
VYSOKÉ UČENI T E C H N I C K E V B R N E 
B R N O U N I V E R S I T Y O F T E C H N O L O G Y 

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ 

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y 

D E P A R T M E N T O F C O M P U T E R G R A P H I C S A N D M U L T I M E D I A 

ANDROID IP K A M E R A 
A N D R O I D IP C A M E R A 

DIPLOMOVÁ PRÁCE 
M A S T E R ' S T H E S I S 

AUTOR PRÁCE Bc. JAN CHVÁLA 
A U T H O R 

VEDOUCÍ PRÁCE doc. Ing. ADAM HEROUT, Ph.D. 
S U P E R V I S O R 

B R N O 2015 



Abstrakt 
Cílem t é t o p r á c e je navrhnout sys t ém, k t e r ý by u mo žn i l odes í lání dat z videokamery mo­
bi ln ího zař ízení a jejich zobrazen í v r e á l n é m čase p r o s t ř e d n i c t v í m webového prohl ížeče . 
Součás t í p r á c e je popis použ i tých technologi í a t a k é popis cílové i m p l e m e n t a č n í platformy 
A n d r o i d . K řešení z ískání a p ř e n o s u m u l t i m e d i á l n í c h dat by la v y u ž i t a technologie Web Rea l 
T ime Communicat ions ( W e b R T C ) , k t e r á je n a t i v n ě p o d p o r o v a n á n o v ý m i prohl ížeči a kom­
ponentou W e b V i e w (Andro id verze 5.0 a výše ) . Zasí lání push notifikací ze strany serveru 
na mobi ln í zař ízení pro s p u š t ě n í streamu je řešeno p o m o c í Google C l o u d Messaging tech­
nologie. Výs l edný s y s t é m umožňu je uživate l i p o m o c í webového prohl ížeče spustit aplikaci 
na m o b i l n í m telefonu a t í m zahá j i t p ř e n o s m u l t i m e d i á l n í c h dat. Ten je m o ž n é parametri­
zovat a zabezpeč i t p o m o c í hesla. P ř í n o s e m p r á c e je s e z n á m e n í s technologi í W e b R T C a 
demonstrace je j ího s n a d n é h o využ i t í i m p l e m e n t a c í IP kamery na p l a t fo rmě A n d r o i d . 

Abstract 
The goal of this thesis is to design a system which would allow video data streaming from 
a mobile device and real t ime playback using a standard web browser. The technological 
background and the implementat ion platform are both part of this thesis. Web R e a l T ime 
Communicat ions ( W e b R T C ) technology was used for acquiring mul t imedia data on mobile 
device. This technology is natively supported i n the latest major web browsers and in 
W e b V i e w component (Andro id version 5.0 and above). Sending push notifications from 
a server to a mobile device to start the streaming is done w i t h Google C l o u d Messaging 
technology. The resultant system allows a user to start the applicat ion on mobile device 
wi th easy web browser access. This starts the mul t imedia stream from device, which can 
be parametrized and secured by password. The benefit of this thesis is the overview of 
W e b R T C technology and its demonstration. The IP camera implementation shows how 
easy it is to use the W e b R T C i n real applications. 

Klíčová slova 
Real T ime Communicat ions, W e b R T C , A n d r o i d , Google C l o u d Messaging, IP kamera 

Keywords 
Real T ime Communicat ions, W e b R T C , A n d r o i d , Google C l o u d Messaging, IP camera 

Citace 
Jan Chvá la : A n d r o i d IP camera, d ip lomová p ráce , Brno , F I T V U T v B r n ě , 2015 



Android IP camera 

Prohlášení 
Proh lašu j i , že jsem tuto diplomovou p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana doc. Ing. 
A d a m a Herouta P h . D . a že jsem uvedl všechny l i t e rá rn í prameny, ze k t e r ý c h jsem čerpal . 

Jan C h v á l a 
June 1, 2015 

Poděkování 
T í m t o bych r á d poděkova l m é m u vedouc ímu d ip lomové p r á c e panu doc. Ing. A d a m u Her-
outovi, P h . D . , za pomoc př i v ý b ě r u a formování t é m a t u , o d b o r n é konzultace a p o t ř e b n o u 
motivaci . 

© Jan Chvá la , 2015. 
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení 
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů. 



Contents 

1 Introduction 2 

2 W e b Rea l T i m e Communicat ions 3 
2.1 Components 3 
2.2 L o c a l media streams and tracks 5 
2.3 Us ing Web Rea l T ime Communicat ions 6 
2.4 Signall ing process is important 8 
2.5 Support and future 10 

3 A n d r o i d operating system 12 
3.1 A n d r o i d platform 12 
3.2 Andro id ' s Web V i e w 17 
3.3 Ex i s t ing applications 18 

4 Google C l o u d Messaging 20 
4.1 Archi tecture overview 20 
4.2 Sending Messages from application server 21 
4.3 Receiving Messages on Cl ient 22 

5 System for streaming mult imedia data from A n d r o i d devices 24 
5.1 Requirements 24 
5.2 System architecture design 25 
5.3 App l i ca t ion server capabilities and implementat ion 27 
5.4 A n d r o i d application implementation and design 32 
5.5 Security and authentication i n demo application 39 
5.6 The choice of W e b R T C l ibrary 39 

6 Testing and flaws 41 
6.1 Measur ing streaming delays and stabil i ty testing 41 

6.2 A n d r o i d and its W e b R T C flaws 43 

7 Conclusion 45 

A D V D contents 47 

1 



Chapter 1 

Introduction 

Last twenty years of technological innovation and development has brought us Internet 
Pro toco l (IP) cameras which are part of our everyday life. A s a result of hardware cheap­
ening the applicat ion of I P cameras is not restricted only for the enterprise usage but small 
companies, shops and even houses are protected wi th them more and more often. Anyone 
can buy expensive IP cameras or cheaper variations but there is no easy-to-use solution i f 
you just want to test an IP camera without spending any money. 

Software is also evolving very fast. The Web Rea l T ime Communicat ions ( W e b R T C ) 
technology is being developed in recent years. The first technology of its k ind for enabling 
peer-to-peer connection between two endpoints i n the internet. It is s t i l l not yet completely 
standardized i n the t ime of wr i t ing this thesis. B u t together w i th technological draft the 
reference implementat ion is developed as open-source project and major web browsers like 
Chrome, Firefox or Opera c la im to support W e b R T C or at least the main parts of it. 

Mobi le devices have the hardware necessities to be used as temporary IP cameras. The 
wireless connectivity is present and integrated cameras have sufficient resolution even for 
low cost devices. W e b V i e w (Android 's native component w i t h web browser engine) supports 
W e b R T C technology for A n d r o i d version 5.0 and above which makes it the right candidate 
for the mobile part of the resultant system. 

This thesis w i l l focus on exploration of this new technology for creating simple system 
for video streaming from A n d r o i d device. The application w i l l allow user to start the stream 
remotely by using Google C l o u d Messaging ( G C M ) and view the stream on a web page. 

The beginning of the thesis (chapter 2) focuses on W e b R T C which is the main implemen­
tat ion pi l lar for the resultant system. T h e n the A n d r o i d Operat ing System and its relevant 
parts are described in chapter 3. Chapter 4 covers information about G C M technology 
used for sending messages from server to mobile applicat ion client. Design of the resultant 
system and its implementat ion are described i n chapter 5. Testing and measurements are 
in chapter 6. The very last chapter 7 summarize the results of this master thesis. 

2 



Chapter 2 

Web Real Time Communications 

This chapter focuses on the Web R e a l T ime Communicat ions ( W e b R T C ) technology which 
is the main pi l lar of the resultant system. W e b R T C is a group of open standards which are 
being developed by W o r l d W i d e Web Consorc ium ( W 3 C ) and Internet Engineering Task 
Force ( I E T F ) . W 3 C is concentrating on JavaScript App l i ca t i on Programming Interface 
(API ) which serves as a bridge between web application and Rea l T ime Communicat ions 
( R T C ) function (see 2.1.1). I E T F is developing protocols used by R T C functions to com­
municate w i th each other. A l l the specifications are s t i l l actively developed i n the time 
of wr i t ing this thesis but pre-standard implementation is already available as open-source 
project under the W e b R T C name. 

This technology allows to acquire local media data stream through simple A P I , connect 
to another endpoint in the internet and stream the mul t imedia data to it. 

Knowledge base for most of the information is called „ T h e W e b R T C book" i n it 's th i rd 
edition [8]. 

2.1 Components 

The W e b R T C technology is composed of a couple of components. Th is thesis focuses on 
web applications which are the main category where this technology should be used. Figure 
2.1 shows how the W e b R T C is placed in the web browser and W e b R T C architecture itself. 
The important parts are Web A P I , which is the one we use i n applications, R T C function, 
which handles peer-to-peer connection, and media engines for capturing user media. 

2.1.1 R e a l T i m e C o m m u n i c a t i o n s funct ion 

The most important part of W e b R T C is R T C function module. Th is module is responsible 
for communicat ion between other R T C functions using on- the-wire protocols 1 and for 
communicat ion wi th operating system. Each R T C function is considered to be an endpoint 
i n the W o r l d W i d e Web ( W W W ) and i n this thesis it w i l l be also referred to as peer. 

Topologies 

The connection between peers can be established basically as two different topologies T r i ­
angle and Trapezoid. Triangle means that two peers are using the same web application 

xSuch as Transmission Control Protocol (TCP) or User Datagram Protocol (UDP). 

3 



Web application Web application Web application The Web 
#1 #2 #X 

WebRTC 

Vioce Engine 
ISAC codec.noise red 

Audio 
Capture / Render 

Web API (Edited by W3C WG) 

WebRTC C/C++ API (PerrConnection) 

Session management/Abstract signaling (Session) 

Video Engine 
VP8 codec, buffers,... 

Video Capture 

web 
browser 

Transport 
SRTP, P2P - ICE, 

Network I/O 

API for web developers API for browser makers : jOverridable by browser makers 

Figure 2.1: W e b R T C architecture and it 's components. 

on the same server 2 while Trapezoid on the other hand is when each peer is using different 
web applicat ion (Figure 2.2) on a different server. 

K—>! 

^^•kjS Trapezoid • 

L r * L « J 

Figure 2.2: W e b R T C peer connection topology topology. 

2.1.2 S igna l l ing servers 

Signall ing is not a part of W e b R T C effort for standardization but it is intensively used for 
establishing peer-to-peer connection between two peers. It is described i n section 2.4. 

W e b R T C uses technology to overcome common problems when communicat ing i n W W W 
on top of signalling process. Usual ly most of the peers are hidden behind Network Address 
Translators ( N A T ) 3 . In this case direct communicat ion between peers behind different N A T s 
is not possible. 

Interactive Connect iv i ty Establishment ( ICE) helps to deal w i th N A T s and W e b R T C 
and provides the abi l i ty to set up signalling so it can use I C E for N A T traversal. I C E uses 
Session Traversal Ut i l i t ies for N A T ( S T U N ) to gather a l l candidate addresses from both 
peers and systematically tries a l l possible pairs [9] to establish peer-to-peer connection. 
Traversal Us ing Relays around N A T ( T U R N ) servers have to be used i f at least one peer is 
behind symmetric N A T . There are public S T U N and T U R N servers available and we can 
always deploy our own servers 1 . 

