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„The highest function of ecology is understanding consequences.” 

 

Frank Herbert, Dune  



Abstract 

The concept of Precision Agriculture (PA) has developed rapidly in recent 

decades. As the population grows and specialised technologies are enhanced, the 

methods of site-specific farming are gaining still more attention. Many studies have 

been conducted with the aim to describe relations between various soil and vegetation 

characteristics and information acquired by remotely sensed (RS) data. Such 

knowledge is essential to obtain a complex overview of how the natural processes may 

be explained by spectral imagery. The major advantage of such an approach is the 

possibility to conduct the measurements in a completely non-destructive mode. 

Related analyses may be thus undertaken repeatedly during a growing season. It was 

determined that spectral characteristics of vegetation are related to various vegetation 

properties such as biochemical composition, physical structure, or plant status. Based 

on this knowledge there is not only the possibility to evaluate the crop status at the 

canopy scale, but it is also possible to detect some within-field heterogeneity. 

This Dissertation presents findings published on the topic of utilisation of 

spectral imaging for describing the soil-plant environment characteristics. The ability 

of selected sensors to predict crop yield was evaluated, since their spectral bandwidths 

often differ. Variability of crop status within investigated canopies was caused either 

by varying soil conditions, nutrient level, or fertilisation management was 

investigated. Eventually, based on the gathered knowledge, a novel low-cost handheld 

sensor was developed as a tool for direct practical crop stress estimation. 

 

Keywords: abiotic stressors, precision agriculture, spectral index. 
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1 Introduction 

Agriculture, as one of the staple humankind activities, may be described as a 

process of transformation of the natural ecosystem to food production (Poonia et al., 

2018)⁠. Nowadays, it embraces various branches of crop cultivation and animal 

husbandry science, both of which are connected as well. This connection follows one 

of the basic ecological models that describe the energy flow through the ecosystem – 

a food pyramid. This simple model emphasises the irreplaceable role of autotrophic 

organisms in the basis of the pyramid, as they can receive the energy emitted by the 

Sun and incorporate it into biomass through the process of photosynthesis (Tomera, 

2001)⁠. Thus, crop cultivation is nothing else than guided primary production managed 

by a human to provide the source of energy for itself – the top of the food pyramid. 

Crop production is a complex activity that includes knowledge of plant 

physiology and ecology and requires precise timing of agro-operations using 

convenient agro-technologies. Until recently, agricultural management was based 

mostly on common practices inherited from previous generations of farmers. Socially 

political changes in recent decades, however, created substantial pressure on the 

quantity and quality of primary production. Various other challenges are also 

connected with Climate change as well as Population Growth. 

Strategies for meeting human needs and mitigating the negative impacts of 

agriculture involve rapid development in the field of technology together with the 

application of scientific research and its results. This concept is today known as 

Precision Agriculture (PA) and its wider adoption is crucial for introducing and 

maintaining sustainable crop production.  



2 

 

2 Literature Review 

2.1 Current Agriculture and its Ecological Aspects 

The nature of agricultural practice and its impact on the environment are strongly 

bonded with specific time periods since the Neolithic Revolution (Bairoch, 1991)⁠. 

Contemporary history describes a breakthrough known as the Green Revolution. Since 

the 1950s a set of research-based technologies has been implemented to heighten crop 

yields (wheat and rice mostly) to satisfy the needs of a growing world population (Jain, 

2010)⁠. Besides others, the most significant means of this agricultural transition were 

high-yielding varieties, as a result of intensive plant breeding, and massive utilisation 

of newly invented fertilisers and pesticides. Along with indisputable achievements, 

farming itself was becoming more and more intensive, supporting larger holdings, and 

suppressing smallholders (Conway & Barbier, 2013)⁠. Before long, negative aspects of 

such an intensive approach became observable. In connection with the Green 

Revolution, new issues occurred, such as biodiversity reduction due to monocropping, 

fragmentation of the natural ecosystem, freshwater pollution, alteration in nutrient 

balance (Poonia et al., 2018)⁠.  

Today's agriculture is strongly influenced by several Global Issues. First, there 

has been rapid Population Growth in recent decades. While there were 7.7 billion 

people in 2019, the latest estimates predict to be 8.5 billion in 2030, 9.7 billion in 2050, 

and up to 10.9 billion in 2100 (United Nations, 2019)⁠. Demands for quality resources 

are, therefore, increasing, while the space for production remains limited (Zhang, 

2016)⁠. Up to the 1960s, increasing crop production was enabled by the expansion of 

agricultural areas, nevertheless, this trend significantly slowed down when the 

percentage of arable land reached 9% of the total area worldwide (Moldan, 2015). And 

there is Climate Change as the second major issue, that forces common practice to be 

adjusted. As the average global temperature tends to increase, significant changes in 

the spatial and temporal distribution of atmospheric precipitation are observable, 

having severe consequences on the Earth’s surface (Davoudi et al., 2009).  

2.2 Plant Status and Stress Conditions 

Based on plant physiological principles, the crop yield and yield quality are 

highest in the optimum ecological conditions. These are, however, barely ever optimal 
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for a long period. In terms of (not only) plant ecology, the Gaussian curve describes 

the tolerance of an organism to adapt to the varying range of a particular factor. The 

efficiency of a specific physiological process on the y-axis refers mainly to a) plant 

growth, b) its development and c) the ability to reproduce (Hnilička & Středa, 2016)⁠. 

Suitable conditions in the so-called physiological optimum are bordered from both 

sides by critical limits. Behind those limits, zones of physiological stress occur. 

Stressors, in general, disturb the homeostatic equilibrium of an individual due to 

morphological and physiological alterations and may result in biomass and yield losses 

(Venkateswarlu et al., 2012)⁠. Finally, lower and upper lethal limits indicate the border 

where the organism is no more capable to tolerate the stressors pressure which leads 

to the organism's death (Putman & Wratten, 2012)⁠. 

The effect of a stress factor depends on several properties, such as i) its power, 

ii) duration and iii) a number of expositions. In natural conditions, stressors rarely 

impact the organism separately. Most of the time, stress factors occur concurrently, 

and their interactions may be potentially positive (e.g., ultraviolet radiation and 

pathogens), potentially negative (e.g., high temperature and drought) or there may not 

be any co-dependent impact at all (Mittler, 2006)⁠. A complete understanding of 

stressors mechanisms impacting crop growth requires information from several 

biological levels. The molecular and cellular level helps to study plant internal 

adaptations, while the level of plant and its community to understand the effect of 

alterations in cultivars, varieties, or management (Hall, 2000)⁠. 

The overall result of the crop production effort is based on these factors (Perkins, 

1997)⁠:  

● selection of the appropriate crop variety 

● planting seeds in properly prepared soil 

● providing enough water and nutrients  

● protection of plants against pests 

● right timing of agrotechnical operations  

 

These steps, adapted to a specific crop and climatic and geographical conditions, 

help to effectively utilise the basic natural resources, i.e., solar radiation, water, and 

soil (Perkins, 1997).⁠ However, any of these steps can initiate a crop stress status when 

not adjusted or chosen properly. 
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2.3 Crop Stress Factors 

Regarding the source, stress factors are commonly divided into abiotic and 

biotic, while the effect of climate change has been recently involved as well since it 

describes the phenomena in a wider context (Figure 1). 

 

 

Figure 1. Crop stress factors according to their origin and further specified (Maheswari et al., 2012)⁠. 

 

Abiotic stress factors have their origin in atmospheric phenomena, such as 

temperature, precipitation, or solar radiation. The character of abiotic stressors is very 

variable and reflects several site characteristics. Physical soil properties (texture, 

structure, bulk density, or porosity) are significant factors influencing the soil moisture 

and other hydro-physical properties, such as water capacity, or permeability 

(Loganathan, 1987). Important influence also has the site’s topography. Within-field 

elevation variability affects the distribution of both water and nutrients (Kumhálová & 

Moudrý, 2014).  

According to Minhas et al. (2017)⁠, more than 50 % of agricultural losses are a 

result of serious damage to a plant function or development caused by abiotic stressors. 

The damage rate is strongly dependent on specific plant responses (Maheswari et al., 

2012)⁠. 
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2.3.1 Drought 

Drought is one of the two extremes in terms of water availability. It depends not 

only on the spatial and temporal distribution of precipitation but also on the plot's 

geomorphological properties and its infiltration capacity. Drought is considered one of 

the most dangerous natural disasters endangering crop production in recent decades 

and it is expected to intensify in the future (Aroca, 2012). It also amplifies other 

stresses, such as soil salinity, pathogens attacks, or heat stress (Ahluwalia et al., 2021). 

Wilhite & Glantz (1985) determined the drought categories, all of which are connected 

causing significant economic, social, and environmental impacts (Figure 2). The 

urgency to mitigate the effects of drought is therefore indisputable. 

Natural plant mechanisms, by which they can adapt to the dry season, includes 

i) drought escape (drought-sensitive stages, like flowering or seed and fruit 

development, are postponed to the season with a higher water supply), or ii) drought 

resistance (assimilation to the lack of water) (Hall, 2000)⁠.  

In terms of agricultural management, strategies are based on i) land 

readjustment, ii) selecting more resilient varieties, iii) balanced crop rotation, iv) 

introducing of intermediate crops, v) soil management innovations, vi) fertilisation 

together with different soil management, and potentially vii) irrigation systems (Žalud 

et al., 2020).  
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Figure 2. Climate variability-induced drought, its categories and impacts (National Drought Mitigation 

Center, 2022). 

2.3.2 Temperature Extremes 

The low temperature might cause severe damage especially in sensitive growth 

stages, such as germination and reproduction (Liu et al., 2019)⁠. On the other hand, high 

temperatures cause heat stress, which induces a higher evaporation rate and might 

therefore result in severe water deficit. At this point, heat stress is strongly connected 

to drought conditions. High temperatures also increase the rate of reproductive 

development and therefore, the whole life cycle of a plant is considerably shortened 

(Wani & Kumar, 2020). Current strategies in terms of mitigation of temperature 

extremes are similar as by drought. More resilient crop varieties or varieties with 

shorter growing periods are provided by crop-breeding research and introduced into 

warmer regions. 

2.3.3 Soil Fertility and Nutrient Supply 

Crop growth and development depend largely on the fertility of soil profile 

(Mäder et al., 2002). This soil feature is determined by a complex set of i) physical soil 

properties (texture, structure, susceptibility to erosion), ii) agrochemical factors (pH, 
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micro- and macronutrients content), iii) organic and biological factors (organic matter 

content, soil edaphon), and iv) water regime. 

Lower soil fertility is often connected with soil degradation, a decrease of the 

organic matter, and reduction of soil biota (Gregory & Nortcliff, 2012) while all these 

negative aspects are amplified by intensive agricultural management.  

The efforts to restore and maintain the sustainable level of soil fertility today 

encompass managemental adjustments, preferable utilisation of the organic fertilisers 

over mineral ones, and an optimal crop rotation system (Anderson et al., 2020). Since 

the amount of organic fertilisers produced has decreased significantly over the last few 

decades, new approaches are taken (Sulewska et al., 2012). To maximise the effect of 

organic matter, several soil amendments such as biochar, NeOsol, or Z’Fix are tested. 

Recently, their positive impact on soil compaction and moisture of the top layer 

(Krzywy-Gawrońska, 2012), the enzymatic activity of sand and clay soils (Bielińska 

et al., 2013), higher nutrient content (Šařec et al., 2017a), water and nutrient uptake 

(Porro & Pedò, 2016), or photosynthesis and plant growth of cereal crops (Borowiak 

et al., 2016) was described. 

2.4 Agricultural Management and Decision Making 

A general aim of agriculture has always been to achieve the maximum output 

(crop yield) while minimising inputs (resources). This simple equation is a bottom line 

of every agricultural management, which is supposed to schedule all agro-technical 

operations to the right time and order so that the most optimal conditions for crop 

growth are ensured.  

Agro-technical operation schedules are often crop-specific. However, applying 

mineral fertilisers is typical and necessary for all crops under conventional agriculture 

today. Considerable proportions of nitrogen, phosphorus, and potassium are lost due 

to non-optimal management (Duhan et al., 2017)⁠. This has both economic and 

environmental negative consequences, which are the major two drivers of the current 

transition towards sustainability. Environmental aspects of crop production have 

become a subject of discussion on an international level.  
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Hence, optimal agricultural management must: 

● ensure the optimal conditions for the highest yield 

● mitigate the negative environmental effects as much as possible 

● work with a reasonable economics 

 

Quality in-field data gives valuable insights to both spatial and temporal 

variability of weather and soil conditions or crop status. Such knowledge is essential 

for any decision-making process. Especially nowadays, when the field of technology 

and shared knowledge has evolved rapidly, using such data is beneficial for adjusting 

agricultural management precisely to specific crop and site conditions.  

2.5 Precision Agriculture 

The above-mentioned trend of applying modern technologies and latest 

knowledge in agriculture formed into the concept of Precision Agriculture (but also 

Precision Farming, Site-Specific Agriculture, or Smart Farming). PA is considered a 

complex ecosystem that provides a wide range of activities from data acquisition to its 

transformation into direct action (Pham & Stack, 2018)⁠. One of its major contributions 

is the possibility to omit the large area management based on a hypothetical average 

condition. Instead, spatially explicit data is leveraged to apply site-specific 

management (Paxton et al., 2011). This transition results in water, fertilisers, 

herbicides, and pesticides use reduction as well as in the reduction of the associated 

workforce (Cisternas et al., 2020). 

2.5.1 PA Adoption  

Adoption of PA techniques into common management brings farmers several 

major benefits, such as crop yield increase, stabilising the yield variability, and 

reducing the input costs (Yost et al., 2017). Barnes et al. (2019)⁠ have conducted a study 

to assess the most important motivation for adopting those techniques. They were 

working with a number of 971 respondents from five European countries (Belgium, 

Germany, Greece, the Netherlands, and the UK). Their results are obviously in line 

with the proclaimed objective of the PA concept; hence, the farmers expect mostly 

cost reduction and more accurate agricultural operations. Nevertheless, there are still 

some constraints that hold the adoption back. According to the study, the reason for 
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non-adopters to maintain their usual management is a belief in their own knowledge 

as well as scepticism towards the economic returns. The associated costs of 

technologies and further management make this practice affordable rather for large- 

than smallholders (Cisternas et al., 2020). 

2.5.2 Major PA Technologies 

An extensive systematic literature review of Cisternas et al. (2020) was 

published on the topic of implementations of PA. The authors focused on the question 

of mostly used technologies and their appropriate selection in different contexts of 

agricultural management. By reviewing 257 publications, they divided results into two 

major sections: i) technologies and ii) software, systems, and techniques. In the 

technologies section, substantial attention was given to Global Positioning System 

(GPS), Multimedia, Nanosensors, Remote Sensing (RS), Sensors in General, 

Unmanned Aerial Vehicles (UAV), Unmanned Ground Vehicles (UGV), Variable 

Rate Technology (VRT), and Wireless Sensor Networks (WSN). Nevertheless, GPS 

and RS were cited the most. Regarding the software systems and techniques, 

Geographic Information Systems (GIS), Multispectral images, Soil Mapping, Yield 

maps, and Yield monitors were listed, while GIS and yield maps came out as the most 

used.  

Each of the above-mentioned technologies provides valuable information or 

performs necessary steps in data analysis or interpretation. To provide a solid 

background for decision making, however, they are usually utilised in combinations. 

2.6 Spectral Analysis and Vegetation Indices 

Spectral analysis is nowadays an indispensable tool that helps to effectively and 

non-destructively detect crops under stress conditions and their growth dynamics.  

Plant response to an incident electromagnetic radiation (EMR) and its potential 

to provide data on biophysical properties of vegetation has been determined already 

decades ago. The character of the reflected EMR wave in specific bands defined by 

the chemical and morphological characteristics of the canopy initiated establishing the 

first so-called Vegetation Indices (VIs) (Richards, 2013; Rouse et al., 1974)⁠. Before 

long, the advantages of such algorithms became leveraged in terms of agronomic 

perspective for crop identification and condition assessment (Bauer, 1985). To date, 
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hundreds of VIs are described in scientific literature. Their development and 

applicability are summarised for example by the study of Xue & Su (2017). This study 

also describes advantages and disadvantages of the most used VIs while emphasising 

the necessity of proper selection of instrumentation and platform regarding specific 

applications of VI.  

2.6.1 Spectral Response to Drought 

Plants experience significant morphological and physiological changes to 

minimise the impact of the drought stress factor. In general, the stomatal oscillations 

and plant water and nutrients status are disturbed on a physiological level. 

Concurrently, a reduced rate of cell division results in limitations of leaf size, stem 

elongation, and root proliferation (Aroca, 2012). Although the character of these 

alterations is highly crop-specific, there were mechanisms developed to detect even 

early stages of drought through the spectral analysis leveraging the absorption in near 

infra-red (NIR) and short-wave infra-red (SWIR) regions of EMR (Bauer, 1985). It 

was determined that leaf water content can be best indicated by bands centred at 

wavelengths of 1450 and 1940 nm (Wang et al., 2009). Several VIs are based on these 

facts and are already well-established nowadays, namely Moisture Stress Index (MSI) 

by Hunt Jr & Rock (1989), Normalized Difference Water Index (NDWI) by Gao 

(1996), or Water index (WI) by Penuelas et al. (1993). 

2.6.2 Spectral Response to Heat Stress 

Affected by high temperatures, plants begin to produce so-called Heat Shock 

Proteins that are supposed to mitigate the effects of heat stress. However, longer 

periods of heat induce higher evapotranspiration which might eventually result in 

a severe water deficit (Wani & Kumar, 2020). Thus, the effects of drought and heat 

stress might be both described by above-mentioned water-related VIs.  

Several methods were also established for the estimation of evaporation rate 

based on the surface temperature using RS techniques. A recent study 

by Wagner et al. (2022) introduces an enhanced method for evapotranspiration 

retrieval based on data acquired by Operational Land Imager (OLI) and Thermal 

Infrared Sensor (TIRS) carried by the Landsat 8 satellite.  
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2.6.3 Spectral Response to Nitrogen Supply 

Nitrogen is one of the staple nutrients for crop growth and development. It is 

strongly linked to the amount of chlorophyll in plant tissue, which in fact defines the 

quality of photosynthetic potential (Filella et al., 1995). The green pigment content 

also determines the intensity of leaf colour. While healthy and well-nourished 

vegetation is characterised by dark green shades, plants with poorer nutrition status are 

often recognized by pale green to yellow colour (Evans, 1983). A variety of broadband 

and narrowband chlorophyll-related VIs are described nowadays. The most common 

Normalized Difference Vegetation Index (NDVI) developed by Rouse et al. (1974) 

reflects the general essence of multispectral VIs that always work with a ratio of 

reflectances in chlorophyll absorption and reflection peaks. The modifications of other 

VIs rely on utilisation of different spectral bands to emphasise or reduce the impact of 

specific features. Green Normalized Difference Vegetation Index (GNDVI) is trusted 

to reflect the photosynthetic material more accurately than simple NDVI in maturity 

stages (Gitelson et al., 1996). Modified Soil-Adjusted Vegetation Index (MSAVI) is 

designed to mitigate the influence of soil pixels in scarce canopies (Qi et al., 1994). 

Normalized Difference Red Edge Vegetation Index (NDRE) uses the narrowband 

called Red Edge (approx. 740 nm) to provide even more precise estimates over dense 

canopies (Barnes et al., 2000). However, there are also some VIs based solely on the 

visible part of the EMR bringing valuable information, such as the Visible 

Atmospherically Resistant Index (VARI) that is designed to have low sensitivity to 

atmospheric effects (Gitelson et al., 2002). 

2.7 Sensors and Image Resolution 

The spectral response of vegetation is recorded during the sensing process using 

any of the available sensors. Generally, the information is provided either as a spatial 

point value in the case of contact imaging or as a spatial distribution when RS imagery 

is used.  

Generally, i) spectral, ii) radiometric, iii) spatial, or iv) temporal resolution 

describes the character and detail of information provided by spectral imaging.  

The spectral resolution defines the wavelengths of EMR to which the sensor is 

sensitive. It is usually given by spectral bands specified by their location and width. 

Satellite systems and some of the UAV sensors are divided into three major categories 
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based on the spectral resolution. There are multispectral data that are sensitive to the 

visible region of EMR and to the NIR band. Depending on the number of bands 

included, there are either four-bands or eight-bands imagery, while eight-bands 

imagery usually also covers the thermal radiation. Hyperspectral imagery contains 

dozens to hundreds of very narrow spectral bands across visible and NIR regions. 

Recently, radar imagery based on actively emitted pulses in microwave wavelengths 

has become a subject of research in terms of their utilisation for soil and crop status 

properties assessment (Lillesand et al., 2014).  

The radiometric resolution gives a hint of the sensor sensitivity to approaching 

reflected EMR and thus its capability to distinguish slight energy variations 

(Thenkabail, 2015). 

The spatial resolution defines the detail of the information described as pixel 

size. Generally, the spatial resolution ranges from kilometres to centimetres (Lillesand, 

2014). It is challenging to select a sensor with an appropriate spatial resolution since 

the agricultural fields are usually highly variable in terms of size, elevation, and land 

fragmentation (Psomiadis et al., 2016). 

Eventually, the temporal resolution in fact determines the revisit time, thus the 

operational capability of a sensor to obtain imagery of a particular spot on the Earth’s 

surface in a repetitive mode (Lippitt et al., 2015). The temporal resolution of a satellite 

platform mostly depends on its orbit and viewing angle (Borra et al., 2019).  

2.7.1 Remote Sensors and Platforms 

Remote sensors are carried either by airborne or satellite platforms. Given the 

fact that these sensors basically capture the image over an area of interest, the spatial 

distribution of investigated canopy features is produced by the following spectral 

analysis. Hence, spatial-temporal variations of crop status can be eventually 

geographically displayed.  

Regarding the satellite platforms, two major open-source imagery providers are 

the National Aeronautics and Space Administration1 (NASA) in cooperation with the 

United States Geological Survey2 (USGS), and the European Space Agency3 (ESA). 

 
1
 https://www.nasa.gov/ 

2
 https://www.usgs.gov/ 

3
 https://www.esa.int/ 
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NASA provides free imagery of the Landsat4 mission already since 1972 with the 

spatial resolution of 30 m concerning the most used spectral bands in terms of 

vegetation monitoring (USGS, 2022). As stated in the study of Kumhálová et al. 

(2014), such resolution is sufficient for predicting crop yield and related parameters 

within approx. 11 ha filed. ESA’s Sentinel-25 mission provides a shorter time series 

than Landsat, however, the spatial resolution of 10 m ensures more detailed 

information given by multispectral imagery (ESA, 2022). Concurrently, several 

commercial imagery providers offer products with a finer spatial resolution (e.g., 

SPOT-76 with 6 m, WorldView-27 with 2 m, or QuickBird7 with only 0.6 m).  

2.7.2 Handheld Sensors 

Besides the GreenSeeker8 sensor that in fact combines the approach of remote 

(i.e., contactless) imaging with the major features of handheld sensors, the vast 

majority of handheld sensors are designed for contact imaging. Direct in-field 

sampling provides the information related to a specific point and therefore, to acquire 

spatial information, the data must be interpolated.  

