytical properties of its covariance function. 

Let w(x, ui) be a random process, function of the position vector x defined over domain 

D, wi th UJ belonging to the space of random events Q. Next, let w(x) = E[w(x,ou)] 
denotes the expected value of w(x, uS) over all possible realizations of the process and 

C(xi,X2) denotes its covariance function. B y definition of the covariance function, it 

is bounded, symmetric and positive definite. This fact simplifies the ensuing analysis 

13.2 Karhunen-Loeve Expansion 

OG 

n=0 
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considerably in that it guarantees a number of properties for the eigenfunctions and the 

eigenvalues that are solution to the previous equation: 

• The set of eigenfunctions is orthogonal and complete. 

• For each eigenvalue A&, there correspond at most a finite number of linearly inde­

pendent eigenfunctions. 

• There are at most a countably infinite set of eigenvalues. 

• The eigenvalues are all positive numbers. 

• The kernel C(xi,x2) admits of the following uniformly convergent expansion. 

C(x1,x2) = A n $ n ( x i ) $ n ( x 2 ) , 
n=0 

where A„ and $ n(a;) denote the eigenvalues and eigenvectors of the appropriate covariance 

kernel, which we obtain by solving the following Fredholm equation of a second type 

/ C(xi, x2)$(x2) dx2 = A $ ( x i ) . 
JD 

Due to the symmetry and the positive definiteness of the covariance kernel, see [13], its 

eigenfunctions are orthogonal and form a complete set. They can be normalized according 

to the following criterion 

®Jx)$m(x) dx = 5nm, 
D 

where 5nm is the Kronecker delta. Then, w(x,cv) can be written as 

w(x,u) = w(x) + a(x,ou), 

where a(x, uS) is a process wi th zero mean and covariance function C(xi,x2). The process 

a(x,cv) can be expanded in terms of the eigenfunctions $„(cc) as 

a(x,u) = ^in(u)\/Tn<&n(x). (13.2.1) 
n=0 

Thus, the random process w(x,cv) can be written as 

DO 
(x) + ^£n(u)\/Xl§>n(x).i w[x,u) = w[ 

n=0 

where E [^„(o;)] = 0, E [£ n (u;)£ m (u;)] = Snm and A„, $ „ (a ; ) are solution to the integral 

equation. Truncating the series in previous equation at the Kth term, gives 

A' 

w(x,u>) = w(x,u>) + ^w(to)a/A^$w(x), (X,U>) G D x Q. 
n=0 
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A n explicit expression for £,n(u) can be obtained by mult iplying equation 13.2.1 by &n(x) 
and integrating over the domain D. That is 

It can be proved, that E [(w — Wk)2(x,u)] —> 0 for K —> oo. The most important value 

of spectral decomposition lies in the fact, that spatial random deviations we can express 

as a sum of deterministic functions in spatial coordinates multiplied by random variables, 

which are independent on these coordinates. 

Brownian motion(also Wiener process) plays a very important role in probability theory, 

the theory of stochastic processes, physics, finance, etc. Brownian motion is named after 

the biologist Robert Brown whose research dates to the 1820s. Wiener(1923) was the first 

to put Brownian motion on a firm mathematical basis. 

Brownian Motion: A stochastic process B = (Bt, t G (0, oo)) is called (standard) 
Brownian motion or a Wiener process if the following conditions are satisfied: 

1. -Bo = 0 and it has continuous sample paths 

2. For 0 < to < t\ < ... < tn the increments Btl — Bto,..., Btn — Btn_x independent 

3. For every t > 0 and h > 0, Bt+h — Bt has a normal distribution with zero mean and 

variance h, i.e. Bt+h — Bt ~ N(0, h). 

13.3 Brownian Motion 

-0.5 

0.5-

0 

-1 
0 0.2 0.4 0.6 0.8 

t. 

Figure 13.1: Three realizations of the Brownian motion. 

Next, for a Brownian motion Bt it holds: 
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1. E[f l?]=* 

2. E [-Bt-Bs] = min {£, s} , t < 0, s < 0 

3. E [(Bt — Bs)2} = \t-s\. 

Now, we return to the spectral decomposition of a stochastic process. According to [19] 
or [13], for the Brownian motion defined on the set D = (0 ,T) it can be proved, that for 
eigenvalues and eigenfunctions stand the following relations 

/ x \ AT2 

» „ ( « = V2sin (̂ =) , K = ^ T W , » = 0 , 1 , 2 , . . . , f e < 0 , T ) . 

Brownian motion we can then then write 

Bt=? —r1 r sin — — Uu). 
f ^ 7 r ( 2 n + l ) V 2T ' n=0 

From the previous it follows that replacing the previous sum by the only finite members 
we get also trajectory similar to the Brownian motion, but it wi l l be "smoother" than 
then real one. 

Now we use Karhunen-Loeve expansion of Brownian motion with finite number of 
members (K < oo) for a introduction of a new stochastic process S(t,u) defined on an 
interval (0, T). This process we later use for simulation of a random structure: 

A J {'111 + l )7Tf \ 
{CO) 

, s . / ( 2 n + l ) 7 r t V 
s(t,u) = J 2 ^ [ 2 T )£» 

n=0 ^ ' 

where { ^ „ } ^ 1 is a sequence of mutually independent random variables. The process 
S(t, uS) has a character of a "white noise process" and for our simulation is quite sufficient. 
In the following picture we can see the realizations of the process wi th different K: 
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0 1 2 3 4 5 6 7 8 9 10 

Figure 13.2: Trajectories of a stochastic process S(t,u) for different K. 

13.4 Brownian Bridge 
A Brownian bridge is a continuous-time stochastic process whose probability distribution 

is the conditional probability distribution of a Brownian motion B{t) given the condition 

that W(0) = W(l) = 0. 

The expected value of the bridge is zero, wi th variance t ( l — t), implying that the 

most uncertainty is in the middle of the bridge, wi th zero uncertainty at the nodes. The 

covariance of W(s) and W(t) is s(l — t) if s < t. The increments in a Brownian bridge are 

not independent. If W(t) is a standard Wiener process (i.e., for t > 0, B(t) is normally 

distributed with expected value 0 and variance t, and the increments are stationary and 

independent), then W(t) — tW(l) is a Brownian bridge. Conversely, if B is a Brownian 

bridge and Z is an independent standard Gaussian random variable, then the process 

W(t) = B{t) +tZ is a Brownian motion for t G [0,1]. More generally, a Brownian motion 

W(t) for t G [0, T] can be decomposed into 

*(«) =  B (|) + i]f z-
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Figure 13.3: Three realizations of the Brownian bridge. 

A Brownian bridge is the result of Donsker's theorem in the area of empirical processes. 

