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Abstract
This thesis examines partially observable Markov decision processes (POMDPs), a promi-
nent stochastic model for decision-making under uncertainty and partial observability.
POMDPs have diverse applications, from robot navigation to self-driving vehicles. The
undecidable control problem of POMDPs has led to various approaches, including finite-
state controllers (FSCs) based on observations and history. Identifying small and verifiable
FSCs reduces the synthesis of Markov chains. This thesis focuses on counterexample-guided
inductive synthesis (CEGIS) within the PAYNT program, exploring the use of Markov deci-
sion processes as counterexamples. A new greedy method for constructing counterexamples
is outlined and implemented in PAYNT, showing improvements in some cases compared to
the existing method.

Abstrakt
Tato práce se zabývá částečně pozorovatelnými Markovskými rozhodovacími procesy
(POMDP), významnými stochastickými modely pro rozhodování za nejistoty a částečné
pozorovatelnosti. POMDP lze aplikovat od navigace robotů až po samořídící vozidla.
Nerozhodnutelný problém řízení POMDP vedl k různým přístupům, včetně konečných
stavových kontrolerů (FSC) založených na pozorování a udržování histore v paměti. Iden-
tifikaci malých a ověřitelných FSC lze redukovat na syntézu Markovských řetězců. Tato
práce se zaměřuje na induktivní syntézu řízenou protipříklady (CEGIS) implementovanou
v rámci programu PAYNT a zkoumá využití Markovských rozhodovacích procesů jako pro-
tipříkladů. Je nastíněna nová hladová metoda pro konstrukci protipříkladů, která je im-
plementována v programu PAYNT, která v některých případech vykazuje zlepšení oproti
stávající metodě.
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Rozšířený abstrakt
Automatizace byla vždy základním cílem lidstva, od jednoduchých dokola opakujících se
úkolů až po složité samohybné roboty a samořídící vozidla schopna samostatně se pohybovat
v prostředí a dosáhnout svého cíle. Problém spočívá v navigaci s omezenými nebo kompletně
chybějícími informacemi o okolí, což přináší značnou nejistotu. Tato práce se však zaměřuje
na jednodušší zařízení jenž ovšem s těmito složitými systémy souvisí.

Nejistotu lze rozdělit do různých typů, přičemž v případě neznámého okolí a nejistých
stavů je nejvhodnějším typem stavová nejistota. Tradiční rozhodovací modely, jako jsou
Markovské rozhodovací procesy (MDP), postrádají schopnost modelovat stavovou neurči-
tost, protože jsou plně pozorovatelné. Částečně pozorovatelné Markovské rozhodovací pro-
cesy (POMDP) toto omezení řeší začleněním pozorování jako prostředku k získávání infor-
mací a vyhodnocování akcí.

Řízení POMDP však představuje nerozhodnutelný problém. Běžně se používají dva
základní přístupy. Techniky simulace a posilovaného učení se používají, pokud není k dis-
pozici kompaktní model, ale mohou postrádat interpretovatelnost a zaručenou korektnost.
Markovské rozhodovací procesy s věrohodností aktualizují přesvědčení na základě před-
chozích akcí a nabízejí prostředky pro zvládání stavové neurčitosti, ale trpí škálovatelností
a složitými interakcemi. Slibnou alternativu představují konečně stavové kontroléry (FSC),
které mapují pozorování na akce na základě získaných informací nebo udržované historie.
FSC jsou relativně malé a snadno verifikovatelné.

Identifikace FSC je stejně náročná jako syntéza parametrických Markovských řetězců,
což vede k jejich syntéze. Byly navrženy metody jako zjemňování abstrakce (AR), in-
duktivní syntéza řízená protipříkladem (CEGIS) a hybridní přístup. Tato práce se za-
měřuje na vylepšení současného přístupu zdokonalením techniky CEGIS. Předchozí výzkum
ukázal, že výkonnost CEGIS se liší v závislosti na vstupech, zejména na rozložení pro-
gramových děr v Markovském řetězci. Práce zkoumá inovativní přístupy ke konstrukci
protipříkladů, konkrétně modifikací metody CEGIS na využití protipříkladů založených
na Markovském rozhodovacím procesu. Uvažuje se o integraci nástroje A Tool for the
Computation of Small WITnessing SubSystems (SWITSS) s PAYNT, ačkoli doba jeho
provádění činí výsledky nepoužitelnými. Následně je na základě stávajících technik imple-
mentovaných v PAYNT vyvinut hladový algoritmus pro konstrukci protipříkladů založených
na Markovském rozhodovacím procesu.

Hlavní přínos této práce je dvojí. Zaprvé, navrhuje metodu pro použití protipříkladů za-
ložených na Markovském rozhodovacím procesu v CEGIS metodě, přičemž využívá hladový
algoritmus pro konstrukci protipříkladů v rámci programu PAYNT. Metoda využívá
jednoduché díry, což jsou parametry rodiny Markovských řetězců nebo konečných stavových
kontrolerů v kontextu syntézy POMDP. Jedinečnost těchto děr umožňuje zobecnění a
přináší generalizované protipříklady. Implementace obsahuje samostatný modul, který
umožňuje přepínat mezi protipříklady Markovského řetězce a Markovského rozhodovacího
procesu. Kromě toho práce zkoumá SWITSS, který konstruuje svědecké podsystémy po-
mocí smíšeného celočíselného lineárního programování, jenž mohou sloužit jako protipřík-
lady. Vzhledem k dlouhým časům konstrukceje však použitelnost těchto protipříkladů
omezená.

Za druhé, práce zavádí modifikace hladové metody konstrukce protipříkladů, přičemž
experimentuje s randomizací, polohou stavu a apriorními statistikami získanými během
syntézy modelu. Základní hladový algoritmus a jeho modifikované verze jsou vyhod-
noceny pomocí nejnovějších referenčních modelů částečně pozorovatelných Markovských
rozhodovacích procesů z GitHub repozitáře programu PAYNT.



Vylepšením techniky CEGIS a zkoumáním nových přístupů ke konstrukci protipříkladů
tato práce přispívá k pokroku v syntéze částečně pozorovatelných Markovových rozhodovacích
procesů. Navržené metody a modifikace poskytují poznatky o zlepšení účinnosti a efektivity
induktivní syntézy řízené protipříkladem.
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Chapter 1

Introduction

One of the eternal goals of mankind has always been automation, the creation of machines
capable of carrying out various tasks ranging from simple tasks like repeating just one par-
ticular thing repeatedly to highly complex self-moving robots and self-driving vehicles that
can navigate throughout the surrounding environment, avoid any obstacles that might be
encountered on a way, and reach designated final destination without any human inter-
ference. The most significant challenge here is undoubtedly navigation with very little or
no information about the surroundings, and therefore uncertainty plays an enormous role.
It is worth noting that the purpose of this thesis does not concern such complex devices
but rather a much simpler one, whose very own core concept is highly connected to those
complex ones.

According to Kochenderfer et. al. [16], there are several types of uncertainty, each
of which fits a different scenario. Since in this case the surroundings are unknown and
generally the state at which we are currently at is not known as well, apparently the best
suit is state uncertainty.

Classic decision making model like Markov decision process (MDP), which modern
verification tools like PRISM [10] or STORM [9] are capable to model check, might seem like
a good candidate to deal with such conditions, however this model is fully observable and it
lacks the ability to model state uncertainty. Such uncertainty can rather be modeled using
the so-called partially observable Markov decision processes [22, 15] (POMDP), which define
states, actions, similarly to classic Markov decision processes (MDP), and additionally
observations, which are means of obtaining information and the results of the actions.

Controlling of POMDPs is, however, an undecidable problem. In general, there are two
different fields that deal with the POMDPs control. The first one in the form of simulation
[21] and reinforcement learning techniques [13] is usually applied when the model is not
available in some compact way, such as models dealing with the concept of infinity, since this
approach offers great scalability with the other drawbacks of the problematic interpretation
and not really guaranteed correctness. The second option is to employ the formal methods.
First one, and perhaps less important for the purpose of this thesis, are belief-state Markov
decision processes, where states are a distribution of probability over the states of original
POMDP, the so-called beliefs. These beliefs are updated according to previous actions
taken [19]. This method similarly to already mentioned reinforcement learning techniques
also brings a rather unfriendly ways of interaction together with the size problem of smaller
models, for which the beliefs might be huge. The second options is a finite-state controllers
(FSCs), which are the alternative representation of history maintained in some inner state
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[17]. FCSs possess two undoubtedly beneficial assets, such as a relatively small and compact
size and easy verification, which reveal their hidden potential.

Junges et. al. [14] suggests and proves that identifying such an FSC is as difficult as
synthesis for parametric Markov chains and thus leads to their synthesis. Andriushchenko
et. al. [3] describes current state of the art methods which aims for deterministic FSCs
rather than stochastic ones, as those are less difficult to obtain and also benefits from
reproducibility of their behavior. FSC is searched for by symbolically representing the
design space, which contains finitely many FCSs, as a propositional logic formula and
employing learner-teacher framework in which the learner constructs the design space and
teacher offers the best possible FSC which learner may either accept or rejects it and
adapts the design space. We already mentioned that FSCs searching is possible to reduce
to topology synthesis in the Markov chain and thus for the teacher purpose Andriushchenko
et. al. [3] proposes the usage of inductive synthesis methods. The key of the aforementioned
methods is to investigate the individual members of the Markov chain family and pick the
one that satisfies all the constraints. This can be achieved in a variety of ways such as
abstraction refinement (AR) which leverages creating a symbolic representation of a family,
model checking it and optionally splitting it into subfamilies [8], counterexample-guided
inductive synthesis (CEGIS) in which for unsatisfying members the counterexamples are
constructed in the form of critical subsystems which then allows removing other members
and thus speeding up the exploration process [7], or hybrid solution which combines the
best bits of AR and CEGIS [2] where all these three methods are in practice implemented
in tool called Probabilistic progrAm sYNThesizer (PAYNT) [4].

The goal of this thesis is to improve the state-of-the-art approach described in [3] by
focusing on the CEGIS technique. The key results obtained from article [7] revealed that
CEGIS performance fluctuates with different inputs, crucial is the program hole distribution
among the Markov chain and thus we aim to find new and innovative approaches to tackle
the counterexamples constructing. Specifically we talk about lifting the CEGIS method to
use Markov decision process based counterexamples. One way how to achieve this is to
use a tool for the computation of Small WITnessing SubSystems (SWITSS) and integrate
it to PAYNT to serve as a new way of constructing the counterexamples, it utilizes the
reduction of the problem to a mixed-integer linear programming [11, 12]. This however fails
miserably as it delivers almost the same results as Markov chain based counterexamples with
enormous time overhead. Following these findings we decide to march forward with greedy
construction of Markov decision process based counterexamples as the exact solutions and
heuristics which SWITSS is able to perform are unusable at this state.

Key contributions

Key contributions of this thesis are:

1. Examination of the usability of the SWITSS program and its potential to provide
counterexamples for MDPs by solving mixed-integer linear program.

2. Definition of a greedy method for constructing counterexamples for MDPs based on
the greedy method for MC counterexamples implemented in PAYNT tool.

3. Introducing the way how to leverage such greedy method for MDP counterexamples,
and MDP counterexamples in general in a PAYNT CEGIS loop.
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4. Implementation of the new counterexample generator for MDPs in PAYNT, and con-
tributing such implementation to the PAYNT GitHub repository.

5. Experimental evaluation of the introduced and implemented greedy counterexample
for MDP generator on the set latest POMDP models from PAYNT repository.

6. Showing that the method possess a potential as from the results of the evaluation
stands out that for several POMDP models this new way of constructing MDP coun-
terexamples surpasses the state of the art results.

Structure of the project

In Chapter 2 we outline the core theory which is considered as a bare theory minimum nec-
essary for this thesis, and that are the Markov chains, Markov decision process, partially
observable Markov decision process, and their respective model checking. We will also touch
on the key idea of so-called counterexamples with reference to Markov chains and Markov
decision process and finite state controllers, which refers to partially observable Markov
decision process. Next in Chapter 3 we focus more deeply on inductive synthesis of finite
state controllers for partially observable Markov decision processes and its connection with
the synthesis of Markov chains from families of Markov chains with parameters. Mainly
the counterexample guided inductive synthesis, abstraction refinement synthesis and hy-
brid dual-oracle synthesis. In the Chapter 4 Python program PAYNT is described and its
connection with the synthesis of FSCs and MCs. In Chapter 5 we define counterexam-
ples for Markov decision processes and explore the existing approaches how to construct
such counterexamples, mainly the Python program SWITSS and its possible usage in the
PAYNT program, integration to the PAYNT program and comparing the results with the
current greedy approach. Then we outline the greedy algorithm for Markov decision process
counterexamples construction based on the existing algorithm for Markov chain counterex-
amples. Finally, in Chapter 6 we show a practical approach on how to use Markov decision
process based counterexamples in the CEGIS inside the PAYNT program, whose key idea
is based on the so-called simple holes (parameters) generalization. We also outline a couple
of strategies to attempt a smarter simple holes generalization and at last we experimentally
evaluate implemented methods.
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Chapter 2

Preliminaries

In this chapter, we introduce an important theory and notation which we use as the basis
for this thesis. The preliminary sections will cover some of the core stochastic models and
the techniques used for their verification. Firstly, we refer to the Markov chains, one of
the simplest models for probabilistic programs. In particular, we are interested in discrete-
time Markov chains, a specific type of Markov chain. In this context, we also touch on the
principles of model checking and counterexamples, which are both closely related to Markov
chain verification. Eventually, the more advanced models referred to as Markov decision
processes are discussed, which lifts the Markov chains adding non-determinism. Last but
not least, the generalization of Markov decision processes called partially observable Markov
decision processes is described. All preliminaries are accompanied by simple and easy-to-
understand examples and figures. The Definition 2.1 and Definition 2.2 are taken over and
adapted from [7]. The theory for Section 2.1 and its Subsection 2.1.1 about Markov chains
and their model checking are from Books [18, 5]. The Subsection 2.1.2 on counterexamples
for Markov chains is heavily inspired and adapted from Article [23]. The Section 2.2 and its
Subsection 2.2.1 on Markov Decision Processes and its Model Checking are adapted from
[8, 10, 1]. Finally Section 2.3 which revolves around Partially observable Markov decision
processes is based on Articles [14, 3].

2.1 Markov Chains
The most basic of the Markov models, which is at the same time the core of all the Markov
models from which all the other Markov models are derived, is a Markov chain (MC). There
are two types of MC, discrete-time Markov chain (DTMC) which works with the discrete
points and continuous-time Markov chain (CTMC) operating on whole intervals. Since
CTMCs are not the topic of this thesis, we can simplify abbreviations, and thus we will
refer to DTMC as MC. The core feature of the MC is a Markov property which states that
the next state is determined only by the current state and not the previous states.

Definition 2.1. A probability distribution over a finite set 𝑆 is a function 𝜇 → [0, 1] with∑︀
𝑠∈𝑆 𝜇(𝑠) = 1. Let 𝐷𝑖𝑠𝑡𝑟(𝑆) denote the set of all distributions over 𝑆. Let 𝑠𝑢𝑝𝑝(𝜇) = {𝑠 ∈

𝑆 | 𝜇(𝑠) > 0}.

Definition 2.2. A discrete-time Markov chain (MC) 𝐷 is defined as a tuple (𝑆, 𝑠0, 𝑃 )
where 𝑆 is the finite set of states, 𝑠0 ∈ 𝑆 is the initial state, and the transition probability
matrix 𝑃 : 𝑆 → 𝐷𝑖𝑠𝑡𝑟(𝑆).
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MC is a state-transition system where from each state 𝑠 ∈ 𝑆 the system can make the
transition to one of its successor states, this choice is denoted as 𝑃 (𝑠). This implies that
the probability of the system making a transition from state 𝑠 to 𝑡 where 𝑠, 𝑡 ∈ 𝑆 is denoted
as 𝑃 (𝑠)(𝑡), which could be simplified to 𝑃 (𝑠, 𝑡) for the sake of readability. Then for each
state 𝑠 ∈ 𝑆 the set of possible successors is defined as 𝑠𝑢𝑝𝑝(𝑃 (𝑠)). Iff condition 𝑃 (𝑠, 𝑠) = 1
holds, then the state is called the absorbing state because once this state is reached there
is no possible transition to any other state.

