BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF MECHANICAL ENGINEERING

FAKULTA STROJNIHO INZENYRSTVI

INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND
BIOMECHANICS

USTAV MECHANIKY TELES, MECHATRONIKY A BIDMECHANIKY

EDUCATING MODEL FOR MECHATRONICS: MODEL
DEVELOPMENT AND FAST USB COMMUNICATION

VYUKOVY MODEL PRO MECHATRONIKU: VYVOJ MODELU A RYCHLE KOMUNIKACE POMOCI USB

MASTER'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. Martin Formanek
AUTOR PRACE

SUPERVISOR Ing. Martin Appel
VEDOUCI PRACE

BRNO 2020

VYSOKE UCENI FAKULTA
I TECHNICKE STROJNIHO

VBRNE INZENYRSTVI

Zadani diplomové prace

Ustav: Ustav mechaniky téles, mechatroniky a biomechaniky
Student: Bc. Martin Formanek

Studijni program: Aplikované védy v inzenyrstvi

Studijni obor: Mechatronika

Vedouci prace: Ing. Martin Appel

Akademicky rok: 2019/20

Reditel Ustavu Vam v souladu se zakonem &.111/1998 o vysokych $kolach a se Studijnim
a zkuSebnim radem VUT v Brné ur€uje nasledujici téma diplomové prace:

Vyukovy model pro mechatroniku: vyvoj modelu a rychlé komunikace
pomoci USB

Stru¢na charakteristika problematiky ukolu:

Motivaci prace bude vytvoiit model obsahujici jeden motor a vice nespecifikovanych senzort tak, aby
se pfi udrzeni pfijatelné ceny dalo realizovat co nejvice uloh. Zafizeni bude tak robustni, Ze umozni
nasazeni zafizeni do vyuky ve vétS§im poctu bez nutnosti specialnich pozadavk(na pouzity pocitac.
Momentalné se pro vyuku pouziva model obsahujici dva motory, ale bohuzel je drahy na vyrobu
a vyzaduje, aby v pocitaci byla specialni draha méfici karta.

Cilem prace bude vytvoreni vyukového modelu, ktery bude komunikovat s pocitatem pomoci USB.
Volba typu USB komunikace bude s dirazem na rychlost a dal$i parametry. Na strané pocitace bude
nastroj, ktery dovoli studentim komunikovat se zafizenim v prostiedi MATLAB a Simulink bez nutnosti
cokoliv nastavovat. Na strané zarizeni bude navrzena deska, ktera bude komunikovat s pocitacem,
Cist data ze senzor(a ovladat motor podle instrukci uzivatele. Komunikace musi byt tak rychla
a robustni, aby umoznovala vytvoreni fidici smycky, kde fidici algoritmus bude na strané pocitace bud’
v Matlabu nebo Simulinku.

Dal$im cilem prace je vytvoreni sady vyukovych tloh realizovatelnych na vytvofeném zafizeni. Uloha
bude obsahovat motivaci pro realizovani této ulohy a zadani pro studenty, v€etné popisu moznych
komplikaci a jejich feSeni. Soucasti bude také ukazkové reSeni, doplnéné popisem postupu. Dané
ulohy budou otestovany na testovacich subjektech s cilem zajisténi vhodného nastaveni.

Zarfizeni musi byt navrzeno tak, aby umoznovalo snadnou a levnou vyrobu a snadnou opravitelnost.
Zaroven musi byt zaru€ena bezpec€nost pro studenta, ktery bude model pouzivat.

Fakulta strojniho inZenyrstvi, Vysoké uceni technické v Brné / Technicka 2896/2 / 616 69 / Brno

Cile diplomové prace:

1) Porovneijte nékolik motord a vyberte vhodny motor s ohledem na pouZiti pro vyukové tlohy.

2) Navrhnéte sadu vyukovych uloh tak, aby se daly pouzit do vyuky.

3) Prozkoumeijte a porovnejte rizné moznosti USB komunikace a zvolte takovou, aby spliiovala
pozadavky vyukovych uloh.

4) Vytvorte rychlou a robustni komunikaci mezi zafizenim a pocitacem.

5) Napiste program, ktery umozni studentim komunikovat se zafizenim z prostfedi MATLAB
a Simulink.

6) Vytvorte vyukovy model obsahujici jeden motor a dostateény pocet senzori pro vybrané vyukové
ulohy.

Seznam doporucené literatury:

CORKE, Peter I. Robotics, vision and control: fundamental algorithms in MATLAB. Berlin: Springer,
2011. Springer tracts in advanced robotics, v. 73. ISBN 9783642201431.

VALASEK, Michael. Mechatronika. Praha: Ceské vysoké uéeni technické, 1995. ISBN 80-01-01276-X.

GREPL, Robert. Kinematika a dynamika mechatronickych systémd. Brno: Akademické nakladatelstvi
CERM, 2007. ISBN 978-80-214-3530-8.

Termin odevzdani diplomové prace je stanoven ¢asovym planem akademického roku 2019/20

V Brné, dne

L.S.

prof. Ing. Jindfich Petruska, CSc. doc. Ing. Jaroslav Katolicky, Ph.D.
reditel ustavu dékan fakulty

Fakulta strojniho inzenyrstvi, Vysoké uéeni technické v Brné / Technicka 2896/2 /616 69 / Brno

ABSTRACT, KEY WORDS

ABSTRAKT

Tato diplomova préaca sa zaobera navrhom a realizdciou vyukového modelu pre Studentov
mechatroniky na vysokej $kole. Uvod préace sa zaobera kratkym uvedenim do problematiky
pouzivania univerzalnej sériovej zbernice a jej implementdciou pre komunikaciu s
mikrokontrolérom. Druha cast’ je venovana hardwaru zariadenia, medzi o patri volba
vhodného motoru, navrh vhodnych elektronickych komponentov, navrh dosiek plo$nych
spojov a taktiez mechanickej konstrukcie celého zariadenia. Nasleduje softwarova cast,
popisujuca prakticku realizaciu komunikacie, program v mikrokontroléry, a Toolbox, ktory
umoznuje uzivatelovi jednoducht interakciu s hardwarom a to jak z Matlabu. tak
z0 Simulinku. Kombinacia navrhnutych hardwarovych a softwarovych prvkov umoziuje
jednoduchu cestu k zlepseniu vedomosti Studentov Vv oblastiach programovania, riadenia
amodelovani sustav. Pre tieto ulely je praca rozsirena o pracovny list, ktory dopliia
navrhnuté zariadenie o sadu experimentalnych uloh, zameranych na vybrané mechatronické
problémy.

KLUCOVE SLOVA
USB, FT2232H, navrh DPS, riadenie, PID, LQR

ABSTRACT

This thesis deals with the design and implementation of an educational model for students of
mechatronics at a university. The introduction briefly focuses on the USB and its
implementation for communication with a microcontroller. The second part is devoted to the
hardware of the device, which includes the selection of the right motor and the electronic
components, the PCB design as well as the mechanical construction of the entire device. The
aim of the following section is to characterize the software, describing the practical
implementation of the communication, a program running in microcontroller and the toolbox,
which allows the user to easily interact with the hardware, from both Matlab and Simulink.
The combination of designed hardware and software elements provides an easy way to
improve student’s knowledge in programming area, control and system modelling. For these
purposes, the work is extended by a workbook, which complements the designed device with
a set of tasks focused on selected mechatronic issues.

KLUCOVE SLOVA
USB, FT2232H, PCB design, control, PID, LQR

BRNO 2020

ROZSIRENY ABSTRAKT

ROZSIRENY ABSTRAKT

Motivovat Studentov a zatraktivnit' vyuku mechatroniky na vysokej Skole sa d& réznymi
sposobmi. Jednym z nich je umoznenie Studentom experimentovat’ a aplikovat’ nadobudnuté
vedomosti na realnej sustave. DC motor sa povazuje za systém, ktory bezpochyby patri medzi
zakladné ucebné pomocky, ato hlavne vd’aka relativne malym rozmerom a jednoduchym
sposobom merania veli¢in pri operacii motoru (pradu, otacok).

Tato praca vznikla na zdklade mySlienky vytvorenia komplexného zariadenia, ktoré by
prinieslo nové moznosti vo vyuke mechatroniky. Podoba samotného zariadenia nebola od
zaCiatku prace jasne definovana, ale formulovala sa postupne v niekolkych iteraciach.
Zvazovanych bolo viacero navrhov, nakoniec bolo rozhodnuté pre motorovu sustavu so
zotrvacnikom, ktory je s motorom spojeny odnimatel'nou gumickou. Takyto navrh umoziuje
okrem jednoduchsich tloh suvisiaci s reguldciou motoru aj ulohy, kde je potreba vyuzit
zlozitejsie algoritmy pre regulaciu polohy zotrva¢niku. RozsSirené moznosti su zarucené
pridanim d’al§ich prvkov vo forme tlacidiel, luminiscen¢nych diéd a inercidlnej meracej
jednotky.

Od inych laboratornych modelov by sa malo novovzniknuté zariadenie odliSovat’ v niekol’kych
klucovych aspektoch. Jedna z hlavnych prednosti zariadenia je komunikécia s PC. Vic¢§ina
laboratornych modelov v Mechatronickom Laboratériu na FSI pouziva pre svoju funkcionalitu
draht vstupno-vystupnu kartu a Specidlny kabel. Pouzitie USB umoziuje pripojit’ hardware
prakticky ku ktorémukol'vek pocitacu, nakol’ko je USB v dneSnej dobe najpouZivanejSia
zbernica astolné pocitate obvykle disponuju viacerymi portami tejto zbernice. Tejto
problematike sa venuje prva kapitola prace, v ktorej st okrem zakladov USB spomenuté aj
moznosti spojenia pocitaca s mikrokontrolérom. Kapitola detailnejSie popisuje pouzitie USB
mostu a konkrétny typ, ktory je nasledne pouZity v praktickej Casti prace.