It is also used in the Kolmogorov-Smirnov test in the area of statistical inference. A 

standard Brownian motion satisfies W(0) = 0 and is therefore "tied down" to the origin, 

but other points are not restricted. In a Brownian bridge process on the other hand, not 

only is B(0) = 0 but we also require that B(l) = 0, that is the process is "tied down" at 

t — 1 as well. Just as a literal bridge is supported by pylons at both ends, a Brownian 

Bridge is required to satisfy conditions at both ends of the interval [0,1]. (In a slight 

generalization, one sometimes requires B[t\) = a and B(t2) = b where ti,t2,a and b are 

known constants.) 

Suppose we have generated a number of points W(0),W(1),W(2),W(3), etc. of a 

Brownian motion path by computer simulation. It is now desired to fill in additional 

points in the interval [0,1], that is to interpolate between the already generated points 

W(0) and W ( l ) . The solution is to use a Brownian bridge that is required to go through 

the values W(0) and W(l). 

For the general case when W{t\) = a and W(t2) = b, the distribution of W at time 

t G (ti,t2) is normal, wi th mean 

a + 
t 2 - h 

(b-a) and variance 
( t - t i ) ( t 2 - t ) 

t 2 - h 
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14 Selected Distributions 
14.1 Weibull Distribution 

In probability theory and statistics, the Weibul l distribution is a continuous probability 

distribution. It is often used to describe the size distribution of particles. 

14.1.1 Motivat ing the Weibull model 

Assume a C S R pattern(Poisson process) of intensity A(A= mean number of events per 

unit area). Let X be a number of events in an area of size A = -rrr2. Then X ~ Po (AA) , 

where 
(\A)xe~XA 

P(X x x = 0 , 1 , 2 , . . . . 

Let the random variable R denotes the distance from a randomly selected point (cross-

mark) to the nearest event (dot). Hence, 

Figure 14.1: Circle of radius r in area A centered on a randomly selected point. 

P(R> r) = P (no events occur inside the circle of radius r) = 
= P (no events occur in an area A = -rrr2) = 
= P(X = 0), where X ~ Po(AA) = 
= e x p ( - A A ) = 
= exp(—A7rr 2). 

Therefore the cumulative distribution function of R is F(r) = P(R < r) — 1 — exp —A7rr2. 

Hence the probability density function of R is 

f(r) 
dF(r) 

dr 
2A7rre -Xirr r > 0. 
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14.1.2 Properties of Weibull Distribution 

A continuous random variable R which has the probability distribution function 

f{r) = 2 A 7 r r e - W , r > 0, A > 0. 

follows a Weibul l distribution. We derive the expectation as follows. B y definition we 
have 

pod pod 
E[R}= / rf(r) dr = 2 A 7 r r V W dr. 

Jo Jo 

Let y = XTTT2, hence r = y/^ and dr = Recall , the gamma function T(k) has the 
form 

POD 
r(Jfe) = / zk-le~zdz. 

Jo 
It may be shown, that T(k) — (k — l)T(k — 1) and T ( l / 2 ) = t/TT. Using these facts we 
find that 

POD -y POD 1 1 /o 

^ 2 V 2 / \ / A 7 t 2 2 \ /A ' 

Next, we use a similar approach to find E [R2] 

E [i? 2] = 2 A 7 r r V W dr = f°° - L ^ e ^ ^ L dj/ 

poo l 

J ye-ydy=—T(2) 

Then we obtain 

T>[R] =E[R2] -E2[R] 

l POD 1 1 

A " | , e -»d 9 = - r ( 2 ) = - . 

1 1 4 - 7 T 

A7T 4A 4A7r 
The obtained mean value and variance were util ized in the Clark-Evans test of C S R . 

14.2 Fischer-Snedecor's Distribution 

The following section provide an overview of the F distribution. 

Background of the F distribution. 

The F distribution has a natural relationship wi th the chi-square distribution. If xi and 
X2 are both chi-squared wi th m and n degrees of freedom respectively, then the statistic 
F below is F distributed: 

Xi 

F(m,ra) = -*§-. 

n 
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Definition of the F distribution. 

Fischer-Snedecor distribution wi th m and n degrees of freedom has probability density 

function 

fm,n \pC) 

m — 2 

1+ ^ * 

0. 

where T(-) is the Gamma function, defined by 

n—l 
r (x) = l im I f n! n l im n\ n x-l 

v=0 
x + v n^oo x(x + l)(x + 2 ) . . . [x + n — 1) 

e-Hx~l dt. 

The integral definition is valid only for x > 0 ( 2 n d Euler integral). 

The most common application of the F distribution is in standard tests of hypotheses in 

analysis of variance and regression. 

The next figure shows that the F distribution exists on the positive real numbers and 

is skewed to the right. 

Figure 14.2: Examples of Fischer-Snedecor probability functions. 

The mean, variance, skewness and kurtosis are, see [1]: 

n 
r 

n — 2) for n > 2 

a' 
2n2(m + n — 2) 

m ( n - 2 ) 2 ( r a - 4 ) 
for n > 4 

«4 

(2(n + 2 m - 2 ) / 2(n - 4) 
a3 = \ / — lor n > 6 

n — 6 y m(m + n — 2) 

12(-16 + 20n - 8 n 2 + n 3 + 44m - 32mn + 5 n 2 m - 22m 2 + 5mn 2 ) 
m(n — 6)(n — 8)(n + m — 2) 

for n > 8. 
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Note. 

• It can be proved, that for m + n joint independent variables X l l . . . , Xm, Yll..., Yn 

with the same distribution N(0; 1), the variable 

n(X2 + ...+X2J 
m(Y2 + ... + Y*) 

has Fischer-Snedecor's distribution with probability function fm,n. 

• If X ~ F ( m , n), then F = l i m ^ o o m l has the chi-square distribution xL-

• If X ~ F ( m , n), then — ~ F ( n , m). 
A. 

• If X ~ t(z/) has Student's distribution, then X2 ~ F ( m = l , n = z/). 

• For the critical values of the F distribution it holds 

Fa(m,n) = j r . 

• A generalization of the (central) F-distribution is the noncentral F-distribution. It 
is the distribution of the test statistic in analysis of variance problems when the 
null hypothesis is false. One uses the noncentral F-distribution to find the power 
function of such a test. 

14.3 F-Tests 
A n F-Test is any statistical test in which the test statistic has an F-distribution if the 

null hypothesis is true. 

14.3.1 Two-Sample F-Test 

In order to compare two methods, it is often important to know whether the variabilities 
for both methods are the same. In order to compare two variances v\ and i>2, one has to 
calculate the ratio of the two variances. This ratio is called the F-statistic (in honor of 
R . A . Fisher) and follows an F distribution: 

The null hypothesis H0 assumes that the variances are equal and the ratio F is therefore 

one. The alternative hypothesis H\ assumes that v\ and v-i are different, and that the 

ratio deviates from unity. The F-test is based on two assumptions: 

• the samples are normally distributed, 

• the samples are independent of each other. 
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When these assumptions are fulfilled and H0 is true, the statistic F follows a F-distribution. 