Path 𝜔 is a finite or infinite non-empty sequence of states 𝑠0, 𝑠1, 𝑠2, ... where ∀𝑖 ∈ 𝑁0 :
𝑃 (𝑠𝑖, 𝑠𝑖+1) > 0. This generally holds for any path, so that the state 𝑠0 does not actually
have to denote an initial state of MC. The path where 𝑠0 ∈ 𝑆 is an actual initial state is
called the execution of MC. We denote 𝑃𝑎𝑡ℎ𝑠𝐷(𝑠) or possibly 𝑃𝑎𝑡ℎ𝑠𝐷𝑓𝑖𝑛(𝑠) to represent a set
for all infinite or possibly finite paths that are able to be taken from the state 𝑠. Shortcuts
𝑃𝑎𝑡ℎ𝑠𝐷 respectively 𝑃𝑎𝑡ℎ𝑠𝐷𝑓𝑖𝑛 denote that the starting point of all the paths in the set is
the initial state 𝑠0 of MC 𝐷.

𝜔(𝑖) denotes an i-th state of the sequence, |𝜔| represents the length of the sequence,
and for finite paths, we define a 𝑙𝑎𝑠𝑡(𝜔) to represent a last state of the sequence. Using the
Markov property, we can quantify the probability of a specific finite path with the help of
a transition probability matrix as follows: P[𝑠0, 𝑠1, 𝑠2, ..., 𝑠𝑛] =

∏︀𝑛−1
𝑖=1 𝑃 (𝑠𝑖, 𝑠𝑖+1). However,

this approach brings certain difficulties for infinite paths, as the result yields a probability
mass zero. This problem can be mitigated by the introduction of cylinder sets. Cylinder set
𝐶𝑆(𝜔) for a finite path 𝜔 is by definition a set of all infinite paths with the common prefix of
path 𝜔. Then the probability of 𝐶𝑆(𝜔) is computed as 𝑃 (𝑠0, 𝑠1) ·𝑃 (𝑠1, 𝑠2) ·𝑃 (𝑠1, 𝑠2), ... [18].

Occasionally, visualization of MC in a graph form is desirable, where nodes represent the
states, and edges represent the probabilities that the transition from one state to another
will be taken. Transitions with a probability equal to zero are omitted. This is illustrated
in Figure 2.1.
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(a) MC graph
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0 1 0 0
0.5 0 0 0.5
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(b) MC transition probability matrix

Figure 2.1: Basic MC with 4 states which 2 of them are absorbing.

Example 2.1. The path 𝜔 = 𝑠0, 𝑠2, 𝑠0, 𝑠1 is one of the possible executions of the MC from
Figure 2.1. The probability that this execution occurs can be computed as 𝜔 is 𝑃 (𝑠0, 𝑠2) ·
𝑃 (𝑠2, 𝑠0) ·𝑃 (𝑠0, 𝑠1) =

1
2 ·

1
2 ·

1
2 = 1

8 . In addition, the general probability of reaching the state
𝑠1 ∈ 𝑆 eventually can be computed as the sum of the probabilities of all finite paths ending
in the state 𝑠1:
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P[𝑠0, 𝑠1] + P[𝑠0, 𝑠2, 𝑠0, 𝑠1] + P[𝑠0, 𝑠2, 𝑠0, 𝑠2, 𝑠0, 𝑠1] + ... =
1

2
+

1

8
+

1

32
+ ... =

2

3

or we can take advantage of the cylinder sets, because we can write the set of all the paths
that will eventually end up in the state 𝑠1 as

⋃︀
𝑖∈𝑁0

𝑠0, (𝑠2, 𝑠0)
𝑖, 𝑠1 and this probability is

calculated as:

∞∑︁
𝑖=0

P[𝑠0, (𝑠2, 𝑠0)𝑖, 𝑠1] =
1

2
·

∞∑︁
𝑖=0

(︂
1

4

)︂𝑖

=
1

2
· 1

1− 1
4

=
2

3

2.1.1 Model Checking MCs

Model checking of MC is a base method to demonstrate the behavior of MC, more precisely
the ability to satisfy certain properties. This is typically checked by computing various prob-
abilities throughout the whole model to confirm the likelihood of specific events that either
prove or deny the feasibility of those properties. Model checking processes are algorithms
that take model specification of an MC together with a set of properties in probabilistic
temporal logic, which the model should be verified against, and yield the feasibility results
for each property.

Probabilistic Computation Tree Logic (PCTL) is the most common type of temporal
logic used for the verification of the MC model.

Definition 2.3. The syntax of PCTL is as follows:

Φ ::= 𝑡𝑟𝑢𝑒 | 𝑎 | ¬Φ | Φ ∧ Φ | 𝑃◁▷𝜆[𝜑]

𝜑 ::= 𝑋Φ | Φ𝑈≤𝑘Φ

where a is an atomic proposition, ◁▷∈ {<,≤, >,≥}, 𝜆 ∈ [0, 1] and 𝑘 ∈ 𝑁 ∪ {∞}.

These PCTL formulae are interpreted over the states of MC. There are two types of
formulae, state formulae Φ and path formulae 𝜑 that are evaluated over states or paths,
respectively. For the MC properties, only the state formulae are used, since the path
formulae serve only as a parameter to a 𝑃◁▷𝜆[...] state formulae operator. MC satisfies the
property 𝑃◁▷𝜆[𝜑] if the probability of satisfying 𝜑 lies within the interval specified by ◁▷ 𝜆.
As path formulas only 𝑋Φ which denotes that the formula is satisfied in the next state,
and Φ𝑈≤𝑘Ψ (bounded until) denotes that Φ is satisfied within the 𝑘 steps and Ψ is true
up until that point. Placing the 𝑘 = ∞ we obtain the unbounded until which might be
simplified to Φ𝑈Ψ. Diamond operator ◇ (eventually) simplifies the formulas further away,
since ◇Φ means that Φ is eventually true and ◇≤𝐾Φ analogously that Φ is true within the
𝑘 steps. For a state 𝑠 that satisfies the formula Φ or a path 𝜔 that satisfies the formula 𝜑
we write 𝑠 |= Φ respectively 𝜔 |= 𝜑 and the negation of the satisfiability 𝑠 ⊭ Φ or 𝜔 ⊭ 𝜑.
Properties 𝜙 = 𝑃◁▷𝜆[𝜑] where ◁▷∈ {<,≤} are called safety properties and their counterparts
where ◁▷∈ {>,≥} are called liveness properties.

The core essential property around which this thesis will revolve is the unbounded
reachability, as even very complex PCTL formulae may be reduced just to this property.
Given the set of target states 𝑇 ⊆ 𝑆 property 𝜙 ≡ P[𝑠 |= 𝐹 𝑇 ] (we simplify the diamond
operator ◇ to 𝐹 because of readability and compatibility with the information mentioned in
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the following chapters) stands for probability that from state 𝑠 ∈ 𝑆 any of the target states
in 𝑇 is eventually reached. The qualitative version of this property 𝜙 ≡ P◁▷𝜆[𝑠 |= 𝐹 𝑇 ]
is satisfied iff the probability falls within the given threshold 𝜆 and thus 𝑠 |= 𝜙 ⇔ P[𝑠 |=
𝐹 𝑇 ] ◁▷ 𝜆. Lifting the unbounded reachability to the whole MC, the model 𝐷 satisfies the
property iff the initial state satisfies said property: 𝐷 |= 𝜙 ⇔ 𝑠0 |= 𝜙.

The algorithmic way of model checking the MC 𝐷 against the reachability property
𝜙 ≡ P◁▷𝜆[𝑠 |= 𝐹 𝑇 ] consists of obtaining the probability of eventually reaching any of
the target states from 𝑇 ⊆ 𝑆 for each state 𝑠 ∈ 𝑆 P[𝑠 |= 𝐹 𝑇 ] and checking the if the
P[𝑠0 |= 𝐹 𝑇 ] ◁▷ 𝜆 holds for the initial state of the MC. This computation leads to a solution
of a system of linear equations and is shown in detail in Algorithm 1.

Algorithm 1: Computing unbounded reachability probabilities for MC.
Input: MC 𝐷 = (𝑆, 𝑠0, 𝑃 ), set of target states 𝑇 ⊆ 𝑆
Output: Vector with probabilities 𝑥(𝑠) = P[𝑠 |= 𝐹 𝑇 ] for each 𝑠 ∈ 𝑆

1 𝑆0 := {𝑠 ∈ 𝑆 | P[𝑠 |= 𝐹 𝑇 ] = 0} /* graph problem */
2 𝑆1 := 𝑇
3 𝑆? := 𝑆 ∖ (𝑆0 ∪ 𝑆1)
4 Find the solution for the following system of linear equations:

𝑥(𝑠) =

⎧⎪⎨⎪⎩
0, if 𝑠 ∈ 𝑆0

1, if 𝑠 ∈ 𝑆1∑︀
𝑠′∈𝑆 𝑃 (𝑠, 𝑠′) · 𝑥 (𝑠′) if 𝑠 ∈ 𝑆?

5 return 𝑥

Example 2.2. When we return to the MC from Figure 2.1 and Example 2.1 we now
can compute the the same probability using this algorithm. 𝑆0 = {𝑠3}, 𝑆1 = {𝑠1} and
𝑆? = {𝑠0, 𝑠2}.

𝑥(𝑠0) =
1

2
𝑥(𝑠1) +

1

2
𝑥(𝑠2)

𝑥(𝑠1) = 1

𝑥(𝑠2) =
1

2
𝑥(𝑠0) +

1

2
𝑥(𝑠3)

𝑥(𝑠3) = 0

Obtaining the vector 𝑥 = (23 , 1,
1
3 , 0)

𝑇 and checking against the result yielded by basic
probability or cylinder set computation, we verify that P[𝐹 {𝑠1}] = 2

3 . With the help of the
computed vector of unbounded reachability probabilities of MC 𝐷, the model can now be
verified against various properties, for example 𝐷 |= 𝒫>0.5[𝐹 {𝑠1}], 𝐷 ⊭ 𝒫<0.6[𝐹 {𝑠1}] or
𝐷 ⊭ 𝒫>0.75[𝐹 {𝑠1}].

Remark. For the simplicity we focus only on unbounded reachability properties in this
thesis, however, there is also a reward-based property defined as 𝜙 |= 𝑅◁▷𝜆[𝐹 𝑇 ] denotes a
property tied to a expected value of reward in a set of target states 𝑇 ⊆ 𝑆. More detailed
this is described in [20]. Moreover, the reward-based properties will be supported by the
algorithms introduced later on.
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2.1.2 Counterexamples for MCs

During the model checking process, if some specification 𝜙 is rejected, it is very useful to
provide a specific execution of MC that violates the said specification which would act as
the so-called counterexample (CE). In general, there are two ways to represent CE in the
model-checked MC: either a set of paths or a critical subsystem. Both these approaches
are described in great detail in the book [23], therefore we will only mention the essential
piece of information.

First, let us dig into the probably more straightforward way, which delivers the CE in
the form of a set of paths in MC. Having the specification 𝜙 ≡ P◁▷𝜆[𝐹 𝑇 ], the probabilities
of such paths must add up so it violates the ◁▷ 𝜆 qualitative property. For the safety
property ◁▷∈ {<,≤} CE is in the form of a set of finite paths that end up in any of the
states 𝑠 ∈ 𝑇 whose probabilities summed together exceed 𝜆. In general, we are trying to
show that the probability of reaching some state 𝑠 ∈ 𝑇 is higher than the specification
value. On the other hand, with the liveness property ◁▷∈ {>,≥} it must be shown that the
probability of reaching any state 𝑠 ∈ 𝑇 is lower than 𝜆 or turning the specification around
so that the probability of never reaching any of the states 𝑠 ∈ 𝑇 exceeds (1 − 𝜆). This
CE can be represented as a set of infinite paths that violate the specification 𝜙 and their
summed probabilities exceed (1−𝜆). As already mentioned, it is rather a pitfall to operate
on infinite paths, and thus using a cylinder set CS(𝜔) where 𝜔 leads to a bottom strongly
connected component (BSCC) from where it is impossible to reach any of the states 𝑠 ∈ 𝑇
helps in this case a lot. If the individual probabilities of such SCs accumulate to a higher
value than (1− 𝜆) then it can serve as a CE for this specification in the particular MC.

The other way to provide CE for a pair of specification and MC is the critical subsystem.
In this thesis, this will be the preferred form of doing so, as this approach is quite compact
and handy in contrast with providing a set of paths, since that can sometimes be quite
overwhelming, as providing all the possible executions might grow in size quite quickly.
Critical subsystem 𝐷↓𝐶 is a fragment of the original MC 𝐷 that includes only the critical
paths and states that already violate the specification 𝜙 on their own and hence, even when
containing only the portion of the original size of the MC 𝐷 its sets of paths 𝑃𝑎𝑡ℎ𝑠𝐷↓𝐶

and 𝑃𝑎𝑡ℎ𝑠𝐷↓𝐶𝑓𝑖𝑛 match the CE. Let us formally define this critical subsystem with regard to
safety and liveness properties.

Definition 2.4. Let 𝐷 = (𝑆, 𝑠0, 𝑃 ) be an MC, state 𝑠⊥ such that 𝑠⊥ /∈ 𝑆 and 𝐶 ⊆ 𝑆 such
that 𝑠0 ∈ 𝐶. The sub-MC wrt. C is an MC 𝐷↓𝐶 = (𝐶 ∪ {𝑠⊥}, 𝑠0, 𝑃 ′) where the transition
probability matrix 𝑃 ′ is defined as follows:

𝑃 ′ (︀𝑠, 𝑠′)︀ =
⎧⎪⎨⎪⎩
𝑃 (𝑠, 𝑠′) if 𝑠, 𝑠′ ∈ 𝐶,

1−
∑︀

𝑠′′∈𝑆∖𝐶 𝑃 (𝑠, 𝑠′′) if 𝑠 ∈ 𝐶 and 𝑠′ = 𝑠⊥,

1 if 𝑠 = 𝑠′ = 𝑠⊥.

Definition 2.5. Let 𝐷 = (𝑆, 𝑠0, 𝑃 ) be an MC, 𝜙 ≡ P≤𝜆[𝐹 𝑇 ] be a safety property such that
𝐷 ⊭ 𝜙 and 𝜙′ ≡ P≥𝜆[𝐹 𝑇 ] be a liveness property such that 𝐷 ⊭ 𝜙′. Then if for some 𝐶 it
holds that 𝐷 ↓ 𝐶 ⊭ 𝜙 as well, then the set 𝐶 and the corresponding subsystem 𝐷 ↓ 𝐶 are
called critical. For liveness property this holds very similarly; however, the corresponding
subsystem needs to violate the slightly modified specification such as 𝐷↓𝐶 ⊭ P≥𝜆[𝐹 𝑇∪{𝑠⊥}]
because not including this so-called sink state as a valid target state would result in the
construction of such tiny CEs that would contain only the initial state of the original MC.
When |𝐶| ≤ |𝐶 ′| for every 𝐶 ′ then we call it a minimal critical subsystem.
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As already pointed out, critical subsystems will be the form of CE which will serve as
a reference point in this thesis. The construction of such a critical subsystem is usually
based on gradually expanding the subsystem and adding paths and states from the original
MC. The starting point for the expansion is usually the initial state of the MC. After
each expansion step, the subsystem is model checked against the specification, and once
this specification is not satisfied, the current subsystem may be proclaimed the CE. This
algorithm is guaranteed to terminate eventually as the original MC 𝐷 violates the property
for sure and thus the worst case is that the critical subsystem is the whole original MC.
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Figure 2.2: CE for a MC 𝐷 from Figure 2.1 and safety property P<0.6[𝐹 {𝑠1}].
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Figure 2.3: CE for a MC 𝐷 from Figure 2.1 and liveness property P>0.75[𝐹 {𝑠1}].