Ked'Ze by finalna podoba zariadenia mala byt’ vyrabana vo va¢som pocte, bol od zaciatku doraz
kladeny na nizku cenu jednotlivych Casti. S tym suvisi navrh elektroniky a voI'ba motoru. Ten
bol zvoleny podl'a viacerych kritérii, v priebehu vyvoja bolo otestovanych viacero motorov.
Motor v zariadeni je napajany dvomi litiovymi batériami, ktoré sa nabijaju pomocou USB z
PC, pricom power management celého zariadenia je navrhnuty tak, ze zariadenie nepotrebuje
Ziadny napédjaci kabel navyse, a dokaZe nepretrZite pracovat’ aj pri plnej funkcionalite vietkych
senzorov a max. otackach motoru (v nezatazenom stave). Elektronika bola rozdelena na tri
dosky plosnych spojov:

e Vykonova DPS zahfiiajiica obvod pre nabijanie baterky, obvod pre ochranu baterky
a zvySujuci meni€ napatia,

e Riadiaca DPS s mikrokontrolérom, USB mostom a konektormi pre pripojenie senzorov,

e DPS s tlac¢idlami a luminiscenénymi diédami

Popri navrhu hardware bol stibezne vyvijany software. Ten sa sklada z troch Casti. NajnizSia
vrstva je tvorena programom v mikrokontrolére, kde bol naprogramovany stavovy automat,
ktory riadi uzivatel’ prikazmi z PC. Podl’a tychto prikazov mikrokontrolér ovlada motor, posiela
data zo senzorov atd’. Prostredna vrstva je tvorend funkciami pre USB prenos dat na fyzickej
urovni, tato pasaz je z velkej Casti prevzana od vyvojarov FTDI. Funkcie prostrednej vrstvy
vola najvys$ia vrstva, vytvorena v programovacom prostredi Matlab-Simulink a zabalena do
toolboxu. Koncovému uzivatelovi je takto umoznené vytvarat’ simulacie a riadiace slucky
v Matlabe a Simulinku s vzorkovacou frekvenciou do 1kHz.

BRNO 2020

BIBLIOGRAPHIC CITATION

BIBLIOGRAPHIC CITATION

FORMANEK, Martin. Educating model for mechatronics: model development and fast USB
communication. Brno, 2020. Master’s thesis. Brno University of Technology, Faculty of

Mechanical Engineering. Supervisor Ing. Martin Appel, 80 pages.

BRNO 2020

AFFIDAVIT

AFFIDAVIT

| declare that the presented master’s thesis is my original work, and that it was created with
the support of the stated literature, under the supervision of my tutor.

Martin Formanek

BRNO 2020

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor, Ing. Martin Appel for his
immeasurable patience, invaluable comments and motivation. | also would like to thank to
colleagues from Mechatronics Laboratory for their help, knowledge sharing and supportive
work environment.

BRNO 2020

CONTENTS

CONTENTS
R [)1 £ o [0 Tox [o PP PSPPSR 11
2 CommuUNICAtION VIA USB.........couiiiiiiiie ettt 12
2.1 HiStory and eVOIULION.........c.coiiiieiiiie e 12
2.2 TOPOIOGY ...ttt e 13
2.3 DA tranSTer.......cciiee e s 14
2.3.1 Data FIOW TYPES ...t 15
2.4 ConNeCtors and CADIEScoouieiie it 16
2.5 USB BIAQESvveveeieiie ittt sttt sttt s ta et st e te et esaa e teenn e s ra e raentenneenns 16
2.5.1 FTDIFTB00Q i iiiieiiecie et e sttt sre et e s s be et e ra e b e e besaaesreesreenne e 17
2.5.2 FTDIFT2232H ...ttt 18
K I U0 1V T OSSPSR 21
1 0 R D T O 1Y/ [] (o] SR 21
3.2 POWET BIECIIONICS ..ottt sttt s te et e e e sae e s beeabeeere e 22
3.2.1 POWEE SOUICE ..eiiiiiieeiiiiieiitie e sitee st e site ettt et e e st e et e e snb e e e nnb e e e nnb e e e nbneeans 23
3.2.2 Battery ManagemeNnt........cooveiiiiiiiieieere et 23
3.2.3 BOOSE CONVEITENeeiiie ettt et e e st e e e snae e e sneeeenneeeans 24
I S o I o T (o SO 25
3.2.5 CUIMENE SENSING ..veeveiitieieeie st ettt ettt et et s b e e beesbe e e e beebeansesaeenreenne e 26
G T 00 0|1 (0] =1 [=Tod (0] o or RSO OPTSPP 26
3.4 AcCelerometer & QYIrOSCOPEccveiveiieiteeieeeesteesteetesteeste e steesre e e reesae e e e sreesre e 28
3.5 Flywheel rotation SENSINGc.covveiiiiiiiieie e 28
N T I =T 4 To] 4411 (=T OSSPSR 29
3.7 POWEN MANAGEIMENT......iiieiiiieiiieesiie et e e e e et e et e et e srb e snb e e e sraeeessreeeseeas 29
IR T = 1 = 1 SO PRSS PSR 30
3.9 MechaniCal CONSIIUCTIONcccueiiiiieiiee e s e re e 31
S 10 A11 V- LTRSS 33
4.1 Communication between PC and MCU.........c.cccoe i 33
O R |V (1S3 U0 [PPSR 33
A4.1.2 TEANSTEE TALE.....ciiiiciee ittt 34
4.2 MSP TOOIDOXoiiiiiiiie et e 35
4.2.1 TOOIDOX rEQUITEMENTSeiuieiieiite ittt 36
4.2.2 INSEAHALION ... 36
4.2.3 MATLAB FUNCHONSocviiiiiciie ittt 37
424 SIMUINK TIDFAIY .cooiii s 39

BRNO 2020 9

CONTENTS

4.25 SIMUIINK REAI-IME.....cciiiiiice e 40
4.2.6 Simulation iNItialiZationcceiieiiiie i 43
4.3 MICTOCONIIOIIET ... et e e re e 44
4.3.1 State MACKINE......ccii e 44
A 10 1= | SS 46
ST AT 0] 24 o Lo G PSPPSR 47
G O] o 1151 o o OSSR 49
LiSt OF @DDIEVIALIONSeceieieee et et neesreeee s 51
BIDIHOGIAPNY .. 53
N o] 0T 40 L OSSPSR 55
A WOIKDOOK ...ttt rs 55

BRNO 2020 10

INTRODUCTION

1 INTRODUCTION

The unstoppable technological development, automation and digitation in recent decades is
associated with an enormous interest in relatively young field of study that combines
mechanics, electronics, computer science and automation — mechatronics. Most students during
their studies have to face simple tasks, such as programming LED flashing or simple motor
control, and it is clear to them that they would be more motivated for such work and perhaps
even remember more if they could actually see the results of their work on a real device and not
just as simulations on a screen.

The aim of this thesis is to design a device that will motivate students and serve as a teaching
tool in the mechatronic studies. It will focus mainly on the improvement of the programming
skills of the students and the implementation of theoretically acquired knowledge of the
mathematical models for the control of real equipment. The scope of the complexity of the tasks
that can be performed on the device should cover a wide range, from very simple programming
tasks, which can be handled at the secondary mechatronics schools, e.g. lighting LEDs, rotating
the motor by pressing the button, through fairly complicated tasks, to tasks requiring knowledge
acquired during the master’s degree studies (more complex state-space control algorithms).

The device should, among other things, replace the Double Drive laboratory model, which is
available in the FME mechatronics laboratory. This model is used in teaching, especially in the
subjects RDO (Modelling and Simulations) — 2" year of bachelor’s studies and RPO (Real-
time Control and Simulations) — 1% year of the master’s degree studies. The disadvantage of
this model is mainly the need of an expensive multifunction 1/0 card MF624 from the Humusoft
company and a unique cable, which can take hours to produce. Another disadvantage is the
high failure rate, mainly due to careless manipulation by students. The newly designed device
should solve these shortcomings, and thanks to the number of added peripherals have much
greater possibilities.

The greatest advantage should be a simple USB connection. The first part of this work is
devoted to that particular area, where the possibilities of this bus are described in more detail.
The emphasis is on the use and implementation of the USB bridge.

The main part of the thesis deals with a practical design and realization of the device itself. This
section mentions the individual hardware components that are used in the device, accompanied
by the software that allows a user to easily interact with the hardware. The work concludes with
a list of tasks that are suitable for performing with the device.

BRNO 2020 11

COMMUNICATION VIA USB

2 COMMUNICATION VIA USB

In the previous three decades, USB (Universal Serial Bus) has become incredibly popular.
Nowadays, it can be found in a wide range of systems ranging from compact small MP3 players
to full-size SUVs. The USB is known primarily for its high—speed data rate transfer in the
computer—peripheral device communication, and thanks to its proven protocol and wide variety
of class drivers, the USB plays key role in communications, human-interface devices, video
streaming, printing, automotive, IoT (Internet of Things) and many other applications. In
addition, it can deliver up to 100W of power in certain operating modes, which allows easy
implementation for powering devices, battery charging, etc.

The first chapter of this work deals with theoretical background of the USB communication
from the point of view of both hardware and software. As the USB is a very complex standard,
which took several decades to develop and is still evolving, only the rough basics are described,
and the chapter focuses mainly on the parts that are emerging for the needs of the practical
implementation.

