Evaluation of methods to improve synthetic training images for semantic segmentation of the environment from UAV perspective – Tushar REWATKAR
Tushar REWATKAR
Diplomová práce
Evaluation of methods to improve synthetic training images for semantic segmentation of the environment from UAV perspective
Abstract:
This thesis addresses the significant challenge of the Simulation to Real (sim-to-real) gap in Unmanned aerial vehicles (UAVs) based semantic segmentation tasks. Autonomous flight for UAVs requires robust environmental perception, often achieved through neural networks trained on diverse datasets. However, gathering and annotating real-world aviation data is challenging and resource intensive. To mitigate …víceAbstract:
This thesis addresses the significant challenge of the Simulation to Real (sim-to-real) gap in Unmanned aerial vehicles (UAVs) based semantic segmentation tasks. Autonomous flight for UAVs requires robust environmental perception, often achieved through neural networks trained on diverse datasets. However, gathering and annotating real-world aviation data is challenging and resource intensive. To mitigate …víceKeywords
Artificial intelligence deep learning image processing object detection pixel-level integration Split and Merge generative adversarial networks (GANs) CycleGAN CUT SinCUT SinMCL Pix2PixHD real-time perception dataset generation feature extraction model training evaluation metrics performance improvement UAV applications environmental monitoring vision-based navigation computational efficiency model robustness texture transformation image generation.
Jazyk práce: angličtina
Datum vytvoření / odevzdání či podání práce: 11. 2. 2025
Obhajoba závěrečné práce
- Vedoucí: prof. Dr. Christina Bauer
Citační záznam
Citace dle ISO 690:
REWATKAR, Tushar. \textit{Evaluation of methods to improve synthetic training images for semantic segmentation of the environment from UAV perspective}. Online. Diplomová práce. České Budějovice: Jihočeská univerzita v Českých Budějovicích, Přírodovědecká fakulta. 2025. Dostupné z: https://theses.cz/id/gq6fb8/.
Jak správně citovat práci
REWATKAR, Tushar. Evaluation of methods to improve synthetic training images for semantic segmentation of the environment from UAV perspective. České Budějovice, 2025. diplomová práce (Mgr.). JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH. Přírodovědecká fakulta
Plný text práce
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- Soubory jsou nedostupné do 11. 2. 2028
- Po tomto datu bude práce dostupná: světu
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH, Přírodovědecká fakultaJIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH
Přírodovědecká fakultaMagisterský studijní program / obor:
Artificial Intelligence and Data Science / Artificial Intelligence and Data Science
Práce na příbuzné téma
-
The Synthesis of Medical CT Data Using Generative Adversarial Networks and Diffusion Models
Mikuláš Bankovič -
Generative Adversarial Networks and Applications in Bioinformatics
Nikita KOLESNICHENKO -
Anonymizing MRI Scans by Partially Modifying Identifiable Image Components Using Generative Adversarial Networks (GANs)
Hadeera MUNSIF -
Simulation of Multiple Motile Agents Using Neural Networks
Branislav Ševc -
Improvement and support of the Management control system in DB Schenker Maintenance for the better use of Key Performance Indicators and Business Intelligence Reporting
Dominic Tafadzwa Takaendisa