Example 2.3. Let us first briefly demonstrate the counterexamples in the form of finite
(infinite) paths. Recalling the MC 𝐷 from Figure 2.1 and the computed unbounded reacha-
bility vector in Example 2.2 we can now construct a CE in the form of a set of finite paths
{𝑠0𝑠1, 𝑠0𝑠2𝑠0𝑠1} for a specification P<0.6[𝐹 {𝑠1}] and CE for specification P>0.75[𝐹 {𝑠1}] as
a set of all infinite paths with the common prefix 𝑠0, 𝑠2, 𝑠3 as this prefix leads to a BSCC
from which the target state may never be reached.

Now we deliver a critical subsystem corresponding to the CE based on the already shown
path. In Figure 2.2a critical paths are colored red. The critical set of states 𝐶 = {𝑠0, 𝑠1, 𝑠2}
for a safety property P<0.6[𝐹 {𝑠1}] induce a critical subsystem 𝐷↓𝐶 that violates the property
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P<0.6[𝐹 {𝑠1}] and all states from 𝑆 ∖ 𝐶 which are not present in the critical subsystem are
replaced by the sink state which acts as a common reroute for all transitions that are no
longer needed due to the state being replaced by the sink state. A very similar approach may
be seen in Figure 2.3a and Figure 2.3b for the liveness property P>0.75[𝐹 {𝑠1}], but this time
the critical paths are colored green and the critical set of states 𝐶 ′ = {𝑠0, 𝑠2, 𝑠3} induces
a different critical subsystem 𝐷 ↓ 𝐶 ′ that violates the modified property P>0.75[𝐹 {𝑠1} ∪
{𝑠⊥}]. Adding the sink state 𝑠⊥ among the target states is a crucial step when constructing
the CE for the liveness properties, as leaving out this modification would cause incorrectly
constructed CEs that contain only the initial state of the MC.

2.2 Markov Decision Processes
Markov decision process (MDP) is MC enriched with a new concept of actions which in-
troduce nondeterministic choices to a model. This modification lifts the MC so that now
the transitions in the model are driven by both nondeterministic (potentially determin-
istic as we later introduce the concept of schedulers) choice and the original probability
distribution.

Definition 2.6. A Markov decision process (MDP) is a tuple 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) where 𝑆
and 𝑠0 are identical to those defined in Definition 2.2, 𝐴𝑐𝑡 is a finite set of actions and a
partial transition probability function 𝒫 : 𝑆 ×𝐴𝑐𝑡 ↛ 𝐷𝑖𝑠𝑡𝑟(𝑆).

We denote the set of available actions in each state 𝑠 ∈ 𝑆 as 𝐴𝑐𝑡(𝑠) = {𝑎 ∈ 𝐴𝑐𝑡 |
𝒫(𝑠, 𝑎) ̸=⊥}. If for all states 𝑠 ∈ 𝑆 in MDP condition |𝐴𝑐𝑡(𝑠)| = 1 holds, then it is an MC
since having only one available action to take from each state removes the nondeterminism
and leaves us with only the probability distribution. We employ a similar simplification
as we did for the MC and thus 𝒫(𝑠)(𝑎)(𝑠′) may be exchanged for 𝒫(𝑠, 𝑎, 𝑠′). The path
of an MDP 𝑀 is either a finite or infinite non-empty sequence consisting of actions and
states that we denote like 𝜋 = 𝑠0

𝑎0−→ 𝑠1
𝑎1−→ · · · , where 𝑠𝑖 ∈ 𝑆, 𝑎𝑖 ∈ 𝐴𝑐𝑡(𝑠𝑖) and ∀𝑖 ∈ 𝑁0 |

𝒫(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1) > 0. The set of finite or infinite paths in MDP 𝑀 is denoted by 𝑃𝑎𝑡ℎ𝑠𝑀𝑓𝑖𝑛 or
𝑃𝑎𝑡ℎ𝑠𝑀 . Omitting the actions in the path definition induces the (in)finite path definition
for MC. For a finite path 𝜋 we also define the last state 𝑙𝑎𝑠𝑡(𝜋). The probability of a finite
path 𝜋 could be computed similarly as for a path in MC: P[𝑠0, 𝑎0, 𝑠1, 𝑎1, 𝑠2, 𝑎2, · · · , 𝑠𝑛] =∏︀𝑛−1

𝑖=1 𝒫(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1).
The same as for MC sometimes the graph visualization is necessary for MDP and a very

similar graph form serves such purpose. The nodes represent states and the edges represent
transitions with the addition of smaller nodes or possible dots representing possible actions.
Outgoing edges from state do not have any probability assigned, and outgoing edges from
an action do have the probability assigned. See Figure 2.4 for details.

Since MDP behaves nondeterministically, usage of schedulers is very useful for dealing
with nondeterminism.

Definition 2.7. A scheduler for an MDP 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) is a function 𝜎 : 𝑃𝑎𝑡ℎ𝑠𝑀𝑓𝑖𝑛 →
𝐴𝑐𝑡 such that 𝜎(𝜋) ∈ 𝐴𝑐𝑡(𝑙𝑎𝑠𝑡(𝜋)) for all 𝜋 in 𝑃𝑎𝑡ℎ𝑠𝑀𝑓𝑖𝑛. Scheduler 𝜎 is memoryless if
𝑙𝑎𝑠𝑡(𝜋) = 𝑙𝑎𝑠𝑡(𝜋′) ⇒ 𝜎(𝜋) = 𝜎(𝜋′) for all 𝜋, 𝜋′ ∈ 𝑃𝑎𝑡ℎ𝑠𝑀𝑓𝑖𝑛. The set of all MDP M
schedulers is Σ𝑀 .

Definition 2.8. The MC induced by MDP 𝑀 and the scheduler 𝜎 ∈ Σ𝑀 is given by
𝑀𝜎 = (𝑃𝑎𝑡ℎ𝑠𝑀𝑓𝑖𝑛, 𝑠0, 𝑃

𝜎) where:
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(a) MDP graph

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(𝑠0, 𝑎0) 1 0 0 0
(𝑠0, 𝑎1) 0 0.5 0.5 0
(𝑠0, 𝑎2) 0 0 1 0
(𝑠1, 𝑎3) 0 1 0 0
(𝑠2, 𝑎4) 0 1 0 0
(𝑠2, 𝑎5) 0.5 0 0 0.5
(𝑠3, 𝑎6) 0 0 0 1

(b) MDP transition probability
matrix for individual actions.

Figure 2.4: Basic MDP with 4 states and 7 actions.

𝑃 𝜎
(︀
𝜋, 𝜋′)︀ = {︃

𝒫(𝑙𝑎𝑠𝑡(𝜋), 𝜎(𝜋), 𝑠′) if 𝜋′ = 𝜋
𝜎(𝜋)−→ 𝑠′

0 otherwise.

Scheduler basically drives deterministically choices in each MDP state. Whenever the
state 𝑙𝑎𝑠𝑡(𝜋) of the path 𝜋 is reached, the scheduler takes action 𝑎 = 𝜎(𝜋) ∈ 𝐴𝑐𝑡(𝑙𝑎𝑠𝑡(𝜋))
and then the transition is made based on the probability distribution 𝒫(𝑙𝑎𝑠𝑡(𝜋), 𝑎). Speci-
fying this further away, if the scheduler 𝜎 is memoryless, mapping from state to actions is
obtained as no matter the path the scheduler will always choose action 𝜎(𝑠) in state 𝑠 ∈ 𝑆.

Example 2.4. Let us use MDP 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) where 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}, 𝐴𝑐𝑡 =
{𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6} and 𝒫 defined in Figure 2.4 by both graph and transition probability
matrix for individual actions. Path 𝜋 = 𝑠0

𝑎2−→ 𝑠2
𝑎5−→ 𝑠0

𝑎0−→ 𝑠0
𝑎1−→ 𝑠1 is one of the possible

executions of MC 𝑀 . The probability of such a path is computed as:

P[𝜋] = 𝒫(𝑠0, 𝑎2, 𝑠2) · 𝒫(𝑠2, 𝑎5, 𝑠0) · 𝒫(𝑠0, 𝑎0, 𝑠1) = 1 · 1
2
· 1
2
=

1

4

We can induce MC 𝑀𝜎 from MDP 𝑀 applying the memoryless scheduler 𝜎 ∈ Σ𝑀 where
𝜎 : [𝑠0 ↦→ 𝑎1, 𝑠1 ↦→ 𝑎3, 𝑠2 ↦→ 𝑎5, 𝑠3 ↦→ 𝑎6] which is equivalent to MC 𝐷 from Figure 2.1.

2.2.1 Model Checking MDPs

MDP model checking uses the same specification language as MC model checking; however,
there are certain differences between those two processes and thus also in the semantics of
the language. The main change resides in the fact that unlike in the MC model checking,
where only one possible outcome was possible, we now might have a set of action in each of
the MDP states to choose from, and thus the resulting probability of reaching some state
from another clearly depends on which actions are favored. We say that the specification
𝜙 holds for an MDP 𝑀 iff it holds for the induced MCs of all schedulers, that is, 𝑀 |=
𝜙 ⇔ ∀𝜎 ∈ Σ𝜎 : 𝑀𝜎 |= 𝜙. Since the number of schedulers for any MDP is infinite, we
restrict the search to only memoryless ones and hence refine the model checking to simple
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finding of maximum or minimum probability with the corresponding scheduler as shown in
Proposition 2.1.

Proposition 2.1. Let 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) and 𝜙 be a property. Then 𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 ∈ Σ𝑀 de-
notes the memoryless schedulers (minimizing/maximizing) such that ∀𝜎 ∈ Σ𝑀 : P[𝑀𝜎𝑚𝑖𝑛 |=
𝜙] ≤ P[𝑀𝜎 |= 𝜙] ≤ P[𝑀𝜎𝑚𝑎𝑥 |= 𝜙].

For a particular specification 𝜙 ≡ P◁▷𝜆[𝐹 𝑇 ] we need to compute a minimizing scheduler
𝜎𝑚𝑖𝑛 in case of liveness property or possibly maximizing scheduler 𝜎𝑚𝑎𝑥 in safety property
scenario. Obtaining such a scheduler allows us to compute the minimum / maximum
probability of reaching 𝑇 from each state that is ∀𝑠 ∈ 𝑆 : 𝑥(𝑠) := 𝑎𝑔𝑔𝑟𝜎∈Σ𝑀P[𝑀𝜎, 𝑠 |= 𝐹 𝑇 ]
where 𝑎𝑔𝑔𝑟 ∈ {𝑚𝑖𝑛,𝑚𝑎𝑥} and then simply lay down and assert 𝑥𝑚𝑖𝑛(𝑠0) ≥ 𝜆 for liveness or
𝑥𝑚𝑎𝑥(𝑠0) ≤ 𝜆 for safety. This computation of the lower (𝑥𝑚𝑖𝑛) and upper (𝑥𝑚𝑎𝑥) bounds of
reachability probabilities leads to a solution of mixed-integer linear program (MILP). For
a simplification purposes we also may refer to 𝑥𝑚𝑖𝑛(𝑠0) and 𝑥𝑚𝑎𝑥(𝑠0) as P𝑚𝑖𝑛 and P𝑚𝑎𝑥.
In Algorithm 2 a detailed approach is described to compute 𝑥𝑚𝑎𝑥. By rearranging some
of the operators, we can obtain the steps for computing the 𝑥𝑚𝑖𝑛 as well. MILP solution
gives the exact answers; however, there is a significant drawback with scalability on larger
models and thus value iteration or policy iteration methods are usually applied instead of
MILP solving [10].

Algorithm 2: Computing unbounded reachability probabilities for MDP.
Input: MDP 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫), set of target states 𝑇 ⊆ 𝑆
Output: Vector with probabilities 𝑥𝑚𝑎𝑥(𝑠) = 𝑚𝑎𝑥𝜎∈Σ𝑀P[𝑀𝜎𝑠 |= 𝐹 𝑇 ] for each

𝑠 ∈ 𝑆
1 𝑆0 := {𝑠 ∈ 𝑆|∀𝜎 ∈ Σ𝑀 : P[𝑀𝜎, 𝑠 |= 𝜙] = 0} /* graph problem */
2 𝑆1 := {𝑠 ∈ 𝑆|∃𝜎 ∈ Σ𝑀 : P[𝑀𝜎, 𝑠 |= 𝜙] = 1} /* graph problem */
3 𝑆? := 𝑆 ∖ (𝑆0 ∪ 𝑆1)
4 Find 𝑥𝑚𝑎𝑥 as solution to MILP where maximizing the

∑︀
𝑠∈𝑆 𝑥(𝑠) subject to

∀𝑠 ∈ 𝑆0 : 𝑥(𝑠) = 0

∀𝑠 ∈ 𝑆1 : 𝑥(𝑠) = 1

∀𝑠 ∈ 𝑆?∀𝑎 ∈ 𝐴𝑐𝑡(𝑠) : 𝑥(𝑠) ≥
∑︁
𝑠′∈𝑆

𝒫
(︀
𝑠, 𝑎, 𝑠′

)︀
· 𝑥

(︀
𝑠′
)︀

5 return 𝑥𝑚𝑎𝑥

2.3 Partially Observable Markov Decision Processes
Partially observable Markov decision process (POMDP) is a generalization of MDP where
we deal with state uncertainty. The agent usually has incomplete information to work
with. We call this piece of information an observation. Agent can then no longer observe
the underlying state of the model and needs to do decisions based on such observations
compared to already introduced models like MC or MDP.

Definition 2.9. A partially observable MDP (POMDP) is a tuple ℳ = (𝑀,𝑍,𝑂) where
𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) is a underlying MDP of ℳ, 𝑍 is a finite set of observations and a
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(deterministic) observation function 𝑂 : 𝑆 → 𝑍. The observation Z is called trivial or
perfect if there is only one state 𝑠 ∈ 𝑆 with 𝑂(𝑠) = 𝑧 for some observation 𝑧 ∈ 𝑍.

Lifting the observation function 𝑂 to paths, such that for 𝜋 = 𝑠0
𝑎0−→ 𝑠1

𝑎1−→ · · · 𝑠𝑛 ∈
𝑃𝑎𝑡ℎ𝑠𝑀𝑓𝑖𝑛 we get the observation sequence 𝑂(𝜋) = 𝑂(𝑠0)

𝑎0−→ 𝑂(𝑠1)
𝑎1−→ · · ·𝑂(𝑠𝑛).

Definition 2.10. An observation-based strategy 𝜌 for a POMDP ℳ is a strategy for un-
derlying MDP 𝑀 such that ∀𝜔, 𝜔′ ∈ 𝑃𝑎𝑡ℎ𝑠𝑀𝑓𝑖𝑛 | 𝜌(𝜔) = 𝜌(𝜔′) with 𝑂(𝜔) = 𝑂(𝜔′).

∑︀ℳ is
the set of observation-based strategies for POMDP ℳ.

Observation-based strategy actions based on observations along a path and the past
actions. Induced MC 𝑀𝜌 is obtained be applying some observation-based strategy 𝜌 on
POMDP. For compact representation of such strategies with finite memory finite-state
controllers (FSCs) are defined. There is a variety of possible FSC representation, but we
will restrict our usage to Mealy machines with the output determined by taken transition
and also we restrict only to deterministic FSCs.

Definition 2.11. A (deterministic) finite-state controller (FSC) for a POMDP ℳ is a
tuple ℱ = (𝑁,𝑛0, 𝛾, 𝛿), where 𝑁 is a finite set of memory nodes, 𝑛0 ∈ 𝑁 is the initial
memory node, 𝛾 is the action mapping 𝛾 : 𝑁 × 𝑍 → 𝐴𝑐𝑡 which determines the action
when the agent is in node n and observers z and 𝛿 is the memory update 𝛿 : 𝑁 × 𝑍 → 𝑁
which updates to a new node based on presence in a particular node 𝑛 and observing 𝑧.
For |𝑁 | = 𝑘 we call an FSC a 𝑘-FSC. Let 𝜌ℱ ∈ Σℳ denote the observation-based strategy
represented by ℱ .