2.1 HISTORY AND EVOLUTION

Before a USB was first released, there were many types of computer ports like serial port,
parallel port, PS2 and so on. These ports take up a significant portion of the available space on
a motherboard, and if anybody wanted to use them, they would need special drivers. The user
must plug the hardware in as well before attempting to boot the system, and set up the
communication parameters, such as the selection of the correct port, bit rate, parity, etc., each
time. In addition, various manufacturers have been producing different, more expensive, and
impractical connectors. This led the world giants, specifically companies Intel, Hewlett-
Packard, Lucent (Nokia nowadays), NEC, Microsoft, and Phillips, to create one universal port
that replaced most of the standardized ones. [1]

Although a USB has officially existed since 1994, it did not raise too much attention of
costumers and other companies in the early stages. The data rate was 1,5 Mbit/s and already in
the first version, a USB protocol was able to detect the port and path through the hubs where
the device is located, provides initial settings, negotiates connection parameters and even allows
connecting and disconnecting of devices while the system is running without the need to restart
the computer. These features were groundbreaking at that time, however, the initial version
contained a good deal of bugs and the real popularity was raised a few years later, with version
1.1. This version eliminated the initial failures and with the data rate of 12 Mbit/s took stable
place on the market. Further, Apple Inc., well known computer giant, has also raised the
awareness about USB by producing an iMac, a computer with USB ports only. This
demonstration of confidence motivated many manufacturers to be even more interested in
making a USB peripherals and accessories. [1]

Soon, the data rate of 12Mbit/s became insufficient and USB 2.0 with new capabilities came
on the market. Compared to the older version, its maximal speed significantly increased to
480Mbits/s while compatibility with the older version was kept.

The USB 3.0 with a data rate of up to 5Gbit/s and increased power output was introduced in
2008. This USB, also called SuperSpeed USB, differs from the earlier versions in the transfer
mode which replaced a half-duplex mode with a full-duplex mode. All the earlier versions are
half-duplex, arbitrated by the host. An USB developers' unwavering desire to ensure the

BRNO 2020 12

COMMUNICATION VIA USB

maximal user comfort and market dominance leads to making new generation of 3rd USB
edition, USB3.1 and USB3.2 with improved data rates 10GBps and 20GBps, respectively.

The latest version called USB4 should be released in the late-2020, promising up to 40GBps
speed and several brand-new features.

Overview of the released USB standards is shown in the table 1.

Table 1: Comparison of the USB standards [1]

Release Power Output Max. Max.

year transfer rate | polling rate
USB 1.0 1996 150mA @ 5V, 0.75 W 1.5Mbit/s 125 Hz
UsSB 1.1 1998 150mA @ 5V, 0.75 W 12 Mbit/s 1000 Hz
USB 2.0 2001 500 mMA @ 5V, 25W 480 Mbit/s 8000 Hz
USB 3.0 2011 900 mA @ 5V, 45W 5Ghit/s 8000 Hz
USB 3.1 2014 900 mA @ 5V, 45W 10 Gbit/s 8000 Hz
USB 3.2 2017 900 mA @ 5V, 45W 20 Ghit/s 8000 Hz
USB 4 2020 40 Gbit/s

The table 1 contains a parameter polling rate, which is not commonly found in the general
information, but it is important for the purposes of this work. The polling rate indicates the
frequency with which can the host initialize new requests for the information from the device.
This parameter is more important than the maximal transfer rate, since the goal of the designed
communication is to send and poll smaller data volume as frequent as possible.

2.2 TOPOLOGY

Bus systems, that are made of more devices are interconnected via certain topologies. The
physical topology exposes the real connection between the individual devices. USB developers
opted for a star topology, with one root hub to which another hub or a device (keyboard,
mouse...) can be connected. Hubs can be branched up to 7 layers. Ports on the motherboard that
are visible from the outside are usually already a part of the internal hub. A physical topology
is often expressed by a pyramid (Fig.1). [2]

3 ROOT HUB - TIER 1
;j‘}iu?é) “ TER2

‘hoes . TIER3
oE|[DEVICE - (HUB

& | TER4
J DEVICE DEVICE Y

. TIERS

'HUB) DEVICE (hu’: |pEvice . TIERS®

4 / S TER?

DEVICE

Figure 1 USB Physical topology [2]

BRNO 2020 13

COMMUNICATION VIA USB

A logical topology shows the interconnection of individual functional blocks, in the terms of
the control logic and the software continuity. A logical topology may not always correspond to
the physical distribution. From the logical point of view, USB host sees all the end-point devices
(functions) equally, no matter how many hubs it goes through.

2.3 DATA TRANSFER

All the transactions are started by the USB host. The fundamental of every host is the root
controller that communicates with other protocols inside the computer. This controller
determines the communication speed of the connected devices.

A transaction is opened by sending a token packet to the device, telling the address of the device,
type of the transmission and the desired data flow direction. A device, which recognizes its
address in the token packet prepares for the transfer. Then the data source (host or the device,
based on the information in the token packet) sends a data packet or announces that it has no
data to send. The transaction is terminated by the recipient sending a handshake packet to
confirm the successful transmission.

Although this communication may seem simple at the first glance, the opposite is true. From
the user’s point of view, the device is directly connected to the computer, but the correct data
flow between the client software and the device requires the cooperation of several layers and
entities, see fig. 2.

Host Interconnect Physical Device
Client SW I LS Function Layer
o
USB System ' USB Logical .
SW Device USB Device
é t Layer
USB Host ﬁ USB Bus USB Bus
Controller ! Interface Interface Layer
i

ﬁ Actual communications flow

Logical communications flow

Figure 2 USB Implementation Areas [2]

What a user can see, is a communication between his developed application and the USB device
on the other side of the cable. From the application layer, a data goes through the Client SW

BRNO 2020 14

COMMUNICATION VIA USB

(driver) to the USB function in the device. This is possible thanks to the USB Device layer,
which is made of the software that operates the USB bus in the operating system. It is usually
part of the system core and is independent of the connected USB devices. However, the real
data exchange happens at the lowest physical interface layer, which ensures the actual
connection and the packets communication. Both the USB device layer and the function layer
have a view of the logical communication within their layers that actually uses the interface
layer to accomplish the data transfer. [2]

2.3.1 DATA FLOW TYPES

With the glory of the USB and its extension to all possible applications, it is clear that not all
devices will communicate in the same way. In some application the immediate response is
inevitable (gaming mouse), in others the priority is not important, but rather the high efficiency
by sending the full packets (mass storages).

USB is capable of the four different transfer types: Control, Bulk, Isochronous and Interrupt,
each applicable for different tasks. The transfer type set the frequency, the length of the
transactions and turns on/off the CRC (Cyclical Redundancy Check). Transfer type is set in the
enumeration process; their mutual comparison is shown in tab. 2.

Table 2: USB Transfer types [2]

Control Bulk Interrupt Isochronous
Max. data 24 bytes
. 0,8 bytes
bytes/ms in low- (3x8-byte No support No support
. (8-bytes per 10 ms)
speed mode transactions)
b t';g?:;ﬂ?lt?u“_ 832 (13x64-byte | 1216 (19x64-byte 64 (1x64-byte 1216 (19x64-byte
y transactions/frame) | transaction/frame) transaction/frame) transaction/frame)
speed mode
MERS GELE 15872 (31x64-byt 53248(13x512-byt 24576(3x1024-byt 53248(13x512-byt
- - Xo4-pyte X -byte X -pyte X -pyte
bytESI msin hlgh' transaction/microframe) | transactions/microframe) transactions/microframe) transactions/microframe)
speed mode
CRC yes yes yes no
Guarantged rate no no no yes
of delivery
Guaranteed time
between no no yes yes
transfers
Ty_p |ca_1l Configuration Printer, scanner Mouse, keyboard Audio, video
application

BRNO 2020 15

COMMUNICATION VIA USB

2.4 CONNECTORS AND CABLES

The USB utilize unique cables for connecting the devices and PCs. For the long time, USB was
using four wire cables (5V voltage line, ground line and twisted differential data pair). Using
only two data lines became insufficient with the arrival of the USB3.0. Developers decided for
the 9-line cables with the backwards compatibility. The connectors are designed to prevent the
connection of two masters or two slave devices together. Available connector types are shown
in the fig. 3.

E R LEE 4

s CD ™ e
USBTYPEA USBTYPEB USBTYPEC USBMINIA USBMINIB USBMICROA USBMICROB USB MICRO B SUBER SPEED

Figure 3 USB Connector types [3]

2.5 USB BRIDGES

As mentioned before, USB is a using a complex protocol and there are high fees to get own
certified device. Microchip provides USB driver and some of the Microchip microcontrollers
have USB interface and physical layer integrated in the chip. The downside is that extensive
framework and a bunch of pre-compiled files without any documentation is needed.
Microcontrollers from dsPIC family are capable of full-speed transactions only and just a few
of 32-bit microcontrollers can be configured to work in the high-speed mode. These drawbacks
lead to use an IC purely for the USB communication, super bridging MCU. Bridges can transfer
the USB protocol to other common low-level protocol (UART, SPI, I°C, ...), which is easier to
implement in the MCU.

There are many manufacturers on the market with wide range of bridge types. Comparison of
the most popular bridges is shown in tab. 3 on the next page. It is evident that it is not an easy
task for developers to create an USB bridge that would use the full potential of the USB
protocol. There are only a few chips on the market that can operate in High- or Super- speed
mode.

The world leader in developing the USB bridges is FTDI (Future Technology Device
International). FTDI provides free drivers for Windows and Linux, as well as detailed
documentation and application notes. Two FDTI chips, FT600Q and FT2232h are further
discussed and practically tested.

BRNO 2020 16

COMMUNICATION VIA USB

Table 3 USB Bridges

Chip name Bridge to Ma’r‘éfea“d USB Speed (Orieﬁ{;‘zfonal)
Cypress CY7C6521x UART/SPI/I)C 3 Mbit/s Full speed 47 CZK
Silicon Labs CP2102N UART 3 Mbit/s Full speed 35 CzZK
Microchip MCP2200 UART 1 Mbit/s Full speed 48 CZK
Prolific PL2303HXD UART 12 Mbit/s Full speed 32 CZK
FTDI FT232R UART 3 Mbit/s Full speed 100 CZK
FTDI FT2232H UART/FIFO IC 40 MB/s High speed 115 CzZK
FTDI FT600Q Parallel interface 5 Gbit/s Super speed 200 CzK

2.5.1 FTDIFT600Q

The first tested USB bridge was one of the newest bridge chips, introduced by FTDI in 2015.
FT600Q is a USB to FIFO (First In- First Out) interface, with these chip key features [4]:

e Supports Super-Speed (5Gbps), High-Speed (480Mbit/s) and Full-Speed (12Mbit/s)
data rates. Low-Speed (1,5Mbit/s) is not supported.

e Supports 2 parallel slave bus protocols, 245 Synchronous FIFO mode protocol and

Multi-Channel FIFO mode protocol.