2Triangle topology is what we will use in the resultant system. 
3Networking devices for translating local IP addresses to the one used as an endpoint to another network. 

For more information see [11] 
1Example of open-source STUN and T U R N server implementation: 

ht tps: / /code.google .com /p/rfc5766- turn-server / 

4 

https://code.google.com/p/rfc5766-turn-server/


O r ^350 5<< 
firewall 

5 ̂ 3 5 ^ 
no direct communication firewall 

Figure 2.3: Direct peer-to-peer communicat ion is not possible in real world. 

Figure 2.4: Direct peer-to-peer communicat ion using S T U N and T U R N servers. 

2.2 Local media streams and tracks 

W e b R T C includes the standardization of how the media is being modelled. This section 
describes Tracks and Streams as the main entities. 

• video track 
Media stream > 

audio track 
WebRTC enabled 

device 

Figure 2.5: W e b R T C tracks combined to a media stream. 

2.2.1 M e d i a tracks 

M e d i a of single type returned from single device is called source. This source can be 
simple as mono audio or complex as mul t i -channel surround audio but s t i l l a single track. 
In W e b R T C this track is represented as object called MediaStreamTrack. It is intended 
for it to be transferred as a single unit over Peer Connect ion using Rea l - t ime Transport 
Pro toco l ( R T P ) payload. The object encapsulates the source so that the developer cannot 
manipulate the source directly but rather use the object. 

5 



The track contains muted and enabled boolean attributes which may be manipulated 
by a user or programmatically. It should allow a user to mute track to temporari ly show 
black video or silent audio. Unl ike muted, the disabled tracks are not t ransmit t ing any 
data at a l l . 

There is also readyState attribute which is set by W e b R T C implementat ion internally. 
It is treated as follows: 

• new - Created track which is not connected to media yet. 

• live - Track which is ready to be streamed. 

• ended - Source is not providing data any more and it is not possible that it w i l l 
provide any data in the future again. 

These attributes are independent, so the track may be live, enabled and muted. 

2.2.2 M e d i a S treams 

M e d i a tracks can be bundled together i n MediaStream object. Th is object can be obtained 
by requesting local media, by dupl icat ing the existing MediaStream or by receiving streams 
from Peer connections. It contains a collection of tracks which can be manipulated wi th 
addTrackO and removeTrackO methods. 

M i x i n g tracks from mult iple sources is allowed and thus one stream can contain media 
tracks e.g. from two microphones and a video camera. In current implementat ion a l l the 
tracks are synchronized but it is being discussed i n W e b R T C draft [4] to allow disabling of 
the synchronization to avoid delays. 

The MediaStream has attr ibute active which is set to true if at least one its track is 
not ended. Otherwise it is false and indicates that it w i l l no longer provide any data. 

2.3 Using Web Real Time Communications 

W h e n using W e b R T C four ma in actions have to be taken i n order to successfully create 
W e b R T C session (Figure 2.6): 

1. Get local media. 

2. Es tabl ish P 2 P connection. 

3. A d d media and data channels to connection. 

4. Exchange session description wi th other peer. 

2.3.1 G e t t i n g local m e d i a 

W e b R T C A P I provides getUserMediaO function which was created to simplify the pro­
cess of acquiring single local media stream as MediaStream object which can be combined 
together w i th MediaStream A P I . 

The getUserMediaO function takes a J S O N object as a parameter which represents 
settings and constraints for the required media. There are audio and video properties 

6 



Setup signaling 
Add more media channel 

Ob Obtain local media Setup Peer connection 

All media added^ Peer communication 
''established 

Attach media or data O T . 
f~y media or data 

^ Ready for call 
Exchange sessic 

description 

Figure 2.6: Sett ing up and exchanging session description. 

representing each media type which can be set to Boolean value or an object. Boolean indi­
cates whether the media type is required or not, while object represents a set of mandatory 
and optional constraints. Current ly supported video constraints are width, height, 
framteRate, aspectRation and facingMode. A u d i o constraints are volume, sampleRate, 
sampleSize and echoCancelation .The successCallback is invoked when al l constraints 
are fulfilled and errorCallback i f they are not. 

Example video object with constraints: 

{ 
mandatory: { 

width: { max: 640 } 
}, 

optional: { 
facingMode: 'user', 
width: { min: 320 } 

} 

} 

For security reasons the applications should indicate that the local media is being ac­
cessed by asking the user for permission. 

2.3.2 Peer connec t ion 

Direct connection between two endpoints (peer) in W o r l d W i d e Web is handled wi th 
RTCPee rConnec t i on A P I . Th is allows peers to be connected without the need of any server 
once the connection is established. W h e n jo in ing a conference 1 the Peer Connect ion has to 
be created between every two peers. 

2.3.3 E x c h a n g i n g m e d i a 

Peer connection allows mult iple media streams to be attached. Renegotiation of how the 
media are going to be represented is needed whenever the media changes. The represen­
tat ion is managed by RTCSess ionDescr ip t ion A P I which currently supports only Session 

1 Conference is connection between more than two peers. 

7 



web server 

4 • peer-to-peer communication using WebRTC -4 • peer communication without WebRTC 

Figure 2.7: Peer- to-peer connection and media transfer. 

Descript ion Pro toco l (SDP) for session description format 1 . Th is description may also be 
adjusted manual ly but it is expected not to be touched i n most cases. 

Successful media session exchange triggers the I C E hole punching process for N A T 
traversal using S T U N servers followed immediately w i t h key negotiation for securing the 
media session transport. JavaScript A P I also provides the possibil i ty to add T U R N servers 
to rely on media when symmetric N A T s are used. 

2.3.4 C l o s i n g connec t ion 

Closing session may be done manually or caused by connectivity loss. W h e n the connection 
is interrupted, the I C E w i l l t ry to restore it automatically. The hole punching w i l l be 
ini t iated again and i f that also fails, the session and a l l its permissions to access the media 
are inval ida ted 2 . 

Each peer should close R T C P e e r C o n n e c t i o n wi th its close () function when it is no 
longer needed. This w i l l stop the connection correctly and no attempts to restart session 
w i l l be performed. 

2.4 Signalling process is important 

Signall ing process is essential for establishing peer-to-peer connection. It has an important 
role i n W e b R T C but i n contrast to other parts of W e b R T C , it does not need to be standard­
ized. W e b R T C can work wi th mult iple signalling protocols so the developer can choose the 
right one for his purposes. Y o u can see component communicat ion together w i th signalling 
servers in figure 2.8. 
These four things summarize the purpose of signalling i n W e b R T C : 

1. M e d i a capabilities and settings negotiation. 

2. Part icipants identification and authentication. 

1WebRTC in its version 1.1 may include object session representation which is actively developed as 
ObjectRTC (ORTC). 

2New permissions have to be obtained in case that new session will be stated. 

8 



3 
W e b 

Server 

HTTP or 
WebSockets 

Signaling 
Server 

Signaling 
over HTTP or 
WebSockets 

RTC APIs 

On-the-wire 
protocols 

Native OS services 

Figure 2.8: W e b R T C components and communication. 

3. Contro l l ing the media session. 

4. Resolut ion i n conflicting session change from both sides at the same time. 

The lack of standardization is because it does not have to be standardized at a l l . The 
important th ing is that a server has to ensure that both peers are using the same signalling 
which can be easily achieved by serving the same JavaScript code which encapsulates the 
type of signalling. In comparison wi th for example Voice over Internet P ro toco l (VoIP) , 
where there is no possibil i ty for changing the signalling p ro toco l 1 , this is definitely a big 
advantage. 

2.4.1 M e d i a capabi l i t ies negot ia t ion 

The essential function is the negotiation between peers about session description. For 
these purposes the Session Descript ion Pro toco l ( S D P ) is used. The object A P I should be 
supported to replace the S D P i n W e b R T C 1.1 because S D P is hard to parse i n JavaScript 
language. The S D P contains information for Rea l - t ime Transport P ro toco l ( R T P ) about 
included media, codecs and its parameters and bandwidth. 

Another role of signalling is to exchange information about candidate addresses used 
for Interactive Connect iv i ty Establishment ( ICE) hole punching which make N A T traversal 
technique possible. Th is information may be sent together w i th S D P or outside its scope. 

2.4.2 S igna l l ing t ranspor t 

Signall ing in W e b R T C relies on bi -d i rec t ional signalling channel between two peers. Th is 
can be achieved by H T T P , WebSockets or the data channels. 

W h e n using H T T P transport, the signalling information messages can be transferred 
using H T T P G E T and P O S T methods or in their responses. Peers can send information to 
server easily but in order to be able to send information from server we need to use things 
like A J A X 2 or pool ing the G E T request which leaves transport connection open. 

1 Both nodes have to use the same protocol for example SIP or Jingle. 
2 Asynchronous JavaScript and X M L 

9 



B y establishing WebSockets connection from peer to server a bi-directional channel is 
created. Exchanging signalling information is easy from both sides. The WebSockets chan­
nel can not be created between two peers directly because of N A T s i n the way. A l though 
this would seem as a perfect solution, some firewalls and web proxies block WebSockets 
connections. 

Signalling using data channels is a special case. D a t a channels are fast, reliable connec­
t ion w i t h low latency between peers. However, in order to establish the data channel, you 
need to have a separate signalling process. D a t a channels are not meant to be used for a 
complete signalling process but rather for signalling audio and video media changes once 
the connection is established. 

2.5 Support and future 

Unfortunately, W e b R T C is s t i l l not fully working i n a l l major browsers today. There are 
disagreements about the used codecs, so the full standard specifications have not been 
released yet. It seems that W e b R T C is not ready for mass product ion yet but e.g. Google 
Hangouts or Facebook Cha t now supports W e b R T C based video calls i n compliant browsers. 

2.5.1 Browsers s u p p o r t 

Chrome, Firefox, Opera and Bowser already natively support W e b R T C pre-standard while 
Internet Explorer and Safari need external p lug - in to work wi th i t . 

Microsoft is actively collaborating on Object R e a l T ime Communica t ion ( O R T C ) A P I 
for W e b R T C standard which should be a part of W e b R T C 1.1 and it should overcome the 
painful S D P format which is not convenient to work wi th in JavaScript . They are working 
on the implementat ion [3] but we w i l l have to wait i f this is going to be included i n Internet 
Explorer or the new Edge browser 1 . 

The intentions of A p p l e about W e b R T C support i n their products are as always kept 
in secret. 

Chrome Firefox Opera Internet Explorer Safari 
23+ 22+ 18+ no support no support 

Figure 2.9: W e b R T C browser support - M a y 2015. 

2.5.2 Bus iness a n d mass p r o d u c t i o n 

Enterprise video conferencing companies are not so enthusiastic about W e b R T C and they 
are wait ing for W e b R T C to overcome its flaws2. They need quali ty assurance for paid 
services and also high security policies which are not completely satisfactory. 

1Miscrosoft Edge web browser: http://www.browserfordoing.com/en-us/  
2WebRTC compromises V P N tunnels by leaking user's real IP address [7] 

10 

http://www.browserfordoing.com/en-us/


W e b R T C is s t i l l a draft in its early developmental state but the working progress is fast 
and it seems to have bright future. Users w i l l benefit from its easy usage and companies 
from reducing their operational costs. The 2015 could be the year of W e b R T C to become 
a huge player i n the field of mul t imedia streaming technologies. 

