
FAKULTA MECHATRONIKY,
INFORMATIKY A MEZIOBOROVÝCH
S T U D I Í TUL

Bakalárska prace

Real-time position tracking with online output

Studijní program:
Studijní obor:

B0613A140005 Informační technologie
Aplikovaná informatika

Autor práce:
Vedoucí práce:

Petr Boháč
Ing. Jana Kolaja Ehlerová, Ph.D.
Ústav nových technologií a aplikované
informatiky

Liberec 2024

FAKULTA MECHATRONIKY,
INFORMATIKY A MEZIOBOROVÝCH
S T U D I Í TUL

Zadání bakalářské práce

Real-time position tracking with online output

Jméno a příjmení: Petr Boháč
Osobní číslo: M21000096
Studijní program: B0613A140005 Informační technologie
Specializace: Aplikovaná informatika
Zadávající katedra: Ústav nových technologií a aplikované infor

matiky
Akademický rok: 2023/2024

Zásady pro vypracování:

1. Research open projects for monitoring, regarding both hardware and software posit ions.
2. Build and test an ESP32 based device, equip it with a G P S module. Provide communicat ion

between the device and the server using MQTT.
3. Implement a web application, equipped with a database and other necessary elements for

the operation of the whole solution, which will display the data from the positioning device.
4. Secure the communicat ion and the web application against possible leakage of sensit ive

data.
5. Discuss the possibil i t ies of expanding your device or integrating it into existing projects.

Rozsah grafických prací:
Rozsah pracovní zprávy:
Forma zpracování práce:
Jazyk práce:

dle potřeby dokumentace
30 - 40 stran
tištěná/elektronická
angličtina

Seznam odborne literatury:

[1] B L O C H , Joshua. Effective Java. 3rd ed. Addison-Wesley. ISBN: 978-0134686097.
[2] WHITE, Elecia. Making embedded systems. Nutshell Handbook. Beijing: O'Reilly, 2011. ISBN

978-1-4493-0214-6 .
[3] MISRA, Pratap, and ENGE, Per. "Global Positioning System: Signals, Measurements, and

Performance (Revised Second Edition)." ISBN: 0970954425 .
[4] Author(s), "Internet-of-Things (loT) Systems." Publisher, 2018. ISBN: 978-3319697147.

Vedoucí práce: Ing. Jana Kolaja Ehlerová, Ph.D.
Ústav nových technologií a aplikované
informatiky

Datum zadání práce: 12. října 2023
Předpokládaný termín odevzdání: 14. května 2024

L.S.
prof. Ing. Zdeněk Plíva, Ph.D. doc. Ing. Josef Chaloupka, Ph.D.

děkan garant s tud i jn ího p rog ramu

V L ibe rc i d n e 19. října 2 0 2 3

P r o h l á š e n í

Prohlašuji, že svou bakalářskou práci jsem vypracoval samostat
ně jako původní dílo s použitím uvedené literatury a na základě
konzultací s vedoucím mé bakalářské práce a konzultantem.

Jsem si vědom toho, že na mou bakalářskou práci se plně vz ta
huje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 -
školní dílo.

Beru na vědomí, že Technická univerzita v Liberci nezasahuje do
mých autorských práv užitím mé bakalářské práce pro vnitřní po
třebu Technické univerzity v Liberci.

Užiji-li bakalářskou práci nebo poskytnu-li l icenci k jejímu využití,
jsem si vědom povinnosti informovat o této skutečnosti Technic
kou univerzitu v Liberci; v tomto případě má Technická univerzita
v Liberci právo ode mne požadovat úhradu nákladů, které vyna
ložila na vytvoření díla, až do jejich skutečné výše.

Současně čestně prohlašuji, že text elektronické podoby práce
vložený do IS/STAG se shoduje s textem tištěné podoby práce.

Beru na vědomí, že má bakalářská práce bude zveřejněna Tech
nickou univerzitou v Liberci v souladu s § 47b zákona č. 111/1998
Sb., o vysokých školách a o změně a doplnění dalších zákonů (zá
kon o vysokých školách), ve znění pozdějších předpisů.

Jsem si vědom následků, které podle zákona o vysokých školách
mohou vyplývat z porušení tohoto prohlášení.

7. května 2024 Petr Boháč

ACKNOWLEDGEMENTS
I would like to dedicate this section to all the people who have
helped me to complete this thesis.
Firstly, a big thanks go to my thesis supervisor, Ing. Jana
Kolaja Ehlerova, Ph.D., whose weekly consults have guided
me in the right direction and eventually led to the successful
completion of this thesis.
As this thesis is written in English and I am not a native
English speaker, I've asked a handful of my close friends to
review my work. Most notably, I am grateful to my dear friend
Isaac Matthew Williams for providing the linguistic expertise.
According to his words, "Even though I don't know much
about the topic at hand, I feel that I can grasp the material
and follow along without getting lost".
Finally, I'd like to express my gratitude to Caleb Andrews,
MSc, from the University of Auckland, for offering invaluable
technical feedback during the final stages of my thesis.
Specifically his remarks regarding the authentication system.

REAL-T IME LOCATION
TRACKING WITH ONLINE
OUTPUT

ABSTRACT
This thesis explores the possibility of using the GNSS (Global
Navigation Satellite System) to track everyday objects, most
notably cars and other vehicles.
A self-hosted solution has been developed, which utilizes the
ESP32 microcontroller as the physical location data provider
and a web application capable of receiving, processing,
and presenting the mentioned data. The microcontroller
uses a lightweight loT communication protocol called MQTT,
which transmits all the necessary data to the broker. The
microcontroller has access to the Internet thanks to the
integrated WiFi capabilit ies.
The mentioned web application consists of a back-end
server written in Java, handling all the business logic and
exposing an API, which is then used by the front-end
application built on top of the VueJS framework. All the data
collected from one or more data sources is processed and
stored in MongoDB, and the whole project is deployed in a
containerized Docker environment.

Keywords: web application, navigation, MQTT, embedded
development, wireless communication

6

SLEDOVANÍ POLOHY V REÁLNÉM
ČASE S ONLINE VÝSTUPEM

ABSTRAKT
Tato práce zkoumá možnosti využití GNSS (Global Navigation
Satellite System) ke sledování každodenních předmětů,
zejména automobilů a jiných vozidel.
Bylo vyvinuto řešení s možností vlastního nasazení, které
využívá mikrokontrolér ESP32 jako zprostředkovatele
lokalizačních dat a webovou aplikaci schopnou přijímat,
zpracovávat a prezentovat zmíněná data. Mikrokontrolér
využívá nenáročný loT komunikační protokol s názvem
MQTT, který se stará o doručení dat na MQTT server.
Mikrokontrolér má přístup k internetu díky integrovaným WiFi
schopnostem.
Zmíněná webová aplikace se skládá z back-end serveru
napsaného v Javě, který obsluhuje veškerou business
logiku a zprostředkovává API, které poté využívá front-end
aplikace postavená na frameworku VueJS. Všechna data
shromážděná z jednoho nebo více datových zdrojů jsou
zpracována a uložena v MongoDB a celý projekt je nasazen
v kontejnerovém prostředí Docker.

Klíčová slova: webová aplikace, navigate, MQTT, vývoj
embedded systémů, bezdrátová komunikace

7

CONTENTS

List of abbreviations 15

Introduction 16

1 Problem analysis 18

1.1 Available solutions 18
1.1.1 Traccar 18
1.1.2 OpenGTS 18
1.1.3 GPS Dozor 19
1.1.4 Track Your Truck 19

1.2 Obtaining positional data 19
1.2.1 Theory behind Global Navigation Satellite Systems . . . 20
1.2.2 GNSS constellations 21
1.2.3 Assisted GNSS 22

1.3 Available platforms 22
1.3.1 Arduino 23
1.3.2 Raspberry Pi 24
1.3.3 Espressif 25
1.3.4 Conclusion 25

1.4 Methods of communication 26
1.4.1 Mesh networks 26
1.4.2 Short range 27
1.4.3 Long range 28
1.4.4 WiFi 30

1.5 Data delivery 31

2 Hardware solution implementation 32
2.1 Construction 32

2.1.1 Wiring diagram 33
2.2 Physical controls 35

8

2.3 Visual indications 35
2.4 GNSS receiver 36
2.5 Firmware development 39

2.5.1 Development environment 39
2.5.2 3rd party libraries 41
2.5.3 Configuration web interface 42

3 Web application 45
3.1 Back-end 45

3.1.1 The Spring framework 45
3.1.2 Data persistance 46
3.1.3 DTOs 47
3.1.4 Security 47
3.1.5 Authentication 48
3.1.6 Authorization 50
3.1.7 Real-time data communication 50
3.1.8 Processing MQTT data 52

3.2 User interface 55
3.2.1 VueJS 55
3.2.2 The map 55
3.2.3 Communication with the server 56
3.2.4 The design 56

3.3 Deployment 58
3.3.1 Walkthrough 59

4 Results and testing 62
4.1 Storage implications 62
4.2 The impact of large time frames on performance 62
4.3 Economy analysis and cost breakdown 64
4.4 Data collection 64

4.4.1 Sampling frequency 65

4.5 Final thoughts 65

5 Possibilities of integration 67

Conclusion 69

References 72

9

Attachments 7 3

A.1 Source code 7 3

A.2 Application Screenshots 7 3

A.3 Col lected data 7 5

A.4 Photos 7 7

A.5 Miscel laneous 7 7

10

LIST OF FIGURES

1.1 Arduino UNO 24
1.2 Raspberry Pi Pico 24
1.3 ESP32 development board 25
1.4 Bandwidth and range comparison 28
1.5 Top of a cellular tower 29

2.1 A development breadboard 33
2.2 The wiring diagram of the hardware solution 34
2.3 Development GNSS module u-blox NEO-M8 37
2.4 Breakdown of a GGA NMEA message 38
2.5 Project directory structure panel in CLion 40
2.6 Configuration web interface (iPhone 14 Pro Max) 44

3.1 Authentication flow in Spring Security 49
3.2 Different real-time communication technologies 52
3.3 MQTT configuration document 53
3.4 MQTT message processing algorithm 54
3.5 The application layout wire frame 57
3.6 The navigation sidebar 57
3.7 Success toast notification 58
3.8 Traefik router definition 59
3.9 Stack detail in Portainer 59
3.10 The containerized infrastructure 60

A.1 The main map view of the application 73
A.2 The data source management view 74
A.3 The access token system 74
A.4 The testing lap (Mšeno - Stránka - Chorušice - Velký Újezd) . 75
A.5 A Google Maps exported route (the theoretical perfect tracking

outcome) 75

11

A.6 The amount of captured detail with a sampling rate of 1s
A.7 The amount of captured detail with a sampling rate of 5s
A.8 The physical deployment of the hardware solution

LIST OF TABLES

2.1 Mapping of Talker IDs and GNSS constellations 38
2.2 NMEA messages sent by the NEO-M8 by default 39

4.1 The impact of an increasing amount of queried data on
different tasks 63

4.2 Products used in the construction of the hardware package . 64

13

LISTINGS

2.1 Ordinary C program 41
2.2 Arduino style C program 41

14

LIST OF ABBREVIATIONS

GPIO General-purpose input/output
loT Internet of Things
WAN Wide Area Network
QoL Quality of Life
10 Input Output
NMEA National Marine Electronics Associat ion
IDE Integrated Development Environment
SSE Server-Sent Event

15

INTRODUCTION

In today's day and age, keeping track of our possessions is becoming
increasingly important. From a security and safety standpoint, tracking
objects like vehicles could be helpful in case of theft or, in an emergency,
gaining location intel on a non-responding loved one.