Supports Control/Bulk/Interrupt USB transfer type.

Contains configurable GPIO pins

Supports battery charging

Remote wake-up capability

Power-on-reset circuit

The communication with the slave device is based on the 16-bit wide parallel interface. This
interface supports multi-voltage 1/0 (1,8V, 2,5V, 3,3V) and operating frequency up to 100MHz.
FIFO communication is designed for much higher speed communication than any of the typical
low-level protocols.

The communication is handled by 16 bi-directional data lines and 7 control signals:

CLK - Clock output from FTDI to microcontroller.

TXE_N — FIFO transmit buffer empty, FTDI output signal. Signal is low when there is a
space in the buffer and data can be received from the MCU.

RXF_N — FIFO receive buffer full, FTDI output signal. Signal is low when there is data in
the buffer waiting to be read by the MCU.

OE_N — FTDI input signal, when active low, MCU drive the data and byte enable signal.
WR_N — FTDI input signal, MCU has a write cycle access when pulled down.

RD_N — FTDI input signal, MCU has read cycle access when pulled down.

BE — Byte enable signal, signalizing number of valid bytes in a word strobe.

BRNO 2020 17

COMMUNICATION VIA USB

FIFO protocol seems to be compatible with Parallel Master Port (PMP) module implemented
in Microchip microcontrollers. This fact was tested on a 32-bit MCU, PIC32MX450F128L.
For these purposes, a simple PCB board was designed. This board contained only MCU with
its minimal required linkage, a pin strips and a FTDI chip. A FTDI chip was linked as
recommended in the datasheet [4].

Figure 4 PCB to test FT600Q IC

The problem became that both protocols used in FT600Q are synchronous and cannot be
slowed down to the speed acceptable for the work with the MCU, as it is designed for
communication with FPGAs.

2.5.2 FTDIFT2232H

This bridge is further used in practical part of this thesis. The main reason why this chip is
chosen and one of the biggest advantages compared to other bridges is that the communication
between the host and bridge can be realized in the high-speed USB mode. [5]

This chip became famous thanks to its previous version FT232, which have a great support
from the manufacturers. Already this younger version supports all signals according to the
RS232 standard. The chip also added a new bit-bang mode, allowing separate control of the
individual lines, i.e. granting a certain variant to the usual parallel port. This mode can be used
to implement own or standardized protocol, but the disadvantage is a lower transmitting speed
and the non-guaranteed response time.

FT2232 came with the new mode, called Multi-Protocol Serial Synchronous Engine (MPSSE),
which uses buffers for reading and writing. MPSSE provides flexible synchronous interface
with speeds up to 30Mbit/s. Multi-protocol means that it allows communication with many
synchronous devices, the most popular being SPI, 1°C and JTAG. No special hardware change
is needed to implement the desired interface. Data and clock can be configured to meet almost
any requirement.

BRNO 2020 18

COMMUNICATION VIA USB

VCC3V3 IN

~—\1.80UT—

1.8 Volt
Loo
Regulator

120 MHz

Baud Rate
Generator

~-4—EECS——
~—EESK——
- EEDATA— o

EEPROM
Interface

OSCl—m
~4—0SCO——

-—USBDP—

~—USBEDM—p»-{

-—RREF——

UTMI PHY

Y

Dual Port TX
Buffer
4K Bytes

Dual Port RX
Buffer
4K Bytes

.|

USB Protocol Engine
And FIFO Control

MPSSE/
Mulii-
purpose
UART/FIFO
Controller

|—ADBUSO—I>
|@—ADBUS1—
|-—ADBUS2—
|@—ADBUS3I—p»
|<—ADBUS4A—»
|@—ADBUSS—»
|—ADBUSE—-
|—ADBUS7—

|—ACBUSO—I
| —ACBUST—
[—ACBUSZ—I
|—ACBUS3—»
[—ACBUSA—p
[—ACBUSS—ie
| —ACBUSE—I»
|—ACBUS7—»

PWREN# o
L
SUSPEND# o
-

——RESET#— |

RESET
Generator

——TEST—»

FT 2232H MODES

Figure 5 FT2232H Block diagram [5]

A

120 MHz

Baud Rale
Generator

Dual Port TX
Buffer
4K Bytes

Dual Port RX
Buffer
4K Bytes

FT2232H can be configured to work in different operation modes:

MPSSE

Asynchronous Serial UART
FT245 Style Synchronous FIFO Interface
FT245 Style Asynchronous FIFO Interface
Synchronous Bit-Bang Interface
Asynchronous Bit-Bang Interface

Fast Serial Interface
CPU-Style FIFO Interface
Host Bus Emulation Interface

MPSSE/
Multi-
purpose
UART/FIFO
Controller

[—BDBUSO—-
|—BDBUS 1—=
|-—BDBUSZ—
| —BDBUS3—=
|- —BDBUSA—I
|} —BDBUSS—f
tf—EDBUSE—g-
|—EDBUST —p»-

[—ECBUSO—i
|§—BCBUST—p=
l—BCBUSZ—
|—ECBUS3—i
—ECBUSd—p
|—BCBUS5—Im
|-—BCBUS6—I

PWRSAN# |
BCBUST

Modes can be changed by writing to the eeprom by a tool FT_Prog. The eeprom content
determine if the channels have been configured as the Asynchronous Serial interface, FT245
FIFO interface, CPU-style FIFO interface or Fast Serial Interface. Using the API, it is possible
to change the circuit mode arbitrarily to one of the other mentioned modes.

For the purposes of this thesis, MPSSE with SPI superstructure is considered as the best option.
12C is usually used for longer distances and has relatively lower data throughput than SPI. JTAG
is typically used only for product development or servicing.

BRNO 2020

19

COMMUNICATION VIA USB

MPSSE wiTH SPI EMULATION

Communication in this mode is handled by a command processor, integrated in the FT2232H
chip. Command processor receives commands from the host PC, which are in a form of byte
codes with the parameters. To ease the programmer’s effort and relieve the usage of unpractical
hexadecimal operation codes, FTDI came with an extension for individual protocols, including
the SPI. The extension is implemented in a form of DLL (Dynamic Link Library), so the user
application can directly call DLL’s functions, that do all the work for him. [6]

From the device’s point of view, MCU sees the bridge as a common SPI device. The SPI allows
full-duplex data transfer, which is supported by the MPSSE. Communication is based on a
master-slave connection. The master controls the communication using a clock signal (SCLK),
according to which slave transmits data. In addition to clock signal, the master and slave are
connected by a pair of data lines, marked as MISO (Master In, Slave Out) and MOSI (Master
Out, Slave In). In general, SPI can have multiple slaves. The SS (Slave Select) line is used to
select the slave to communicate.

SCLK = SCLK
SPI Master %5 = MOSI epr Slave
FT2232H MB° MISO dsPIC
cs L)

Figure 6 Generic SPI System [7]

The FT2232H must be configured as the master and the microcontroller as the slave SP1 device.
Transfers are triggered by USB host. SPI buffer in both devices is shared for transmit and
receive data. Data is shifted from master to slave and from slave to master bit-by-bit until the
buffers are switched. Data can be shifted MSB first or LSB first, depending on which type of
slave device is being implemented. Based on the clock phase and clock polarity, SPI can be
configured in 4 different modes, known as Mode 0, Mode 1, Mode 2, and Mode 3.

Due to limitations of MPSSE engine, FTDI device supports only Mode 0 and Mode 2. The
latter is used in the practical part, meaning data is read on the falling edge of SCLK and clocked
out on the rising edge of SCLK.

SLK Polarity =0 | | | | | | | |

Mode | CPOL | CPHA
0 0 0
1 0 1
ss \ A
2 ! 0 CHPA =0
3 1 1 MISO!_MOSID((\1X2X3X4X5X6X7X
CHPA = 1
MISO / MOSH X0 X1 X2 X3 X4 X5 X6 X7 X

Sample Data
Data Transition

Figure 7 SPI modes

BRNO 2020 20

HARDWARE

3 HARDWARE

This chapter describes the complete electronics that is used in the MSP device. The design of
the hardware was ongoing parallel with the software development in the terms of the time
efficiency. In the first phase of the development, the electronics of the device was replaced by
the edukit device, which is used in school lessons focused on microcontrollers. The Edukit
contains a microcontroller from the Microchip dsPIC family, which has similar properties as
the microcontroller that was selected for the usage in the final version of the device. The Edukit
was used mainly for the testing purposes of the communication, motors, and particular sensors.
The Hardware connection scheme is shown in fig. 8, the individual parts are further described
in following parts of this chapter.

UsB
Bridge
IMU (€ A
) v SPI Motor encoder (AB interface)
1“C
N » | Motor current (analog signal)
Ll)
7 AB interface
Magnetic > MCU € |
encoder PWM Control PWM
- Hall
>

Y

H-bridge >

sensor

2
1“C y

Battery voltage (analog signal) Y

Thermometer <€

3,63V

Figure 8 Simplified MSP device Hardware connection scheme

3.1 DC MOTOR
The motor choice was made according the following requirements:

Type — Brushed DC motor with gearbox

Nominal voltage — The motor is powered by a battery and a step-up boost is used to
supply the motor with appropriate voltage. To prevent loses and high current in the
power electronics, the upper limit is set to 12V.

Power consumption — Both the motor and the power electronics are enclosed in a box
without active cooling, which limits the current consumption of the motor due to
heating. On the other hand, the current flowing through the motor cannot be too low and
must be measurable with a relatively cheap sensor.