11 



Chapter 3 

Android operating system 

This chapter introduces the A n d r o i d platform and its components which are important 
for understanding the implementat ion specifics of the resultant mobile applicat ion. Then 
it describes how to access and work wi th camera on A n d r o i d device using the W e b R T C 
technology described i n the chapter 2. 

Ex i s t ing applications related to A n d r o i d and video streaming are at the end of this 
chapter. 

3.1 Android platform 

A n d r o i d is a well known operating system based on L i n u x kernel. It was created mainly for 
mobile devices but it has spread into other types of devices such as tablets, T V s , watches, 
other wearable technology and it can also be found i n modern cars. There is not any other 
operating system on the market which is used i n so many various situations. 

The beginning of this section contains a brief history of A n d r o i d operating system, its 
architecture and components. Development tools as A n d r o i d S tud io 1 and also new bui ld 
system called Gradle are described at the end of this section. 

Froyo 

Gingerbread 

• Ice Cream Sandwich 

• Jelly Bean 

• KitKat 

• Lollipop 

Figure 3.1: A n d r o i d A P I s . See A n d r o i d Dashboards for recent information [5]. 

xnew Integrated Development Environment (IDE) for Android development 

12 



3.1.1 H i s t o r y 

History of A n d r o i d starts i n the year 2003 when A n d r o i d , Inc. was founded by A n d y 
R u b i n , R i c h Mine r , N ick Sears and Chr is W h i t e . A t first they wanted to create a simple 
and powerful operating system for digi ta l cameras but as soon as they realized that the 
market is not big enough,, they decided to focus more on mobile operating systems. In 
2005 they ran out of money and they were taken over by Google, Inc. . There was not much 
known about the Google's Intentions wi th A n d r o i d at that t ime. 

A t the end of 2007 the Open Headset Al l iance revealed their plan to develop open 
standards for mobile devices including A n d r o i d as their first product. F i r s t commercial ly 
distr ibuted device running A n d r o i d was H T C Dream which was released almost one year 
later. 

A n d r o i d has gone through numerous changes which were divided into different A P I 
levels. The figure 3.1 shows the amount of dis t r ibut ion for major A P I s . We w i l l be focus­
ing the implementation on A n d r o i d 5.0 and above (Lol l ipop) , which natively supports a l l 
technologies we need. 

3.1.2 A r c h i t e c t u r e 

A n d r o i d uses a stack of software components divided into four layers - see figure 3.2. 

Applications 
Launcher, Contacts, Phone, Browser, Pubtran, Inbox, 

Application Framework 

Managers (Package, Activity, Windows, ...), View System, Content provider, 

Libraries 

SQLite, OpenGI, OpenES, SSL, libc, 

Android Runtime 

Dalvik virtual machine / ART 

Linux Kernel 

Drivers (Display, camera, wi-fi, bluetooth, audio, ...), Power Management, 

Figure 3.2: A n d r o i d O S architecture layers. 

Kerne l 

A n d r o i d O S is based on L o n g Term Support releases of L i n u x kernel. The most recent A n ­
droid (Loll ipop) has L i n u x kernel in version 3.10 but the version also depends on hardware 
and the device itself. 

It contains hardware drivers, power management capabilities and other low level ser­
vices. L i n u x and A n d r o i d a im to include A n d r o i d hardware drivers and specific features 
into L i n u x kernel, so they could both use the same kernel without a lot of modifications. 

Middleware 

O n top of L i n u x kernel there is a middleware layer which contains libraries together w i th 
A n d r o i d Runt ime both wri t ten i n C language. Libraries provide capabilities for S Q L i t e , 

13 



O p e n G L , l ibc and many other low level functions. A n d r o i d Runt ime contains core libraries 
and special v i r tua l machine for running A n d r o i d applications. F r o m the first versions of 
A n d r o i d the only v i r tua l machine ( V M ) available was D a l v i k V M . It runs a modified Java 
byte code which focuses on memory efficiency and it uses Just In T i m e compilat ion ( J I T ) 1 . 
Together w i th A n d r o i d 4.4 the new runtime called A R T was introduced as an experimental 
feature and it is natively supported in A n d r o i d 5.0. It brings Ahead O f T ime compilat ion 
( A O T ) 2 and a better garbage collection. 

Appl icat ion framework 

The App l i ca t ion framework layer provides high level software components that can be used 
directly by applications. They are exposed as Java classes w i th well documented A P I , so it 
is easy to include them into applications. It provides capabilities such as Window, A c t i v i t y 
and Resource managers and many other services forming the A n d r o i d operating system 
capabilities. 

Applications 

The applicat ion layer is the one where a l l applications are installed. It can directly use com­
ponents from App l i ca t ion framework or use Java Nat ive Interface and implement functions 
in native C / C + + code. 

3.1.3 C o m p o n e n t s 

The App l i ca t ion framework provides a set of reusable components which let you create 
very r ich applications. This section is just an overview of these components without a lot 
of implementat ion and design details. For further information about each component see 
Google developer guides [2]. 

A n d r o i d Manifest 

A n d r o i d Manifest is not t ru ly a component but it has to be included i n every application. 
It is structured X M l / file, which contains information about the application itself. A n d r o i d 
uses this file to determine application's package, components, required permissions, system 
version restrictions, list of l inked libraries and many other things. 

Intents and Intent filters 

The Intent is a messaging object used for asynchronous communicat ion between application 
components. The messages can be sent between components from the same applications as 
well as components between different applications. 

The Intent can contain addi t ional data inside Bundle object which may be used by the 
receiver of Intent. 

applications are translated into native code every time they are launched. 
applications are translated into native code in time of installation. This increases the performance 

over memory efficiency 
3 X M L stands for Extensible Markup Language. 

14 



Three ma in things that the Intent is used for: 
• To start an Act iv i ty: Basic mechanism to start a single Ac t iv i t y . Intent contains 

information about which act ivi ty should be started and how. 

• To start a Service: Services can be started very much alike the Act iv i t i es but they 
run without the access to a user interface thread. 

• For delivering a broadcast: A broadcast message can be received by many applica­
tions at the same t ime. The system events such as charge state change or connectivity 
change are broadcasted and they are available to a l l broadcast receivers. 

Activities 

A n act ivi ty represents a single screen of application tied to a user interface so that a user 
can interact w i th another user through graphical elements and touch gestures. A c t i v i t y ' s 
life-cycle is very important because it illustrates how the A c t i v i t y interacts w i th the system 
as shown in figure 3.3. 

Activity launched 

onCreate() 

1 
onStartO 

1 
onResumeO 

Activity run nine 

onPause() 

1 
onStopO 

1 
onDestroyO 

\ctivity destroye 

Figure 3.3: A c t i v i t y ' s simplified lifecycle. 

The system creates W i n d o w before entering in onCreateO method so we can place 
Ac t iv i t y ' s User Interface (UI) w i th setContentView(int viewID) method. O u r imple­
mentation uses the life-cycle to acquire (inside onStartO) and release (inside onStopO) 
WakeLock object which is used to prevent device from sleeping while capturing the media. 
Y o u can read more about Act iv i t ies i n a developer guide [1]. 

Fragments 

Fragments were introduced i n A n d r o i d 3.0 as a concept of reusable smal l groups of graphical 
elements t ied together and enhanced w i t h addi t ional logic. M u l t i p l e fragments can be placed 
into one A c t i v i t y to bu i ld a mul t i -pane layouts or they can be used i n Dialogs. Fragments 
can also be nested in A n d r o i d 4.2 and above. A l i k e Act iv i t ies , Fragments also have their 
own life-cycle. 

Services 

A service component is not t ied to the user interface. This component was designed for long 
lasting operations which should be performed i n background i n order not to slow down the 

15 

file:///ctivity


applicat ion. It can be run i n the ma in application process or in a separate one. A c t i v i t y 
can b ind the service to be able to communicate w i th it or it can just send Intents to it. 

Service can be started in two modes. It can be bounded or unbounded. Unbounded 
services are expl ic i t ly started and stopped, while bounded services are automatical ly created 
when A c t i v i t y binds to it and they are destroyed when a l l activities unbound. 

We use a special case of unbound service which is called IntentService. It allows us to 
perform short tasks in background, which is ideal for handling push notifications (more in 
chapter 4) from server and react to them. IntentService's simplified life-cycle is shown in 
figure 3.4. 

Figure 3.4: IntentService's simplified life-cycle. 

For further information about Services see developer guide [10]. 

Content Providers 

Content providers add the possibil i ty to share structured data among applications. There 
are many content providers buil t into the system which expose contacts, media, S M S and 
other useful information. Developers can use this information in their own applications or 
provide their own content. 

A p p Widgets 

A p p Widget is a smal l part of the application that can be easily embedded into other appli­
cations. These components have specific user interface and they are periodical ly updated. 
The Widgets are extensively used in launcher applications to serve important information 
directly to a user without the need of launching the applicat ion itself. 

Processes and Threads 

W h e n application is started, the system creates new L i n u x process w i th a single thread -
"main" thread. Star t ing another application's component does not create another process 
or thread unless specified otherwise. The main thread is designed to serve short lasting 
operations that manipulate U I , but it is not suitable for long lasting operations such as 
socket communicat ion or media playback because it causes U I to lag, which breaks down 

16 



the user experience ( U X ) . A n y non instant operations should be moved into a separate 
thread or a separate process which does not block the main thread of the application. 

3.1.4 D e v e l o p m e n t tools 

A n d r o i d development process has recently gone through a lot of changes. New official 
Integrated Development Environment ( IDE) was introduced together w i th a new A n d r o i d 
bu i ld system which brought new possibilities for bui lding applicat ion variants. 

Android studio Gradle 

Figure 3.5: A n d r o i d studio and Gradle logos. 

A n d r o i d Studio 

The Google developer team announced A n d r o i d Studio on Google I / O conference i n M a y 
2013. F i rs t I D E completely dedicated to A n d r o i d development. It is buil t on top of Intel l iJ 
I D E A community edit ion from JetBrains and together w i th a new A n d r o i d bu i ld system it 
is much more oriented to project scalabili ty and maintenance than the previous combination 
of Eclipse I D E w i t h A n d r o i d Developer's Tools. A t the end of 2014, Google released stable 
A n d r o i d Studio i n version 1.0 together w i th Lo l l i pop Software Development K i t ( S D K ) . 

A n d r o i d bui ld system 

A n d r o i d bu i ld system brings complex project configuration which allows to bui ld , test, pack­
age and run applications. It is based on Gradle but specifics for A n d r o i d are implemented 
wi th A n d r o i d Gradle plugin. 

Gradle is powered by Groovy Doma in Specific Language and as a language for au­
tomation it really makes the bu i ld process self independent and automatic. It combines 
the power and flexibility of A n t together w i th dependency management and plug-ins from 
Maven and much more. 

A n d r o i d Gradle p lug - in adds A n d r o i d Manifest merging capabilities, bu i ld types and 
flavours, code obfuscation, signing configurations and support for other specifics of A n d r o i d 
platform. 

3.2 Android's Web View 

W e b V i e w is A n d r o i d V i e w for loading Hyper Text M a r k u p Language content. It was t ied 
together w i th operating system and could not be updated unt i l A n d r o i d Lo l l ipop . Then it 
was made available through Google P l ay as an application called A n d r o i d System WebView. 