The methodology of sampling with contact handheld sensors is based on pulses 

of EMR in specific wavelengths actively emitted through the plant tissue. Either 

fluorescence (CCM-3009) or transmittance (CCM-200 plus10, SPAD-502Plus11) is 

recorded and such data serves as an input for specific index calculation. Regarding the 

sensor design, this index is claimed to be related to some of the vegetation properties, 

such as plant vigour, leaf chlorophyll content (LCC), or nitrogen content (Richardson 

et al., 2002). 

Handheld sensors are currently considered tools providing prompt information 

about actual crop status and therefore crucial for decision making. The affordability of 

such instruments became an issue though. As a reaction to the high prices of 

commercial sensors, several studies were published on the topic of inventing new low-

 
4
 https://www.usgs.gov/landsat-missions/landsat-satellite-missions 

5
 https://sentinel.esa.int/web/sentinel/missions/sentinel-2 

6
 https://www.intelligence-airbusds.com/en/8693-spot-67 

7
 https://www.digitalglobe.com/company/about-us/ 

8
 https://agriculture.trimble.com/product/greenseeker-handheld-crop-sensor/ 

9
 https://www.optisci.com/ccm-300.html 

10
 https://www.optisci.com/ccm-200.html 

11
 https://www5.konicaminolta.eu/en/measuring-instruments/products/colour-

measurement/chlorophyll-meter/spad-502plus/introduction.html 
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cost alternatives to those sensors. These efforts were based either on i) digital cameras 

utilisation (Tavakoli & Gebbers, 2019; Meyer & Neto, 2008), ii) smartphones (Vesali 

et al., 2015), iii) novel techniques using existing devices (Cortazar et al., 2015; Ali et 

al., 2012), and iv) new prototypes invention (Pérez-Patricio et al., 2018). Most of these 

studies were conducted to demonstrate the feasibility of the proposed approach in 

terms of vegetation monitoring (Misra et al., 2018). However, their findings and 

conclusion may serve as a valuable input for future specifically oriented solutions 

development. 
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3 Hypotheses 

By integrating modern technologies in agricultural research and practice, many 

new questions have arisen along with significant achievements. Questions that concern 

both methodologies of data acquisition and interpreting the results. In the context of 

spectral analysis and crop stress factors assessment, the research is mostly focused on 

describing: 

● sensors properties in terms of spatial and spectral resolution  

● spectral response of crops under specific growth conditions 

● utilisation of different bands of EMR to describe crop status using existing or 

newly developed VIs 

 

Hence, describing complex relationships between specific crops, sensors, and 

imagery based on results of various research experiments is indispensable for 

introducing new more precise technologies.  

Studies included in this Dissertation were conducted to verify the following 

hypotheses: 

 

H1: Different spectral settings of selected commercial and free-available sensors 

have no impact on their capability to predict crop yield  

H2: Remotely sensed thermal data reflect the within-field variability of soil 

conditions represented by soil electrical conductivity (EC)  

H3: Analysis of multispectral satellite data can help to evaluate the effect of 

specific soil treatments via crop status-related spectral indices 

 

In terms of the adoption and application of new technologies, Maat (2011) 

summarised that the nature of agricultural experiments is now characterised by a 

growing distance between farmers and actual scientific results. That was highlighted 

also in the study of Pathak et al. (2019). The adoption of new PA-oriented technologies 

always requires a certain degree of skills and knowledge, which could be problematic. 

Future research should focus on inventing such technologies that are more suitable for 

end-users emphasising low costs and simple operation (Cisternas et al., 2020). 

Therefore, the following hypothesis has been formulated: 
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H4: Advanced knowledge of major spectral analysis principles can be leveraged 

for the development of new affordable technological solutions for vegetation 

monitoring. 
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4 Objectives 

The Dissertation Thesis aimed to verify or disprove the above-arisen hypotheses 

concerning the utilisation of spectral analysis in agricultural research. To do so, several 

studies were conducted specifically oriented on particular questions. 

O1: Spectral resolution and bandwidth of selected sensors were compared and 

evaluated in terms of the capability of crop yield prediction.  

O2: The relation between RS data and soil conditions was examined since the 

plant-soil environment is a complex interacting ecosystem. Spatial variability of 

the thermal response of vegetation was compared with soil conductivity data to 

evaluate the relationship between these two variables.  

O3: Studies were conducted to describe the crop status response on fertilisation 

management utilising soil amendments NeOsol and Z’Fix. 

O4: The acquired knowledge of spectral analysis principles was leveraged for 

developing a new affordable handheld sensor that met the requirements of low 

financial cost and simple operation scheme while still providing data with a 

significant level of accuracy. 
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5 Materials and Methods 

In this chapter, methodologies of the below-presented studies are summarised. 

A detailed description of specific experimental material and research methods used is 

provided in particular sections of Appendices 1-5.  

5.1 Experimental Sites and Crops 

For particular purposes of the studies related to this Dissertation, experimental 

agricultural fields with various sizes were utilised (with one exception: Appendix 5). 

Thus, both RS and terrestrial sampling were undertaken on vegetation in real field 

conditions. All examined plots were located in the Czech Republic, Central and 

Eastern Bohemia respectively. 

Comparison of selected sensors in terms of yield prediction was based on data 

acquired within two plots. An experimental field of the Crop Research Institute in 

Prague-Ruzyně with an area of 11.5 ha and a 26.4 ha field in Vendolí were utilised. 

Both plots were managed according to local common practice and during the examined 

seasons of 2007 and 2015, spring barley and winter barley were cropped. 

The study on soil EC was undertaken in 2017 within a field in Sojovice on winter 

wheat. This particular experimental plot is subdivided into three smaller fields with 

the areas 5.8 ha, 8.4 ha, and 10 ha and is considerably variable in terms of soil 

conditions. This fact is yearly depicted also by a specific vegetation pattern.  

For the crop status assessment influenced by soil amendments NeOsol and 

Z’Fix, experimental plots divided into specific fertilisation variants were used. Such 

small-plots had variable areas, from 0.63 ha to 5 ha. These studies were undertaken 

over several cropping seasons; thus, various crops were investigated, namely winter 

wheat, corn, sugar beet, and poppy seed.  

Only in the case of the last study dealing with the novel handheld sensor 

development experimental plant material from controlled conditions was used. Winter 

rapeseed was planted in the phytotron of the Crop Research Institute in Prague under 

controlled temperature and light conditions. Variable doses of nitrogen were supplied 

to a set of 50 plants to produce a sampling material with different nutrition status. The 

nutrition variability was essential for the sensor calibration and validation process in 

terms of demonstrating the ability to sufficiently describe LCC variation. Winter 
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rapeseed was selected for such purposes for several reasons. Besides it is one of the 

most common crops in the Czech Republic, rapeseed leaves size was found more 

convenient for initial measurement than for example winter wheat with relatively 

narrow leaves. Finally, the experimental material of winter rapeseed was prepared in 

a relatively short time-period, since only two true leaves were required by the 

methodology of the following measurement. 

5.2 Data Sources and VIs 

Both commercial and freely available sources of RS data were used. Commercial 

data often provide finer spatial and spectral resolution, their utilisation is, however, 

limited by the costs of a single image. Besides purchased imagery sensed by the 

QuickBird, SPOT-7, and WorldView satellites, freely available images of Landsat-5, 

Landsat-7, Landsat-8, and Sentinel-2 were analysed. However, mostly the data from 

the Sentinel satellite constellation were used, since both spatial and temporal resolution 

is convenient for agricultural studies of such kind. Actual, but also historical data 

acquired by any of the Landsat satellites are free to be downloaded from the USGS 

Global Visualization Viewer12. Sentinel imagery is freely available on the Copernicus 

Open Access Hub13. The commercial imagery was ordered and purchased from the 

ARCDATA PRAHA14, a company that provides not only satellite imagery, but also 

different kinds of software for its processing. 

Spatial data was acquired also using UAV. A lightweight fixed-wing drone eBee 

(SenseFly, Cheseaux-sur-Lausanne Switzerland) first carried a thermal sensor 

thermoMap (SenseFly, Cheseaux-sur-Lausanne Switzerland) that provided the data on 

canopy temperature. During the second flight, eBee was equipped with a multispectral 

sensor multiSPEC 4C (SenseFly, Cheseaux-sur-Lausanne Switzerland) to record the 

vegetation reflectance in multispectral bands. 

All acquired multispectral RS data was processed to derive VIs (Table 1) to 

describe a crop status over the investigated area of interest.  

 
12

 https://glovis.usgs.gov/ 
13

 https://scihub.copernicus.eu/dhus/#/home 
14

 https://www.arcdata.cz/ 
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Properties Index Formula Reference 

biomass, 

crop yield 

NDVI (Normalized 

Difference Vegetation 

Index) 

(NIR-Red)/(NIR+Red) Rouse et al., 1974 

leaf area LAI (Leaf Area Index) 3.618*EVI-0.118 
Boegh et al., 

2002 

water 

content, 

water stress 

NDWI (Normalized 

Difference Water 

Index) 

(NIR-SWIR)/ 

(NIR+SWIR) 
Gao, 1996 

 

Table 1. Vegetation Indices and their application potential (edited according to Index DataBase15).  

Note: EVI = Enhanced Vegetation Index (Huete et al., 2002). 

 

Handheld sensors also played a crucial role in data acquisition. The GreenSeeker 

(GS) (Trimble, Sunnyvale, California, USA) was used to determine an NDVI value 

within selected sampling points across the investigated agricultural fields. SPAD-

502Plus (Konica Minolta, Tokyo, Japan) has been used over many studies and its 

SPAD value has been proven to significantly reflect the LCC (Uddling et al., 2007). 

Therefore, it has been chosen as a reference for calibration and validation of the newly 

developed handheld sensor. 

5.3 Software for Data Processing 

Calculation of VI involves a simple mathematical operation with the image 

bands. These operations could be conducted either in specialised software with a user 

interface, or the image could be processed directly using any of several programming 

languages. In the beginning, imagery pre-processing, and indices calculations were 

undertaken in specialised commercial software ENVI 5.4 (Exelis Visual Information 

Solutions, Boulder, Colorado, USA) and ArcGIS 10.5 (ESRI, Redlands, California, 

USA) was used for the following indices and other raster or vector data processing and 

presentation. Later, primarily open-source tools, such as ESA SNAP (ESA) and QGIS 

 
15

 https://www.indexdatabase.de/ 
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(QGIS Development Team) as the two alternatives to commercial software were 

utilised. However, the most convenient solution became the API of Google Earth 

Engine16 (GEE) since it enables to conduct of the full process image analysis based on 

a custom script written in JavaScript (alternatively in Python). This process involves 

all steps from i) selecting cloud-free images in the desired time range, to ii) their 

analysis, and ii) final extraction of the results. The major advantage of this approach 

is the possibility of processing the data in batches without the necessity to download 

it and process it one by one. 

Statistics were conducted in all cases in the actual version of R in the R Studio 

(R Core Team), using specific available packages. 

5.4 Statistical Analysis 

Results of the spectral analysis, whether it was canopy temperature or one of 

derived VIs, were statistically tested i) on their relation to reference in-field 

measurements, or ii) to determine potential significant differences among the variants. 

In the first case, a test of association between two variables, using Pearson's 

correlation coefficient was determined. In the second case, the analysis of variance 

was undertaken. Based on the distribution of the dependent variable either non-

parametric Kruskal-Wallis’s test or parametric ANOVA was applied.  

Statistical analysis regarding the prototype of the new handheld sensor is given 

separately below (chapter 5.5). 

5.5 Rasp2SPAD Prototype Development 

The development of the prototype was preceded by a literature review focusing 

on the determination of the most common disadvantages of current low-cost handheld 

solutions. A device named Rasp2SPAD was developed in order to estimate the SPAD 

value while reflecting the most cited issues. The essential part of the prototype was a 

single board computer (Raspberry Pi 3B+) supplemented by other components, such 

as Raspberry Pi Camera, LED, textile diffuser, and micro-SD card. Eventually, a piece 

of hardware of convenient size was finalised by encapsulating it in a 3D print case.  

Simplified, the methodology behind the SPAD value estimate is based on 

capturing and analysis of a simple colour image. Based on the literature review, mostly 

 
16

 https://earthengine.google.com/ 
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used VIs were determined and automatically calculated by Rasp2SPAD, to further help 

to assess a calibration equation for the SPAD value estimate. The process of 

measurement itself was controlled by a Python-based source code and it is therefore 

highly modifiable for future adjustments. 

The Rasp2SPAD testing run on winter rapeseed experimental plant material 

involved 100 leaves measurement performed by both the Rasp2SPAD prototype and 

commercial sensor SPAD-502Plus, which was established as a reference. Following 

statistical analysis was conducted first to describe correlations between VIs (Pearson’s 

correlation coefficient). The dataset eventually contained 89 valid records that were 

further divided into i) training dataset (containing 60 randomly selected values), and 

ii) testing dataset (remaining 29 values). Three different approaches were taken to 

estimate the SPAD value based on acquired parameters. The fitting of a simple linear 

model (SLM) and a generalised linear model (GLM) was done as a stepwise 

optimization by removing non-significant parameters. Eventually, two calibration 

equations were produced and evaluated. The artificial neural network (ANN) approach 

was also applied to estimate the SPAD value based on 100 successful runs.  
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6 Results and Discussion 

By comparing selected RS and handheld sensors their capability to predict crop 

yield via NDVI was determined (Appendix 1). Results of the correlation analysis 

between NDVI and crop yield data are given by Table 4 (Appendix 1). Praha-Ruzyně 

plot indicated the strongest correlation for both Landsat-5 and QuickBird data 

(r=0.861, r=0.861) in 2007. Winter barley was at growth stage BBCH 59 indicating a 

fully emerged plant. On the same plot (Praha-Ruzyně) the relationship was weaker in 

2015 using the Landsat-8 and WorldView-2 (r=0.264, r=0.133). Here, the growth 

stage was BBCH 21-22 meaning early tillering. Eventually, a plot with spring barley 

(2015) in Vendolí sensed by Landsat-8 and the SPOT-7 satellite gave correlation with 

the yield data (r=0.341, r=0.565). The crop was at BBCH 75 that describes medium 

milk in the kernel. As presented, the performance of a particular sensor differs, 

nevertheless, the differences were found rather across investigated plots and seasons. 

Overall information about specific sensor performance is valuable, although not well 

comparable since the sensors evaluated various plots in different crop growth stages. 

According to the study of Fetch et al. (2004), the coefficient of determination for yield 

prediction using NDVI is highest between BBCH 47 and BBCH 73. Results of 

Appendix 1 concur with this statement since the correlation was strongest in BBCH 

59 with no regard to the sensor used.  

When evaluating summary statistics of NDVI (Appendix 1: Table 6), several 

results are observable. First, Landsat images provide higher maximum, mean, and 

standard deviation values compared to other commercial sensors. It can be explained 

by the differences in Red and NIR bandwidth among the sensors (Appendix 1: Table 

3). All commercial sensors have a wider band range than any Landsat sensor. Narrower 

bandwidth, therefore, seems to produce higher NDVI values. The second fact obtained 

from summary statistics is that resampling of commercial imagery to a coarser spatial 

resolution (30 m), which meant a significant reduction of the number of pixels, almost 

did not change the summary statistic values. In the case of WV-2, however, it reduced 

correlation coefficient significance. 
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GS data was available only in the 2015 cropping season, its results were 

therefore evaluated separately while compared to results of Landsat imagery only 

(Appendix 1: Table 5). Here, very ambiguous results were gained. On the Ruzyně plot, 

GS values were not able to correlate with yield. Some correlation was found with 

Landsat-8, more significant later in the season. On the contrary, GS data was very well 

correlated with both the yield and Landsat-8 in Vendolí. Landsat-7 was correlated 

neither with yield nor with GS. 

This study (Appendix 1) demonstrated that different bandwidth of selected 

sensors does not significantly impact the NDVI index performance (Appendix 1: 

Table 6), however, it was indicated that Landsat imagery tends to produce higher 

NDVI statistics. The growth stage seemed to strongly influence the crop yield 

prediction of winter barley, spring barley respectively.  Therefore, the sensing should 

be scheduled accordingly. 

The NDVI index is utilised not only as a tool for yield prediction. It also helps 

to determine the overall crop health status and biomass. In the case of the study 

presented in Appendix 2, it was used to depict the within-field variability of vegetation. 

Highly variable spatial pattern in the winter wheat canopy (Appendix 2: Figure 2) was 

evaluated also by thermal imaging. The relationship of these two crop variables with 

soil conditions represented by soil EC was evaluated.  

Strong correlations were found between all three parameters (Appendix 2: 

Figure 3). Canopy temperature (Tc) was negatively correlated with both EC (r=-0.82) 

and NDVI (r=-0.86). Conversely, NDVI and EC were found to be positively correlated 

(r=0.86). Hence, the higher temperature of the plant cover indicates lower biomass and 

conductivity inhibition. Regression analysis then determined the trend of EC 

relationship with Tc (R2=0.671) and NDVI (R2=0.742) (Appendix 2: Figure 4 a,b). 

Eventually, it was concluded that EC spatial distribution is closely related to canopy 

characteristics derived from RS data, such as Tc and healthy biomass indicator NDVI. 

This finding might help to explain spatial variability in crop status when the impact of 

topography and topography-related soil features (water and nutrient irregular 

distribution) are excluded.  

Soil-plant relation is a complex environment. Crop status depends heavily on 

soil conditions since soil properties define the water and nutrient uptake potential. 

Z’Fix is a farmyard manure agent that should enhance several soil characteristics. 
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Therefore, its secondary impact on crop status was evaluated (Appendix 3). ANOVA 

with the random effect of the term was performed for each of the three investigated 

seasons, crops respectively (Appendix 3: Table 4). In all cases, significant differences 

were found among variants (control ‒ C, pure manure ‒ FYM, manure enriched by 

Z’Fix ‒ FYM_ZF). By a poppy seed in 2019, where the best performing variant 

changes during the cropping period, the effect was uncertain. However, sugar beet in 

2018 and winter wheat in 2020 both indicated the highest NDVI values within 

FYM_ZF. Enhanced crop conditions also resulted in the highest crop yield in all 

seasons, although significantly different was only the FYM_ZF variant and the C. 

FYM_ZF and FYM variants were non-significant. Nevertheless, the positive trend is 

obvious, concerning both the crop status and yield. This beneficial effect of soil 

organic matter (SOM) enriched by the Z’Fix agent was also observable during very 

dry periods, especially in July and August 2018 (Appendix 3: Figure 1). This result 

only confirms the statement of Šařec et al. (2017b) that Z’Fix addition can mitigate the 

vegetation stress in conditions of drought.  

Similarly, the potential effect of the soil agent NeOsol on soil properties and crop 

status was investigated (Appendix 4) via three spectral indices: NDVI, NDWI, and 

LAI (Appendix 4: Figure 4). Analysis of variance with the random effect of term 

followed by multiple comparisons gave a complex overview about differences 

between variants. Concurrently, it provided a timeline that described the trend of 

selected indices through the period of four years (Appendix 4: Table 4). Although no 

significant difference was indicated between any specific manure type in pure and 

NeOsol enriched form, the trend of increasing differences across all variants is 

observable. An interesting result for example was the significant difference of LAI 

within cattle and poultry manure treatment in 2020. Other combinations of pure 

manure variants were not found significantly different. In 2020, significant differences 

of NPK variant, NPK with NeOsol respectively, with all the other treatments were 

indicated by all three spectral indices. These differences were negative in all cases, 

meaning that the major factor influencing the favourable crop condition is very likely 

any kind of SOM and not the addition of the soil agent NeOsol. 

The process of development, calibration, and validation of a novel handheld 

sensor for vegetation monitoring is given in Appendix 5. Major issues of available 

low-cost sensors determined based on a literature review are i) intrusion of the natural 
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light, and ii) the necessity of post-processing the data using external software. The 

prototype called Rasp2SPAD (Appendix 5: Figure 1) eliminated both issues. Based on 

22 parameters derived from the colour image SPAD value was estimated. The 

calibration equations for winter rapeseed were determined as given in Equation 1 and 

Equation 2 (Appendix 5). SLM and GLM estimates were both tested against the actual 

SPAD value given by the SPAD-502Plus handheld sensor. Both have proven relatively 

high accuracy of the estimate, R2=0.81 (Appendix 5: Figure 7), nevertheless, GLM 

estimated the SPAD value with a slightly lower mean absolute difference (Appendix 

5: Tables 4 and 5). Surprisingly, both models evaluated two parameters from the YUV 

colour model as the most useful: Cb (blue chroma component) and Cr (red chroma 

component). Since the chroma components represent solely the colour because the 

brightness fraction is described by Y (luma component), it was concluded that chroma 

components might be more sensitive to colour variations while assessing the nutrition 

saturation level of a plant.  

Naturally, crop-specific calibration equations need to be determined and 

incorporated. However, by now, the prototype has proven to deliver valuable data 

describing the crop status of winter rapeseed. 
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7 Conclusion 

Results of the studies presented by this Dissertation have proven that spectral 

imaging is a powerful tool in current agricultural research and practice. It provides 

valuable information about crop status acquired in a non-destructive manner, which is 

one of the major advantages of using such methods. Moreover, by utilising any of the 

remote sensing platforms to carry the sensor rather than the handheld sensor, spatially 

related information is obtained. That helps to understand the spatial variability of crop 

and soil characteristics within the investigated agricultural plot. 

The amount of relationships that need to be described in order to precise the 

methodology and prove it for standard practical use is considerable. These 

relationships involve crops, soil types, agricultural management, meteorological 

conditions, and also sensor settings, and image resolution (spatial, spectral, temporal). 

Some of these relationships were investigated by presented studies. 

By comparing selected sensors, Hypothesis 1 was confirmed, hence, that 

bandwidth of utilised spectral bands does not impact the crop yield prediction potential 

via NDVI. However, more detailed research on this topic was suggested. It is always 

important to select the appropriate sensor regarding the actual research question, 

nevertheless, it is also crucial to focus the sensing in the most sensitive growth stage. 

That might, however, differ among crops and VIs.   

Hypothesis 2 was confirmed by the study describing the association of soil EC 

and canopy characteristics (NDVI, Tc). The thermal response of the vegetation to some 

extent reflects the soil conditions, namely soil EC that is claimed to be further related 

to the soil moisture and pH. This finding is beneficial since soil sampling is often 

expensive (equipment) and time-consuming (sampling).  

Hypothesis 3 was both verified and disproved. Spectral imaging and analysis 

were able to reflect the crop status variability in the case of Z’Fix manure agent. 

However, results were not significant when soil amendment NeOsol was used. These 

ambiguous results are very likely associated with the soil amendment used itself. The 

utilisation of RS methods to describe crop status caused by enhanced soil conditions 

is a complex task and is affected by many factors. Nevertheless, RS methods can be 

used not only for spatial variability of investigated VI, canopy features respectively. 

The temporal variability is also a crucial indicator. Since there is open-source imagery 
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available in longer time-periods, VI timelines help to reveal the time effect of 

investigated soil treatments. These timelines might be further compared with the trend 

of meteorological conditions (temperature and precipitation mostly). Such analysis 

might elucidate the crop performance within investigated variants of the experiment 

for example under drought conditions.  