There are existing solutions on the market dealing with the issue at
hand. Both in the open-source and commercial sphere. This project aims
to develop a location-tracking solution, particularly for the automotive
industry, featuring a full-stack application paired with a custom-built
hardware package that can collect, process, and transmit location data
wirelessly. The application will allow for managing col lected data in an
organized manner. Multiple users managed by one or more administrators
may use the application concurrently and securely. Because the application
allows for granular permission control, each user can be limited to a
dedicated chunk of the collected data. Additionally, the need for extendibility
is addressed through the inclusion of API keys and the selection of a
flexible communication protocol. The entire application is securely deployed
straightforwardly, ensuring both reliability and ease of use.

The initial chapter delves into a comprehensive analysis of the prevailing
problem, examining existing alternatives while drawing comparisons
among them. The discourse extends to GNSS's intricacies, encompassing
theoretical frameworks, constellation configurations, and the role of
Assisted GNSS (AGNSS) in location tracking. Furthermore, the chapter
extensively explores diverse platforms and communication methodologies
that may be used for the development of the hardware package.

The second chapter describes the construction of the hardware solution
alongside the development of the embedded firmware. This chapter covers
everything from the physical wiring to the software side of things.

In the following chapter, chapter 3, the whole development process of
the application is covered thoroughly. As the application is made up of two

16

distinct components, each one is allocated its dedicated section. These key
parts are segregated due to the disparate nature of technologies employed,
representing two distinct realms within the project.

In chapter 4, results are examined and d iscussed. Various implications
regarding storage, sampling, and more are also touched upon. Additionally,
the cost of the whole project is broken down.

Finally, in chapter 5, the discussion revolves around integration possibilities.
As mentioned earlier, the solution was developed with scalability in
mind. Several design choices were carefully made to facilitate seamless
integration, maximizing the system's adaptability.

17

1 PROBLEM ANALYSIS

The following chapter is dedicated to analyzing the problem at hand. As
this is not the first project of its kind, a couple of existing solutions will be
covered and compared. Furthermore, topics like collecting positional data
and getting it where it's needed will also be touched upon as well.

1 . 1 AVAILABLE SOLUTIONS
In this section, a few alternatives, both open-source and commercial, will be
discussed and later briefly compared to this project.

1.1.1 Traccar

The most popular modern alternative used in the present day is Traccar. It
is a leading open-source GPS tracking system that supports over 200 GPS
protocols and more than 2000 models of GPS tracking devices. Traccar
offers exceptional performance, stability, and a modern web interface
optimized for both desktop and mobile devices. It provides a paid c loud-
based deployment. Due to its open-source nature, it can also be self-hosted
[1].

1.1.2 OpenGTS

Another notable open-source project of a similar nature is OpenGTS. It was
the first open-source project designed specifically to provide web-based
GPS tracking services for a "fleet" of vehicles. The initial tutorial and guide
for OpenGTS dates back to 2010. Despite its inception date, OpenGTS
remains relevant today, with recent version updates as recent as 2020.
The continuous utilization of OpenGTS in various countries and industries
indicates its ongoing presence and relevance in the GPS tracking technology
landscape [2].

18

1.1.3 GPS Dozor

Regarding product choices, regardless of the field, the commercial sphere
often offers a plethora of choices and a wide range of features compared
to free, open-source solutions. This abundance stems from companies'
resources and investments in developing proprietary solutions tailored to
specif ic needs.

In the Czech market, one prevalent option is GPS Dozor. Renowned
for its reliability and comprehensive feature set, GPS Dozor caters to
various industries, offering functionalities such as real-time tracking, route
optimization, and comprehensive reporting tools. A massive selling point
of GPS Dozor is its powerful, organized dashboard that users can use
to manage their entire fleets of vehicles. Its popularity underscores its
effectiveness in meeting the needs of businesses operating in the region.

1.1.4 Track Your Truck

Outside of Czechia , Track Your Truck emerges as a prominent player
in the commercial GPS tracking sphere. With a strong presence in
the United States and beyond, Track Your Truck provides customizable
solutions tailored to diverse business requirements. Its offerings include
advanced fleet management features, integration capabilit ies with other
business systems, and special ized solutions for specif ic industries such as
transportation, construction, and logistics.

Both GPS Dozor and Track Your Truck exemplify the diversity and
innovation in the commercial GPS tracking market, offering businesses
and individuals a wide array of options based on their specif ic needs and
preferences.

1 . 2 OBTAINING POSITIONAL DATA
The key function of a data source is collecting positional data, among other
things. This section will focus on the issue of getting that positional data
reliably. Nowadays, the standard way to determine one's coordinates is
GNSS.

19

1.2.1 Theory behind Global Navigation Satellite Systems

The need to determine one's position on Earth dates all the way back to
the mid-20th century during the Cold War era. The United States Navy, in
the 1960s, initiated the first satellite navigation system dubbed Transit. Its
primary use was to provide the U.S. Navy with accurate location information
to be used by their Polaris ballistic missile submarines. Other use cases
included surveying and providing the Navy's surface ships with positional
intel. In the late 1970s, the U.S. began developing the Navstar Global
Positioning System, now known as GPS, to overcome some of the Transit's
limitations. GPS, unlike Transit, was designed to offer highly accurate global
coverage that is available to both the military and civilians.

GNSS (Global Navigation Satellite System) is a general term for any
satellite constellation 1 [3]. Currently, multiple GNSS constellations are
orbiting the Earth, each of which is briefly descr ibed in subsection 1.2.2.
Everyday devices like smartphones, watches, etc., usually come equipped
with GNSS receivers out of the box. A GNSS receiver ("receiver") is generally
a hardware device which is able to pick up the signals transmitted by
satellites, process them, and provide the user with positional data.

Contrary to popular belief, GNSS is a one-way communication system,
meaning data goes only one way; no back-and-forth communication is
happening. A GNSS satellite is nothing more than an incredibly precise
clock; an atomic clock in fact. The precision of these clocks is a crucial
part of a GNSS, as it heavily relies on measuring the time of arrival of
radio signals. Thus, each GNSS system has its own time reference from
which everything is synchronized. Satellites broadcast signals, that, among
other things, contain the precise current t imestamp and location of that
satellite. When a receiver is first turned on, it listens for GNSS signals. The
first connected satellite transmits the almanac, which gives the receiver a
general idea of where all the satellites in the constellation are. To determine
the precise location, more than one satellite is needed. The process of
calculating the position is called trilateration, not to be confused with
triangulation. The name suggests that 3 points, or satellites in the context
of GNSS, are needed to get a position f ix 2 . Even though three satellites are
the theoretical minimum for obtaining a fix, receivers generally require at

1 A satellite constellation is a group of satell ites orbiting the Earth and working together
as one system

2 A position fix is the successfu l result of G N S S posit ioning, indicating the receiver's
location with a given accuracy

20

least 4 satellites. The additional satellite allows for greater precision, and is
taking the positioning from 2D to 3D, providing us with altitude. In general,
the more satellites feeding the receiver with data, the greater the precision.
With support from other systems, sub-centimeter geolocation precision is
possible in today's world.

1.2.2 GNSS constellations

The previous section mentioned the presence of multiple GNSS constellations.
Today, there are four core global active GNSS constellations

• GPS (31 satellites) [4]
- First launch year: 1978
- World's most utilized satellite system developed and maintained

by the U.S. Department of Defense
- Guaranteed 95% availability of at least 24 satellites (for redundancy

purposes, up to 32 satellites are in use today)
. GLONASS (24 satellites) [5]

- First launch year: 1982
- Formerly Soviet, now Russian space-based satellite navigation

system
- Full global coverage since 1995

• BeiDou (44 satellites) [6]
- First launch year: 2000
- Started as an Asia-Paci f ic local network. Owned and operated by

the China National Space Administration
- Global coverage was reached in 2018

• Galileo (23 satellites) [7]
- First launch year: 2011
- Created by the EU through ESA (European Space Agency),

operated by the EUSPA, headquartered in Prague, Czechia
There are two more regional navigation satellite systems worth mentioning.
NavIC is an autonomous regional satellite navigation system covering

the region of India. It is operated by the ISRO (Indian Space Research
Organisation). Since its first launch in 2013, 10 total launches have been
completed, deploying seven satellites in the process [8].

The second system is the QZSS (Quasi-Zenith Satellite System), a four-
satellite regional system developed by the Japanese government. It was

21

first launched in 2010 to enhance the United States-operated GPS in the
Asia-Oceania region [9].

1.2.3 Assisted GNSS

As stated, GNSS uses satellites, which transmit information using radio
signals. These radio signals aren't very strong [10].

Receivers usually have three start modes - cold, warm, and hot.
When a receiver has been powered off for a long time, usually over two

hours, it almost certainly lacks or has outdated almanac and ephemeris
data. In this case, after the receiver powers up, it must obtain the almanac
from the first satellite it connects to, followed by ephemeris data from at
least four satellites to acquire a 3D fix. All of this data gathering, together
with calculating the coordinates, takes a considerable amount of time (the
almanac alone takes approx. 12.5 minutes to transmit); therefore, this is
referred to as a cold start.

If the receiver has a valid up-to-date almanac and thus roughly knows
where the satellites are in orbit, it must only acquire ephemeris from each
satellite before it can start calculating the coordinates. This is a so-cal led
warm start.

A hot start happens when the receiver has both a valid, up-to-date
almanac and ephemeris in its memory. In this case, it has everything it
needs and can start calculating a precise location [11].

Due to the strength of signals transmitted by satellites, near-perfect
conditions are required for GNSS to function optimally and reliably. Sky
obstructions like big buildings or going underground might very well cause
the loss of a positional fix. In fact, most smartphones don't directly use
GNSS at all; they all use assisted GNSS, where the position is calculated
with the help of cellular towers with known coordinates acting as positional
references.

1 . 3 AVAILABLE PLATFORMS
In the process of constructing a hardware solution of any kind, an engineer's
initial and foremost responsibility lies in selecting the appropriate platform.
Each project possesses unique requirements, with certain factors holding
greater signif icance than others.

22

While Arduino, Espressif, and Raspberry Pi dominate the microcontroller
market, it's noteworthy that smaller players, such as Adafruit and Teensy,
have also made significant strides, contributing their unique offerings to
the hardware ecosystem. For simplicity's sake, the following discussion
and comparison will focus solely on the three main contenders in the
microcontroller space.

This project has a few specif ic needs that dictate the platform selection.
Firstly, the device must operate with minimal power consumption to ensure
prolonged battery life if used in conjunction with a small battery.

Secondly, it requires seamless connectivity to transmit GPS data efficiently,
whether for real-time tracking or data logging purposes.

Additionally, compact size is essential to facilitate a sleek and portable
design for the GNSS tracker device.

Furthermore, the microcontroller must possess sufficient processing
power to handle real-time data processing tasks efficiently.

Finally, cost-effect iveness is a crucial factor, especially considering the
circumstances and the fact that this project is not backed by a larger entity
willing to take the cost out of the equation.

1.3.1 Arduino

When there is a need for more complex logic that involves programming
in electronics, novice tinkerers often reach for an Arduino board of some
sort, e.g. an Arduino UNO as seen in Figure 1.1. Arduino is an open-
source platform spanning both the physical (hardware) and the software
components. Arduino is widely used amongst hobbyists for its simplicity
and versatility. A vast community built around Arduino is populating the
Internet with countless tutorials, guides, and articles, significantly flattening
the learning curve. Arduino even has its own simple IDE, which makes it
really simple to develop and deploy code to the microcontroller [12].

23

Figure 1.1: Arduino UNO
Source: https://cz.mouser.com

1.3.2 Raspberry Pi

Unlike Arduino, which typically caters to the lower end of the spectrum
in terms of processing power, price, and overall capabilit ies, Raspberry
Pi occupies the higher end. While Arduino boards are renowned for
their simplicity, cost-effect iveness, and suitability for basic to moderately
complex projects, Raspberry Pi offers significantly more processing power,
versatility, and features. In January 2021, the Raspberry Pi Foundation
came out with its first microcontroller, the Raspberry Pi Pico (see Figure 1.2),
based upon a single chip, the RP2040.