17 



3.2.1 W e b R T C i n W e b V i e w 

W e b R T C is available in W e b V i e w since version 36.0.0 which was shipped wi th A n d r o i d 
Lo l l ipop . We cannot use W e b R T C technology i n native applications w i th devices running 
older A n d r o i d versions because the older W e b V i e w does not support it . 

3.2.2 U s i n g the W e b V i e w 

W e b V i e w can be used like any regular A n d r o i d V i e w in X M L layout or instantiated pro-
grammatically. Y o u can then cal l loadDataO or loadUrlO functions to display or down­
load the content. 

If we want to use W e b R T C i n the W e b V i e w we have to enable JavaScript and set up 
WebChromeCl ien t which handles permissions when the application asks for user media. 

Enab l ing JavaScript: 
WebSettings webSettings = w e b V i e w I n s t a n c e . g e t S e t t i n g s ( ) ; 
w e b S e t t i n g s . s e t J a v a S c r i p t E n a b l e d ( t r u e ) ; 

Setting the WebChromeCl ien t for permission handling: 
webViewInstance.setWebChromeClient(new WebChromeClient() { 

©Override 
p u b l i c v o i d o n P e r m i s s i o n R e q u e s t ( f i n a l P e r m i s s i o n R e q u e s t r) { 

// r . g r a n t ( r e q u e s t . g e t R e s o u r c e s ( ) ) ; a l l o w the r e q u e s t 
// r . d e n y ( ) ; deny the r e q u e s t 

} 

} ) ; 

3.3 Existing applications 

There are good applications on Google P l a y store which have the abi l i ty to work wi th 
a camera and stream its content. The problem wi th existing solutions is that they are 
based on older technologies like pure R e a l T ime Streaming Pro toco l ( R T S P ) which does 
not solve the problem of N A T and firewall restrictions. There is no problem w i t h using 
such applications i n close self managed environment but they can hardly be used i n real 
world usage mul t imedia server infrastructure. 

This section shows two applications which were used as inspirat ion for design, usabil i ty 
and used technologies at the beginning of the theoretical preparation for the thesis. 

3.3.1 Spydro id—ipcamera 

Spydroid- ipcamera is a very simple application for audio and video streaming. It is buil t 
on top of l ibstreaming 1 l ibrary. It has its own R T S P server implementat ion for simple 
streaming to R T S P clients. It also includes the possibil i ty to start H T T P server, which can 
provide more settings for the stream. 

This application is open sourced but not maintained at the t ime of wri t ing. It lacks the 
support for delivering the content into a cloud or the possibil i ty to view the stream on a 
web page. 

1Simon Guigui and contributors - https://github.com/fyhertz/libstreaming/. 

18 

https://github.com/fyhertz/libstreaming/


3.3.2 I P W e b c a m 

IP Webcam has the same functions as Spydroid- ipcamera and adds much more complex 
settings and better H T T P server implementation. It also lacks the abi l i ty to view the 
stream on a web page. 

There are no implementat ion details available - this is a proprietary software actively 
developed. 

IP Webcam Spydroid 

Figure 3.6: Screenshots w i th U I of current applications. 

The user interface i n both applications is very simple. It shows only details for connec­
t ion and video preview as shown i n figure 3.6. 

19 



Chapter 4 

Google Cloud Messaging 

Google C l o u d Messaging ( G C M ) for A n d r o i d is a free service allowing to send messages 
from server to G C M - e n a b l e d applications. These messages can be used to init iate some 
action or to send messages wi th content to a specific application. 

This service is an important part of the resultant system. It allows us to start A n d r o i d 
application and init iate streaming just i n t ime when playback is requested. 

Google C l o u d Messaging is supported on A n d r o i d w i th version 2.2 (Froyo) as min imum. 

4.1 Architecture overview 

G C M implementat ion consists of three ma in components which communicate between each 
other as shown i n figure 4.1. 

4.1.1 C o m p o n e n t s 

There are three components in G C M . 

Figure 4.1: Google C l o u d Messaging components interaction 

G C M connection Servers 

This is the main component placed in between the client applications and applicat ion server 
which provides connectivity and services for sending messages to client applications. These 
servers are private and owned by Google Inc. . Current ly there is H T T P and X M P P protocol 
support. 

20 



Appl icat ion server 

This component has to be implemented. Its main purpose is to receive registration IDs from 
clients so that it can use them later on for sending messages to them v i a G C M connection 
servers. 

Client application 

G C M - e n a b l e d A n d r o i d application has to be registered on G C M connection servers to get 
identification. It can then receive downstream messages from a server or send upstream 
messages to a server 1 . 

4.1.2 Credent ia l s 

Identification tokens are used for authentication and to ensure that the message reaches 
the correct destination. 

Sender I D 

This is the number of projects registered i n Google A P I console. It is used to identify a 
server when sending messages and also for client registration to allow messages from specific 
server. 

Sender auth token 

This token is used for application server authentication. It has to be included in the headers 
of P O S T request. 

Appl icat ion ID 

Appl i ca t ion I D (package name) is used for applications on registering to G C M on A n d r o i d 
platform. This ID should be used to ensure that messages are sent to the right application. 

Registration I D 

This ID is generated upon client application registration from G C M connection servers and 
it is essential for client application identification for sending a message. 

4.2 Sending Messages from application server 

Appl i ca t ion server has essential role i n G C M implementation. It has to be able to com­
municate w i th G C M - e n a b l e d clients and G C M connection servers. It has to be capable 
of collecting registration IDs from clients and save them so that they can be used later on 
when sending messages. 

4.2.1 T y p e s of G C M C o n n e c t i o n servers 

There are two types of G C M connection servers which differ from each other by the used 
communicat ion protocol — H T T P and X M P P . The capabilities are also different so it is 
possible to use them separately or both at the same time. 

1Upstream messages are possible to be sent only when using X M P P protocol. 

21 



The H T T P implementat ion can send only downstream (cloud-to-device) synchronous 
messages wi th m a x i m u m payload size 4 K B of data. The payload can be pla in text or J S O N 
object and it also supports multicast messages ( J S O N only) . 

The X M P P implementat ion on the other hand can send both downstream and upstream 
(device-to-cloud) messages. The messages are sent asynchronously over the persistent 
X M P P connection and the response is also received asynchronously. The format of the re­
sponse is J S O N object representing acknowledgement ( A C K ) or negative-acknowledgement 
( N A C K ) . X M P P supports only J S O N message format which is encapsulated i n X M P P mes­
sage and it does not support multicast messages. 

4.2.2 S e n d i n g messages 

In order to send a message, we have to follow these four steps: 

1. App l i ca t ion server sends a message to G C M connection servers. 

2. The message is stored on G C M connection server and enqueued for further processing. 

3. G C M connection server sends the message to online devices immediately or waits 
unt i l they get online. 

4. G C M - e n a b l e d device receives the message. 

W h e n creating the message request you have to specify the target and add some extra 
properties or payload to the message. 

Target 

This is the required part of the message. It is represented by registration ID of G C M -
enabled client application. 

Options 

The message may contain addi t ional options which specify the message behaviour or life­
t ime. Some of the options: 

1. collapse_key - O n l y one message wi th the same collapse_key w i l l be delivered 
when device is offline even i f a server sent more of them. 

2. delay_while_idle - This option indicates that the message should be delivered in 
t ime that the device is active. 

Payload 

E x t r a data can be sent together w i th a message. They should be included i n parameter 
data and they are optional . M a x i m u m size of payload is 4 K B . 

4.3 Receiving Messages on Client 

Client applicat ion has to follow certain steps to be able to receive messages v i a G C M 
services. F i r s t l y it needs to be registered for G C M , tel l the application server about it and 
finally wait for incoming messages. 

This section does not fully cover the client application implementat ion details. For 
further information see [6]. 

22 



4.3.1 I m p o r t G o o g l e C l o u d M e s s a g i n g A P I 

GoogleCloudMessaging A P I provides the simplest way of working wi th G C M on A n d r o i d . 
It is one of Google P l a y Services modules and it can be easily included in Gradle based 
projects like this: 

dependencies { 
compile "com.google.android.gms:play-services-gem:7.3.0" 

} 

4.3.2 A n d r o i d M a n i f e s t u p d a t e 

GoogleCloudMessaging A P I needs some permission to be able to work. This permission 
has to be set inside A n d r o i d Manifest file. 

• android.permission.INTERNET 

• android.permission.GET_ACCOUNTS 

• {PACKAGE_NAME}.permission.C2D_MESSAGE 

Where {PACKAGE_NAME} is the applicat ion ID . 

It is the best practice to receive messages v i a BroadcastReceiver and pass it to Service 
which requires another Manifest modifications. BroadcastReceiver has to specify the per­
mission for receiving messages com.google.android.c2dm.permission.SEND and it also 
has to provide Intent filter: 

<intent-filter> 
<action android:name="com.google.android.c2dm.intent.RECEIVE" /> 
<category android:name="{PACKAGE_NAME>" /> 

</intent-filter> 

4.3.3 R e g i s t e r i n g for G o o g l e C l o u d M e s s a g i n g 

Client applicat ion has to register itself to G C M in order to be able to receive messages. The 
registration I D which is returned should be sent to applicat ion server, saved there and kept 
in secret. W h e n it is not possible to send the I D to server, the client application should 
unregister itself from G C M . 

The Registrat ion process should be repeated when the client applicat ion was updated 
or restored from backup. 

The whole process and I D propagation is not instant and can take a couple of minutes. 
After it is finished the client can receive the first message. 

GoogleCloudMessaging gem = GoogleCloudMessaging.getlnstance(context); 
String registrationID = gem.register(SENDER_ID); 

SENDER_ID is the A P I application ID from Google A P I console and context is an 
instance of Context class which can be obtained from Act iv i ty . 

23 



Chapter 5 

System for streaming multimedia 
data from Android devices 

The previous chapters described important parts of the A n d r o i d I P camera system from 
a theoretical point of view. This chapter concentrates on the design and implementat ion 
details of the resultant system, which consists of application server and A n d r o i d application. 

System requirements are analysed at the beginning followed by the system architecture 
and component implementat ion details. Communica t ion , Google C l o u d Messaging, libraries 
used and user interface design are in the second part of this section. 

The project is maintained on G i t H u b reposi tory 1 and I hope I w i l l be able to implement 
the feature ides i n near future. 

5.1 Requirements 

The goal is to create a system which allows a user to stream video from A n d r o i d device 
and play this video i n the web browser. The video stream should be started only when it 
is requested and it should be possible even i f the device is hidden behind N A T . The stream 
w i l l be broadcast so it is important not to request the user media from the user who wants 
to playback the stream. The application has to provide usable user interface and basic 
stream settings and password protection. 

A n d r o i d application has to: 

• be able to get a stream from camera, 

• start a stream when requested, 

• have simple user interface, 

• protect a stream w i t h password, 

• allow to change stream properties. 

1Android IP camera GitHub repository: https://github.com/JanChvala/thesis-ipcam 

24 

https://github.com/JanChvala/thesis-ipcam


Appl icat ion server has to: 

• be able to process requests for a stream, 

• show the requested stream to a user, 

• have simple user interface, 

• set a password for the stream. 

