
T 
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF INTELLIGENT SYSTEMS 
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ 

USING COUNTER-EXAMPLES IN CONTROLLERSYN-
THESIS FORPOMDPS 
VYUŽITÍ PROTIPŘÍKLADŮ V SYNTÉZE KONTROLÉRŮ PRO POMDP 

MASTER'S THESIS 
DIPLOMOVÁ PRÁCE 

AUTHOR Be. JAKUB FREJLACH 
AUTOR PRÁCE 

SUPERVISOR doc. RNDr. MILAN ČEŠKA, Ph.D. 
VEDOUCÍ PRÁCE 

BRNO 2023 



T BRNO 
UNIVERSITY 
OF TECHNOLOGY 

Master's Thesis Assignment |||||||||||||||||| 
147446 

Institut: Department of Intelligent Systems (UITS) 
Student: Frejlach Jakub, Be. 
Programme: Information Technology and Artificial Intelligence 
Specialization: Application Development 
Title: Using Counter-Examples in Control ler Synthesis for POMDPs 
Category: Formal Verification 
Academic year: 2022/23 

Assignment: 

1. Study the state-of-the-art controller synthesis methods for Partially Observable MDPs (POMDPs) 
with the focus on inductive synthesis methods. 

2. Explore if a more general class of counter-examples can be effectively used in the synthesis 
methods for POMDPs. 

3. Extend the existing implementation of the synthesis methods in the tool PAYNT to support a more 
general class of counter-examples. 

4. Using suitable benchmarks, perform a detailed experimental evaluation of the implemented 
extensions. Focus on the quality of the counter-examples and their generation time in the context 
of the overall performance of the synthesis process. 

Literature: 
• Kochenderfer, M.J., Wheeler, T.A., and Wray K.H, Algorithms for Decision Making, MIT Press 

2021. 
• Andriushchenko, R., Češka, M., Junges, S., and Katoen, J.P. Inductive synthesis of finite-state 

controllers for POMDPs. In UAI'22. Proceedings of Machine Learning Research. 
• Andriushchenko, R., Češka, M., Junges, S., Katoen, J.P. and Stupinský, Š. PAYNT: A Tool for 

Inductive Synthesis of Probabilistic Programs. In CAV'21. Springer. 
• Jantsch, S., Harder, H., Funke, F., and Baier, C. Switss: Computing Small Witnessing 

Subsystems. In FMCAD'20. 

Requirements for the semestral defence: 
Items 1, 2, and partially 3. 

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/ 

Supervisor: 
Head of Department: 
Beginning of work: 
Submission deadline: 
Approval date: 

Češka Milan, doc. RNDr., Ph.D. 
Hanáček Petr, doc. Dr. Ing. 
1.11.2022 
24.5.2023 
3.11.2022 

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno 

https://www.fit.vut.cz/study/theses/


Abstract 
This thesis examines partially observable Markov decision processes (POMDPs) , a promi
nent stochastic model for decision-making under uncertainty and partial observability. 
P O M D P s have diverse applications, from robot navigation to self-driving vehicles. The 
undecidable control problem of P O M D P s has led to various approaches, including finite-
state controllers (FSCs) based on observations and history. Identifying small and verifiable 
FSCs reduces the synthesis of Markov chains. This thesis focuses on counterexample-guided 
inductive synthesis (CEGIS) within the P A Y N T program, exploring the use of Markov deci
sion processes as counterexamples. A new greedy method for constructing counterexamples 
is outlined and implemented in P A Y N T , showing improvements in some cases compared to 
the existing method. 

Abstrakt 
Tato práce se zabývá částečně pozorovatelnými Markovskými rozhodovacími procesy 
(POMDP) , významnými stochastickými modely pro rozhodování za nejistoty a částečné 
pozorovatelnosti. P O M D P lze aplikovat od navigace robotů až po samořídící vozidla. 
Nerozhodnutelný problém řízení P O M D P vedl k různým přístupům, včetně konečných 
stavových kontrolérů (FSC) založených na pozorování a udržování histore v paměti. Iden
tifikaci malých a ověřitelných FSC lze redukovat na syntézu Markovských řetězců. Tato 
práce se zaměřuje na induktivní syntézu řízenou protipříklady (CEGIS) implementovanou 
v rámci programu P A Y N T a zkoumá využití Markovských rozhodovacích procesů jako pro
tipříkladů. Je nastíněna nová hladová metoda pro konstrukci protipříkladů, která je im
plementována v programu P A Y N T , která v některých případech vykazuje zlepšení oproti 
stávající metodě. 

Keywords 
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Rozšířený abstrakt 
Automatizace byla vždy základním cílem lidstva, od jednoduchých dokola opakujících se 
úkolů až po složité samohybné roboty a samořídící vozidla schopna samostatně se pohybovat 
v prostředí a dosáhnout svého cíle. Problém spočívá v navigaci s omezenými nebo kompletně 
chybějícími informacemi o okolí, což přináší značnou nejistotu. Tato práce se však zaměřuje 
na jednodušší zařízení jenž ovšem s těmito složitými systémy souvisí. 

Nejistotu lze rozdělit do různých typů, přičemž v případě neznámého okolí a nejistých 
stavů je nejvhodnějším typem stavová nejistota. Tradiční rozhodovací modely, jako jsou 
Markovské rozhodovací procesy (MDP) , postrádají schopnost modelovat stavovou neurči
tost, protože jsou plně pozorovatelné. Částečně pozorovatelné Markovské rozhodovací pro
cesy (POMDP) toto omezení řeší začleněním pozorování jako prostředku k získávání infor
mací a vyhodnocování akcí. 

Řízení P O M D P však představuje nerozhodnutelný problém. Běžně se používají dva 
základní přístupy. Techniky simulace a posilovaného učení se používají, pokud není k dis
pozici kompaktní model, ale mohou postrádat interpretovatelnost a zaručenou korektnost. 
Markovské rozhodovací procesy s věrohodností aktualizují přesvědčení na základě před
chozích akcí a nabízejí prostředky pro zvládání stavové neurčitosti, ale trpí škálovatelností 
a složitými interakcemi. Slibnou alternativu představují konečně stavové kontroléry (FSC), 
které mapují pozorování na akce na základě získaných informací nebo udržované historie. 
FSC jsou relativně malé a snadno verifikovatelné. 

Identifikace FSC je stejně náročná jako syntéza parametrických Markovských řetězců, 
což vede k jejich syntéze. Byly navrženy metody jako zjemňování abstrakce (AR), in
duktivní syntéza řízená protipříkladem (CEGIS) a hybridní přístup. Tato práce se za
měřuje na vylepšení současného přístupu zdokonalením techniky CEGIS. Předchozí výzkum 
ukázal, že výkonnost CEGIS se liší v závislosti na vstupech, zejména na rozložení pro
gramových děr v Markovském řetězci. Práce zkoumá inovativní přístupy ke konstrukci 
protipříkladů, konkrétně modifikací metody CEGIS na využití protipříkladů založených 
na Markovském rozhodovacím procesu. Uvažuje se o integraci nástroje A Tool for the 
Computation of Small WITnessing SubSystems (SWITSS) s P A Y N T , ačkoli doba jeho 
provádění činí výsledky nepoužitelnými. Následně je na základě stávajících technik imple
mentovaných v P A Y N T vyvinut hladový algoritmus pro konstrukci protipříkladů založených 
na Markovském rozhodovacím procesu. 

Hlavní přínos této práce je dvojí. Zaprvé, navrhuje metodu pro použití protipříkladů za
ložených na Markovském rozhodovacím procesu v CEGIS metodě, přičemž využívá hladový 
algoritmus pro konstrukci protipříkladů v rámci programu P A Y N T . Metoda využívá 
jednoduché díry, což jsou parametry rodiny Markovských řetězců nebo konečných stavových 
kontrolérů v kontextu syntézy P O M D P . Jedinečnost těchto děr umožňuje zobecnění a 
přináší generalizované protipříklady. Implementace obsahuje samostatný modul, který 
umožňuje přepínat mezi protipříklady Markovského řetězce a Markovského rozhodovacího 
procesu. Kromě toho práce zkoumá SWITSS, který konstruuje svědecké podsystémy po
mocí smíšeného celočíselného lineárního programování, jenž mohou sloužit jako protipřík
lady. Vzhledem k dlouhým časům konstrukceje však použitelnost těchto protipříkladů 
omezená. 

Za druhé, práce zavádí modifikace hladové metody konstrukce protipříkladů, přičemž 
experimentuje s randomizací, polohou stavu a apriorními statistikami získanými během 
syntézy modelu. Základní hladový algoritmus a jeho modifikované verze jsou vyhod
noceny pomocí nejnovějších referenčních modelů částečně pozorovatelných Markovských 
rozhodovacích procesů z GitHub repozitáře programu P A Y N T . 



Vylepšením techniky CEGIS a zkoumáním nových přístupů ke konstrukci protipříkladů 
tato práce přispívá k pokroku v syntéze částečně pozorovatelných Markovových rozhodovacích 
procesů. Navržené metody a modifikace poskytují poznatky o zlepšení účinnosti a efektivity 
induktivní syntézy řízené protipříkladem. 
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Chapter 1 

Introduction 

One of the eternal goals of mankind has always been automation, the creation of machines 
capable of carrying out various tasks ranging from simple tasks like repeating just one par
ticular thing repeatedly to highly complex self-moving robots and self-driving vehicles that 
can navigate throughout the surrounding environment, avoid any obstacles that might be 
encountered on a way, and reach designated final destination without any human inter
ference. The most significant challenge here is undoubtedly navigation with very little or 
no information about the surroundings, and therefore uncertainty plays an enormous role. 
It is worth noting that the purpose of this thesis does not concern such complex devices 
but rather a much simpler one, whose very own core concept is highly connected to those 
complex ones. 

According to Kochenderfer et. al. [16], there are several types of uncertainty, each 
of which fits a different scenario. Since in this case the surroundings are unknown and 
generally the state at which we are currently at is not known as well, apparently the best 
suit is state uncertainty. 

Classic decision making model like Markov decision process (MDP) , which modern 
verification tools like P R I S M [10] or S T O R M [9] are capable to model check, might seem like 
a good candidate to deal with such conditions, however this model is fully observable and it 
lacks the ability to model state uncertainty. Such uncertainty can rather be modeled using 
the so-called partially observable Markov decision processes [22, 15] ( P O M D P ) , which define 
states, actions, similarly to classic Markov decision processes (MDP) , and additionally 
observations, which are means of obtaining information and the results of the actions. 

Controlling of P O M D P s is, however, an undecidable problem. In general, there are two 
different fields that deal with the P O M D P s control. The first one in the form of simulation 
[21] and reinforcement learning techniques [13] is usually applied when the model is not 
available in some compact way, such as models dealing with the concept of infinity, since this 
approach offers great scalability with the other drawbacks of the problematic interpretation 
and not really guaranteed correctness. The second option is to employ the formal methods. 
First one, and perhaps less important for the purpose of this thesis, are belief-state Markov 
decision processes, where states are a distribution of probability over the states of original 
P O M D P , the so-called beliefs. These beliefs are updated according to previous actions 
taken [19]. This method similarly to already mentioned reinforcement learning techniques 
also brings a rather unfriendly ways of interaction together with the size problem of smaller 
models, for which the beliefs might be huge. The second options is a finite-state controllers 
(FSCs), which are the alternative representation of history maintained in some inner state 
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[17]. FCSs possess two undoubtedly beneficial assets, such as a relatively small and compact 
size and easy verification, which reveal their hidden potential. 

Junges et. al. [14] suggests and proves that identifying such an FSC is as difficult as 
synthesis for parametric Markov chains and thus leads to their synthesis. Andriushchenko 
et. al. [3] describes current state of the art methods which aims for deterministic FSCs 
rather than stochastic ones, as those are less difficult to obtain and also benefits from 
reproducibility of their behavior. FSC is searched for by symbolically representing the 
design space, which contains finitely many FCSs, as a propositional logic formula and 
employing learner-teacher framework in which the learner constructs the design space and 
teacher offers the best possible FSC which learner may either accept or rejects it and 
adapts the design space. We already mentioned that FSCs searching is possible to reduce 
to topology synthesis in the Markov chain and thus for the teacher purpose Andriushchenko 
et. al. [3] proposes the usage of inductive synthesis methods. The key of the aforementioned 
methods is to investigate the individual members of the Markov chain family and pick the 
one that satisfies all the constraints. This can be achieved in a variety of ways such as 
abstraction refinement (AR) which leverages creating a symbolic representation of a family, 
model checking it and optionally splitting it into subfamilies [8], counterexample-guided 
inductive synthesis (CEGIS) in which for unsatisfying members the counterexamples are 
constructed in the form of critical subsystems which then allows removing other members 
and thus speeding up the exploration process [7], or hybrid solution which combines the 
best bits of A R and CEGIS [2] where all these three methods are in practice implemented 
in tool called Probabilistic progrAm sYNThesizer (PAYNT) [4]. 

The goal of this thesis is to improve the state-of-the-art approach described in [3] by 
focusing on the CEGIS technique. The key results obtained from article [7] revealed that 
CEGIS performance fluctuates with different inputs, crucial is the program hole distribution 
among the Markov chain and thus we aim to find new and innovative approaches to tackle 
the counterexamples constructing. Specifically we talk about lifting the CEGIS method to 
use Markov decision process based counterexamples. One way how to achieve this is to 
use a tool for the computation of Small WITnessing Subsystems (SWITSS) and integrate 
it to P A Y N T to serve as a new way of constructing the counterexamples, it utilizes the 
reduction of the problem to a mixed-integer linear programming [11, 12]. This however fails 
miserably as it delivers almost the same results as Markov chain based counterexamples with 
enormous time overhead. Following these findings we decide to march forward with greedy 
construction of Markov decision process based counterexamples as the exact solutions and 
heuristics which SWITSS is able to perform are unusable at this state. 