Figure 1.2: Raspberry Pi Pico
Source: https://rpishop.cz

24

https://cz.mouser.com
https://rpishop.cz

1.3.3 Espressif

If neither Arduino nor Raspberry Pi meets a project's needs, there is another
viable option worth considering: Espressif Systems. Among its standout
offerings are the ESP8266 and ESP32 (as seen in Figure 1.3, utilized in a
development board), popular choices for hobbyists and large corporations
alike.

An excellent example of loT products based on the ESP chips are those
from Shelly. Their range includes smart plugs, energy meters, and more. T

he ESP32 is a successor to the ESP8266, equipped with a Dual-Core 32-
bit LX6 Microprocessor with a clock frequency of up to 240 MHz, 520 KB of
SRAM and 448 KB of ROM. It also has 34 Programmable GPIO pins, allowing
for a vast amount of external switches, LEDs, and sensors, which is a cruicial
requirement for this project.

Figure 1.3: ESP32 development board
Source: https://rpishop.cz

1.3.4 Conclusion

Several key requirements must be considered when selecting the correct
microcontroller for this project. Given the complexity of the firmware,
which would incorporate multiple libraries to support intricate logic, as
well as the necessity for a management web application to run directly on

25

https://rpishop.cz

the microcontroller for configuration and debugging purposes, resource
utilization became a critical factor.

The chosen microcontroller needed to offer sufficient C P U power to
handle the computational demands of the firmware and web application.
Moreover, it was essential to ensure an adequate amount of RAM and ROM
to accommodate the simultaneous operation of these features without
compromising performance.

In addition to the processing power and memory requirements, WiFi
connectivity was identified as a non-negotiable key feature for this project.

After thorough research, testing multiple different options, and careful
consideration of their strengths and weaknesses, the ESP32 microcontroller
emerged as the optimal choice for this project. Specifically, the Espressif
development board ESP-WROOM-32 DEVKIT V1 was selected to fulfill the
project's requirements.

1 . 4 METHODS OF COMMUNICATION
A crucial part is figuring out how to connect the hardware client to the back-
end server. The possible solution set highly depends on where the server
is physically located. Choosing the right communication technology really
depends on the project's specif ic needs. In this section, various wireless
communication technologies will be d iscussed and compared.

1.4.1 Mesh networks

Some technologies are ideal for situations where the device is deployed
permanently and never moved. For these cases, mesh networks are usually
the best option. In the world of loT, two 3 stand out the most - the Zigbee and
Z-Wave protocols. Both of these protocols were developed to tackle similar
issues but have some differences. Zigbee is a low-power wireless mesh
network standard targeted at battery-powered devices in wireless control
and monitoring applications. Right after WiFi, it's the most common way for
smart devices to communicate. Its implementation in products is an easy
and cheap way to broaden the product's flexibility [13]. Zigbee operates at
the same frequency as WiFi - 2.4GHz.

3 Al though Zigbee and Z-Wave dominate the sphere, several new protocols have been on
the rise in the past few years, most notably Thread and Matter.

26

Z-Wave is an alternative to Zigbee aimed at the same applications. It
operates at a much lower frequency (800-900 MHz as opposed to Zigbee,
which, alongside WiFi, operates in the 2.4 GHz range) [14]. The major selling
point of Z-Wave is its rigorous certification protocol. All products using Z-
Wave have to undergo a special certification process, which guarantees
a smooth deployment and reliable operation [15]. This adds time and
complexity to the product development, increasing the product's price. That
is why nearly all Z-Wave products tend to be more expensive than their
Zigbee counterparts.

In summary, loT protocols such as Zigbee and Z-Wave are good low-
power communication technologies most smart home products use. They
are mostly used to bridge the gap between the devices and a smart home
hub, usually connected and integrated over TCP/IP to the rest of the
network. This project requires direct access to the Internet to be able
to communicate with the server. In this case, using Zigbee or Z-Wave
would add an unnecessary middleman. Therefore, these communication
technologies are also not applicable in this case.

1.4.2 Short range

Bluetooth is a very simple wireless technology standard mainly aimed at
short-range communication. Nowadays, it's well supported for a wide range
of devices. The usable range of Bluetooth depends on multiple factors, such
as [16]:

• Radio Spectrum
• Receiver Sensitivity
• Transmission Power

Bluetooth is usually utilized to configure devices. Because it requires the
two participating devices to be in proximity to each other. For instance,
configuring solar inverters, smart power plugs, etc.

This technology may be useful when the server - in the context of a car
- sits in the cabin with the data source. As this would be a very specif ic
and limiting case, Bluetooth does not meet all the needs for it to be used as
the main way of communication between the data source and the back-end
server.

27

1.4.3 Long range

When researching long-range communication technologies, the first one
to come to mind is LoRa (short for "long-range"). It aims to address the
challenge posed by the growing distances over which data needs to be
wirelessly transmitted in the era of loT. While existing technologies like WiFi
and cellular excel at moderate distances and meet high bandwidth demands,
they fall short for longer transmissions (as depicted in Figure 1.4). LoRa
devices and networks, such as LoRaWAN, enable smart loT applications
addressing challenges in energy management, natural resource reduction,
pollution control, infrastructure efficiency, disaster prevention, and many
more [17].

Short Range Long

Figure 1.4: Bandwidth and range comparison
Source: https://www.thethingsnetwork.org/docs/lorawan/what-is- lorawan/

LoRaWAN is a standard for interoperability managed by the LoRa All iance,
a non-profit technology alliance, and is recognized as an LPWAN standard
by the International Telecommunication Union (ITU). Devices utilizing LoRa
for data transmission usually have an outstanding battery life due to LoRa's
nature. Some reported lasting as long as ten years on a single coin cell
battery. LoRaWAN operates through gateways, forming networks that cover
vast geographical regions. The range of these gateways varies based on
their placement and local environment. While wireless transmissions often
face interference, LoRaWAN offers impressive capabilit ies. In rural settings,

28

https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/

a gateway can extend its reach up to 3 kilometers, but in more open areas,
distances exceeding 10 kilometers are achievable. Moreover, LoRaWAN has
the unique ability to locate end devices through triangulation, eliminating the
need for GPS [18].

LoRaWAN is a great choice for applications requiring communication
across large geographical areas, but the coverage is not quite where it
needs to be for this project. This is where cellular comes in.

Cellular communication is built upon terrestrial cellular towers (as shown
in Figure 1.5); hence the name. Cellular towers can cover anywhere from
5 to 80 square kilometers, so they are strategically placed to cover as
much area as possible. Cellular equipment is often conveniently installed on
existing buildings or structures, or an actual tower is constructed for that
exact purpose. Multiple mobile network operators almost always share a
"cell site" so that as many people as possible have connectivity regardless
of their carrier.

Figure 1.5: Top of a cellular tower
Source:

https://commons.wikimedia.Org/wiki/File:CellTowerRichmondHill. jpg

29

https://commons.wikimedia.Org/wiki/File:CellTowerRichmondHill.jpg

As previously stated, the function of a cellular-based communication
device relies on the proximity of cell towers. Roughly one-third of the
land is covered by cell towers [19]. Cell towers are installed on demand;
more are installed in areas with higher population density. The difficulty of
implementing cellular communication into a project depends on multiple
factors. Some microcontrollers are specifically designed for off-grid
applications. Therefore, they might come pre-equipped with cellular radio
and a SIM card slot. As this might not be the case with the microcontroller
chosen for this project, it's important to consider the added complexity and
cost that implementing cellular communication would introduce.

1.4.4 WiFi

Defined by the IEEE 802.11 family of standards, WiFi serves as a wireless
transmission medium within the confines of a communication channel.
Nevertheless, it does not inherently provide direct internet connectivity.
Instead, it facilitates communication with another device, typically a router,
which is then linked to a Wide Area Network (WAN). This WAN connection
can be established through various means, such as the previously mentioned
cellular networks, wireless bridges, wired connections, or optical fibers
[20]. When evaluating WiFi for a project, it's essential to consider both
its advantages and disadvantages. On the positive side, WiFi boasts
widespread adoption and accessibil i ty, making it easy and relatively
inexpensive to implement. Many microcontrollers come equipped with
integrated WiFi capabilit ies, streamlining the hardware setup process.
Additionally, WiFi delivers decent data transfer speeds and can accommodate
moderate to high bandwidth requirements, rendering it suitable for various
applications. Nevertheless, there are drawbacks to take into account. WiFi
tends to consume more power than other wireless technologies, posing
a concern for battery-powered devices or those necessitating low power
consumption.

Therefore, after careful consideration of its pros and cons, WiFi was
chosen as the preferred communication medium for this project due to
its ease of use, cost-effect iveness, and suitability for meeting the project's
requirements.

30

1 . 5 DATA DELIVERY
As the issue of connecting data sources to the Internet has already been
addressed and resolved in section 1.4, now comes the issue of delivering
the col lected data to the back-end server. There are many ways to exchange
data between services: gPRC, STOMP, MQTT, or simple HTTP requests, to
name a few. For the purposes of this project, only the last two methods will
be taken into consideration.

Using HTTP for data exchange is a simple and readily used method. Clients
needing data exchange can issue an HTTP request (a POST request would
make the most sense here) to a web server running on the other system,
which extracts and processes the data from the request. In this case, data
sources send the col lected data to the server very frequently. Thus, most of
the communication the data sources participate in consists of many small
data bundles. HTTP requests are a bit costly compared to some of the
alternatives. HTTP used to create a new TCP connection for every request.
Since HTTP 1.1, there are some TCP connection pooling capabilit ies, but the
overhead is still present due to other factors (authentication, for instance).
Data sources might be working with a limited Internet connection, meaning
conservative and efficient approaches to data transmission are required. In
summary, HTTP request-based data exchange is a valid approach, but a
better one is needed for this use case.

MQTT (Message Queuing Telemetry Transport) is a communication
protocol based on a publish/subscribe model with features specifically
targeted at loT solutions. MQTT aims to minimize the data overhead of each
MQTT packet. It has many advantages of the previously mentioned HTTP
request-based approach, including [21]:

• Uses a single long-lived TCP connection
• As opposed to HTTP, which was designed to serve documents on the

Internet, MQTT was specifically designed for loT
• Binary message payloads instead of text-based HTTP payloads
• other useful features for loT applications

31

2 HARDWARE SOLUTION
IMPLEMENTATION

The first half of this thesis is expected to produce a hardware solution that
is able to collect positional data reliably and securely transmit them back to
the server.

The main hardware package ("Data source") is wired up on a breadboard,
which allows for rapid development and easy reconfiguration at any point. As
was established in section 1.3, an ESP32 was selected as the microcontroller
of choice.

The different ways to install and deliver power to the device are out of the
scope of this thesis.

2 . 1 CONSTRUCTION
When developing a hardware solution of any kind, there are usually two
stages to the whole process. In the development stage, everything is
thoroughly tested and finalized to the developer's satisfaction. At this point,
the product is usually pieced together on a breadboard (shown in Figure 2.1).
The individual components are connected together, either by placing them
strategically, taking advantage of the breadboard's inner conductors, or by
using jumper cables (most commonly DuPont-style wires).

The product design is finalized in the latter stage - the production stage.
If needed by the circumstances of the product's usage, an enclosure might
be designed and produced. The most common manufacturing process for
new products nowadays is 3D printing. Injection molding is also a popular
process for a more professional-looking final product, although it comes at
a higher cost.

32

Figure 2.1: A development breadboard
Source:

https://www.kevsrobots.com/resources/how_it_works/breadboards.html

2.1.1 Wiring diagram
Part of any hardware realization or product is the wiring diagram. The wiring
diagram is a crucial blueprint within any hardware realization or product
development process, facilitating seamless construction and ensuring
operational success. Comprised of standardized components meticulously
labeled for clarity, this diagram is a guiding map for technicians and
engineers, enabling them to comprehend and implement intricate electrical
connections accurately. By integrating these standardized elements, the
diagram simplifies the construction process and enhances compatibility and
interoperability, streamlining overall operations and fostering efficiency.
This visual representation forms an indispensable tool, bridging the
gap between conceptual design and tangible implementation, ultimately
contributing to realizing reliable and functional hardware solutions. The
wiring diagram for this project (as seen in Figure 2.2) was drawn using a
designer tool called Circuit Diagram Online.