These requirements are fulfilled and implemented as described i n the next sections. 

5.2 System architecture design 

The system architecture consists of the application server and A n d r o i d applicat ion. Han­
dl ing push notifications 1 also requires G C M servers (see chapter 4) to be involved and 
W e b R T C requires signalling servers to establish direct communicat ion between peers 2 . 

The whole system overview wi th a l l its components can be seen i n figure 5.1. 

Application server 

Android application Signaling servers 
(firebase.io as defaut) 

Figure 5.1: A n d r o i d I P camera system architecture. 

5.2.1 A p p l i c a t i o n server 

The applicat ion server is responsible for serving static H T M L files streaming H T M L page 
and playback H T M L page, handling client applicat ion registration (using simple R E S T 1 

A P I ) and sending G C M messages to a client. 

1 Simple messages which are sent (pushed) from the server to the client application. 
2Default signalling servers for RTCMultiConnection library are ht tp: / / f i rebase. io . 
1 Representational State Transfer. 

25 

http://firebase.io


Server back-end 2 is implemented wi th Node.js framework and these libraries: 

• Node.js - P la t form buil t on top of Chrome's JavaScript runtime. 

• express - Min ima l i s t web framework for server core functionality and routing. 

• node-gem 1 - Node.js l ibrary for handling Google C l o u d Messaging. 

• passport 5 - Node.js l ibrary used for H T T P request authentication. 

• mongoose 6 - Node.js l ibrary used for working wi th M o n g o D B . 

Front -end is implemented using these technologies: 

• H T M L 5 - HyperText M a r k u p Language - standard markup language for creating 
web pages. 

• C S S 3.0 - Cascading Style Sheets - handles the visual style of web page wri t ten in 
markup language. 

• A n g u l a r J S 1.4 - JavaScript web application framework. 

• R T C M u l t i C o n n e c t i o n . j s - W e b R T C l ibrary for JavaScript . 

• firabase.js - JavaScript l ibrary used for W e b R T C signalling. 

The core of the front-end application was generated wi th Yeoman ' and its gulp-angular 1 

generator. These tools do more than just generating the structured base application but 
also provide more features such as ready-to-use development server or minification and 
code obfuscation for product ion bui ld . 

The application server implementat ion is important for the abi l i ty to start the stream 
when it is requested. It was developed using WebStorm I D E wi th student licence. 

5.2.2 A n d r o i d app l i ca t i on 

Client application for streaming the data from A n d r o i d device is implemented in Java and 
runnable on A n d r o i d version 4 (Ice Cream Sandwich) and above. 

W h e n running on A n d r o i d 5 (Loll ipop) and above the W e b R T C is handled inside the 
application using native Web V i e w component but the lack of native W e b R T C support in 
W e b V i e w component prior to Lo l l ipop versions puts restrictions to the resultant application. 
O n A n d r o i d 4 we use external web browser to handle the W e b R T C . It is up to the user 
to choose which browser w i l l handle the Intent. Chrome 42.02311 and Firefox 38.0.0 were 
tested as a compliant web browser capable of W e b R T C . 

W e b R T C is crucial technology for the resultant system and cannot work without i t . 
Us ing the demo applicat ion puts more restrictions and usabil i ty issues but it is working as 
expected. 

Implementation is dependent on the following libraries: 
2Implementation of database, REST API and sending G C M messages. 
3express: http://expressjs.com/ 
4node-gcm: https://github.com/ToothlessGear/node-gcm  
5passport: http:/ /passportjs.org/  
6mongoose: http://mongoosejs.com/ 
7Scaffolding tool for web applications, http://www.yeoman.io. 
1The gulp-angular generator creates AngularJS base project with configured Gulp build system. 

26 

http://expressjs.com/
https://github.com/ToothlessGear/node-gcm
http://passportjs.org/
http://mongoosejs.com/
http://www.yeoman.io


• Google Play Services - The important module of Google P l a y Services is the play-
services-gcm2 which provides the abi l i ty to work wi th G C M services. 

• A n d r o i d Annotations^ 5 - Open-source framework for speeding-up A n d r o i d applica­
t ion development by generating boilerplate parts using a custom Java preprocessor. 

• Support libraries - Libraries providing back-por t compat ibi l i ty and addi t ional u t i l ­
i ty classes. 

• S t a n d O u t 1 - L i b r a r y for creating floating U I elements using service. 

• Retrofit ' - L i b r a r y used for creating R E S T A P I clients from Java interfaces. 

• Mater ia l dialogs 6 - Implementation of A n d r o i d dialogs wi th respect to Mate r i a l 
Design guidelines. 

• M a t e r i a l 7 - Implementation of Ma te r i a l Design components for A n d r o i d . 

A n d r o i d Studio 1.2 together w i th Gradle 2.3 and A n d r o i d S D K Bui ld- tools 22.0.1 served 
as the base of the development environment. 

5.3 Application server capabilities and implementation 

This section describes ind iv idua l parts of the application server and their implementat ion 
in more detail . The beginning focuses on the database and R E S T A P I . The end of this 
section describes the R T C M u l t i C o n n e c t i o n JavaScript l ibrary and then it presents some 
parts of source code and U I of streaming and playback pages. 

5.3 .1 D a t a b a s e 

There are barely any requirements for the database so it does not matter what database 
is used for such simple usage. We use M o n g o D B 1 which is N o S Q L document-oriented 
database. The advantage is that we can work wi th object models. We work wi th mongoose 
l ibrary for Node.js. 

Device object model definition: 
// l o a d i n g mongoose l i b r a r y 
var mongoose = r e q u i r e ( ' m o n g o o s e ' ) ; 

// D e f i n e our d e v i c e schema 
var DeviceSchema = new mongoose.Schema ({ 

name: S t r i n g , 
code: S t r i n g , 
g c m R e g i s t r a t i o n l d : S t r i n g , 

2Google Play Services setup: http://developer.android.com/google/play-services/setup.html. 
3AndroidAnnotations library: http://androidannotations.org/ 
4StandOut library: https://github.com/sherpya/StandOut/ 
5Retrofit library: h t tp: / /square .gi thub. io/ re t rof i t / 
6Material dialogs: https://github.com/afollestad/material-dialogs 
7Material: https://github.com/rey5137/material 
1MongoDB: https : //www.mongodb. org/ 

27 

http://developer.android.com/google/play-services/setup.html
http://androidannotations.org/
https://github.com/sherpya/StandOut/
http://square.github.io/retrofit/
https://github.com/afollestad/material-dialogs
https://github.com/rey5137/material
http://www.mongodb


l a s t U p d a t e : Date 
} ) ; 

Saving device into database: 
// c r e a t e new i n s t a n c e of d e v i c e 
var d e v i c e = new D e v i c e ( ) ; 

// TODO: e d i t d e v i c e p r o p e r t i e s 

// Saving the d e v i c e i n t o database 
d e v i c e . s a v e ( f u n c t i o n ( e r r ) { 

// handle e r r o r or do something on success 
} ) ; 

F i n d i n g device by its code: 
D e v i c e . f i n d ({code: deviceCode}, f u n c t i o n ( e r r , d e v i c e s ) { 

// handle e r r o r s or do something with d e v i c e 
} ) ; 

5.3.2 R e p r e s e n t a t i o n a l State Trans fer A P I 

The application server provides simple R E S T A P I . It allows to register A n d r o i d application 
after successful registration to Google C l o u d Messaging servers. It also provides endpoint 
for starting registered device using Google C l o u d Messaging service. 

P O S T /api /devices 

This request registers device. It expects the body of the request to be this J S O N object: 

{ 

name: S t r i n g , 
g c m R e g i s t r a t i o n l d : S t r i n g 

} 

Server takes the property name and gcmRegistrationld and creates a new object repre­
senting the device: 

{ 

name: S t r i n g , 
g c m R e g i s t r a t i o n l d : S t r i n g , 
code: S t r i n g , 
l a s t U p d a t e : Date 

} 

Object 's property lastUpdate is filled w i th actual date of registration and value of 
property code is generated pseudo random string wi th eight characters. 

G E T /devices/:device-code/start—stream 

This request is used to start streaming from device w i th specific : device-code code. W h e n 
this request is invoked then the applicat ion server tries to find device by its code in the 
database. T h e n it sends a message to the device using the gcmRegistrationld token. 

28 



This request is invoked using j Q u e r y 2 from wi th in the playback page. 

$ . g e t ( " / a p i / d e v i c e s / " + deviceCode + " / s t a r t - stream", 
f u n c t i o n ( r e s p o n s e ) { 

c o n s o l e . l o g ( r e s p o n s e ) ; 
} 

) ; 

5 . 3 . 3 R T C M u l t i C o n n e c t i o n 

R T C M u l t i C o n n e c t i o n 3 is open-sourced l ibrary developed under M I T license 4 . It is wrap­
ping R T C P e e r C o n n e c t i o n JavaScript A P I (from the same developer) which handles the 
Peer Connect ion establishment and provides many features which make the development 
wi th W e b R T C easier. 

We use this l ibrary for W e b R T C session ini t ia t ion, acquiring local media stream, jo ining 
the created session and transferring the stream using Peer connection. This l ibrary also 
handles signalling by default 1 so we do not need to manage addit ional servers. 

Channels and rooms 

It uses a simple concept of v i r tua l channels w i th rooms. A channel is the main container 
for rooms which are represented as sessions. There can be mult iple sessions i n the same 
channel. Each session has its ini t ia tor (the peer who opened the room) and participants 
(who joined the room). Channels, rooms and peers have their own unique identifiers. 

// i n c l u d i n g l i b r a r y 
< s c r i p t 

src="//cdn.webrtc-experiment.com/RTCMult iC o n n e c t i o n . j s " > 
< / s c r i p t > 

// s i g n a l l i n g l i b r a r y 
< s c r i p t 

src="//cdn.webrt c- experiment.com/f i r e b a s e . j s"></script > 

// j o i n i n g the room with roomID t h i s i s i n s i d e s c r i p t tag 
var c o n n e c t i o n = new R T C M u l t i C o n n e c t i o n ( r o o m I D ) ; 

For our purposes, the channel is unique for every device and contains only one room. 
B o t h channel and room identifiers are based on device hash which is generated on the 
server side. The streaming device is i n the role of an ini t ia tor and the clients which play 
the stream are participants. 

Session connection constraints 

Session connection is affected by media constraints. There is one option i n R T C M u l t i C o n ­
nection l ibrary which does not occur i n W e b R T C specification - boolean constraint oneway. 

2j Query is JavaScript framework: https://jquery.com/ 
3Muaz Khan - RTCMultiConnection: http://www.rtcmulticonnection.org/ 
4 M I T license in Open source initiative: http://opensource.org/licenses/MIT 
1 RTCMultiConnection uses Firebase servers for signalling by default: http://firebase.com. 

29 

https://jquery.com/
http://www.rtcmulticonnection.org/
http://opensource.org/licenses/MIT
http://firebase.com


This property allows peers that only want to playback the stream not to be prompted wi th 
local media permission because the local media is never demanded. Th i s opt ion is very 
useful i n our case for broadcasting the stream. 