Key contributions 

Key contributions of this thesis are: 

1. Examination of the usability of the SWITSS program and its potential to provide 
counterexamples for MDPs by solving mixed-integer linear program. 

2. Definition of a greedy method for constructing counterexamples for MDPs based on 
the greedy method for M C counterexamples implemented in P A Y N T tool. 

3. Introducing the way how to leverage such greedy method for M D P counterexamples, 
and M D P counterexamples in general in a P A Y N T CEGIS loop. 
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4. Implementation of the new counterexample generator for M D P s in P A Y N T , and con
tributing such implementation to the P A Y N T GitHub repository. 

5. Experimental evaluation of the introduced and implemented greedy counterexample 
for M D P generator on the set latest P O M D P models from P A Y N T repository. 

6. Showing that the method possess a potential as from the results of the evaluation 
stands out that for several P O M D P models this new way of constructing M D P coun
terexamples surpasses the state of the art results. 

Structure of the project 

In Chapter 2 we outline the core theory which is considered as a bare theory minimum nec
essary for this thesis, and that are the Markov chains, Markov decision process, partially 
observable Markov decision process, and their respective model checking. We will also touch 
on the key idea of so-called counterexamples with reference to Markov chains and Markov 
decision process and finite state controllers, which refers to partially observable Markov 
decision process. Next in Chapter 3 we focus more deeply on inductive synthesis of finite 
state controllers for partially observable Markov decision processes and its connection with 
the synthesis of Markov chains from families of Markov chains with parameters. Mainly 
the counterexample guided inductive synthesis, abstraction refinement synthesis and hy
brid dual-oracle synthesis. In the Chapter 4 Python program P A Y N T is described and its 
connection with the synthesis of FSCs and MCs. In Chapter 5 we define counterexam
ples for Markov decision processes and explore the existing approaches how to construct 
such counterexamples, mainly the Python program SWITSS and its possible usage in the 
P A Y N T program, integration to the P A Y N T program and comparing the results with the 
current greedy approach. Then we outline the greedy algorithm for Markov decision process 
counterexamples construction based on the existing algorithm for Markov chain counterex
amples. Finally, in Chapter 6 we show a practical approach on how to use Markov decision 
process based counterexamples in the CEGIS inside the P A Y N T program, whose key idea 
is based on the so-called simple holes (parameters) generalization. We also outline a couple 
of strategies to attempt a smarter simple holes generalization and at last we experimentally 
evaluate implemented methods. 
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Chapter 2 

Preliminaries 

In this chapter, we introduce an important theory and notation which we use as the basis 
for this thesis. The preliminary sections will cover some of the core stochastic models and 
the techniques used for their verification. Firstly, we refer to the Markov chains, one of 
the simplest models for probabilistic programs. In particular, we are interested in discrete-
time Markov chains, a specific type of Markov chain. In this context, we also touch on the 
principles of model checking and counterexamples, which are both closely related to Markov 
chain verification. Eventually, the more advanced models referred to as Markov decision 
processes are discussed, which lifts the Markov chains adding non-determinism. Last but 
not least, the generalization of Markov decision processes called partially observable Markov 
decision processes is described. A l l preliminaries are accompanied by simple and easy-to-
understand examples and figures. The Definition 2.1 and Definition 2.2 are taken over and 
adapted from [7]. The theory for Section 2.1 and its Subsection 2.1.1 about Markov chains 
and their model checking are from Books [18, 5]. The Subsection 2.1.2 on counterexamples 
for Markov chains is heavily inspired and adapted from Article [23]. The Section 2.2 and its 
Subsection 2.2.1 on Markov Decision Processes and its Model Checking are adapted from 
[8, 10, 1]. Finally Section 2.3 which revolves around Partially observable Markov decision 
processes is based on Articles [14, 3]. 

2.1 Markov Chains 

The most basic of the Markov models, which is at the same time the core of all the Markov 
models from which all the other Markov models are derived, is a Markov chain (MC). There 
are two types of M C , discrete-time Markov chain (DTMC) which works with the discrete 
points and continuous-time Markov chain ( C T M C ) operating on whole intervals. Since 
C T M C s are not the topic of this thesis, we can simplify abbreviations, and thus we will 
refer to D T M C as M C . The core feature of the M C is a Markov property which states that 
the next state is determined only by the current state and not the previous states. 

Definition 2.1. A probability distribution over a finite set S is a function fx —>• [0,1] with 
^2SGS A t( s) = 1- Let Distr(S) denote the set of all distributions over S. Let supp(fi) = {s £ 
S | n(s) > 0}. 

Definition 2.2. A discrete-time Markov chain (MC) D is defined as a tuple (S,so,P) 
where S is the finite set of states, so G S is the initial state, and the transition probability 
matrix P : S —>• Distr(S). 
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M C is a state-transition system where from each state s £ S the system can make the 
transition to one of its successor states, this choice is denoted as P(s). This implies that 
the probability of the system making a transition from state s to t where s,t G S is denoted 
as P(s)(t), which could be simplified to P(s,t) for the sake of readability. Then for each 
state s G S the set of possible successors is defined as supp(P(s)). Iff condition P(s, s) = 1 
holds, then the state is called the absorbing state because once this state is reached there 
is no possible transition to any other state. 

Path a; is a finite or infinite non-empty sequence of states so, si, S2, ••• where Vz € No : 
P(SJ ,SJ+I ) > 0. This generally holds for any path, so that the state so does not actually 
have to denote an initial state of M C . The path where so G S is an actual initial state is 
called the execution of M C . We denote PathsD(s) or possibly Paths^in(s) to represent a set 
for all infinite or possibly finite paths that are able to be taken from the state s. Shortcuts 
PathsD respectively Paths®in denote that the starting point of all the paths in the set is 
the initial state so of M C D. 

oj{i) denotes an i-th state of the sequence, \UJ\ represents the length of the sequence, 
and for finite paths, we define a last{uj) to represent a last state of the sequence. Using the 
Markov property, we can quantify the probability of a specific finite path with the help of 
a transition probability matrix as follows: IP [so, s i , S2> •••> sn ] = Iir=i P(si,Si+i). However, 
this approach brings certain difficulties for infinite paths, as the result yields a probability 
mass zero. This problem can be mitigated by the introduction of cylinder sets. Cylinder set 
CS(UJ) for a finite path UJ is by definition a set of all infinite paths with the common prefix of 
path UJ. Then the probability of CS{UJ) is computed as P(so, si) -P(si, S2) -P(si, S2), ••• [18]. 

Occasionally, visualization of M C in a graph form is desirable, where nodes represent the 
states, and edges represent the probabilities that the transition from one state to another 
will be taken. Transitions with a probability equal to zero are omitted. This is illustrated 
in Figure 2.1. 

0 0.5 0.5 0 
0 1 0 0 

0.5 0 0 0.5 
0 0 0 1 

(a) MC graph (b) MC transition probability matrix 

Figure 2.1: Basic M C with 4 states which 2 of them are absorbing. 

Example 2.1. The path UJ = so, S2, so> si 1 5 o n e °f the possible executions of the MC from 
Figure 2.1. The probability that this execution occurs can be computed as UJ is P(so,S2) • 
P($2, so) • P(SQ, SI) = \ • \ • \ = | . In addition, the general probability of reaching the state 
si G S eventually can be computed as the sum of the probabilities of all finite paths ending 
in the state s\: 

8 



F[s0, si] + F[s0, s2, s0, si] + F[s0, s2, s0, s2, s0, si] + ... = - + - + — + ... = -

or we can take advantage of the cylinder sets, because we can write the set of all the paths 
that will eventually end up in the state s\ as UieNo s ° ' ( , S 2 ' S l an<^ probability is 
calculated as: 

i=o i=o v / 1 4 

2.1.1 Model Checking MCs 

Model checking of M C is a base method to demonstrate the behavior of M C , more precisely 
the ability to satisfy certain properties. This is typically checked by computing various prob
abilities throughout the whole model to confirm the likelihood of specific events that either 
prove or deny the feasibility of those properties. Model checking processes are algorithms 
that take model specification of an M C together with a set of properties in probabilistic 
temporal logic, which the model should be verified against, and yield the feasibility results 
for each property. 

Probabilistic Computation Tree Logic (PCTL) is the most common type of temporal 
logic used for the verification of the M C model. 

Definition 2.3. The syntax of PCTL is as follows: 

$ ::= true | a | -i<& | $ A $ | P><A[0] 

4> ::= X$ | $U-k$ 

where a is an atomic proposition, rxie {<,<,>, >}, A G [0,1] and k G N U {oo} . 

These P C T L formulae are interpreted over the states of M C . There are two types of 
formulae, state formulae $ and path formulae <fi that are evaluated over states or paths, 
respectively. For the M C properties, only the state formulae are used, since the path 
formulae serve only as a parameter to a P M ^ [ . . . ] state formulae operator. M C satisfies the 
property - P ^ A M if the probability of satisfying <fi lies within the interval specified by 03 A. 
As path formulas only X $ which denotes that the formula is satisfied in the next state, 
and <&U-k^ (bounded until) denotes that $ is satisfied within the k steps and ^ is true 
up until that point. Placing the k = oo we obtain the unbounded until which might be 
simplified to QlJfy. Diamond operator o (eventually) simplifies the formulas further away, 
since o $ means that $ is eventually true and o-K& analogously that $ is true within the 
k steps. For a state s that satisfies the formula $ or a path u that satisfies the formula <f> 
we write s \= $ respectively UJ \= <fi and the negation of the satisfiability s ¥• $ or UJ ¥• <fi. 
Properties ip = P^x[(f)] where txiG {<, <} are called safety properties and their counterparts 
where cxie {>, >} are called liveness properties. 

The core essential property around which this thesis will revolve is the unbounded 
reachability, as even very complex P C T L formulae may be reduced just to this property. 
Given the set of target states T C S property ip = F[s \= F T] (we simplify the diamond 
operator o to F because of readability and compatibility with the information mentioned in 
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the following chapters) stands for probability that from state s G S any of the target states 
in T is eventually reached. The qualitative version of this property ip = P|XA[S \= F T] 
is satisfied iff the probability falls within the given threshold A and thus s \= <p 44> P[s \= 
F T] x A. Lifting the unbounded reachability to the whole M C , the model D satisfies the 
property iff the initial state satisfies said property: D \= ip 44> SQ \= ip. 

The algorithmic way of model checking the M C D against the reachability property 
p> = P><A[S \= F T] consists of obtaining the probability of eventually reaching any of 
the target states from T C S for each state s G S P [ s |= FT] and checking the if the 
P[so |= FT] x i A holds for the initial state of the M C . This computation leads to a solution 
of a system of linear equations and is shown in detail in Algorithm 1. 

Algorithm 1: Computing unbounded reachability probabilities for M C . 
Input: M C D = (S, so, P), set of target states T C S 
Output: Vector with probabilities x(s) = F[s \= F T] for each s G S 

1 S0 := {s G S | F[s \= F T] = 0} / * graph problem 
2 Si :=T 
3 S? :=S\(S0USi) 
4 Find the solution for the following system of linear equations: 

'0, i f s G S b 
x(s) = < 1, if a € S i 

k E y e s ^ (*. * ' ) • * ( * ' ) if -s G S? 

5 return x 

Example 2.2. When we return to the MC from Figure 2.1 and Example 2.1 we now 
can compute the the same probability using this algorithm. So = {S3}, Si = {si} and 
S? = {SQ,S2}. 

x(s0) = ^x(si) + ^x(s2) 

x(si) = 1 

x(s2) = ^x(s0) + ^x(s3) 

x(s3) = 0 

Obtaining the vector x = ( | , 1 , ^ , 0 ) T and checking against the result yielded by basic 
probability or cylinder set computation, we verify that F[F {si}] = | . With the help of the 
computed vector of unbounded reachability probabilities of MC D, the model can now be 
verified against various properties, for example D \= V>os[F {si}], D ¥• V^Q.^F {SI}] or 
DPV>0.75[F{si}]. 

Remark. For the simplicity we focus only on unbounded reachability properties in this 
thesis, however, there is also a reward-based property defined as ip \= R^xlF T] denotes a 
property tied to a expected value of reward in a set of target states T C S. More detailed 
this is described in [20]. Moreover, the reward-based properties will be supported by the 
algorithms introduced later on. 

10 



2.1.2 Counterexamples for MCs 
During the model checking process, if some specification ip is rejected, it is very useful to 
provide a specific execution of M C that violates the said specification which would act as 
the so-called counterexample (CE). In general, there are two ways to represent C E in the 
model-checked M C : either a set of paths or a critical subsystem. Both these approaches 
are described in great detail in the book [23], therefore we will only mention the essential 
piece of information. 

First, let us dig into the probably more straightforward way, which delivers the C E in 
the form of a set of paths in M C . Having the specification ip = P ^ f i 7 T], the probabilities 
of such paths must add up so it violates the 03 A qualitative property. For the safety 
property CXIG {<, <} C E is in the form of a set of finite paths that end up in any of the 
states s G T whose probabilities summed together exceed A. In general, we are trying to 
show that the probability of reaching some state s G T is higher than the specification 
value. On the other hand, with the liveness property CXIG {>, >} it must be shown that the 
probability of reaching any state s G T is lower than A or turning the specification around 
so that the probability of never reaching any of the states s G T exceeds (1 — A). This 
C E can be represented as a set of infinite paths that violate the specification ip and their 
summed probabilities exceed (1 — A). As already mentioned, it is rather a pitfall to operate 
on infinite paths, and thus using a cylinder set CS(w) where u leads to a bottom strongly 
connected component (BSCC) from where it is impossible to reach any of the states s G T 
helps in this case a lot. If the individual probabilities of such SCs accumulate to a higher 
value than (1 — A) then it can serve as a C E for this specification in the particular M C . 