33

https://www.kevsrobots.com/resources/how_it_works/breadboards.html

5 V

u-bkm NEO-BM

A D C 1 C H 0 .
A D C 1 C H J _

_

i f K l C t U
_

4DCJCHJ_
4DCJCHJ_
4DC2CH7_
4DCJCH6_

_
1DC2CIU

• ._

; •. GPI023
OPIL: So GPI022

GPIOl
GPIOS4 GPIOS
GPIOS5 GPI021
GPIOS2 OPi;:_Ji
GPI033 GPIOIS
GPI025 GPIOS
GPI026 GPI017
GPI027 GPI016
GPI014 GPI04
OPi;:_2 GPI02
OPi;:_3 3PICI15
GPIOS GPIO0
OPIOID GPIOE
GPIOl l GPIOT
GNC GPIOE
V I ' . 3V 3

220 Q >,

A — i G r e e " tr

220 a

•CD

GND VCC
TX RX

Figure 2.2: The wiring diagram of the hardware solution

34

2 . 2 PHYSICAL CONTROLS
All of the data source configuration is done using the web application served
by the ESP. It can also be used to interact with the data source at runtime,
but this is not optimal, as it does not have a straightforward user experience;
the user needs to use a device with a browser and must make sure they're
connected to the data source. For that reason, there is a need for physical
controls that can make changes and interact with the data source at runtime.

When the WiFi hotspot ("hotspot") is turned on and anyone can connect
to it (it is not secured with a password). The web application served by the
ESP requires no authentication either. Therefore, the less time the hotspot
is being broadcast, the better. A hotspot toggle button was implemented to
counteract this issue. When the data source is connected to power, it initially
starts with the hotspot being turned off; the user must press the button to
turn the hotspot on to configure it. After all necessary configurations have
been made, it is encouraged to turn the hotspot off.

2 . 3 VISUAL INDICATIONS
Having a good looking intuitive dashboard with all the relevant information at
a quick glance is nice, but when it comes to hardware solutions, it is expected
to have a way for the user to roughly tell what is currently happening. A
potential solution for this problem could be a small integrated screen
displaying information. Seven-segment displays would also be a sufficient
solution if the information were just a number. The most straightforward
kind of indicators are LEDs; they're everywhere. In the case of this project,
the functionality of four indication LEDs in total were implemented.

The ESP32 dev board itself has a blue onboard LED connected to pin
GPI02 and can be controlled like any other external diode. This LED was
chosen to indicate the WiFi status; the LED turns on when the ESP is
connected to WiFi. Consequently, it is turned off upon disconnecting from
WiFi.

As was mentioned in section 2.2 about physical controls, the data source
is equipped with a WiFi hotspot toggle button. A second blue LED, this time
an external one, is used to indicate the status of that WiFi hotspot; when
a user presses the button, turning on the WiFi hotspot, the LED lights up.
Pressing the button again results in the WiFi hotspot and the LED turning off.

35

A useful information for diagnostics is the state of a positional fix.
Therefore, the data source is equipped with a green LED, indicating a
fix's state. The LED is turned off while there is no fix. When a complete 3D
fix is establ ished, it goes from blinking to a solid light.

Last but not least, a red LED is available to the user, which directly
correlates to the MQTT data publishing. Each time a message is published,
the LED blinks once. This can inform the user about the frequency of data
submission and the overall functioning of MQTT.

2 . 4 GNSS RECEIVER
As stated in chapter 1, a GNSS receiver is needed to take advantage of the
existing GNSS infrastructure. There is a multitude of choices on the market
from various manufacturers when it comes to choosing a GNSS receiver, the
most prevalent one being u-blox. There are various different GNSS lineups
made by u-blox, though the most popular lineup of standard precision GNSS
modules amongst the loT community is the NEO lineup. After conducting
exhaustive research and comparative analysis of all products within the NEO
series, the u-blox NEO-M8M-0 has been selected as the GNSS receiver of
choice for this project.

It is important to note that u-blox only manufactures the GNSS chips
themselves. The module seen on Figure 2.3 is a convenient development
package that uses the u-blox chip. This module greatly speeds up the
development process thanks to the exhaustive IO options, as it requires
no soldering of any kind. It has a micro-USB port, which supplies power to
the module and facilitates serial communication between the module and
the computer. This project utilizes the 5-pin header onboard, facilitating
easy insertion into a breadboard. However, this project only uses 3 of
the five pins available - the VCC and GND for power and the TX pin for
reading the data sent from the module (the RX pin is used for sending
data to the module, which allows for configuration of the u-blox chip, but
this functionality was not utilized). Lastly, there is a UHF connector for an
optional antenna. An antenna enhances the receiver's ability to capture
signals from multiple satellite constellations, thereby improving accuracy
and reliability and speeding up location tracking and navigation tasks.

U-blox also develops software called u-center, which was heavily relied
upon in the early stages of development thanks to the insightful information

36

about the module it provides. It receives the data from the module, parses
it, and displays a wide variety of information.

Figure 2.3: Development GNSS module u-blox NEO-M8
Source: https:/ / tutor ials.probots.co. in/how-to-use-neo-m8n-0-01gps-

module-using-u-center/

Serial communication operates on the premise that both ends adhere to
identical configuration settings. According to the official data sheet, the
N E 0 - M 8 module requires the following serial configuration:

• Baud rate of 9600 bits/s
• 8 data bits
• No parity bits
• 1 stop bit

As per the datasheet specif ications, upon powering the module, it
commences transmitting data at a steady periodic rate of 1 second, provided
that the serial communication setup is configured correctly [22]. This data,
adhering to the NMEA (National Marine Electronics Association) protocol, is
transmitted as plain text NMEA messages. This format ensures compatibility
and ease of integration with navigation and tracking systems, allowing for
efficient communication and accurate retrieval of positioning information.
There are numerous NMEA messages, each conveying a different kind of
data in unique fields. NMEA messages have a fixed format; each starts with
a dollar sign and a message identifier, followed by specif ic data fields. For
example, in the Figure 2.4 below, an NMEA message of the GGA type (GPS
Fix Data) is broken down into corresponding fields.

37

https://tutorials.probots.co.in/how-to-use-neo-m8n-0-01gps-

SGNGGA, 181722,00^000.1256100^08301,5^120^^iA,12^99.9^,221.23^A -33.69^A,MA

Time
(UTCj

Latitude Longitude Time
(UTCj

Message
Identifier

North/South
Indicator

H DOP

Satellites
Used

Quality
Indicator

Y
[Units J

Altitude

Checksum

D G P S
Station ID

Units

East/West
Indicator

Geoidal
Separation

Figure 2.4: Breakdown of a GGA NMEA message
Source: https://greenvil lagedotblog.f i les.wordpress.com/2018/08/nmea-

sentence2-e1533488080328.png

The Message Identifier denotes the type of an NMEA message and the
constellation used during the calculation process. The mapping of Talker ID
codes (first two letters in the Message ID) to the different constellations is
shown in Table 2.1. Note that this is not an exhaustive list of all the possible
Talker IDs; included are only the main constellations that are mentioned in
subsection 1.2.2.

Talker ID Constellation
GA Galileo
GB BeiDou
GL GLONASS
GP GPS
GN combination of multiple constellations

Table 2.1: Mapping of Talker IDs and GNSS constellations

As previously mentioned, a vast array of NMEA messages exists, making
it impractical to describe each one in this document. Therefore, only
the messages specifically sent by the N E O - M 8 will be addressed herein,
ensuring a focused discussion on relevant data formats and content.
According to the datasheet, seven specif ic messages are enabled in this
particular module by default. With the exception of the TXT message, their
functions are descr ibed in Table 2.2.

Each time the ESP receives an NMEA message, it must be parsed so
the programmer can use the data. As parsing the messages manually

38

https://greenvillagedotblog.files.wordpress.com/2018/08/nmea-

Message ID Function
GGA Time, position, and fix related data
GLL Position data: position fix, time of position fix, and status
GSA GPS DOP and active satellites
GSV Number of SVs in view, PRN, elevation, azimuth, and SNR
RMC Position, Velocity, and Time
VTG Actual track made good and speed over ground

Table 2.2: NMEA messages sent by the NEO-M8 by default

would be quite cumbersome, a 3rd party library was brought in (more in
subsection 2.5.2).

2 . 5 FIRMWARE DEVELOPMENT
Developing firmware for embedded systems like ESP32 differs from writing
conventional code for desktop or web applications. The programmer has
to be mindful of the resource intensity of their code. RAM and C P U usage
play a big role, as does the size of the codebase itself; eff iciency is key
in embedded systems. Therefore, it is important that the programming
language used is very low-level so as not to introduce much overhead.
Languages like Java, Python, or JavaScript introduce a lot of overhead
and increase the footprint of the software because they are more or less
designed for good developer experience. On the other hand, C or Rust are
very low-level counterparts that are great for writing embedded firmware.

If the developer wanted to go even lower, they would arrive at A S M - the
assembly language, where the individual instructions are the code. For larger
applications using Assembly directly is very difficult and often impractical.
The firmware for this project is written in C++ as it offers enough low-level
access to the hardware, introduces very little overhead, and has many QoL
features over the basic C language.

2.5.1 Development environment

The IDE of choice during the development of this project was CLion from
JetBrains in conjunction with the PlatformlO plugin. PlatformlO provides
a convenient way to manage libraries in a project and greatly simplifies
embedded development with its predefined project structure (as seen
in Figure 2.5) and lifecycles. This project is considered a small one in the

39

world of embedded development; thus, most of the directories generated by
PlatformlO were unused. The directories used are the d a t a directory, where
the front-end code is placed, so it can be uploaded to the flash memory
using the command p i o run - - t a r g e t u p l o a d f s and understandably,
the s r c directory containing the source code.

v M firmware
v Q firmware - C:\Users\Petr\Development\BP\firmware main / 0

> M .pio
v a data

> i l assets

{JJ index.html

> Li frontend

> I O include

> * lib

v [B s r c

13 mqttendpointhandlers.cpp

h mqt tendpointhandlers.hpp

13 wif iendpointhandlers.cpp

h wi f iendpointhandlers.hpp

*f main.cpp

we b_server.cpp

h webserver.hpp

(3 wifiuti ls.cpp

h wif iuti ls.hpp

> l a t e s t

.gitignore

^ CMakeLists.txt

^ platformio.ini

P README.md

^ • T O D O . m d

Figure 2.5: Project directory structure panel in CLion

In embedded systems, particularly in real-time embedded systems, the
main flow of the program often revolves around an infinite loop where the
application's core logic resides. This loop typically iterates indefinitely,
constantly checking and responding to various inputs, events, or conditions.
Flags (or "status variables") are a crucial part of embedded programming.
They serve as indicators or markers representing certain states or conditions
within the system. These flags are frequently checked within the main loop

40

file://C:/Users/Petr/Development/BP/firmware

to determine the course of action the program should take next. The
programmer could create the whole base of an embedded system on
their own, which is the usual route for bigger commercial code bases, but
programmers frequently choose the Arduino framework. It abstracts away
many of the low-level hardware details and exposes a convenient entry
point for the programmer. The code listings below depict the difference
between a standard C and an Arduino-style program.

int main() {
// code

}
Listing 2.1: Ordinary C program

void se tup () {
// setup, initialization , etc.

}

void l o o p () {
// code to be executed continuously

}

Listing 2.2: Arduino style C program

The Arduino framework exposes two methods. The se tup method is
where the program's initialization happens and usually includes setting up
pins and communications. The other l o o p method is where the code that
runs continuously many times a second is placed.

2.5.2 3rd party libraries

The base Arduino framework integrates many different libraries, most
notably the WiFi library for interacting with WiFi networks and LittleFS to
help traverse and interact with the file system. Configurations needed to
survive restarts, so they had to be stored in flash storage. Preferences
library provides ESP32-compat ib le Preferences API for various platforms.
Numerous other 3rd party libraries were used throughout different parts of
the firmware during development.