In order to verify Hypothesis 4, a prototype of a low-cost handheld sensor named 

Rasp2SPAD was developed and calibrated for winter rapeseed chlorophyll status 

monitoring.  It was demonstrated that such custom-made handheld sensors can produce 

reliable data for the 5% price of the commercial sensor. Since only low-cost 

components were utilised and a source code is available under an open-source licence, 

Rasp2SPAD might now be constructed and used by anybody with the basic knowledge 

of electronics. The prototype was constructed to be modifiable regarding both 

hardware and software, which assures its high potential to be adjusted to other plant 

species in future studies.  
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Abstract. Currently, spectral indices are very common tool how to describe various 

characteristics of vegetation. In fact, these are mathematical operations which are calculated using 

specific bands of electromagnetic spectrum. Nevertheless, remote sensing sensors can differ due 

to the variations in bandwidth of the particular spectral channels. Therefore, the main aim of this 

study is to compare selected sensors in terms of their capability to predict crop yield by NDVI 

utilization. The experiment was performed at two locations (Prague-Ruzyně and Vendolí) in the 

year 2015 for both locations and in 2007 for Prague-Ruzyně only, when winter barley or spring 

barley grew on the plots. The cloud-free satellite images were chosen and normalised difference 

vegetation indices (NDVI) were calculated for each image. Landsat satellite images with 

moderate spatial resolution (30 m per pixel) were chosen during the crop growth for selected 

years. The other data sources were commercial satellite images with very high spatial resolution 

– QuickBird (QB) (0.6 m per pixel) in 2007 and WorldView-2 (WV-2) (2 m per pixel) in 2015 

for Prague-Ruzyně location; and SPOT-7 (6 m per pixel) satellite image in 2015 for Vendolí 

location. GreenSeeker handheld crop sensor (GS) was used for collecting NDVI data for both 

locations in 2015 only. NDVI calculated at each of images was compared with the yield data. The 

data sources were compared with each other at the same term of crop growth stage. The results 

showed that correlation between GS and yield was relatively weak at Ruzyně. Conversely, 

significant relation was found at Vendolí location. The satellite images showed stronger relation 

with yield than GS. Landsat satellite images had higher values of correlation coefficient (in 30 m 

spatial resolution) at Ruzyně in both selected years. However, at Vendolí location, SPOT-7 

satellite image has significantly better results compared to Landsat image. It is necessary to do 

more research to define which sensor measurements are most useful for selected applications in 

agriculture management. 

 

Key words: Remote sensing, crop yield, satellite images, Greenseeker, NDVI. 

 

INTRODUCTION 

 

The concept of Precision Agriculture (PA) has developed as an indispensable 

reaction to higher population growth over recent decades (Zhang, 2015; United Nations, 

2015). Up to 1960s, increasing crop production was enabled by expansion of agricultural 

areas, however, this trend slowed down when the percentage of arable land reached 9% 
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of total area worldwide (Moldan, 2015). Vegetation Indices (VI) are one of the tools by 

which it the concept of PA is currently fulfilled. These mathematical formulas are based 

on various combinations of reflectance values in specific bands of electromagnetic 

spectrum. Knowledge of spectral behaviour of vegetation is therefore essential for results 

interpretation. The method of evaluation canopy characteristics using VI has been 

gaining importance recently because the whole process operates in a non-destructive 

mode (Richards, 1993). It is therefore possible to carry out particular analysis repeatedly, 

for instance in different growth stages (Jones & Vaughan, 2010). A number of studies 

have been performed to prove the relation between VI and investigated vegetation 

characteristics, e.g. the study of Hunt Jr. et al. (2013), where triangular greenness index 

(TGI) was developed and successfully used to indicate leaf chlorophyll content. 

Prediction models for barley, canola and spring wheat yield were created by 

Johnson et al. (2016) using Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI) data. VI may be also utilized for comparison of 

different hybrids yield, as Marino et al. (2013) did when studying two hybrids of onion 

productivity. 

NDVI is the basic representative of VI's. The algorithm for NDVI calculation was 

stated by Rouse et al. (1973) as the ratio of reflectance in near infrared (NIR) and red 

visible region. NDVI is considered as main indicator of greenness, e.g. of dense and 

healthy vegetation. Its values range from -1.0 to +1.0, where higher values (0.6–0.9) 

indicate denser vegetation cover (USGS, 2015). Nevertheless, Huete et al. (2002) stated, 

that NDVI tend to lose sensitivity as the vegetation cover becomes denser.  

To acquire desired information about specific vegetation characteristic in form of 

VI, remotely sensed data are utilized. At present, there are a number of sources that 

provide such kind of imagery. The data may beacquired by spacecraft or aircraft. These 

carry devices onboard, that capture Earth's surface either actively or passively (Khorram 

et al., 2016), therefore remote sensing sensors are divided into active and passive as well. 

Passive sensors exploit the electromagnetic radiation emitted or reflected from Earth’s 
surface, thus the signal detected comes from outside a sensor. Conversely, active sensors 

collect information per an artificial signal. Energy is emitted from within the sensor and 

detected after it is reflected from the surface (Wang & Weng, 2013). In literature, 

differences between active and passive sensors have been intensively studied. Erdle et 

al. (2011) tested one passive and three active reflectance sensors to examine how they 

provide the information about nitrogen content and crop biomass. Another study 

(Elsayed et al., 2015) dealt with the capability of both types of sensor to estimate 

Normalized Relative Canopy Temperature (NRCT). GS is a representative of the active 

sensors. Its signal is emitted towards the target and the amount of reflected radiation is 

detected. GS convert such data into NDVI directly (Trimble, 2017). On the other hand, 

satellite data in this study were all acquired by passive sensors. There are differences in 

desired wavelengths between particular sensors. 

It is clear from the above literature review that different methods and sensors can 

be used for crop yield prediction. Therefore, this study aims to compare selected sensors 

in terms of their capability to predict crop yield by NDVI utilization. 
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MATERIALS AND METHODS 

 

Study area 

The data for this study were obtained from two experimental fields. The first one 

(Ruzyně) was situated in Prague-Ruzyně (50°05'N, 14°17'30''E), Czech Republic. 
A larger part of the field has a southern aspect and the elevation ranges from 338.5 to 

357.5 m above average sea level (a.s.l). The size of area is 11.5 ha. The average slope of 

the field is approximately 6%. The soil of this experimental plot can be classified as 

Haplic Luvisols partially covering fine calcareous sandstones with higher content of 

coarse silt and lower content of clay particles and clay. The value of cation exchange 

capacity in the top layer containing clay is 20–35%. The soil profile is neutral and the 

sorption capacity is from saturated to fully saturated. Content of available minerals is 

from good to very good. In the slope positions and in loess loam profiles of Luvisols 

with remnants of alluvial horizon can be found. Some parts where the topsoil directly 

overlays the parent material of loess loam are strongly eroded. The average precipitation 

is 526 mm per year and the average temperature is 7.9 °C. 
The second field (Vendolí) was located near to Vendolí in Eastern Bohemia (49°43' 

47.94"N, 16°24' 14.21"E), Czech Republic, and it has 26.4 ha. The plot is undulated with 
the average slope approximately 6%. The elevation ranges from 543 to 571 m a.s.l. The 

soil of this experimental plot can be classified as modal cambisols lying on calcareous 

sandstone. Some parts, on sloppy terrain especially, are strongly eroded, while big 

amount of stones is lying on the top parts of the field. The average precipitation is 

700 mm per year and the average temperature is between 6–7 °C. 
Conventional arable soil tillage technology based on ploughing was used on these 

fields. Crop rotation system, based on wheat, barley and oilseed rape crops alternation, 

is common practice in the Czech Republic. Our experiment included the data from the 

year 2007 and 2015 for Ruzyně with winter barley and 2015 only for Vendolí with spring 
barley. 

 

Field data 

A combine harvester Sampo 2070 equipped with an LH 500 yield monitor (LH 

Agro, Denmark) with a DGPS receiver with EGNOS correction measured yield in 

Ruzyně location. The horizontal and vertical accuracy of this system was ± 0.1 to 0.3 m 

and ± 0.2 to 0.6 m, respectively. Measured yield data were processed by an on-board 

computer on the combine harvester and saved together with the location data every 3 s. 

An axial combine harvester New Holland CR9080 equipped with New Holland factory 

yield monitor and DGPS receiver with correction measured yield in Vendolí location. 
The precision of this system horizontally was ± 0.1 to 0.3 m and vertically it was ± 0.2 

to 0.6 m. The data were saved with the coordinates every 1 s. The grain moisture content 

was measured continuously in the case of both fields and the yield was recalculated to 

14% moisture content. The yield values were corrected using a common statistical 

procedure; all values that exceeded the range defined as mean ± 3 standard deviations 

were removed. Because of the large amount of data for both location studied (more than 

8,000), the Method of Moments (MoM) was used to compute the experimental 

variograms. Experimental variograms of yield were computed and modelled by 

weighted least-squares approximation in GS+ software (Gamma Design Software, 

St. Painwell, MI, USA). A detailed description of this method can be found in 
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Kumhálová et al. (2011). Ordinary punctual kriging was done using the relevant data 
and exponential variogram model parameters for yield data visualisation. 

NDVI values from GS handheld crop sensor were collected during the winter barley 

growth in April 23rd, and May 19th 2015 at Ruzyně location, and May 8th, May 30th and 

June 30th at Vendolí location. Experimental variograms of NDVI values were computed 
by common procedures using an exponential and spherical model (see Table 1). The data 

were processed in ArcGIS 10.3.1 software (Esri, Inc., Redlands, CA, USA). 

 
Table 1. Summary statistics, variogram model parameters and the methods of interpolation used 

for yield and GS in the experimental field 

 Yield GS – NDVI 

Crop 
Winter  

barley 

Spring 

barley 

Winter  

barley 

Spring  

barley 

Location Ruzyně Vendolí Ruzyně Vendolí 
2015 2015 

23-april 19-may 8-may 30-may 20-june 

Count 8,808.0 10,974.0 18,537.0 103.0 103.0 110.0 110.0 110.0 

Mean 5.618 5.322 4.049 0.779 0.802 0.321 0.697 0.672 

Median 5.481 5.385 4.111 0.790 0.810 0.310 0.715 0.680 

Standard deviation 1.373 0.836 1.377 0.062 0.030 0.076 0.083 0.068 

Minimum 1.109 1.391 0.204 0.390 0.670 0.190 0.440 0.510 

Maximum 10.149 9.254 8.733 0.890 0.850 0.580 0.850 0.830 

Skewness 0.015 -0.666 -0.025 -2.946 -2.206 0.458 -0.693 -0.567 

Methodofinterpolation Kriging 

Methodofestimation Method of Moments (MoM) 

Variogram model Exponential Spherical 

Distance parameter (r) 22.9 11.0 72.30 205.7 610.9 210.9 297.0 215.9 

Approximaterange 

= 3 x r 

68.7 33.0 216.9 617.1 - -  - 

Nugget variance 0.3170 0.4200 0.5390 0.0025 0.0005 0.0044 0.0038 0.0047 

Sill variance 1.0100 0.5900 1.9140 0.0051 0.0012 0.0063 0.0077 0.0026 

 

Total monthly precipitation and temperature data were provided by the agro-

meteorological station at the Crop Research Institute in Prague-Ruzyně and from 

weather station Davis in Vendolí. Precipitation and temperatures for the observed year 
are also provided in Table 2. 

 
Table 2. Precipitation and temperatures in different growth stages by BBCH scale recorded on 

the experimental fields in the year 2015 for winter and spring barley 

 Precipitation (mm) Temperature (°C) 
2007 2015 2015 2007 2015 2015 

Ruzyně Vendolí Ruzyně Vendolí 
Plant Winter barley Spring barley Winter barley Spring barley 

BBCH 0-19 32.0 48.7 30.4 10.9 11.0 5.5 

BBCH 20-29 90.4 100.4 7.6 5.7 3.8 9.7 

BBCH 30-59 2.4 43.7 35.8 12.8 12.3 13.0 

After BBCH 60 146.6 64.6 132.6 18.1 17.1 18.6 

Sum 271.4 189.5 206.4 - - - 

Mean 90.5 63.2 51.6 12.6 10.9 11.7 
 



1640 

Remote sensing data 

Landsat satellite images were downloaded directly from the USGS Global 

Visualization Viewer (http://earthexplorer.usgs.gov/), as free remotely sensed 

data.Images from Landsat 5 (L-5), Landsat 7 (L-7) and Landsat 8 (L-8) were used for 

this study. WV-2, QB and SPOT-7satellite images were purchased from the ArcDATA 

Company. Table 3 provides the bandwidths of red visible (RED) and near infrared (NIR) 

range of sensors used in this study. For atmospheric correction, the Fast Line-of-sight 

Atmospheric Analysis of Hypercubes was used (Li et al., 2014; Dominguez et al., 2015). 

All image pre-processing was implemented with ENVI SW (ENVI; version 5.3, Excelis, 

Inc., McLean, VA, USA). 

NDVI were computed for every image with ENVI SW. All images were then 

exported into ArcGIS SW for further processing. Very high resolution (VHR) images 

(WV-2, QB and SPOT-7) were resampled according to Landsat satellite image outputs 

to 30 m. Yield data were resampled according to satellite images to spatial resolution of 

0.6 m, 2 m, 6 m and 30 m. Data from GS were resampled according to Landsat images 

to 30 m spatial resolution for further processing. 

Pearson's correlations between the yield maps and NDVI derived from satellite 

images and GS sensor were calculated using Statistica 13 (StatSoft Inc., Tulsa, USA) 

procedure. 

 
Table 3. Bandwidths of red visible (RED) and near infrared (NIR) range of selected satellites and 

sensors 

Satellite Sensor RED range (nm) NIR range (nm) 

L-5 TM 630–690 760–900 

L-7 ETM+ 630–690 750–900 

L-8 OLI 640–670 850–880 

QB  590–710 715–918 

SPOT-7  625–695 760–890 

WV-2  630–690 705–895 

 GS 660, ~25 nm FWHM 780, ~25 nm FWHM 

 

RESULTS AND DISCUSSION 

 

Correlation coefficients (R) between NDVI (from original and resampled data sets 

of Landsat, QB, WV-2 and SPOT-7 satellite images) and yield were calculated for 

individual image data and plant species in selected locations (see Table 4). Correlation 

matrices between NDVI from GS crop sensor, Landsat satellite images and yield were 

then calculated for individual data sets (see Table 5). Summary statistics for NDVI 

calculated from original and resampled satellite images for selected crops are in Table 6. 

Summary statistics of crop yield and GS for selected dates only for 2015 provides 

Table 1. 

Winter barley was grown in 2007 and 2015 in Ruzyně location. The year 2007 was 
drier up to BBCH 60 phenological stage in comparison with the year 2015 in Ruzyně 
location (see Table 2). Low precipitation in the growth stage BBCH 30-59 (2.4 mm) can 

cause a significant displacement of relatively higher yield to water-accumulating 

depressions. This fact is confirmed also by correlations presented in Table 4, where 

R between NDVI a yield had average value 0.856. The movement of higher yield to 
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terrain concave areas in 2007 was also validated by summary statistics presented in 

Table 1, whereby both standard deviation and min-max range were higher than in 2015. 

In our previous articles (Kumhálová et al., 2011; Kumhálová et al., 2014), the influence 
of topography to yield in drier years was also found. 

 
Table 4. Correlation coefficients between normalised difference vegetation index (NDVI) (from 

original and resampled L, QB and WV-2 satellite images with different spatial resolution (SR)) 

and yield of selected crops and years (levels of statistical significance: * p < 0.05; ** p < 0.01; 

*** p < 0.001) 

 

The year 2015 was drier year in sum of precipitation than the year 2007, but the 

precipitation distribution was more balanced during the growth stages (see Table 2). On 

the contrary, the precipitation distribution in BBCH 30–59 (43.7 mm) could probably 

cause the later crop beaten. In this year, harvesting losses caused by crop beating 

decreased the yield (see Table 1). This fact was confirmed by low R values between yield 

and NDVI (see Table 5); although the NDVI values were relatively high during BBCH 

21–22 and crops were in a good condition (see Table 6). GS measurements on April 23rd 

(BBCH 31) and May 19th (BBCH 55) and comparisons between NDVI from GS and 

Landsat images and yield in Table 5 are in good accordance with previous statements. 

Nevertheless, R between NDVI from GS and Landsat images were weak (see Table 5). 

Spring barley was grown in 2015 in Vendolí location. The precipitation distribution 
during the growth stages were balanced except the BBCH 20–29. The precipitation 

distribution was lower during these growth stages (7.6 mm) – see Table 2. Nevertheless, 

this weather running could lead to higher R (0.613) between yield and NDVI calculated 

from Landsat image in 30th May (see Table 5). It is validated by summary statistics 

presented in Table 1 as well, whereby standard deviation reached higher value. The 

precipitation distribution over the all growth stages could cause displacement of higher 

yield to places with better growth conditions. GS measurements were carried out on 

May8th (BBCH 35), May 30th (BBCH 55) and June 20th (BBCH 65). R between NDVI 

from GS and Landsat images was weak in early growth stage (8th May). On the contrary, 

the R value reached 0.679 between these two (GS and Landsat satellite) measurement 

methods in 30th May. The last measurements NDVI on 20th June with GS and on 20th 

Year Yield Growth stage     NDVI  

2007 Ruzyně BBCH 59          Winter barley 

Satellite L-5 TM QB L-5  QB QB 

SR 30 m 0.6 m 30 m 0.6 m 30 m 

Date May 24 May 22 May 24 May 22 May 22 

Yield 1 1 0.861*** 0.861*** 0.835*** 

2015                                                                   BBCH 21-22  

Satellite L-8 OLI WV-2 L-8 WV-2 WV-2 

SR 30 m 2 m 30 m 2 m 30 m 

Date March 18 March 23 March 18 March 23 March 23 

Yield 1 1 0.264** 0.133*** -0.018 

2015 Vendolí BBCH 75          Spring barley 

Satellite L-8 OLI SPOT L-8 SPOT-7 SPOT-7 

SR 30 m 6 m 30 m 6 m 30 m 

Date July 1 July 4 July 1 July 4 July 4 

Yield 1 1 0.341** 0.565*** 0.501*** 
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with Landsat were similar in comparison with yield, but the R between the measurement 

methods reached the value 0.453 only. These differences can be caused by other 

measurement method used and other spatial distribution of values measured. SPOT-7 

image, acquired on 1st July, was chosen for crop evaluation. Very high resolution image 

in late date was available only, because of very cloudy scene during the crop growth. 

The R between yield and Landsat and SPOT-7 images was different. The Landsat image 

was cloudy in northern part of the experimental field. That is why 38 pixels from this 

part of field had to be removed (see Table 6). 

 
Table 5. Correlation coefficients between normalised difference vegetation index (NDVI) from 

GS sensor, Landsat images and crop yield (levels of statistical significance: * p < 0.05; 

** p < 0.01; *** p < 0.001) 

Winter barley – Ruzyně 

2015 Date/SR  GS NDVI  GS NDVI  L-8 NDVI L-8 NDVI 

Date   April 23 May 19 April 19 May 14 

Yield 30m  0.011 0.022 0.260** 0.145 

L-8 NDVI  April 19  0.310* - - - 

L-8 NDVI May 14  - 0.359*** - - 

Spring barley – Vendolí   

2015 Date/SR  GS NDVI  GS NDVI  GS NDVI L-7 NDVI L-8 NDVI L-8 NDVI 

Date   May 8 May 30 June 20 April 29 May 30 June 24 

Yield 30m  0.323*** 0.458*** 0.387*** 0.001 0.613*** 0.415** 

L-7 NDVI April 29  0.035 - - - - - 

L-8 NDVI  May 30  - 0.679*** - - - - 

L-8 NDVI June 24  - - 0.453*** - - - 

L-8 – Landsat 8 OLI image; L-7 – Landsat 7 ETM+; SR – spatial resolution. 

 

Table 6. Summary statistics for NDVI calculated from original and resampled satellite images 

for selected years and crops 

Year  2007 – winter barley  2015 – winter barley 2015 – spring barley 

 Ruzyně Vendolí   

Satellite L-5 QB QB L-8 WV-2 WV-2 L-8 SPOT-7 SPOT-7 

SR 30 m 0.6 m 30 m 30 m 2 m 30 m 30 m 6 m 30 m 

Count 115 306704 115 102 26684 102 231 6311 269 

Mean 0.756 0.635 0.635 0.528 0.414 0.418 0.888 0.802 0.797 

Median 0.759 0.638 0.635 0.532 0.416 0.418 0.901 0.809 0.809 

Standard 

deviation 

0.077 0.041 0.039 0.046 0.057 0.056 0.095 0.044 0.055 

Minimum 0.556 0.477 0.544 0.315 0.185 0.269 0.519 0.623 0.531 

Maximum 0.876 0.799 0.721 0.626 0.619 0.559 1.087 0.886 0.876 

Skewness -0.664 -0.401 -0.138 -1.047 -0.153 -0.353 -0.413 -0.732 -0.763 

 

Summary statistics in Table 6 show that NDVI derived from Landsat images had 

higher mean and maximum values than NDVI derived from other satellites used in this 

study. This fact may support the conclusion, that Landsat images are more sensitive to 

crop biomass content. It can be explained by the differences in RED and NIR bandwidth 

among the sensors (see Table 3). QB, WV-2 and SPOT-7 have wider band range, than 

any of Landsat sensors. When comparing available Landsat sensors, L-5 and L-7 have 

similar calibration in contrast with L-8 (see Table 3). Studies dealing with this different 
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L-8 setting were also performed (Holden et al., 2016; Roy et al., 2016).GS handheld 

sensor and L-7 provide data in approximately same wavelengths. Nevertheless, there is 

a difference between GS and L-8. Despite this fact, L-8 data are very well correlated 

both with GS NDVI (R = 0.679, 30th May 2015 at Vendolí) and also with yield 
(R = 0.613, 30th May at Vendolí). However, this may be also caused by measuring date 
accordance. Differences in red band wavelengths are not so substantial in any case. 

Another cause of differences may be input data resampling. Apart from Landsat, 

all satellite data were resampled to 30 m spatial resolution. Table 6 shows summary 

statistics for both, original and resampled data. Resampling seems to have no influence 

on QB data, all categories of summary statistics differ very slightly and mean values are 

even equal. WV-2 and SPOT-7 original and resampled data differ more in summary 

statistics than other sources. Each sensor was used to evaluate different dataset. Results 

that are more accurate may be gained when evaluating selected sensors by calculating 

NDVI from the same dataset. In addition, Bégué et al. (2008) stated that single date 
images may be unsatisfactory for yield prediction. 

As mentioned above, there is the opinion that NDVI may be poor indicator of crop 

biomass when the canopy becomes denser (Huete et al., 2002). Gao et al. (2000) stated, 

that Enhanced Vegetation Index (EVI) tend not to be saturated over dense vegetation, 

like NDVI does, and seems to be sensitive enough to plant structural characteristics.In 

study by Zhu et al. (2016) similar issue was studied. L-5, L-7 and L-8 imagery were used 

to calculate NDVI and EVI for land cover changes evaluation in the city of Guangzhou, 

China. Due to the different wavelength setting, EVI was chosen as better indicator of 

greenness. Erdle et al. (2011) compared utilization of active and passive sensors. 