Nominal speed — The minimal no-load rotational speed of the output shaft was set to 4
revolutions per second.

Stall torque — Stall torque is the maximal torque that can be applied to the motor until
it stops spinning. There is no precise required value for the stall torque, but to prevent
injury, the motor should be sustainable in a hand at the maximum voltage.

Speed sensing — The Speed sensing became a key issue and a shortcoming as well in
many tested motors. The motor must have an encoder with sufficient resolution. The

BRNO 2020 21

HARDWARE

possibility of a motor without integrated encoder was also considered. An extern
encoder would need a double-sided motor shaft, to which the diametrically magnetized
magnet will be attached, and another PCB designed specifically for this purpose.

e Price and availability on the market — The maximum motor price was set by the
project manager to 1500 CZK.

There are certain additional parameters that have been neglected or their importance was not
deemed crucial, such as the gear ratio, type of the gear, shape of the output shaft, thermal
resistances, rotor inertia etc. The market offer of available motors regarding the mentioned
parameters was examined. A list of motors that were further tested is shown in table 4.

Table 4 Tested Motors comparison

Motor branding
PG220- PG321- Pololu- | Pololu- | Pololu- DF-
12-16-BE 12-5-BE 4881 4821 4883 FIT0520
Supplier dcmotors.cz | demotors.cz | Pololu Pololu Pololu | DFRobot
Price from the
supplier [CZK] 1290 1060 878 878 878 500
Nominal
Voltage [V] 12 12 12 6 12 6
Gear ratio 16:1 5:1 4.4:1 4.4:1 20.4:1 20:1
Nominal speed 515 1140 1200 | 1300 | 260 300
[rpm]
Stall torque 147 196 56.5 56 204.8 353
[mMNm]
Stall current
0,6 1 1.1 2.4 1.1 2.7
[A]
Encoder 48 60 2112 | 2112 | 979.62 | 2244
resolution [cpr]

These motors were practically tested on the tasks where a motor quality is an important factor,
mainly precise position control, velocity control and current sensing. According to the tests, the
Pololu-4883 motor appeared to be the best choice for the purposes of this work. This gearmotor
consists of a low-power, 12 V brushed DC motor combined with a 20.4:1 metal spur gearbox,
and it has an integrated 48 CPR quadrature encoder on the motor shaft, which provides 979.62
counts per revolution on the gearbox’s output shaft. The gearmotor is cylindrical with a D-
shaped output shaft.

3.2 POWER ELECTRONICS

The power electronics contains specific components and circuits that are used for higher current
and voltage operations. In the MSP device, the power electronics is made of a battery, a battery
circuit, a boost converter, and an h-bridge. There is also a little switch on the back side of the
device, which adds a 12 Q power resistor into series with the motor.

BRNO 2020 22

HARDWARE

3.2.1 POWER SOURCE

Lithium lon 18650 battery was used as the power source for the DC motor, which has great
energy density and is widely used in the robotics applications. Based on good experience from
other projects, battery model LGABF1L1865 was used.

L__ _ QBF1L1865
Q 0125E058AM

——

Figure 9 Battery LGABF1L1865 [8]

Parameters of this battery are shown in table 5.

Table 5 Battery parameters

Battery model LGABF1L1865 (INR18650F1L)
Rated capacity 3350 mAh
Nominal voltage 3.63V
Min. voltage 25V
Max. voltage 4.2V
Max. charging current 1.625 A
Max. discharging current 4.875 A

Let’s assume the worst energy situation for the battery. Battery is powering 12V motor and the
current flowing through the motor in worst situation (stall motor at 100% duty cycle) is
according to [9] 1.1A. This means that the motor needs approximately 13.2W under that
condition. Minimal battery voltage is 2.5V, and the current that the motor tries to draw from
almost discharged battery may raise to 5.28 amps. This very simplified calculation led to the
usage of two batteries connected in parallel, which relieved the current load and doubled the
capacity.

3.2.2 BATTERY MANAGEMENT

Battery circuit is made of the battery charging circuit and the protection circuit. The main part
of the charging circuit is an integrated circuit LTC4002 from the Analog Devices. This chip is
a complete battery charger controller for cell Li-lon batteries. Its input supply voltage range is
4.7V — 22V, so the battery can be charged by 5V USB. The great advantage is that this IC uses
an external resistor to set the charging current, which is indispensable for the design of the
device. [10]

The protection circuit is important to prevent any damage to the battery. Protection circuit must
fulfil several functions:

Overvoltage protection
Undervoltage protection
Overcurrent in charge
Overcurrent in discharge
Short circuit in discharge

BRNO 2020 23

HARDWARE

For these purposes, an integrated circuit BQ2980 from Texas Instruments was used. Connection
of both mentioned integrated circuits as well as selection of external components was realized
as recommended in the datasheets. [10] [11]

3.2.3 BOOST CONVERTER

The voltage that battery can provide (max. 4.2V) is too low for the selected motor. A DC-to-
DC power converter must be used to step up the voltage level to the desired 12V. There are
many switching controllers on the market and it is possible to design own boost converter, but
simpler and more reliable solution is to use free software WEBENCH Power Designer from
Texas Instruments, which is very user friendly and in addition to all required component
parameters and connection, it also includes recommended PCB layout, bill of materials cost,
efficiency and other information. Boost converter requirements:

Table 6 Boost converter requirements

Input VVoltage 3-4.2V
Output Voltage 12V
Max. output current 1.5A
Max. ambient temperature 50°C

A TPS61088-Q1 with suitable parameters was chosen for this purpose. This chip has diode, and
power MOSFET integrated in the IC, so only the minimal count of external components is
required [12]. Boost converter and battery management circuit was placed on a separate PCB
module. Connection scheme is shown on fig. 10:

IRF7842 IRF7842

BATT+

1~

Ex
IL vee -CHRG |2

coMp
BAT

7| SENSE
8 | NTC
4

47k

-

c

I
£
B

SI4463CDY
T

GND
LTC4002ES8-4.2PBF

et
PMEG3050EP
< €5 Booggo “T®
| hve
GND imohm GND
' 11—

PACK

HPI1040

: N
18 comp TPS61088 gy [SISW
19 1M L
i vout
22u -~ o o VOUT18 o7 I YouT 12V
w| wl w w vour B4
& & & 3 r =
[
af] N 25 s : 17 ¢g vee P
GND = 2L e E 20 56Np 1
- A
y [J S sl ne EN |2 2| 12v_0ut
= T_: BOOT o
3 VIN ss L0
e Y mﬂ
~ =] w
GND ; w 2 s 5
o s L RE5g 2ED
o~

T | 232k

Figure 10 MSP Battery circuit

Note: Complete schemes and all PCBs are available in electronic appendices.

BRNO 2020 24

HARDWARE

3.2.4 H-BRIDGE

The motor control via pulse width modulation technique is possible thanks to four-quadrant
converter, H-bridge. This type of converter allows the generation of both voltage and current
directions. A classic four-quadrant converter is too big and do not fit into the design of the
device, so an integrated version of H-bridge was used. The portfolio of the available products
is large; therefore, it was necessary to choose the most suitable one for desired application.
After examining the market offerings and considering the advantages and disadvantages of
different chips, an integrated circuit DRV8870 from Texas Instruments was chosen. [13]

DRV8870

This chip can control brushed DC motors with voltage inputs from 6.5 to 45V and acceptable
current up to 3.6A. It has integrated overtemperature protection, overcurrent protection and is
fully protected from the faults and short circuits. The device has an integrated sleep mode, that
the device enters by bringing both control signals low. An assortment of protection features
prevents damage to the device in the event of a system failure.

651045V
1T

DRVBET0

IN1

Controller IN2

Brushed DC Motor
Driver

Yy

VREF
» Current ISEN

Regulation

Fault Protection %=

Figure 11 Simplified schematic of DRV8870 [13]

The motor speed can be controlled by pulse width modulation in the frequencies between
0 — 100kHz. Two logical inputs IN1 and IN2 drives four N-channel MOSFETS. The inputs can
be set to static high/low logical values or can be pulse-width modulated to obtain variable motor
speed. Pwm can be performed in two ways, switching between driving and braking (modulating
one signal, the other is high) or switching between driving and coasting (modulating one signal,
the other is low). Possible states for the motor control are shown in table 7 (High-Z stands for
high impedance):

Table 7 DRV8870 Control states [13]

IN1 | IN2 | OUT1 | OUT2 Description
0 0 High-Z | High-Z | Coast, H-bridge disabled to High-Z (sleep after 1ms)
0 1 L H Reverse current direction (Current OUT2 — OUT1)
1 0 H L Forward current direction (Current OUT1 — OUT2)
1 1 L L Brake, low-side slow decay

BRNO 2020 25

HARDWARE

3.2.5 CURRENT SENSING

The current flowing through the motor can be measured either by a shunt resistor or by a hall
effect. Both methods have their pros and cons. Shunt resistor are cheap but can dissipate quite
an amount of power. Hall sensors do not affect the measured circuit, but an external magnetic
field can cause an inaccurate measurement.

ACS712ELCTR-05

For measuring current in the MSP device, an integrated circuit based on the hall effect from
Allegro MicroSystems was selected. This IC provides economical and precise solution for the
DC current sensing in both directions. The chip is characterized by the low-offset, low-noise
linear output. Applied current is sensed by the integrated Hall IC and transformed into
proportional voltage. -05 in the title means that this version can sense currents in range +5A.
A Sensitivity in this configuration is 185mV/A. The output voltage is in range 0-5V (0 means
-5A sensed, 5 means +5A). [14]

With the maximal motor current = 1.1A, the expected output values from the sensor are in the
range from 2.29V to 2.71V, which is acceptable voltage for the ADC. However, during the
start-up, or at some unexpected events, the current can reach higher values, so to prevent any
damage to the ADC, a Schottky Barrier Diode that does not allow higher voltage than 3.3V
was added on the signal path.