// s e t t i n g the s e s s i o n f o r video only 
c o n n e c t i o n . s e s s i o n = { 

audio : f a l s e , 
v ideo : true , 
oneway : f a l s e 

}; 

// example of s e t t i n g FullHD r e s o l u t i o n 
connection.media.min(1920, 1080); 
connection.media.max(1920, 1080); 

Local media resolution 

Dealing wi th resolution can be a l i t t le t r icky when working wi th W e b R T C . There are three 
parameters for getLocalMediaO function which affect the actual quali ty of video that is 
being transmitted. There are resolution, f rameRate and bandwith. A l l those attributes 
are the base values for codec settings. 

Resolut ion is the most t r icky one. The parameter is used only for in i t i a l settings for 
video source (e.g. front facing camera) to provide media wi th that part icular resolution. 
This value is unchangeable i n the future for the same session. A new session has to be 
created i n case of the need for resolution to be changed. The f rameRate is self-explaining 

- It is the number of frames per seconds which should be transmitted. Final ly , it is the 
bandwidth. It is the l imi ta t ion for network usage for this specific stream. 

These attributes put demands on the codec which, i n case of W e b R T C , is the V P 8 1 

open-sourced codec. It tries to maximize the quali ty of t ransmit ted media while keeping 
considerable bandwidth . This is harder for rapidly changing scenes rather than for static 
ones. W e b R T C is t ry ing to keep the frame rate so it sacrifices the resolution of the video 
during the streaming to satisfy the frame rate and bandwidth . This is noticeable and could 
be a l imi ta t ion for some use cases when the resolution prioritizes over the frame rate. 

Working with session 

B o t h peers, the one who streams and the one who wants to play the stream, connect to 
the signalling channel. We could omit this for participants and s imply joint the session but 
they would not get notified when a new session is ready and it would not be possible to 
distinguish whether the session exists or not. Connect ing to the signal brings the abil i ty 
to hook up to onNewSession which is fired when a participant is connected to signalling 
channel and the ini t ia tor opens the session. 

// a l l u s e r s connect to channel 
c o n n e c t i o n . c o n n e c t () ; 

// s e s s i o n i n i t i a t o r ( A n d r o i d d e v i c e ) opens the s e s s i o n 

1More information about VP8 codec can be found on the WebM project page: http://www. 
webmproj ect.org/ 

30 

http://www


c o n n e c t i o n . o p e n ({ s e s s i o n i d : c o n n e c t i o n . c h a n n e l } ) ; 

// p a r t i c i p a n t s are informed when i n i t i a t o r opens the s e s s i o n 
var s e s s i o n s = {}; 
connection.onNewSession = f u n c t i o n ( s e s s i o n ) { 

// i f we have j o i n e d the s e s s i o n the s k i p 
i f ( s e s s i o n s [ s e s s i o n . s e s s i o n i d ] r e t u r n ; 
s e s s i o n s [ s e s s i o n . s e s s i o n i d ] = s e s s i o n ; 
c o n n e c t i o n . j o i n ( s e s s i o n . s e s s i o n i d ) ; 

}; 

B y joining the session the connection between peers starts to be negotiated. U p o n 
successful negotiation the Peer Connect ion is established. 

Displaying stream 

R T C M u l t i C o n n e c t i o n provides useful callbacks for important events. One of these callbacks 
is onstream callback which is invoked when any stream becomes available. We can then 
show the stream using video H T M L tag. 

Example of inserting local media stream into H T M L D O M : 

c o n n e c t i o n . o n s t r e a m = f u n c t i o n (stream) { 
// we put the media element i n s i d e d i v with ' v i d e o ' i d 
var v i d e o s = d o c u m e n t . q u e r y S e l e c t o r ( ' # v i d e o s ' ) ; 
// a u t o m a t i c a l l y p l a y the video - both stream and playback 
stream.mediaElement.autoplay = t r u e ; 
// d i s a b l i n g c o n t r o l s f o r streaming 
s t r e a m . m e d i a E l e m e n t . c o n t r o l s = f a l s e ; 

// put the element i n s i d e v i d e o s c o n t a i n e r 
v i d e o s . a p p e n d C h i l d ( s t r e a m . m e d i a E l e m e n t ) ; 

Closing the stream when nobody is watching 

Another callback used is onleave callback. This callback notifies one peer that the other 
one has left the session. It allows the application to close any previously created sessions 
and release camera and other resources. 

React ion on onleave event: 

c o n n e c t i o n . o n l e a v e = f u n c t i o n ( e ) { 
// the numberOfConnectedUsers r e p r e s e n t s the amount 
// of u s e r s i n t h i s s e s s i o n 
i f ( c o n n e c t i o n . n u m b e r O f C o n n e c t e d U s e r s < 2) { 

// I am the only one i n here. L e a v i n g . 
c l o s e C o n n e c t i o n () ; 

} 

} 

31 



5.3.4 P l a y b a c k page 

Playback page is the first place where a l l the streaming starts. The R T C M u l t i C o n n e c t i o n 
is ini t ia l ized and a check for existing session is made. W h e n the streaming is not active, 
H T T P request to start the device is invoked 1 and the user has to wait for streaming device 
to open a session. W h e n the session exists, the R T C M u l t i C o n n e c t i o n connects to i t . After 
that the session is joined and the stream data can be transmitted. 

Figure 5.2 shows the sequence diagram of this process. 

:GCM 
servers 

start streaming from device 

signalling 
servers 

GCM sends message 
to client to start stream 

playback page 
waits for Android 

IP camera 
to start stream 

get streaming page 

return HTML playback page 

connect to session 

Peer Connection established 

:Android IP 
camera 

open session 

Figure 5.2: Communica t ion sequence when requesting the stream. 

Screenshot i n figure 5.3 shows the user interface when the A n d r o i d applicat ion starts 
the streaming. It is very simple and shows only maximized video stream wi th bu t ton to 
end the preview and get back to a home page of demo appl ica t ion 1 . 

5.3.5 S t r e a m page 

The streaming page is very much alike the playback one. It connects to a channel but 
instead of wai t ing for the session it s imply opens a new one. We suppose that the session 
identifier w i l l be unique for each device so we should not get conflict when opening session. 
We do not want to interact w i th the streaming page so the video controls are disabled and 
there is also no but ton for ending the stream. 

The streaming page can be used from any device or web browser support ing W e b R T C 
technology - it is not l imi ted to A n d r o i d . 

A n d r o i d applicat ion requests streaming page when it is prompted to start the stream. It 
opens the streaming page wi th proper parameters for R T C M u l t i C o n n e c t i o n ini t ia l izat ion. 
More information about streaming and user interface is i n the section 5.4. 

1It was empirically researched that checking for session presence takes around one to two and a half of 
a second. The request is send after three seconds of session inactivity. 

1Demo application will be available on: http://ipcam.janchvala.cz/ 

32 

http://ipcam.janchvala.cz/


/ Qp] Andro id IP camera X ^ I 

<- -> G A D ipcam.janclivala.cz/assets/broadcast.html?stream=false8iroom = kWE Q ^ ^ 0 © ífe) 0 S 0 ) = 

• " A p l i k a c e Q Nedat iuj ipi Cheatsheet E Perfect Vour Routine... y JIRA > 5EC_CORE ft I n t ra M Hickr * Tweet fj FB 0 fit » • Ostatní záložky 

Figure 5.3: Showing user interface of playback page. 

5.4 Android application implementation and design 

This section covers the implementat ion details of A n d r o i d application which is responsi­
ble for registration to Google C l o u d Messaging, registration to the application server and 
streaming mul t imedia data using W e b R T C technology. 

Fi rs t part of this section shows the registration process together w i th the behaviour unt i l 
the applicat ion is ready to stream. It is followed by the user interface design explanation. 
The rest of the section is dedicated to handling the G C M messages and streaming. 

5.4.1 A p p l i c a t i o n life—cycle 

The most important part of the applicat ion life-cycle is the registration process that is 
shown i n figure 5.4. After first launch, the application registers to Google C l o u d Messaging 
services, then it sends the registration information to the applicat ion server. 

If this process is successful, then it is ready to receive requests to start streaming. 
Setting a password for stream is required and it is forced upon successful registration. 

W h e n the device is ready to stream, it waits for incoming G C M messages. They are 
handled by BroadcastReceiver and passed to IntentService which decides whether to start 
the Service 1 that is actually streaming or send Intent to show streaming page in web browser. 

// pseudo code i n Java f o r d e c i s i o n about the way of str e a m i n g 
p u b l i c s t a t i c v o i d s t a r t S t r e a m i n g ( ) { 

i f (Build.VERSION.SDK_INT >= Build.VERS ION_CODES.LOLLIPOP) { 
// L o l l i o p o p ' s WebView su p p o r t s WebRTC - show S e r v i c e 
s t a r t S t r e a m i n g S e r v i c e ( ) ; 

l rThe Service contains UI with WebView component and streaming page loaded into it. 

33 

http://pcam.janclivala.cz/assets/broadca


f 

Regist rat ion 
p rocess start 

-no registered to 
G C M 

Reg is ter to G C M 

I 

Regis ter to server 

yes 

is 
-no registered on 

server 

yes 

i 
Reg is te red 
on server 

1 

set up password 

3ady to st ream 

n 

Figure 5.4: App l i ca t i on registration process. 

} e l s e { 
// p r e - l o l l i p o p d e v i c e s has to show stream i n browser 
sendlntentToShowStreamPagelnWebBrowser () ; 

} 

} 

5.4.2 U s e r interface des ign 

The user interface is very simple. The U I design was created on the basis of Ma te r i a l design 
specification 2 and the application does not require almost any interaction w i t h the user 
except setting the password which is required (but may be generated by the application). 

The registration process takes place after the first launch of the applicat ion. Individual 
U I screens of it are shown i n the figure 5.5. The registration is automatic and when the 

2Material design specification: 
http://www.google.com/design/spec/material-design/ 

34 

http://www.google.com/design/spec/material-design/


servers are reachable, it takes only a couple of seconds un t i l the password setting dialog is 
shown, which indicates that the registration was finished. 

Figure 5.5: Screenshots of application's registration process. F r o m left: G C M registration, 
registration to applicat ion server, password setting and ready to stream screen. 

After the registration is completed the user has the possibil i ty to enable the incoming 
G C M requests for the streaming. This is done wi th the switch located in Toolbar at the 
top of each screen, see the last image in figure 5.5. The state of the applicat ion is indicated 
in C a r d Fragment and also wi th the background colour which is indicat ing the state for the 
first sight. 

Start streaming 

Change password 

Change stream settings 

U: YtUqYald | P: 60E533ZE 

A n d r o i d IP c a m e r a 
Streaming video using WebRTC te 

1 
A n d r o i d IP c a m e r a 

Figure 5.6: Screenshots of applicat ion dur ing registration process and streaming. Last 
Screenshot also shows streaming notification. 

35 



The application provides some actions for the user. Quick action to share the stream 
U R L is accessible from F A B 1 in the left bo t tom corner of the screen while the others are 
located i n the overflow menu 1 . W i t h these actions the user can easily change the password 
the same way he ini t ia l ized i t , change stream parameters, start the streaming expl ic i t ly or 
show simple information about the application. 

It is also possible to change the server base u r l which is useful i f applicat ion u r l changes. 
Server registration is reset and new request for streaming code is triggered by changing this 
option. 