According to their study, made on seven wheat cultivars, active sensors disadvantage is 

that they are capable to measure limited number of VI. Conversely, passive sensors 

perform a possibility to develop different VI. Above that, GS measures only two fixed 

bands, while another active sensor Crop Circle is capable to capture three user 

configurable bands, e.g. green, red edge and NIR.As stated in Cao et al. (2015) study, 

indices derived from Crop Circle perform significantly better, than indices acquired by 

GS. Ali et al. (2014) examined the potential of yield prediction on dry direct-seeded rice 

using GS and then chlorophyll meter (SPAD) and simple leaf colour chart. Their result 

allegation was that all of these methods can be used for in-season yield prediction. Thus, 

according to that, GS is comparable with more simple measurement methods. 

 

CONCLUSION 

 

The results showed that all satellite images used in this study can sufficiently 

explain crop variability in given dates and can be used for yield prediction and crop 

growth evaluation. NDVI spectral index seemed to be good tool for simple and fast 

evaluation of the agriculture crop, because several data sourceswere possible to use for 

its calculation. Passive remote sensing sensors were compared with GS active sensor. 

Nevertheless, not very consistent results were acquired. VHR images were resampled to 

30 m spatial resolution according to Landsat images in order to examine possible 

influence of spatial resolution on information evaluated. However, various bandwidths 

in RED and NIR region of selected images made the correlations between yield and 

NDVI different. The greatest difference in such evaluation was found between L-8 OLI 

sensor and WV-2 and SPOT-7 sensors. On the base of the results obtained in this study, 
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it is necessary to undertake more research to define which of selected sensors is the most 

capable for yield prediction under conditions of the Czech Republic. 
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Abstract. Detection of heterogeneity (crop, soil, etc.) gained a lot of importance in the 
field of site-specific farming in recent years and became possible to be measured by different 
sensors. The thermal spectrum of electromagnetic radiation has a great potential today and 
experiments focused on describing a relation between canopy temperature and various vegetation 
characteristics are conducted. This paper was aimed to examine the relation between canopy 
temperature and electrical conductivity as one of staple soil characteristics. The related 
experiment was undertaken in Sojovice, Czech Republic, within an agricultural plot where winter 
wheat was grown in 2017 growing season. The examined plot was composed of three sub plots 
and 35 control points were selected within this area which the data were related to. A canopy was 
sensed by UAV (eBee carrying thermoMAP (FLIR TAU2) camera). Soil conductivity data were 
collected by terrestrial sampling using EM38-MK2 Ground Conductivity Meter in 1 m depth and 
2 m sampling point distance. This dataset was later interpolated using the kriging method. The 
correlation analysis results showed a strong negative correlation between conductivity and 
thermal data (-0.82; p < 0.001). When comparing conductivity with NDVI representing the 
aboveground biomass, there was an opposite trend but also strong result (0.86; p < 0.001). 
Correlation coefficient of thermal data and NDVI comparison was -0.86; (p < 0.001). These 
preliminary results have a potential for further research in terms of soil characteristics studies. 
 
Key words: precision agriculture, winter wheat, heterogeneity, UAV, kriging. 
 

INTRODUCTION 
 

The concept of Precision Agriculture (PA) has developed rapidly in recent decades. 
As the population grows and the field of specialized technologies are enhanced, the 
methods of site-specific farming more or less engage the common practice. Many studies 
are conducted with the aim to describe relations between various soil and vegetation 
characteristics and different kind of remotely sensed (RS) data. Such knowledge is 
essential to obtain a complex overview of how the natural processes may be explained 
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by spectral imagery. The major advantage of such approach is especially the fact that the 
research may be carried out in a non-destructive mode. Related analyses may be thus 
undertaken repeatedly during one growing season, i.e. it is possible to evaluate crops on 
particular plot in different growth stages (Richards, 1993; Jones & Vaughan, 2010). It 
was determined that the spectral characteristics are related to various vegetation 
characteristics such as biochemical composition, physical structure or plant status 
(Sahoo et al., 2015). Based on this knowledge there is not only the possibility to evaluate 
the crop status at the canopy scale, but it is also possible to detect some within-field 
heterogeneity. This heterogeneity may be caused by variability of elevation or soil 

 et al., 2011; 
Sassenrath & Kulesza, 2017). Detecting of the within-field heterogeneity may be 
utilized to adjust the agricultural management and delineate so-called production zones. 
Initially, the concept of PA was based on responses in the visible and near-infrared (NIR) 
regions of the electromagnetic spectrum. Plenty of vegetation indices (VI) were 
developed as the ratios of reflectance in different wavelengths. Although many of them 
are considered to be very effective indicator of soil and vegetation characteristics, the 
research is focused on thermal infrared region of the spectrum in recent years. The major 
difference between these two approaches is that optical RS exploits the radiation 
reflected from the investigated surface, whereas thermal RS methods work with the 
amount of radiation that is emitted by the particular surface or object (Sabins Jr., 1997). 
As the temperature is such characteristic that is not visible under standard conditions, 
the thermal RS converts this information and displays the patterns as the visible image 
(Ishimwe et al., 2014). According to Khanal et al. (2017) this is especially useful for 
early detection of stressed vegetation based on the crop temperature on the contrary to 
optical RS methods, where the stress may be indicated only when visible symptoms 
appear. This statement is supported also by study of Camoglu et al. (2017), where 
thermal and hyperspectral data were analyzed to detect four levels of water stress on 
peppers (Capsicum annuum L.). Whereas spectral indices did not indicate the difference 
between 100% and 75% irrigated vegetation, thermal indices provided significant 
results. Initially, the obtaining of high resolution thermal imagery was limited by high 
acquisition costs. However, recently the low-costs platforms were developed. 
Especially, the utilization of Unmanned Aerial Vehicles (UAV) has lowered the costs 
and thus the thermal imagery became more accessible for various branches of 
agricultural research such as nursery and greenhouse monitoring, irrigation 
management, plant disease detection or yield prediction (Ishimwe et al., 2014). A 
number of studies focus on fruit trees yield prediction. An algorithm was developed by 
Stajnko et al. (2004) to estimate apple tree yield prediction using thermal data. Moreover, 
Bulanon et al. (2008) demonstrated the method how to estimate citrus fruit yield based 
on the fact that the fruits have approximately 1.6 
during the night. Nevertheless, the utilization of thermal imagery to predict cereals yield 
has still some limits in scientific literature. However, there are also studies describing 
the relation of thermal imagery and soil characteristics. Soil texture was found to be 
strongly related to a land surface temperature (Mattikalli et al., 1998). It is a factor that 
besides the others affects the amount of water held in soil profile that on the rebound 
influences the surface temperature. Soil electrical conductivity (EC) is considered to be 
a staple soil property. It determines capability of soil to transmit an electrical charge 
(Logsdon, 2008). According to various studies EC is associated to other soil attributes 
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such as soil texture or soil water content (Corwin & Lesch, 2003; Logsdon, 2008; Malin 
& Faulin, 2013). Exploration of physical and chemical soil properties within examined 
area is often expensive and time consuming procedure. Therefore, in terms of PA 
applications EC became useful and most frequently obtained measurements to determine 
soil properties. Obtained values of EC are usually processed and thereafter presented as 
a map. This kind of map thus gives approximate information about soil texture and soil 
water distribution. It may be utilized not only for appropriate crop selection, but also for 
evaluation of drainage and irrigation management or spatio-temporal changes in soil 
properties. 

Since thermal RS methods gained attention in recent years and the soil EC is 
considered to be a staple soil factor, this study aimed to describe the relation between 
these two variables. Experimental data presented in this paper are aimed to be analysed 
to determine the level of association of canopy temperature (Tc) and soil EC as the staple 
soil factor. 
 

MATERIALS AND METHODS 
 
Experimental Site 
The experiment was conducted within an agricultural plot near the Sojovice town 

in Czech Republic. It is located approximately 25 km north-east from Prague 
 ha and it is 

composed of three smaller plots marked by numbers (Fig. 1). The west side plot [7] 
has 8.4 ha and there are cambisols as a staple soil type. The northern part of plot [9] has 
10.0 ha and the southern one [5] has 5.8 ha. There are regosols as the staple soil type 
within both of these plots. According to the DEM the elevation ranges between 175 184 
m a.s.l. thus there is no significant elevation variability over the area. This agricultural 
plot has already been monitored in recent years. Certain pattern in crop heterogeneity  
is observable  on  different  kind  of  imagery  during  the  growing  season  (Fig.  2).  

 

 
 

Figure 1. Experimental plot localization and composition (subplots marked by numbers 5, 7, 9) 
with 35 control points depicted within the field and Jizera river flow on the west side. 
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Figure 2. a) Soil electrical conductivity (EC), 
b) canopy temperature (Tc) and c) Normalized 
Difference Vegetation Index (NDVI) derived 
from remotely sensed imagery. 

 
This heterogeneity is very likely influenced by the nearby flow of Jizera river and it is 
planned to be examined also in upcoming growing season. For a purpose of pedological 
research in total 35 control points were selected (Fig. 1). This control points selection 
was based on remotely sensed data from years 2015 and 2016 that were generally poor 
on precipitation. Therefore, zones of crops stressed by insufficient amount of water 
appeared in certain pattern during both examined growing season. Thus, points were 
selected to represent zones with different rate of crop water stress. 

Agricultural management of the examined plot works with crop rotation of winter 
wheat and potato with one-year period. In 2017 growing season there was a winter wheat 
grown in two varieties. Variety Patras was sown on the southern part of the plot [5], 
while the other two parts were sown with Epos variety. Consequently all data analysis 
and results interpretation are related to winter wheat as one of the staple agricultural 
crops. 

 
Remotely sensed Data 
To obtain spectral data in sufficient spatial resolution the canopy of the 

experimental plot was sensed using UAV on 19th June 2017. A fully autonomous drone 
eBee (senseFly, Cheseaux-Lausanne, Switzerland) was utilized to carry two different 
types of camera. Canopy temperature data were obtained using thermal camera senseFly 
thermoMap. The images were processed and composed using specialized SW. In order 

a) b) 

c) 
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to calculate Normalized Difference Vegetation Index (NDVI) sensing with multispectral 
camera senseFly multiSPEC 4C was done as well. To acquire absolute reflectance 
measurements the calibration with calibration target was necessary to be done before 
flight. This multispectral camera contains four separate sensors that acquire data in four 
bands  green, red, red-edge and NIR. Based on multispectral imagery NDVI index was 
calculated using ENVI 5.4 (Exelis Visual Information Solutions, Boulder, Colorado, 
USA). This index was derived and used in the analysis as the indicator of aboveground 
biomass. Technical specifications of utilized cameras and their settings for this particular 
sensing are given by Table 1, whereas Table 2. describes meteorological conditions 
during the process of data acquisition. 

 
Table 1. Technical parameters of canopy remote sensing at 80 above ground level 

 Thermal camera MS camera 
Typ of device thermoMap multiSPEC 4C 
Sensor   
Ground resolution at 100 m, cm/px 19 10 
Velocity, m s-1 12 13 
Vertical overlap, % 80 
Horizontal overlap, % 80 
SW  eMotion, Pix4D 
 

Soil Electrical Conductivity Data 
In order to gain the soil EC data, a terrestrial sampling was carried out using widely 

known probe for electromagnetic induction (EMI) (Corwin and Lesch, 2005) 
measurement EM38 MK2 (Geonics Limited, Ontario, Canada) on 13th September 2017. 
Weather conditions during the 
process of measurement are given 
in Table 2. The probe was pulled 
by quad by the speed approximately 
2.8 m s-1, while the data were 
acquired in the soil profile 0 1 m. 
The measurement was performed 
as the set of points with the 
distance of 2 m in the direction of 
quad motion. Weather conditions 

 
Table 2. Meteorological conditions by data collection 

 Tc EC 
Date of sensing 19.6.2017 13.9.2017 
Time of sensing 2 3 PM 2 4 PM
Aerial temperature,  29 16.4 
Precipitation, mm 0.0 0.0 
Wind velocity, k h-1 8.6 18 
Air pressure, hPa 1,020.3 1,005.8 
 

during the process of measurement are given in Table 2. The probe was pulled by quad 
by the speed approximately 2.8 m s-1, while the data were acquired in the soil profile  
0 1 m. The measurement was performed as the set of points with the distance of 2 m in 
the direction of quad motion. The distance between particular trajectories was 
approximately 20 m. Data from probe was recorded to the measuring unit together with 
DGPS signal each second. In order to eliminate recorded errors, some modifications on 
the original EC values were performed before processing. Data were treated at the 
extreme values. Data of conductivity were processed using statistical and geostatistical 
methods. The set of 7,428 points was interpolated in order to get coherent map  
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representing the EC values distribution within the examined area. The maps were created 
using the kriging interpolation method (see Table 3). Software Microsoft office 
(Microsoft Corporation, Redmond, USA) and ArcGIS 10.5 (ESRI, Redlands, California, 
USA) were used. 
 
Table 3. Parameters of Kriging as a method of interpolating the point electrical conductivity (EC) 
data 

Method of estimation Method of Moments (MoM) 
Method of interpolation Kriging 
Variogram model Spherical 
Nugget variance 0.776 
Distance parameter (r) 43.471 
Partial sill 12.349 
 

Data Analysis 
Since the data were acquired and processed, it was possible to display numerical 

values of examined vegetation and soil characteristics in form of raster layer. This 
kind of visualisation showed certain pattern of data variability within examined 
agricultural plot. Nevertheless, the analysis needed to be done to describe the relation 
between Tc and EC more precisely. In addition, analysis of the relation between EC and 
NDVI, respectively Tc and NDVI was done as well to obtain complex information about 
the dataset. Since there was set of 35 control points selected within the experimental 
area, the other data analysis was related to those points. Values from raster layers (Tc, 
EC and NDVI) were extracted using the Extract Multi Values to Points tool in ArcMap 
10.5 SW and added to the attribute table of 35 control point vector layer. Thus, the result 
was the table with in containing exact numerical information about Tc, the soil EC and 
NDVI at the particular point. Statistical analysis process was done in R Studio SW 
(RStudio n coefficient was 
calculated at three levels. At first the relation Tc and EC was evaluated, followed by the 
calculations for Tc and NDVI and also EC and NDVI. 
 

RESULTS AND DISCUSSION 
 
First, summary statistics of examined variables was done to acquire complex 

information about the dataset intended to be analysed. Results of the summary are given 
by Table 4. Mean value of EC was 10.306 mS m-1, whereas median reached only 
9.310 mS m-1. These values were in accordance with possitive skewness (0.403) that 
indicated the data are more distributed on the right side of the mean value, i.e. the field 
is mostly characterized by lower values of EC, however the mean value is influenced by 
several parts with higher EC values. Mean canopy temperature was calculated to be 
30.4  31.6 
the dataset. NDVI mean value was 0.66 and slightly negative skewness showed on more 
values distributed on the left side of the mean. 

 



790 

Table 4. Summary statistics of soil electrical conductivity (EC), canopy temperature (Tc) and 
Normalized Difference Vegetation Index (NDVI) 

 EC Tc  NDVI 
Count 35 35 35 
Mean 10.306 30.440 0.660 
Median 9.310 31.600 0.679 
Sample variance 14.621 5.825 0.040 
Standard deviation 3.824 2.413 0.199 
Minimum 4.280 26.440 0.323 
Maximum 18.048 33.910 0.901 
Skewness 0.403 -0.215 -0.179 
 

Relation of soil EC and Tc was 
evaluated within selected agricultural plot. 
Additionally, the NDVI was added to the 
analysis as the aboveground biomass 
indicator. The analysis was concentrated in 
35 control points selected in terms of 
previous research. Correlation coefficients 
were calculated for combinations of three 
examined variables, however, the relation of 
EC and Tc was the most required one. Fig. 3 
gives a complex overview of correlation 
analysis results. Significantly strong 
correlation was detected at all levels. Soil 
EC and Tc were negatively correlated with 
the correlation coefficient value -0.82. Even 
stronger negative correlation was observed 
by Tc and NDVI relation (-0.86), while 
conversely very strong positive correlation 
was found by EC and NDVI (0.86). Fig. 4 
gives detailed information about the relation 
of EC and other two examined variables 
(Tc and NDVI). 

 

 
 

Figure 3. Results of correlation analysis 
presented as correlogram, where the dark 
grey colour within a pie chart represents a 
positive trend of correlation coefficient, 
while the light grey indicates a negative 
trend (p-value < 0.001). Confidence 
intervals are given in round brackets. 
 

Based on the results of correlation analysis the relation of soil property and canopy 
temperature may be described. The negative value of correlation coefficient is the 
indicator of indirect proportion. In fact, with lower values of EC the canopy temperature 
tends to increase. It is generally known that plant temperature is associated with the 
stomatal conductance that further links to the nutrient uptake and therefore it influences 
actual biomass of the crop (Cai & Cespedes, 2012). This fact is also in accordance with 
result of analysis of thermal data and NDVI representing aboveground biomass, where 
the correlation coefficient indicated indirect proportion as well. 
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Figure 4. a) Trend of Tc and EC and b) trend of NDVI and EC relation based on the data from 
35 control points. 

 
Multispectral imagery can provide quick information about crop biomass within 

the field by calculating particular VI. In this case, NDVI values ranges from 0.323 to 
0.901 and the heterogeneity is apparent also from attached map (Fig. 2, c). When having 
such information about the crop vegetation status, the cause of such differences should 
be determined. Various factors may influence the crop growth, e.g. topography 

 or effect of plant 
disease. As was stated above, the elevation variability is not significant within the 
examined plot. Very likely the heterogeneity is caused by variable soil properties, but 
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the soil sampling is difficult to be conducted during growing season. On the contrary, 
evaluation of vegetation cover using thermal RS techniques may be carried out 
regardless of time. Tc and EC correlation analysis showed the value -0.89 and thus the 
EC may be very likely explained by remotely sensed thermal data. There are studies that 
describe very tight correlation of EC and other soil properties (Corwin & Lesch, 2003). 
However, other studies were conducted with different results. Malin & Faulin (2013) 
evaluated two agricultural plots to determine the relation of EC and clay and water 
content. Significant results were found only on one of two evaluated plots, where spatial 
variability of soil texture was higher. Moreover, the study of Valente et al. (2012) found 
no significant results when evaluating EC and soil texture and moisture, respectively 
various chemical properties. It is clear that conclusions differ across the scientific 
literature, so the particular limiting soil factor may not be always identified precisely 
without soil sampling. 
 

CONCLUSIONS 
 

A number of studies were conducted to describe possible utilization of recently 
enhanced thermal RS data to predict yield of agricultural plot. However, the potential of 
thermal data to explain the soil properties that are a major factor influencing the crop 
growth, i.e. yield as well, is not described yet. In order to determine some basic relation 
of thermal response and soil characteristics this study was conducted. Soil electrical 
conductivity was chosen to be analysed as the factor subsuming most of other soil 
properties. At first, correlation analysis showed that aboveground biomass (presented by 
NDVI) is strongly influenced by EC (0.86). Based on this piece of information the 
correlation of canopy temperature and EC was examined and provided significant 
results, respectively close negative correlation (-0.82) was indicated. Such conclusion 
may be considered as some preliminary result supporting the thesis on possibility of soil 
properties to be explained by thermal RS. Further research may be conducted based on 
this conclusion to explore how are the thermal data capable to explain other soil 
properties. 
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Appendix 3

Soil physical properties and crop status under cattle manure and
Z’Fix in Haplic Chernozem
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crop status under cattle manure and Z’Fix in Haplic Chernozem. Plant, Soil and
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The positive effect of soil organic matter (SOM) on 
the physical, chemical and biological soil properties 
has already been well described. A high SOM level 
is related to improved soil properties resulting in 
higher water infiltration and nutrients accessibil-
ity. According to Lal (2020), SOM increases the 
available water capacity for all soil types. Besides 
others, such a list of benefits leads to increased 
biomass and eventually crop yields (Bauer and Black 
1994, Berzsenyi et al. 2000, Önemli 2011). Farmyard 
manure is one of the most common ways to reintro-
duce quality organic matter to the soil. Compared 
to synthetic fertilisers, manure application strongly 

and positively affects the relative yield by increasing 
soil organic carbon storage, soil nutrients, and soil 
pH (Cai et al. 2019, Voltr et al. 2021). However, due 
to various socio-economic changes over the recent 
30 years, there has been a significant decrease in 
animal husbandry in the Czech Republic. The num-
bers of cattle were reduced by 60% (Czech Statistical 
Office 2021). Therefore, the amount of produced 
organic fertiliser is limited nowadays. Together with 
still more intensive agricultural practice, it results 
in a serious lack of SOM that is further related to 
a number of other environmental issues, for example, 
to low water infiltration ability leading to surface 
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runoff and related soil erosion (Matula 2003). In 
contrast with the benefits in the form of quality 
organic matter, it is necessary to pay attention to 
the negative aspects of livestock breeding as well. 
According to the estimates, livestock farming accounts 
for 18% of greenhouse gases. The largest source of 
these gases is cattle breeding, which accounts for 
about 65% (Gerber et al. 2013). The optimisation of 
organic fertiliser production with respect to their 
environmental footprint is therefore undeniably 
necessary. Manure agents are the substances that are 
used by farmers to enhance the welfare of animals, 
control produced odours, and eventually increase 
fertiliser value (Cluett et al. 2020). Z’Fix (Olmix 
Group, Bréhan, France) is one representative of such 
agents. It is a dust-free pearled pellet, which can be 
added to deep animal bedding, but it is applicable 
to all types of farm fertilisers (manure, slurry, com-
post). Some studies already evaluated the effect of 
Z’Fix both on animal welfare and organic fertiliser 
properties. When applied directly to straw bedding, 
the fermentation process is enhanced, resulting in 
better manure quality. The higher nutrient content 
was also determined (Šařec et al. 2017a). In combi-
nation with pig slurry, it is trusted to increase crop 
yield and micronutrients content (Mozdzer and 
Chudecka 2017). Nevertheless, the exact impact on 
major soil physical properties was not yet sufficiently 
described. Reduced bulk density after application of 
manure treated by Z’Fix was examined by Šařec et al. 
(2017b), where the conclusion confirmed the positive 
effect of Z’Fix compared to control (NPK) on heavy 
soils. Since this activator is claimed to positively 
influence SOM, the objective of this study is to verify 
this statement in a three-year study conducted in real 
conditions. Hypotheses that are about to be verified 
are related to (a) reduction of cone index and imple-
ment a unit draft, and (b) increase of the infiltration 
ability of the soil. Moreover, the secondary impact 
of Z’Fix on crop status is about to be examined via 
spectral index derived from remotely sensed data.

MATERIAL AND METHODS

Farmyard manure agent Z’Fix. Z’Fix is an activa-
tor of the biological transformation used in stables 
to enhance the quality of bedding by controlling the 
fermentation process of organic matter. The primary 
benefit here is animal welfare; the manufacturer, 
however, claims that there is also a secondary effect 
for resulting organic fertiliser. Z’Fix is produced in 

the form of granules based on calcium and magne-
sium carbonates with an admixture of micro- and 
macro-elements (potassium, sodium, sulphur, iron, 
manganese), which is designed to regulate fermenta-
tion processes in manure and compost. The compo-
sition of Z’Fix is: organic matter – 5%, Ca – 26.8%, 
Mg – 2.7%, Na – 2.88%, S – 0.28%, K – 0.42%, P – 
0.04%, Fe – 2 000 ppm; Mn – 150 ppm, Zn – 30 ppm. 
The patented MIP (mineral inducer process) tech-
nology uses bioactive properties of minerals and 
specific trace elements in order to stimulate the 
biological reactions of the plant and the microflora 
within the soil.