The relation between the instantaneous value of motor current, and output voltage of the
ACS712 hall sensor is:

V.
Uyt = I, - sSens + % V] 1)
where U,,;: [V] is an ACS712 output voltage,
Iy, [A] is a motor current,
sens [mV/A] isasensor sensitivity, 185 mV/A for our device,
V.. [V] is an ACS712 supply voltage (5V).

3.3 CONTROL ELECTRONICS

The design of the control part is based on requirements that the device should fulfil. Choosing
the right microcontroller is important for the proper operation of the whole system. The main
part of the control electronics must be capable of desired functionality:

Minimal CPU speed: 100MHz

3,3/ 5V operating voltage

Min. 2 ADCs with at least 10bit resolution
Motor control peripheral (PWM module)
Quadrature Encoder Interface

At least 2 SPl and 2 I>°C

At least 40 free 1/O pins

BRNO 2020 26

HARDWARE

The decision was made between 32bit Cortex-based MCUs and 16bit MCUs from dsPIC
family. Both microprocessors met the requirements. In the end, dsPIC microcontroller was
selected, mainly because of lower price and lower power consumption. DsPIC controllers are
also optimized with DSP (Digital Signal Processor) instruction set and use modified Harvard
architecture for precise motor control. The microcontroller dsPIC33CK256MP508 was
chosen. This MCU has enough power and memory size for the implementation of control
algorithms that are described in the following chapters. [15]

DSPIC33CK256MP508

This microcontroller was assembled according to the datasheet. It is powered from the 5V USB
line, an LDO Voltage regulator is used to reach the stable 3,3V. The oscillator circuit with
external crystal of nominal frequency 25MHz was added to provide the clock to the device.
Thanks to an external crystal and PLL (Phase-Locked Loop), it is possible to achieve the desired
100MHz system clock. The programming pins are routed to the pin strip, which is accessible
on the back of the device, so the microcontroller can be re-programmed in the assembled device.
There are also external SPI and 1C routed to the same pin strip, what allows extended
connections in the future. All the used peripheral 1/0O are routed to the normalized 1.27 or 2.54
pin headers. RC filters to supress the noise are used in the analog signals.

N
&
+3V3 _, =
lﬁ = =)
|)
0.1uf Zl g 4 0.1UF o
g 2 9G% 3
H oM w2o0 =
a o+ OEE0N
= il S
12C1A_SDA_EXTERN_12 MCLR 3 «GhGG 8 =
12C1A_SCL_EXTERN_L10 = f$casa < Z
SPI_EXTERN_CLK_8 7_GND < EEEE Z
SPIEXTERN_MOSI_6 5 PGDL
SPILEXTERN_MISO_4 3 PGCL EEE o oo o
SPI_EXTERN_SS
R et u [fPFYSCIEE830E 0058 funhn o
BUTTON_2 22 o, eets p—T
LED__ a3 o v b PWM2H

+3V3 LED2__ ¢ .. ren Tl
E | I -, b 78 o
- o b
0.1uF LED3 27 otz e 7% QEIL_MOTOR_ENCODER_A
LEDY g6] o0, oy QEI2_MOTOR_ENCODER_B

+3V3 LEDS, L= w2 b2
LED6 0 vco dsPIC33CK256MP508 o b2 b Tl
0.1uF VDDA VESAA 7
\all A s b@ SPIEXTERN_CLK <z
18pF DTN o SPLEXTERN_MOSI
'-"-_i‘l—ﬁ—q cpsoso wor b_e__SPI_EXTERN_MISO

0sco #C10

e SPI_EXTERN_SS
s 12C2_ALT_ASCL2
e BUTTON_4

18pF D It we b_s_12C2_ALT_ASDA2
I w2t w7 geiz &2 BUTTON_3

— 0wy L] 5 nq.ﬁr.ub—JL-——]\
§EEEEEEEESSREEEEEEE 8 PGC1

{TL‘
i ﬂ

r:ﬂl
™~
w
o 2 P o o = o -
PGD1
SO o HZEZE MM TonOrRDO< O
UOddnpg oo A A A A HA A N
mmuaouwoa coocoocoo =
M i - d —l—'—l—l—l—lm—l
= ¥
U o O
™ <J ™~
=qv
jj +3V3
- 0.1uF
0 u
NN

Figure 12 dsPIC connection scheme in MSP device

BRNO 2020 27

HARDWARE

3.4 ACCELEROMETER & GYROSCOPE

There are two kinds of task that accelerometer sensor in the device can be used for. The first is
the device rotation and the second one is a vibration measurement. A complex IMU (Inertial
Measurement unit) MPUG050 is used for these purposes. This device is widely used in the
robotics applications and provides economical and efficient solution. MPUG6050 contains
3-axis MEMS (Micro-Electro-Mechanical Systems) accelerometer and gyroscope. 16-bit
analog to digital conversion for each channel ensures very accurate measurements. The sensor
uses 1°C bus to communicate with the controller. In the MSP device, this sensor is used as a
part of GY-521 assembled board, as it is cheaper than sensor itself and saves time and effort of
assembling own board. The board is screwed to the top of the box chasse. [16]

Figure 13 GY-521 board [17]

3.5 FLYWHEEL ROTATION SENSING

The device contains a flywheel that can operate as an adjustment wheel or a rotating inertia
which position is controlled. Mainly for the latter purpose, a precise rotation sensing is required.
The flywheel must also have a minimal friction while rotating. Therefore, conventional
potentiometers based on the variable resistance are out of the question. An optical encoder or
Hall-based sensor can be used to measure the rotation without causing unwanted effects to the
rotation. Optical encoders are much more expensive than the magnetic ones at the same
resolution, so a magnetic encoder is preferred and integrated into the main board.

Figure 14 Magnetic encoder principle [18]

Based on the bachelor thesis [19] focused on the design and implementation of encoder unit,
chip AS5147 with a high resolution and an easy implementation is used. A diametral magnet
must be attached to the axis of the flywheel shaft and the PCB with the chip must be placed

BRNO 2020 28

HARDWARE

perpendicular to this magnet, at the required distance. Mechanical construction and PCB
placement position was adjusted to obtain the best possible measurements. [18]

3.6 THERMOMETER

A thermal process related to the heating of the motor and the power electronics is a very
common problem and can be used in the exercises. Originally, there were two thermometers
inside the MSP device, one for measuring the temperature of the motor case and the other
measuring the temperature of the h-bridge. After extensive testing, it was concluded that the
temperature on the motor surface does not change significantly even with the long-term loading,
so the thermometer on the motor has been removed. To measure a h-bridge temperature, an
integrated circuit LM75B is used. [20]

LM75B

This temperature sensor is widely used in the industrial applications, it has a 0.125°C resolution
and communicates with the MCU by an 12C bus protocol. Key parameters:

2.5-5V supply voltage

3 address pins, so up to 8 same devices can be placed on the same bus
From -55°C to 125°C temperature range

Programmable temperature threshold and hysteresis set points

No calibration needed

3.7 POWER MANAGEMENT

The power from the USB port is shared along two branches. The first branch powers most of
the electronics directly while the second one charges the battery. This design allows full sensor
and peripherals functionality in those tasks where the motor is not needed thus battery can be
removed. The USB in PC has an integrated protection that disconnect the device if it tries to
draw more than 500mA. To get most out of the USB power, a battery charging current must be
set correctly. Total power consumption of the first branch (approximate values):

Table 8 Components power consumption

Component Power consumption
(full operation)

dsPIC33CK256MP508 60mA @ 3.3V, 0.198W
FTDI FT2232H 100mA @ 3.3V, 0.33W

ACS712-05B 8mA @ 5V, 0.04W

MPUG6050 4mA @ 3.3V, 0.01W
LM75B 1mA @ 3.3V, 0.003W
AS5147 15mA @ 3.3V, 0.05W
LEDs 40mA @ 3.3V, 0.132W

Approximately 0.77W is consumed by sensors and the control electronics supply. Adding extra
power in LDO regulator, loses, communication lines and reserve, total power can be rounded
to 1W. The rest from the 2,5W that the USB can provide is used to charge the battery. Motor
consumes approximately 1,2W at nominal speed, which is less than the battery charging power,
thus theoretically, the battery will never discharge with no-loaded motor.

BRNO 2020 29

HARDWARE

3.8 PCBs

The whole device is made of 3 PCBs. The first one handles the battery circuit and the boost
converter, the second one is the main board, to which the USB, all sensors and peripherals are
attached and the third one, not mentioned previously is an interface board. The latter one is the
simplest and is made of buttons, LEDs, mounting holes, and the connector. All boards are
shown below.

Figure 15 PCBs: a, Main board — top view, b, Main board — bottom view,
c, Battery board — top view, d, Battery board — bottom view,
e, Interface board — top view, f, Interface board — bottom view,
g, Mounted PCBs — top view, h, Mounted PCBs — bottom view,

BRNO 2020 30

HARDWARE

3.9 MECHANICAL CONSTRUCTION

The design of the mechanical construction was created with an emphasis on the simplicity of
whole construction, easy assembling and disassembling, compact size, easy storage, and
possibility to easily replace broken electronic components. For safety reasons, a main switch
that disconnects both the battery and the USB power line is added and placed on the front side
of the device.

Figure 16 MSP Device chasse— front and back view

BRNO 2020 31

HARDWARE

The main body of the device is made from ABS plastic, printed on the 3D printer. This
production process allows various complex shapes to be used in the design. Dimensions of the
whole box are 150x100x80 mm and both the top and the bottom part of chasse can be printed
in one printing cycle on the Prusa i3 printer. An inertia wheels are made on a lathe, from steel.

Figure 17 MSP device — intern view

Figure 18 MSP device

BRNO 2020 32

SOFTWARE

4 SOFTWARE

A several development tools are used in the software creation, each for a different layer of the
control software. The lowest layer is formed by a program running in a microcontroller written
in C language. The middle layer forms the interface between the user application and the
microcontroller, this part is largely taken over from the FTDI developers and modified to be
usable in the MATLAB environment. The highest layer consists of tools enabling the target
user to develop his own applications with the device in MATLAB / Simulink programming
environment.