Similarly as observation-based strategy, 𝑘-FSC ℱ may also be applied to POMDP ℳ
to obtain induced MC 𝑀ℱ = (𝑆𝐹 , (𝑠0, 𝑛0), 𝑃

𝐹 ) where 𝑆𝐹 = 𝑆 ×𝑁 and with the usage of
𝑧 = 𝑂(𝑠) :

𝑃𝐹 ((𝑠, 𝑛), (𝑠′, 𝑛′)) = 𝑃 (𝑠, 𝑠′, 𝛾(𝑛, 𝑧)) · [𝑛 = 𝛿(𝑛, 𝑧)]

where Iverson-brackets implies that [𝑥] = 1 if predicate 𝑥 is true and 0 otherwise.

S0,Z0 S1,Z1 S2,Z2 S3,Z1 S4,Z3

S7,Z4

S9,Z5TS8,Z5

S6,Z4S5,Z4

Figure 2.5: A simple maze problem represented as POMDP (adapted from [3]).
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Z0/r

N1N0

Z1/r

Z3/l

Z1/l

(a) Part of a 2-FSC (adapted from
[3]).

S0,N0 S1,N0

S2,N0

S2,N1

S3,N0 S4,N0

(b) Part of the induced MC (adapted from [3]).

Figure 2.6: Part of a FSC and corresponding induced MC for POMDP from Figure 2.5.

Example 2.5. In Figure 2.5 maze problem is depicted as a POMDP ℳ with 𝑆 = {𝑠0, 𝑠1, · · · , 𝑠𝑇 },
𝐴𝑐𝑡 = 𝑢, 𝑑, 𝑟, 𝑙 and 𝑍 = {𝑧0, · · · , 𝑧5}. In Figure 2.6a a fragment in form of 2-FSC may be
seen with 𝛾(𝑛0, 𝑧0) = 𝛾(𝑛0, 𝑧1) = 𝑟 (observing 𝑧0 or 𝑧1 in memory node 𝑛0 results in action
𝑟) and 𝛾(𝑛0, 𝑧3) = 𝛾(𝑛1, 𝑧1) = 𝑙 (observing 𝑧3 in memory node 𝑛0 or observing 𝑧1 in mem-
ory node 𝑛1 yield action 𝑙). Finally Figure 2.6b depicts induced MC obtained by applying
the 2-FSC onto POMDP ℳ.
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Chapter 3

Inductive Synthesis Methods for
POMDPs

From Section 2.3 a certain connection between an FSC and an MC is indicated. This is a
key part of the information on which the idea of controller synthesis is based, which is one
of the possible approaches to tackle the POMDP state uncertainty, which will be described
in more detail. With the usage of parameters, families of MCs can represent many different
realizations with changing topologies and an immutable set of states [8]. Leveraging the
families, one can ask the question, how to synthesize an MC from the family of MCs to
satisfy certain specifications? Similarly, based on the connection between the FSC and an
MC, which will be explained in the following section, the whole concept of MC families
with parameters may be lifted and applied to FSCs as well. Various synthesis methods
such as counterexample-guided inductive synthesis [7], abstraction refinement [8], or the
dual hybrid method [1, 2] can be employed to synthesize searched MC, respectively, FSC.

3.1 Families of FSCs
From what we’ve learned in Section 2.3 a POMDP and a single FSC result into a single
induced MC and hence a POMDP and a set of FSCs induces a set of MCs. In addition,
FSC sets have an additional structure that allows for a concise description of MC sets.

Definition 3.1. A family of full 𝑘-FSCs is a tuple ℱ𝑘 = (𝑁,0 ,𝐾), where 𝑁 is a set
consisting of 𝑘 nodes, 𝑛0 ∈ 𝑁 is the initial node and 𝐾 = 𝑁×𝑍 is a finite set of parameters
where each has its own domain 𝑉(𝑛,𝑧) ⊆ 𝐴𝑐𝑡×𝑁 .

By fixing the value of each parameter, one may obtain a 𝑘-FSC from a family which
shows that each family describes a set of FSCs by varying in the substitutions of the
parameters. Such families are usually described as ℱ𝑘. Generally speaking, a POMDP ℳ
and a family ℱ𝑘 induces the family of MCs ℳ𝐹𝑘 = {𝑀𝐹 |𝐹 ∈ ℱ𝑘} [3].

Remark. From now on we focus families of MCs and ways of their synthesis. As we
already showed the connection between the family of MCs and FSCs, the following synthesis
algorithms will be understood more clearly in the MC world and hence it is just important
to remember that all the following synthesis methods might be used for FSC synthesis as
well.
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3.2 Families of MCs
Definition 3.2. A family of MCs is a tuple 𝒟 = (𝑆, 𝑠0,𝐾,ℬ) where 𝑆 and 𝑠0 are defined
the same as in Definition 2.2, 𝐾 is a finite set of parameters with domains 𝑇𝑘 ⊆ 𝑆 for each
parameter 𝑘 ∈ 𝐾, and ℬ : 𝑆 → 𝐷𝑖𝑠𝑡𝑟(𝐾) is a family of transition probability functions.

The function ℬ maps each state 𝑠 ∈ 𝑆 to a distribution over parameters 𝐾. In contrast
to MC synthesis, such parameters represent unknown options (holes) of a specific model.
The assignment of a specific value, more precisely state, to each of the parameters yields
MC, which represents a concrete realization of a family 𝒟, which is described in the following
definition.

Definition 3.3. A realisation of a family 𝒟 = (𝑆, 𝑠0,𝐾,ℬ) of MCs is a function 𝑟 : 𝐾 → 𝑆
such that ∀𝑘 ∈ 𝐾 : 𝑟(𝑘) ∈ 𝑇𝑘. Realisation 𝑟 induces MC 𝒟𝑟 = (𝑆, 𝑠0,ℬ𝑟) iff ℬ𝑟(𝑠, 𝑠

′) =∑︀
𝑘∈𝐾,𝑟(𝑘)=𝑠′ ℬ(𝑠)(𝑘) for all pairs of states 𝑠, 𝑠′ ∈ 𝑆. Let ℛ𝒟 =

∏︀
𝑘∈𝐾 𝑇𝑘 denote the set of

all the realizations of 𝒟.

The family 𝒟 has finite parameter domains and thus the number of family realisations
is finite too, however, exponential in |𝐾|. All MCs from one family 𝒟 share the same
immutable state space and their topology, such that reachable states may be different.
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1
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S3

0.5

(a) 𝑟1 : 𝑋 ↦→ 𝑠1, 𝑌 ↦→ 𝑠1

0.5

1

0.5

1

0.5

S0

S1
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S3

0.5

(b) 𝑟2 : 𝑋 ↦→ 𝑠1, 𝑌 ↦→ 𝑠3
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0.5
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0.5

1

S0

S1

S2

S3

0.5

(c) 𝑟3 : 𝑋 ↦→ 𝑠2, 𝑌 ↦→ 𝑠1

0.5

0.5

0.5

0.5

1

0.5

S0

S1

S2

S3

0.5

(d) 𝑟4 : 𝑋 ↦→ 𝑠2, 𝑌 ↦→ 𝑠3

Figure 3.1: Family of 4 MCs 𝒟. Grayed out parts of the MC are unreachable.
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Example 3.1. Let us assume a family from Figure 3.1 𝒟 = (𝑆, 𝑠0,𝐾,ℬ) of MCs with the
state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3} and a set of parameters 𝐾 = {𝑋,𝑌, 𝑘0, 𝑘1, 𝑘3} and their
respective domains 𝑇𝑋 = {𝑠1, 𝑠2}, 𝑇𝑌 = {𝑠1, 𝑠3}, 𝑇𝑘0 = {𝑠0}, 𝑇𝑘1 = {𝑠1}, 𝑇𝑘3 = {𝑠3}
(notice that parameters 𝑘0, 𝑘1, 𝑘3 have domains of size 1 and hence are not considered to
be parameters for the simplification) and the family of transition probability functions ℬ
defined in a PRISM style (will be explained later in Chapter 4):

ℬ(𝑠0) =
1

2
: 𝑘1 +

1

2
: 𝑋,

ℬ(𝑠1) =
1

2
: 𝑘1 +

1

2
: 𝑌,

ℬ(𝑠2) =
1

2
: 𝑘0 +

1

2
: 𝑘3,

ℬ(𝑠3) =
1

2
: 𝑘3 +

1

2
: 𝑌.

Currently, there are two defined synthesis problems that the following synthesis methods
are able to tackle. When both the state space 𝑆 and the set of parameters 𝐾 are finite,
then both of these problems are decidable, more precisely, 𝒩𝒫-hard. Let us assume some
specification 𝜙 ≡ P◁▷𝜆[𝐹 𝑇 ].

1. Feasability Synthesis: For a family of MCs 𝒟 and the specification 𝜙 identify a
realisation 𝑟 ∈ ℛ𝒟 such that for an induced MC 𝒟𝑟 |= 𝜙.

2. Maximum Synthesis (optimality): For a family of MCs 𝒟 and specification 𝜙
identify a realisation 𝑟* ∈ ℛ𝒟 such that 𝑟* ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑟∈ℛ𝒟P[𝒟𝑟 |= 𝐹 𝑇 ].

The feasability synthesis problem is basically searching for realisation satisfying all the
given specifications, which may also result in finding no such realisation. The problem of
maximum synthesis then describes finding a realisation that maximizes the probability of
reaching a set of target states 𝑇 . Minimizing is defined analogously.

A very trivial approach may be used to solve the synthesis problem, which is the so-called
one-by-one method. In other words, brute forcing through each realisation 𝑟 ∈ ℛ𝒟 until
either satisfying realisation is found or the specification is proclaimed unfeasible. However,
this method only serves as a proof of concept since for larger families this is unacceptable
due to a state space and parameter space explosion. More sophisticated methods will be
described in the following sections. These methods take advantage of inspecting whole
subfamilies (sets of realisations) or generalizing the results of analysis to subfamilies [1, 4].

Definition 3.4. Let 𝒟 = (𝑆, 𝑠0,𝐾,ℬ) be a family of MCs, and ℛ ⊆ ℛ𝒟 a subset of reali-
sations. A subfamily of 𝒟 consisting of realisations from ℛ is a family 𝒟[ℛ] = (𝑆, 𝑠0,𝐾,ℬ)
where the set of all realisations of the subfamily ℛ𝒟[ℛ] = ℛ.

Definition 3.5. Let 𝒟 = (𝑆, 𝑠0,𝐾,ℬ) be a family of MCs and 𝑟 ∈ ℛ𝒟 be any realisation.
A generalization of 𝑟 in favor of the subset 𝐾 ⊆ 𝐾 of parameters is a set 𝑟 ↑ 𝐾 = {𝑟′ ∈
ℛ𝒟|∀𝑘 ∈ 𝐾 : 𝑟(𝑘) = 𝑟′(𝑘)}.

In other words, a generalization set 𝑟 ↑ 𝐾 defines a maximum set of all realizations
that share the same assignment of parameters from the set 𝐾. Other parameters are not
important.
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3.3 Counterexample-Guided Inductive Synthesis
First possible advanced synthesis method which we will describe and which also a main
contributions of this thesis will revolve around is a counterexample-guided inductive syn-
thesis (CEGIS) introduced in [7]. Core ideas of this synthesis approach are built on top of
the one-by-one approach with possible pruning some of the realisations and thus reducing
the space to explore, it goes as follows. Assuming the set of all realisations of a family
of MCs ℛ𝒟, we randomly pick some realization 𝑟 ∈ ℛ𝒟 and construct the corresponding
induced MC 𝒟𝑟. Let 𝜙 be a property to examine. We model check whether 𝒟𝑟 |= 𝜙, if
the property is satisfied, a satisfying solution (assignment of parameters) is returned in the
form of the realisation 𝑟. If the property, on the other hand, is not met, the critical set of
states 𝐶 for induced MC 𝒟𝑟 and property 𝜙 is computed. Since the critical set 𝐶 usually
contains only a fragment of the original states 𝑆, the subsystem 𝒟𝑟 ↓𝐶, which serves as a
CE, can then be constructed with the omission of some of the parameters 𝑘 ∈ 𝐾, namely
those whose assignment is not relevant.

Definition 3.6. Let 𝒟 = (𝑆, 𝑠0,𝐾,ℬ) be a family of MCs. For a critical subset of states
𝐶 ⊆ 𝑆, a set of relevant parameters (conflict) is obtained as 𝐾 = ∪𝑠∈𝐶𝑠𝑢𝑝𝑝(ℬ(𝑠)).

Using the set of relevant parameters obtained, we have a generalization 𝑟 ↑ 𝐾. Since
any realisation from the generalization set 𝑟 ↑ 𝐾 may differ from 𝑟 only in irrelevant
parameters, it must hold that none of these realisation satisfies the property 𝜙, same as
realisation 𝑟. Formally, we write 𝒟𝑟 ⊭ 𝜙 ⇒ ∀𝑟′ ∈ 𝑟 ↑ 𝐾 : 𝒟𝑟′ ⊭ 𝜙. This way all realisations
from the subfamily generalization are pruned in once, and they don’t have to be model
checked separately. By rejecting the subfamily 𝒟[𝑟 ↑ 𝐾] the generalization set 𝑟 ↑ 𝐾 is
subtracted from the set of all realisations ℛ𝒟. This approach is repeated in a loop and will
result in either finding some realization which creates accepting assignment or proving that
feasible assignment does not exist for this pair of particular family of MCs and property.
The smaller the conflict 𝐶 ⊆ 𝑆, the larger the size of the pruned space is. In Algorithm 3
and also in Figure 3.2 the CEGIS synthesis approach is described in more depth.

Algorithm 3: Counterexample-guided inductive synthesis.
Input: A family of MCs 𝒟 = (𝑆, 𝑠0,𝐾,ℬ), property 𝜙
Output: Realisation 𝑟 ∈ ℛ𝒟 such that 𝒟𝑟 |= 𝜙 or UNSAT in the case of

non-existing such realisation.
1 CEGIS (𝒟, 𝜙):
2 while ℛ𝒟 ̸= ∅ do
3 r := pickRealisation(ℛ𝒟)
4 if 𝒟𝑟 |= 𝜙 then
5 return 𝑟
6 𝒟𝑟 ↓𝐶 := 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚(𝒟𝑟, 𝜙)

7 𝐾 := 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝒟,𝒟𝑟 ↓𝐶)

8 ℛ𝒟 := ℛ𝒟 ∖ 𝑟 ↑ 𝐾

9 return UNSAT
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violate

Model check

feasibleno feasible

Figure 3.2: Counterexmaple-guided inductive synthesis (adapted from [4]).

3.4 Abstraction Refinement
The second synthesis method, which we will mention briefly, is called abstraction refinement
(AR) [8]. AR approach is completely opposite from the CEGIS, as unlike CEGIS, instead
of the one-by-one analysis of the all the realisations of a family of MCs accompanied with
the possible pruning of some realisations having the same set of critical states, it focuses on
examining whole sets of realisations. To analyze a whole set of realisations at once, a special
stochastic process with all the realisations from the examined set, enabled at the same time.
More precisely, from each state 𝑠 ∈ 𝑆 of the mentioned process, there is a nondeterministic
choice of realisation 𝑟 ∈ ℛ𝒟 which simulates the parameters from the assignment of the
set 𝐾. This stochastic model leads to an MDP representation, and informally it is called
a quotient MDP. We outline only the essential information about the MDP quotient in
Definition 3.7, for a more detailed description on how to obtain the MDP quotient, see
article [8].

Definition 3.7. Let 𝒟 = (𝑆, 𝑠0,𝐾,ℬ) be a family of MCs. A quotient MDP of family 𝒟 is
a MDP 𝑀𝒟 = (𝑆, 𝑠0,ℛ𝒟,𝒫) where 𝒫(·)(𝑟) ≡ ℬ𝑟. For the subset ℛ ⊆ ℛ𝒟, a restriction of
𝑀𝒟 with reference to ℛ is an MDP 𝑀𝒟[ℛ], which might be simplified to 𝑀𝒟[ℛ].