The other way to provide C E for a pair of specification and M C is the critical subsystem. 
In this thesis, this will be the preferred form of doing so, as this approach is quite compact 
and handy in contrast with providing a set of paths, since that can sometimes be quite 
overwhelming, as providing all the possible executions might grow in size quite quickly. 
Critical subsystem D^C is a fragment of the original M C D that includes only the critical 
paths and states that already violate the specification ip on their own and hence, even when 
containing only the portion of the original size of the M C D its sets of paths PathsD^ 
and Pathsmatch the C E . Let us formally define this critical subsystem with regard to 
safety and liveness properties. 

Definition 2.4. Let D = (S, so, P) be an MC, state s± such that s± ^ S and CCS such 
that so G C. The sub-MC wrt. C is an MC D]^C = (C U {s±}, so, P') where the transition 
probability matrix P' is defined as follows: 

Definition 2.5. Let D = (S, so, P) be an MC, ip = P<\[FT] be a safety property such that 
D ¥• ip and ip' = P>\[F T] be a liveness property such that D ¥• ip'. Then if for some C it 
holds that D i C ¥• ip as well, then the set C and the corresponding subsystem D i C are 
called critical. For liveness property this holds very similarly; however, the corresponding 
subsystem needs to violate the slightly modified specification such as D]^C ¥• P>\[F r u l s j , } ] 
because not including this so-called sink state as a valid target state would result in the 
construction of such tiny CEs that would contain only the initial state of the original MC. 
When \C\ < \C'\ for every C then we call it a minimal critical subsystem. 

P(s,s') 

1 

ifs,s' G C, 

if s G C and s' = s± 

if s = s' = s±. 
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As already pointed out, critical subsystems will be the form of C E which will serve as 
a reference point in this thesis. The construction of such a critical subsystem is usually 
based on gradually expanding the subsystem and adding paths and states from the original 
M C . The starting point for the expansion is usually the initial state of the M C . After 
each expansion step, the subsystem is model checked against the specification, and once 
this specification is not satisfied, the current subsystem may be proclaimed the C E . This 
algorithm is guaranteed to terminate eventually as the original M C D violates the property 
for sure and thus the worst case is that the critical subsystem is the whole original M C . 

(a) Critical paths (b) Critical subsystem 

Figure 2.2: C E for a M C D from Figure 2.1 and safety property P<o.6[-^ 

(a) Critical paths (b) Critical subsystem 

Figure 2.3: C E for a M C D from Figure 2.1 and liveness property P>o.75[-^ 

Example 2.3. Let us first briefly demonstrate the counterexamples in the form of finite 
(infinite) paths. Recalling the MC D from Figure 2.1 and the computed unbounded reacha
bility vector in Example 2.2 we can now construct a CE in the form of a set of finite paths 
{SQS\, SQS2SQSI} for a specification P<o.6[-^ {^l}] and CE for specification P>o.75[-F {si}] as 
a set of all infinite paths with the common prefix so,S2,S3 as this prefix leads to a BSCC 
from which the target state may never be reached. 

Now we deliver a critical subsystem corresponding to the CE based on the already shown 
path. In Figure 2.2a critical paths are colored red. The critical set of states C = {so, si,S2J 
for a safety property P<o.6[-F{-si}] induce a critical subsystem D]^C that violates the property 
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^<os[F {si}] and att states from S \ C which are not present in the critical subsystem are 
replaced by the sink state which acts as a common reroute for all transitions that are no 
longer needed due to the state being replaced by the sink state. A very similar approach may 
be seen in Figure 2.3a and Figure 2.3b for the liveness property P>o.75[-F{si}], but this time 
the critical paths are colored green and the critical set of states C = {so,S2,S3} induces 
a different critical subsystem D J, C that violates the modified property P>o.75[-F {s\} U 

Adding the sink state s± among the target states is a crucial step when constructing 
the CE for the liveness properties, as leaving out this modification would cause incorrectly 
constructed CEs that contain only the initial state of the MC. 

2.2 Markov Decision Processes 

Markov decision process (MDP) is M C enriched with a new concept of actions which in
troduce nondeterministic choices to a model. This modification lifts the M C so that now 
the transitions in the model are driven by both nondeterministic (potentially determin
istic as we later introduce the concept of schedulers) choice and the original probability 
distribution. 

Definition 2.6. A Markov decision process (MDP) is a tuple M = (S, so, Act,V) where S 
and so are identical to those defined in Definition 2.2, Act is a finite set of actions and a 
partial transition probability function V : S x Act Distr(S). 

We denote the set of available actions in each state s G S as Act(s) = {a G Act \ 
V(s, a) If for all states s G S in M D P condition |ylct(s) | = 1 holds, then it is an M C 
since having only one available action to take from each state removes the nondeterminism 
and leaves us with only the probability distribution. We employ a similar simplification 
as we did for the M C and thus V(s)(a)(s') may be exchanged for V(s,a,s'). The path 
of an M D P M is either a finite or infinite non-empty sequence consisting of actions and 
states that we denote like TT = SQ —^ s\ —h- • • •, where si G S, ai G Act(si) and Vz G No \ 
V(si, aj, Sj+i) > 0. The set of finite or infinite paths in M D P M is denoted by Paths^ or 
PathsM. Omitting the actions in the path definition induces the (in)nnite path definition 
for M C . For a finite path IT we also define the last state last(ir). The probability of a finite 
path 7r could be computed similarly as for a path in M C : F[so, ao, s i , a i , S2, a2, • • • , sn] = 
nr=i 1 - p( s i> a i> s i+i)-

The same as for M C sometimes the graph visualization is necessary for M D P and a very 
similar graph form serves such purpose. The nodes represent states and the edges represent 
transitions with the addition of smaller nodes or possible dots representing possible actions. 
Outgoing edges from state do not have any probability assigned, and outgoing edges from 
an action do have the probability assigned. See Figure 2.4 for details. 

Since M D P behaves nondeterministically, usage of schedulers is very useful for dealing 
with nondeterminism. 

Definition 2.7. A scheduler for an MDP M = (S, so,Act, V) is a function a : Paths^ —> 
Act such that o~(ir) G Act(last(ir)) for all ir in Paths^in. Scheduler a is memoryless if 
last(ir) = last(iv') CT(TT) = a(iv') for all 7r,7r' G Pathsfin. The set of all MDP M 
schedulers is S M . 

Definition 2.8. The MC induced by MDP M and the scheduler a G S M is given by 
Ma = (Pathsfin,s0,Pa) where: 
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(b) MDP transition probability 
matrix for individual actions. 

{so, ao) r 1 
(s 0 ,a i) 0 
{so, a 2) 0 
(s i ,a 3 ) 0 
(s 2 ,a 4 ) 0 
(«2,05) 0.5 
(s 3 ,a 6 ) L 0 

0 
0.5 
0 
1 
1 
0 
0 

0 
0.5 
1 
0 
0 
0 
0 

0 -
0 
0 
0 
0 

0.5 
1 -

(a) MDP graph 

Figure 2.4: Basic M D P with 4 states and 7 actions. 

P a (TT.TT') 
V(last(7r), cr(7r), S') if TT'= TT s' 
0 otherwise. 

Scheduler basically drives deterministically choices in each M D P state. Whenever the 
state last(7r) of the path TT is reached, the scheduler takes action a = O-{TT) G Act(last(7r)) 
and then the transition is made based on the probability distribution V(last(7r), a). Speci
fying this further away, if the scheduler a is memory less, mapping from state to actions is 
obtained as no matter the path the scheduler will always choose action o~{s) in state s £ 5 . 

Example 2.4. Let us use MDP M = (S, so, Act,V) where S = {so, si, s 2, S3}, Act = 
{ao, a i , a 2 , 03, 04, 05, a^} and V defined in Figure 2.4 by both graph and transition probability 
matrix for individual actions. Path TT = SQ — s 2 SQ SQ —k~ s\ is one of the possible 
executions of MC M. The probability of such a path is computed as: 

We can induce MC Ma from MDP M applying the memoryless scheduler a G E where 
a : [so i->- 01, si >->• 03, s 2 i-> 05, S3 i-> a@] which is equivalent to MC D from Figure 2.1. 

2.2.1 Model Checking MDPs 

M D P model checking uses the same specification language as M C model checking; however, 
there are certain differences between those two processes and thus also in the semantics of 
the language. The main change resides in the fact that unlike in the M C model checking, 
where only one possible outcome was possible, we now might have a set of action in each of 
the M D P states to choose from, and thus the resulting probability of reaching some state 
from another clearly depends on which actions are favored. We say that the specification 
ip holds for an M D P M iff it holds for the induced MCs of all schedulers, that is, M \= 
ip 44> Va G E C T : Ma \= ip. Since the number of schedulers for any M D P is infinite, we 
restrict the search to only memoryless ones and hence refine the model checking to simple 

P[TT] = V{s0, a2, s2) • V{s2, a 5 , s0) • V{s0, a 0 , si) = 1 • 
1 1 1 
2 2 4 
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finding of maximum or minimum probability with the corresponding scheduler as shown in 
Proposition 2.1. 

Proposition 2.1. Let M = (S, so, Act, V) and ip be a property. Then amin, o~max G S M de
notes the memoryless schedulers (minimizing/maximizing) such thatVa G S M : P [ M f f m i n |= 
tp) < F[Ma |= if) < F[Mama* |= if). 

For a particular specification ip = [F T] we need to compute a minimizing scheduler 
omin in case of liveness property or possibly maximizing scheduler a m a x in safety property 
scenario. Obtaining such a scheduler allows us to compute the minimum / maximum 
probability of reaching T from each state that is Vs G S : x(s) := aggra£-£MF[Ma, s \= FT] 
where aggr G {min, max} and then simply lay down and assert xmin(so) > X for liveness or 
xmax(so) < X for safety. This computation of the lower (xmin) and upper (xmax) bounds of 
reachability probabilities leads to a solution of mixed-integer linear program (MILP) . For 
a simplification purposes we also may refer to xmin(so) and xmax(so) as P m j „ and Fmax. 
In Algorithm 2 a detailed approach is described to compute xmax- By rearranging some 
of the operators, we can obtain the steps for computing the xmin as well. M I L P solution 
gives the exact answers; however, there is a significant drawback with scalability on larger 
models and thus value iteration or policy iteration methods are usually applied instead of 
M I L P solving [10]. 

Algorithm 2: Computing unbounded reachability probabilities for M D P . 
Input: M D P M = (S, s0, Act, V), set of target states T C S 
Output: Vector with probabilities xmax(s) = maxa(zY,MF[Mas \= F T] for each 

seS 
1 Sb := {s G S\\/a G S M : F[Ma, s \= <p] = 0} / * graph problem */ 
2 Si := {s G S\3a G S M : F[Ma, s \= <p] = 1} / * graph problem */ 
3 S ? : = 5 \ ( 5 0 U 5 i ) 
4 Find x m a x as solution to M I L P where maximizing the J^se5 x ( s) subject to 

Vs G So : x(s) = 0 

Vs G S i : x(s) = 1 

Vs G S?Va G Act(s) : x(s) > V (s, a, s') • x V) 
s'es 

5 return x m a x 

2.3 Partially Observable Markov Decision Processes 

Partially observable Markov decision process (POMDP) is a generalization of M D P where 
we deal with state uncertainty. The agent usually has incomplete information to work 
with. We call this piece of information an observation. Agent can then no longer observe 
the underlying state of the model and needs to do decisions based on such observations 
compared to already introduced models like M C or M D P . 

Definition 2.9. A partially observable MDP (POMDP) is a tuple M = (M,Z,0) where 
M = (S, SQ, Act,V) is a underlying MDP of M., Z is a finite set of observations and a 
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(deterministic) observation function O : S —>• Z'. The observation Z is called trivial or 
perfect if there is only one state s G S with 0(s) = z for some observation z G Z. 

Lifting the observation function O to paths, such that for IT = so s\ —l-+ • • • sn G 
Paths^in we get the observation sequence 0(ir) = 0(SQ) 0(s\) —k~ • • • 0(sn). 

Definition 2.10. An observation-based strategy p for a POMDP M. is a strategy for un
derlying MDP M such that Vu;,u/ G Pathsfin \ p(ui) = p(w') with 0(UJ) = 0(J). Y,M is 
the set of observation-based strategies for POMDP M.. 

Observation-based strategy actions based on observations along a path and the past 
actions. Induced M C Mp is obtained be applying some observation-based strategy p on 
P O M D P . For compact representation of such strategies with finite memory finite-state 
controllers (FSCs) are defined. There is a variety of possible FSC representation, but we 
will restrict our usage to Mealy machines with the output determined by taken transition 
and also we restrict only to deterministic FSCs. 

Definition 2.11. A (deterministic) finite-state controller (FSC) for a POMDP M. is a 
tuple T = (NJUOJ'YJS), where N is a finite set of memory nodes, no G N is the initial 
memory node, 7 is the action mapping 7 : N x Z —>• Act which determines the action 
when the agent is in node n and observers z and 5 is the memory update 5 : N x Z —>• iV 
which updates to a new node based on presence in a particular node n and observing z. 
For \N\ = k we call an FSC a k-FSC. Let pj? G TiM denote the observation-based strategy 
represented by T. 

Similarly as observation-based strategy, fc-FSC T may also be applied to P O M D P M. 
to obtain induced M C MT = (SF, (SQ, no), PF) where SF = S x N and with the usage of 
z = O(s) : 

pF((s, n), (s, n )) = P(s, s', j(n, z)) • [n = 5(n, z)} 

where Iverson-brackets implies that [x] = 1 if predicate x is true and 0 otherwise. 

Figure 2.5: A simple maze problem represented as P O M D P (adapted from [3]). 
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Z„/r Z,/l 

[3]). (b) Part of the induced MC (adapted from [3]). 

Figure 2.6: Part of a FSC and corresponding induced M C for P O M D P from Figure 2.5. 