4.1 COMMUNICATION BETWEEN PC AND MCU

The communication process is described in detail in the introductory chapter of the thesis, this
chapter focuses on the practical realization of the communication between the user application
and the hardware. The MPSSE supports the full-duplex SPI, which is one of its great
advantages. It means that in one transaction, both the application and the MCU send and receive
desired bytes.

4.1.1 MESSAGES
All messages have fixed length of 30 characters, from both sides sent as 8-bit unsigned integer.

Content of the message sent from the application to the hardware:

Control LED | LED | LED | DC | DC | FREQ | FREQ

TO-Hwm| ©
OO

o

o

Figure 19 Message from PC to hardware

Control — Control byte, instruction for microcontroller’s state machine
LED1 - State of 1.-8. LEDs coded in 8bit number

LED?2 — State of 9.-16. LEDs coded in 8bit number

LED3 - State of 17.—20. LEDs coded in 8bit number

DC1-2 — motor duty cycle (16bit number)

FREQ1-2 — PWM switching frequency, (16bit number)

STOP — Byte to reset encoder/motor/LEDs

CRC - Message correction check

BRNO 2020 33

SOFTWARE

Content of the message sent from the hardware to MATLAB:

1 2 3 4 5 6 7 8 9 10
ENC ENC | ENC | ENC | ENC | ENC | ENC
0 | State) BINS| 'y | M2 (M3 | M4| F1 |F2/| F3
11 12 13 14 15 16 17 18 19 20
ENC | MOT | MOT | TEMP | TEMP | ACC | ACC | ACC | ACC | ACC
F 4 |1 | 2 1 2 X1 | X2 |Y1l|Y2| 2Z1
21 22 23 24 25 26 27 28 29 30
ACC GY GY GY GY GY GY BTR | BTR CRC
Z?2 X1 X 2 Y 1 Y 2 Z1 Z2 1 2
Figure 20 Message from hardware to PC
e State — Microcontroller state, information for the application
e BTNS - Buttons states, coded in 8bit number
e ENC M 1-4 — 32bit number, motor encoder data
e ENC F 1-4 — 32bit number, flywheel encoder data
e MOT I_1-2 — 16bit number, data from the hall sensor sensing the motor current
e TEMP 1-2 — 16bit number, data from the thermometer
e ACC X _1-X_2 - 16bit number, data from accelerometer, X — axis
e ACCY_1-Y_2-16bit number, data from accelerometer, Y — axis
e ACC Z 1-Z 2 - 16bit number, data from accelerometer, Z — axis
e GY X _1-X_2 - 16bit number, data from gyroscope, rotation velocity around X — axis
e GY Y_1-Y_2-16bit number, data from gyroscope, rotation velocity around Y — axis
e GY Z_1-Z 2 - 16bit number, data from gyroscope, rotation velocity around Z — axis
e CRC - Message correction check

CHECKSUM

A high-level USB uses complex two-level CRC (Cyclic Redundancy Check) to guarantee the
correct messages. However, this CRC is taking care only of messages sent from a USB bridge
to PC. As SPI is a low-level communication, a checksum must be added by software to avoid
wrong messages between microcontroller and USB bridge. In order to avoid more complex
time-consuming calculations, a very simple checksum is created, which consists of the sum of
bytes in the message. The data type of the sum is uint8, what guarantees that the sum of
individual bytes will overflow at the sequential addition, and the resulting value will therefore
be a single byte, regardless of the values of the individual bytes.

4.1.2 TRANSFER RATE

Data are transferred between the PC and MCU by a polling method. The application layer
creates a 30byte long data buffer, which is sent through a driver to the USB bridge transmit
buffer in one microframe. These bytes are then sent byte-by-byte according to selected SPI

BRNO 2020 34

SOFTWARE

transfer rate to the MCU. At the same time, USB bridge fills the receive buffer by received data
from MCU, and after the arrival of the 30" byte, receive buffer is immediately transmitted from
the bridge through the driver to the application buffer.

Theoretically, data can be polled 8000 times per second, as the microframe is 125us long.
However, this rate is slowed down by the time that needs SPI. Since the FT2232H works in
Bulk transfer mode, it may not always have the system priority. There may also be other factors
since USB is not designed for this style of communication in general.

A test was performed to get a better idea of the actual communication rate. The test consists of
sending and reading a given number of bytes, as frequently as possible. A several measurements
was done for a number of bytes (1 — 100). A message was exchanged 1000 times, while time
was measured at the beginning and at the end of cycle. This cycle was repeated 100 times for
each byte count, the results are shown below.

2000 Frequency vs number of transferred bytes in message

SPI Frequency: 20MHz
------- * SPI Frequency: 10MHz
i * SPI Frequency: 5MHz
* SPI Frequency: 1MHz
: ! I : ! i (it * SPI Frequency: 500kHz|
S

i H
6000 - : - |

h h !
5000 — '901+ +""”’0'it:t't¥tttztl..”"0' trreey

f

w “H
N !
Z.4000 T SN o B A B R L ersryrhiyeare ITTITTTTTTIONG. theey, =
) i) i hEie s T
5 ’ Ty
3 ’Q' L H * Tty
$ 3000 - .
=]
[> .
'c. b}
e ...'."
2000 !." ------
i ST O . L 7
SO L AR
1000 - i L LTSS W NS A e LI LTS PR 8
! L R pessisiiivsie s s sbesevaais
0 | | |
0 10 20 30 40 50 60 70 80 90 100

Transferred Bytes

Figure 21 Test of communication

After connecting and setting up the microcontroller, it was experimentally determined that the
MCU is not able to perform all the instructions with SPI frequency above 1MHz. Therefore,
the SPI frequency is set to 1IMHz which means that the user application can communicate at
the loop approximately up to 2.5kHz (fig.21). However, this number is dependent on the
utilization of the computing machine, other connected USBs, and the complexity of the
application program. For the stable frequency, loops realized at frequencies higher than 1kHz
are not recommended (500Hz in Simulink).

4.2 MSP TOOLBOX

As mentioned in the beginning of this chapter, the highest software layer is made in the
programming environment MATLAB & Simulink from MathWorks corporation. The reason
why MATLAB and its superstructure Simulink were chosen, is that the end user should be able
to work with hardware even without the need for any special skills in programming. This
requirement is perfectly fulfilled by Simulink, whose interaction with the user consists of

BRNO 2020 35

SOFTWARE

creating a graphical block system, without the need for special knowledge of any programming
language syntax. Furthermore, it contains a large community of people and several available
packages and libraries, which make the work of developer even easier.

All the application tools that are needed for the work with the MSP hardware are packed into
one toolbox called Mechatronics Starter Pack Toolbox.

4.2.1 TOOLBOX REQUIREMENTS

The creation of the application tools is based mainly on the end user comfort and convenience.
The requirements arose continuously during consultations with the staff and people who are
likely to use this device in the lessons. List of the main requirements:

e Runnable on Windows 10 OS

e Software must have certain level of safety (protection against acts that could trigger
critical application behaviour, e.g. wrong type of function input parameters, lighting
non-existent LEDs etc.).

e Software must be able to find the right hardware connected to the PC, even with other

connected devices based on the USB bridge.

Simple and intuitive hardware control

Message checking

Functionality without any add-ons other than MSP Toolbox

User awareness of the hardware status and communication status

Real-time simulations in Simulink

4.2.2 INSTALLATION

The MSP Toolbox was created in the latest MATLAB & Simulink version at the time of writing
this work — 2019b. The functionality in older versions is likely, but not guaranteed.

All that needs to be done by the end user in order to get the access to all MSP functions is to
install the Mechatronics Starter Pack Toolbox. Installation is simple and fast; MATLAB
automatically installs all required files after opening the Mechatronics Starter Pack.mltbx file
with MATLAB. After successful installation, the toolbox should be visible in the Add-on
Manager.

4\ Add-On Manager - O it
Installed U|Jc|ates. Get Add-Ons
(&)
Name Type Author Install Date
Mechatronics Starter Pack version 1.0 Toolbox MechLab 13 May 2020
=TI e Glahal Ontimization Tanlhay varcinn 47 4l MathWarks Tonlhox 29 Anril 2020

Figure 22 Add-On Manager after installing MSP toolbox

BRNO 2020 36

SOFTWARE

4.2.3 MATLAB FUNCTIONS

Hardware can be controlled from MATLAB in two ways, the user can choose which way is
more acceptable for him. Both ways use a handle to msp object.

INITIALIZATION

Constructor of the msp object scans for the connected hardware and tries to initialize the
communication with the hardware. If the object is constructed before the hardware is connected,
the connection can be initialized later by the function msp. connect. With every creation of the
handle to msp object, MATLAB also increments the persistent variable that do not allow
creation of another object instance, what ensures only one communication channel is opened at
the time. This persistent variable is cleared in the destructor of the object.

CONTROL BY SET AND GET FUNCTIONS

In this type of control, the user uses the functions that immediately send the information entity
to the hardware or get the required value from a sensor. This control is preferred when the goal
is to watch /control a single variable. Example code:

device = msp(); % Creates handle to the device and Initializes communication.
device.setLED(3:9,1); % Lights the 3-9 LEDs on the hardware.

accX = device.getAccelerometer ('X'); % Asks for X-axis accelerometer data from hw.

Figure 23 Example of control by set and get functions
MSP set and get functions:

settlED (number, status) — Function to turn on/off the LEDs.
* number — a number/array of desired LED(S).
« status — a Boolean value, 1 to turn on, 0 to turn off

setMotorDC (value) — Function to change the motor duty cycle.
« value (numeric value) — a number in range from -100 to 100, the percentage of motor
duty cycle, negative values mean counter-clockwise rotation direction.

setMotorFrequency (value) — Function to change the h-bridge switching frequency.
« value — a switching frequency, available range is 200 — 20 000.