The following is a decision table for the application of the two-sample F-test. 

One-tailed test Two-tailed test 

Hypothesis 
H 0 : a2 > a2

2 

H i : a\ < a\ 

H 0 : o\ < a2

2 

H i : a\ > al 

H 0 : o\ = al 

H i : a\ ± al 

Test statistics 
s 2 

F = ^ 
2 

« 1 

s 2 

F = ^ 
2 

s | 

larger sample variance 
r = 

smaller sample variance 

Deg. of freedom df i=n i — 1 d f 2 = n 2 - 1 

Rejection reject H 0 if F > F a reject H 0 if F>Fq, / 2 

Table 14.1: A decision table for the two-sample F-test. 

Remarks: 

• When the normality assumption is not fulfilled, one should use a non-parametric 

method. In general the F-test is more sensitive to deviations from normality than 

the t-test. 

• The F-test can be used to check the equal variance assumption needed for the two 

sample t-test, but the non-rejection of H0 does not imply that the assumption (of 

equal variance) is valid, since the probability of the type II error is unknown. 

• Note that when there are only two groups for the F-test, F = t2, where t is the 

Student's t statistic. 

Types of Errors 

In general, there are two different types of error that can occur when making a decision: 

• the error of the first kind ("Type I errors") are those errors which occur when we 

reject the null hypothesis although the null hypothesis is true. 

• the error of the second kind ("Type II errors") arise when we accept the null 

hypothesis although the alternative hypothesis is true. 



14. SELECTED DISTRIBUTIONS 100 

Reality 

H 0 =true H 0=false 

Our H 0 =true O K Error Type II 

Decision H 0 =false Error Type I O K 

Table 14.2: To the explanation of the Type I and Type II error. 

In summary: 

• Rejecting a null-hypothesis when it should have been accepted creates a Type I 

error. 

• Accepting a null-hypothesis when it should have been rejected creates a Type II 

error. 

• In either case, a wrong decision or error in judgment has occurred. 

• Decision rules (or tests of hypotheses), in order to be good, must be designed to 

minimize errors of decision. 

• Min imiz ing errors of decision is not a simple, because for any given sample size, 

any effort to reduce one type of error is generally associated with an increase in the 

other type of error. 

• In practice, one type of error may be more serious than the other. 

• In such cases, a compromise should be reached in favor of l imit ing the more serious 

type of error. 

• The only way to minimize both types of error is to increase the sample size; and 

such a move may or may not be feasible. 

In the case of multiple-comparison A N O V A problems, the F-test is used to test if the 

variance measuring the differences between groups in a certain pre-defined grouping of 

observations is large compared to the variance measuring the differences wi thin the groups: 

a large value would tend to suggest that grouping is good or valid in some sense or that 

there are real differences between the groups. The formula for an F-test is: 

14.3.2 N-sample F-Test 

F 
(explained variance) 

(unexplained variance) 
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or 
(between-group variability) 

(within-group variability) 

where the quantities on the top and bottom of this ratio are each unbiased estimates of 

the within-group variance on the assumption that the between group variance is zero. A n 

F test in A N O V A can only tell you if there is a relationship between two variables - it 

can't tell you what that relationship is. Mathematically, this means it can only tell you if 

one of the means of the groups is different from another one. It can't tell you which mean 

is different. More information about F-Test in A N O V A see e.g. [3], [2], [21], [16] or [15]. 
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15 Ellipse Fi t t ing 
In the analysis of an izotropy we need to fit an ellipse-so called rose diagram to the 

set of points obtained by directional variograms. We wi l l focus on least-square fitting, see 

[11] and references therein for details. Least-squares techniques center on finding the set 

of parameters that minimize some distance between the data points and the ellipse. 

The equation describing a general conic by an implicit second order polynomial can 

be written as 

F ( a , x) = a • x = ax2 + bxy + cy2 + dx + ey + f = 0, (15.0.1) 

where a = [a, b, c, d, e, f]T and x = [x2, xy, y2, x, y, 1] T . -F(a, x) is called algebraic distance 

of a point (x, y) to the conic -F(a, x) = 0. The fitting of a general conic may be approached 

by minimizing the sum of squared algebraic distances 

N 

V{jx) = J2F(*i)2 (15.0.2) 

i=l 

of the curve to the TV data points Xj . In order to fit ellipses specifically while retaining the 

efficiency of solution of the linear least-squares problem 15.0.2, we would like to constrain 

the parameter vector a so that the conic that it represents is forced to be an ellipse. The 

appropriate constraint is well known, namely, that the discriminant of quadratic members 

be negative(see e.g. [29]), i.e. 

b2 - 4ac < 0. 

However, this constrained problem is difficult to solve in general as the Karush-Kuhn-

Tucker conditions(necessary for a solution in nonlinear programming to be optimal, see 

e.g. [36]), do not guarantee a solution. 

Al though the imposition of this inequality constraint is difficult in general, in this case 

we have a freedom to arbitrarily scale the parameters so we may simply incorporate the 

scaling into the constraint and impose the equality constraint 4ac — b2 = 1. This is a 

quadratic constraint which may be expressed in the matrix form aTCa = 1 as 

/ 0 0 2 0 
0 - 1 0 0 

T 2 0 0 0 
a 0 0 0 0 

0 0 0 0 
\ 0 0 0 0 

Now, the constrained ellipse fitting problem reduces to 

min | | D a | | 2 subject to the constraint a T C a = 1, (15.0.4) 
a 

where the design matrix D is defined as D = [xi , x 2 , . . . , xat ] t . Introducing the Lagrange 

multiplier A and differentiating, we arrive at the system of simultaneous equations 

2 D T D a - 2 A C a = 0 

a T C a = 1. (15.0.5) 

0 o \ 
0 0 
0 0 
0 0 
0 0 
0 0 / 

(15.0.3) 
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This may be rewritten as a system 

S a A C a 

1 

(15.0.6) 

(15.0.7) 

where S is the scatter matrix D T D . This system is readily solved by considering the 

generalized eigenvectors of 15.0.6. If (Aj,Uj) solves 15.0.6, then so does (Aj,/xuj) for any 

fj, and from 15.0.7 we can find the value of //j as /xfuf C u j = 1, giving 

Finally, setting a^ = //jUj solves 15.0.5. 

We note that the solution of the eigensystem 15.0.6 gives six eigenvalue-eigenvector 

pairs (Aj,Uj). Each of these pairs gives rise to a local minimum if the term under the 

square root of 15.0.8 is positive. In general, S is positive definite, so the denominator 

ujSuj is positive for all Uj. Therefore, the square root exists if A« > 0, so any solutions to 

15.0.5 must have positive generalized eigenvalues. It can be proved, that the minimization 

| | D a | | 2 subject to 4ac — b 2 = 1 yields exactly one solution, which corresponds, by virtue 

of the constraint, to an ellipse, see [11]. 