The microcontroller needed to run its own web server to expose a web
application for configuration purposes. A library called ESPAsyncWebServer

41

is a popular and reliable library that simplifies setting up an asynchronous
HTTP and WebSocket server.

As the web server exposes an API, working with J S O N would eventually
become inevitable. Because using string concatenation as a poor man's
J S O N framework was out of the question and the C++ standard library
doesn't natively support J S O N , the json library by Niels Lohmann was
leveraged.

For parsing NMEA messages received from the GNSS module, the
TinyGPSPIus was used. Like its predecessor, TinyGPS, this library provides
compact and easy- to-use methods for extracting position, date, time,
altitude, speed, and course from consumer GPS devices [23].

Data is transmitted from the microcontroller using the MQTT protocol. The
microcontroller needed to construct and publish an MQTT message to a
specif ic topic (esgps /gnss) . Once more, a library designed for this purpose
was utilized, specifically the PubSubClient library.

A few hardware-related libraries were also used. The solution contains a
button for toggling the WiFi hotspot. Implementing a button is not terribly
difficult, but it certainly has some caveats. One of the major problems was
button bounce. A library called ezButton was able to abstract all issues away
and expose a simple API for the developer to use.

The accelerometer and gyroscope module also required special handling,
as it communicates over the I2C bus. The MPU6050 library alongside Wire
made integrating the module into the solution simpler by abstracting away
handling the raw packets.

2.5.3 Configuration web interface

The configuration web interface will most likely be used once or twice
throughout the device's lifetime, mainly for initial configuration. Therefore,
the front end did not need to be extra sophisticated but purely functional, i.e.,
the reason for its simplistic design (as seen in Figure 2.6). The application
was once again built with the VueJS framework. In this case, though, the
C S S library of choice was Bootstrap.

The application allows users to configure the device in different areas. The
main configuration necessary is the details for the MQTT broker, specifically
the address of the server and the port (1883 by default), along with the login
credentials. Furthermore, the microcontroller must be connected to WiFi, so
a WiFi manager was implemented. It lists all available networks in the near

42

vicinity with their respective RSSI values. The user can connect to any one
of the networks, assuming a correct password is entered.

A GNSS debug section is also implemented, where raw GNSS data can be
inspected if something is out of the ordinary so a conclusion can be drawn.

After the front-end application reached its final state, the build process
followed. Vite builds the Vue application into three files - i n d e x . h t m l and
the C S S and JavaScript bundles.

43

ESP GPS

Ö Time: 15:15

Connectivity {•> GNSS

MQTT / \

Username Password

Brokersettings Server 1883

^ f l I Clear 1 Save changes

WiFi settings V

re 2.6: Configuration web interface (iPhone 14 Pro Max)

3 WEB APPLICATION

Now that the positional data has been gathered and sent, the next piece
of the puzzle revolves around the web application. This application is
constructed using a cl ient-server architecture.

This chapter is divided into two primary sections. The first, section 3.1,
delves into the application's back-end, exploring various technologies and
problem-solving approaches. In the subsequent section, section 3.2, we
delve into the development intricacies of the user interface, along with
considerations for enhancing user experience and ensuring seamless
interaction with the system.

From database management to user interface design, this chapter
provides a comprehensive overview of the development process for both
the back-end and front-end components of the web application.

3 . 1 BACK-END
The supporting back-end has multiple crucial responsibilities, the most
significant of which are the following:

• Processing subscribed GNSS data
• Middleman between the presentation and the data layer
• Authentication and authorization

3.1.1 The Spring framework

As of April 2024, this project is using the Spring Framework 6. It provides
a comprehensive programming and configuration model for modern Java -
based enterprise applications - on any kind of deployment platform. At its
core lies the Inversion of Control (loC) container, which manages object
instantiation and configuration, promoting loose coupling and facilitating
easier testing. Dependency injection is also a key concept, enabling
the injection of dependencies at runtime and enhancing modularity and

45

maintainability. Aspect-or iented programming (AOP) aids in separating
cross-cutt ing concerns from core business logic, leading to cleaner code.
Spring offers a magnitude of different modules, which extend its capabilit ies.

3.1.2 Data persistance

When it comes to storing data, there are multiple paths the developer can
take. Most notably, data is stored in files or a database. Storing data
in files is a common practice for smaller applications where performance
and scalability are not among the main concerns. Pretty much all desktop
applications store their data in files. If each installed application ran its
own database, the computer would quickly run out of resources because
of the overhead databases introduce. In the case of web applications,
the common practice shifts towards using databases for storing data.
Unlike desktop applications, where each program may handle its own
data in separate files, web applications often deal with larger volumes of
data and require concurrent access by multiple users. Databases offer
several advantages, including efficient data storage, scalability, concurrent
access, and transaction support. Additionally, databases provide features
like indexing, querying, and data integrity constraints, which are essential
for managing complex data relationships and ensuring data consistency.
Therefore, web developers typically opt for databases, such as MySQL,
PostgreSQL, MongoDB, or others, to store and manage their application
data effectively.

Choosing a database really depends on the specif ic needs of the
application. This project relies on a document-based database. In this
project, a decision had to be made between an SQL and a document-based
database. Ultimately, it came down to the data structure and specif ic
features required by the application. One of the benefits of document-
based databases is that there isn't a need for a set data structure. Each
record, a document, can have a different structure and contain a special
data set. The most notable benefit that MongoDB brings to the table is the
native support of t ime-series data. Time series data refers to a sequence
of data points col lected or recorded at successive and equally spaced
intervals over time. For this project, numerous data points will accumulate
throughout the application's lifespan, necessitating precautions to ensure
the application's future resilience. MongoDB offers several handy features
for managing t ime-series data, including data expiration. With this feature,

46

each collection can define a specif ic duration after which data points
expire. This capability is fundamental across most t ime-series databases,
preventing storage overflow by automatically removing outdated data.

The Spring framework, particularly the Spring Data module, greatly
facilitates data management and database interaction. An initial step
involves defining models, each representing a distinct entity. For example,
in this scenario, separate models are created for a data source and for
individual data points. These models are typically expressed as Java classes
or records, enhanced with annotations. These annotations assist the Spring
Data module in interpreting the purpose of the defined fields; for instance,
@ 0 b j e c t l d signifies the ID field, aiding in contextual understanding and
streamlined data handling. Instances of these model c lasses will later
represent individual records in the database.

The concept of repositories is also quite important, as these repositories
(in the code defined as interfaces that extend the parent R e p o s i t o r y
interface from Spring Data, in this case, MongoRepos i to ry) .

3.1.3 DTOs

The concept of DTOs (Data Transfer Objects) is quite simple but proves
powerful as applications grow. Put simply, the server should treat the model
class as an internal tool that shouldn't be exposed to the users. For instance,
the User model class contains fields that are not desirable to be seen by
users (mainly the password hash, as it serves no purpose to the user and,
more importantly, poses a security risk).

The conversion from a model instance to a DTO usually happens at the
controller layer. Services return the internal model instances, and the
controllers are responsible for presenting the data to the user. This is the
recommended flow by the Spring developers.

3.1.4 Security

Security is a big part of any modern web application. There are many aspects
that go hand in hand to provide a secure user experience and prevent bad
actors from getting ahold of sensitive user data.

Something all web application developers have to deal with is session
management. Once a user successful ly authenticates, a session is
establ ished, and it falls upon the developer to handle it securely. In the

47

old days, developers usually handled all the session logic themselves.
Nowadays, though, with the plethora of frameworks to choose from, this
task is usually already handled by the framework of choice. This is a
good thing because it saves time, thus greatly increasing effectiveness
and improving security, as the great minds behind these frameworks
usually special ize in cybersecurity. Therefore, they can handle it much
more securely than an average programmer. This is where Spring Boot
comes in. Amongst its dependencies, Spring Session resides. Thanks to
this dependency, Spring takes care of the whole process with the help of
session cookies. A session cookie is a small piece of data stored by the
user's browser during their session on a website. Unlike persistent cookies,
which are stored on the user's device for a specif ied duration, session
cookies are temporary and are typically deleted once the user c loses their
browser. This cookie is sent with every request to the server. During the
authentication phase, Spring Security can detect the session cookie. If the
session remains valid, it proceeds to authenticate the user (more about
authentication in subsection 3.1.5).

Another crucial aspect of overall security is CORS (Cross-Origin Resource
Sharing), which pertains solely to the application's usage within a web
browser. CORS imposes restrictions on which domains can send requests
to the backend server. Consequently, the server must receive the domain
information beforehand to shape responses accordingly (more on this in
section 3.3). This is accompl ished through the use of headers, enabling the
server to regulate access based on the specif ied domains.

3.1.5 Authentication

This project required some integration headroom, which meant multiple
ways to authenticate needed to be implemented. The usual flow of user
authentication on the front end of the application is as follows:

1. User opens up the applications and, depending on whether they
already have a valid session establ ished, are prompted with a sign-in
form

2. After the user fills in their credentials and submits the form. The
credentials are packaged into a J S O N payload that is sent to the
server using an HTTP POST request to the authentication endpoint (in
this case / a u t h / l o g i n)

48

3. The custom filter J s o n U s e r n a m e P a s s w o r d A u t h e n t i c a t i o n F i l t e r
will extract the credentials and use an A u t h e n t i c a t i o n M a n a g e r
(more specifically the P rov i de rManage r)

4. As P r o v i d e r M a n a g e r itself doesn't authenticate anything; it delegates
it to the D a o A u t h e n t i c a t i o n P r o v i d e r , which will attempt to look up
the user in the database and use the password to authenticate the
request

5. If the authentication was successful , the server returns status 200
along with the session cookie. On the off-chance the server couldn't
authenticate the request, it will return status 4xx, depending on what
went wrong

The general authentication flow is depicted on Figure 3.1.

AUTHENTICATION
REQUEST

AUTHENTICATION
RESPONSE

0

SPRING SECURITY
FILTER CHAIN

Security Filter A Y

Security Filter B T

security Filter N

AUTHENTICATION
MANAGER

J *

AUTHENTICATION
PROVIDER X

«MI J
AUTHENTICATION

PROVIDER ¥

USER DETAILS
SERVICE

Figure 3.1: Authentication flow in Spring Security
Source: https://kasunprageethdissanayake.medium.com/spring-security-

the-securi ty-f i l ter-chain-2e399a1cb8e3

As mentioned above, as this would be the sole authentication entry point,
another option needed to be implemented. The API key architecture was
selected as the other authentication method. Its simplicity of implementation,
coupled with the powerful possibilities it brings to the table, made it the
perfect candidate for the task at hand. Implementing API keys was relatively
straightforward, thanks to Spring Security and its infinite extensibility. Still,
it requires a brief description as there are many moving parts and Spring
Security specif ic terminology.

A custom authentication filter was plugged into the security filter chain.
This filter is applied to every request, checking whether the A u t h o r i z a t i o n
header is present and contains a value. It also requires the value to be a
Bearer type token (in simple terms, the value of the header has to have the

49

https://kasunprageethdissanayake.medium.com/spring-security-

word "Bearer" as a prefix with a space separating the two). Once such a
request is found, the filter again hands the authentication responsibility to an
A u t h e n t i c a t i o n M a n a g e r . The A c c e s s T o k e n A u t h e n t i c a t i o n P r o v i d e r
attempts to look up the given API key in the database. If the key is present in
the database, it is considered valid and only needs to be checked for a few
things before successful ly authentication. More specifically, the provider
needs to make sure that the token isn't disabled or expired.

3.1.6 Authorization

After authentication comes authorization. The server verifies the user's
identity, and then comes the question, "Is this user allowed to perform a
specif ic task?". Again, Spring Security was heavily leveraged to tackle this
issue. Basically, two user groups were created (in Spring Security referred
to as Roles) - User and Administrator. This provides a simple enough
separation of concern but still allows for decent permission granularity.