Such a quotient MDP is an over-approximating abstraction of some family of MCs as it
over-approximates its each realisation. This furthermore means that the quotient MDP is
capable of simulating any realisation from the given family and it can even switch currently
executed realisations on the fly during the run-time. Since this is an over-approximation
of a family, we need to keep in mind that it is then possible to identify invalid paths in
resulting quotient MDP, that or not consistent, because they are simply combination of
multiple realisations and they do not exist solely within just one realisation. The example
quotient MDP and its transition probability matrix of individual actions, or more precisely
realisations, is depicted in Figure 3.3.

Now we describe the actual synthesis method. From the input set of realisations ℛ𝒟 the
quotient MDP is constructed. Let 𝜙 again be the property to analyze. In the model checking
phase, the minimizing and maximizing bounds 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥 along with the corresponding
lower and upper bounds 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are computed and based on the bounds the set of
realisation is is either accepted, rejected or refined. Now let us assume that property 𝜙 is
a reachability property with threshold 𝜆, if 𝑥𝑚𝑎𝑥 ≤ 𝜆 for a safety property or 𝑥𝑚𝑖𝑛 ≥ 𝜆
for a liveness property then it is safe to assume that each realisation 𝑟 ∈ ℛ satisfies 𝜙.
Analogously, if 𝑥𝑚𝑎𝑥 ≤ 𝜆 for a safety property or 𝑥𝑚𝑖𝑛 ≥ 𝜆 for a liveness property, then
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(a) Quotient MDP graph.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(𝑠0, 𝑎0) 0 1 0 0
(𝑠0, 𝑎1) 0 0.5 0.5 0
(𝑠1, 𝑎2) 0 1 0 0
(𝑠1, 𝑎3) 0 0.5 0 0.5
(𝑠2, 𝑎4) 0.5 0 0.5 0
(𝑠3, 𝑎5) 0 0 0.5 0.5
(𝑠3, 𝑎6) 0 0 0 1

(b) Quotient MDP transition prob-
ability matrix for individual ac-
tions (realisations).

Figure 3.3: Quotient MDP for family of MCs depicted in Figure 3.1.

each realisation 𝑟 ∈ ℛ𝒟 does not satisfy property 𝜙 and hence no feasible solution is found.
The third case occurs when 𝑥𝑚𝑖𝑛 ≤ 𝜆 ≤ 𝑥𝑚𝑎𝑥 and in such a case nothing can be concluded
and the current family needs to be split into two subfamilies ℛ⊤ and ℛ⊥ and these two
subfamilies are then analyzed separately using the AR method and this is repeated until
a feasible solution is found or there is no feasible solution. Schema in Figure 3.4 describes
AR in more detail.

queue of families
pick family

construct quotient MDP
construct

verify

feasibleno feasible

Undecided

not satisfied

Figure 3.4: Abstraction refinement synthesis.

3.5 Hybrid Dual-Oracle Synthesis
Both the previously mentioned synthesis methods, CEGIS and AR, have their strengths
and weaknesses. Both are able to perform really well, but their efficiency depends on the
topology. It is very common that for one family of MCs CEGIS is able to perform really
well and AR lacks behind and the efficiency swaps for some other topology. This unstable
performance leads to a combination of both techniques called hybrid dual-oracle synthesis
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(abbreviated simply hybrid). Hybrid uses best bits of both CEGIS and AR in such a way
that it alternates between the two methods and allocates time to the synthesis method,
which performs better at the moment. It was first introduced in [1] and was improved in
[4], as it allowed to use the bounds obtained from AR in CEGIS to get smaller CEs. The
graphical schema of the functionality of the hybrid synthesis method is shown in Figure 3.5.

AR Oracle Learner CEGIS Oracle

bounds

violatebounds or  violates

noeach

Figure 3.5: Hybrid Dual-Oracle synthesis (adapted from [4]).
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Chapter 4

PAYNT - Probabilistic progrAm
sYNThesizer

Previous chapter outlined the connection between MC synthesis and FSC synthesis and
described three core methods used for the purpose of synthesis. These methods are im-
plemented in the Probabilistic progrAm sYNThesizer (PAYNT)1 tool, written in Python
programming language, first introduced in article [4], which is built on top of the STORM
model checker2 written in C++ language [9]. Stormpy Python bindings3 are leveraged
as middleware between Python PAYNT and C++ Storm. The original purpose of this
program was to perform synthesis of probabilistic programs but is now extended with the
ability to synthesize FSCs as well. This chapter will further describe the connection be-
tween the synthesis of MCs/FSCs and probabilistic programs and how PAYNT is adjusted
for the FSC synthesis.

4.1 PAYNT for probabilistic programs
Despite the fact that MCs are models designed to describe probabilistic systems, in the real
world, they are no longer so practical due to a state space explosion. Instead of pure MCs,
such probabilistic systems are usually described with high-level programming languages
that are designed exactly for such purposes. The talk is about languages like PRISM [10],
JANI [6], and other languages for similar purposes. Only from this description is the actual
MC constructed.

With reference to MC families with parameters described in Section 3.2 the so-called
sketches [7] that represent the incomplete high-level program which contains undefined
parameters with their respective domains from which they need to be assigned to induce
MC. These undefined parameters in the sketch are called holes. Therefore, the probabilistic
synthesis is then responsible for finding the assignment solution for these holes with the
STORM model checker assistance.

4.1.1 PRISM Sketch Language

Program written in PRISM language consists of one or more reactive modules. These
modules are able to interact with each other. The module consists of a set of bounded

1https://github.com/randriu/synthesis
2https://github.com/moves-rwth/storm
3https://github.com/moves-rwth/stormpy
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variables spanning the state space of a model. Transitions are handled by the guarded
commands in the following form:

guard → 𝑝1 : update1 + · · ·+ 𝑝𝑛 : update𝑛.

The guard represents a Boolean expression over the module variables. Evaluating the
guard to a logical value true evolves the module into one of its successor states, which
is achieved by a simple variable update. The probability distribution over expressions
𝑝1, · · · , 𝑝𝑛 deduces the update of a variable. Guards overlapping produces nondeterminism
and hence it is not allowed. Essentially, a program P is a tuple of variables and commands.
For a program P the underlying MC [P] is an MC that functions the same way is P on the
state level. The program P satisfies the specification 𝜙 iff [P] |= 𝜙.

A sketch is an incomplete program containing holes. Holes are the program unfixed
parts that need to be assigned from finite set of options. Holes are declared as:

hole ℎ either {expr1, · · · , expr2},

where ℎ is the hole ID and expr𝑖 stands for an expression over the program variables.
Hole can be used anywhere in the command or variable declaration, as well as part of the
guard or an update expression. Assigning all the available holes in a sketch yields a specific
program. The synthesis methods described in the previous chapter are used exactly to find
such a specific assignment to satisfy certain properties in a reasonable time.

4.2 PAYNT for POMDPs and FSC synthesis
As already mentioned, PAYNT was originally designed to perform synthesis of probabilistic
programs. We already showed the connection between the synthesis of FSCs and MCs,
then how the MCs synthesis is delivered in practice in the form of the synthesis of sketches
of probabilistic programs, and now to enclose the circle, we show how these exact same
methods are applied in POMDPs and FSCs synthesis field. Based on the article [3] that
originally introduced the use of inductive synthesis methods for POMDPs, respectively, for
FSC synthesis, the PAYNT tool was extended to enable the synthesis of FSCs for POMDPs.

In this synthesis mode, the input sketch has no holes as it instead represents the actual
POMDP for FSC synthesis. Holes are, however, still used during the synthesis process,
but they do have a different semantic meaning. Sketch defines all the necessary parts of
the POMDP such as states, actions, transition functions (matrices), and observations. The
synthesis itself then consists of two parts. In the first part, the design space of a set memory
size is created, which includes all the possible FSCs, in the second part this created design
space is then explored in order to obtain the best suitable FSC. Memory size specifies the
number of memory nodes that the synthesized FSC should contain. The exploration of the
design space is carried out using the synthesis methods introduced in Chapter 3.

The program utilizes a list of Python classes which represent individual holes within a
design space. These classes have properties including name, options, and option_labels.
The name of a hole is a string that encodes the memory values of FSCs and observations
received by the agent from POMDP. The name follows a structure of "T([O], M)", where
T specifies the type of hole (A for action, M for memory, or AM for the combination of both),
O denotes the observation as a string, and M represents the numerical memory value of
the node. The ”options“ attribute of the hole class is a list of integers that correspond
to possible outcomes that may occur next, given the received observation. The specific
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outcome depends on the type of hole, which could be an action to take, a memory update,
or a combination of both.

4.2.1 FSC synthesis strategies

Apart from the classic synthesis of FSCs for POMDPs, PAYNT is also able to employ
different strategies during synthesis to obtain better results.

Iterative Strategy

First strategy is called a iterative strategy. This strategy is based on a very simple approach,
as essentially it just iteratively increases the memory size, and thus allowing one to find
FSCs with more memory nodes in a larger design space. This strategy is guaranteed to
find the best available FSC for each memory size at the cost of a longer execution time as
the design space grows significantly in size.

Memory Injection Strategy

The second strategy is called memory injection strategy and was introduced in article [3].
It leverages the information from previous iterations of the design space exploration and
based on these it adds (injects) the memory to inconsistent observations. Then it uses the
symmetry removal approach to shrink the design space again by removing the FSCs with
the same values.
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Chapter 5

Greedy construction of CEs for
MDP

In previous chapters, inductive synthesis methods such as CEGIS or AR were described as a
possible means to synthesize an FSC for POMDP that exhibits certain behaviors to satisfy
given specifications. In this chapter, we will focus on the CEGIS synthesis method and,
more precisely, on the types of CEs and the approaches of creating such CEs. Generally
speaking, as already mentioned in Section 3.3, CEGIS works with MCs, it constructs the
CEs as critical subsystems, a fraction of the original MC, and from the subsystems it infers
the conflicts which then prunes the set of not yet analyzed realisations accordingly. From
now on we will focus on more general CEs, that is, the MDP based CEs, to explore if there
is a potential to obtain smaller number of conflicts and thus prune more realisations from
the set of all realisations.

5.1 Counterexamples for MDP
This section is inspired by the article [12]. The idea of CE for MDP is somewhat analogous
and yet different from the concept of CE for MCs explained in Subsection 2.1.2. Again, let
us have some MDP 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) and a specification 𝜙 ≡ P◁▷𝜆[𝐹 𝑇 ] that is rejected.
Similarly, as with MCs, certain actual execution of a model, which violates the specification
𝜙 and serves as an CE, would be beneficial here. We intentionally omit CEs in form of
the set of paths and focus on the critical subsystems. Path approach is analogous with the
MCs however instead of using the BSCC, its counterpart for MDPs called maximum end
component is used. In the following definition we show a subsystem lifted for MDP.

Definition 5.1. Let 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) be an MDP, state 𝑠⊥ such that 𝑠⊥ /∈ 𝑆 and 𝐶 ⊆ 𝑆
such that 𝑠0 ∈ 𝐶. The sub-MDP wrt. 𝐶 is an MDP 𝑀 ↓𝐶 = (𝐶 ∪ {𝑠⊥}, 𝑠0, 𝐴𝑐𝑡′,𝒫 ′) where
the set of actions 𝐴𝑐𝑡′ and partial transition probability function 𝒫 ′ are defined as follows:

𝐴𝑐𝑡′ = {𝑎 ∈ 𝐴𝑐𝑡|∃𝑠 ∈ 𝐶 .𝑎 ∈ 𝐴𝑐𝑡(𝑠)} ∪ {𝑎⊥},

𝒫 ′ (︀𝑠, 𝑎, 𝑠′)︀ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝒫 (𝑠, 𝑎, 𝑠′) if 𝑠, 𝑠′ ∈ 𝐶 and 𝑎 ∈ 𝐴𝑐𝑡′,

1−
∑︀

𝑠′′∈𝑆∖𝐶 𝑃 (𝑠, 𝑎, 𝑠′′) if 𝑠 ∈ 𝐶 and 𝑎 ∈ 𝐴𝑐𝑡′ and 𝑠′ = 𝑠⊥,

1 if 𝑠 = 𝑠′ = 𝑠⊥ and 𝑎 = 𝑎⊥,

0 𝑒𝑙𝑠𝑒.
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The problem here is the nondeterminism in the MDP model since there may be multiple
outcomes based on the actions that are chosen. Minimizing and maximizing schedulers
𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 together with their respective P𝑚𝑖𝑛 and P𝑚𝑎𝑥 from Subsection 2.2.1 comes in
handy.

Definition 5.2. Let 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) be an MDP, 𝜙 ≡ P≤𝜆[𝐹 𝑇 ] and 𝜙′ ≡ P≥𝜆[𝐹 𝑇 ] be a
safety and liveness properties, such that both 𝑀 ⊭ 𝜙 and 𝑀 ⊭ 𝜙′ hold. Then if for some 𝐶
holds that MC induced by the minimizing scheduler 𝑀 ↓𝐶𝜎𝑚𝑖𝑛 ⊭ 𝜙, then the set 𝐶 and the
corresponding subsystem 𝑀 ↓𝐶 are called critical. Analogously for liveness property, if for
some 𝐶 holds that MC induced by the maximizing scheduler violates a modified specification
𝜙′ such that 𝑀 ↓𝐶𝜎𝑚𝑎𝑥 ⊭ P≥𝜆[𝐹 𝑇 ∪ {𝑠⊥}], then we talk about the critical set 𝐶 and its
corresponding subsystem 𝑀 ↓𝐶. Also, if |𝐶| ≤ |𝐶 ′| for every 𝐶 ′ then we call it a minimal
critical subsystem. For simplification we can talk about the minimal P𝑚𝑖𝑛 and maximal
P𝑚𝑎𝑥 probability.
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(a) MDP graph.

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
(𝑠0, 𝑎0) 0 1 0 0
(𝑠0, 𝑎1) 0 0.5 0.5 0
(𝑠1, 𝑎2) 0 1 0 0
(𝑠2, 𝑎3) 0 0.5 0 0.5
(𝑠2, 𝑎4) 0.5 0 0 0.5
(𝑠3, 𝑎5) 0 0 0 1

(b) MDP transition probability
matrix for individual actions.

Figure 5.1: Basic MDP with 4 states and 6 actions for the purpose of MDP CEs demon-
stration.

Example 5.1. Now, let us briefly showcase the CEs for MDP in the form of critical
subsystems. Let 𝑀 = 𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫 be an MDP from Figure 5.1. In Figure 5.2a the critical
states are colored red and the actions taken by the minimizing scheduler 𝜎𝑚𝑖𝑛 are colored red
as well. A critical set of states 𝐶 = {𝑠0, 𝑠1, 𝑠2} for a safety property P≤0.6[𝐹 {𝑠1}] induces a
critical subsystem (sub-MDP) 𝑀 ↓𝐶. By obtaining the minimizing scheduler 𝜎𝑚𝑖𝑛 and the
corresponding lower bound P𝑚𝑖𝑛, then it is clear that the induced MC 𝑀 ↓𝐶𝜎𝑚𝑖𝑛 violates the
the safety property P≤0.6[𝐹 {𝑠1}] and all states from the set 𝑆 ∖𝐶 which are not present in
the sub-MDP are replaced by the sink state 𝑠⊥ which acts as a common reroute. Similarly
in Figure 5.2b for the liveness property P≥0.75[𝐹{𝑠3}] the CE is depicted as well. This time
the critical set of states 𝐶 ′ = 𝑠0, 𝑠1, 𝑠2 and the actions chosen by the maximizing scheduler
𝜎𝑚𝑎𝑥 are colored green. Induced critical subsystem 𝑀 ↓ 𝐶 ′ together with the maximizing
scheduler 𝜎𝑚𝑎𝑥 induces MC 𝑀 ↓𝐶 ′𝜎𝑚𝑎𝑥 violates the modified property P≥0.75[𝐹 {𝑠1}∪{𝑠⊥}].
Adding the sink state to the set of target states follows the same logic as in Example 2.3.
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Figure 5.2: Liveness and safety property CEs for MDP from Figure 5.1.

There are various approaches to construct such critical subsystems. In the next sections,
we will take a closer look at some existing approaches and also outline a greedy method for
such construction.

5.2 Existing approaches for MDP CEs construction
First we take a closer look at some existing approaches to construct CEs for MDP. A
program called Small WITnessing SubSystems1 (SWITSS) introduced by Jantsch et. al. [11]
and based on the theory of Farkas certificates for lower and upper bounds on minimal and
maximal reachability probabilities in MDP described by the Funke et. al. [12].