(15.0.8) 
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16 Normali ty Tests 
In statistics, normality tests are used to determine whether a random variable is 

normally distributed, or not. 

One application of normality tests is to the residuals from a linear regression model. 

If they are not normally distributed, the residuals should not be used in Z tests or in any 

other tests derived from the normal distribution, such as t tests, F tests and chi-square 

tests. If the residuals are not normally distributed, then the dependent variable or at least 

one explanatory variable may have the wrong functional form, or important variables may 

be missing, etc. Correcting one or more of these systematic errors may produce residuals 

that are normally distributed. 

Normali ty tests include D'Agostino's K-squared test, the Jarque-Bera test, the Ander­

son-Darl ing test, the Cramer-von-Mises criterion, the Lilliefors test for normality (itself 

an adaptation of the Kolmogorov-Smirnov test), the Shapi ro-Wilk test, the Pearson's 

chi-square test and the Shapiro-Francia test for normality. 

Instead of using formal normality tests, another option is to compare a histogram of 

the residuals to a normal probability curve. The actual distribution of the residuals (the 

histogram) should be bell-shaped and resemble the normal distribution. This might be 

difficult to see if the sample is small. In this case one might proceed by regressing the 

measured residuals against a normal distribution with the same mean and variance as 

the sample. If the regression produces an approximately straight line, then the residuals 

can safely be assumed to be normally distributed. Among other graphical tools are the 

quantile-quantile plot and the normal probability plot. 

16.1 Jarque-Bera Test 
In statistics, the Jarque-Bera test is a goodness-of-fit measure of departure from normality, 

based on the sample kurtosis and skewness. This test is based on the fact that skewness 

and kurtosis of normal distribution equal to zero. Therefore, the absolute value of these 

parameters could be a measure of deviation of the distribution from normal. The test 

statistic J B is defined as 

6 V 4 

where n is the number of observations (or degrees of freedom in general); S is the sample 

skewness, K is the sample kurtosis, defined as 

S (Xi - x 

K 

1 \r^n I — \ 3 
/ f 3 _ PZ = Ü 2^i=l 

fl4 fl4 

i E t l (Xi - x ? ) 

n S j = l (Xi ~ X 1 

a 4 (a2)2 n ^ n -\2\Z' 
l E t i (xi~x) y 
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where /X3 and /X4 are the third and fourth central moments, respectively, x is the sample 

mean, and a2 is the second central moment, the variance. Therefore, this can be consid­

ered as a sort of portmanteau test, since the four lowest moments about the origin are 

used jointly for its calculation. 

The statistic JB has an asymptotic chi-square distribution wi th two degrees of freedom 

and can be used to test the null hypothesis that the data are from a normal distribution. 

The null hypothesis is a joint hypothesis of the skewness being zero and the excess kurtosis 

being 0, since samples from a normal distribution have an expected skewness of 0 and an 

expected excess kurtosis of 0 (which is the same as a kurtosis of 3). A s the definition of 

JB shows, any deviation from this increases the JB statistic. The Jarque-Bera test is an 

asymptotic test, and should not be used wi th small samples. 

16.2 Ryan-Joiner Test 
This test basically compares the unknown distribution wi th a normal distribution to see 

if they differ in shape. A correlation coefficient r is used as the test statistic and the 

closer r is to 1.0 the greater confidence we have that the unknown distribution is indeed 

normal. The exact values of r for a given confidence interval depend upon the number of 

points considered. 

The Ryan-Joiner test, which is similar to Shapiro-Wilk test, is based on regression 

and correlation. The test tends to work well in identifying a distribution as not normal 

when the distribution under consideration is skewed. It is less discriminating when the 

underlying distribution is a t-distribution and non-normality is due to kurtosis. We can 

use the Ryan-Joiner statistic RJ to test the hypothesis, H0: the data {xi,...,xn} are a 

random sample of size n from a normal distribution, Hi. the data are a random sample 

from some other distribution. The test statistic RJ is the correlation between the data 

and the normal scores. If the data are a sample from a normal distribution then the 

normal probability plot wi l l be close to a straight line. The correlation RJ w i l l be close to 

one and if the data are sampled from a non-normal distribution then the plot wi l l exhibit 

some degree of curvature, resulting in a smaller correlation RJ. Small values of RJ are 

therefore regarded as strong evidence against H0. The Ryan-Joiner test is given by the 

formula for the correlation coefficient, namely 

R J _ Eli fr-YKk-b) 

Since 6 = 0, RJ can be simplified to 

R J _ EliiXi-Y)IH 

where Y$ are the ordered observations in a sample of size n and bi is the p t h percentage 

point of the standard normal distribution, that is, bi = $ - 1 ( p i ) = v /2erf~ 1(2p— 1), where 
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is the inverse cumulative distributive function, or quantile function, which can be 

expressed in terms of the inverse error function. This quantile function is sometimes 

called the probit function. The values Pi can be obtained by Pi = The statistic RJ 
can be used to provide an indication of how non-normal the revisions are. This wi l l be 

particularly true with larger samples. The test has the desirable feature of l inking together 

a graphical display of the data wi th a simple, objective test statistic. Some may object to 

the use of the term correlation coefficient since the hi are not random variables. However, 

given any set of points in the plane, one can use the correlation coefficient associated wi th 

those points as a descriptive measure of how close they are to a straight line. In this 

sense, RJ can be thought of as a correlation coefficient. Since RJ does not arise from 

sampling a bivariate distribution, it is not the same as the usual correlation coefficient. 

Approximate critical values CV(n) of RJ were obtained from Monte Carlo simulations. 

The results were then smoothed, and for a = 0,05 it holds 

In statistics, D'Agostino's K 2 test is a goodness-of-fit measure of departure from normality, 

based on transformations of the sample kurtosis and skewness. The test statistic K 2 is 

obtained as follows: In the following derivation, n is the number of observations (or degrees 

of freedom in general); 0 3 is the sample skewness, 0 4 is the sample kurtosis, defined as 

where /X3 and /X4 are the third and fourth central moments, respectively, x is the sample 

mean, and a2 is the second central moment, the variance. 

Transformed Skewness 

First , calculate Z ( 0 3 ) , a transformation of the skewness 0 3 , that is approximately normally 

distributed under the null hypothesis that the data are normally distributed. However, 

in practice it can be used only for large sample. Denote by 

More detailed description of this test you can find in [31]. 

16.3 D'Agostino's K-squared Test 
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W 

3(n 2 + 27n - 70)(n + l)(ra + 3) 
( n - 2 ) ( n + 5)(n + 7)(n + 9) 

1 
> / 2 ( 6 - l ) - l , 5 

v / R w 7 ) ' 

Z ( a 3 ) = 5 1 n | ^ + + 1 

Hz 2 - r 

Transformed Kurtosis 

Next, calculate Z(a^), a transformation of the kurtosis 0 4 that is approximately normally 

distributed under the null hypothesis that the data are normally distributed. 