Example 2.5. In Figure 2.5 maze problem is depicted as a POMDP M. with S = {so, s i , • • • , ST}, 
Act = u, d, r, I and Z = {zo, • • • , z$}. In Figure 2.6a a fragment in form of 2-FSC may be 
seen with 7(no, ZQ) = 7(no, z\) = r (observing ZQ or z\ in memory node no results in action 
r) and 7(no, £3) = 7(^1, z\) = I (observing Z3 in memory node no or observing z\ in mem
ory node ni yield action I). Finally Figure 2.6b depicts induced MC obtained by applying 
the 2-FSC onto POMDP M. 
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Chapter 3 

Inductive Synthesis Methods for 
P O M D P s 

From Section 2.3 a certain connection between an FSC and an M C is indicated. This is a 
key part of the information on which the idea of controller synthesis is based, which is one 
of the possible approaches to tackle the P O M D P state uncertainty, which will be described 
in more detail. Wi th the usage of parameters, families of MCs can represent many different 
realizations with changing topologies and an immutable set of states [8]. Leveraging the 
families, one can ask the question, how to synthesize an M C from the family of MCs to 
satisfy certain specifications? Similarly, based on the connection between the FSC and an 
M C , which will be explained in the following section, the whole concept of M C families 
with parameters may be lifted and applied to FSCs as well. Various synthesis methods 
such as counterexample-guided inductive synthesis [7], abstraction refinement [8], or the 
dual hybrid method [1, 2] can be employed to synthesize searched M C , respectively, FSC. 

3.1 Families of FSCs 

From what we've learned in Section 2.3 a P O M D P and a single FSC result into a single 
induced M C and hence a P O M D P and a set of FSCs induces a set of MCs. In addition, 
FSC sets have an additional structure that allows for a concise description of M C sets. 

Definition 3.1. A family of full k-FSCs is a tuple Tk = (N,o,K), where N is a set 
consisting ofk nodes, no £ N is the initial node and K = N x Z is a finite set of parameters 
where each has its own domain V(n,z) Q Act x N. 

By fixing the value of each parameter, one may obtain a fc-FSC from a family which 
shows that each family describes a set of FSCs by varying in the substitutions of the 
parameters. Such families are usually described as J-k- Generally speaking, a P O M D P j\A 
and a family Tk induces the family of MCs MFk = {MF\F G Fk} [3]. 

Remark. From now on we focus families of MCs and ways of their synthesis. As we 
already showed the connection between the family of MCs and FSCs, the following synthesis 
algorithms will be understood more clearly in the MC world and hence it is just important 
to remember that all the following synthesis methods might be used for FSC synthesis as 
well. 
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3.2 Families of M C s 

Definition 3.2. A family of MCs is a tuple V = (S,so,K,B) where S and so are defined 
the same as in Definition 2.2, K is a finite set of parameters with domains C S for each 
parameter k G K, and B : S —>• Distr(K) is a family of transition probability functions. 

The function B maps each state s G S to a distribution over parameters K. In contrast 
to M C synthesis, such parameters represent unknown options (holes) of a specific model. 
The assignment of a specific value, more precisely state, to each of the parameters yields 
M C , which represents a concrete realization of a family T>, which is described in the following 
definition. 

Definition 3.3. A realisation of a family V = (S, so, K, B) of MCs is a function r : K —>• S 
such that VTc G K : r(k) G T^. Realisation r induces MC Vr = (S,so,Br) iff Br(s, s') = 
J2kzKr(k)=s' B(s)(k) for aM pairs of states s, s' G S. Let 1ZV = Yik&K denote the set of 
all the realizations ofV. 

The family T) has finite parameter domains and thus the number of family realisations 
is finite too, however, exponential in \K\. A l l MCs from one family T> share the same 
immutable state space and their topology, such that reachable states may be different. 

1 0.5 

(c) r3 : X ^ s2,Y ^ si (d) r 4 : X i-> s2, Y i-> s3 

Figure 3.1: Family of 4 MCs T>. Grayed out parts of the M C are unreachable. 
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Example 3.1. Let us assume a family from Figure 3.1 V = (S, so, K, B) of MCs with the 
state space S = {so, si, S2, s3} and a set of parameters K = {X, Y, ko, k\, k3} and their 
respective domains Tx = {si,s2}, TY = {si,s3}, Tko = {s0}, Tkl = Tk3 = {s3} 
(notice that parameters ko,ki,k3 have domains of size 1 and hence are not considered to 
be parameters for the simplification) and the family of transition probability functions B 
defined in a PRLSM style (will be explained later in Chapter 4)'• 

B(s0) 
1 

_ 2 
:k1 + \ : X. 

B(Sl) 
1 

_ 2 
:k1 + \ •Y, 

B(s2) 
1 

~~ 2 
:k0+\ :k3 

B(s3) 
1 

_ 2 
:k3+\ : Y. 

Currently, there are two defined synthesis problems that the following synthesis methods 
are able to tackle. When both the state space S and the set of parameters K are finite, 
then both of these problems are decidable, more precisely, A^P-hard. Let us assume some 
specification ip = P M A [F T]. 

1. Feasability Synthesis: For a family of MCs T> and the specification ip identify a 
realisation r G VP such that for an induced M C T>r \= ip. 

2. Maximum Synthesis (optimality): For a family of MCs T> and specification ip 
identify a realisation r* G VP such that r* G argmaxr^ji-D¥\Vr \= F T]. 

The feasability synthesis problem is basically searching for realisation satisfying all the 
given specifications, which may also result in finding no such realisation. The problem of 
maximum synthesis then describes finding a realisation that maximizes the probability of 
reaching a set of target states T. Minimizing is defined analogously. 

A very trivial approach may be used to solve the synthesis problem, which is the so-called 
one-by-one method. In other words, brute forcing through each realisation r G VP until 
either satisfying realisation is found or the specification is proclaimed unfeasible. However, 
this method only serves as a proof of concept since for larger families this is unacceptable 
due to a state space and parameter space explosion. More sophisticated methods will be 
described in the following sections. These methods take advantage of inspecting whole 
subfamilies (sets of realisations) or generalizing the results of analysis to subfamilies [1, 4]. 

Definition 3.4. Let V = (S, SQ, K, B) be a family of MCs, and 1Z C VP a subset of reali
sations. A subfamily ofV consisting of realisations from 1Z is a family V[1Z] = (S, so, K, B) 
where the set of all realisations of the subfamily VP^ = 7Z. 

Definition 3.5. Let V = (S,SQ,K,B) be a family of MCs and r G VP be any realisation. 
A generalization of r in favor of the subset K C K of parameters is a set r t K = {r' G 
-RP\Vk G K : r(k) = r'(k)}. 

In other words, a generalization set r \ K defines a maximum set of all realizations 
that share the same assignment of parameters from the set K. Other parameters are not 
important. 
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3.3 Counterexample-Guided Inductive Synthesis 

First possible advanced synthesis method which we will describe and which also a main 
contributions of this thesis will revolve around is a counterexample-guided inductive syn
thesis (CEGIS) introduced in [7]. Core ideas of this synthesis approach are built on top of 
the one-by-one approach with possible pruning some of the realisations and thus reducing 
the space to explore, it goes as follows. Assuming the set of all realisations of a family 
of MCs 1ZV, we randomly pick some realization r G VP and construct the corresponding 
induced M C T>r. Let ip be a property to examine. We model check whether T>r \= ip, if 
the property is satisfied, a satisfying solution (assignment of parameters) is returned in the 
form of the realisation r. If the property, on the other hand, is not met, the critical set of 
states C for induced M C Vr and property <p is computed. Since the critical set C usually 
contains only a fragment of the original states S, the subsystem Vr^C, which serves as a 
C E , can then be constructed with the omission of some of the parameters k G K, namely 
those whose assignment is not relevant. 

Definition 3.6. Let V = (S, so, K, B) be a family of MCs. For a critical subset of states 
C C S, a set of relevant parameters (conflict) is obtained as K = Us&csupp(B(s)). 

Using the set of relevant parameters obtained, we have a generalization r \ K. Since 
any realisation from the generalization set r \ K may differ from r only in irrelevant 
parameters, it must hold that none of these realisation satisfies the property ip, same as 
realisation r. Formally, we write T>r ¥• p =4> Vr ' G r f K : T>ri ¥• ip. This way all realisations 
from the subfamily generalization are pruned in once, and they don't have to be model 
checked separately. By rejecting the subfamily D[r f K] the generalization set r t K is 
subtracted from the set of all realisations VP. This approach is repeated in a loop and will 
result in either finding some realization which creates accepting assignment or proving that 
feasible assignment does not exist for this pair of particular family of MCs and property. 
The smaller the conflict CCS, the larger the size of the pruned space is. In Algorithm 3 
and also in Figure 3.2 the CEGIS synthesis approach is described in more depth. 

Algorithm 3: Counterexample-guided inductive synthesis. 
Input: A family of MCs V = (S, so, K, B), property ip 
Output: Realisation r G VP such that T>r \= ip or U N S A T in the case of 

non-existing such realisation. 
1 CEGIS (V,p): 
2 

3 

4 

5 

6 

7 

8 

while TP / 0 do 
r := pickRealisation(7?, :D) 
if T>r \= ip then 

return r 
T>r^C := constructCriticalSubsystem(Vr, ip) 
K := identifyRelevantParameters(V,Vr^C) 
VP :=VP\r\K 

return UNSAT 
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Kv := n v \ TV 

ren 
-> Model check 

Vr\=(p 

, H' C ^ v i o l a t e y ? , ren' 

- — r 

no feasible r feasible r 

Figure 3.2: Counterexmaple-guided inductive synthesis (adapted from [4]). 

3.4 Abstraction Refinement 
The second synthesis method, which we will mention briefly, is called abstraction refinement 
(AR) [8]. A R approach is completely opposite from the CEGIS, as unlike CEGIS, instead 
of the one-by-one analysis of the all the realisations of a family of MCs accompanied with 
the possible pruning of some realisations having the same set of critical states, it focuses on 
examining whole sets of realisations. To analyze a whole set of realisations at once, a special 
stochastic process with all the realisations from the examined set, enabled at the same time. 
More precisely, from each state s G S of the mentioned process, there is a nondeterministic 
choice of realisation r G VP which simulates the parameters from the assignment of the 
set K. This stochastic model leads to an M D P representation, and informally it is called 
a quotient M D P . We outline only the essential information about the M D P quotient in 
Definition 3.7, for a more detailed description on how to obtain the M D P quotient, see 
article [8]. 

Definition 3.7. Let V = (S, SQ, K, E) be a family of MCs. A quotient MDP of family V is 
a MDP Mv = (S,s0,TZv,V) where V(-)(r) = Br. For the subset TZ C TZV, a restriction of 
Mv with reference to TZ is an MDP MV[TZ], which might be simplified to Mv^nl 

Such a quotient M D P is an over-approximating abstraction of some family of MCs as it 
over-approximates its each realisation. This furthermore means that the quotient M D P is 
capable of simulating any realisation from the given family and it can even switch currently 
executed realisations on the fly during the run-time. Since this is an over-approximation 
of a family, we need to keep in mind that it is then possible to identify invalid paths in 
resulting quotient M D P , that or not consistent, because they are simply combination of 
multiple realisations and they do not exist solely within just one realisation. The example 
quotient M D P and its transition probability matrix of individual actions, or more precisely 
realisations, is depicted in Figure 3.3. 

Now we describe the actual synthesis method. From the input set of realisations VP the 
quotient M D P is constructed. Let ip again be the property to analyze. In the model checking 
phase, the minimizing and maximizing bounds amin and a m a x along with the corresponding 
lower and upper bounds xmin and x m a x are computed and based on the bounds the set of 
realisation is is either accepted, rejected or refined. Now let us assume that property ip is 
a reachability property with threshold A, if x m a x < A for a safety property or xmin > A 
for a liveness property then it is safe to assume that each realisation r G TZ satisfies p. 
Analogously, if x m a x < A for a safety property or xmin > A for a liveness property, then 
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(s0 «o) - 0 1 0 0 -
(so ai) 0 0.5 0.5 0 
(sl 02) 0 1 0 0 
(si 03) 0 0.5 0 0.5 
(s2 a 4) 0.5 0 0.5 0 
( s3 05) 0 0 0.5 0.5 
( s3 - 0 0 0 1 -

(b) Quotient MDP transition prob
ability matrix for individual ac-

(a) Quotient MDP graph. tions (realisations). 

Figure 3.3: Quotient M D P for family of MCs depicted in Figure 3.1. 

each realisation r G 1Z does not satisfy property ip and hence no feasible solution is found. 
The third case occurs when xmin < A < x m a x and in such a case nothing can be concluded 
and the current family needs to be split into two subfamilies TZj and 1Z± and these two 
subfamilies are then analyzed separately using the A R method and this is repeated until 
a feasible solution is found or there is no feasible solution. Schema in Figure 3.4 describes 
A R in more detail. 

construct quotient MDP . 

1 
queue of families 

m = {nv} 

pick family 71 £ 5H, construct Mv^ 
verify MD[li> \= tp 

no feasible r 

¥ not satisfied 

Undecided 

m:=<nu{TiT,n±} 

T 
feasible r 

Figure 3.4: Abstraction refinement synthesis. 

3.5 Hybr id Dual-Oracle Synthesis 

Both the previously mentioned synthesis methods, CEGIS and A R , have their strengths 
and weaknesses. Both are able to perform really well, but their efficiency depends on the 
topology. It is very common that for one family of MCs CEGIS is able to perform really 
well and A R lacks behind and the efficiency swaps for some other topology. This unstable 
performance leads to a combination of both techniques called hybrid dual-oracle synthesis 
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(abbreviated simply hybrid). Hybrid uses best bits of both CEGIS and A R in such a way 
that it alternates between the two methods and allocates time to the synthesis method, 
which performs better at the moment. It was first introduced in [1] and was improved in 
[4], as it allowed to use the bounds obtained from A R in CEGIS to get smaller CEs. The 
graphical schema of the functionality of the hybrid synthesis method is shown in Figure 3.5. 