The site and crop management. The field ex-
periment was conducted near the town of Městec 
Králové, Central Bohemian Region, Czech Republic 
(50°12'56.8''N, 15°19'50.6''E, 235 m a.s.l.) during 
2018–2020 cropping seasons. The experimental field 
of the farm company ZS Sloveč, a.s. involved three 
smaller plots according to the agricultural manage-
ment. The area of the control variant (C) was 1 ha, 
while the variant with pure farmyard manure (FYM) 
and farmyard manure treated by Z’Fix (FYM_ZF) had 
5 ha. The distribution of experimental variants was 
performed with respect to the dimensions of the field.

According to the national system, the soil type is 
Haplic Chernozem. According to the USDA trian-
gle diagram, it is clay loam soil. Selected chemical 
properties of the soil on the monitored plot are 
shown in Table 1.

NPK fertiliser was applied at the rate corresponding 
to the farm-specific agricultural standards concern-
ing crop demand for pure nutrients. Cattle manure 
(FYM and FYM_ZF) dosages were as follows: 2017 – 
50 t/ha; 2019 – 30 t/ha. Concerning the FYM_ZF 
variant, Z’Fix was applied at the rate of 1 kg/head/
week directly to deep bedding. The composition 
characteristics of manure and manure treated by 

Table 1. Chemical soil properties

Soil depth (cm)
0–30 30–60

C (%) 3.1 2.7
C/N ratio 9.7 6.9
pHKCl 7.1 7.2
K

(ppm)

797 697
Ca 7 532 8 036
Mg 350 337
P 159 123

391

Plant, Soil and Environment, 67, 2021 (7): 390–398	 Original Paper

https://doi.org/10.17221/159/2021-PSE



Z’Fix are shown in Table 2. The crop rotation sys-
tem during the investigated seasons was as follows: 
sugar beet (2018), poppy (2019), and winter wheat 
(2020). Since soil properties are strongly influenced 
by water content, the information about precipita-
tion is given in Figure 1.

Data acquisition and processing. To assess the 
physical soil properties, two field visits were ac-
complished each year. Cone index (CI), water infil-
tration (WI), and implement unit draft (IUD) were 
investigated. CI was measured in spring terms when 
the soil profile was more likely to have been evenly 
saturated with water. The measurements of the IUD 
and WI took place in the autumn terms, i.e., it fol-
lowed the crop harvest, as it was a common practice 
for this kind of measurements.

CI is a staple indicator of pedocompaction, where 
higher values negatively impact the crop’s ability to 
penetrate the soil profile and thus create a rich root 
system. CI is basically a measure of soil resistance 
against a cone with precisely described geometric 
properties (angle, area). To obtain such data, the 
penetrometer PN70 was developed at the Czech 
University of Life Sciences Prague. This custom-made 
device meets all requirements of the agriculture nor-
mative ASAE S313.3 (ASABE). Measurements of CI 

were conducted in the spring term of each cropping 
season with ten repetitions per variant.

WI was examined using a rain simulator. This 
instrument was designed to measure not only pa-
rameters of erosion but also soil infiltration char-
acteristics using a color dye. Usually, blue dye as 
a solution of water and brilliant blue (E 133) is used 
to spray the surface by the rain simulator for a pe-
riod of 1 h. Such an application is followed by a 5 h 
break, during which the blue dye penetrates the soil 
profile. Afterwards, the soil profile is removed to 
a depth of approximately 40 cm and photographed. 
This method of infiltration characteristics assess-
ment is based on image analysis (Figure 2). In the 
case of this study, the measurement was repeated 
three times per each variant. The soil profile was 
captured by a digital camera and further analysed 
by computer software Gwyddion 2.30 (Brno, Czech 
Republic). The pre-processing procedure involved 
cutting the image according to precisely located pins 
in order to analyse the exact same area recurrently, 
determining colour zones, and eliminating low-size 
soil particles to avoid errors caused by reflection. 
Further, the image was converted to a binary image, 
where the black colour defined the soil profile, and 
the white colour indicated the infiltrated area. In 

Table 2. Cattle manure chemical analysis for variants FYM (farmyard manure) and FYM_ZF (farmyard manure 
with Z’Fix)

Variant
Dry matter N

C : N
P K Ca Mg

pH
(%) (%)

FYM 23.1 0.56 22.3 : 1 0.162 0.573 0.35 0.096 8.4
FYM_ZF 23.6 0.69 18.1 : 1 0.179 0.739 0.458 0.12 9.4

 

Figure 1. Rainfall 
condi t ions  dur-
ing invest igated 
cropping seasons 
compared to a long- 
term normal
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this format, the image was also processed in ImageJ 
software (LOCI, Madison, USA), where the total image 
area was calculated together with the determination 
of percentages representing soil profile (black) and 
infiltrated part of it (white).

Energy demand for soil tillage is commonly de-
scribed by the IUD. The IUD was determined using 
a drawbar dynamometer with strain gauge S-38/ 
200kN (Lukas, Prague, Czech Republic) placed be-
tween the towing and the towed tractor. The IUD 
was measured using a tine cultivator Köckerling 
Vario 480 (Verl, Germany), during several passes 
of the machinery across each variant. The measure-
ment was conducted under a constant speed and 
at a set tillage depth (2018 – 11 cm; 2019 – 17 cm; 
2020 – 7 cm). The tillage depth was checked after 
each pass. In order to determine the potential influ-
ence of terrain slope and the rolling resistance of 
the towed tractor, machinery passes were repeated 
with the tillage implement, not in work. Data was 
collected using the system NI CompactRIO (National 
Instruments Corporation, Austin, USA), the sampling 
rate frequency was 0.1 s. GPS location was assigned 
to measured values using Trimble Business Center 
2.70 (Trimble, Sunnyvale, USA).

Crop yields were measured using three separate 
passes of a harvester per each variant. The yield was 
weighed after each pass. When relevant, samples were 
taken to ascertain representative characteristics of 
the harvested product.

Since the set of soil properties has a direct impact 
on cropped vegetation, crop status within investigated 
variants was also evaluated. In the presented study, 
freely available Sentinel-2 satellite images (European 
Space Agency) with atmospheric correction and 10 m 
spatial resolution were collected and processed to 
obtain the normalised difference vegetation index 
(NDVI). NDVI is considered as a common indirect 
indicator of vegetation greenness and health (Rouse 
et al. 1974) and is often used to describe actual crop 

status. Each variant was then described by the mean 
value of NDVI of all pixels within its boundary.

Statistics. The acquired dataset of all investigated 
soil and crop properties was eventually statistically 
analysed with the aim to describe potential differ-
ences between investigated variants. The required 
homogeneity of variances for ANOVA utilisation 
was not met in the case of soil physical properties; 
therefore, a non-parametric Kruskal-Wallis test of 
variance was applied. Nevertheless, remotely sensed 
data met the ANOVA requirements, and so NDVI 
variance was evaluated using a standard parametric 
test (ANOVA with random effect of the term) followed 
by Tukey HSD (honestly significant difference) test 
for multiple comparisons. For all the computations, 
the R version 4.0.4 (R Core Team 2021) with pack-
ages readexcel, tidyverse, and reshape2 was utilised. 
Plots were further generated using the ggplot package 
(Vienna, Austria).

RESULTS AND DISCUSSION

Table 3 provides the results of the Kruskal-Wallis 
variance test for all investigated soil properties. 
CI was monitored in soil profile depths of 4, 8, 12, 
16, and 20 cm. Although there was no statistically 
significant difference between variants, the trend 
depicted in Figure 3 shows the lowest values within 
FYM_ZF compared to the other two variants al-
most at all depth levels. In terms of WI, FYM_ZF 
performed the best since the analysis showed a sig-
nificant difference compared to C in 2018 and 2020, 
i.e., in the years straight after the manure applica-
tion. The situation in particular soil profile levels 
is presented in Figure 4, where FYM_ZF shows the 
best infiltration characteristics at all depths and 
years. Eventually, IUD results indicated significant 
differences in FYM and FYM_ZF compared to C in 
seasons 2018 and 2020, i.e., again instantly after the 
manure application. Figure 5 provides the overview 

 

Figure 2. Water infiltration assessed by the rainfall simulator via (A) a digital image converted to (B) a binary image 

(A) (B)
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for all three seasons. Furthermore, vegetation status 
expressed by means of NDVI was evaluated, and 
results are presented in Table 4. Even though three 
different crops were evaluated, statistically significant 
differences were indicated by ANOVA in all levels 

(P < 0.01). The secondary impact of a particular 
treatment on crop status is also demonstrated by 
yield information provided in Table 5. The best yields 
were consistently attained by FYM_ZF, followed by 
FYM throughout all three seasons. As demonstrated 

Table 3. Descriptive statistics of investigated physical soil properties within variants C (control), FYM (farmyard 
manure), and FYM_ZF (farmyard manure with Z’Fix)

Variant
2018 2019 2020

mean ± SD C FYM mean ± SD C FYM mean ± SD C FYM
CI (MPa)

4 cm

C 0.35 
± 0.334 – – 0.43 

± 0.134 – – 0.55 
± 0.127 – –

FYM 0.422 
± 0.406 0.8 – 0.4 

± 0.125 0.97 – 0.55 
± 0.085 0.91 –

FYM_ZF 0.39 
± 0.281 0.8 0.84 0.42 

± 0.123 0.97 0.97 0.58 
± 0.199 0.91 0.91

8 cm

C 1.17 
± 0.587 – – 0.83 

± 0.125 – – 0.99 
± 0.247 – –

FYM 1 
± 0.568 0.68 – 0.83 

± 0.2 0.72 – 0.89 
± 0.233 0.45 –

FYM_ZF 0.94 
± 0.712 0.59 0.68 0.77 

± 0.067 0.72 0.72 0.8 
± 0.125 0.13 0.48

12 cm

C 2.04 
± 0.532 – – 1.07 

± 0.267 – – 1.33 
± 0.424 – –

FYM 1.289 
± 0.528 0.4 – 0.94 

± 0.158 0.53 – 1.12 
± 0.355 0.36 –

FYM_ZF 1.2 
± 0.506 0.4 0.54 0.9 

± 0.141 0.32 0.53 1.07 
± 0.350 0.2 0.62

16 cm

C 2.04 
± 0.532 – – 1.45 

± 0.493 – – 1.62 
± 0.450 – –

FYM 1.744 
± 0.332 0.45 – 1.09 

± 0.238 0.092 – 1.53 
± 0.291 0.91 –

FYM_ZF 1.75 
± 0.453 0.45 1 1.01 

± 0.166 0.058 0.509 1.45 
± 0.328 0.91 0.91

20 cm

C 2.36 
± 0.497 – – 1.71 

± 0.547 – – 1.99 
± 0.482 – –

FYM 2.011 
± 0.289 0.42 – 1.25 

± 0.242 0.054 – 2.03 
± 0.416 0.62 –

FYM_ZF 2.25 
± 0.54 0.73 0.45 1.24 

± 0.299 0.054 0.787 1.8 
± 0.422 0.57 0.57

UID 
(kN/m2)

C 105.11 
± 4.131 – – 170.8 

± 5.376 – – 246.571 
± 14.095 – –

FYM 104.62 
± 5.833 0.82 – 172.77 

± 4.973 0.29 – 243.47 
± 14.340 0.26 –

FYM_ZF 97.86 
± 6.713 < 0.001 < 0.001 168.82 

± 6.766 0.29 0.1 233.43 
± 15.319 < 0.001 < 0.001

WI (%)

C 22.724 
± 8.566 – – 22.34 

± 3.195 – – 12.76 
± 3.163 – –

FYM 30.243 
± 13.447 0.325 – 36.827 

± 4.853 0.0591 – 22.253 
± 5.003 0.198 –

FYM_ZF 48.975 
± 18.093 0.034 0.146 53.02 

± 5.256 0.0097 0.0591 34.82 
± 5.391 0.013 0.198

Results of Kruskal-Wallis variance test (significance level P < 0.05 in bold). SD – standard deviation; CI – Cone index; 
IUD – implement unit draft; WI – water infiltration 
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in Table 5, the differences in yields were significant 
between FYM_ZF and C in the case of sugar beet 
and winter wheat. Also, the sugar content reached 
by FYM and FYM_ZF was significantly higher than 
the one attained by C.

CI represents a staple soil property since it is closely 
related to root architecture and thus also a water 
uptake (Colombi et al. 2018). CI around 2.5 MPa is 
considered the threshold where higher values directly 
restrict the plant growth (Whalley et al. 2007). In 
the case of this study, this threshold was not reached 
within any variant, nor depth. However, positive 
effects of Z’Fix treatment may be observed through 
the reduced CI values in comparison with control 
and pure manure. The study of Celik et al. (2010) 
confirms that the application of organic fertilisers 
leads to a reduction in CI. In our study, FYM_ZF 

performs even better than FYM in most of the cases, 
and this beneficial effect, even though not signifi-
cant, is likely to be supported by Z’Fix addition. The 
reduction of CI in upper layers of the soil profile is 
in line with findings of the study of Čermáková et 
al. (2019). When CI was lower when using Z’Fix.

The results of WI using a rain simulator showed 
a trend that was maintained during all monitored 
seasons. These results seem to be very interesting, 
as they do not provide a simple point information 
since the area under investigation involves approx. 4 
square meters of the soil profile. The highest WI was 
always achieved by the FYM_ZF variant. In addition, 
there were statistically significant differences between 
C and FYM_ZF each season following manure ap-
plication. The results clearly show an improvement 
of infiltration conditions for the FYM_ZF variant, 

Figure 3. Cone index acquired by the penetrometer PN70, error bars representing standard deviation. C – control; 
FYM – farmyard manure; FYM_ZF – farmyard manure with Z’Fix

Figure 4. Percentage of infiltrated area (WI) using rainfall simulator in specific levels error bars representing the 
standard deviation. C – control; FYM – farmyard manure; FYM_ZF – farmyard manure with Z’Fix
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Figure 5. Implement unit draft obtained by dynamometer 
with strain gauge S-38/200kN, error bars representing 
the standard deviation. C – control; FYM – farmyard 
manure; FYM_ZF – farmyard manure with Z’Fix

as well as the general effect of manure and other 
organic matter, but to a lesser extent than when 
using activators. Concerning the fact that the WI is 
influenced by the bulk density (Chyba et al. 2017), 
WI results of the present study concurrently confirm 
the conclusions of the study of Šařec et al. (2017b), 
which described the favourable effect of Z’Fix on 
soil properties, bulk density, respectively.

The reduction in IUD within FYM_ZF is in line with 
the results obtained in previous small-plots one-year 
studies on two different soil types, where cattle manure 
treated by Z’Fix was applied (Šařec and Žemličková 
2016, Žemličková and Šařec 2016). Tillage is one of the 
most energy-intensive operations in agriculture. The 
implement draft of FYM_ZF decreased by 4.5% (three-
years average) compared to FYM. This decrease might 
result in fuel savings of about 0.45 L/ha (assuming 
average power delivery efficiency of around 50% and 
the fuel requirements of tillage operations at the level 
of 20 L/ha). However, the benefit is not only linked 
directly to fuel consumption and costs but also to the 
reduced emissions produced during tillage (Lal et al. 
2019). Finally, vegetation conditions were evaluated. 
A total of 31 satellite images between 2018–2020 were 
analysed to derive the NDVI index. The beneficial 
effect of the Z’Fix during the emergence phase could 
be observed by sugar beet (2018) and wheat (2020). 
However, the effect was uncertain in 2019 (Table 4). 
Z’Fix seemed to maintain beneficial even during the 
drought periods. Although the months of July and 
August were really dry in 2018 (Figure 1), FYM_ZF 
kept showing the highest NDVI values. This obser-
vation is in line with the statement of Šařec et al. 
(2017b), which declares that Z’Fix can alleviate the 
stress of vegetation in the dry season.

Table 5. Descriptive statistics of yield parameters during the period of field experiment and results of one-way 
ANOVA through Tukey HSD (honestly significant difference) test (statistically significant results with P < 0.05 
marked as bold)

Year Variable Variant Mean ± SD C FYM

2018

sugar beet yield (t/ha)
C 55.19 ± 2.38 – –

FYM 58.60 ± 1.84 0.150 –
FYM_ZF 61.17 ± 1.33 0.020 0.295

sugar content (%)
C 19.00 ± 0.46 – –

FYM 21.80 ± 0.70 0.002 –
FYM_ZF 22.20 ± 0.30 0.001 0.629

2019

poppy yield (t/ha)
C 0.82 ± 0.10 – –

FYM 0.89 ± 0.06 0.555 –
FYM_ZF 0.97 ± 0.07 0.126 0.473

poppy seed and straw mix yield (t/ha)
C 1.41 ± 0.09 – –

FYM 1.49 ± 0.07 0.496 –
FYM_ZF 1.56 ± 0.09 0.141 0.576

2020 winter wheat yield (t/ha)
C 7.60 ± 0.27 – –

FYM 8.13 ± 0.20 0.322 –
FYM_ZF 8.66 ± 0.62 0.044 0.322

SD – standard deviation; C – control; FYM – farmyard manure; FYM_ZF – farmyard manure with Z’Fix

C
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Eventually, based on the above-described results, the 
following conclusions can be drawn. CI and IUD were 
mostly reduced when using agent Z’Fix for manure 
treatment. Concurrently, WI status was found to be 
superior over the other variants. All those described 
effects on the soil environment also positively influ-
enced the plant status indicated by NDVI and finally 
resulted in higher yields during investigated cropping 
seasons, especially in drought periods. With respect 
to the sustainability of agricultural production, these 
findings are directly applicable to the agricultural 
practice; nevertheless, it is necessary to verify them 
further under different conditions (various soil types, 
manures, and climatic conditions, etc.).
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Abstract: This study was conducted to understand the long‐term influence of biostimulator NeOsol 

in combination with different manure types on soil’s physical properties and crop status. NeOsol is 

a soil biostimulator that should stimulate the biological reactions of the soil profile and improve the 

soil’s physical and chemical properties. A six‐year experiment was conducted with eight treatments: 

NPK, cattle manure, pig manure, poultry manure, and the same four treatments with the NeOsol 

added on top. The in situ sampling of soil properties provided data on unit draft (UD), bulk density 

(BD), and saturated hydraulic conductivity (SHC). Furthermore, remotely sensed data were ana‐

lyzed to describe crop status via three selected vegetation indices (VI), and crop yields were assessed 

last. The variants treated with NeOsol demonstrated decreases in UD over time; BD, SHC, and VI 

did not significantly change. The impact on yield was significant and increased over time. When 

comparing the variants with manure application to those without one, the cattle manure led to sig‐

nificantly higher SHC; the pig manure led to significantly lower UD and BD but significantly higher 

SHC and yield; and the poultry manure led to significantly lower UD and BD but higher yield. 

Keywords: bulk density; unit draft; saturated hydraulic conductivity; yield; Sentinel‐2 

 

1. Introduction 

The growing population and the impacts of climate change are the major drivers of 

a significant revolution in current agriculture. Today, farmers around the globe are under 

substantial pressure to ensure still‐higher yields in a limited area. In doing so, they must 

adjust their common management to actual environmental policies. Although the impacts 

of changing climate vary among regions and by crop, it is clear that responsible strategies 

must be adopted on a global scale [1]. Research‐based technologies began to be  imple‐

mented  in  the 1950s  [2]. Collecting, processing, and  transferring data  into practice are 

some of the cornerstones of precision agriculture, one of the staple concepts of the ongoing 

Agriculture 4.0 [3]. Properly interpreted results then enable practitioners to (a) increase 

productivity, (b) reasonably allocate sources, (c) adapt agricultural management, and (d) 

avoid food waste [4]. Along with the rapid development in technology over recent dec‐

ades, significant efforts have been undertaken to design and apply technologies helping 

to fight emerging food production issues [5]. 

Soil fertility is a major factor for sustainable agriculture [6]. Soil properties, including 

infiltration and soil structure stability may be  improved with manure application. The 
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method, rate, and timing of manure application should be considered to reduce environ‐

mental  impacts, e.g., soil erosion  [7]. Soil erosion by water  is an outcome of  two main 

processes: firstly, the detachment of soil particles from the soil surface by raindrop impact, 

and secondly, the transport of the detached particles by raindrop splash or surface runoff. 

Hence, the structure stability of the soils affects the rate of soil erosion. Management prac‐

tices [8] used  to control runoff  include contouring, strip cropping, conservation  tillage, 

terraces, and buffer strips. More  than one runoff‐control practice may be necessary  for 

protection in areas with high runoff potential. Current intensive agricultural management 

often fatigues the soil to an extreme extent in some regions, so fertility has to be restored 

by a fertilizer supply [9]. Generally, organic fertilizers act as natural products while man‐

ufactured mineral fertilizers mostly consist of ideal combinations of NPK nutrients. Alt‐

hough mineral fertilizers appear to be an easy solution to soil fertility issues, it concur‐

rently has many other negative  impacts on  the  surrounding  environment  as  a whole. 

Thus, properly managed organic fertilizers are the preferable option, since it is commonly 

known that they positively influence both chemical and physical soil properties [10]. Nev‐

ertheless, the amount of produced organic fertilizers has decreased in Europe over recent 

decades as animal husbandry (such as cattle and pigs) has been significantly reduced [11]. 

Therefore, new approaches are being researched and tested to exploit the positive features 

of organic fertilizers as much as possible. NeOsol (previously PRP SOL) is manufactured 

by Olmix Group  (France) as a soil microbial biomass activator. When applied  to a soil 

profile,  it  is supposed  to stimulate soil biological activity and hence promote hummus 

synthesis. Various studies have already been conducted to describe NeOsol’s actual im‐

pact on  (a) soil properties, (b) plant status,  (c) crop yields, and  (d) compost properties. 

According Spychalski et al. [12], PRP SOL significantly influenced the chemical properties 

of soil by increasing pH and available form of magnesium, as well as by decreasing avail‐

able forms of potassium. Enhanced water and nutrient uptake [13], favorable effects on 

soil compaction and the moisture status of the top layer [14], and reductions in the force 

required by soil tillage [15] were observed. Furthermore, beneficial impacts on the enzy‐

matic activity of sand and clay soils were described by Bielińska et al.  [16]. Naturally, 

enhanced soil properties directly impact crop growth. This was the subject of a study by 

Borowiak et al. [17], where PRP SOL had a positive effect on the photosynthesis rate and 

plant growth of spring barley and maize. PRP SOL was found to significantly enhance 

chlorophyll content in the leaf blades of ryegrass [18]. Various studies have also described 

higher yields of soybean [19], potatoes [20], and the dry matter of calendula [21] with the 

use of PRP SOL. Porro and Pedò [22] found that grape vines on vineyards treated with 

PRP SOL were in better physiological and eco‐physiological condition than controls, and 

the taste of the final products was fruitier and more floral. The biostimulative potential of 

the PRP SOL was studied in combination with municipal compost, where the total con‐

tents of nickel, manganese, lead, and their soluble forms in soil were observed [23]. Fur‐

thermore, the application of compost in combination with PRP SOL had a significantly 

positive impact on wheat grain yield [24]. 