E [a 4 ] 
3(n-l) 

D[a 4] 
2 4 n ( n - 2 ) ( r a - 3 ) 

n +1 ' 1 J ( n + l ) 2 ( n + 3)(n + 5) ' 

Next, compute the skewness of the kurtosis: 

U{aA) 
CI4 — E [04] 

D[a 4] 

6 ( n 2 - 5 n + 2) /6 (n + 3)(n + 5) 
(n + 7)(n + 9) V n(n - 2)(n - 3) 

2 / 4 W 1 + ^ 

Z ( a 4 ) 

Omnibus K 2 statistic 

9/4 \ 1 + U(aA) 
2 

A - 4 

Now, we can combine Z(as) and Z(a^) to define D'Agostino's Ombibus K 2 test for nor­

mality: 

K 2 = Z ( a 3 ) 2 + Z ( a 4 ) 2 . 

K 2 is approximately distributed as \ 2 wi th 2 degrees of freedom. The null hypothesis we 

reject, if K 2 > y^(a). It is sufficient for n > 20. More tests uti l izing the previous statistics 

are presented in [2]. 

16.4 Kolmogorov-Smirnov Test 
The Kolmogorov-Smirnov statistic is defined as 

D = supx\Fn(x) - F(x)\. 

The Kolmogorov-Smirnov statistic belongs to the supremum class of E D F statistics. This 

class of statistics is based on the largest vertical difference between F(x) and Fn(x). The 
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Kolmogorov-Smirnov statistic is computed as the maximum of D+ and D~, where D+ 

is the largest vertical distance between the E D F and the distribution function when the 
E D F is greater than the distribution function, and D~ is the largest vertical distance 
when the E D F is less than the distribution function. 

D+ = max* - [/(;)) 
D~ = max* (lift - ^) 
D = max (£>+,£>-) 

The empirical cumulative distribution function Fn for n i id observations Xi is defined 

as 

n 1 o otherwise. i=i K 

The Kolmogorov-Smirnov statistic for a given cumulative distribution function F(x) is 

Dn = sup \Fn(x) - F(x)\. 
X 

where F(x) is the hypothesized distribution or another empirical distribution. B y the 

Glivenko-Cantel l i theorem, if the sample comes from distribution F(x), then Dn converges 

to 0 almost surely, i.e. 

P (lim Dn = o) = 1. 
\n—>oo / 

The Kolmogorov distribution is the distribution of the random variable 

K = sup \B(t)\, 
<e[o,i] 

where B(t) is the Brownian bridge. The cumulative distribution function of K is given 

by 
oo 

P(K < x) = 1 - 2 ^ ( - 1 ) - V 2 i 2 * 2 = ^ J ] , 
;2 „2 \/27T X ^ e _ ( 2 i _ 1 ) 2 7 r 2 / ( 8 : r 2 ) 

Under null hypothesis that the sample comes from the hypothesized distribution F(x), 

V^Dn^^sup\B(F(t))\ 
t 

in distribution, where B(t) is the Brownian bridge. If F is continuous then under the 

null hypothesis \fnDn converges to the Kolmogorov distribution, which does not depend 

on F. This result may also be known as the Kolmogorov theorem. The goodness-of-fit 

test or the Kolmogorov-Smirnov test is constructed by using the critical values of the 

Kolmogorov distribution. The null hypothesis is rejected at level a if 

\fn~Dn > Ka, 

where Ka is found from 

P(K <Ka) = l - a . 

The asymptotic power of this test is 1. If the form or parameters of F(x) are determined 

from the JQ, the inequality may not hold. In this case, Monte Carlo or other methods are 

required to determine the rejection level a. 
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16.5 Anderson-Darling Test 
The Anderson-Darling statistic and the Cramer-von Mises statistic belong to the quadratic 
class of E D F statistics. This class of statistics is based on the squared difference (Fn(x) — 
F(x))2. Quadratic statistics have the following general form: 

/

+oo 

(Fn(x) - F(x))2ip(x)dF(x). 
-oo 

The function ip(x) weights the squared difference (Fn(x) —F(x))2. The Anderson-Darling 
statistic (A2) is defined as 

/

+oo 

(Fn(x) - F(x))2 [F(x) (1 - F(x))]-1 dF(x). 
-OO 

Here the weight function is ip(x) = [F(x) (1 — F ( x ) ) ] - 1 . The Anderson-Darling statistic 
is computed as 

1 " 
A2 = - n - ~ Y , [(2i - 1) fogF(xi) + (2n + 1 - 2i) log( l - F(xn.i+1))] 

i=l 

HQ\ The data follow the specified distribution. 

HA'- The data do not follow the specified distribution. 
The hypothesis regarding the distributional form is rejected at the chosen significance 

level (alpha) if the test statistic, A2, is greater than the critical value computed by aux­
iliary formulas, see [4] for details. 

If testing for normal distribution of the variable X: 

1. The data JQ, for % — 1,... n, of the variable X that should be tested is sorted from 
low to high. 

2. The mean X and standard deviation s are calculated from the sample of X. 

3. The values Xi are standardized as 

4. W i t h the standard normal C D F $ , A2 is calculated using 

A2 = -n - V ( 2 * - l ) ( l o g $ ( Y 0 + log(l - $ ( y „ + i - i ) ) ) n 
i=i 

5. A*2, an approximate adjustment for sample size, is calculated using 

,,, / 0.75 2.25 
A*2 = A2 1 + + 

n n2 
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6. If A*2 exceeds 0.752 then the hypothesis of normality is rejected for a 5% level test. 

1. If s = 0 or any = (0 or 1) then A2 cannot be calculated and is undefined. 

2. Above, it was assumed that the variable was being tested for normal distribution. 

A n y other theoretical distribution can be assumed by using its C D F . Each theoret­

ical distribution has its own critical values, and some examples are: lognormal, 

exponential, Weibul l , extreme value type I and logistic distribution. 

3. N u l l hypothesis follows the true distribution (in this case, N(0,1)). 

The Chi-Squared test is used to determine if a sample comes from a population wi th a 

specific distribution. This test is applied to binned data, so the value of the test statistic 

depends on how the data is binned. Al though there is no optimal choice for the number 

of bins k, there are several formulas which can be used to calculate this number based on 

the sample size N. For example, it can be used the following empirical formula: 

The data can be grouped into intervals of equal probability or equal width. The first 

approach is generally more acceptable since it handles peaked data much better. Each 

bin should contain at least 5 or more data points, so certain adjacent bins sometimes 

need to be joined together for this condition to be satisfied. The Chi-Squared statistic is 

defined as 

where Qi is the observed frequency for bin i, and Ei is the expected frequency for bin i 
calculated by 

where F(-) is the C D F of the probability distribution being tested, and Xi,x2 are the 

limits for bin %. The hypotheses are: 

H0: The data follow the specified distribution. 