In this application's security configuration, access to endpoints is
restricted through a combination of URL and HTTP method-matching
logic along with user role comparisons. This approach ensures that only
authorized users with the appropriate roles can access specif ic endpoints.

3.1.7 Real-time data communication

In many modern web applications, there is often a need for real-time changes
to the web interface. Most notably, these include notification pop-ups or
loading mechanics (spinners, progress bars, etc.). This application, too, had
to implement some of the mentioned elements in order to improve the UX
(User Experience). In particular, a notification system had to be put in place
to notify administrators when a new data source becomes available and is
ready for adoption. Additionally, the dashboard's main function is to display
live activity on a map. This location data must be transmitted to the front end
in real-time. There are several different techniques to tackle the issue of data
streaming, and all have their respective advantages and disadvantages.

The simplest way to emulate real-time functionality is to poll the server
for information continuously. HTTP polling, more often than not referred to
as short polling, is based on continuously sending HTTP requests to the
back-end every so often. This technique is perfect when accuracy doesn't
play a big role, as the speed at which new data can be presented to the

50

user depends solely on the polling period, which, in this case, is the main
parameter to be carefully chosen. Using a long polling period will result in
the appearance of lag because new data might be waiting to be polled at any
point. On the other hand, a really short period may be quite resource-taxing,
as each request requires creating a new TCP connection. As the client base
grows, so does this problem. With more users polling data simultaneously,
the volume of requests escalates, inevitably pushing the server's bandwidth
and hardware resources to their limits. In this instance, the notifications
needed to be quite accurate, ideally to the second. All active sessions polling
the server every second at the same time wasn't really a scalable solution.

Long polling presents a compell ing alternative to short polling by
addressing some of its key limitations. Unlike short polling, which relies on
frequent requests to the server regardless of data availability, long polling
adopts a more efficient approach. Long polling minimizes unnecessary
requests by initiating a connection and waiting for a response only after
a successful data exchange, thereby reducing server load. It facilitates
real-time updates between the client and server, ensuring prompt new
data delivery. Its simplicity and compatibility with standard HTTP protocols
make it accessible and widely supported. However, long polling introduces
latency as the client waits for responses, and it can consume server
resources, particularly under heavy loads. Managing long-lived connections
and handling browser limitations require careful consideration.

Traditional methods of achieving real-time communication in web
applications often involve makeshift solutions that can be considered
somewhat hacky. However, purpose-built technologies tailored for this
task offer more robust and efficient solutions. One such widely embraced
technology is WebSockets. WebSockets is a communication protocol
that provides full-duplex communication channels over a single, long-lived
TCP connection. Unlike traditional HTTP connections, which are typically
stateless and request-response based, WebSockets enable bidirectional,
real-time communication between clients and servers. Once establ ished, a
WebSocket connection remains open, allowing the client and server to send
messages asynchronously.

WebSockets are frequently utilized in real-time chat applications. However,
for straightforward unidirectional communication tasks, WebSockets can
be overly complex and resource-heavy. This is where Server-Sent Events
(SSE) step in, offering a simpler alternative. Unlike WebSockets, SSE is plain

51

HTTP with a very specif ic C o n t e n t - T y p e header. For SSE to work, the
header's value has to be set to t e x t / e v e n t - s t r e a m . After the request is
sent, the connection stays open for as long as the client needs. This creates
a one-way channel to which the server can push data.

XHR polling SSE WebSocket

HTTP protocol — • EventSource protocol — • WebSocket protocol

Figure 3.2: Different real-time communication technologies
Source: ht tps:/ / tech.durgadas. in/real- t ime-events-websockets-vs-server-

sent -events-8e92b94c6cc5

In summary, there is a plethora of various options when it comes to real
time communication. Each one has advantages and disadvantages, and their
use highly depends on the specif ic project (as seen in a brief pictographic
illustration in Figure 3.2). In this case, server-sent events perfectly fit the bill
for this project and are thus employed repeatedly.

3.1.8 Processing MQTT data

After the application starts, it looks for the MQTT configuration in the
database. More specifically, it looks for a document in the c o n f i g u r a t i o n s
collection with the ID value of "mqtt" (such configuration document can be
seen on Figure 3.3). After loading the configuration, the server connects
to the MQTT broker using the configured parameters. A library had to
be brought in to handle everything related to MQTT, specifically the
Spring Integration MQTT module, which uses the Eclipse Paho MQTT
implementation under the hood. The application keeps a connection to the

52

https://tech.durgadas.in/real-time-events-websockets-vs-server-

MQTT broker alive so it can respond to any new messages immediately. In
the event that the configuration isn't present in the database, which is also
the initial state after the application is first deployed, the application logs it
and continues to boot up as usual.

_ i d : "mqtt"
*• value: Object

host: "10.0.0.15"
port: 1883
username: " a d m i n i s t r a t o r "
password: " a d m i n i s t r a t o r "
_ c l a s s : "cz.pycrs.bp.backend. e n t i t y . c o n f i g u r a t i o n . M q t t C o n f i g u r a t i o n "

_ c l a s s : "cz.pycrs.bp.backend.en t i t y . A p p l i c a t i o n C o n f i g u r a t i o n "

Figure 3.3: MQTT configuration document

The general algorithm (represented as a flowchart in Figure 3.4) is
simple. When a new message is received, the application first extracts
the source MAC address and attempts to look up the data source instance
associated with it in the database. If unsuccessful , a new data source is
created with that MAC address, inserted into the database, and returned
for intermediate use. Conversely, if the M A C address is already associated
with an existing data source, the respective instance is directly returned for
further processing.

Before proceeding with the algorithm, it is crucial to understand the
concept of "adoption," which is a key aspect of data sources. Similar to
the process observed in the Unify ecosystem, where all network devices
undergo discovery by the central controller application upon network
introduction, subsequent adoption by the administrator is necessary for
their practical use. Data sources in this application follow the same principle.

Once a data source instance is acquired, its adoption status is examined.
If the data source is f lagged as adopted, a new D a t a P o i n t is generated
with the values supplied in the original MQTT message. This data point
is then linked to the relevant data source and inserted into the database.
Furthermore, if any active sessions are subscribed to this specif ic data
source, the newly created data points are dispatched to them using SSE
to facilitate real-time map updates. If the data source has not yet been
adopted, the processing stops at that point.

53

Figure 3.4: MQTT message processing algorithm

3 . 2 USER INTERFACE
The application's front end, which users interact with, is written in JavaScript
using the VueJS framework. In this section, all the important components
and approaches will be outlined and descr ibed.

During development, the Vite frontend tooling was used to serve the
application. During deployment, Vite builds the application, and the files
are then containerized. The front-end container also runs its own Nginx to
serve the files, making the application available on port 80. More on this in
section 3.3.

3.2.1 VueJS

As mentioned, the front end is written in JavaScript using the VueJS
framework. The framework's capabilit ies can be expanded with the help of
plugins. This application uses several, the main ones being the Vue Router
and a store library and state management framework Pinia.

Vue Router helps with managing multiple views in SPA (Single Page
Application). The developer defines all the views as objects. These objects
have certain required fields; more precisely, the path and component fields.
These define what component is rendered at which URL. Each object can
also have metadata. In this application's case, these are used for multiple
reasons. Some views are only meant for anonymous users (i.e., users not yet
signed in), which is what the unauthenticatedOnly metadata field is used
for. The navigation is generated from the router view list, but some views
need to be excluded from the navigation. The nav field is used precisely
for this reason. Ul-speci f ic metadata like the icon and user role are also
required for each navigation link.

Pinia takes care of storing data sent by the server. It also defines
functions related to querying the data. Individual services call these
functions throughout the application's lifecycle.

3.2.2 The map

A big part of the application is the map displaying the location data. There
are multiple options, including Google Maps, OpenStreetMap, or Leaflet,
which was ultimately chosen as the technology of choice.

55

Leaflet is the leading open-source JavaScript library for mobile-friendly
interactive maps. It has an intuitive API that greatly improves the overall
developer experience on this front. When the application loads, the map
view is set to cover the entire world. The browser prompts the user for
location permission. If permission is granted, the map view adjusts based
on the location returned by the Navigator API.

3.2.3 Communication with the server

An important aspect of any front-end application is reliable communication
with the server. The simplest way to communicate over TCP or a Unix socket
is the f e t c h () function. It is ideal for very simple proof-of-concept projects.
As the project grows, developers often opt for 3rd party libraries. The most
popular tool for the job is the Axios library.

Axios makes it simple to make many requests throughout the application.
Firstly, an instance of Axios is created and configured with the necessary
defaults (e.g., the API URL, credentials policy, etc.). The instance is then
imported anywhere where requests need to be made. The appropriate
functions (named according to their respective HTTP methods) are then
used to execute the request. It is also built with J S O N in mind, so executing
requests where data needs to be transferred is straightforward.

3.2.4 The design

The application is laid out in a three-component manner (as depicted by a
wire frame in Figure 3.5). At the top rests the header bar (often referred
to as a navigation bar, but in this case, it doesn't really contain anything
related to navigation) containing the logo on the left and the notification
drop-down alongside the sign-out button on the opposing side. Finally, the
main content is placed in the remaining area.

The main navigation part of this application is placed in the left sidebar
(see Figure 3.6). It contains links that users can use to navigate throughout
the application. The content of the navigation itself is dictated by the role of
the currently logged-in user. Administrators have access to the application's
full potential, whereas regular users are only permitted to a small set of
features.

56

\
\ \ / v

\ /
\/

/ \

A
/ \ /

MAIN CONTENT

Figure 3.5: The application layout wire frame

The Administrator
admin@email.cz

D Dashboard

ijt Settings

9 Data sources

Users

P Access tokens

X My profile

57

Figure 3.6: The navigation sidebar

mailto:admin@email.cz

From the perspective of Ul, visual appeal plays a significant role in the
attractiveness of any application. A visually appealing interface is pivotal
for a successful product. Therefore, selecting an appropriate CSS library is
essential. There are many excellent options available, such as Bootstrap,
Tailwind, Materialize, Foundation, and others. In the case of this application,
the Bulma library was chosen for several reasons, including the developers'
familiarity with it.

Letting the users know the result of an action is really important for
the overall UX. This is usually accompl ished with some sort of pop
up notification. This application utilizes toast messages to solve this.
According to uxpickle, a toast notification is a non-modal, unobtrusive
element to display a short message, and it appears on the screen when an
event occurs [24]. The vue-toast-notification library was used to simplify
the implementation. A screenshot of such a notification can be seen on
Figure 3.7.

MQTT settings updated

Figure 3.7: Success toast notification

The thesis appendix also dedicates section A.2 to showing off a handful
of application screenshots.

3 . 3 DEPLOYMENT
The deployment strategy for this project is very common. All the components
are containerized and orchestrated together. There are many options for
containerization, like LXC, OpenVZ, and, most notably, Docker. Docker
simplifies application deployment by separating its parts into standalone
containers that run practically everywhere, no matter the hardware or
operating system 1 . Thanks to Dockers' popularity and wide support, it,
alongside Docker Compose, was selected as the deployment strategy of
choice.

1Containerizat ion using Docker is possible as long as the docke r eng ine can be installed
and run on that particular machine. Also, containers are usually tailored to a platform, i.e.,
x86, arm, etc.

58

The final deployment was placed inside a preexisting infrastructure behind
an additional reverse proxy (Traefik); the router definition can be seen on
Figure 3.8. It terminates the SSL/TLS connection and manages the Let's
Encrypt certif icates and their automatic renewals with A C M E .

Entrypoints Name • Service

https esgps@file esgps

Figure 3.8: Traefik router definition

The Docker Compose stack was deployed with the help of Portainer
(Figure 3.9 shows the stack detail).