1 
V 

1 TZ C Tlv > t TZ C Tlv 

AR Oracle 
• 

Learner 

r e TiD+ bounds 

V,<p 

JL 
CEGIS Oracle 

bounds or 1Z violates 

each r G TZ, r \= ip 

K' C 1lv violate ip, r 6 li! T 
no r |= ip r\=(p 

Figure 3.5: Hybrid Dual-Oracle synthesis (adapted from [4]). 
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Chapter 4 

P A Y N T - Probabilistic progrAm 
sYNThesizer 

Previous chapter outlined the connection between M C synthesis and FSC synthesis and 
described three core methods used for the purpose of synthesis. These methods are im
plemented in the Probabilistic progrAm sYNThesizer ( P A Y N T ) 1 tool, written in Python 
programming language, first introduced in article [4], which is built on top of the S T O R M 
model checker2 written in C + + language [9]. Stormpy Python bindings 3 are leveraged 
as middleware between Python P A Y N T and C + + Storm. The original purpose of this 
program was to perform synthesis of probabilistic programs but is now extended with the 
ability to synthesize FSCs as well. This chapter will further describe the connection be
tween the synthesis of M C s / F S C s and probabilistic programs and how P A Y N T is adjusted 
for the FSC synthesis. 

4.1 P A Y N T for probabilistic programs 

Despite the fact that MCs are models designed to describe probabilistic systems, in the real 
world, they are no longer so practical due to a state space explosion. Instead of pure MCs, 
such probabilistic systems are usually described with high-level programming languages 
that are designed exactly for such purposes. The talk is about languages like P R I S M [10], 
J A N I [6], and other languages for similar purposes. Only from this description is the actual 
M C constructed. 

Wi th reference to M C families with parameters described in Section 3.2 the so-called 
sketches [7] that represent the incomplete high-level program which contains undefined 
parameters with their respective domains from which they need to be assigned to induce 
M C . These undefined parameters in the sketch are called holes. Therefore, the probabilistic 
synthesis is then responsible for finding the assignment solution for these holes with the 
S T O R M model checker assistance. 

4.1.1 PRISM Sketch Language 

Program written in P R I S M language consists of one or more reactive modules. These 
modules are able to interact with each other. The module consists of a set of bounded 

x h t t p s : //github.com/randriu/synthesis 
https: //github.com/moves-rwth/storm 

3 h t t p s : //github.com/moves-rwth/stormpy 
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variables spanning the state space of a model. Transitions are handled by the guarded 
commands in the following form: 

guard —>• pi : update1 + • • • + pn '• updaten. 

The guard represents a Boolean expression over the module variables. Evaluating the 
guard to a logical value true evolves the module into one of its successor states, which 
is achieved by a simple variable update. The probability distribution over expressions 
pi, • • • ,pn deduces the update of a variable. Guards overlapping produces nondeterminism 
and hence it is not allowed. Essentially, a program P is a tuple of variables and commands. 
For a program P the underlying M C [P] is an M C that functions the same way is P on the 
state level. The program P satisfies the specification ip iff [P] |= ip. 

A sketch is an incomplete program containing holes. Holes are the program unfixed 
parts that need to be assigned from finite set of options. Holes are declared as: 

hole h either {expr1, • • • , expr2}, 

where h is the hole ID and expr^ stands for an expression over the program variables. 
Hole can be used anywhere in the command or variable declaration, as well as part of the 
guard or an update expression. Assigning all the available holes in a sketch yields a specific 
program. The synthesis methods described in the previous chapter are used exactly to find 
such a specific assignment to satisfy certain properties in a reasonable time. 

4.2 P A Y N T for P O M D P s and F S C synthesis 

As already mentioned, P A Y N T was originally designed to perform synthesis of probabilistic 
programs. We already showed the connection between the synthesis of FSCs and MCs, 
then how the MCs synthesis is delivered in practice in the form of the synthesis of sketches 
of probabilistic programs, and now to enclose the circle, we show how these exact same 
methods are applied in P O M D P s and FSCs synthesis field. Based on the article [3] that 
originally introduced the use of inductive synthesis methods for P O M D P s , respectively, for 
FSC synthesis, the P A Y N T tool was extended to enable the synthesis of FSCs for P O M D P s . 

In this synthesis mode, the input sketch has no holes as it instead represents the actual 
P O M D P for FSC synthesis. Holes are, however, still used during the synthesis process, 
but they do have a different semantic meaning. Sketch defines all the necessary parts of 
the P O M D P such as states, actions, transition functions (matrices), and observations. The 
synthesis itself then consists of two parts. In the first part, the design space of a set memory 
size is created, which includes all the possible FSCs, in the second part this created design 
space is then explored in order to obtain the best suitable FSC. Memory size specifies the 
number of memory nodes that the synthesized FSC should contain. The exploration of the 
design space is carried out using the synthesis methods introduced in Chapter 3. 

The program utilizes a list of Python classes which represent individual holes within a 
design space. These classes have properties including name, options, and option_labels. 
The name of a hole is a string that encodes the memory values of FSCs and observations 
received by the agent from P O M D P . The name follows a structure of "T ( [0 ] , M)", where 
T specifies the type of hole (A for action, M for memory, or AM for the combination of both), 
D denotes the observation as a string, and M represents the numerical memory value of 
the node. The „options" attribute of the hole class is a list of integers that correspond 
to possible outcomes that may occur next, given the received observation. The specific 
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outcome depends on the type of hole, which could be an action to take, a memory update, 
or a combination of both. 

4.2.1 FSC synthesis strategies 

Apart from the classic synthesis of FSCs for P O M D P s , P A Y N T is also able to employ 
different strategies during synthesis to obtain better results. 

Iterative Strategy 

First strategy is called a iterative strategy. This strategy is based on a very simple approach, 
as essentially it just iteratively increases the memory size, and thus allowing one to find 
FSCs with more memory nodes in a larger design space. This strategy is guaranteed to 
find the best available FSC for each memory size at the cost of a longer execution time as 
the design space grows significantly in size. 

Memory Injection Strategy 

The second strategy is called memory injection strategy and was introduced in article [3]. 
It leverages the information from previous iterations of the design space exploration and 
based on these it adds (injects) the memory to inconsistent observations. Then it uses the 
symmetry removal approach to shrink the design space again by removing the FSCs with 
the same values. 
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Chapter 5 

Greedy construction of CEs for 
M D P 

In previous chapters, inductive synthesis methods such as CEGIS or A R were described as a 
possible means to synthesize an FSC for P O M D P that exhibits certain behaviors to satisfy 
given specifications. In this chapter, we will focus on the CEGIS synthesis method and, 
more precisely, on the types of CEs and the approaches of creating such CEs. Generally 
speaking, as already mentioned in Section 3.3, CEGIS works with MCs, it constructs the 
CEs as critical subsystems, a fraction of the original M C , and from the subsystems it infers 
the conflicts which then prunes the set of not yet analyzed realisations accordingly. From 
now on we will focus on more general CEs, that is, the M D P based CEs, to explore if there 
is a potential to obtain smaller number of conflicts and thus prune more realisations from 
the set of all realisations. 

5.1 Counterexamples for M D P 

This section is inspired by the article [12]. The idea of C E for M D P is somewhat analogous 
and yet different from the concept of C E for MCs explained in Subsection 2.1.2. Again, let 
us have some M D P M = (S, so, Act, V) and a specification ip = P ^ f F T] that is rejected. 
Similarly, as with MCs, certain actual execution of a model, which violates the specification 
ip and serves as an C E , would be beneficial here. We intentionally omit CEs in form of 
the set of paths and focus on the critical subsystems. Path approach is analogous with the 
MCs however instead of using the B S C C , its counterpart for MDPs called maximum end 
component is used. In the following definition we show a subsystem lifted for M D P . 

Definition 5.1. Let M = (S, so, Act, V) be an MDP, state s± such that s± ^ S and CCS 
such that s0 G C. The sub-MDP wrt. C is an MDP M\.C = (C U {s±}, s0,Act', V) where 
the set of actions Act' and partial transition probability function V' are defined as follows: 

Act' = {a G Act\3s G C .a G Act(s)} U {a±}, 

V (s, a, s') if s,s' G C and a G Act', 
1 — J2s//eS\c P (s, a, s") if s G C and a G Act' and s' = s±, 
1 if s = s' = s± and a = a±, 

V (a, a, a') 

else. 
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The problem here is the nondeterminism in the M D P model since there may be multiple 
outcomes based on the actions that are chosen. Minimizing and maximizing schedulers 
o~min,o-max together with their respective P m j n and P m a x from Subsection 2.2.1 comes in 
handy. 

Definition 5.2. Let M = (S, SQ, Act, V) be an MDP, ip = F<X[FT] and ip' = F>X[FT] be a 
safety and liveness properties, such that both M ¥• ip and M ¥• ip' hold. Then if for some C 
holds that MC induced by the minimizing scheduler M ^Camin ¥ (p, then the set C and the 
corresponding subsystem M \.C are called critical. Analogously for liveness property, if for 
some C holds that MC induced by the maximizing scheduler violates a modified specification 
if' such that M^Camax ¥ P > A [ F T U {s±}], then we talk about the critical set C and its 
corresponding subsystem M\.C. Also, if \C\ < \C'\ for every C then we call it a minimal 
critical subsystem. For simplification we can talk about the minimal P m j „ and maximal 
^max probability. 

(a) MDP graph. 

{so, ao) - 0 1 0 0 -
(so, ai) 0 0.5 0.5 0 
(si, a2) 0 1 0 0 
(S2, as) 0 0.5 0 0.5 
(S2, a 4) 0.5 0 0 0.5 
{S3, 0 5 ) - 0 0 0 1 . 

(b) MDP transition probability 
matrix for individual actions. 

Figure 5.1: Basic M D P with 4 states and 6 actions for the purpose of M D P CEs demon
stration. 

Example 5.1. Now, let us briefly showcase the CEs for MDP in the form of critical 
subsystems. Let M = S,so,Act,V be an MDP from Figure 5.1. In Figure 5.2a the critical 
states are colored red and the actions taken by the minimizing scheduler amin are colored red 
as well. A critical set of states C = {so, si, « 2 } for a safety property P<o.6[-^{-si}] induces a 
critical subsystem (sub-MDP) M\.C. By obtaining the minimizing scheduler amin and the 
corresponding lower bound Fmin, then it is clear that the induced MC M]^Camin violates the 
the safety property P<o.6[-^ {si}] and all states from the set S\C which are not present in 
the sub-MDP are replaced by the sink state s± which acts as a common reroute. Similarly 
in Figure 5.2b for the liveness property P>o.75[-^{-S3}] the CE is depicted as well. This time 
the critical set of states C = so>si,S2 and the actions chosen by the maximizing scheduler 
o~ma,x are colored green. Induced critical subsystem M \,C' together with the maximizing 
scheduler amax induces MC M^C,<7max violates the modified property P > o . 7 5 U 
Adding the sink state to the set of target states follows the same logic as in Example 2.3. 
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(a) CE for an MDP from Figure 5.1 and (b) CE for an MDP from Figure 5.1 and live-
safety property P<o.e[F {si}]. ness property F>0.75[F { 8 3 } ] -

Figure 5.2: Liveness and safety property CEs for M D P from Figure 5.1. 

There are various approaches to construct such critical subsystems. In the next sections, 
we will take a closer look at some existing approaches and also outline a greedy method for 
such construction. 

5.2 Exist ing approaches for M D P CEs construction 

First we take a closer look at some existing approaches to construct CEs for M D P . A 
program called Small WITnessing Subsystems 1 (SWITSS) introduced by Jantsch et. al. [11] 
and based on the theory of Farkas certificates for lower and upper bounds on minimal and 
maximal reachability probabilities in M D P described by the Funke et. al. [12]. 

The witnessing subsystem (witness) is basically a counterpart of CEs which serves as 
a diagnostic information on why a reachability property holds. The SWITSS program 
is capable of creating such witnessing subsystems based on the translation between the 
witnessing subsystems and Farkas certificates. Without going into too much detail, based 
on the reduction of the problem to a mixed integer linear programming (MILP) , SWITSS 
implements the exact and heuristic approaches to yield the witnessing subsystems for some 
concrete specification. Such witnesses are ideal candidates to be used as CEs in CEGIS 
technique, and thus the goal here is not to fully understand the SWITSS approach but rather 
to consider it as a form of black box that is capable of the construction of CEs. Leveraging 
the common interface provided by the S T O R M model checker, we are able to integrate 
SWITSS as a third party C E generator. P A Y N T itself is built on top of the S T O R M and 
despite having its own representation for probabilistic models such as M C , M D P , P O M D P , 
etc., it is at the same time capable of using the S T O R M models representation. SWITSS is 
then able to convert the S T O R M (more precisely the Stormpy models) into its own internal 
representation, and thus the interface bridge exists between these programs. 

SWITSS tool is written in Python 3 and Cython programming languages and it makes 
use of the common Python 3 libraries like Numpy 2 or SciPy 3 . SWITSS also uses the 

x h t t p s : //github.com/simonjantsch/switss 
2 h t t p s : //numpy.org/ 
3 h t t p s : //scipy.org/ 
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P R I S M and P u L P solver'1. Since both SWITSS and P A Y N T are mostly written in Python 
3 the integration was quite straightforward as it is possible to make the SWITSS calls 
directly in the P A Y N T code, and thus it essentially involved just converting the models 
from S T O R M to SWITSS representation, creating and calling the particular witness solvers, 
which then would yield the small witnessing subsystem, which would be considered C E for 
some specification ip. Also, two obstacles were encountered during the integration, which 
will be described later on. 