HA'- The data do not follow the specified distribution. 

The hypothesis regarding the distributional form is rejected at the chosen significance 

level (a) if the test statistic is greater than the critical value defined as 

Note: 

16.6 Chi-Squared Test 

k ~ + log 2 N. 

Ei = F(x2)-F(x1), 

meaning the Chi-Squared inverse C D F wi th k — 1 degrees of freedom and a significance 

level of a. 
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16.7 Shapiro-Wilk Test 
In statistics, the Shapi ro-Wilk test tests the null hypothesis that a sample xi,..., xn came 

from a normally distributed population. The test statistic is 

w _ ( E r = i ° ^ « ) 2 

where x^ (with parentheses enclosing the subscript index i) is the z-th order statistic, 

i.e., the %—th smallest number in the sample; x = (x\ + • • • + xn)/n is the sample mean 

and the constants Oj are given by 

[0,1,..., an) — - T t / _ i t \ i /o i 

where 

m = ( m i , . . . , m „ ) T 

and m i , . . . , m „ are the expected values of the order statistics of independent and iden­

tically-distributed random variables sampled from the standard normal distribution, and 

V is the covariance matrix of those order statistics. 

The user may reject the null hypothesis if W is too small. Accuracy is claimed for 

samples size from 3 to 5000. Sample size less than three wi l l not produce a Shapiro-Wilk 

statistic. 

16.8 Lilliefors test 
In statistics, the Lilliefors test, is an adaptation of the Kolmogorov-Smirnov test. It is 

used to test the null hypothesis that data come from a normally distributed population, 

when the null hypothesis does not specify which normal distribution, i.e. does not specify 

the expected value and variance. 

The test proceeds as follows: First estimate the population mean and population 

variance based on the data. Then find the maximum discrepancy between the empiri­

cal distribution function and the cumulative distribution function ( C D F ) of the normal 

distribution wi th the estimated mean and estimated variance. Just as in the Kolmogorov-

Smirnov test, this wi l l be the test statistic. Finally, we confront the question of whether 

the maximum discrepancy is large enough to be statistically significant, thus requiring 

rejection of the null hypothesis. This is where this test becomes more complicated than 

the Kolmogorov-Smirnov test. Since the hypothesized C D F has been moved closer to 

the data by estimation based on those data, the maximum discrepancy has been made 

smaller than it would have been if the null hypothesis had singled out just one normal 

distribution. Thus we need the "nul l distribution" of the test statistic, i.e. its probability 

distribution assuming the null hypothesis is true. This is the Lilliefors distribution. To 

date, tables for this distribution have been computed only by Monte Carlo methods. 
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17 Homogeneity Tests 
The homogeneity of variance assumption is one of the critical assumptions underlying 

most parametric statistical procedures such as the analysis of variance and it is important 

to be able to test this assumption. 

In statistics, a sequence or a vector of ran­

dom variables is homoscedastic if all random 

t ..*,/ * variables in the sequence or vector have the 

same finite variance. This is also known as 

*.;>*»*** homogeneity of variance. The complementary 

W * notion is called heteroscedasticity. In a scat-

terplot of data, homoscedasticity looks like an 

oval (most x values are concentrated around 

, , t the mean of y, wi th fewer and fewer x val-
0 20 40 GO 80 100 . 

ues as y becomes more extreme in either di-

Figure 17.1: Plot with random data show- r e c t i o n ) . I f a s c a t t e r p l o t looks like any geo-

mg homoscedasticity. metric shape other than an oval, the rules of 

homoscedasticity may have been violated. Sometimes, so called outliers may be present 

in the sample and then it is suitable to remove such points and not include them into 

the analysis. More information about this problems you can find in any more extensive 

statistic book, see e.g. [3], [2], [21] or [14]. 

17.1 Bartlett's Test 
Bartlett 's test is used to test if k samples have equal variances. Equal variances across 

samples is called homoscedasticity or homogeneity of variances. Some statistical tests, 

for example the analysis of variance, assume that variances are equal across groups or 

samples. The Bartlett test can be used to verify that assumption. 

Bartlett 's test is sensitive to departures from normality. That is, if your samples 

come from non-normal distributions, then Bartlett 's test may simply be testing for non-

normality. The Levene test and Brown-Forsythe test are alternatives to the Bartlett test 

that are less sensitive to departures from normality. 

Bartlett 's test is used to test the null hypothesis, H0 that all k population variances 

are equal against the alternative that at least two are different. 

If there are k samples wi th size rii and sample variance Sf then Bartlett 's test statistic 

is 

x 2 (N-k)ln(S2)-EtM-l)HS?) 

1 + 3(fc-l) ( S j = l ( n i _ i ) — JV-fc) 

where TV = Yli=i n « a n d S2 = X] j ( n « — l )^ 2 is the pooled estimate for the variance. 
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The test statistic has approximately a xt-i distribution. Thus the null hypothesis 

is rejected if X2 > xt-ia (where xt-i(a) *s the u P P e r ta i l critical value for the xt-i 

distribution). 

17.2 Brown-Forsythe Test 

In statistics, when a usual one-way A N O V A is performed, it is assumed that the group 

variances are statistically equal. If this assumption is not valid, then the resulting F-test 

is invalid. The Brown-Forsythe test is a statistical test for the equality of group variances 

based on performing an A N O V A on a transformation of the response variable. 

Suppose we have k samples of response data, where yij represents the value of i - th 

observation (i — 1, 2 , . . . ,r i ) on the j—th factor level (j = 1,2,... ,k). The hypotheses of 

Brown-Forsythe test can be expressed as: 

H0 : <7i = <72 = . . . = ak 

H1 : 0 P 7̂  (Jq, for at least one pair (p,q), 1 < p, q < k. 

Transformation 

The transformed response variable is constructed to measure the spread in each group. 

Define the following; 

where jjj is the median of group j. In order to correct for the artificial zeros that come 

about wi th odd numbers of observations in a group, any Zij that equals zero is replaced 

by the next smallest in group j. The Brown-Forsythe test statistic is the model F 

statistic from a one way A N O V A on Zif 

F_(N-k) E U n ^ ~ ^ 2  

where k is the number of groups, rij is the number of observations in group j, and N is 

the total number of observations. If the variances are indeed heterogeneous, techniques 

that allow for this may be used instead of the usual A N O V A . 