• esgps-backend-1 ^ ^ ^ ^ • ^ i 0 ,il >_ 0 esgps esgps-backend 2024-04-01 12:55:39 172.29.0.2

• esgps-frontend-1 ^ ^ ^ ^ ^ i 0 ,il >_ # esgps esgps-frontend 2024-04-01 13:04:02 172.29.0.3

c esgps-nginx-1 @ 0 .ll >- # esgps esgps-nginx 2024-04-01 13:04:12 172.29.0.4

Figure 3.9: Stack detail in Portainer

3.3.1 Walkthrough

The deployment consists of three separate containers orchestrated
together with Docker Compose (following the diagram in Figure 3.10). The
two main parts of the application (front-end and back-end) are separated
into their own containerized environments as they each have different
environmental requirements. The third piece of the deployment puzzle
is a proxy handling user requests to the application. In this instance, a
reverse proxy called Nginx was utilized. Based on domain matching, it is
configured to serve the front-end application and route any API requests to
the back-end container.

Status TLS Rule

Hostfesgps.pycrs.cz') | Hostfapi-esgps.pycrs.cz")

59

http://Hostfesgps.pycrs.cz'
http://Hostfapi-esgps.pycrs.cz

D o c k e r C o m p o s e

Back-end
:8080

1=)

api-esgps_pycrs,cz

Reverse proxy
:80

esgps.pycrs.cz

Front-end
;80

Figure 3.10: The containerized infrastructure

The general process of deploying the application is as follows:
1. Clone the repository
2. Build the Docker images
3. Create and run the container from the mentioned images
Starting with getting the entire codebase, the administrator must clone the

repository on their local computer or the deployment machine. As the g i t
version control system keeps track of changes, the g i t c l o n e command
can be utilized to clone the repository. The following command will clone
the repository over SSH into a directory called BP-app .

60

http://esgps.pycrs.cz

g i t c l o n e g i t @ g i t h u b . c o m : P z d r s / B P - a p p . g i t
The repository contains a convenient docke r - compose .yaml file, which

has the build contexts predefined to the repository structure; running this
configuration with d o c k e r compose up will bring up the whole application.
Docker Compose will automatically build the images for all the containers
with the help of Dockerfi les in each top-level directory. The domain and
Mongo-related environment variables must also be changed to the specif ic
deployment accordingly.

Another approach is to deploy without relying on containerization, opting
instead to build from the source and run directly in the OS. This method
entails a more intricate process involving setting up the environment
and, ideally, running applications as Unix daemons. However, due to its
complexity and the numerous possibilities for misconfiguration leading to
issues, this process will not be covered.

61

4 RESULTS AND TESTING

This final chapter preceding the thesis conclusion is dedicated to presenting
the results. It summarizes the outcomes obtained from testing specif ic
areas, providing ample space for their clarification.

4 . 1 STORAGE IMPLICATIONS
In a project of this nature, continuously collecting data and not deleting them,
the logical thinking is that storage might become a problem in the future.

In the grand scheme, the only collection that will get considerably bigger
is the d a t a p o i n t s collection. Other collections, of course, take up space,
but in order of kilobytes, which is negligible.

Each data point document is 119 bytes. For 100,000 documents, the
collection takes up 11.9MB on disk (2.61MB compressed), which in today's
world is not much. It is important to acknowledge that indexes also take up
space. In this instance, the only indexed field is the _ i d field. The index
takes up 1.52MB on disk for the previously mentioned collection size. If
multiple fields were to be indexed, the size would obviously grow.

It's also noteworthy that the collection can be configured as a time series,
allowing for the setup of data expiry. This feature ensures the automatic
deletion of old entries, thereby maintaining only a certain amount of historical
information.

In conclusion, as the col lected data points are not likely to reach 7-figure
numbers or more, the storage likely does not need special attention.

4 . 2 THE IMPACT OF LARGE TIME
FRAMES ON PERFORMANCE

Depending on the data distribution throughout time, larger time windows
may require querying significantly more data points.

62

Initially, the back-end server retrieves the desired data from the database.
Subsequently, the data traverses through multiple layers before finally
reaching the controller. Following this, it must be prepared into an HTTP
response and dispatched to the client. While these steps may not consume
significant time individually, their cumulative effect can be notable. This
becomes more noticeable as the amount of data increases.

The impact of increasing data points being queried is illustrated by
Table 4.1. An exponential growth rate of base 10 capped at 10,000 data
points was selected for testing, as this covered the usual workload the
application may be subjected to.

In total, three distinct metrics were measured for every sample s ize 1 : the
duration of the database lookup, the subsequent time required to transmit
the HTTP response to the client over the network, and finally, the time to
render the data on the map.

10 100 1000 10 000
Database lookup ~0ms ~0ms ~0ms 2ms
Network transport 40.95ms 149.93ms 1352ms 13,6s
Rendering 2ms 12.6ms 110.8ms 1090.6ms
Total (user perspective) 35.4ms 171.4ms 1496.4ms 15.1s

Table 4.1: The impact of an increasing amount of queried data on different
tasks

From the table, it is apparent that the database does not contribute
much to the overall time. MongoDB is an extremely well-optimized and
performant piece of software, and considering the sample sizes, it is no
surprise the time contributed is pretty negligible. At the 10,000 sample size
mark, MongoDB's e x p l a i n tool returns non-zero e x e c u t i o n T i m e M i l l i s
values. The execution time starts to matter when working with six-figure
sample sizes. Querying 100,000 data points takes 23 mill iseconds, a big
jump from the previous.

^ e s t s were carried out exactly five t imes, and the results were averaged for the sake of
consistency.

63

4 . 3 ECONOMY ANALYSIS AND COST
BREAKDOWN

As mentioned, this project is not backed by an organization or a funding
entity. This means that during the hardware solution's design phase, each
component's price had to be considered carefully. This, along with other less
significant aspects, is the main reason for the proof-of-concept look of the
construction.

Designing and manufacturing a custom PCB is relatively affordable
nowadays, but it still would be a significant added expense. The same
applies to designing and 3D printing of an enclosure.

In the end, the solution's total cost came to roughly 735 Kc. A detailed
cost breakdown is provided in Table 4.2. The table shows that the most
expensive part of the construction is the GNSS receiver. This is because
a higher-end model (u-blox NEO-M8N) was chosen, offering features like
multi-constellation support, ROM, and many more. Trailing behind, the
ESP32 was the second most significant expense.

Product name Price
GNSS module u-blox N E O - M 8 372 Kc
ESP32 development board 207 Kc
I2C Gyroscope + Accelerometer module M P U - 6 0 5 0 77 Kc
No solder breadboard (830pin) 57 Kc
Jumper wires - 2 0 Kc
LEDs (red, green, blue) ~2 Kc
Resistors (220Q) ~1 Kc
Button ~1 Kc
Total ~735Kc

Table 4.2: Products used in the construction of the hardware package

4 . 4 DATA COLLECTION
Typically, the RF power level received by an antenna on the ground will be
between -125 dBm and -150 dBm [25]. When placing the hardware solution
in the cabin of a car, due to the chassis being made out of metal, some
signal issues were anticipated. An active antenna with a long enough cable
was even purchased to be put on top of the car should there be any signal
issues.

64

After deploying the hardware solution in the top compartment of
the dashboard so as not to obstruct the driver's view in any way (see
Appendix A.8), it turned out that the receiver could pick up the signal
without any significant problems; thus the antenna went unused.

4.4.1 Sampling frequency

Choosing an appropriate sampling rate affects multiple different areas of a
given deployment. There are multiple implications that come with using a
very high frequency:

• Transmitting data very often might quickly eat through a data plan
• Even though it was concluded that the collected data does not take up

very much space, writing to the database all day every day could be
eventually harmful to the disk

• Displaying many more data points than necessary can cause significant
lag to the web interface

During testing, all the col lected data was sampled with the frequency of
1s - the fastest sampling possible, as the GNSS module can't go any faster.
This ensured the greatest detail and allowed for subsequent processing. The
main testing lap had a standardized route (see Appendix A.4) so that clear,
unbiased conclusions could be drawn.

The effect of varying sampling frequencies is best demonstrated visually.
Appendix A.6 and Appendix A.7 show the difference in detail captured with
sampling frequencies of 1 and 5 seconds, respectively.

It is apparent that the slower frequency captures less detail, mainly the
curvature. It could be argued that considering the not-so-perfect precision
of the data coming from the GNSS module, this isn't really an issue. Due
to the car's velocity at moderate speeds, the distance covered in between
samples is quite small, minimizing the likelihood of missing significant detail.
However, if we were to monitor an aircraft moving roughly 900 km/h, the
scenario would necessitate a different narrative.

4 . 5 FINAL THOUGHTS
It is always good to compare real-world results with the theoretical ideal
outcomes. For this purpose, multiple routes were exported from Google
Maps and imported into the application for comparison purposes.

65

A portion of a route in Prague can be seen in Appendix A.5. It is apparent
that the data points are perfectly overlayed with the road and only in places
where necessary (physical features of the rodes changing the curvature; a
roundabout would be a perfect example).

66

5 P O S S I B I L I T I E S OF
INTEGRATION

In the past, the general public desired so-cal led "plug-n-play" products
more. People were not interested in tinkering or expanding the functionality
of products they purchased. Fast forward to the year 2024 - the data
age, open-source, versatility, and having options are things people value
more and more. A fundamental principle of this project lies in its emphasis
on expandability and future-proofing. Its open-source nature empowers
developers to delve into its inner workings, identifying and rectifying bugs
and even contributing new features. This collaborative approach invariably
results in enhanced products that benefit all users.

One distinguishing characteristic of this project, setting it apart from
the vast majority of similar solutions, is its approach to retrieving data from
physical data sources. In accordance with the findings outlined in section 1.5,
a distributed messaging system served as the primary medium for data
exchange, specifically employing the MQTT protocol. This distributed
approach, which utilizes open-source, wel l-documented technologies,
allows for simple troubleshooting and scaling down the line should the
deployment grow in complexity; there is no proprietary technology that
could render the deployment unusable in case of exponential growth.
Expansion is feasible as long as devices gathering positional data can
access the Internet and an MQTT server is accessible online. However,
various other challenges may likely emerge before encountering potential
bottlenecks with the broker. These could include issues such as network
latency, device connectivity problems, or data processing bott lenecks.

Enabling access to the API for other systems is a feature that can
significantly enhance the flexibility and expandability of a project. However,
implementing this functionality may present a few challenges, particularly
concerning authentication and authorization. Addressing such challenges
offers a variety of approaches, spanning from straightforward methods

67

like basic/digest authentication or API keys to more intricate yet versatile
solutions such as OAuth, JWT, LDAP, and others. As previously establ ished,
API keys were used as the main authentication and authorization method
for other systems interacting with the API. This choice was made due to its
balanced combination of ease of implementation and sufficient security and
flexibility. These keys are opaque tokens. Therefore, they do not require
any special handling from the opposing system. A basic HTTP call with the
key embedded in the Authorization header suffices for the API to provide
data. This capability enables other systems to execute the same actions
as the developed front-end solution. For instance, creating a platform for
aggregating and analyzing col lected data could be immensely beneficial for
specif ic users. Additionally, developing a Home Assistant integration could
seamlessly incorporate this project into an existing smart home system.

68

CONCLUSION

A thorough problem analysis alongside detailed market research in both the
software and hardware sphere was first carried out as a part of the thesis.
A custom solution was designed and constructed based on the knowledge
acquired in the analysis and research. The hardware portion of the solution
was built on top of the ESP32 microcontroller and equipped with the u-blox
NEO-M8 GNSS module. Furthermore, a gyroscope with an accelerometer
module was used for optimization purposes. Lastly, several additional
elements were integrated, specifically a WiFi hotspot control button and
various indication LEDs.

A supporting web application was developed to view and manage
collected data. The use of SSE (Server-Sent Events) allows users to view
the live location of all data sources. Thanks to a MongoDB database, users
also have access to historical data. The main entry point to the application
is through the front-end dashboard, but thanks to the API token system,
the REST API can also be leveraged for data access or integration into other
systems.