Last screen shot shows the notification and also tablet layout user interface. The user 
has the possibil i ty to stop the streaming or share the streaming U R L v i a notification's 
buttons. The notification is shown i n figure 5.7 but it is shown only on A n d r o i d Lo l l ipop 
when streaming wi th native Web V i e w component. 

Figure 5.7: Screenshots of notification during streaming. Tablet U I . 

1 Floating Action Button - circular button introduced in Material design guidelines 
http://www.google.com/design/spec/components/butt ons-floating-action-button.html 

1 Overflow menu is indicated with three vertically aligned dots above each other. 

36 

http://www.google.com/design/spec/components/butt


5.4.3 H a n d l i n g G o o g l e C l o u d Messages a n d s t r e a m i n g 

Google C l o u d Messages are processed in three steps i n three different parts of the applica­
t ion. The message is invoked the stream is requested by the streaming page 5.3.5. 

Receiving messages using BroadcastReceiver 

GcmBroadcastReceiver extends WakefulBroadcastReceiver which is used to make device 
awake while receiving messages. It is registered i n AndroidManifest (3.1.3) and it is the 
first part of the applicat ion which is invoked when G C M message is received. 

©Override 
p u b l i c v o i d o n R e c e i v e ( C o n t e x t c, In t e n t i n t e n t ) { 

// s p e c i f y t h a t G c m l n t e n t S e r v i c e w i l l handle the i n t e n t 
S t r i n g serviceName = G c m I n t e n t S e r v i c e _ . c l a s s . g e t N a m e ( ) ; 
ComponentName cName = 

new ComponentName(c.getPackageName(), serviceName); 
intent.setComponent(cName); 

// S t a r t the s e r v i c e and keep d e v i c e awake 
s t a r t W a k e f u l S e r v i c e ( c , i n t e n t ) ; 

// set the r e s u l t of t h i s r e c e i v e as success 
s e t R e s u l t C o d e ( A c t i v i t y . R E S U L T _ 0 K ) ; 

} 

Processing messages using Intent Service 

After receiving the message i n BroadcastReceiver the message is resent to GcmlntentService 
that takes proper action for the message. If it is a real G C M message (not error or deleted 
event) then the stream is started. 

©Override 
p r o t e c t e d v o i d o n H a n d l e l n t e n t ( I n t e n t i n t e n t ) { 

Bundle e x t r a s = i n t e n t . g e t E x t r a s ( ) ; 
i f ( ! e x t r a s . i s E m p t y ()) { // I n i t i a l i z e GCM 

GoogleCloudMessaging gem = 
G o o g l e C l o u d M e s s a g i n g . g e t l n s t a n c e ( t h i s ) ; 

// g e t t i n g the message type 
S t r i n g messageType = g e m . g e t M e s s a g e T y p e ( i n t e n t ) ; 
// I f t h i s i s a r e g u l a r message then s t a r t stream 
S t r i n g mType = GoogleCloudMessaging.MESSAGE_TYPE_MESSAGE; 

i f (mType.equals(messageType)) { 
C l a s s wClass = IpCamPreviewWindow_.class; 
In t e n t i = StandOutWindow.getShowIntent(this,wClass , 0) ; 
s t a r t S e r v i c e ( i ) ; 

} 

} 

37 



// R e l e a s i n g the wake l o c k 
G c m B r o a d c a s t R e c e i v e r . c o m p l e t e W a k e f u l l n t e n t ( i n t e n t ) ; 

} 

Starting the stream Service 

Stream is started using Ip CamPreview Window1. Th is service creates new Window object 
which can hold U I elements and it is inflated wi th Web View. T h e n the Web View loads 
streaming page from application server and WebRTC takes care about the rest of the 
streaming. The code below shows the layout inflation and WebView i n i t i a l settings. 

©Override 
p u b l i c v o i d c r e a t e A n d A t t a c h V i e w ( i n t i d , FrameLayout frame) { 

// c r e a t e a new l a y o u t from body.xml 
L a y o u t l n f l a t e r i n f l a t e r = ( L a y o u t l n f l a t e r ) 

getSystemService(LAYOUT_INFLATER_SERVICE); 
i n f l a t e r . i n f l a t e ( R . l a y o u t . i p c a m _ w i n d o w _ l a y o u t , frame, t r u e ) ; 

wv = (WebView) f r a m e . f i n d V i e w B y l d ( R . i d . w e b _ v i e w _ i d ) ; 
setupWebView(wv); 

} 

/* * 
* setup WebView J a v a S c r i p t , ChromeClient and l o a d stream page 
*/ 

p r o t e c t e d v o i d setupWebView(WebView wv) { 
WebSettings webSettings = w v . g e t S e t t i n g s ( ) ; 
w e b S e t t i n g s . s e t J a v a S c r i p t E n a b l e d ( t r u e ) ; 

wv.setWebChromeClient(new WebChromeClient() { 
©Override 
p u b l i c v o i d o n P e r m i s s i o n R e q u e s t ( f i n a l P e r m i s s i o n R e q u e s t 

r e q u e s t ) { 
// h a n d l i n g WebRTC p e r m i s s i o n r e q u e s t 
d i s p a t c h P e r m i s s i o n R e q u e s t ( r e q u e s t ) ; 

} 

} ) ; 

w v . l o a d U r 1 ( I n t e n t H e l p e r s . g e t S t r e a m U r l ( i p C a m P r e f erence s ) ) ; 
} 

To see how G C M is registered, see section 4.3.3. 

1This window is service with specific UI elements floating above other windows in the system. This is 
made possible by StandOut library: https://github.com/sherpya/StandOut/ 

38 

https://github.com/sherpya/StandOut/


5.5 Security and authentication in demo application 

The authentication and security is not crucial for demonstration of W e b R T C technology 
but it is not desirable to allow anybody to see private streaming. 

The application allows to protect device stream wi th a password which is set up during 
application first launch on A n d r o i d device (it can be changed later on). Th is password is 
checked on every request from a participant to jo in created streaming session. The request 
is then accepted or rejected based on password equality. 

// set up the password with J a v a S c r i p t i n t e r f a c e from A n d r o i d 
var password = A n d r o i d . g e t P a s s w o r d ( ) ; 

// p a r t i c i p a n t r e q u e s t s access to s e s s i o n 
connection.onRequest = f u n c t i o n ( e ) { 

// check i f the passwords equal 
i f ( e . e x t r a . p a s s w o r d !== password){ 

// the passwords do not match - r e j e c t access 
connect i o n . r e j e c t ( e ) ; 

} e l s e { // accept the re q u e s t 
c o n n e c t i o n . a c c e p t ( e ) ; 

} 

>; 

There is no protection for the server R E S T A P I so anybody who can catch the device 
code can s imply start the stream on the device. We would have to implement user manage­
ment and registration on the server side to be able to protect it which is out of scope of this 
thesis. W i t h that i n m i n d the demo application is not intended to be a ready product ion 
because of the lack of server R E S T A P I protection. 

5.6 The choice of WebRTC library 

There were more options to choose from when deciding which l ibrary to use when working 
wi th W e b R T C . A few developers t ry to use the W e b R T C and thus they bu i ld libraries on 
top of this edge technology. This section w i l l shortly describe considered libraries and the 
reasons why they were chosen or not. 

5.6.1 P e e r J S 

The first opt ion found was P e e r J S 1 l ibrary. Th is l ibrary is very simple to use and from my 
point of view it is the easiest to work wi th . It has very simple A P I and it also provides the 
abil i ty to use free Peer Server which is responsible for the signalling process. 

The main problem is that this l ibrary does not support one way video streaming. This 
is crucial for the resultant application because it is not desirable to request permissions 
from the user who only wants to play the video stream. 

Another problem for me concerning this l ibrary is that it seems to be stuck i n develop­
ment. The i r master branch on G i t H u b repository is four months old and it does not seem 
to be progressing. 

1PeerJS homepage:http: / /peerjs. com/ 

39 



5.6.2 R T C M u l t i C o n n e c t i o n v2 

Another solution that was the one actually used in the resultant applicat ion was the R T C -
Mul t i connec t ion 2 in its version 2.2.2. Th is l ibrary is well documented and allows a lot of 
customizations. There are also many good examples of working wi th this library. 

The main reason for using this l ibrary is that it supports one-way mul t imedia streaming. 
This allows to request permission only from the streaming device. It also reduces the data 
transmission because the session does not contain any empty streams which could affect 
the bandwidth. 

Another good reason is that M u a z K h a n (The author of this l ibrary) has made it open 
sourced and he is very actively working on it. 

5.6.3 R T C M u l t i C o n n e c t i o n v3 b e t a 

A new version of previously mentioned l ibrary was published on 1st A p r i l . I was t ry ing to 
switch the resultant applicat ion to use this new version of the R T C M u l t i C o n n e c t i o n library, 
which provides some more functionality such as bu i ld in room protection by password. 

It also comes wi th signalling server bu i ld on top of Node.js which is the technology used 
for the applicat ion server. B u t it is s t i l l in beta and there were problems wi th the signalling 
process. The problems were making the established connection to fall apart after a couple 
of seconds of successful stream transmission. 

There is a lot of going on around this l ibrary and we can be looking forward to seeing 
its improvements i n the near future. I would recommend taking a look at this l ibrary for 
those interested in working wi th W e b R T C . 

2RTCMultiConnection homepage: http://www.rtcmulticonnection.org/ 

40 

http://www.rtcmulticonnection.org/


Chapter 6 

Testing and flaws 

This chapter focuses on the testing of the resultant application in real conditions. In the 
first part of this section there are measurements of delays and connectivity establishment. 
The second part points out some of the problems, which occurred dur ing the development 
process. 

6.1 Measuring streaming delays and stability testing 

Important aspects of real- t ime streaming are delays. Every th ing takes t ime. Loading 
the page inside the browser, start ing the device wi th G C M , acquiring local media, Peer 
Connection establishment and media transfer. These delays make the difference between a 
usable and unusable solution. 

The resultant system was created to work i n most cases even when the device is hidden 
behind N A T and to stream data only when it is needed. A l l the technologies that make this 
possible are against the speed of the process from the point where the stream is requested 
to the point where it is actually shown to the user. 

6.1.1 De lays 

The streaming application is expected to be running on local w i - f i network and to be placed 
stationary. In this way the streaming was tested. The requests on the other hand may be 
done from different networks w i t h different capabilities. Because of that the testing requests 
were made from three different networks: W i - f i , 3 G and mocked 2 G network 1 . For each 
connectivity except 2 G newrok 2 there was one hundred established streams. Ar i thmet ic 
mean was taken as the result for each measured value. 

A l l the streaming was done for the best video settings: 

• resolution - 1980 x 1020px 

• frame rate - 30 frames per second 

• bandwidth - 8000kb/s 

1The 2G network was mocked by disabling 3G connectivity on mobile device. 
2Testing of requests from 2G networks was very unstable. The connection could be established for the 

lowest possible streaming quality only for three times out of thirty and they were not stable. A l l of them 
broke after a couple of seconds of streaming. Therefore using the resultant application on 2G networks is 
not recommended. 

41 



Measured delays are: 

• stream available - F r o m request to media element availability. Shown i n table 6.1. 

• initial video delay - The delay between the t ime when stream is available and the 
t ime it is shown. Shown in table 6.2. 

• total time - from start ing the streaming page to showing the video. Shown i n table 
6.3. 