Although the above‐mentioned studies addressed the topic of the biostimulator Ne‐

Osol, this study was aimed at verifying the effectiveness of this soil agent and its effect on 

enhancing the outcome of the three types of manure in a six‐year experiment in real agri‐

cultural conditions. The hypotheses to be verified are as follows: the use of this soil agent 

would lead to a) reductions in implement unit draft and bulk density, (b) increase in sat‐

urated hydraulic conductivity, (c) enhancement of crop growth, and (d) increase in crop 

yield. 
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2. Materials and Methods 

2.1. Biostimulator NeOsol 

NeOsol is manufactured by Olmix Group (Bréhan, France) as a granular biostimula‐

tor of vital soil functions. This soil agent uses the patented technology MIP (Mineral In‐

ducer Process). It exploits the bioactive properties of minerals and specific trace elements 

to stimulate the biological reactions within the soil profile. More specifically, it uses iron, 

manganese, copper, and boron to stimulate enzymatic reactions involved in the transfor‐

mation of raw organic matter, especially humification (α‐glucosidase, ß‐glucosidase, etc.). 

In addition to MIP technology, NeOsol also uses SEAweed DRY algae extracts, which are 

rich in nutrients, for soil biota stimulation.   
This biostimulator is declared to contain 28.0% w/w of CaO, 15.9% w/w of MgO, and 

98.9% w/w of dry matter, from which the combustible substances create 7% w/DMw. The 

pH varies from 8 to 10, i.e., it is strongly alkaline. 
The recommended dose ranges between 100 and 200 kg ha−1, depending on crop and 

local soil conditions. The application  is conducted after harvest  in  the same manner as 

granular mineral fertilizers, i.e., it is sprinkled on a soil’s surface. 

2.2. Site and Crop Management 

A six‐year study was undertaken within the experimental field near the town of Měs‐

tec Králové  in Central Bohemia of  the Czech Republic  (50°14.256’ N, 15°20.705’ E, 235 

masl.). In terms of soil conditions, initial sampling was conducted at the beginning of the 

experiment in 2014 after the harvest of barley, and the characteristics are given in Table 1. 

The experiment was based on heavy soil (Gleyic Phaeozem), often referred to as difficult 

in terms of soil tillage management. In terms of texture, the soil fell into the clay category 

according to the USDA texture triangle. 

Table 1. Analysis of the chemical and physical composition of the soil conducted at the beginning 

of the experiment in 2014. 

  Soil Profile Depth (m)  Unit 
  0.00–0.30  0.30–0.60   

Clay (<0.002 mm)  48  60  % w/w 

Silt (0.002–0.05 mm)  32  39  % w/w   

Very fine sand (0.05–0.10 mm)  2  1  % w/w   

Fine sand (0.10–0.25 mm)  18  0  % w/w   

Bulk density  1.46  1.48  g cm−1 

Porosity  46.15  43.99  % w/w   

Hummus content  3.89  1.44  % w/w   

Cation exchange capacity  278  272  mmol kg−1 

Volumetric moisture  35.65  40.20  % v/v 

pH (KCl)  7.18  7.21   

The experimental field was divided into smaller plots with a rectangular area of 45 × 

140 m (0.63 ha) per variant. These small plots were arranged with respect to the shape of 

the experimental field, and the headlands were left out. The characteristics of the treat‐

ments of particular variants with manure of different origin or with NeOsol are depicted 

in Table 2. Standard NPK mineral fertilizer was applied during vegetation to top up the 

nutrients contained in manure so that the recommended [25] full dose of nutrients for a 

specific crop grown was attained. Of course, the variant NPK, i.e., the control variant, was 

left without any additional  treatment and  the  recommended  full NPK dose  including 

ground fertilization in autumn. This complex of treatments finally provided a set of eight 

variants, where all the subsequent samplings were undertaken. 
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Table 2. Treatment of individual variants during the experimental period (2014⎼2020). 

Variant  Treatment 

  NPK 1  Manure  NeOsol 

NPK  Yes—full rate  No  No 

NPKSOL  Yes—full rate  No  Yes 

catt  Yes—top‐up rate  Yes—cattle  No 

cattSOL  Yes—top‐up rate  Yes—cattle  Yes 

pig  Yes—top‐up rate  Yes—pig  No 

pigSOL  Yes—top‐up rate  Yes—pig  Yes 

pou  Yes—top‐up rate  Yes—poultry  No 

pouSOL  Yes—top‐up rate  Yes—poultry  Yes 
1 NPK application rate was calculated to top up the nutrients contained in manure so that the rec‐

ommended [25] full dose of nutrients was attained in kg ha−1: corn (N 185; P 30; K 190); winter wheat 

(N 180; P 35; K 95); spring barley (N 140; P 30; K 80). 

The crop rotation system in the experimental field was carried out according to stand‐

ard local practice. The agricultural business was located in a sugar beet production region 

with the crop rotation of cereals, corn, and either oilseed rape, or sugar beet. The latter 

two should not rotate in the same field. The standard crop rotation of the trial field in‐

cluded oilseed rape. The schedule of each field management practice during the experi‐

ment period  is presented by Table 3. All  types of manure were applied  in  fall using a 

manure spreader, while the NeOsol application proceeded immediately after harvest by 

a fertilizer spreader. 

Table 3. Crop rotation and agricultural management during the experimental period (2014⎼2020). 

Season 
Sowing 

Date 

Harvest 

Date 
Crop 

NeOsol   

(kg ha−1) 

Cow Manure   

(t ha−1) 

Pig Manure   

(t ha−1) 

Poultry Manure   

(t ha−1) 

2014  ‐  ‐  Barley  200  50  40  10 

2015 Term I  14.4.2015  27.8.2015  Corn  200  ‐  ‐  ‐ 

2016  23.3.2016  5.8.2016  Spring barley  200  50  20  8 

2017 Term II  2.11.2016  4.8.2017  Winter wheat  150  ‐  ‐  ‐ 

2018  10.4.2018  3.8.2018  Corn  150  ‐  ‐  ‐ 

2019  5.10.2018  24.7.2019  Winter wheat  150  30  20  10 

2020 Term III  15.10.2019  30.7.2020  Winter wheat  150  ‐  ‐  ‐ 

2.3. Data Acquisition and Processing 

Data assessment was performed for three terms selected to follow in the same inter‐

val after the manure application, i.e., in 2015 (Term I), 2017 (Term II), and 2020 (Term III). 

Hereby, the potential influence of uneven interval between the treatment and measure‐

ments was eliminated. The soil’s physical properties were sampled by in situ measure‐

ments performed either in spring (bulk density and saturated hydraulic conductivity) or 

autumn (unit draft). To acquire data on unit draft (UD), a dynamometer with S‐38/200 kN 

strain gauges  (Lukas, Prague,  the Czech Republic) was placed  in a horizontal position 

between two tractors. Firstly, measurements were accomplished with the tillage  imple‐

ment at a working depth and a constant speed in order to measure the overall draft of the 

pulled tractor and the working implement. The working depth was verified by measure‐

ment after each pass. Secondly, the not‐working implement was used to measure the roll‐

ing resistance and the force induced by the potential field gradient. These were deduced 

from the overall draft in order to calculate the implement draft. The direction of passes 

was also taken into account. With regard to common agricultural practices, measurements 

were made with different types of implements and at different depths of soil tillage. A 

Köckerling Vario 480 tine cultivator was operated at depths of 11 cm (2015—Term I) and 

7 cm (2020—Term III). Furthermore, a Horsch Terrano 8 FG tine cultivator was operated 
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at 15 cm (2017—Term II). There were several passes done with each variant and the non‐

working and working implements, and GPS data were recorded by Trimble Business Cen‐

ter 2.70 (Trimble, Sunnyvale, California, USA). Simultaneously, raw UD data were col‐

lected  using  the NI  CompactRIO  system  (National  Instruments  Corporation, Austin, 

Texas, USA). The sampling frequency for both GPS and UD was 0.1 s. 
Furthermore, bulk density (BD) was determined via soil samples obtained using a soil 

sample ring kit (Eijkelkamp, Giesbeek Netherlands). The volume of each ring was 100 cm3, 

and sampling was performed in three repetitions per variant. Further BD soil sample pro‐

cessing involved analysis in the laboratories of the Engineering Faculty of the Czech Uni‐

versity of Life Sciences in Prague according to the national standard CSN EN ISO 17892‐2.   
Saturated hydraulic conductivity (SHC) was measured according to the simplified 

Falling‐head method of Bagarello et al. [26]. It uses circular infiltrometers (in this case, 0.15 

m diameter) and a known amount of water (0.5 l), which is subsequently poured on the 

soil surface in the area of the infiltrometer. Volumetric soil moisture was measured with 

a Theta Probe (Delta‐T Devices, Ltd., UK) before and after water application. The time of 

water infiltration was measured for the later calculation of the final SHC value Kfs (Equa‐

tion (1). 
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ቦ
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ሺ∆𝜃ሻ ቀ𝐷 ൅ 1
𝛼∗ቁ

ቍቧ  (1)

here: Δθ = difference between  initial soil moisture content and saturated soil moisture 

content; D = the ratio of V (volume of water) and A (area of a cylinder), which is the water 

level corresponding to the water volume; tα = infiltration time; and α = constant according 

to Elrick et al. [27]. 

Potential differences in the soil’s physical properties between investigated treatments 

were determined through one‐way (factor: term) or factorial (factors: term; manure type; 

NeOsol treatment) analyses of variance (ANOVA) and Tukey HSD post‐hoc tests. 

2.4. Crop Status 

A secondary effect of the investigated treatments on crops within selected variants 

was  further determined. For  this purpose,  remotely sensed data were utilized because 

they result from a simple and widely used non‐destructive method used to acquire spatial 

data of crop status. 
The European Space Agency  (ESA) provides  freely available  remotely  sensed  im‐

agery taken by the constellation of Sentinel satellites. In this case, cloud‐free multispectral 

data of the Sentinel‐2 were utilized. Basic vegetation indices, namely the Normalized Dif‐

ference Vegetation Index (NDVI) as a basic indicator of plant health and greenness [28], 

the Normalized Difference Water Index (NDWI) that provides information on water con‐

tents in plant tissues [29], and the Leaf Area Index (LAI) that describes the robustness of 

vegetation canopy [30], were calculated. This set of indicators complexly describes a can‐

opy in terms of nutrient and water saturation. Since the Sentinel‐2 data were not yet avail‐

able in 2015 and 2016, the above‐mentioned indices were calculated only for the following 

cropping seasons: 2017, 2018, 2019, and 2020.   
The whole process of indices calculation was carried out in the Google Earth Engine 

(GEE), as it provides a convenient online environment where every step is controlled by 

JavaScript code. This saves a user  from  time‐consuming, one‐by‐one  image processing 

and ensures the repeatability of the same processing steps for every image in a collection. 

Using GEE, pre‐processed and ready‐to‐use imagery does not have to be downloaded to 

a local computer because they are directly processed on the server. For the purpose of this 

study, a zonal statistics summary of three vegetation indices was exported in a text file 

and further processed in RStudio 1.4.1717, with R version 4.1.0 [31]. Potential differences 

in crop performance between investigated treatments were determined through analysis 
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of variance (ANOVA) with the random effect of the image acquisition date to minimize 

the influence of varying index values through the cropping season. 

Finally, crop yield was recorded using a combine harvester and a trailer positioned 

on a DINI ARGEO WWSB 16t portable static axle scale (DINI ARGEO S.r.l., Modena, It‐

aly). The grain yield was weighed after each of set of three passes of the combine harvester 

per variant. 

3. Results 

3.1. Unit Draft 

UD results are given in Figure 1, which also shows the multiple comparison analysis 

results  based  on Tukey’s HSD  test. The differences  among  investigated  seasons were 

highly influenced by varying soil moisture during soil tillage, the type of the tillage im‐

plement used, and the depth of tillage. Therefore, comparisons of variants’ UD were per‐

formed separately according to the particular terms by the one‐way ANOVA. Statistically 

significant differences were detected for both pig manure variants, i.e., pig and pigSOL. 

Compared to NPK, NPKSOL, catt, and cattSOL, the pig manure variants attained consid‐

erably lower UD at Terms II and III. Pure pig manure variant (pig) values significantly 

differed from those obtained by NPK, NPKSOL, and catt at Term I. Otherwise, no notable 

differences were found. In the case of pigSOL, there was a gradual reduction in UD (rela‐

tive to the NPK variant), overall reaching more than 10%. This decrease could result in 

fuel savings of about 1 L ha−1 (assuming an average power delivery efficiency of around 

50% and the fuel requirements of tillage operations at a level of 20 L ha−1). 

 

Figure 1. Unit draft within variants during the three investigated seasons. Error bars indicate the 

standard deviation, and letters represent multiple comparisons according to the results of Tukey’s 

HSD test. 

Additionally, the factorial (manure type; NeOsol treatment) ANOVA was employed 

separately for each of the terms. Concerning NeOsol treatment, Terms I and III presented 

significantly different results. Though variants treated with NeOsol attained higher UD 

values at Term I, the values become significantly lower at Term III. This fact suggests the 

favorable influence of the NeOsol activator on UD over a prolonged period of time. Re‐

garding manure type, Term I presented significantly better (i.e., lower) UD values for the 

variants where cattle and particularly pig manure had been applied compared to the var‐

iants without any manure. At Term II, only both pig manure variants presented signifi‐

cantly lower UD values compared to all the other variants. The same outcome regarding 
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the pig manure variants was present at Term III. Moreover, both variants with poultry 

manure showed significant and favorable differences compared to the variants without 

manure application. 

3.2. Bulk Density 

Figure 2 shows the results of soil bulk density analysis after calculating the final val‐

ues. In general, BD is a relatively constant indicator that has a key effect on, for example, 

soil infiltration. At Term I, relatively homogeneous values could be observed, though they 

changed during the following years. In this regard, the overall difference between Term I 

and  II was  found  to be statistically significant. A degressive  reduction  in BD could be 

observed,  particularly with  the  application  of  poultry manure  and  pigSOL.  The  im‐

portance of organic matter in soil is reflected in the highest BD values of variants without 

any type of manure supply, i.e., NPK and NPKSOL. Furthermore, the NPKSOL variant 

demonstrated a gradual increase in values during the monitored periods. The pig variant 

always presented higher BD values than the pigSOL variant. Applying the factorial (term; 

manure  type; NeOsol  treatment) analysis of variance  though  the  factor of NeOsol,  i.e., 

regardless of manure type and term, demonstrated no significant differences. Concerning 

manure type, pig and poultry showed significantly lower BD values than variants where 

no manure was applied, with the poultry manure’s BD values significantly differing com‐

pared to the cattle manure. Regarding individual terms, Term II provided significant de‐

creases in BD compared to Term I. 

 

Figure 2. Bulk density within variants during the three investigated seasons. Error bars indicate the 

standard deviation, and letters represent multiple comparisons according to the results of Tukey’s 

HSD test. 

3.3. Saturated Hydraulic Conductivity 

SHC results are presented in Figure 3. The values significantly differed among the 

terms, since the SHC was strongly influenced by the condition of the upper layer of the 

soil. Within the factorial (term; manure type; NeOsol treatment) analysis of variance, no 

significantly different values could be observed over the trial period between the variants, 

including those with/without the NeOsol biostimulator, although certain trends could be 

observed regarding the type of manure. The long‐term use of pig manure and (particu‐

larly) cattle manure led to significantly improved SFH values compared to the variants 

without manure treatment. The SHC of both variants with cattle manure significantly sur‐
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passed the SHC values of variants with poultry manure. An adverse trend could be ob‐

served for the NPKSOL variant, where there was a constant decrease in SHC compared 

to the NPK variant. The addition of SOL to poultry manure increased the SHC value at 

each term, but this difference was not statistically significant. 

 

Figure 3. Saturated hydraulic conductivity within variants during the three investigated seasons. 

Error bars indicate the standard deviation, and letters represent multiple comparisons according to 

the results of Tukey’s HSD test. 

3.4. Vegetation Indices 

The NDVI, NDWI, and LAI were generated from as many cloud‐free Sentinel‐2 im‐

ages as  there were available. These  indexes  introduced  the spatial  information of crop 

status  in terms of  (a) plant health,  (b) water content, and (c)  leaf area. Figure 4 depicts 

trends of the chosen indices through investigated cropping seasons that brought an over‐

view information of the crop development, mostly in terms of the time effect of the used 

treatments.   

ANOVA with the random effect of the date was performed to examine the potential 

diverse impact of treatments on both soil and crop status. Multiple comparisons are given 

in Table 4, where the gray highlighted lines represent the results of paired variants. These 

comparisons were supposed to answer the question of whether the NeOsol addition to 

the usual treatment was beneficial in terms of crop growth. It can be seen that no signifi‐

cant difference was found in any of these paired groups in any season. Some significant 

differences were observable for other variants. Those, however, appeared mostly between 

the control variant (NPK and NPKSOL) and variants enriched by organic matter of any 

kind. Hence, the effect of NeOsol addition was not verified when evaluating crop status. 

When focusing on the latest season (2020), the LAI was probably the most sensitive indi‐

cator, since it was also able to detect the differences among various manure types (e.g., 

poultry manure performed better than cattle). 
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Table 4. Multiple comparisons of crop status derived from three selected vegetation indices based on Tukey’s HSD test. Paired variants (with/without 

NeOsol) are highlighted by gray color, and statistical significance levels are in bold as follows: p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). 

 
NDVI 

     
NDWI 

     
LAI 

     

 
2017  2018  2019  2020  2017  2018  2019  2020  2017  2018  2019  2020 

NPK–NPKSOL  −0.0049  −0.0037  0.0007  −0.0040  −0.0074  0.0062  −0.0018  −0.0069  −0.1032  0.1544  −0.0075  −0.0427 

NPK–catt  −0.0126  −0.0159  −0.0125  −0.0328 ***  −0.0225  −0.0225  −0.0243 **  −0.0493 ***  −0.2705  −0.0196  −0.1401  −0.3302 *** 

NPK–cattSOL  −0.0121  −0.0107  −0.0087  −0.0256 ***  −0.0218  −0.0144  −0.0195  −0.0385 ***  −0.2154  0.1198  −0.1054  −0.2519 ** 

NPK–pig  −0.0107  −0.0368 *  −0.0173 *  −0.0352 ***  −0.0232  −0.0312  −0.0291 ***  −0.0529 ***  −0.2540  −0.4654  −0.2331  −0.4828 *** 

NPK–pigSOL  −0.0182 *  −0.0410 **  −0.0191 **  −0.0384 ***  −0.0333 *  −0.0338  −0.0284 **  −0.0554 ***  −0.3051  −0.9308  −0.3241 **  −0.5624 *** 

NPK–pou  −0.0125  −0.0403 **  −0.0226 ***  −0.0384 ***  −0.0291 *  −0.0206  −0.0290 **  −0.0545 ***  −0.1564  −0.8391  −0.3627 ***  −0.5481 *** 

NPK–pouSOL  −0.0129  −0.0316  −0.0188 **  −0.0354 ***  −0.0289 *  −0.0215  −0.0249 **  −0.0519 ***  −0.1757  −0.6348  −0.3284 **  −0.5207 *** 

NPKSOL–catt  −0.0077  −0.0123  −0.0132  −0.0288 ***  −0.0150  −0.0287  −0.0225 *  −0.0425 ***  −0.1673  −0.1739  −0.1325  −0.2874 *** 

NPKSOL–cattSOL  −0.0072  −0.0070  −0.0094  −0.0216 ***  −0.0144  −0.0206  −0.0178  −0.0316 ***  −0.1122  −0.0346  −0.0979  −0.2092 * 

NPKSOL–pig  −0.0059  −0.0331 *  −0.0180 *  −0.0312 ***  −0.0158  −0.0374 *  −0.0273 **  −0.0460 ***  −0.1508  −0.6198  −0.2256  −0.4401 *** 

NPKSOL–pigSOL  −0.0133  −0.0373 *  −0.0198 **  −0.0343 ***  −0.0259  −0.0400 *  −0.0266 **  −0.0485 ***  −0.2019  −1.0852 *  −0.3165 **  −0.5197 *** 

NPKSOL–pou  −0.0076  −0.0366 *  −0.0233 ***  −0.0344 ***  −0.0217  −0.0268  −0.0273 **  −0.0476 ***  −0.0532  −0.9935 *  −0.3551 **  −0.5054 *** 

NPKSOL–pouSOL  −0.0081  −0.0279  −0.0195 **  −0.0314 ***  −0.0214  −0.0277  −0.0231 *  −0.0450 ***  −0.0725  −0.7892  −0.3209 **  −0.4780 *** 

catt–cattSOL  0.0005  0.0053  0.0038  0.0072  0.0006  0.0081  0.0048  0.0109  0.0551  0.1393  0.0347  0.0783 

catt–pig  0.0018  −0.0209  −0.0048  −0.0024  −0.0007  −0.0087  −0.0048  −0.0035  0.0165  −0.4458  −0.0931  −0.1526 

catt–pigSOL  −0.0056  −0.0251  −0.0066  −0.0056  −0.0108  −0.0113  −0.0040  −0.0060  −0.0346  −0.9113  −0.1840  −0.2323 ** 

catt–pou  0.0001  −0.0243  −0.0101  −0.0056  −0.0067  0.0019  −0.0047  −0.0051  0.1142  −0.8196  −0.2226  −0.2179 * 

catt–pouSOL  −0.0003  −0.0156  −0.0063  −0.0027  −0.0064  0.0010  −0.0006  −0.0026  0.0949  −0.6153  −0.1884  −0.1905 

cattSOL–pig  0.0013  −0.0261  −0.0086  −0.0096  −0.0014  −0.0168  −0.0096  −0.0144  −0.0386  −0.5851  −0.1278  −0.2309 ** 

cattSOL–pigSOL  −0.0061  −0.0303  −0.0103  −0.0127  −0.0115  −0.0194  −0.0088  −0.0169  −0.0897  −1.0506 *  −0.2187  −0.3105 *** 

cattSOL–pou  −0.0004  −0.0296  −0.0139  −0.0128  −0.0073  −0.0062  −0.0095  −0.0160  0.0590  −0.9589 *  −0.2573 *  −0.2962 *** 

cattSOL–pouSOL  −0.0009  −0.0209  −0.0101  −0.0098  −0.0070  −0.0071  −0.0054  −0.0134  0.0397  −0.7546  −0.2231  −0.2688 ** 

pig–pigSOL  −0.0074  −0.0042  −0.0017  −0.0031  −0.0101  −0.0026  0.0008  −0.0025  −0.0511  −0.4655  −0.0909  −0.0796 

pig–pou  −0.0017  −0.0034  −0.0053  −0.0032  −0.0059  0.0106  0.0001  −0.0016  0.0977  −0.3738  −0.1295  −0.0653 
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pig–pouSOL  −0.0022  0.0053  −0.0015  −0.0002  −0.0057  0.0097  0.0042  0.0010  0.0783  −0.1695  −0.0953  −0.0379 

pigSOL–pou  0.0057  0.0007  −0.0035  0.0000  0.0042  0.0132  −0.0007  0.0009  0.1488  0.0917  −0.0386  0.0143 

pigSOL–pouSOL  0.0052  0.0094  0.0002  0.0029  0.0044  0.0123  0.0035  0.0035  0.1295  0.2960  −0.0044  0.0417 

pou–pouSOL  −0.0005  0.0087  0.0038  0.0029  0.0003  −0.0009  0.0042  0.0026  −0.0193  0.2043  0.0342  0.0274 
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Figure 4. Crop status in terms of (a) crop health and biomass represented by the Normalized Differ‐

ence Vegetation Index (NDVI), (b) crop water content status represented by the Normalized Differ‐

ence Water Index (NDWI), and (c) canopy leaf area represented by the Leaf Area Index (LAI). Indi‐

ces were derived  from Sentinel‐2 satellite  imagery during  the 2017‐2020 cropping seasons. Error 

bars represent the standard deviation of index (pixel) values within each investigated small plot. 