From the design perspective, P A Y N T program, more precisely the CEGIS loop, was 
changed that way that it is able to plug in various CEs generators if they follow the specified 
interface instead of having just one possible instance. It is now possible to choose the desired 
C E generator from the command line by just specifing the name, we currently have storm, 
which will be described in more detail in the next Section 5.3, and switss C E generators. 
Schema of the integration is depicted in Figure 5.3. 

no feasible r -<- nv := nv \ n1 

K' C "R^violate^, r € W 

based on set of conflicts K 

reKT 

K 

J _ 

Model check 

Vr\=<p 

SWITSS CE 
generator 

(MC, MDP) 

STORM CE generator 

->• feasible r 

Pick CE 
generator 

(MC) 

Future implemented CE 
generators 

Figure 5.3: Schema of the SWITSS C E generator module integrated into CEGIS loop. 

Integration allowed us to use SWITSS to construct both M C and M D P based CEs. As 
already outlined, SWITSS has its limitations. The first limitation is that it is not able to 
create CEs for reward-based properties ip = R^x [F T]. This problem was not addressed 
because C E construction was still possible on reachability properties and mainly because 
the results from Section 5.4 rendered SWITSS unusable and it would require one to venture 
deeper into a SWITSS codebase. The second limitation showed that SWITSS is not able 
to construct CEs for liveness properties, such as (p = F>\[F T]. This problem was possible 
to address on the P A Y N T side by transforming the liveness property into a safety property 
with flipped threshold A, such as ip' = P<I_A[ -F T'], compute all BSCCs or maximum end 
components in the case of M D P , which then would be collapsed each into one new state and 
such states would be proclaimed the new target set of states T'. After such transformation, 
the model could be passed to SWITSS solver and the resulting C E would be created. It is 
crucial to label the states that originated from collapsed BSCCs/maximum end components 

4 h t t p s : //pypi.org/project/PuLP/ 
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by the number of the original states that these new states replaced, and also it is crucial 
to keep all the information about the original model such as labels and sketch hole indices. 
In Section 5.4 we present the experimental evaluation of the SWITSS CEs for both MCs 
and M D P s and we put them into contrast with the current greedy method implemented in 
P A Y N T on top of the S T O R M for construction of M C CEs. 

5.3 Greedy method 

As already outlined in the previous Section 5.2 and confirmed in the following Section 5.4, 
SWITSS is not a suitable candidate for constructing CEs based on M C or M D P as it suffers 
from a massive time overhead and incompleteness of the reward property. Portion of the 
time overhead might be probably mitigated by very nontrivial changes in the SWITSS 
codebase, however, for the time being the ideal solution would be to adopt some greedy 
heuristic method for M D P CEs instead of exact solutions obtained by the SWITSS M I L P 
solvers. 

The current implementation of P A Y N T uses the greedy approach described by 
Adriuschenko et. al. [2] designed to compute CEs providing small conflicts. The key 
idea of this procedure, described very briefly, is based on a gradually expanding states of 
an M C , which are associated with relevant parameters. We define a new greedy method 
in this section, which is based on the very same approach just outlined, by modifying it to 
operate on MDPs . 

Proposition 5.1. Recall a realisation of a family of MCs from Definition 3.3. By fixing 
each parameter based on a realisations we induce an MC Vr. Generalizing this idea, we 
may only partially fix the realisations. Let V = (S, so, K, B) be a family of MCs and L C K 
be a set of parameters. A partial realisation of a family D of MCs with reference to some 
realisation r is a function rL : K \ L —>• S such that VTc G K \ L : rL(k) £ T j . Partial 
realisation rL induces MDP VTL = (5, SQ, 'RP, V), where: 

if L n supp(B{s)) / 0, 
V(s)(r) = { Bri if L n supp(B(s)) = 0 and r' = r, 

else. 

In other words we fix each parameter from set K\L and leave each parameter from 
the set L unfixed, which leaves us with a structure similar to the quotient MDP defined in 
Definition 3.7. In the Figure 5.4 we may observe such induced MDP from partial realisation. 

Let us assume that VTL violates a reachability property ip = P ^ [FT]. We first fully define 
the concept of rerouting which was already outlined in Definition 2.4 and Definition 5.1. 

Definition 5.3. Let MDP M = (S, so, Act,V) with states sj,s± ^ S, set of expanded 
states CCS and a rerouting vector 7 : S \ C x Act —>• [0,1]. The rerouting of MDP M with 
reference to the set C and the vector 7 is MDP MlC[y] = (SU{ST, s±}, SQ, ActLl{aj±}, V^j) 
where is defined as follows: 

ifs G C, 

^ \ s ) = { [ ( a T ± , a T ) - > 7 ( s ) , ( o T ± , a ± ) - > ( l - 7 ( s ) ) ] ifseS\C, 
1] ifse{sT,s±}. 
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a4:{ri,r2.r3.r4} 

Figure 5.4: Induced M D P from partial realisation r\ with the set of unfixed parameters 
L = {X} from the family of MCs depicted in the Figure 3.1. 

In other words, M i C p y ] adds two additional sink states sj (so-called true sink state) 
and s± (so-called false sink state) to M D P M, replacing the all actions of any non-expanded 
state s £ S \ C with a single action aj± which leads to sink state sj with the probability 
7 ( 5 ) and to the sink state s± with the probability of 1 — 7. True sink state sj is also 
needed to be added among the target states for the sake of handling the liveness properties 
as already shown in the Definition 2.5, although in the mentioned definition we kept the 
idea simplified to have only one sink state at a time. Rerouted transitions via actions 
may be viewed as shortcuts, and thus, the transition is possible to be carried out by just 
skipping the successor state completely and moving to one of the sink states directly. In 
classic CEGIS the rerouting vector is either 7 = 0 for safety properties or 7 = 1 for liveness 
properties, however when using CEGIS in hybrid synthesis, rerouting vectors is based on 
lower and upper bounds obtained from the A R . 

For obtaining the C E the state expansion (or exploration) is used. First, we start with 
the initial set Co = 0 where all states are initially rerouted. We check the if the rerouted 
M D P M I Co[7] is the C E and if so, the construction process terminates. Otherwise if 
M 1 Co [7] satisfies the property, the state space needs to be expand with some new state 
from s £ S that is particulary reachable from the already explored states. Expanding the 
states essentially means that the rerouting is removed and the states retains its original 
actions, and thus outgoing transitions. Such rerouting for the safety property ip is depicted 
in the Figure 5.5. 
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(a) Set C = 0, all states are rerouted. (b) Set C = {so}, rest of the states is rerouted. 

Figure 5.5: Construction of C E to M D P from Figure 5.1 for safety property W<_Q^[F {si}] 
using the rerouting vector 7 = 0. 

We now explain the Algorithm 4 which is the modified version of finding the C E lifted 
for M D P s . To choose a best suitable state for the expansion, we should aim to obtain 
such conflicts which contains low number of the relevant parameters. We keep the same 
approach as Andriushchenko et. al. [2] suggests. That is expanding multiple states at once 
based on the set of relevant parameters K. Starting with the empty set of such relevant 
parameters KQ = 0, only those states that are currently reachable from the initial state SQ 
through the successors states which are not associated with any irrelevant parameter (or 
hole from the program/sketch point of view). State horizon Hi contains states that are 
possible to be considered for the expansion as they are reachable from the set of states C, 
but they contain at least one irrelevant parameter. Constructing the rerouting M4,Cj[7] 
and checking it against the property ip with the possibility of yielding the M D P C E follows. 
If the rerouted M D P is still not a C E , we pick some state sexpand from the state horizon with 
the lowest number of irrelevant parameters and we add those parameters to the conflict K. 
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Algorithm 4: Greedy M D P counterexample construction based on rerouting. 
Input: A n M D P T>TL, a property ip 

vector 7. 
Output: A conflict K for M D P T>TL and property (p 

1 Construct Conflict (DTL , ip, 7): 
i := 0 

Ki :=0 
while true do 

Ci,Hi := reachableViaRelevantParameters(VrL,Ki 
Di :=VrL±Ci[>y] 
if Fmin[Di \= ip] > A and txiG {<, <} then 

return i-Q 
if IPmazf-Dj |= <f] < A and txe {>, >} then 

return i-Q 
Sexpand = pickToExpand(Hi, Ki) 
Ki+i := Ki U supp(B(sexpand)) i:=i+l 

return Ki 

[F T] such that VTL ¥• ip and a rerouting 

5.4 Experimental evaluation of SWITSS CEs 

In this section we take a closer look at the experimental evaluation of the CEs constructed 
by SWITSS, both M C and M D P variants, and we compare them with the current greedy 
method implemented in P A Y N T on top of the S T O R M , which produces the M C CEs. 
Before the experiments, we need to ask the main questions to which we would like to find 
answers by conducting these experiments, those are: 

1) What is the quality of the size and construction speed of CEs constructed by SWITSS 
compared to the current approach? 

2) Is the SWITSS program a viable tool to march onward with for the M D P CEs con
structing? 

5.4.1 Experiments settings 

Since we needed to obtain the direct side-by-side comparison of the S T O R M and SWITSS 
CEs, we would need to run both of them inside a single CEGIS loop during the single 
execution of the P A Y N T . This is because the way CEGIS picks a realisation of a family for 
model checking is nondeterministic, and each time the P A Y N T program is executed, there 
may be a different realisation chosen. Thusforth, the experiment is conducted in a way 
that each iteration the CEGIS loop calls the C E construction twice, both S T O R M and the 
SWITSS. In order for CEGIS to progress forward, we always just save the statistics from 
both C E generators and continue with the set of conflicts provided by the S T O R M . 

In these experiments, we are interested in the average conflict size, which is the number 
of relevant holes (parameters) that are contained by the critical subsystem, the average 
time per conflict construction in seconds, respectively, construction of C E , as the conflicts 
are inferred from the C E and the total time spent constructing the CEs. We apply a 
roughly 600 second timeout for the synthesis, and thus if the P A Y N T is not able to find a 

35 



feasible assignment or does not proclaim the property unjustifiable in the concrete model, 
the synthesis is terminated. That being said, some of the data times from the data tables 
in the following sections might imply that the timeout threshold was much higher and that 
is due to the fact that the termination was performed at the P A Y N T program level, once 
the S T O R M or SWITSS returned the program control. 

Lastly, the experiments were carried out on a set of the latest P O M D P benchmark 
models for the integration of S T O R M from the P A Y N T 5 repository and the specification 
of the experiments was the optimality property fmax. FSC synthesis was performed in 
the mode for searching 1-FSCs, none of the iterative or memory injection strategies from 
Subsection 4.2.1 were used. 

5.4.2 Results of SWITSS MC CEs 

In Table 5.1 we may observe the initial experiments of the S T O R M M C CEs against the 
SWITSS M C CEs. It is clear from the table that, from the conflict size perspective, both 
generators perform comparably. For some models like Drone-8-2 SWITSS delivers the 
smaller conflicts, on the other hand for some models S T O R M gives us the better CEs. 
Generally, this comparison may be neglected. The key metric here is the average time per 
conflict construction and the total time of the CEs constructions as in this field the SWITSS 
suffers from massive time overhead. In some cases, in the Table 5.1 highlighted by the red 
color, the SWITSS performs almost 200 worse than the S T O R M . 

Model 

Avg conflict size Avg time 
per conflict [s] 

Total C E 
construction 

time [s] 
Model S T O R M SWITSS 

M C M C 
S T O R M SWITSS 

M C M C 
S T O R M SWITSS 

M C M C 
Drone-4-1 
Drone-4-2 
Drone-8-2 
Grid-avoid-4-0 
Grid-avoid-4-0.1 
Grid-large-30-5 
Refuel-06 
Refuel-08 

15.639 21.153 
12.358 14.705 
41.438 23.938 

1.000 1.000 
1.000 1.000 

19.126 19.126 
11.305 9.802 
13.151 12.369 

0.026 3.342 
0.009 1.727 
0.191 10.770 
0.001 0.039 
0.001 0.041 
0.004 0.209 
0.004 0.115 
0.005 0.213 

3.766 481.292 
2.315 438.678 
3.049 172.317 
0.003 0.156 
0.003 0.165 

11.496 538.629 
18.649 518.050 
12.377 540.843 

Table 5.1: Comparison of the S T O R M M C CEs and SWITSS M C CEs by the average 
conflict size, average conflict construction time and total time spent with CEs construction. 
Row highlighted with the red color shows the case where SWITSS performs the worst from 
the time perspective. 

5.4.3 Results of SWITSS MDP CEs 
As our main goal was to enable M D P CEs for CEGIS in P A Y N T and comparing just the 
ability of SWITSS to construct M C CEs would not be objective, we performed the exper
iments for the M D P CEs as well, although results from Subsection 5.4.2 already predict 
similar behavior from the time and size perspective. In the Table 5.2 we can see that average 

5 h t t p s : //github.com/randriu/synthesis 
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conflict size fluctuates more or less in the same manner as already observed in the SWITSS 
M C CEs experiments; this time we highlight for example models such as Refuel -06 and 
Refuel -08 where SWITSS delivers the smaller conflicts. Unfortunately, time duration per
formance is even worse in this case. For one particular model Drone-8-2 highlighted again 
with the red color in Table 5.2 we observe insanely large difference between the S T O R M 
and SWITSS, which is roughly 565 000 x more spent with only one C E construction. This 
is also the reason why the timeout limit was exceeded so drastically from 600 seconds to 
almost 2 hours, because the first C E was constructed inside the SWITSS for such a long 
time and only after that the program control was returned to P A Y N T , which immediately 
terminated. 

Avg conflict size 
Avg time 

per conflict [s] 

Total C E 
construction 

time [s] 
Model S T O R M SWITSS S T O R M SWITSS S T O R M SWITSS 

M C M D P M C M D P M C M D P 
Drone-4-1 12.214 64.571 0.017 44.082 0.235 617.150 
Drone-4-2 9.900 64.200 0.005 60.333 0.049 603.332 
Drone-8-2 9.000 49.000 0.010 5653.110 0.010 5653.110 
Grid-avoid-4-0 1.000 1.000 0.001 0.037 0.002 0.147 
Grid-avoid-4-0.1 1.000 1.000 0.001 0.039 0.002 0.154 
Refuel-06 11.672 5.912 0.004 0.146 16.014 532.225 
Refuel-08 13.602 9.971 0.007 0.634 6.366 570.519 
Refuel-20 29.479 29.688 0.043 12.293 2.040 590.051 

Table 5.2: Comparison of the S T O R M M C CEs and SWITSS M D P CEs by the average 
conflict size, average conflict construction time and total time spent with CEs construction. 
Row highlighted with the red color shows the case where SWITSS performs the worst from 
the time perspective. 