The whole application was secured against the most common threats
occurring on the web. The application was also packaged, containerized,
and deployed using Docker. Thus, the application is fully functional and
currently available at https:/ /esgps.pycrs.cz.

Regarding possible future improvements, developing and manufacturing a
custom PCB may prove practical if the solution goes to market, which would
decrease the price and simplify the deployment process for customers.
Designing and 3D printing an enclosure would also be a logical next step.

69

https://esgps.pycrs.cz

REFERENCES

[1] TANANAEV SOLUTIONS. GPS Tracking Software - Free and Open
Source System - Traccar. 2024. Available also from: h t t p s : / / w w w .
traccar.org/. [Online; accessed 7-March-2024].

[2] GEOTELEMATIC® SOLUTIONS, INC. GPS Tracking: Open-Source GPS
Tracking System - OpenGTS. 2020. Available also from: ht tp: / /www.
opengts.org/. [Online; accessed 7-March-2024] .

[3] EUROPEAN SPACE AGENCY. European Space Agency. 2024. Available
also from: https://gssc.esa.int/. [Online; accessed 27-February-2024].

[4] NATIONAL COORDINATION OFFICE FOR SPACE-BASED POSITIONING,
NAVIGATION, AND TIMING. GPS: The Global Positioning System.
2024. Available also from: h t t p s : / / g p s . g o v . [Online; accessed 27-
February-2024].

[5] ROSCOSMOS STATE CORPORATION FOR SPACE ACTIVITIES. About
GLONASS. 2024. Available also from: https://glonass-iac.ru/en/about_
glonass/. [Online; accessed 27-February-2024].

[6] CHINA NATIONAL SPACE ADMINISTRATION. BeiDou Navigation
Satellite System. 2024. Available also from: http:/ /en.beidou.gov.cn/.
[Online; accessed 27-February-2024].

[7] EUROPEAN UNION A G E N C Y FOR THE SPACE PROGRAMME. GALILEO
j European Global Navigation Satellite System. 2024. Available also
from: https://gali leognss.eu/. [Online; accessed 27-February-2024].

[8] INDIAN SPACE RESEARCH ORGANISATION (ISRO). Satellite Navigation
Services. 2024. Available also from: https : / / www . isro . gov . in /
Satell i teNavigationServices . html. [Online; accessed 27-February-
2024].

[9] QUASI-ZENITH SATELLITE SYSTEM SERVICES INC. (QSS). Overview
of the Quasi-Zenith Satellite System (QZSS). 2024. Available also
from: https: / / q z s s . g o . j p / e n / o v e r v i e w / s e r v i c e s / s v 0 1 _what . html.
[Online; accessed 27-February-2024].

70

https://www
http://traccar.org/
http://www
http://opengts.org/
https://gssc.esa.int/
https://gps.gov
https://glonass-iac.ru/en/about_
http://en.beidou.gov.cn/
https://galileognss.eu/
http://go.jp/en/

[10] WIKI, OpenStreetMap. Accuracy of GNSS data — OpenStreetMap
Wiki. 2022. Available also from: https://wiki .0penstreetmap.0rg /w/
index.php?tit le = Accuracy_of_GNSS_data&old id = 2376050. [Online;
accessed 29-February-2024].

[11] BALAN, Andrii and Philip HANRAHAN. Understanding GNSS Operations:
Almanac, Ephemeris, and Receiver Start Modes. 2024. Available also
from: ht tps: / /h i techniques. ie /b log/understanding-gnss-operat ions-
a lmanac-ephemer is -and- rece iver -s ta r t -modes / . [Online; accessed
29-February-2024].

[12] ELECTRONICS, SparkFun. What is an Arduino? 2024. Available also
from: h t tps : / / learn. sparkfun. com / tutor ials/what - is - an - arduino/
introduction. [Online; accessed 28-March-2024] .

[13] WIKIPEDIA CONTRIBUTORS. Zigbee — Wikipedia, The Free Encyclopedia.
2024. Available also from: https://en.wikipedia.org/w/index.php?title=
Zigbee&oldid=1209097294. [Online; accessed 22-February-2024].

[14] Z-WAVE ALLIANCE. Z-Wave Makes Smart Homes - Z-Wave. 2024.
Available also from: h t t p s : / / w w w . z - w a v e . c o m / . [Online; accessed
22-February-2024].

[15] SILICON LABORATORIES. Z-Wave Certification Program - Silicon Labs.
2024. Available also from: h t tps: / /www.s i labs.com/wi re less/z-wave/
certification. [Online; accessed 8-March-2024] .

[16] BLUETOOTH SIG, INC. Understanding Bluetooth Range j Bluetooth®
Technology Website. 2024. Available also from: https : / / www .
bluetooth . com / learn - about - bluetooth / key - attributes / range/.
[Online; accessed 8-March-2024] .

[17] CORPORATION, Semtech. What Is LoRa®? 2024. Available also from:
h t tps : / /www.semtech .com/ lo ra /wha t - i s - lo ra . [Online; accessed 2-
Apri l-2024].

[18] NETWORK, The Things. What are LoRa and LoRaWAN? 2024. Available
also from: https:/ /www.thethingsnetwork.org/docs/ lorawan/what- is-
lorawan/. [Online; accessed 2-Apri l-2024].

[19] SATCOM DIRECT, INC. Satellite Phones - Connecting You Beyond
Limitations j Satcom Direct. 2024. Available also from: h t tps : / /www.
satcomdirect . com / blog / satphones - connecting - you - beyone -
limitations/. [Online; accessed 8-March-2024] .

71

https://wiki.0penstreetmap.0rg/w/
https://hitechniques.ie/blog/understanding-gnss-operations-
https://en.wikipedia.org/w/index.php?title=
https://www.z-wave.com/
https://www.silabs.com/wireless/z-wave/
https://www.semtech.com/lora/what-is-lora
https://www.thethingsnetwork.org/docs/lorawan/what-is-
https://www

[20] CISCO. What Is WiFi? 2024. Available also from: h t tps : / /www.c isco .
com/c/en/us/products/wire less/what- is-wi f i .h tml . [Online; accessed
2-Apri l-2024].

[21] HIVEMQ. MQTT vs HTTP for loT. 2024. Available also from: ht tps:
/ / w w w . hivemq. com / article / mqtt - vs - http - protocols - in - iot - iiot/.
[Online; accessed 8-March-2024] .

[22] U-BLOX AG. NEO-M8-FW3 Datasheet. 2015. Available also from:
h t t p s : / / c o n t e n t . u - b l o x . c o m / s i t e s / d e f a u l t / f i l e s / N E O - M 8 - F W 3 _
DataSheet_UBX-15031086.pdf.

[23] HART, Mikal. TinyGPSPIus. 2022. Available also from: https:/ /gi thub.
com/mikalhart/TinyGPSPIus. [Online; accessed 16-March-2024].

[24] UXPICKLE. What is a Toast Notification? 2024. Available also from:
https:/ /uxpickle.com/what- is-a-toast-not i f icat ion/. [Online; accessed
2-Apri l-2024].

[25] LABSAT. Receiver sensitivity testing. 2024. Available also from: https:
/ /www. labsat.co.uk/ index. php/en/appl icat ions/receiver-sensi t iv i ty-
testing. [Online; accessed 29-Apri l -2024].

[26] BLOCH, Joshua. Effective Java. 3rd. Addison-Wesley, 2017. ISBN 978-
0134686097.

[27] WHITE, Elecia. Making Embedded Systems. Beijing: O'Reilly, 2011.
ISBN 978-1-4493-0214-6.

[28] MISRA, Pratap and Per ENGE. Global Positioning System: Signals,
Measurements, and Performance (Revised Second Edition). 2006.
ISBN 0970954425.

[29] SERPANOS, Dimitrios and Marilyn WOLF. Internet-of-Things (loT)
Systems. Publisher, 2018. ISBN 978-3319697147.

72

https://www.cisco
https://content.u-blox.com/sites/default/files/NEO-M8-FW3_
https://github
https://uxpickle.com/what-is-a-toast-notification/
http://co.uk/index

A ATTACHMENTS

A . l SOURCE CODE
The whole project is split into two GitHub repositories based on their scope.
All source code related to the main web application is placed in a dedicated
repository (back-end, front-end, deployment, utility Python scripts, etc.)
available at ht tps: / /g i thub.com/Pzdrs/BP-app.

Consequently, the ESP32 firmware and the front-end code for the
configuration interface is available at https:/ /gi thub.com/Pzdrs/BP-f irmware.

A . 2 APPLICATION SCREENSHOTS

Ä E S - G P S

J g v The Administrator

admin@etnail.cz

ffi Dashboard

O Settings

9 Data sources

Users

P Access tokens

X My profile

Data sources

• Activa (Mock)

• Xertec (Mock)

• AveTech (Mock)

• Officeo (Mock]

Mseno Lap #1

• Mseno Lap #2 (1s)

• Mseno Lap #2 (5s)

Timeframe

8,oorj

7,000

fi.OQO

5.000

•\ 000

3.000

2,000

1,000

0

05/01/2024 00:00x 05/05/2024 23:59x

I 9\ Follow

S6363bdSd840c4S1a<sa61eOd
14622485333 I 50 4248055

tt 377 4m

Figure A.1: The main map view of the application

73

https://github.com/Pzdrs/BP-app
https://github.com/Pzdrs/BP-firmware
mailto:admin@etnail.cz

SES-GPS

J t v The Administrator

admin@etnail.cz
Data source management

ffl Dashboard

O Settings

9 Data sources

-J? Users

Activa (Mock)
0B:53:47:D4:A5:1F

^ 9 Discovered: 4. 5. 2024 16:23:16
Last modified: 4. 5.2024 21:15:03

^ Access tokens

£ My profile

XertGC (Mock)
B8:F0:A3:AC:F2:41
Discovered: 4. 5. 2024 16:23:15
Last modified: 4. 5. 2024 21:15:06

AveTech (Mock)
8D:22:2A:6A:4C:7A
Discovered: 4. 5. 2024 16:23:16
Last modified: 4. 5. 2024 21:15:09

Officeo (Mock)
('N 81:FE:B3:EF:7B:B7
V, / Discovered: 4. 5. 2024 16:23:16

Last modified: 4. 5. 2024 21:15:12

Mseno Lap #1
12:89:CE:B8:68:F5
Discovered: 4. 5. 2024 16:23:16
Last modified: 4. 5.2024 21:15:15

Figure A.2: The data source management view

SES-GPS

Jtt The Administrator

admin@email.cz
Access tokens

ffi Dashboard

O Settings

V Data sources

••J" Users

e-G8WJT1ZM_YsbSqnY-oamZvGMNrn7D007AUH7aSivgo =

No description

ssued by: The Administrator (21. 4. 2024 17:40:12)
Expires: Never

Access tokens

£ My profile

vrzwPzoF3WF3XzQAbPR5nGJiOPI4Sz-8LsvUoXcl6-gl =
An expired access token

Issued by: The Administrator (8. 4. 2024 6:26:15)
Expires: Expired

F9f9GIWnpQcKFB6TKX7ripFJWVYtTnaKlwXdhXh9jRg= ^ ^^J

A disabled access token

Issued by: The Administrator (8. 4. 2024 6:25:40)
Expires: Never

Figure A.3: The access token system

74

mailto:admin@etnail.cz
mailto:admin@email.cz

A . 3 COLLECTED DATA

Figure A.4: The testing lap (Mseno - Stränka - Chorusice - Velky Üjezd)

Figure A.5: A Google Maps exported route (the theoretical perfect tracking
outcome)

75

76

A . 4 PHOTOS

Figure A.8: The physical deployment of the hardware solution

A . 5 MISCELLANEOUS
A technical documentation for this project was conveniently compiled as part
of the requirements for another class and published through GitHub Pages
at https:/ /pzdrs.github.io/BP-docs/.

For linguistic and research purposes, the use of artificial intelligence
was leveraged throughout some parts of the thesis, more specifically the
ChatGPT3.5.

77

https://pzdrs.github.io/BP-docs/