Under the null hypothesis of homogeneous variances, Brown-Forsythe statistic wi l l 

have approximately an F distribution wi th k — 1 and N — k degrees of freedom. The test 

rejects the hypothesis that the variances are equal if 

F > Fa(k - 1,N - k). 
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17.3 Levene's Test 
Levene's test is an inferential statistic used to assess the equality of variance in different 

samples. Some common statistical procedures assume that variances of the populations 

from which different samples are drawn are equal. Levene's test assesses this assumption. 

It tests the null hypothesis that the population variances are equal. If the resulting 

p—value of Levene's test is less than some critical value a (typically .05), the obtained 

differences in sample variances are unlikely to have occurred based on random sampling. 

Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a 

difference between the variances in the population. 

Procedures which typically assume homogeneity of variance include analysis of vari­

ance and t-tests. Advantage of Levene's test is no requirement of normality assumption. 

Levene's test is often used before a comparison of means. When Levene's test is significant, 

modified procedures are used that do not assume equality of variance. 

( k ~ l ) E i L i E S i C ^ - ^ ) 2 ' 

where 

• W is the result of the test; 

• k is the number of different groups to which the samples belong, 

• TV is the total number of samples, 

• Ni is the number of samples in the %—th group, 

• Yy is the value of the j— th sample from the i—th group, 

• Zij = \Yij — F j . | wi th Yi. the median of group %, 

• Z.. = jj YA=I Yjfli zij i s t n e mean of all Ztj, 

• Zi. — jjr Ylf=i Zij is the mean of the Z^ for group i. 

The significance of W is tested against Fa(k — 1, N — k), where F is the F-test, k — 1 

and N — k are the degrees of freedom and a is the chosen level of significance. The test 

rejects the hypothesis that the variances are equal if 

F > Fa(k - 1,N — k). 

Levene's test may also test a meaningful question in its own right if a researcher is inter­

ested in knowing whether population group variances are different. 
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Comparison with the Brown-Forsythe test 

The Brown-Forsythe test uses the median instead of the mean. Al though the optimal 

choice depends on the underlying distribution, the definition based on the median is 

recommended as the choice that provides good robustness against many types of non-

normal data while retaining good statistical power. If one has knowledge of the underlying 

distribution of the data, this may indicate using one of the other choices. Brown and 

Forsythe performed Monte Carlo studies that indicated that using the tr immed mean 

performed best when the underlying data followed a Cauchy distribution (a heavy-tailed 

distribution) and the median performed best when the underlying data followed a Ch i -

square distribution wi th four degrees of freedom (a heavily skewed distribution). Using 

the mean provided the best power for symmetric, moderate-tailed, distributions. 

Another modifications of Levene's test are presented in [18]. 

17.4 O'Brien Test 

In the Obrien's test the data are transforming to 

(jij 1, h)n,j{xij Xj ) 0,5 ^2j=i(p^ij 
V i j = K - l ) ( n J - 2 ) 

and uses the F distribution performing an one-way A N O V A using y as the dependent 

variable. 

17.5 Hartley's Test 
In statistics, Hartley's test, also known as the Fmax test, is used in the analysis of variance 

to verify that different groups have a similar variance, an assumption needed for other 

statistical tests. The requirement is that the samples have to be of an equal size. 

The test involves computing the ratio of the largest group variance, max(s 2 ) to the 

smallest group variance, min(s 2 ) . 

max(s 2 ) 
-1 max . / o\ • 

mm(sj) 

The resulting ratio, Fmax, is then compared to a critical value from a table of the sampling 

distribution of Fmax. If the computed ratio is less than the critical value(z/ = ri\ — 1), the 

groups are assumed to have similar or equal variances. 

Hartley's test assumes that data for each group are normally distributed. This test, 

although convenient, is quite sensitive to violations of the normality assumption. Alterna­

tives to Hartley's test that are robust to violations of normality are O'Brien 's procedure, 

and the Brown-Forsythe test. 
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17.6 Cochran's Test 
Similarly, as in the case of Hartley's test, it also requires the frequencies in each group to 

be the same, i.e. n\ — ... — n^. Cochran's test statistic is 

maxfs 2 ) 

T s2 

2-di=\ b% 

Large values of G m a x leads to the rejection of the null hypothesis. The critical values are 

tabulated. 
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18 Monte-Carlo Method 
Monte Carlo methods are a class of computational algorithms that rely on repeated 

random sampling to compute their results. Monte Carlo methods are often used when 

simulating physical and mathematical systems. Because of their reliance on repeated 

computation and random or pseudo-random numbers, Monte Carlo methods are most 

suited to calculation by a computer. Monte Carlo methods tend to be used when it is 

infeasible or impossible to compute an exact result wi th a deterministic algorithm. 

Monte Carlo simulation methods are especially useful in studying systems with a 

large number of coupled degrees of freedom, such as fluids, disordered materials, strongly 

coupled solids, and cellular structures. More broadly, Monte Carlo methods are useful for 

modeling phenomena wi th significant uncertainty in inputs, such as the calculation of risk 

in business. These methods are also widely used in mathematics: a classic use is for the 

evaluation of definite integrals, particularly multidimensional integrals wi th complicated 

boundary conditions. 

There is no single Monte Carlo method; instead, the term describes a large and widely-

used class of approaches. However, these approaches tend to follow a particular pattern: 

1. Define a domain of possible inputs. 

2. Generate inputs randomly from the domain. 

3. Perform a deterministic computation using the inputs. 

4. Aggregate the results of the individual computations into the final result. 

For example, the value of 7r can be approximated using a Monte Carlo method: 

1. Draw a square on the ground, then inscribe a circle within it. 

2. Uniformly scatter some objects of uniform size throughout the square. For example, 

grains of rice or sand. 

Figure 18.1: To the computation of TT by Monte-Carlo method. 
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3. Count the number of objects in the circle, mult iply by four, and divide by the total 

number of objects in the square. 

4. The proportion of objects within the circle versus objects within the square wi l l 
approximate 7r/4, which is the ratio of the circle's area to the square's area, thus 
giving an approximation to 7r. 

Notice how the 7r approximation follows the general pattern of Monte Carlo algorithms. 

First , we define a domain of inputs: in this case, it 's the square which circumscribes our 

circle. Next, we generate inputs randomly (scatter individual grains within the square), 

then perform a computation on each input (test whether it falls wi thin the circle). A t the 

end, we aggregate the results into our final result, the approximation of n. Note, also, two 

other common properties of Monte Carlo methods: the computation's reliance on good 

random numbers, and its slow convergence to a better approximation as more data points 

are sampled. If grains are purposefully dropped into only, for example, the center of the 

circle, they wi l l not be uniformly distributed, and so our approximation wi l l be poor. A n 

approximation wi l l also be poor if only a few grains are randomly dropped into the whole 

square. Thus, the approximation of 7r wi l l become more accurate both as the grains are 

dropped more uniformly and as more are dropped. 

In our thesis we used Monte-Carlo method for obtaining empirical F—,G—, J— and 

K—functions. 