Additionally experiments were also conducted with the M D P CEs from the greedy 
generator which principle was outlined in the Section 5.3 and will be described with more 
context in Chapter 6. Results are depicted in Table 5.3. Average sizes of the conflicts 
vary depending on the models and both sides have their ups and downs, however the 
significant time overhead of the SWITSS C E generator is still massively visible. For model 
Drone-8-2, which is highlighted red in Table 5.3 S T O R M construct a larger conflict but over 
200 times faster than SWITSS. P O M D P s Drone-4-1 and Drone-4-2 hightlighted green are 
interesting cases where S T O R M greedy M D P C E generator delivers much smaller conflicts 
in the fraction of SWITSS time. 

37 



Avg conflict size 
Avg time 

per conflict [s] 

Total C E 
construction 

time [s] 
Model S T O R M SWITSS S T O R M SWITSS S T O R M SWITSS 

M D P M D P M D P M D P M D P M D P 
Drone-4-1 24.000 64.571 0.705 44.082 9.872 617.150 
Drone-4-2 23.000 64.200 0.525 60.333 5.247 603.332 
Drone-8-2 80.000 49.000 23.577 5653.110 23.577 5653.110 
Grid-avoid-4-0 1.000 1.000 0.001 0.037 0.002 0.147 
Grid-avoid-4-0.1 1.000 1.000 0.001 0.039 0.003 0.154 
Refuel-06 12.361 5.912 0.009 0.146 32.416 532.225 
Refuel-08 16.609 9.971 0.019 0.634 17.363 570.519 
Refuel-20 35.854 29.688 0.179 12.293 8.572 590.051 

Table 5.3: Comparison of the S T O R M M D P CEs and SWITSS M D P CEs by the average 
conflict size, average conflict construction time and total time spent with CEs construction. 

From both experiments it is clear that the SWITSS is not a suitable candidate for 
M D P CEs generator because it suffers from massive time performance overhead, it delivers 
comparable results, and it supports less features for the synthesis purpose. 
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Chapter 6 

Using CEs for C E G I S 

In the previous chapter, the greedy method for constructing CEs for M D P based on the 
greedy algorithm introduced by Andriushchenko et. al. [2] is outlined. In this chapter, we 
focus on more practical usage of the introduced algorithm. As already shown, we are now 
able to construct the CEs for MDPs , but where do we obtain such M D P which we would be 
able to construct C E against? In the following sections we explore the so-called simple hole 
(parameter) generalization which yields us the needed base M D P for the C E construction. 
Next we describe the key ideas behind the integration of such M D P CEs into P A Y N T 
program as a new C E generator module side by side with the current implementation of 
the greedy method for M C CEs and SWITSS. 

6.1 Simple holes generalization 

Recall a partial realisation of a family rL introduced in Proposition 5.1 which induces M D P 
DrL. P A Y N T CEGIS loop is already capable of picking a realisation and inducing M C from 
such realisation by fixing all the holes (parameters). The task here is to identify the set of 
holes L that may remain unfixed and thus would form a partial realisation. 

Definition 6.1. Let V = (S, so, K, B) be a family of MCs. Let K' C K be a set of simple 
(trivial) parameters such that VTc G K' : 3s G S, k G supp(B(s)) A W E S \ {s} : k ^ 
supp(B(s')). In other words set K' is a set of all simple parameters that are associated with 
one single state at maximum. 

Example 6.1. The family of MCs of Figure 3.1 is a clear example of a family with two 
parameters X, Y where the parameter X is associated only with the state so and thus the 
set of simple parameters is defined as K' = {so}. 

Now when the concept of simple parameters is defined, we show how this connects to 
the partial realisation and induced M D P . 

Proposition 6.1. Let V = (S, so, K, B) be a family of MCs, and let K' be a set of simple 
parameters. Such a set of simple parameters is a good candidate for a set of parameters 
L for partial realization. By putting a L = K' we basically generalize those parameters. 
Let us quickly return to Algorithm 4- We are particularly interested in the set of relevant 
parameters Ki and the state expansion technique. By generalizing all the simple parameters 
and fixing all the non-simple parameters (parameters associated with at least 2 states) we 
are able to rule out all the simple parameters from the set of relevant parameters Ki and 
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thus potentially reducing the size of a conflict. The key idea of why generalizing the simple 
parameter is possible is based on a sole fact that it is associated only with a single state and 
thus making any choice in that particular state will not change the choice in any other state 
throughout the whole model. 

During the synthesis of FSCs for P O M D P s a lot of recent models show the common 
behavior of having a large number of simple parameters, and hence we explore the ways 
of generalizing such parameters. Having introduced the concept of single parameters and 
their important role in inducing an M D P from the family of MCs we now show in the next 
section how this idea was programatically incorporated into the P A Y N T program. 

6.2 M D P CEs integration to P A Y N T / S T O R M 

In this section we will take a closer look at how Algorithm 4 together with the Proposi
tion 6.1 of generalization of simple holes may be implemented in the P A Y N T . 

P A Y N T in general is written in Python 3 but it frequently uses S T O R M written in 
C++. Existence of the Stormpy bindings allows one to call the S T O R M C++ code directly 
from the P A Y N T Python 3 code. On the P A Y N T side all the necessary parsing, model 
building, and synthesis control is happening, S T O R M on the other hand provides model 
checking features and the greedy algorithm introduced by Adriuschenko et. al. [2], which is 
integrated into S T O R M as an additional module. To be more precise, it is not implemented 
in the original S T O R M GitHub repository1 but rather in the modified fork2 of the mentioned 
repository, which additionally provides convenient features for synthesis of probabilistic 
programs in P A Y N T . One of the many reasons why the greedy method state exploration 
is located on the S T O R M side and not on the P A Y N T side is definitely the overall speed 
advantage of the C++ programs, and thus we choose to implement the greedy algorithm 
for M D P CEs outlined in Algorithm 4 mainly in S T O R M as well. That being said, it is 
important to mention that code base for the M D P CEs is not written from scratch but 
it adapts the already existing code for the M C CEs. In the adapted Figure 6.1 we may 
observe how already 3 C E generators ( S T O R M M C , S T O R M M D P and SWITSS) exist 
in the P A Y N T . One may choose from the C E generators available for the CEGIS method 
when executing the P A Y N T . 

Algorithm 5 depicts the basic idea of how analysis of a single realisation in CEGIS loop 
is implemented in P A Y N T with the use of M D P CEs. First, we identify the set of simple 
holes (parameters) based on Definition 6.1. Then we construct a partial realisation rL using 
the obtained set of simple holes and by fixing the partial realisation we induce the M D P 
T>TL . By model checking DRL we either obtain the satisfying realisation or if the property is 
unsatisfied we pick the rerouting vector based on a type of property (safety or liveness) and 
initiate the conflict construction procedure (line 10). Everything until this point happens 
on the P A Y N T side, once the conflict construction is invoked, S T O R M takes over the 
program control. Conflict construction is carried away by the slightly modified version of 
Algorithm 4. First change is that the algorithm now accepts one additional input in the 
form of a set of simple holes L, these holes are added to the list of relevant holes right from 
the start and thus the state exploration may expand states associated with the simple holes 
immediately. State exploration then continues in the same way with the one final change 
on line 24, where in the end from the set of relevant holes (conflict) the set of simple holes 

x h t t p s : //github.com/moves-rwth/storm 
2 h t t p s : //github.com/randriu/storm/tree/synthesis 
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Figure 6.1: Schema of the S T O R M M D P C E generator module integrated into CEGIS loop. 

is subtracted since none of the simple holes, which underwent the generalization process 
are relevant at this point. 

In addition, the process of state exploration during the conflict construction was changed 
a bit. Currently in the greedy method for M C CEs, the state exploration iterations (waves) 
are precomputed in advance, and only then the actual model checking of each iteration 
rerouted M C is carried out. This is, however, ineffective. Since we are always interested 
in the smallest possible conflict, we do not need to precompute the iterations in advance. 
Instead, we may just apply the Algorithm 4 literally by alternating between the state 
exploration phase and the model-checking phase. The newly introduced greedy method for 
M D P C E construction already refrained from the wave precomputation and in the future 
the same is possible to apply for the S T O R M M C C E generator. Moreover, both S T O R M 
M C and M D P C E generators are possible in the future with some thorough design to be 
merged into a single C E generator. 

Remark. It is important to mention that the greedy algorithm for MDP CEs is currently 
capable of synthesizing specifications containing only single property. Reason behind that is 
that for multiple properties that the MDP VTL satisfies, there may exist different schedulers 
for the MDP and thus there would not be a unambiguous accepting realisation. 
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Algorithm 5: CEGIS loop family assignment analysis using the greedy method 
for M D P CEs construction based on the generalization of simple holes 

Input: A family of MCs T> = (S, SQ, K, B), realisation r of a family D, a property 

Output: A conflict K or accepting realisation r 
1 AnalyzeFamilyAssignment (D,r,ip): 
2 

3 

4 

5 

6 

7 

8 

9 

L := identifySimpleHoles(V) 
VrL,rL := fixRealisationPartially(V, r, L) 
if T>rL \= ip then 

return rL 

if txiG {<, <} then 
7 := 0 

else 
|_ 7 : = 1 

10 K := constructConflicts(VrL, ip, 7, L) 
11 return K 

Input: A n M D P DRL, a property ip = P ^ f F T] such that VTL ¥• (p, a rerouting 
vector 7, set of simple holes L 

Output: A conflict K for M D P T>TL and property (p 
12 Construct Conflicts (T>rL,ip,j,L): 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

i := 0 
Ki ~L 
while true do 

Ci, Hi := reachableViaRelevantHoles(VrL, Ki 
Di :=VrLiCi[^} 

if Fmin[Di \= ip] > A and txiG {<, <} then 
return Ki 

if Fmax[Di \= ip] < X and txe {>, >} then 
return Ki 

Sexpand = pickToExpand(Hi, Ki) 
Ki+i := Ki U supp(B(sexpand)) i:=i+l 

return Ki \ L 

6.3 Initial experimental evaluation 

Now when the greedy method for generating M D P CEs in P A Y N T via S T O R M is outlined, 
defined and implemented, we now carry out the experimental evaluation of this initial 
implementation, where we compare it to the greedy M C C E method. Before the evaluation 
we again lay down a couple of questions which we would like to find the answer to: 

1) What is the quality of the size and construction speed of the CEs constructed by 
greedy method for M D P CEs compared to the current approach with MCs? 

2) How efficiently are M D P CEs able to prune the design space and converge to the 
optimal solution? 
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6.3.1 Experiments settings 
First experiment settings is very similar to one mentioned in Subsection 5.4.1. S T O R M 
M D P and M C C E generators are run side by side, average conflict size, average construction 
time per conflict, and total time metrics are collected and synthesis timeouts after 600 
seconds. The same set of P O M D P benchmarks and only the optimality property Pmax are 
considered. 

The second experiment is then conducted the way that we run 2 separate runs of the 
synthesis. First run executes the S T O R M M C C E generator, and second run uses the 
S T O R M M D P generator. Timeout is again set to the 600 seconds, and this time a set of 
P O M D P is extended with models where the reward properties are specified. This time we 
are interested in the synthesis result (optimal value or non-feasibility) and the time spent 
to converge to such result. 

6.3.2 Greedy MC and MDP CEs conflict quality 

In the Table 6.1 which shows the initial results of the first experiment, it is clear that the 
newly created greedy method produces comparable or larger conflicts in the majority of 
the experiments. The most likely cause of such growth of conflict size is the introduction 
of new non-simple holes into the conflict by generalizing too many simple holes, we take a 
closer look at this problem in Section 6.4. On the first glance this might be seen in a not 
so optimistic way, however, the second metric which we should likely pay attention at this 
point is the overall state of the synthesis, does it converge to the optimal solutions and how 
long does it take? 

Avg conflict size Avg time 
per conflict [s] 

Total C E 
construction 

time [s] 
Model S T O R M S T O R M S T O R M S T O R M S T O R M S T O R M 

M D P M C M D P M C M D P M C 
Drone-4-1 24.000 12.214 0.705 0.017 9.872 0.235 
Drone-4-2 23.000 9.900 0.525 0.005 5.247 0.049 
Drone-8-2 80.000 9.000 23.577 0.010 23.577 0.010 
Grid-avoid-4-0 1.000 1.000 0.001 0.001 0.002 0.002 
Grid-avoid-4-0.1 1.000 1.000 0.001 0.001 0.003 0.002 
Refuel-06 12.361 11.672 0.009 0.004 32.416 16.014 
Refuel-08 16.609 13.602 0.019 0.007 17.363 6.366 
Refuel-20 35.854 29.479 0.179 0.043 8.572 2.040 

Table 6.1: Comparison of S T O R M M D P CEs and S T O R M M C CEs by the average conflict 
size, average conflict construction time and total time spent with CEs construction. 

6.3.3 Greedy MC and MDP CEs synthesis results 
In this subsection we take a closer look at how M D P CEs actually affect the synthesis 
result. Table 6.2 shows that the M D P CEs indeed, despite the larger size of the conflicts, 
positively affect the synthesis. For all three drone models, the M D P CEs were able to find 
a feasible assignment of the holes compared to the M C CEs with optimality equal to 0.0 
after 600 seconds synthesis run. Synthesis of P O M D P model Rocks-12 is able to find some 
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feasible assignment within the 600 seconds while M C CEs were not able to find any feasible 
solution at all. Most interesting is then Maze-alex as in this case the synthesis time was 
reduced almost 13 times by employing the M D P CEs. 