The witnessing subsystem (witness) is basically a counterpart of CEs which serves as
a diagnostic information on why a reachability property holds. The SWITSS program
is capable of creating such witnessing subsystems based on the translation between the
witnessing subsystems and Farkas certificates. Without going into too much detail, based
on the reduction of the problem to a mixed integer linear programming (MILP), SWITSS
implements the exact and heuristic approaches to yield the witnessing subsystems for some
concrete specification. Such witnesses are ideal candidates to be used as CEs in CEGIS
technique, and thus the goal here is not to fully understand the SWITSS approach but rather
to consider it as a form of black box that is capable of the construction of CEs. Leveraging
the common interface provided by the STORM model checker, we are able to integrate
SWITSS as a third party CE generator. PAYNT itself is built on top of the STORM and
despite having its own representation for probabilistic models such as MC, MDP, POMDP,
etc., it is at the same time capable of using the STORM models representation. SWITSS is
then able to convert the STORM (more precisely the Stormpy models) into its own internal
representation, and thus the interface bridge exists between these programs.

SWITSS tool is written in Python 3 and Cython programming languages and it makes
use of the common Python 3 libraries like Numpy2 or SciPy3. SWITSS also uses the

1https://github.com/simonjantsch/switss
2https://numpy.org/
3https://scipy.org/
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PRISM and PuLP solver4. Since both SWITSS and PAYNT are mostly written in Python
3 the integration was quite straightforward as it is possible to make the SWITSS calls
directly in the PAYNT code, and thus it essentially involved just converting the models
from STORM to SWITSS representation, creating and calling the particular witness solvers,
which then would yield the small witnessing subsystem, which would be considered CE for
some specification 𝜙. Also, two obstacles were encountered during the integration, which
will be described later on.

From the design perspective, PAYNT program, more precisely the CEGIS loop, was
changed that way that it is able to plug in various CEs generators if they follow the specified
interface instead of having just one possible instance. It is now possible to choose the desired
CE generator from the command line by just specifing the name, we currently have storm,
which will be described in more detail in the next Section 5.3, and switss CE generators.
Schema of the integration is depicted in Figure 5.3.

Model check
feasibleno feasible

SWITSS CE
generator

(MC, MDP)

STORM CE generator
(MC)

Pick CE
generator

violate

based on set of conflicts

Future implemented CE
generators

Figure 5.3: Schema of the SWITSS CE generator module integrated into CEGIS loop.

Integration allowed us to use SWITSS to construct both MC and MDP based CEs. As
already outlined, SWITSS has its limitations. The first limitation is that it is not able to
create CEs for reward-based properties 𝜙 ≡ 𝑅◁▷𝜆[𝐹 𝑇 ]. This problem was not addressed
because CE construction was still possible on reachability properties and mainly because
the results from Section 5.4 rendered SWITSS unusable and it would require one to venture
deeper into a SWITSS codebase. The second limitation showed that SWITSS is not able
to construct CEs for liveness properties, such as 𝜙 ≡ P≥𝜆[𝐹 𝑇 ]. This problem was possible
to address on the PAYNT side by transforming the liveness property into a safety property
with flipped threshold 𝜆, such as 𝜙′ ≡ P<1−𝜆[𝐹 𝑇 ′], compute all BSCCs or maximum end
components in the case of MDP, which then would be collapsed each into one new state and
such states would be proclaimed the new target set of states 𝑇 ′. After such transformation,
the model could be passed to SWITSS solver and the resulting CE would be created. It is
crucial to label the states that originated from collapsed BSCCs/maximum end components

4https://pypi.org/project/PuLP/
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by the number of the original states that these new states replaced, and also it is crucial
to keep all the information about the original model such as labels and sketch hole indices.
In Section 5.4 we present the experimental evaluation of the SWITSS CEs for both MCs
and MDPs and we put them into contrast with the current greedy method implemented in
PAYNT on top of the STORM for construction of MC CEs.

5.3 Greedy method
As already outlined in the previous Section 5.2 and confirmed in the following Section 5.4,
SWITSS is not a suitable candidate for constructing CEs based on MC or MDP as it suffers
from a massive time overhead and incompleteness of the reward property. Portion of the
time overhead might be probably mitigated by very nontrivial changes in the SWITSS
codebase, however, for the time being the ideal solution would be to adopt some greedy
heuristic method for MDP CEs instead of exact solutions obtained by the SWITSS MILP
solvers.

The current implementation of PAYNT uses the greedy approach described by
Adriuschenko et. al. [2] designed to compute CEs providing small conflicts. The key
idea of this procedure, described very briefly, is based on a gradually expanding states of
an MC, which are associated with relevant parameters. We define a new greedy method
in this section, which is based on the very same approach just outlined, by modifying it to
operate on MDPs.

Proposition 5.1. Recall a realisation of a family of MCs from Definition 3.3. By fixing
each parameter based on a realisations we induce an MC 𝒟𝑟. Generalizing this idea, we
may only partially fix the realisations. Let 𝒟 = (𝑆, 𝑠0,𝐾,ℬ) be a family of MCs and 𝐿 ⊆ 𝐾
be a set of parameters. A partial realisation of a family 𝐷 of MCs with reference to some
realisation 𝑟 is a function 𝑟𝐿 : 𝐾 ∖ 𝐿 → 𝑆 such that ∀𝑘 ∈ 𝐾 ∖ 𝐿 : 𝑟𝐿(𝑘) ∈ 𝑇𝑘. Partial
realisation 𝑟𝐿 induces MDP 𝒟𝑟𝐿 = (𝑆, 𝑠0,ℛ𝒟,𝒫), where:

𝒫(𝑠)(𝑟′) =

⎧⎪⎨⎪⎩
ℬ𝑟′ if 𝐿 ∩ 𝑠𝑢𝑝𝑝(ℬ(𝑠)) ̸= ∅,
ℬ𝑟′ if 𝐿 ∩ 𝑠𝑢𝑝𝑝(ℬ(𝑠)) = ∅ and 𝑟′ = 𝑟,

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 else.

In other words we fix each parameter from set 𝐾 ∖ 𝐿 and leave each parameter from
the set 𝐿 unfixed, which leaves us with a structure similar to the quotient MDP defined in
Definition 3.7. In the Figure 5.4 we may observe such induced MDP from partial realisation.

Let us assume that 𝒟𝑟𝐿 violates a reachability property 𝜙 ≡ P◁▷[𝐹𝑇 ]. We first fully define
the concept of rerouting which was already outlined in Definition 2.4 and Definition 5.1.

Definition 5.3. Let MDP 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) with states 𝑠⊤, 𝑠⊥ /∈ 𝑆, set of expanded
states 𝐶 ⊆ 𝑆 and a rerouting vector 𝛾 : 𝑆 ∖𝐶×𝐴𝑐𝑡 → [0, 1]. The rerouting of MDP 𝑀 with
reference to the set 𝐶 and the vector 𝛾 is MDP 𝑀 ↓𝐶[𝛾] = (𝑆∪{𝑠⊤, 𝑠⊥}, 𝑠0, 𝐴𝑐𝑡∪{𝑎⊤⊥},𝒫𝐶

𝛾 )

where 𝒫𝐶
𝛾 is defined as follows:

𝒫𝐶
𝛾 (𝑠) =

⎧⎪⎨⎪⎩
𝒫 (𝑠) if 𝑠 ∈ 𝐶,

[(𝑎⊤⊥, 𝑠⊤) → 𝛾(𝑠), (𝑎⊤⊥, 𝑠⊥) → (1− 𝛾(𝑠))] if 𝑠 ∈ 𝑆 ∖ 𝐶,
[(𝑎⊤⊥, 𝑠) → 1] if 𝑠 ∈ {𝑠⊤, 𝑠⊥}.
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Figure 5.4: Induced MDP from partial realisation 𝑟𝐿1 with the set of unfixed parameters
𝐿 = {𝑋} from the family of MCs depicted in the Figure 3.1.

In other words, 𝑀 ↓𝐶[𝛾] adds two additional sink states 𝑠⊤ (so-called true sink state)
and 𝑠⊥ (so-called false sink state) to MDP 𝑀 , replacing the all actions of any non-expanded
state 𝑠 ∈ 𝑆 ∖ 𝐶 with a single action 𝑎⊤⊥ which leads to sink state 𝑠⊤ with the probability
𝛾(𝑠) and to the sink state 𝑠⊥ with the probability of 1 − 𝛾. True sink state 𝑠⊤ is also
needed to be added among the target states for the sake of handling the liveness properties
as already shown in the Definition 2.5, although in the mentioned definition we kept the
idea simplified to have only one sink state at a time. Rerouted transitions via actions
may be viewed as shortcuts, and thus, the transition is possible to be carried out by just
skipping the successor state completely and moving to one of the sink states directly. In
classic CEGIS the rerouting vector is either 𝛾 = 0 for safety properties or 𝛾 = 1 for liveness
properties, however when using CEGIS in hybrid synthesis, rerouting vectors is based on
lower and upper bounds obtained from the AR.

For obtaining the CE the state expansion (or exploration) is used. First, we start with
the initial set 𝐶0 = ∅ where all states are initially rerouted. We check the if the rerouted
MDP 𝑀 ↓ 𝐶0[𝛾] is the CE and if so, the construction process terminates. Otherwise if
𝑀 ↓𝐶0[𝛾] satisfies the property, the state space needs to be expand with some new state
from 𝑠 ∈ 𝑆 that is particulary reachable from the already explored states. Expanding the
states essentially means that the rerouting is removed and the states retains its original
actions, and thus outgoing transitions. Such rerouting for the safety property 𝜙 is depicted
in the Figure 5.5.
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(a) Set 𝐶 = ∅, all states are rerouted.
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(b) Set 𝐶 = {𝑠0}, rest of the states is rerouted.

Figure 5.5: Construction of CE to MDP from Figure 5.1 for safety property P≤0.6[𝐹 {𝑠1}]
using the rerouting vector 𝛾 = 0.

We now explain the Algorithm 4 which is the modified version of finding the CE lifted
for MDPs. To choose a best suitable state for the expansion, we should aim to obtain
such conflicts which contains low number of the relevant parameters. We keep the same
approach as Andriushchenko et. al. [2] suggests. That is expanding multiple states at once
based on the set of relevant parameters 𝐾. Starting with the empty set of such relevant
parameters 𝐾0 = ∅, only those states that are currently reachable from the initial state 𝑠0
through the successors states which are not associated with any irrelevant parameter (or
hole from the program/sketch point of view). State horizon 𝐻𝑖 contains states that are
possible to be considered for the expansion as they are reachable from the set of states 𝐶𝑖

but they contain at least one irrelevant parameter. Constructing the rerouting 𝑀 ↓𝐶𝑖[𝛾]
and checking it against the property 𝜙 with the possibility of yielding the MDP CE follows.
If the rerouted MDP is still not a CE, we pick some state 𝑠𝑒𝑥𝑝𝑎𝑛𝑑 from the state horizon with
the lowest number of irrelevant parameters and we add those parameters to the conflict 𝐾.
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Algorithm 4: Greedy MDP counterexample construction based on rerouting.
Input: An MDP 𝒟𝑟𝐿 , a property 𝜙 ≡ P◁▷𝜆[𝐹 𝑇 ] such that 𝒟𝑟𝐿 ⊭ 𝜙 and a rerouting

vector 𝛾.
Output: A conflict 𝐾 for MDP 𝒟𝑟𝐿 and property 𝜙

1 ConstructConflict (𝒟𝑟𝐿 , 𝜙, 𝛾):
2 𝑖 := 0

3 𝐾𝑖 := ∅
4 while 𝑡𝑟𝑢𝑒 do
5 𝐶𝑖, 𝐻𝑖 := 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑉 𝑖𝑎𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝒟𝑟𝐿 ,𝐾𝑖)
6 𝐷𝑖 := 𝒟𝑟𝐿 ↓𝐶𝑖[𝛾]
7 if P𝑚𝑖𝑛[𝐷𝑖 |= 𝜙] > 𝜆 and ◁▷∈ {<,≤} then
8 return 𝐾𝑖

9 if P𝑚𝑎𝑥[𝐷𝑖 |= 𝜙] < 𝜆 and ◁▷∈ {>,≥} then
10 return 𝐾𝑖

11 𝑠𝑒𝑥𝑝𝑎𝑛𝑑 = 𝑝𝑖𝑐𝑘𝑇𝑜𝐸𝑥𝑝𝑎𝑛𝑑(𝐻𝑖,𝐾𝑖)

12 𝐾𝑖+1 := 𝐾𝑖 ∪ 𝑠𝑢𝑝𝑝(ℬ(𝑠𝑒𝑥𝑝𝑎𝑛𝑑)) 𝑖 := 𝑖+ 1

13 return 𝐾𝑖

5.4 Experimental evaluation of SWITSS CEs
In this section we take a closer look at the experimental evaluation of the CEs constructed
by SWITSS, both MC and MDP variants, and we compare them with the current greedy
method implemented in PAYNT on top of the STORM, which produces the MC CEs.
Before the experiments, we need to ask the main questions to which we would like to find
answers by conducting these experiments, those are:

1) What is the quality of the size and construction speed of CEs constructed by SWITSS
compared to the current approach?

2) Is the SWITSS program a viable tool to march onward with for the MDP CEs con-
structing?

5.4.1 Experiments settings

Since we needed to obtain the direct side-by-side comparison of the STORM and SWITSS
CEs, we would need to run both of them inside a single CEGIS loop during the single
execution of the PAYNT. This is because the way CEGIS picks a realisation of a family for
model checking is nondeterministic, and each time the PAYNT program is executed, there
may be a different realisation chosen. Thusforth, the experiment is conducted in a way
that each iteration the CEGIS loop calls the CE construction twice, both STORM and the
SWITSS. In order for CEGIS to progress forward, we always just save the statistics from
both CE generators and continue with the set of conflicts provided by the STORM.

In these experiments, we are interested in the average conflict size, which is the number
of relevant holes (parameters) that are contained by the critical subsystem, the average
time per conflict construction in seconds, respectively, construction of CE, as the conflicts
are inferred from the CE and the total time spent constructing the CEs. We apply a
roughly 600 second timeout for the synthesis, and thus if the PAYNT is not able to find a
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feasible assignment or does not proclaim the property unjustifiable in the concrete model,
the synthesis is terminated. That being said, some of the data times from the data tables
in the following sections might imply that the timeout threshold was much higher and that
is due to the fact that the termination was performed at the PAYNT program level, once
the STORM or SWITSS returned the program control.

Lastly, the experiments were carried out on a set of the latest POMDP benchmark
models for the integration of STORM from the PAYNT5 repository and the specification
of the experiments was the optimality property P𝑚𝑎𝑥. FSC synthesis was performed in
the mode for searching 1-FSCs, none of the iterative or memory injection strategies from
Subsection 4.2.1 were used.

5.4.2 Results of SWITSS MC CEs

In Table 5.1 we may observe the initial experiments of the STORM MC CEs against the
SWITSS MC CEs. It is clear from the table that, from the conflict size perspective, both
generators perform comparably. For some models like Drone-8-2 SWITSS delivers the
smaller conflicts, on the other hand for some models STORM gives us the better CEs.
Generally, this comparison may be neglected. The key metric here is the average time per
conflict construction and the total time of the CEs constructions as in this field the SWITSS
suffers from massive time overhead. In some cases, in the Table 5.1 highlighted by the red
color, the SWITSS performs almost 200 worse than the STORM.

Avg conflict size Avg time
per conflict [s]

Total CE
construction

time [s]
Model STORM

MC
SWITSS

MC
STORM

MC
SWITSS

MC
STORM

MC
SWITSS

MC
Drone-4-1 15.639 21.153 0.026 3.342 3.766 481.292
Drone-4-2 12.358 14.705 0.009 1.727 2.315 438.678
Drone-8-2 41.438 23.938 0.191 10.770 3.049 172.317
Grid-avoid-4-0 1.000 1.000 0.001 0.039 0.003 0.156
Grid-avoid-4-0.1 1.000 1.000 0.001 0.041 0.003 0.165
Grid-large-30-5 19.126 19.126 0.004 0.209 11.496 538.629
Refuel-06 11.305 9.802 0.004 0.115 18.649 518.050
Refuel-08 13.151 12.369 0.005 0.213 12.377 540.843

Table 5.1: Comparison of the STORM MC CEs and SWITSS MC CEs by the average
conflict size, average conflict construction time and total time spent with CEs construction.
Row highlighted with the red color shows the case where SWITSS performs the worst from
the time perspective.