For this section was used the material from the web site www.wikipedia .com and 

references therein. This section has only informative character and does not directly 

relate to this thesis. 

http://www.wikipedia.com
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19 Conclusion 
The main aim of this thesis was to explore the use of statistical methods for the 

analysis of spatial distributions of particles in composite materials. The second aim was 

to provide better analyzes of patterns of finite sized events in finite regions. Moreover, 

the possible extensions and directions of further research are indicated. 

The most common spatial patterns arising in composite materials can be classified into 

one of three main types. Random, when the particles' distribution do not obey to any 

specific requirement and, as a result, the particles or fibres wi l l be randomly dispersed 

inside the matrix of the material. Clustered, when the particles tend to be grouped 

together forming several distinct aggregations. Regular, if the particles are distributed 

in a systematic way, especially when there is some sort of inhibit ion keeping them at a 

certain minimum distance from each other (the so-called threshold distance). 

The self-contained file of methods for describing a random material is presented here. 

Spatial statistical techniques can be used to analyze patterns by detecting deviations from 

randomness. Complete spatial randomness (CSR) is considered to be the null hypothesis 

of the statistical tests and the interest lies in finding alternative types of patterns towards 

either clustering or regularity, from a random pattern. To find out this fact, Clark-Evans 

test and Skellam statistic were determined. In both cases, the C S R was rejected. This 

implies from the reality, that no two fibres cannot be nearer than the sum of their radii. 

In other words, penetration of fibres can not occur in the real situation. 

In order to undertake this research, we started by acquainting ourselves with the 

features and characteristics of composite materials - the one of interest in this research. 

Evidence shows that the way the particles or fibres, that are dispersed inside a matrix 

of material affect the materials' quality and performance. Therefore, one of the objectives 

of materials scientists is to find the particles' spatial distribution. The only feasible 

approach is to observe two dimensional cross-sections of the material. This is done by 

analyzing the pattern formed by the intercepted fibres and from the results obtained, infer 

the type of the distribution. 

In the simulations, the three dimensional space was considered to be the parallelepiped 

wi th squared base which is intercepted at planes parallel to its edges and, as a consequence, 

the cross-sections were represented as squares. The bitmaps of such real samples were 

obtained from Klokner Institute of the Czech Technical Univerzity in Prague by Ing. 

Jan Zeman, P h . D . The analyzes performed on the two dimensional patterns employed 

standard and recently developed statistical methods. They consist e.g. of the Kolmogorov-

Smirnov test, quadrat and Clark-Evans tests as well as Monte Carlo tests using statistics 

based on Ripley's K function, nearest neighbor G function, empty space F and J functions. 

A detailed description of these standard tools, originally implemented to analyze and 

model spatial point patterns, was provided in the early chapters of this thesis. 

From a review study we found, that of all the above functions, Ripley's K is the 

function whose statistic provides the most effective of all tests (especially the test based 
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on the square root transformation of K , i.e. L - function). This function was followed, 

in order of effectiveness, by the G and F (being G most effective against regularity and 

F against clustering) and the J functions. Note that the effectiveness is measured by the 

power of these functions at detecting deviations from randomness. 

A problem encountered when estimating any of the above functions is, that the finite 

sample region is commonly assumed as being infinite. A s a consequence, events that lay 

near the boundary of the region might have their nearest neighbor events outside the 

border and these wi l l not be included in the analysis. It creates the so-called edge effect 
problem and causing bias in the functions' estimates. 

Several methods have been introduced to correct the edge effects, see [9], [25] or 

[8]. Depending on the function to be estimated, authors seemed to have concentrated 

on different approaches to this problem. Evidently, it depends on the function to be 

estimated and also on the shape of the study region. Briefly, it can be viewed in the 

literature that the Doguwa-Upton or the Ohser- Stoyan estimators gave the least biased 

Ripley's K function's estimator and could also be applied to any shaped finite region. For 

the same reasons as for the choice of Ripley's K function estimator is recommend, the 

Floresroux-Stein estimator is suitable for estimating the G , F and J functions. In our 

analysis, the edge correctors were not used for the sake of simplicity and also from the 

reason, that it was not the main aim of this thesis to investigate them. 

In literature, see e.g. [9] we can find many point processes that are very similar to 

ours, that represents the centers of the fibres, but they assume the equal sized circles, 

which is not true in the reality. For patterns formed from different sized events (in 

our case different sized circles), the best approach is to simulate several random patterns 

consisting of events whose sizes follow the same distribution as the real ones. The required 

functions are then calculated from each of those simulated patterns and their average is 

obtained. The functions thus achieved, wi l l give the best approximation to the values of 

theoretical functions corresponding to random patterns, whose events have the same size 

distribution. 

The main part of the thesis was devoted to the detailed description of developed 

algorithms A I - A I V . The new algorithms were created in such way to be similar to the 

real patterns as much as possible. The main mathematical properties of them was the 

theme of the second part. 

The second part was devoted to the statistical computations and comparisons by mean 

of descriptive statistics. Moreover, the assumptions of homogeneity and normality were 

implemented. A l l the results are presented in tables, from which the difference of various 

algorithms is clear. The last part, named Appendix contains auxiliary techniques used in 

the second part. 
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20 Perspectives 
Now, we briefly outline the possibilities for the next research. A very interesting and 

challenging topic is the deeper analysis of the algorithms generating random structures 

as the real one. It is conditioned by having at disposal real samples, resp. bitmaps of 

them. It would be suitable to include to the algorithms such parameters, which wi l l be 

able in some ranges to influence the final structure to the reason of the best fitting of 

the real samples. Next challenging improvement can be made by using edge correctors 

for the computations of F , G , J and K functions and their better comparison in order 

to the refitting of algorithms generating structures similar to the real ones as much as 

possible. Such obtained structures can be then used as a base for computations of the 

e.g. equations of mathematical physic and their subsequent use to the general domain. 
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I'm nothing special, 
in fact I'm a bit of a bore. 

If I tell a joke, 
you've probably heard it before. 

But I have a talent, 
a wonderful thing, 

'cause everyone listens, 
when I start to sing, 

I'm so grateful and proud. 
All I want is to sing it out loud... 

Nejsem ničím zvláštní, 
vlastně jsem spíš nudná. 

Když řeknu vtip, 
zřejmě jste ho už slyšeli. 

Ale mám nadání -
úžasnou věc, 

protože všichni zpozorní, 
jakmile začnu zpívat. 

Jsem tak vděčná a hrdá 
a chci to vyzpívat nahlas. 

. . . A B B A - n e v e r dying and unequalled texts in their songs. Their songs wrote the whole 

life. That is a pity, for their ending in 1981. The three parts of this thesis are commented 

by A B B A ' s songs. The chosen citations are according to the author 's best consideration 

leading to the best characterization of the parts. 

The A 9 B A pop-group in the seventieth. 

When all is said and done,... 
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