The testing was made i n two modes: 

• already running - The stream is running and the session was established. There is 
no need to send G C M requests. 

• not running - The stream has to be started wi th G C M messages. 

Table 6.1: Tables showing average stream available for different networks. Top table for 
already running streaming and bot tom for G C M started streaming. 

m i n (ms) max (ms) ari thmetic mean (ms) 
w i - f i 1813 4354 2181 
3 G 1901 4523 2390 
2 G - - -

m i n (ms) max (ms) ari thmetic mean (ms) 
w i - f i 6036 9129 6639 
3 G 6656 9860 7183 
2 G - - -

Table 6.2: Table showing average initial video delay for different networks. Top table for 
already running streaming and bot tom for G C M started streaming. 

m i n (ms) max (ms) ari thmetic mean (ms) 
w i - f i 510 7702 1538 
3 G 922 3113 1948 
2 G - - -

m i n (ms) max (ms) ari thmetic mean (ms) 
w i - f i 464 1771 1214 
3 G 1051 2196 1715 
2 G - - -

42 



Table 6.3: Table showing average total time for different networks. Top table for already 
running streaming and bot tom for G C M started streaming. 

m i n (ms) max (ms) ari thmetic mean (ms) 
w i - f i 2344 10823 4321 
3 G 3083 6745 4838 
2 G - - -

m i n (ms) max (ms) ari thmetic mean (ms) 
w i - f i 6808 10180 7854 
3 G 7784 11260 8898 
2 G - - -

B o t h w i - f i and 3 G are quite s imilar i n the results. The stream object that is being 
placed into H T M L D O M was accessible after two seconds when playing active stream and 
approximately seven seconds when it had to be started wi th G C M (see table 6.1). It is due 
to the three second delay when checking for session presence. B u t it is s t i l l very good time 
which we can count w i th while requesting the stream. 

Video delay, which indicates the actual t ime that the video is behind the reality, is 
more different. A s you can see from table 6.2 the difference i n wi-fi and 3 G is four to five 
hundred milliseconds. This in i t i a l video delay was after a couple of seconds decreased to 
approximately half of a second. Us ing an IP camera for testing purposes wi th video delay 
under one second is usable. 

The 3 G network is slower i n comparison wi th wi-f i . The difference in the total time 
ranges from two hundred milliseconds to one second, which is an acceptable difference. 
There is no problem when viewing the stream from 3 G networks because i f the network is 
not capable of streaming the video in requested quality, it s imply decreases the quality, so 
the stream does not break. The decreasing quali ty on 3 G networks was noticeable but the 
streaming quali ty was good enough to recognize objects and people. O n the other hand 
small text and t iny details disappeared i n a low resolution. 

6.1.2 S tab i l i ty 

The stabil i ty of the streaming was good in both networks and the connection d id not break 
after sixty minutes of continuous streaming from one wi-fi network to the other. 

The tests also included connection failures. The first testing was done by disabling the 
connectivity on playback device. Th is completely broke the streaming session and Peer 
Connection, which could not be restored automatical ly but it does not happen very often 
that the networking interface is completely disabled. 

Block ing the connectivity by removing networking cable for very short t ime made the 
stream to stop but is was quickly restored after the connection was recovered. This indicates 
that the technology is capable of overcoming short t ime connectivity problems but it fails 
in case of a serious one. To overcome them, it would be possible to implement connectivity 
check mechanism which would ini t iate session restoration after detecting that the session 
was disconnected. 

43 



6.2 Android and its WebRTC flaws 

W e b R T C technology is s t i l l not fully supported anywhere. B u t I found some points where 
Andro id ' s Web V i e w is few steps behind the latest bu i ld of web browser. Some of the points 
may be relevant to R T C M u l t i C o n n e c t i o n l ibrary rather than to W e b R T C technology itself. 
A l l the mentioned issues were tested on Web V i e w version 39.0.0 included i n A n d r o i d 5.1.1 
(Lol l ipop) . 

6.2.1 R T C M u l t i C o n n e c t i o n ignores m e d i a constraints 

R T C M u l t i C o n n e c t i o n l ibrary i n version 2.2.2, which is used for working wi th W e b R T C 
A P I s , is forcing the media constraint to be reset for mobile devices. Th is constraint w i l l 
probably be removed i n future versions. 

Mobi le device is detected from user agent i n request. To workaround this without 
changing the l ibrary we change the value of the user agent when using Web V i e w component 
but it is hard to change user agent when using web browsers for streaming. 

6.2.2 F a c i n g m o d e 

One of the advantages of W e b R T C should be the possibil i ty for developers to choose which 
camera they want to use the video from. This function is so called facing mode and it can 
be set-up during request for local media by the standard media constraints. 

Setting this property in A n d r o i d leads to a faulty stream. The local media cannot be 
acquired at a l l when the facing mode is set as a mandatory constraint. The local media is 
acquired successfully when setting the facing mode as opt ional constraint but it seems to 
have no effect in the used camera. 

The facing mode is not working neither i n native Web V i e w version 39.0.0 nor Chrome 
for A n d r o i d version 42.02311 nor the Firefox for A n d r o i d i n version 38.0.1. Firefox is t ry ing 
to solve this problem by asking the user to choose the source camera for local media but it 
requires addi t ional interaction wi th the user. 

6.2.3 M e d i a e lement autoplay a t t r ibute 

H T M L video tag has elements which control the in i t i a l behaviour of the video playback. 
At t r ibu te autoplay is used to automatical ly start the playback when the media element is 
inserted into the H T M L D O M . This is working as expected i n web browsers but Andro id ' s 
policy is that the user should be aware of any network data consumption so the attribute 
autoplay is ignored on the first launch and activated after user's interaction wi th video 
controls. Th is causes the video stream to be immediately paused (muted) after any peer 
demands the data. Th is is not par t icular ly useful i n the case when the user has no abil i ty 
to interact w i th the device because of remote streaming. 

It happens for every new peer or local media renegotiation when using R T C M u l t i C o n ­
nection. Not only that it breaks the streaming but inval id stream events are triggered to 
indicate that new stream is available. 

This can be solved wi th JavaScript 's methods that can manipulate the video. There 
are play () and pause () methods which can be used to restart the playback when the right 
events occur. The resultant application hooks up the onstream callback and every time 
the inval id stream is passed to this method we s imply restart the existing stream which is 
the only relevant one. 

44 



Chapter 7 

Conclusion 

The goal was to explore technologies for streaming from A n d r o i d device and to create a 
system which would allow the user to easily stream the video content from the camera of a 
device to the web. 

The first part of the thesis focuses on the description of W e b R T C technology which is 
used in the resultant system for capturing the video and the streaming transmission. Then 
the A n d r o i d operating system is described - the target platform for the implementation. 
It is followed by the chapter about Google C l o u d Messaging service, which is used for the 
streaming in i t ia t ion. The chapter about the design and implementat ion details covers a l l 
the parts of the resultant system which are necessary for the understanding of the solution 
as a unit . 

The created system was tested wi th various stream settings on different networks. It 
was proved that this system can be used i n real conditions wi th good video quali ty and 
acceptable delays. Some W e b R T C technological flaws were discovered dur ing the testing 
and implementat ion phase, which indicates that the technology is s t i l l a draft and it is not 
yet completely finished. 

The resultant system was created for the demonstration of the purpose and possibilities 
of W e b R T C technology. It is not a complex solution wi th a huge amount of settings, 
bulletproof security and stability. However, it can be used as a start ing point for creating 
better A n d r o i d I P camera applicat ion. There are a lot of features that could improve 
the current solution. It would be beneficial for the user to be able to change the streaming 
parameters remotely from the viewing page. Recording the stream would be also very useful. 
Final ly , the authentication would have to be done better if it should go to production. 

The thesis successfully demonstrated that the W e b R T C technology can be used for 
creating the application for mul t imedia streaming although it has not been completely 
standardized yet. 

45 



Bibliography 

[1] Act iv i t i es , A n d r o i d Developers :: Develop :: A P I Guides [online]. 
URL: h t t p : / / t i n y u r l . c o m / j a n c h v a l a - a n d r o i d - a c t i v i t y . M a y 2015. 

[2] A P I Guides, A n d r o i d Developers :: Develop [online]. 
URL: h t t p : / / t i n y u r l . c o m / j c h - a n d r o i d - g u i d e . M a y 2015. 

[3] Br ing ing Interoperable Rea l -T ime Communicat ions to the Web [online]. 
URL: h t t p : / / t i n y u r l . c o m / j a n c h v a l a - o r t c . M a y 2015. 

[4] D . C . Burnet t , A . Bergkvist , C . Jennings, A . Narayanan, Edi tors . M e d i a Capture 
and Streams [online]. URL: h t t p : / / t i n y u r l . c o m / j c h - w e b r t c - d r a f t . 14 A p r . 2015. 

[5] Dashboards, A n d r o i d Developers :: A b o u t [online]. 
URL: h t t p : / / t i n y u r l . c o m / j c h - a n d r o i d - d a s h . M a y 2015. 

[6] Google C l o u d Messaging, A n d r o i d Developers :: Develop :: Google Services [online]. 
URL: h t t p : / / t i n y u r l . c o m / j a n c h v a l a - a n d r o i d - g c m . M a y 2015. 

[7] Huge security flaw leaks V P N users's real IP-addresses [online]. 
URL: h t t p : / / t i n y u r l . c o m / j a n c h v a l a - w e b r t - i p - l e a k . M a y 2015. 

[8] A l a n B . Johnston. Webrtc: apis and rtcweb protocols of the html5 real-time web, 
third edition. D i g i t a l Codex L L C , M a r c h 2014. I S B N : 9780985978877. 

[9] J . Rosenberg. Interactive Connect iv i ty Establishment ( I C E ) : A Pro toco l for 
Network Address Translator ( N A T ) Traversal for Offer /Answer Protocols. R F C 
5245 (Proposed Standard). Upda ted by R F C 6336. Internet Engineering Task Force, 
A p r i l 2010. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 5 2 4 5 . t x t . 

[10] Services, A n d r o i d Developers :: Develop :: A P I Guides [online]. 
URL: h t t p : / / t i n y u r l . c o m / j c h - a n d r o i d - s e r v i c e s . M a y 2015. 

[11] P . Srisuresh and K . Egevang. Tradi t ional I P Network Address Translator 
(Tradi t ional N A T ) . R F C 3022 (Informational). Internet Engineering Task Force, 
January 2001. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 0 2 2 . t x t . 

46 

http://tinyurl.com/janchvala-android-activity
http://tinyurl.com/jch-android-guide
http://tinyurl.com/janchvala-ortc
http://tinyurl.com/jch-webrtc-draft
http://tinyurl.com/jch-android-dash
http://tinyurl.com/janchvala-android-gcm
http://tinyurl.com/janchvala-webrt-ip-leak
http://www.ietf.org/rfc/rfc5245.txt
http://tinyurl.com/jch-android-services
http://www.ietf.org/rfc/rfc3022.txt


Appendix A 

DVD contents 

The attached D V D contains the following items: 

• /android- ip-camera - Source code of the client application. 

• /application-server - Source code of the applicat ion server. 

• / d o c - Folder w i t h the thesis WT^K. source files and generated P D F file. 

• /videos - Demonstrat ion videos. 

• / R E A D M E . t x t - F i l e w i th instructions how to run the project. 

47 