3.5. Yield 

Table 5 presents the results of crop yields. When primarily  focusing on variations 

between paired variants differing only in NeOsol content, higher yields were clearly ob‐

tained by the variants enriched with NeOsol, particularly at Terms II and III. This was also 

the case for cattle and pig manure in all three terms. Regarding poultry manure, the effect 

was observed at Terms II and III. NeOsol addition also had a beneficial effect on yield in 

the case of the NPK variant at Terms II and III. When applying the factorial (term; manure 

type; NeOsol  treatment)  analysis  of  variance,  the  overall  difference  between  variants 

treated with NeOsol and the untreated variants was found to be significant. At the last 

term,  the difference was most profoundly demonstrated. The pig and poultry manure 

types showed significantly higher yields than the variants where no manure was applied. 

When assessing the results separately within individual terms, the corn yields of the pig‐

SOL and pou variants were significantly higher than most of the others. Term II did not 

demonstrate any significant differences among winter wheat yields. At Term III, however, 

almost all the variants reached significantly higher yields than the NPK variant. 
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Table 5. Descriptive statistics of yield (Mean ± Std. Dev.) during the terms of the field experiment 

and the results of one‐way ANOVA through Tukey’s HSD test. 

Variant. 
Term I 

Corn (t ha−1) 

Term II 

Winter Wheat (t ha−1) 

Term III 

Winter Wheat (t ha−1) 

NPK  32.9 ± 0.7 (a)  7.71 ± 0.35 (a)  7.36 ± 0.33 (a) 

NPKSOL  32.3 ± 0.8 (a)  7.95 ± 0.33 (a)  8.11 ± 0.32 (b) 

catt  32.5 ± 0.7 (a)  8.43 ± 0.42 (a)  7.93 ± 0.21 (ab) 

cattSOL  33.1 ± 0.7 (ab)  8.48 ± 0.42 (a)  8.29 ± 0.40 (b) 

pig  32.1 ± 1.0 (a)  7.71 ± 0.36 (a)  8.11 ± 0.18 (b) 

pigSOL  35.7 ± 0.6 (c)  8.10 ± 0.46 (a)  8.38 ± 0.22 (b) 

pou  34.8 ± 0.8 (bc)  7.62 ± 0.30 (a)  8.11 ± 0.19 (b) 

pouSOL  32.3 ± 0.9 (a)  7.90 ± 0.41 (a)  8.32 ± 0.19 (b) 

4. Discussion 

UD is a commonly used metric for assessing energy demand during soil tillage, since 

it gives the information about the energy necessary for tillage tools to loosen the topsoil. 

Soil tillage is the most energy‐demanding operation in the crop production process, and 

a decrease in fossil fuel usage should be the crucial goal in sustainable crop production 

[32]. UD is highly influenced by soil moisture content, tillage depth, and operation speed 

[33]. The study of Liang et al. [34] concluded that the application of manure has reduced 

the energy demand of tillage. In case of our study, the results regarding pig and poultry 

manure confirm Liang’s results, though less so for cattle manure. The results regarding 

the pig manure are in line with the work of Mclaughlin et al. [35], who reported that re‐

peated applications of manure are reflected in reduced tillage energy. The results concern‐

ing cow manure with NeOsol are, however, not in line with the work of Žemličková and 

Šařec [36], who reported an increase in unit draft at one year after application. Urbanov‐

ičová et al. [15] described a decrease in tension force at ploughing by 5.71% after three 

applications of NeOsol compared to an untreated plot. All three applications were carried 

out within the years 2015–2016, and the draft of a plough was only measured at the end 

of the experiment. Tuba et al. [37] also reported a considerable decrease in plough draft 

after NeOsol treatment in their three‐year experiment. In this study, we only observed a 

significant decrease in UD by 2.9% after six years of NeOsol treatment. 

BD is an important indicator of soil compaction. BD values vary with the time delay 

from soil tillage. Immediately after tillage, values are lowest and tend to increase during 

the season due to climatic factors and mechanical load exerted on the soil surface [38,39]. 

According to the USDA [40], the ideal bulk density for optimal plant growth on soils with a 

clay content of more than 45% is lower than 1.1 g cm−3. In case of this study, this threshold 

was exceeded for each term. The pigSOL variant achieved better results in comparison to 

the pure pig manure. Schjonning et al. [41] reported that long‐term cattle manure applica‐

tion led to the decline in soil BD, and Hemmat et al. [42] reported that different BD values 

were more influenced by the application rate of manure than the manure origin. The results 

regarding the NPKSOL variant in our study are in line with Urbanovičová et al. [15], who 

found an increase in BD in the topsoil with NeOsol. The long‐term results regarding the 

pigSOL variant also confirm the results of Šařec and Žemličková [43], who found that the 

application of NeOsol in combination with pig manure led to an improvement in BD in 

the topsoil. 

SHC is a staple hydrogeological parameter that describes a soil’s ability to infiltrate 

water and distribute it further to the crop root system. Our observations concerning SHC 

or infiltration rate in general are by and large consistent with past ones [44,45], which have 

shown improvements in infiltration processes and reductions in surface runoff rates and 

soil loss for soils with various organic soil treatments from livestock production. Apart 

from different types of organic matter, some activators have also been examined. Particu‐
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larly, biochar [46] was found to significantly increase the final infiltration rate and signif‐

icantly reduce soil  loss. However,  in our study, NeOsol did not demonstrate any such 

effect. 

The major advantage of the utilization of remote sensing data in agriculture is the 

fact that a canopy can be easily observed in a non‐destructive manner with a high tem‐

poral resolution (5 days for Sentinel‐2 at the equator in ideal meteorological conditions). 

This results in a complex set of data that provides information about crop development 

during the cropping season. Figure 4 and Table 4 illustrate this kind of information, and 

even though no significant difference between paired variants has so far been observable, 

the  timeline shows a clear  trend. Starting at  the 2017 season with almost no difference 

between treatments, the significance increased over time. In 2020, strong differences be‐

tween NPK, NPKSOL, and the variants with any manure can be clearly observed in every 

comparison level by all three indices. NeOsol’s contribution to higher chlorophyll content 

has already been described in several studies [17,18,20,47]. It is therefore likely that the 

desired impact of the management of crop status might be detected in the following sea‐

sons, e.g., over a longer time span after NeOsol application.   
The NDWI was calculated to gain information regarding crop water content, which 

was closely related to the SHC soil property. Šindelková, Badalíková, and Kubíková [13] 

stated that improvements in soil properties using activators leads to preferable utilization 

of water  and  nutrient  uptake  by  plants. Nonetheless,  though  SHC  results  (Figure  3) 

demonstrate the only difference between the NPKSOL and the catt variant at Term III, 

crop water status via the NDWI differed on several more levels. Here again, the major 

advantage of spatial data is noticeable, as they provide more accurate information than 

point sampled data.   
Sustainable agriculture is necessary to provide careful nutrient management, which 

is important for increasing soil organic carbon due to improving agricultural productivity 

and maintaining ecosystem health [48]. One of the possibilities may be the application of 

manure, which  improves soil fertility even  in combination with mineral fertilizers [49]. 

On the other hand, the application of inorganic fertilizers directly leads to higher yields 

by providing nutrients that encourage crop growth [50]. In both years of the mentioned 

experiment, the yield of winter wheat grain significantly  increased and almost propor‐

tionally to the increasing doses of compost. The application of the soil improver on the 

background of compost further significantly increased the grain yield. However, the soil 

improver applied in the control treatment, without compost, had an insignificant impact 

on the wheat yield [24]. Several experiments were conducted to verify the effect of PRP 

SOL (now NeOsol) on yields with diverse outcomes. The PRP SOL activator proved to be 

a useful soil additive for calendula growing, as it was found to increase the yield of dry 

matter of flowerheads [21]. PRP SOL can also replace the inorganic fertilizing of spring 

barley with phosphorus and potassium without grain yield losses [51]. Another study [52] 

of a two‐year soybean experiment did not show any statistically significant  increase  in 

yields when using the SOL activator. Conversely, PRP SOL in combination with urea was 

found to have a positive effect in terms of increased soybean yield [19]. Our observations 

have proven the significant effects of NeOsol on yield, which were intensified after a pro‐

longed application, i.e., at the last term of the experiment. 

This experiment verified beneficial effect of the NeOsol activator on crop yield and 

the unit draft of tillage implements after a prolonged application. In an agricultural prac‐

tice, this may manifest in higher revenues from crops and lower fuel consumption of soil 

tillage. 

5. Conclusions 

We carried out a six‐year experiment on the biostimulator NeOsol and three manure 

types of different origin (cattle, pig, and poultry) that were applied either alone or in a 

combination in order to assess their influence on soil’s physical properties and crop status 
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in real agricultural conditions. The evaluation focused on three terms when manure had 

been applied beforehand. 

Concerning unit draft (UD), the overall influence of NeOsol regardless of time devel‐

opment was not significant. However,  though at Term  I, variants  treated with NeOsol 

attained higher UD values, the values become significantly lower at Term III (by 2.9%). 

This fact suggests the favorable influence of the NeOsol activator on UD over a prolonged 

period of time. The variants with manure application, particularly pig manure (by 6.5%) 

and poultry manure to some extent (by 2.1%), attained significantly lower UD values than 

those without treatment. Regarding soil bulk density (BD), NeOsol did not show any sig‐

nificant  influence, whereas pig manure  (by 6.7%) and particularly poultry manure  (by 

10.3%) presented significantly  lower values compared  to  the variants without any ma‐

nure. 

No significantly different values of saturated hydraulic conductivity (SHC) could be 

observed between  the variants  including  those with/without  the NeOsol biostimulator 

over the whole trial period. On the other hand, pig manure (by 12.4%) and particularly 

cattle manure (by 15.9%) application led to significantly decreased SFH values compared 

to the variants without manure treatment. 

NeOsol’s effect on several vegetation indices (VI) proved inconclusive as opposed to 

the variants enriched by the manure of any origin. When assessing yield, however, Ne‐

Osol’s effect was significant. At the last term of the experiment, the difference in winter 

wheat  yield  reached  5.0%. A  similar  outcome was  produced  by manure  application, 

where the variants with pig and poultry manure presented 3.8% and 2.7% higher average 

yields, respectively, than the other treatments. At Term III, the difference was significant 

even for all three manure types, i.e., cattle, pig, and poultry manure surpassed the yields 

of variants without manure by 4.8%, 6.6%, and 6.2%, respectively. 
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A B S T R A C T   

The leaf chlorophyll content is a major indicator of plant stress. Therefore, it is often used for the evaluation of 
crop status to adjust agricultural management to ensure high quality yield while concurrently applying water and 
agrochemicals in a sustainable manner. Since laboratory procedures for their assessment are time-consuming and 
destructive, nondestructive methods have been developed recently based on known vegetation spectral response 
characteristics. In addition to various vegetation indices derived from remotely sensed data, hand-held sensors 
such as SPAD-502 are currently widely used for in-field sampling to gain precise information for decision-making 
in terms of best-fitting agricultural management. However, the costs of such commercial devices can be limiting 
for farmers. The low-cost alternatives that have been developed recently exploit widely accessible digital cam
eras with sensors sensitive to the visible region of the electromagnetic spectrum. Digital numbers extracted from 
colour images in RGB channels serve as the input for broadband “chlorophyll index” calculations. Major con
straints regarding digital cameras are, however, the natural light illuminance and the necessity of data post
processing. In the framework of this study, a novel technological solution was developed to address these issues. 
A Raspberry Pi single-board computer together with a Pi Camera and a simple LED incorporated in a 3D print 
case created a prototype called Rasp2SPAD, which was programmed to acquire and analyse a colour image. The 
prototype and its setup were further tested on the experimental plant material of the winter rapeseed. A set of 22 
chlorophyll-related parameters across various colour representation models were generated, from which an 
SPAD value was modelled using i) a simple linear model, ii) a generalized linear model, and iii) an artificial 
neural network. The blue (Cb) and red (Cr) chroma components of the YUV colour space were found to be most 
suitable for SPAD value modelling. Calibration equations were determined, and the results reached relatively 
high accuracy (mean absolute deviance 1.85 and R-squared 0.81 for simple linear model) while keeping the costs 
significantly low compared to the most commonly used commercial sensor. In this way, a simple and cheap 
methodology was introduced to bring the results of research closer to practice, which should help first spread the 
precision agriculture concept to a wider audience and second allow them to utilize with it.   

1. Introduction 

Leaf pigments are the essential plant cell components of all auto
trophic organisms responsible for the conversion of solar energy into 
chemical bonds during the photosynthesis process. Among other pig
ments, green chlorophyll is considered the staple pigment since it fa
cilitates the construction of glucose and carbohydrates from water and 

CO2 (Mohr and Schopfer, 2012). In doing so, it determines the photo
synthetic potential of a plant, while changes in chlorophyll arrangement 
or concentration reliably indicate crop stress (Pérez-Bueno et al., 2019). 
Since the vast amount of nitrogen is incorporated in the structure of 
green pigment, leaf chlorophyll content (LCC) provides an indirect 
measure of crop nutrient status (Filella et al., 1995). Therefore, LCC is 
the basic parameter that is being estimated when evaluating crop 
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conditions. The well-established method of LCC estimation involves a 
laboratory procedure, where leaf tissue is dissolved in an organic solvent 
and analysed in a spectrophotometer. Specific wavelengths are used to 
acquire the chlorophyll absorbance data that are used for chlorophyll 
content calculations (Porra et al., 1989). The results of such laboratory 
methods have shown to be accurate; however, drawbacks in addition to 
costs include time-consuming sampling collection and destruction of the 
investigated plant material. To address these issues, modern methods 
exploit the knowledge of the spectral response of vegetation to estimate 
LCC in a nondestructive manner. Plants are known to absorb and reflect 
specific parts of electromagnetic radiation according to their biophysical 
structure. The staple trait here is a high ratio of reflected radiation be
tween the red- and near-infrared bands by healthy plants, while this 
ratio tends to decrease with higher plant stress. These traits are currently 
used to calculate various vegetation indices based on aerial images 
(satellites, UAVs), providing spatially related information on vegetation 
status (Domínguez et al., 2016; Kumhálová and Matějková, 2017). 
Concurrently, various hand-held instruments have recently been 
developed for direct in-field sampling based on a similar approach. Such 
devices are usually highly portable, eliminating the necessity of leaf 
tissue sampling, transport, and laboratory-based analysis. The desired 
information is obtained by inserting the intact leaf into a chamber, 
where specific wavelengths are emitted and recorded. Regarding a 
particular type of sensor, sample fluorescence (CCM-300, OptiSciences) 
or transmittance (CCM − 200, OptiSciences; SPAD-502, Konica Minolta) 
is recorded. Based on such data, optical methods generally calculate the 
“chlorophyll index” that has been shown to be related to relative chlo
rophyll content, and the relationship is described using a calibration 
equation (Richardson et al., 2002). Despite a variety of available 
portable instruments, SPAD-502 is the standard method of nondestruc
tive LCC estimation. The SPAD-502 has been used in over 200 studies 
related to agricultural research purposes (Uddling et al., 2007). In 
practice, information about the actual plant status is often crucial for 
decision-making and scheduling agricultural operations, including 
fertilization, irrigation, or pest control. Properly interpreted results then 
enable a) increased primary productivity, b) allocation of sources 
reasonably, and c) adaptation of agricultural management to assure the 
highest crop yields (Wang et al., 2013; Zhai et al., 2020). In such prac
tical cases, however, the affordability of the abovementioned in
struments may be restrictive. Higher financial costs of commercial 
chlorophyll metres were the trigger for low-cost alternative develop
ment. Various in-house and research-based prototypes together with 
innovative techniques have emerged among studies. These low-cost 
methods generally benefit from scientific results and are convenient 
for end users. Mostly, the visible region of the electromagnetic spectrum 
is used to highlight vegetation properties, such as nitrogen status or 
chlorophyll content, since sensors sensitive to red, blue, green (RGB) 
bands are widely available among basic digital cameras or even current 
smartphones. These methods, similar to commercial handheld devices, 
generate basic indices, whose suitability for vegetation property esti
mates has been investigated by several studies, and have been summa
rized, for example, by Misra et al. (2018). To gain the actual data, 
several approaches have been described based on a) digital cameras and 
data postprocessing (Meyer and Neto, 2008; Tavakoli and Gebbers, 
2019), b) smartphone cameras together with application development 
(Vesali et al., 2015), c) novel techniques through existing devices (Ali 
et al., 2012; Cortazar et al., 2015), or d) new prototypes with the data 
processing proposal (Pérez-Patricio et al., 2018). Naturally, every 
approach has both advantages and constraints. The weak spot of a 
particular solution is often related to either the noise induced by natural 
light (mostly concerning digital cameras, smartphones) or to the ne
cessity of postprocessing the acquired data using some sort of computer 
software. Single-board computers (SBCs), such as Raspberry Pi (RPi), in 
various configurations have rapidly spread among many applications. In 
addition to traditional use in robotics, SBCs are now part of many so
lutions for medical (Kanani and Padole, 2020; Yildiz and Boyraz, 2019), 

food production purposes (Osroosh et al., 2018; Vasishth and Bavarva, 
2016), or even surveillance monitoring (Nasir et al., 2019; Prasad et al., 
2017). When calibrated, RPi accompanied by the Pi Camera module is 
considered fully capable of producing scientific quality data to be used 
further, for example, in biophotonics or remote sensing applications 
(Pagnutti et al., 2017). Since such a configuration could be very easily 
combined with various other components, it has significant potential to 
create the foundation of very specific oriented devices. 

Regarding sustainable crop production related to major climate 
change issues, collecting in-field data has become a crucial part of 
agricultural practice. Real-time quality data help farmers react promptly 
to unfavourable crop conditions, which is often connected to some kind 
of abiotic stress and might result in lower yield or quality of the product. 
This study aims to introduce a novel technological solution reflecting 
most of the abovementioned constraints of described low-cost handheld 
sensors while sustaining advantages, such as affordability, portability, 
and capability of providing data with a significant level of accuracy. 
Prototype development will leverage the latest advancements and trends 
of computer science, focusing particularly on SBC together with current 
knowledge of optical methods and their suitability for plant status 
description. Convenient properties of RPi will be utilized to construct a 
portable device for in-field chlorophyll-related index assessment. Based 
on these indices, a mathematical model for the prediction of the SPAD 
value will be derived. 

2. Materials and methods 

2.1. Prototype design 

The main principle of this study was to construct a low-cost portable 
device that is able to capture a colour image using its own light emitter 
and a colour space camera under field conditions, perform image anal
ysis according to the best fitting setup, and generate a set of most cited 
chlorophyll-related colour indices while finally demonstrating a so- 
called SPAD value estimate. Key features of the proposed device were 
low financial costs, the same as high-quality data acquisition. Such a 
seemingly complex task was based on simple technical and technolog
ical solutions supported by the latest scientific knowledge in the field of 
spectral response characteristics of plant material. By focusing on 
involving primarily free available SW features and low-cost HW com
ponents, the possibility of easily reproducing this so-called Rasp2SPAD 
prototype should be ensured. 

As mentioned above, the chlorophyll metre SPAD-502Plus (Konica 
Minolta) is widely used for leaf chlorophyll content measurements both 
in research studies and practical applications focused on plant nutrition 
status determination. This common handheld sensor calculates the 
SPAD value, a numerical expression of the relation of spectral absor
bance in two regions of the electromagnetic spectrum. It operates in the 
red band (600–700 nm) as one of the chlorophyll absorbance peaks and 
in the near-infrared band (700–1400 nm) with no absorbance declared. 
The high correlation of the SPAD value and LCC across the crop species 
and varieties ensured that the SPAD-502Plus sensor is currently 
considered a full-fledged nondestructive method of LCC indication. 
Thus, for the purpose of this study, SPAD-502Plus was assumed to 
provide accurate LCC data, which served as a reference for Rasp2SPAD 
setup evaluation. 

SBCs have recently been utilized for a wide spectrum of purposes, 
including prototyping. RPi 3B+ was chosen to be a key component of 
Rasp2SPAD, as it is trusted to be a reliable prototyping platform 
(Johnston and Cox, 2017). Specific technical attributes of this particular 
model are described in detail in Table 1. 

The SD card slot enables the user to insert any type of micro-SD card 
and thus to determine the storage memory with which the prototype can 
operate. Rasp2SPAD was equipped with a micro SDHC card SanDisk 
with 16 GB memory capacity to store acquired data. 

Generally, the prototype consisted of two main parts that were 
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designed and manufactured by 3D printing from thermoplastic material 
PLA using the 3D printer PrusaMK3S. First, a simple plastic case was 
printed to protect the RPi from mechanical damage. Second, a forceps- 
shaped 3D print (Fig. 1.1) was designed to create a specific environ
ment for plant leaf insertion and for maintaining consistent light and 
sensing conditions when acquiring the image, which will be analysed 
later. The Forceps 3D print design was based first on the PLA material 
stiffness, which together with specifically placed material blocks helped 
to avoid mutual movement of individual forceps parts. This ensured the 
maximal deviation from the cut axis < 0.2 mm. The leaf insertion depth 
was regulated to the top 55 mm by a solid stopper. 

Natural light is often considered a major limitation in vision-based 
LCC estimates because the acquired spectral reflectance/transmittance 
is very likely to be influenced by actual weather conditions, solar radi
ation, and leaf arrangement (Ali et al., 2012). As a reaction to this issue, 
Rasp2SPAD was equipped with its own light source (Fig. 1.2). Since 
white LEDs emit the full spectrum of wavelengths in the visible region, a 
circular 5 mm sunny white LED Yoldal YZ-WS5N40N was incorporated 
in the 3D forceps component. The specific range of wavelengths was 
checked by a Spectrometer VIS/NIR 380–950 nm (Ocean Optics, USA) 
spectrometer and is given in Fig. 2a. Light flux was scattered at 2 mm 
from the top of the LED by means of a single-layer textile diffuser Las
tolite P15T TRANSLUCENT (Fig. 1.3) to assure even distribution of 
incident light on the target leaf at a distance of 9 mm from the diode 
itself. The amount of transmitted radiation was captured by a Raspberry 
Pi Camera V2.1 with a Sony IMX219 8 Mpix sensor (Fig. 1.5) (Table 2) in 
the form of a colour image. The sensor quantum efficiency curves for 
RGB bands are given in Fig. 2b. A rubber ring with an 11 mm diameter 
secured the surroundings of the sensor from natural light intrusion 
(Fig. 1.4). 

Additionally, the RPi thermal control was in question. Since thermal 
noise can significantly affect the spectral information of a colour image, 
a passive aluminium heatsink was placed on a processor chip to avoid 
overheating. Furthermore, as described above, RPi and Pi Camera were 
stored separately in the two 3D prints. Eventually, both 3D printed 
components were combined to create a singular piece of hardware, 

which should be easily manageable with one hand by pressing a single 
button. Finally, to achieve the most portable solution, Xiaomi Mi Power 
Bank 2S power bank with a capacity of 10 Ah supplied Rasp2SPAD with 
electrical power. 