5.4.3 Results of SWITSS MDP CEs

As our main goal was to enable MDP CEs for CEGIS in PAYNT and comparing just the
ability of SWITSS to construct MC CEs would not be objective, we performed the exper-
iments for the MDP CEs as well, although results from Subsection 5.4.2 already predict
similar behavior from the time and size perspective. In the Table 5.2 we can see that average

5https://github.com/randriu/synthesis
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conflict size fluctuates more or less in the same manner as already observed in the SWITSS
MC CEs experiments; this time we highlight for example models such as Refuel-06 and
Refuel-08 where SWITSS delivers the smaller conflicts. Unfortunately, time duration per-
formance is even worse in this case. For one particular model Drone-8-2 highlighted again
with the red color in Table 5.2 we observe insanely large difference between the STORM
and SWITSS, which is roughly 565 000× more spent with only one CE construction. This
is also the reason why the timeout limit was exceeded so drastically from 600 seconds to
almost 2 hours, because the first CE was constructed inside the SWITSS for such a long
time and only after that the program control was returned to PAYNT, which immediately
terminated.

Avg conflict size Avg time
per conflict [s]

Total CE
construction

time [s]
Model STORM

MC
SWITSS

MDP
STORM

MC
SWITSS

MDP
STORM

MC
SWITSS

MDP
Drone-4-1 12.214 64.571 0.017 44.082 0.235 617.150
Drone-4-2 9.900 64.200 0.005 60.333 0.049 603.332
Drone-8-2 9.000 49.000 0.010 5653.110 0.010 5653.110
Grid-avoid-4-0 1.000 1.000 0.001 0.037 0.002 0.147
Grid-avoid-4-0.1 1.000 1.000 0.001 0.039 0.002 0.154
Refuel-06 11.672 5.912 0.004 0.146 16.014 532.225
Refuel-08 13.602 9.971 0.007 0.634 6.366 570.519
Refuel-20 29.479 29.688 0.043 12.293 2.040 590.051

Table 5.2: Comparison of the STORM MC CEs and SWITSS MDP CEs by the average
conflict size, average conflict construction time and total time spent with CEs construction.
Row highlighted with the red color shows the case where SWITSS performs the worst from
the time perspective.

Additionally experiments were also conducted with the MDP CEs from the greedy
generator which principle was outlined in the Section 5.3 and will be described with more
context in Chapter 6. Results are depicted in Table 5.3. Average sizes of the conflicts
vary depending on the models and both sides have their ups and downs, however the
significant time overhead of the SWITSS CE generator is still massively visible. For model
Drone-8-2, which is highlighted red in Table 5.3 STORM construct a larger conflict but over
200 times faster than SWITSS. POMDPs Drone-4-1 and Drone-4-2 hightlighted green are
interesting cases where STORM greedy MDP CE generator delivers much smaller conflicts
in the fraction of SWITSS time.
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Avg conflict size Avg time
per conflict [s]

Total CE
construction

time [s]
Model STORM

MDP
SWITSS

MDP
STORM

MDP
SWITSS

MDP
STORM

MDP
SWITSS

MDP
Drone-4-1 24.000 64.571 0.705 44.082 9.872 617.150
Drone-4-2 23.000 64.200 0.525 60.333 5.247 603.332
Drone-8-2 80.000 49.000 23.577 5653.110 23.577 5653.110
Grid-avoid-4-0 1.000 1.000 0.001 0.037 0.002 0.147
Grid-avoid-4-0.1 1.000 1.000 0.001 0.039 0.003 0.154
Refuel-06 12.361 5.912 0.009 0.146 32.416 532.225
Refuel-08 16.609 9.971 0.019 0.634 17.363 570.519
Refuel-20 35.854 29.688 0.179 12.293 8.572 590.051

Table 5.3: Comparison of the STORM MDP CEs and SWITSS MDP CEs by the average
conflict size, average conflict construction time and total time spent with CEs construction.

From both experiments it is clear that the SWITSS is not a suitable candidate for
MDP CEs generator because it suffers from massive time performance overhead, it delivers
comparable results, and it supports less features for the synthesis purpose.
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Chapter 6

Using CEs for CEGIS

In the previous chapter, the greedy method for constructing CEs for MDP based on the
greedy algorithm introduced by Andriushchenko et. al. [2] is outlined. In this chapter, we
focus on more practical usage of the introduced algorithm. As already shown, we are now
able to construct the CEs for MDPs, but where do we obtain such MDP which we would be
able to construct CE against? In the following sections we explore the so-called simple hole
(parameter) generalization which yields us the needed base MDP for the CE construction.
Next we describe the key ideas behind the integration of such MDP CEs into PAYNT
program as a new CE generator module side by side with the current implementation of
the greedy method for MC CEs and SWITSS.

6.1 Simple holes generalization
Recall a partial realisation of a family 𝑟𝐿 introduced in Proposition 5.1 which induces MDP
𝐷𝑟𝐿 . PAYNT CEGIS loop is already capable of picking a realisation and inducing MC from
such realisation by fixing all the holes (parameters). The task here is to identify the set of
holes 𝐿 that may remain unfixed and thus would form a partial realisation.

Definition 6.1. Let 𝒟 = (𝑆, 𝑠0,𝐾,ℬ) be a family of MCs. Let 𝐾 ′ ⊆ 𝐾 be a set of simple
(trivial) parameters such that ∀𝑘 ∈ 𝐾 ′ : ∃𝑠 ∈ 𝑆, 𝑘 ∈ 𝑠𝑢𝑝𝑝(ℬ(𝑠)) ∧ ∀𝑠′ ∈ 𝑆 ∖ {𝑠} : 𝑘 /∈
𝑠𝑢𝑝𝑝(ℬ(𝑠′)). In other words set 𝐾 ′ is a set of all simple parameters that are associated with
one single state at maximum.

Example 6.1. The family of MCs of Figure 3.1 is a clear example of a family with two
parameters 𝑋,𝑌 where the parameter 𝑋 is associated only with the state 𝑠0 and thus the
set of simple parameters is defined as 𝐾 ′ = {𝑠0}.

Now when the concept of simple parameters is defined, we show how this connects to
the partial realisation and induced MDP.

Proposition 6.1. Let 𝒟 = (𝑆, 𝑠0,𝐾,ℬ) be a family of MCs, and let 𝐾 ′ be a set of simple
parameters. Such a set of simple parameters is a good candidate for a set of parameters
𝐿 for partial realization. By putting a 𝐿 = 𝐾 ′ we basically generalize those parameters.
Let us quickly return to Algorithm 4. We are particularly interested in the set of relevant
parameters 𝐾𝑖 and the state expansion technique. By generalizing all the simple parameters
and fixing all the non-simple parameters (parameters associated with at least 2 states) we
are able to rule out all the simple parameters from the set of relevant parameters 𝐾𝑖 and
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thus potentially reducing the size of a conflict. The key idea of why generalizing the simple
parameter is possible is based on a sole fact that it is associated only with a single state and
thus making any choice in that particular state will not change the choice in any other state
throughout the whole model.

During the synthesis of FSCs for POMDPs a lot of recent models show the common
behavior of having a large number of simple parameters, and hence we explore the ways
of generalizing such parameters. Having introduced the concept of single parameters and
their important role in inducing an MDP from the family of MCs we now show in the next
section how this idea was programatically incorporated into the PAYNT program.

6.2 MDP CEs integration to PAYNT/STORM
In this section we will take a closer look at how Algorithm 4 together with the Proposi-
tion 6.1 of generalization of simple holes may be implemented in the PAYNT.

PAYNT in general is written in Python 3 but it frequently uses STORM written in
C++. Existence of the Stormpy bindings allows one to call the STORM C++ code directly
from the PAYNT Python 3 code. On the PAYNT side all the necessary parsing, model
building, and synthesis control is happening, STORM on the other hand provides model
checking features and the greedy algorithm introduced by Adriuschenko et. al. [2], which is
integrated into STORM as an additional module. To be more precise, it is not implemented
in the original STORM GitHub repository1 but rather in the modified fork2 of the mentioned
repository, which additionally provides convenient features for synthesis of probabilistic
programs in PAYNT. One of the many reasons why the greedy method state exploration
is located on the STORM side and not on the PAYNT side is definitely the overall speed
advantage of the C++ programs, and thus we choose to implement the greedy algorithm
for MDP CEs outlined in Algorithm 4 mainly in STORM as well. That being said, it is
important to mention that code base for the MDP CEs is not written from scratch but
it adapts the already existing code for the MC CEs. In the adapted Figure 6.1 we may
observe how already 3 CE generators (STORM MC, STORM MDP and SWITSS) exist
in the PAYNT. One may choose from the CE generators available for the CEGIS method
when executing the PAYNT.

Algorithm 5 depicts the basic idea of how analysis of a single realisation in CEGIS loop
is implemented in PAYNT with the use of MDP CEs. First, we identify the set of simple
holes (parameters) based on Definition 6.1. Then we construct a partial realisation 𝑟𝐿 using
the obtained set of simple holes and by fixing the partial realisation we induce the MDP
𝒟𝑟𝐿 . By model checking 𝒟𝑟𝐿 we either obtain the satisfying realisation or if the property is
unsatisfied we pick the rerouting vector based on a type of property (safety or liveness) and
initiate the conflict construction procedure (line 10). Everything until this point happens
on the PAYNT side, once the conflict construction is invoked, STORM takes over the
program control. Conflict construction is carried away by the slightly modified version of
Algorithm 4. First change is that the algorithm now accepts one additional input in the
form of a set of simple holes 𝐿, these holes are added to the list of relevant holes right from
the start and thus the state exploration may expand states associated with the simple holes
immediately. State exploration then continues in the same way with the one final change
on line 24, where in the end from the set of relevant holes (conflict) the set of simple holes

1https://github.com/moves-rwth/storm
2https://github.com/randriu/storm/tree/synthesis
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Figure 6.1: Schema of the STORM MDP CE generator module integrated into CEGIS loop.

is subtracted since none of the simple holes, which underwent the generalization process
are relevant at this point.

In addition, the process of state exploration during the conflict construction was changed
a bit. Currently in the greedy method for MC CEs, the state exploration iterations (waves)
are precomputed in advance, and only then the actual model checking of each iteration
rerouted MC is carried out. This is, however, ineffective. Since we are always interested
in the smallest possible conflict, we do not need to precompute the iterations in advance.
Instead, we may just apply the Algorithm 4 literally by alternating between the state
exploration phase and the model-checking phase. The newly introduced greedy method for
MDP CE construction already refrained from the wave precomputation and in the future
the same is possible to apply for the STORM MC CE generator. Moreover, both STORM
MC and MDP CE generators are possible in the future with some thorough design to be
merged into a single CE generator.

Remark. It is important to mention that the greedy algorithm for MDP CEs is currently
capable of synthesizing specifications containing only single property. Reason behind that is
that for multiple properties that the MDP 𝒟𝑟𝐿 satisfies, there may exist different schedulers
for the MDP and thus there would not be a unambiguous accepting realisation.
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Algorithm 5: CEGIS loop family assignment analysis using the greedy method
for MDP CEs construction based on the generalization of simple holes

Input: A family of MCs 𝒟 = (𝑆, 𝑠0,𝐾,ℬ), realisation 𝑟 of a family 𝒟, a property
𝜙 ≡ P◁▷𝜆[𝐹 𝑇 ].

Output: A conflict 𝐾 or accepting realisation 𝑟
1 AnalyzeFamilyAssignment (𝒟, 𝑟, 𝜙):
2 𝐿 := 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦𝑆𝑖𝑚𝑝𝑙𝑒𝐻𝑜𝑙𝑒𝑠(𝒟)
3 𝒟𝑟𝐿 , 𝑟

𝐿 := 𝑓𝑖𝑥𝑅𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦(𝒟, 𝑟, 𝐿)
4 if 𝒟𝑟𝐿 |= 𝜙 then
5 return 𝑟𝐿

6 if ◁▷∈ {<,≤} then
7 𝛾 := 0
8 else
9 𝛾 := 1

10 𝐾 := 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝒟𝑟𝐿 , 𝜙, 𝛾, 𝐿)

11 return 𝐾

Input: An MDP 𝐷𝑟𝐿 , a property 𝜙 ≡ P◁▷𝜆[𝐹 𝑇 ] such that 𝒟𝑟𝐿 ⊭ 𝜙, a rerouting
vector 𝛾, set of simple holes 𝐿

Output: A conflict 𝐾 for MDP 𝒟𝑟𝐿 and property 𝜙
12 ConstructConflicts (𝒟𝑟𝐿 , 𝜙, 𝛾, 𝐿):
13 𝑖 := 0

14 𝐾𝑖 := 𝐿
15 while 𝑡𝑟𝑢𝑒 do
16 𝐶𝑖, 𝐻𝑖 := 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑉 𝑖𝑎𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐻𝑜𝑙𝑒𝑠(𝒟𝑟𝐿 ,𝐾𝑖)
17 𝐷𝑖 := 𝒟𝑟𝐿 ↓𝐶𝑖[𝛾]
18 if P𝑚𝑖𝑛[𝐷𝑖 |= 𝜙] > 𝜆 and ◁▷∈ {<,≤} then
19 return 𝐾𝑖

20 if P𝑚𝑎𝑥[𝐷𝑖 |= 𝜙] < 𝜆 and ◁▷∈ {>,≥} then
21 return 𝐾𝑖

22 𝑠𝑒𝑥𝑝𝑎𝑛𝑑 = 𝑝𝑖𝑐𝑘𝑇𝑜𝐸𝑥𝑝𝑎𝑛𝑑(𝐻𝑖,𝐾𝑖)

23 𝐾𝑖+1 := 𝐾𝑖 ∪ 𝑠𝑢𝑝𝑝(ℬ(𝑠𝑒𝑥𝑝𝑎𝑛𝑑)) 𝑖 := 𝑖+ 1

24 return 𝐾𝑖 ∖ 𝐿

6.3 Initial experimental evaluation
Now when the greedy method for generating MDP CEs in PAYNT via STORM is outlined,
defined and implemented, we now carry out the experimental evaluation of this initial
implementation, where we compare it to the greedy MC CE method. Before the evaluation
we again lay down a couple of questions which we would like to find the answer to:

1) What is the quality of the size and construction speed of the CEs constructed by
greedy method for MDP CEs compared to the current approach with MCs?

2) How efficiently are MDP CEs able to prune the design space and converge to the
optimal solution?
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6.3.1 Experiments settings

First experiment settings is very similar to one mentioned in Subsection 5.4.1. STORM
MDP and MC CE generators are run side by side, average conflict size, average construction
time per conflict, and total time metrics are collected and synthesis timeouts after 600
seconds. The same set of POMDP benchmarks and only the optimality property 𝑃𝑚𝑎𝑥 are
considered.

The second experiment is then conducted the way that we run 2 separate runs of the
synthesis. First run executes the STORM MC CE generator, and second run uses the
STORM MDP generator. Timeout is again set to the 600 seconds, and this time a set of
POMDP is extended with models where the reward properties are specified. This time we
are interested in the synthesis result (optimal value or non-feasibility) and the time spent
to converge to such result.

6.3.2 Greedy MC and MDP CEs conflict quality

In the Table 6.1 which shows the initial results of the first experiment, it is clear that the
newly created greedy method produces comparable or larger conflicts in the majority of
the experiments. The most likely cause of such growth of conflict size is the introduction
of new non-simple holes into the conflict by generalizing too many simple holes, we take a
closer look at this problem in Section 6.4. On the first glance this might be seen in a not
so optimistic way, however, the second metric which we should likely pay attention at this
point is the overall state of the synthesis, does it converge to the optimal solutions and how
long does it take?