M C M D P 
M o d e l P r o p e r t y 

M C M D P 
M o d e l P r o p e r t y Resul t T i m e [s] Resul t T i m e [s] 

Drone-4-1 ^max optimal 0.0 604.57 optimal: 0.401214 600.03 
Drone-4-2 ¥ 

R max 
optimal 0.0 607.16 optimal: 0.881402 600.37 

Drone-8-2 ^max optimal 0.0 642.06 optimal: 0.757757 623.63 
Grid-avoid-4-0 ^max optimal 0.214286 0.07 optimal: 0.214286 0.07 
Grid-avoid-4-0.1 ¥ 

K max 
optimal 0.214286 0.07 optimal: 0.214286 0.06 

Grid-large-20-5 ^•min feasible: no 156.35 feasible: no 105.87 
Grid-large-30-5 ^•min feasible: no 600.08 feasible: no 600.08 
Lanes-100-combined-new ^•min optimal 10241.939783 80.15 optimal: 10241.939783 84.85 
Maze-alex ^•min optimal 71.882276 92.76 optimal: 71.692948 7.36 
Network-3-8-20 ^•min optimal 57.5925 602.21 optimal: 57.5925 601.00 
Refuel-06 ¥ 

K max 
optimal 0.301668 600.02 optimal: 0.329448 600.01 

Refuel-08 ^max optimal 0.22273 600.00 optimal: 0.199427 600.02 
Refuel-20 ¥ 

^ max 
optimal 0.06316 600.01 optimal: 0.0 600.08 

Rocks-12 ^•min feasible: no 600.06 optimal: 374.34908 600.28 
Rocks-16 ^•min optimal 223.44875 600.07 optimal: 195.926024 600.62 

Table 6.2: Comparison of S T O R M M C CEs and S T O R M M D P CEs by the result of the 
synthesis and elapsed time. Rows with the time above 600 seconds means that the synthesis 
timeout before the best result was obtained. 

6.4 M D P CEs greedy construction variations 

As results from the initial implementation of the greedy M D P CEs construction show, the 
obtained conflicts are larger on average, which might seem a little bit contradictory to the 
fact that we are generalizing a lot of simple holes. However the generalizations seemingly 
come with a one drawback. Generalized holes, even though they themselves are not relevant 
at any possible time, may introduce to the conflict additional revelavant holes by simply 
reaching more states. This brings the idea of a smarter generalization of simple holes so we 
do not necessarily generalize all of them but only the chosen portion. 

We define the following strategies as attempt to mitigate such behavior: 

Apriori simple holes stats 

First strategy is based on the collection of statistics prior to the actual run of the synthesis. 
Before the execution of the CEGIS with the M D P C E generator, a timeboxed run of the 
CEGIS with the M C C E generator is executed. During this run we collect for each simple 
hole a number of conflicts that the particular simple hole was part of. In other words, 
how many times the M C C E generator was unable to generalize the simple hole. Then 
during the actual execution of CEGIS with M D P C E generator, we compute the average 
occurrence from all simple hole occurrences and we generalize only those simple holes whose 
occurrence number is above the average as we are trying to focus on generalizing those holes 
that the M C C E generator was unable to. 
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Randomisation 
In the second strategy, we suggest a simple concept of an oracle that for each of the simple 
holes decides whether it should be generalized or not based on randomness. For each hole 
there is a probability of R = 0.5 that the hole will be generalized. 

Randomisation based on the hole position 

Last strategy is also based on the randomisation, however this time the chance R of a 
simple hole being generalized starts with the very low value and it grows with the number 
of iterations that the state space exploration has already made. Such a chance is given by 
the following equation: 

7 
R 

i+l + \K> 
where i stands for number of current iteration and \K'\ is the total number of simple 

holes. 

6.5 Variants experimental evaluation results 

In this section we take a closer look at the experimental evaluation of the strategies at
tempting the smarter simple holes generalization suggested in the previous section. The 
experimental settings remained the same as for the second experiment in Subsection 6.3.1. 
In addition the variant of the combined M D P an M C CEs generators was evaluated, which 
basically just runs both C E generators in series and combined the resulting conflicts to
gether. In Table 6.3 the results of randomised generalization strategies are visualized. 
P O M D P models highlighted with the green colors are the same models from the Table 6.2 
which exhibited interesting behavior in the initial evaluation. Overall the randomised ap
proach did not bring any improvement at all. Classic randomisation performs a lot better 
than the randomisation which takes the hole positions into account, however neither of 
those performs as good as the initial M D P C E generator implementation. 

More promising results may be observed from the Table 6.4. Both a priori collection of 
the simple hole stats and the combined CEs make slight improvements from the original 
M D P CEs and M C CEs. For model Drone-4-1 combined M D P and M C CEs seem to work 
the best. On the other hand, for Drone-8-2, a priori statistics synthesize the optimal value 
for almost 0.2 more than the combined method in a comparable time. Lastly, the most 
interesting model Maze-alex synthesis time, which was already significantly reduced by 
the classic M D P C E greedy method, was halved to 3.25 seconds. 

6.6 Preliminary hybrid results 

Since the current implementation of the greedy method for the realization of the M D P 
C E construction program allowed preliminary testing of hybrid synthesis, a final set of 
experiments was performed to run the hybrid with M D P CEs and M C CEs in the mode 
that favors CEGIS more often so that the results are not too distorted by the application 
of A R synthesis. In the Table 6.5 there are visible minor improvements on the models 
highlighted by green color. However, these are only preliminary; to get a clearer idea of the 
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M o d e l P rope r ty 
M D P - random M D P - random, hole positions 

M o d e l P rope r ty 
Resul t T i m e [s] Resul t T i m e [s] 

Drone-4-1 ^max optimal: 0.176052 600.35 optimal: 0.03401 601.42 
Drone-4-2 ^max optimal: 0.867986 602.31 optimal: 0.362896 600.88 
Drone-8-2 P 

R max 
optimal: 0.7161 653.66 optimal: 0.010562 810.79 

Grid-avoid-4-0 ^max optimal: 0.214286 0.02 optimal: 0.214286 0.02 
Grid-avoid-4-0.1 ^max optimal: 0.214286 0.02 optimal: 0.214286 0.04 
Grid-large-20-5 feasible: no 60.79 feasible: no 76.46 
Grid-large-30-5 ^•min feasible: no 600.01 feasible: no 600.01 
Lanes-100-combined-new ^•min optimal: 10241.939783 42.00 optimal: 10241.939783 47.62 
Maze-alex ^min optimal: 71.692948 6.23 optimal: 71.692948 12.45 
Network-3-8-20 ^•min optimal: 57.5925 601.98 optimal: 57.5925 600.33 
Refuel-06 ^max optimal: 0.233342 600.01 optimal: 0.350026 600.03 
Refuel-08 P 

K max 
optimal: 0.20082 600.08 optimal: 0.20071 600.02 

Refuel-20 ^max optimal: 0.0 600.03 optimal: 0.0 600.06 
Rocks-12 ^•min optimal: 372.34908 600.34 optimal: 373.34908 600.31 
Rocks-16 optimal: 195.926024 600.26 optimal: 195.926024 600.07 

Table 6.3: Comparison of S T O R M M D P CEs with randomised simple holes generalization 
and S T O R M M D P CEs with randomised simple holes generalization which takes into ac
count the position of the hole in the whole model. Comparison is made by the result of 
the synthesis and elapsed time. Rows with the time above 600 seconds means that the 
synthesis timeout before the best result was obtained. 

M o d e l P r o p e r t y 
M D P - ar>rior hole stats M D P + M C 

M o d e l P r o p e r t y 
M D P + M C 

M o d e l P r o p e r t y 
Resul t T i m e [s] Resul t T i m e [s] 

Drone-4-1 ^max optimal 0.403124 600.66 optimal: 0.433942 601.35 
Drone-4-2 ^max optimal 0.945354 600.31 optimal: 0.946517 601.38 
Drone-8-2 P 

R max 
optimal 0.75874 620.94 optimal: 0.586226 615.67 

Grid-avoid-4-0 ^max optimal 0.214286 0.02 optimal: 0.214286 0.07 
Grid-avoid-4-0.1 ^max optimal 0.214286 0.02 optimal: 0.214286 0.07 
Grid-large-20-5 ^•min feasible: no 76.73 feasible: no 159.93 
Grid-large-30-5 ^•min feasible: no 600.04 feasible: no 600.02 
Lanes-100-combined-new ^•min optimal 10241.939783 42.82 optimal: 10241.939783 93.59 
Maze-alex ™mm optimal 71.692948 3.25 optimal: 71.692948 4.76 
Network-3-8-20 ^•min optimal 57.5925 601.86 optimal: 57.6475 604.30 
Refuel-06 P 

K max 
optimal 0.329448 600.00 optimal: 0.263404 600.04 

Refuel-08 P 
K max 

optimal 0.199427 600.01 optimal: 0.186663 600.01 
Refuel-20 ^max optimal 0.0 600.05 optimal: 0.0 600.06 
Rocks-12 ^•min optimal 372.34908 600.15 feasible: no 600.11 
Rocks-16 ^•min optimal 195.926024 600.09 optimal: 246.938314 600.49 

Table 6.4: Comparison of S T O R M M D P CEs which generalizes simple holes based on the 
aprior statistics of the holes occurrences and a S T O R M M D P and M C combined CEs. 
Comparison is made by the result of the synthesis and elapsed time. Rows with the time 
above 600 seconds means that the synthesis timeout before the best result was obtained. 

impact of M D P CEs on hybrid synthesis, more thorough and sophisticated evaluations and 
experiments should be conducted; this is one of the topics for possible future improvements. 
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M o d e l P rope r ty H y b r i d - M D P H y b r i d M o d e l P rope r ty 
Resul t T i m e [s] Resul t T i m e [s] 

Drone-4-1 ^max opt iinal: 0.790894 600.10 optimal: 0.790998 600.21 
Drone-4-2 P 

R max 
optimal: 0.944656 600.03 optimal: 0.938654 600.00 

Drone-8-2 ^max optimal: 0.906007 733.97 optimal: 0.824503 692.88 
Grid-avoid-4-0 ^max optimal: 0.214286 0.03 optimal: 0.214286 0.02 
Grid-avoid-4-0.1 IP 

u max 
opt inial: 0.214286 0.04 optimal: 0.214286 0.02 

Grid-large-20-5 ^•min feasible: no 600.00 feasible: no 600.01 
Grid-large-30-5 ^•min feasible: 110 600.01 feasible: no 600.01 
Lanes-100-combined-new ^•min opt iinal: 10241.939783 26.35 opt iinal: 10241.939783 20.29 
Maze-alex ^•min optimal: 71.882276 0.63 optimal: 71.882276 0.35 
Network-3-8-20 ^•min optimal: 11.11831 616.81 optimal: 11.105658 600.21 
Refuel-06 R max optimal: 0.350026 15.31 optimal: 0.350026 15.45 
Refuel-08 ^max optimal: 0.123161 600.01 optimal: 0.170459 600.00 
Refuel-20 P 

11 max 
optimal: 0.067796 600.64 opt imal: 0.058635 600.24 

Rocks-12 ^•min optimal: 38.0 600.08 optimal: 38.0 600.08 
Rocks-16 ^•min optimal: 44.0 600.40 optimal: 44.0 600.71 

Table 6.5: Comparison of hybrid synthesis method using M D P CEs and M C CEs by the 
result of the synthesis and elapsed time. Rows with the time above 600 seconds means that 
the synthesis timeout before the best result was obtained. 
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Chapter 7 

Conclusion 

This thesis investigates partially observable Markov decision processes (POMDPs) , which 
are probabilistic systems characterized by state uncertainty. Due to the undecidable na
ture of controlling P O M D P s , we focused on one of the approaches proposed to address 
this challenge. One of the prominent methods involves finite-state controllers (FSCs) and 
their synthesis. Synthesis techniques such as abstraction refinement, counterexample-guided 
inductive synthesis, and hybrid synthesis (combining the aforementioned techniques) are 
utilized to identify the most suitable FSC that satisfies given specifications. This process 
reduces the problem of finding a suitable FSC with a given number of memory nodes to syn
thesizing topologies in Markov chains, which forms the core concept behind these synthesis 
techniques. 

The primary objective was to enhance CounterExample-Guided Inductive Synthesis 
(CEGIS) by incorporating Markov decision process (MDP) based counterexamples instead 
of Markov chain counterexamples. Initially, we attempted to utilize an external tool called 
Small WITnessing Subsystems (SWITSS) to generate witnessing subsystems, which are 
obtained by transforming the search problem into mixed-integer linear programming. How
ever, due to a SWITSS significant time overhead, this variant was unsuccessful. 

As an alternative, we explored a greedy approach for constructing counterexamples in 
MDPs , inspired by an existing greedy method used for constructing counterexamples in 
Markov chains. This new approach involves considering a partially fixed realization of a 
family of Markov chains, resulting in an M D P that incorporates unique and singular „simple 
holes" (family parameters) within the model. Both SWITSS and the modified greedy 
method for constructing M D P counterexamples were integrated into the P A Y N T program as 
separate modules to serve as counterexample generators within a CEGIS loop. The modified 
greedy method for constructing M D P counterexamples was evaluated using a set of recent 
P O M D P models from the P A Y N T repository. The experimental results demonstrated that 
M D P counterexamples yield smaller conflicts for several models and converge more rapidly 
towards the optimal solution in some cases. Furthermore, preliminary work was conducted 
on the utilization of M D P counterexamples in hybrid synthesis, although the evaluation was 
not extensive. Future research should focus on developing an improved generator for M D P 
counterexamples that considers the entire topology more comprehensively. Additionally, 
conducting more thorough evaluations and experiments with the hybrid oracle using CEGIS 
with M D P counterexamples would be beneficial. 
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