2.2. Rasp2SPAD source code and measurement procedure 

By prototyping, solely open-source means were used (operating 
system, programming language, libraries). The RPi itself ran on the 
Raspbian GNU/Linux 9 that was stored and loaded directly from a 
memory card. The crucial feature of the Rasp2SPAD is that the algorithm 
is responsible for running the whole process from acquiring the image, 
processing it, and finally storing the results (Fig. 3). The code is written 
in Python 3.7 using available libraries PiCamera, RPi. GPIO and numpy. 

The algorithm is designed to run in an infinite loop initiating auto
matically approximately 30 s after the operating system starts until the 
SBC shutdown by disconnecting it from the power. This simple pro
cessing approach ensures operability by one button, while the procedure 
stage is indicated by LED flashing. 

Table 1 
Technical attributes of the single-board computer Raspberry Pi 3B+ used for 
Rasp2SPAD prototype development.  

Processor ARM Broadcom Quad-Core BCM2837B0, 1.4 GHz 

Operating memory 1 GB RAM 
Networking GigaByte Ethernet/Wifi 802.11b/g/n/ac 2.4 and 5 GHz 
Bluetooth Bluetooth 4.2, Bluetooth Low Energy (BLE) 
USB 4xUSB 2.0 
GPIO 40-pin GPIO header, populated 
SD card support Micro SD formatted for loading operating system and data 

storage 
Input power 5 V/2.5A DC via micro-USB connector, 5 V DC via GPIO 

header, Power over Ethernet (PoE)–enabled (requires separate 
PoE HAT) 

Operating 
temperature 

0 to 50 ◦C  

Fig. 1. Cut view of the forceps-shaped 3D print (1) ensuring uniform light 
conditions by providing the fixed position of the light source (2), the diffuser 
layer (3), the rubber sealing ring (4), and the Pi Camera (5). This component 
was placed atop the 3D printed case containing the single-board computer 
Raspberry 3B+ to create the Rasp2SPAD prototype. 

Fig. 2. Response curves representing a) spectrum of wavelengths emitted by 
the LED Yoldal YZ-WS5N40N as the active light source of the proposed pro
totype and b) the quantum efficiency of Raspberry Pi Camera Module V2.1 with 
a CMOS Sony IMX219 8 Mpix sensor. 

Table 2 
Technical specifications of the Raspberry Pi Camera Module V2.1 with the Sony 
IMX219 sensor chip that was used in the Rasp2SPAD prototype to capture a 
colour image as the source of RGB values for further calculations.  

Camera  

Lens focal length 3.04 mm 
f-number 2.0 
Instantaneous field of view 0.368 mrad 
Field of view 62.2 deg. (H) × 48.8 deg. (V)  

Sensor 

Image sensor type Back-lit CMOS 
Resolution 8 Mpix, 3280 (H) × 2464 (V) pix 
Pixel size 1.12 μm (H) × 1.12 μm (V) 
Bit depth 10-bit 
Operating temperature − 20 to +60 ◦C  
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After initialization of the peripheries (namely, light emitter and 
button pins), a new folder is created to store the results for one leaf 
measurement. In addition to the captured colour images, there is a 
logfile containing the results of image analysis. Calibration of the sensor 
follows the analysis and takes approx. 2 s. By clasping the empty forceps 
component (Fig. 1.1), the camera's shutter speed, white balance, and 
gains are fixed to ensure consistent sensing conditions. The measure
ment itself involves inserting the intact leaf into the forceps component 
(facing the light source). By pressing the button shorter than 0.8 s, the 
image is taken and saved in *.jpg format with 1280 × 720 resolution, 
which takes approximately 3 s. The following steps extract a mean 
digital number (DN) at 8 bit depth for each band (R, G, B), calculate 19 
other colour indices, and record the results to the logfile. This procedure 
is repeated in several spot measurements (standard 10 per leaf) until the 
button is pressed for longer than 0.8 s, which initiates a new leaf mea
surement comprising of the set of spot measurements. Finally, the data 
from logfiles are combined into one *.csv file, and a local Wi-Fi net is 
extracted using the SFTP protocol of the WinSCP application. 

The selection of 22 derived parameters (3 DN for RGB and 19 colour 
indices) was based on the results of other scientific studies published on 
the topic of colour imaging in agricultural applications (Table 3). 

2.3. Experimental design 

The proposed prototype was tested on experimental plant material 
that was prepared specifically for this research in cooperation with the 
Crop Research Institute in Prague. Winter rapeseed (Brassica napus L.) 
was chosen as a test crop since the leaf size was suitable for contact 
imaging, and concurrently, the experimental material could be planted 
in the laboratory much easier than maize, which was also used in similar 
studies. A set of 50 individual plants was planted under controlled 
temperature conditions (18 ◦C) with a 12-hour photoperiod in 450 ml 
plastic pots. The intensity of leaf colouration is mainly determined by 
the chlorophyll content and has been shown to correlate strongly with 
the nitrogen content in the leaves (Evans, 1983). This fact was used to 
optimize the nitrogen dose for crops and was the staple prerequisite of 
the experimental design. A specific fertilization scheme was therefore 
applied to provide wide nutrient diversity of plant material. To achieve a 
low nutrient substrate, garden soil was mixed with sand in a 1:1 ratio. 
After seed germination and seedling selection, rapeseed was planted in 
pure substrate for three weeks to provide equal initial nutrient uptake 
within all 50 pots. This ensured the ideal conditions for the following 

Fig. 3. Flow diagram of the algorithm responsible for the image acquisition and 
its processing aiming to generate the set of selected colour indices. The pink 
area represents the loop of spot measurements on a single leaf, while the green 
area depicts the initialization of the new leaf measurement. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 3 
Set 22 parameters derived from colour images acquired by the proposed pro
totype. DN for three channels of the visible region (RGB) followed by 19 colour 
indices that were selected based on their utilization in similar studies concerning 
low-cost chlorophyll content estimates. Note: c = max (R, G, B) – min (R, G, B); 
cmax = max (R, G, B).  

Index Description Equation Reference 

R Actual pixel value in 
red band 

– – 

G Actual pixel value in 
green band 

– – 

B Actual pixel value in 
blue band 

– – 

NRI Normalized redness 
intensity (r) 

R/(R + G + B) (Tavakoli and Gebbers, 
2019) 

NGI Normalized 
greenness intensity 
(g) 

G/(R + G + B) (Tavakoli and Gebbers, 
2019)  

NBI Normalized 
blueness intensity 
(b) 

B/(R + G + B) (Tavakoli and Gebbers, 
2019) 

H Hue cmax = G → hue =
60 × (2 + ((B − R)/ 
c)) 

(Vesali et al., 2015) 

S Saturation c/cmax (Vesali et al., 2015) 
Br Brightness cmax/255 (Vesali et al., 2015) 
Y Luma component 0.257R + 0.504G +

0.098B + 16 
(Vesali et al., 2015) 

Cb Blue chrominance 
component 

− 0.148R - 0.291G 
+ 0.439B + 128 

(Vesali et al., 2015) 

Cr Red chrominance 
component 

0.439R − 0.368G - 
0.071B + 128 

(Vesali et al., 2015) 

GMR – G - R (Wang et al., 2013) 
GDR – G/R (Adamsen et al., 1999;  

Tavakoli and Gebbers, 
2019) 

GDB – G/B (Tavakoli and Gebbers, 
2019) 

RDB – R/B (Tavakoli and Gebbers, 
2019) 

NDI Normalized 
difference index 

(G - R)/(G + R) (Pérez et al., 2000) 

(R-B)/ 
(R +
B) 

– (R - B)/(R + B) (Kawashima and 
Nakatani, 1998) 

DGCI – [(Hue/60–1) + (1 −
S) + (1 − Br)]/3 

(Vesali et al., 2015) 

ExG Excess Green Index 2 g - r - b (Woebbecke et al., 
1995) 

ExR Excess Red Index 1.4 (r - b) (Meyer and Neto, 2008) 
ExG- 

ExR 
– ExG - ExR (Meyer and Neto, 2008)  
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fertilization management that was held for one more month. Complete 
nutrient solution with graded nitrogen content was applied. Nitrogen 
was supplied every second day in a volume of 100 ml of solution with 
specific N doses (treatment 1 = 350 μM, treatment 2 = 750 μM, treat
ment 3 = 1500 μM, treatment 4 = 2500 μM, treatment 5 = 4000 μM) 
until the plants had at least two true leaves. Eventually, five distinct 
variants with ten rapeseed plants for each were prepared for Rasp2SPAD 
testing. 

2.4. Evaluation procedure 

After the experimental plant material was prepared, Rasp2SPAD was 
tested. The evaluation process itself involved the selection of the first 
and second fully developed rapeseed leaves (Fig. 4.), followed by mea
surements by both SPAD-502Plus and Rasp2SPAD. A detailed compar
ison of these two devices is provided in Fig. 5. In total 100 rapeseed 
leaves were examined. In practice, SPAD-502Plus standardly requires 10 
spot measurements to calculate the final SPAD value for one sample. 
Rasp2SPAD was programmed to work similarly, i.e., 10 measurements 
(and images) per leaf, to obtain the final average value for all derived 
parameters. SPAD values were stored in the device's internal memory 
and were later downloaded as a *.csv file into a computer for subsequent 
data processing. Rasp2SPAD data were gathered as described in Chapter 
2.2 in the form of a *.csv file. 

2.5. Statistical analysis 

As the first descriptive statistics of acquired parameters, a correlation 
plot was constructed for a general overview of the linear relationship of 
all 22 parameters (see Table 3) generated by Rasp2SPAD and the SPAD 

value gained by SPAD-502Plus (Fig. 6). Furthermore, modelling of the 
SPAD value was performed by a) a simple linear model (LM), b) a 
generalized linear model with a gamma distribution (GLM), and c) an 
artificial neural network (ANN). The dataset contained 89 valid records 
(outliers were removed according to the empirical rule), while one re
cord represented the mean value of the total 10 spot measurements on 
one leaf. For the purpose of SPAD value modelling, the dataset was 
divided into a “training dataset” containing 60 randomly selected re
cords and a “testing dataset” that contained the remaining 29 records. 
All three models were then fitted using the “training dataset” and further 
validated using the “testing dataset”. 

The fitting of a simple linear model included the full model con
taining all (22) parameters and its stepwise optimization based on 
Akaike information criterion (AIC) change (Akaike, 1974). The 
remaining nonsignificant parameters were manually removed from the 
model. Due to high correlations among the remaining parameters, pre
dictors were also stepwise removed based on the variance inflation 
factor (VIF). Predictors with VIF > 4 were removed from the model in 
each step. Eventually, the final model was manually edited to achieve 
statistical significance of all predictors (insignificant and marginally 
significant parameters were also removed stepwise). This exact 
approach was later used during the fitting of the GLM (using the gamma 
distribution and inverse value as a link function) to assess if even more 
significant results could be found. The normality of residuals was also 
tested, and the residuals were nonzero (model bias). 

As the third approach for SPAD value modelling based on the 
Rasp2SPAD indices, an artificial neural network was implemented. The 
same predictors as in the previously described LM and GLM were uti
lized. All predictors were scaled prior to analysis. The ANN was con
structed empirically, with the first layer containing two input nodes (one 
per each of the two parameters that were found to be the most suitable 
by LM and GLM) and the last layer containing only one node (predicted 
SPAD value). As the fit of the ANN does not give the same output for 
each run (because of a random number generator used for numerical 
optimization of the model), 100 successful runs were performed, and the 
model residuals obtained in each run were analysed for a more reliable 
evaluation of the model performance. 

Finally, as the main measure for the convenience of model fit, the 
mean absolute difference of the predicted value from the measured 
value was used. This enabled the use of one model measure for all three 
approaches. The evaluation was performed on “test dataset” records for 
all three modelling approaches. 

All computations were performed in R 4.0.2 (R Core Team, 2020) 
using a selected alpha level of 0.05, together with the packages readxl 
(Wickham and Bryan, 2019), tidyverse (Wickham et al., 2019), and 
reshape2 (Wickham, 2007). Plots were constructed using corrplot (Wei 
and Simko, 2017) and ggplot2 (Wickham, 2016). The artificial neural net 
was fitted using the Keras package in Python 3.8. 

3. Results and discussion 

Rasp2SPAD was developed with the intention of introducing a 
portable and affordable device for basic in-field data gathering. The 
utilization of low-cost components together with 3D printing seems 
promising since the financial load was approximately 5% of the SPAD- 
502Plus commercial price. Moreover, the configuration based on the 
RPi controlled by the Python code made the prototype easily program
mable, which might also be convenient for any further development. 

In terms of the data quality, Rasp2SPAD demonstrated to be able to 
provide a complex dataset by capturing and processing the simple colour 
image as a result of the evaluation procedure on the winter rapeseed. In 
addition to the extraction of DN for RGB channels, 19 other indices were 
calculated. These parameters were all tested on their relationship to the 
SPAD value gained by the SPAD-502Plus handheld sensor. The corre
logram (Fig. 6) provided an initial hint of more or less correlated indices 
with the six best performing NRI (r = − 0.869), hue (r = 0.865), ExG-ExR 

Fig. 4. The proposed Rasp2SPAD prototype in the evaluation procedure on the 
winter rapeseed. 

K. Křížová et al.                                                                                                                                                                                                                                 



Ecological Informatics 67 (2022) 101496

6

(r = 0.86), NDI (r = 0.858), GDR (r = 0.854), and RDB (r = − 0.846). 
In the first stage, LM for modelling the SPAD value based on selected 

parameters showed relatively high accuracy: R-squared = 0.81 on 
training data; mean absolute deviance of testing data =1.85, max. Ab
solute deviance = 2.42 (one-sided t-test, alpha = 0.05). Detailed results 
are given in Table 4. The calibration equation was thus defined as: 

SPAD = 89.538+ 0.475Cb − 0.761Cr (1) 

Furthermore, the GLM approach applied on the dataset also achieved 
significant results (Table 5), although only slightly better than LM. 
Artificial R-squared = 0.81 on training data reached the same level as by 
LM; nevertheless, lower mean absolute deviance of testing data = 1.79 

Fig. 5. Technical specifications of the proposed sensor Rasp2SPAD as the low-cost alternative to the standard commercial handheld sensor SPAD-502Plus (Kon
ica Minolta). 

Fig. 6. Correlation matrix of the actual SPAD value obtained by the commercial 
sensor SPAD-502Plus and the set of the 22 parameters derived by Rasp2SPAD 
based on 89 rapeseed leaf samples. 

Table 4 
The best fitting simple linear model (LM) for SPAD value prediction was based 
on parameters obtained by the Rasp2SPAD prototype.  

Response: SPAD value 

Coefficients     

Estimate t value p value 

Intercept 89.53762 7.56 < 0.001 
Cb 0.47547 10.18 < 0.001 
Cr − 0.76144 − 8.51 < 0.001 
R-squared (training data): 0.81 
Mean absolute difference (test data): 1.85  

Table 5 
The best fitting generalized linear model (using the Gamma distribution and 
inverse value as a link function) for SPAD value prediction was based on pa
rameters obtained by the Rasp2SPAD prototype.  

Response: SPAD Value 

Generalized linear model (Gamma distribution) 

Link function: Inverse value 

Coefficients     

Estimate t value p value 

Intercept − 0.0113 − 1.462 0.149 
Cb − 0.00003 − 9.738 < 0.001 
Cr 0.0005 8.523 < 0.001 
Null deviance: 0.807 
Residual deviance: 0.155 
Artificial R-squared: 0.81 
Mean absolute difference (test data): 1.79  
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and max. Absolute deviance = 2.30 (one-side t-test, alpha = 0.05) were 
achieved. Here, the SPAD value estimate can be described by Eq. 2. 
SPAD value estimates based on both mentioned models are given in 
Fig. 7. 

SPAD =
1

( − 0.011 − 0.00003Cb + 0.0005Cr)
(2) 

To achieve the utmost accuracy, a test was completed by engaging 
the artificial ANN. Only Cb and Cr were used as the input variables since 
they were considered the most sensitive variables during the two pre
ceding testing stages. Thus, the simple ANN was fitted with two inputs 
and one output, as the addition of any hidden layers returned less ac
curacy of the prediction on the test data due to overfitting. The results 
were considered comparable in terms of accuracy as the previous 
methods. The mean deviance of the model response from SPAD value 
measurements was 1.904 (95% CI: 1.89–1.92), while the best “run” 
showed a mean deviation of 1.70 (max. 2.22, 95% CI, one-sided t-test). 

All three modelling approaches could be incorporated in the source 
code at this stage to provide the SPAD value estimate for the following 
rapeseed measurements. However, LM was concluded to be the simplest 
method with a high level of accuracy. A complex overview of the plant 
material, representative colour image, and actual and estimated SPAD 
value across five distinctive N treatments is given in Fig. 8. 

Studies dealing with low-cost nondestructive chlorophyll estimates 
often based their approach on common types of digital cameras followed 
by postprocessing using specific software, mostly MATLAB. Misra et al. 
(2018) used a digital camera to compare selected existing approaches on 
water-stressed plants. Since the whole plant was sensed, the post
processing procedure necessarily included region of interest segmenta
tion, extraction of DN of RGB colour components, and desired model 
application. A similar approach was used in the study of Tavakoli and 
Gebbers (2019). The in-field canopy was sensed by a digital camera and 
processed later in MATLAB. Kawashima and Nakatani (1998) processed 
their in-field digital camera imagery even in Photoshop. None of these 
studies, however, appeared to address natural light conditions, although 
this kind of illumination might generate certain noise in the acquired 
image (Pérez-Patricio et al., 2018), and an artificial light source with 
known parameters of the light spectrum should be used. Pérez-Patricio 
et al. (2018) developed its own in-house device that sensed the crop leaf 
inserted in a dark chamber with an LED lamp and a mirror. Nevertheless, 
the obtained imagery had to be transferred to the computer for image 
processing using MATLAB to obtain the final values. For the particular 
reason of reducing the effect of lighting conditions, Ali et al. (2012) 

developed an interesting alternative by using a portable scanner (Pico 
Life) rather than a camera to obtain the image. Again, data post
processing using MATLAB had to be involved. Hence, natural light 
illumination of the image, the necessity of data postprocessing, or their 
combination appear to be the most common drawbacks that need to be 
eliminated by developing Rasp2SPAD. Incorporating the LED as the 
active light source together with the convenient design of forceps 3D 
printing ensured uniform illumination conditions. To address the data 
postprocessing issue, utilization of programmable RPi SBC was a clear 
choice, since well-prepared source code performed all the necessary 
steps from image capture to producing a dataset with final SPAD value 
estimates. 

Regarding the generated indices, recent studies on this topic ach
ieved certain results while dealing solely with the most common RGB 
model for colour representation (Nelis et al., 2020). This study, how
ever, presents the potential of other colour spaces, since indices derived 
by Rasp2SPAD covered HSB (hue, saturation, brightness) and YUV (Y, Cb, 
Cr) colour space in addition to the RGB model. The conversion of initial 
DN representing the RGB channels according to the equations listed in 
Table 3 brought a new dimension of knowledge in terms of simple colour 
image utilization for plant status assessment, as the blue- Cb and red 
chroma component Cr were the most important parameters during SPAD 
value modelling. The YUV colour model, whose domain has digital re
cord compression via chroma subsampling (Choudhury, 2014), has also 
been in the field of agriculture and has used for segmentation of pixels 
representing vegetation from the image background (Hernández- 
Hernández et al., 2016) or to detect crop disease in combination with 
RGB colour indices (Kerkech et al., 2018). Although its three compo
nents are derived from RGB, the information they provide is different. 
Since the luma component (Y) represents the image brightness, the other 
two chroma components (Cb, Cr) represent solely the colour. Therefore, 
chroma components might be more sensitive to colour variations that 
indicate the plant status in terms of its nutrition saturation. More colour 
models were also used in the study of Vesali et al. (2015), which focused 
on developing an Android app for chlorophyll estimation using a 
smartphone. They covered parameters from RGB, the same as from HSV 
and YUV. However, according to their results of maize measurements, 
the hue component was the most significant parameter for SPAD value 
modelling. By fitting the SPAD value by a linear model, they achieved 
R2 = 0.74 and R2 = 0.82 by a neural network. This complex approach of 
the contact imaging of a leaf and supplying the SPAD value estimate 
directly on a display might be very convenient. However, the issue of 
natural light noise is still questionable. Additionally, differences in leaf 

Fig. 7. Model diagnostics of the actual SPAD value estimates by a) a simple linear model and b) a generalized linear model based on the Cb and Cr chrominance 
components of the YUV colour model. 
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structure among crops may cause dissimilar results (Ali et al., 2012; 
Pérez-Patricio et al., 2018; Richardson et al., 2002). Most of the 
abovementioned studies were conducted mainly to demonstrate the 
feasibility of the described technique on crops. Therefore, in the case of 
Rasp2SPAD, crop-specific equations for chlorophyll estimates must also 
be developed. Since the whole technology is now shown to be running, it 
is only a matter of applying this method to other crops. By generating the 
most utilized colour indices, finding the best fit, and incorporating it into 
the source code, Rasp2SPAD has the potential to meet the needs of 
farmers, as it is easily constructed and the code is provided under an 
open-source licence. 

4. Conclusion 

In-field sampling is a significant source of information involving crop 
status. Such data are highly desirable for creating well-adjusted agri
cultural management to follow the principles of sustainable crop pro
duction. To bring the opportunity to benefit from a nondestructive 
sampling method closer to the end-users, a low-cost device based on a 
Raspberry Pi single-board computer named Rasp2SPAD was developed. 
The prototype was designed to capture and process a colour image while 
further producing chlorophyll-related indices based on which the SPAD 
value was to be modelled. The evaluation procedure conducted on 
winter rapeseed provided satisfactory results in terms of the cost- 
performance ratio. The calibration equation was derived using the 
values of the blue- and red chroma components from the YUV colour 
representation model that came out as the most sensitive colour indices 
from the analysis. Rasp2SPAD predicted the SPAD value with R2 = 0,81. 
By achieving this level of accuracy, initial objectives were fulfilled. It has 
been shown that a) a functional hand-held crop sensor can be con
structed while keeping the financial costs low compared to the com
mercial SPAD-502Plus (5% of the commercial price), b) a simple colour 

image is able to provide valuable information about crop status, and c) 
the prototype is easily programmable, which might be useful for testing 
it on other crops. By reflecting the above-described drawbacks of 
already existing similar methods, Rasp2SPAD represents a solution that 
eliminates the majority of them. First, the colour image properties are 
prevented from natural light noise. Second, image postprocessing is 
performed internally, which ensures prompt and consistent results. After 
this pilot study, the outlook for Rasp2SPAD might include a) testing on 
other crops followed by species-specific equation determination and 
incorporation in the source code and b) technological improvements, 
such as using an NIR diode to quantify leaf chlorophyll content by 
illumination with near-infrared wavelengths. The Rasp2SPAD proto
type, as it is configured now, incorporates a multidisciplinary approach 
embracing knowledge of computer science, optical methods, spectral 
behaviour of vegetation, and plant physiology to fill the gap between 
research and practice by introducing affordable crop sensor that might 
help to gather in-field data on the way towards sustainable agriculture. 
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