Avg conflict size Avg time
per conflict [s]

Total CE
construction

time [s]
Model STORM

MDP
STORM

MC
STORM

MDP
STORM

MC
STORM

MDP
STORM

MC
Drone-4-1 24.000 12.214 0.705 0.017 9.872 0.235
Drone-4-2 23.000 9.900 0.525 0.005 5.247 0.049
Drone-8-2 80.000 9.000 23.577 0.010 23.577 0.010
Grid-avoid-4-0 1.000 1.000 0.001 0.001 0.002 0.002
Grid-avoid-4-0.1 1.000 1.000 0.001 0.001 0.003 0.002
Refuel-06 12.361 11.672 0.009 0.004 32.416 16.014
Refuel-08 16.609 13.602 0.019 0.007 17.363 6.366
Refuel-20 35.854 29.479 0.179 0.043 8.572 2.040

Table 6.1: Comparison of STORM MDP CEs and STORM MC CEs by the average conflict
size, average conflict construction time and total time spent with CEs construction.

6.3.3 Greedy MC and MDP CEs synthesis results

In this subsection we take a closer look at how MDP CEs actually affect the synthesis
result. Table 6.2 shows that the MDP CEs indeed, despite the larger size of the conflicts,
positively affect the synthesis. For all three drone models, the MDP CEs were able to find
a feasible assignment of the holes compared to the MC CEs with optimality equal to 0.0
after 600 seconds synthesis run. Synthesis of POMDP model Rocks-12 is able to find some
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feasible assignment within the 600 seconds while MC CEs were not able to find any feasible
solution at all. Most interesting is then Maze-alex as in this case the synthesis time was
reduced almost 13 times by employing the MDP CEs.

MC MDPModel Property Result Time [s] Result Time [s]
Drone-4-1 P𝑚𝑎𝑥 optimal: 0.0 604.57 optimal: 0.401214 600.03
Drone-4-2 P𝑚𝑎𝑥 optimal: 0.0 607.16 optimal: 0.881402 600.37
Drone-8-2 P𝑚𝑎𝑥 optimal: 0.0 642.06 optimal: 0.757757 623.63
Grid-avoid-4-0 P𝑚𝑎𝑥 optimal: 0.214286 0.07 optimal: 0.214286 0.07
Grid-avoid-4-0.1 P𝑚𝑎𝑥 optimal: 0.214286 0.07 optimal: 0.214286 0.06
Grid-large-20-5 R𝑚𝑖𝑛 feasible: no 156.35 feasible: no 105.87
Grid-large-30-5 R𝑚𝑖𝑛 feasible: no 600.08 feasible: no 600.08
Lanes-100-combined-new R𝑚𝑖𝑛 optimal: 10241.939783 80.15 optimal: 10241.939783 84.85
Maze-alex R𝑚𝑖𝑛 optimal: 71.882276 92.76 optimal: 71.692948 7.36
Network-3-8-20 R𝑚𝑖𝑛 optimal: 57.5925 602.21 optimal: 57.5925 601.00
Refuel-06 P𝑚𝑎𝑥 optimal: 0.301668 600.02 optimal: 0.329448 600.01
Refuel-08 P𝑚𝑎𝑥 optimal: 0.22273 600.00 optimal: 0.199427 600.02
Refuel-20 P𝑚𝑎𝑥 optimal: 0.06316 600.01 optimal: 0.0 600.08
Rocks-12 R𝑚𝑖𝑛 feasible: no 600.06 optimal: 374.34908 600.28
Rocks-16 R𝑚𝑖𝑛 optimal: 223.44875 600.07 optimal: 195.926024 600.62

Table 6.2: Comparison of STORM MC CEs and STORM MDP CEs by the result of the
synthesis and elapsed time. Rows with the time above 600 seconds means that the synthesis
timeout before the best result was obtained.

6.4 MDP CEs greedy construction variations
As results from the initial implementation of the greedy MDP CEs construction show, the
obtained conflicts are larger on average, which might seem a little bit contradictory to the
fact that we are generalizing a lot of simple holes. However the generalizations seemingly
come with a one drawback. Generalized holes, even though they themselves are not relevant
at any possible time, may introduce to the conflict additional revelavant holes by simply
reaching more states. This brings the idea of a smarter generalization of simple holes so we
do not necessarily generalize all of them but only the chosen portion.

We define the following strategies as attempt to mitigate such behavior:

Apriori simple holes stats

First strategy is based on the collection of statistics prior to the actual run of the synthesis.
Before the execution of the CEGIS with the MDP CE generator, a timeboxed run of the
CEGIS with the MC CE generator is executed. During this run we collect for each simple
hole a number of conflicts that the particular simple hole was part of. In other words,
how many times the MC CE generator was unable to generalize the simple hole. Then
during the actual execution of CEGIS with MDP CE generator, we compute the average
occurrence from all simple hole occurrences and we generalize only those simple holes whose
occurrence number is above the average as we are trying to focus on generalizing those holes
that the MC CE generator was unable to.
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Randomisation

In the second strategy, we suggest a simple concept of an oracle that for each of the simple
holes decides whether it should be generalized or not based on randomness. For each hole
there is a probability of 𝑅 = 0.5 that the hole will be generalized.

Randomisation based on the hole position

Last strategy is also based on the randomisation, however this time the chance 𝑅 of a
simple hole being generalized starts with the very low value and it grows with the number
of iterations that the state space exploration has already made. Such a chance is given by
the following equation:

𝑅 =
𝑖

𝑖+ 1 + |𝐾 ′|
,

where 𝑖 stands for number of current iteration and |𝐾 ′| is the total number of simple
holes.

6.5 Variants experimental evaluation results
In this section we take a closer look at the experimental evaluation of the strategies at-
tempting the smarter simple holes generalization suggested in the previous section. The
experimental settings remained the same as for the second experiment in Subsection 6.3.1.
In addition the variant of the combined MDP an MC CEs generators was evaluated, which
basically just runs both CE generators in series and combined the resulting conflicts to-
gether. In Table 6.3 the results of randomised generalization strategies are visualized.
POMDP models highlighted with the green colors are the same models from the Table 6.2
which exhibited interesting behavior in the initial evaluation. Overall the randomised ap-
proach did not bring any improvement at all. Classic randomisation performs a lot better
than the randomisation which takes the hole positions into account, however neither of
those performs as good as the initial MDP CE generator implementation.

More promising results may be observed from the Table 6.4. Both a priori collection of
the simple hole stats and the combined CEs make slight improvements from the original
MDP CEs and MC CEs. For model Drone-4-1 combined MDP and MC CEs seem to work
the best. On the other hand, for Drone-8-2, a priori statistics synthesize the optimal value
for almost 0.2 more than the combined method in a comparable time. Lastly, the most
interesting model Maze-alex synthesis time, which was already significantly reduced by
the classic MDP CE greedy method, was halved to 3.25 seconds.

6.6 Preliminary hybrid results
Since the current implementation of the greedy method for the realization of the MDP
CE construction program allowed preliminary testing of hybrid synthesis, a final set of
experiments was performed to run the hybrid with MDP CEs and MC CEs in the mode
that favors CEGIS more often so that the results are not too distorted by the application
of AR synthesis. In the Table 6.5 there are visible minor improvements on the models
highlighted by green color. However, these are only preliminary; to get a clearer idea of the
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MDP - random MDP - random, hole positionsModel Property Result Time [s] Result Time [s]
Drone-4-1 P𝑚𝑎𝑥 optimal: 0.176052 600.35 optimal: 0.03401 601.42
Drone-4-2 P𝑚𝑎𝑥 optimal: 0.867986 602.31 optimal: 0.362896 600.88
Drone-8-2 P𝑚𝑎𝑥 optimal: 0.7161 653.66 optimal: 0.010562 810.79
Grid-avoid-4-0 P𝑚𝑎𝑥 optimal: 0.214286 0.02 optimal: 0.214286 0.02
Grid-avoid-4-0.1 P𝑚𝑎𝑥 optimal: 0.214286 0.02 optimal: 0.214286 0.04
Grid-large-20-5 R𝑚𝑖𝑛 feasible: no 60.79 feasible: no 76.46
Grid-large-30-5 R𝑚𝑖𝑛 feasible: no 600.01 feasible: no 600.01
Lanes-100-combined-new R𝑚𝑖𝑛 optimal: 10241.939783 42.00 optimal: 10241.939783 47.62
Maze-alex R𝑚𝑖𝑛 optimal: 71.692948 6.23 optimal: 71.692948 12.45
Network-3-8-20 R𝑚𝑖𝑛 optimal: 57.5925 601.98 optimal: 57.5925 600.33
Refuel-06 P𝑚𝑎𝑥 optimal: 0.233342 600.01 optimal: 0.350026 600.03
Refuel-08 P𝑚𝑎𝑥 optimal: 0.20082 600.08 optimal: 0.20071 600.02
Refuel-20 P𝑚𝑎𝑥 optimal: 0.0 600.03 optimal: 0.0 600.06
Rocks-12 R𝑚𝑖𝑛 optimal: 372.34908 600.34 optimal: 373.34908 600.31
Rocks-16 R𝑚𝑖𝑛 optimal: 195.926024 600.26 optimal: 195.926024 600.07

Table 6.3: Comparison of STORM MDP CEs with randomised simple holes generalization
and STORM MDP CEs with randomised simple holes generalization which takes into ac-
count the position of the hole in the whole model. Comparison is made by the result of
the synthesis and elapsed time. Rows with the time above 600 seconds means that the
synthesis timeout before the best result was obtained.

MDP - aprior hole stats MDP + MCModel Property Result Time [s] Result Time [s]
Drone-4-1 P𝑚𝑎𝑥 optimal: 0.403124 600.66 optimal: 0.433942 601.35
Drone-4-2 P𝑚𝑎𝑥 optimal: 0.945354 600.31 optimal: 0.946517 601.38
Drone-8-2 P𝑚𝑎𝑥 optimal: 0.75874 620.94 optimal: 0.586226 615.67
Grid-avoid-4-0 P𝑚𝑎𝑥 optimal: 0.214286 0.02 optimal: 0.214286 0.07
Grid-avoid-4-0.1 P𝑚𝑎𝑥 optimal: 0.214286 0.02 optimal: 0.214286 0.07
Grid-large-20-5 R𝑚𝑖𝑛 feasible: no 76.73 feasible: no 159.93
Grid-large-30-5 R𝑚𝑖𝑛 feasible: no 600.04 feasible: no 600.02
Lanes-100-combined-new R𝑚𝑖𝑛 optimal: 10241.939783 42.82 optimal: 10241.939783 93.59
Maze-alex R𝑚𝑖𝑛 optimal: 71.692948 3.25 optimal: 71.692948 4.76
Network-3-8-20 R𝑚𝑖𝑛 optimal: 57.5925 601.86 optimal: 57.6475 604.30
Refuel-06 P𝑚𝑎𝑥 optimal: 0.329448 600.00 optimal: 0.263404 600.04
Refuel-08 P𝑚𝑎𝑥 optimal: 0.199427 600.01 optimal: 0.186663 600.01
Refuel-20 P𝑚𝑎𝑥 optimal: 0.0 600.05 optimal: 0.0 600.06
Rocks-12 R𝑚𝑖𝑛 optimal: 372.34908 600.15 feasible: no 600.11
Rocks-16 R𝑚𝑖𝑛 optimal: 195.926024 600.09 optimal: 246.938314 600.49

Table 6.4: Comparison of STORM MDP CEs which generalizes simple holes based on the
aprior statistics of the holes occurrences and a STORM MDP and MC combined CEs.
Comparison is made by the result of the synthesis and elapsed time. Rows with the time
above 600 seconds means that the synthesis timeout before the best result was obtained.

impact of MDP CEs on hybrid synthesis, more thorough and sophisticated evaluations and
experiments should be conducted; this is one of the topics for possible future improvements.
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Hybrid - MDP HybridModel Property Result Time [s] Result Time [s]
Drone-4-1 P𝑚𝑎𝑥 optimal: 0.790894 600.10 optimal: 0.790998 600.21
Drone-4-2 P𝑚𝑎𝑥 optimal: 0.944656 600.03 optimal: 0.938654 600.00
Drone-8-2 P𝑚𝑎𝑥 optimal: 0.906007 733.97 optimal: 0.824503 692.88
Grid-avoid-4-0 P𝑚𝑎𝑥 optimal: 0.214286 0.03 optimal: 0.214286 0.02
Grid-avoid-4-0.1 P𝑚𝑎𝑥 optimal: 0.214286 0.04 optimal: 0.214286 0.02
Grid-large-20-5 R𝑚𝑖𝑛 feasible: no 600.00 feasible: no 600.01
Grid-large-30-5 R𝑚𝑖𝑛 feasible: no 600.01 feasible: no 600.01
Lanes-100-combined-new R𝑚𝑖𝑛 optimal: 10241.939783 26.35 optimal: 10241.939783 20.29
Maze-alex R𝑚𝑖𝑛 optimal: 71.882276 0.63 optimal: 71.882276 0.35
Network-3-8-20 R𝑚𝑖𝑛 optimal: 11.11831 616.81 optimal: 11.105658 600.21
Refuel-06 P𝑚𝑎𝑥 optimal: 0.350026 15.31 optimal: 0.350026 15.45
Refuel-08 P𝑚𝑎𝑥 optimal: 0.123161 600.01 optimal: 0.170459 600.00
Refuel-20 P𝑚𝑎𝑥 optimal: 0.067796 600.64 optimal: 0.058635 600.24
Rocks-12 R𝑚𝑖𝑛 optimal: 38.0 600.08 optimal: 38.0 600.08
Rocks-16 R𝑚𝑖𝑛 optimal: 44.0 600.40 optimal: 44.0 600.71

Table 6.5: Comparison of hybrid synthesis method using MDP CEs and MC CEs by the
result of the synthesis and elapsed time. Rows with the time above 600 seconds means that
the synthesis timeout before the best result was obtained.
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Chapter 7

Conclusion

This thesis investigates partially observable Markov decision processes (POMDPs), which
are probabilistic systems characterized by state uncertainty. Due to the undecidable na-
ture of controlling POMDPs, we focused on one of the approaches proposed to address
this challenge. One of the prominent methods involves finite-state controllers (FSCs) and
their synthesis. Synthesis techniques such as abstraction refinement, counterexample-guided
inductive synthesis, and hybrid synthesis (combining the aforementioned techniques) are
utilized to identify the most suitable FSC that satisfies given specifications. This process
reduces the problem of finding a suitable FSC with a given number of memory nodes to syn-
thesizing topologies in Markov chains, which forms the core concept behind these synthesis
techniques.

The primary objective was to enhance CounterExample-Guided Inductive Synthesis
(CEGIS) by incorporating Markov decision process (MDP) based counterexamples instead
of Markov chain counterexamples. Initially, we attempted to utilize an external tool called
Small WITnessing SubSystems (SWITSS) to generate witnessing subsystems, which are
obtained by transforming the search problem into mixed-integer linear programming. How-
ever, due to a SWITSS significant time overhead, this variant was unsuccessful.

As an alternative, we explored a greedy approach for constructing counterexamples in
MDPs, inspired by an existing greedy method used for constructing counterexamples in
Markov chains. This new approach involves considering a partially fixed realization of a
family of Markov chains, resulting in an MDP that incorporates unique and singular ”simple
holes“ (family parameters) within the model. Both SWITSS and the modified greedy
method for constructing MDP counterexamples were integrated into the PAYNT program as
separate modules to serve as counterexample generators within a CEGIS loop. The modified
greedy method for constructing MDP counterexamples was evaluated using a set of recent
POMDP models from the PAYNT repository. The experimental results demonstrated that
MDP counterexamples yield smaller conflicts for several models and converge more rapidly
towards the optimal solution in some cases. Furthermore, preliminary work was conducted
on the utilization of MDP counterexamples in hybrid synthesis, although the evaluation was
not extensive. Future research should focus on developing an improved generator for MDP
counterexamples that considers the entire topology more comprehensively. Additionally,
conducting more thorough evaluations and experiments with the hybrid oracle using CEGIS
with MDP counterexamples would be beneficial.
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