[value] = getAccelerometerData (axis) — Function to get data from the accelerometer.
« axis — optional argument, possible options are ‘X’,”Y’,’Z’. If the axis is not
specified, the return value is a vector [X axis, Y axis, Z axis].

[value] = getGyroscopeData (axis)— Function to get data from the gyroscope.
» axis — optional argument, possible options are ‘X’,”Y’,’Z’. If the axis is not

specified, the return value is a vector [X axis, Y axis, Z axis].

[value] = getButton (number) — Function to get the button status.
* number — number of button (1 — 4).

[value] = getTemperature () — Function to get the data from the thermometer (in °C).

BRNO 2020 37

SOFTWARE

[value] = getBatteryStatus () — Function to get the Battery level (in %).
[value] = getMotorPosition () — Function to get the data from the motor encoder.

getFlywheelPosition () — Function to get the data from the flywheel encoder

[value]

getMotorCurrent () — Function to get the current flowing through motor.

[value]

CONTROL BY TRANSMIT FUNCTION

In this type of control, the user prepares variables by setting the object properties and then sends
all the properties in one message, by function msp . transmit (). Sensor values are then read by
reading the object properties. Example code:

device = msp(); % Creates handle to the device and Initializes communication.
device.LEDs ([3:9],1); % Prepare lighting of the 3-9 LEDs

device.MotorDC = 50; % Prepare motor duty cycle

device.MotorFrequency = 10000; % Prepare motor frequency

device.transmit(); % sends properties to hw.

o)

encoder = device.MotorPosition; % read motor position at the time device.trasmit

was used.

Figure 24 Example of control by transmit function

List of the public object properties that can user read:

RecievedControlByte
MotorEncoder
FlywheelEncoder
MotorCurrent
Temperature
Battery
AccelerometerX
AccelerometeryY
Accelerometer?z
GyroscopeX
GyroscopeY
GyroscopeZ

List of the public object properties that the user can write to:

LEDs
MotorDC
MotorFrequency

OTHER FUNCTIONS

The toolbox provides several additional functions, e.g. for the gyroscope calibration, hardware
diagnostics etc. All the functions are listed in the documentation of the msp object.

BRNO 2020 38

SOFTWARE

4.2.4 SIMULINK LIBRARY

After installing the MSP toolbox, a library for the hardware control is available in the Simulink
library browser.

28 Simulink Library Browser - O X

& h-B-o- =3
Mechatronics Starter Pack.
Communications Toolbox ~
Communications Toolbox HDL Support $ y a Y m‘ s \l/ b
Control System Toolbox Y
Data Acquisition Toolbox
Deep Learning Toolbo MSP Accelerometer MSP Battery (%) MSP Buttons MSP Config
DSP System Toolbox & Gyroscope
DSP System Toolbax HDL Support
Embedded Coder t - _@_ b E
HDL Coder - v‘"
HDL Verifier
Image Acquisition Toolbox MSP Fiywheel MSP LEDs MSP Motor WSP Motor
Instrument Control Toolbo Encoder Current Sense Encoder
Mechatronics Starter Pack "
MPLAB Device Blocks for Simulink oo AN C& b _—@ b
Simscape =
Simulink 3D Animation
Simulink Coder MSP Motor MSP Thermometers MSsP
Simulink Design Optimization Control Step Time
Simulink Desktop Real-Time
Simulink Extras
Stateflow
System Identification Toolbox
Recently Used .

Figure 25 MSP in Simulink Library Browser

As mentioned previously, the front panel of the device contains 4 buttons and 20 LEDs. Buttons
are named by the numbers 1-4, of which two on the sides (1 and 4) are momentary and the
middle ones (2 and 3) are latching (stays pressed after push). In a Simulink, button states can
be obtained by a block called MSP Buttons, a button number is chosen in the block parameters
panel. Output from the block is a Boolean value, indicating true for the pressed state.

LEDs are controlled by the block called MSP LEDs. Input ports of this block set the number of
the LED and the state of the LED (on/off). A LED number can be a number in any format, or
an array of desired LEDs. To prevent an unexpected changes, both input ports can be hidden
by setting the internal signal source, values are then entered in the parameters table (fig.26). If
there are two opposing blocks in the model (one tries to light on and the other light off), the
block with higher priority will override the other block.

Block Parameters: MSP LEDs x
LEDs
Use this block to light up the LEDs on the MSP device.

) LEWber

MSP LEDs Farameters

LED Number Source: | External

LED Number: |[1:10]

LED Value:

LED Value Source: | Internal] @1
Oo

Cancel Help Apply

Figure 26 MSP LEDs parameter window

BRNO 2020 39

SOFTWARE

A motor is controlled by the PWM method. MSP library provides a block called MSP Motor
Control for this purpose. Implementation is similar to the LEDs control, both switching
frequency and duty cycle can be controlled by input ports or by block parameters values. Block
saturates entered values to the allowed limits and adjust the format of the values to the format
suitable for the microcontroller.

Block Parameters: MSP Motar Control %
DC Motor Control
Use this block to control the MSP mator, Enter the Motor Duty Cycle
(in %, negative values means reversed direction) and a H-bridge
switching fregency in Hz.
Parameters
Duty Cycle Source: Frequency source:
External = Internal =
Duty Cycle: Frequency:
yoc 4l S P
1k e g
AN s A 4
MSP Motor - -
Control 1000 100.0 2000 20000.0
Cancel Help Apply

Figure 27 MSP Motor Control parameter window

Other blocks for reading data from the sensors are shown in the fig. 25. Their functionality is
based on reading proper bytes from the data buffer and converting received bytes into a desired
format.

4.2.5 SIMULINK REAL-TIME

A precise real-time performance is important for the hardware control. Although the real-time
synchronization will never be perfect in Normal mode, experiments shown that it is sufficient
for the needs of the exercises mentioned in chapter 5. The problem with simulations in Normal
mode is that from time to time, a Simulink needs extra time to finish a step, especially in the
first seconds of the simulation. This mode is also highly susceptible to other computer actions
(moving mouse, scaling graphs...). Unstable sampling frequency has a significant impact on
the quality of the simulation, mainly on the variables that are directly dependent on the sampling
period.

MSP toolbox provides two ways in which a simulation can be synchronized with the real time
in normal mode. The first requires Simulink Desktop Real-Time (SLDRT) installed, which
provides real-time kernel that runs at the highest priority in the operating system. Simulink runs
model and synchronizes the sample execution time to this kernel. However, Simulink may not
be able to perform all the step instructions in time and miss ticks. [21]

The second way is to use an MSP Real-Time (MSPRT). This way, a Simulink step is performed
and afterwards the processor waits until the step time reaches the desired sample period. The
MSPRT can work in two modes, either adjusting the real time difference or not. Adjusting the
real time difference (Adjusting Mode) means that if a Simulink step takes more time than it has
been assigned, this over-time is balanced in the next step(s) by shortening the period. If the
adjusting is disabled (Period Mode), the period will not be shortened, thus the simulation time

BRNO 2020 40

SOFTWARE

may not be synchronized with the real time perfectly, but the steps are closer to their desired
size. The principle for both MSPRT modes is shown in fig. 28.

Ti - Time needed to perfrom step instructions Tw - Processor is waiting before starting new instruction cycle

Tp - Desired sampling period

Tw T™w
Ti | Tw Ti L Ti Ti Ti Tw
Real time clock -
Tp Tp Tp Tp Tp tfs]
Adjusting mode
. *P
*P - New period reference
Tp Tp Tp |
Ti Tw Ti Ti | Tw Ti | Tw Ti
Real time clock } —
Tp Tp Tp Tp Tp tfs]
Period mode

Figure 28 MSP Real-Time

All the previously mentioned ways in which the simulation can be synchronized with the real
time have their strengths and weaknesses. The SLDRT is more complex system that uses
separate kernel process for timing. The advantage is that the SLDRT supports both fixed-step
and variable-step solvers. The MSPRT can operate only with fixed-step solver, but no
additional toolbox for a real-time synchronization is required. A user can choose, which method
is the most suitable for their purposes, this setting is available in the MSP Config block
parameters. The output port of this block signalizes missed ticks (SLDRT and MSPRT-
Adjusting Mode), or the time delay between the real time and simulation time (MSPRT-Period
Mode). A default option is MSPRT in Adjusting Mode.

Block Parameters: MSP Config X
Configuration Block

This block must be placed in the simulation while working with the
MSP Device. Output port signalizes a missed ticks during the
simulation. If this number grows, consider increasing the step size for
better performance. In the MSPRT Period Mode, Output port
signalizes a time delay between the real time and the simulation

time.

K > Select the real-time variant:

MSP Config

(O Desktop Real-Time Synchronization (SLDRT required)

(® MSP Real-Time Adjusting mode

(O MSP Real-Time Period mode

Cancel Help Apply

Figure 29 MSP Config parameter window

A simple Simulink model was created to test the performances of the SLDRT and the MSPRT
synchronizations. The test consists of measuring real time after each step and determining the
difference between the executed simulation step time and the desired step time to see period
stability and precision of the real-time synchronization systems. The measurements were made
at variant sampling periods, the results for fixed-step size 0.0ls and 0.001s are shown below.

BRNO 2020 41

SOFTWARE

Simulink Desktop Real-Time, sample time =0,01s
T T T T

Zoomed - Simulink Desktop Real-Time, sample time = 0,01 s

012 - - - r 0.012 - . - T r T T T
s | R
5 01
'g 0.011 | ‘ B
5 008
o I A) L
2 oos 001 | ~ | |‘¢\/\/\/*~\’\/\ (\ A l-/\ \\/\M
c H
5 0.04f |
B 0.009 - | | E
E] L
il sl il EEEE
@ WML A ! il — o008 1 . L | i ‘w] A
0 100 200 300 400 500 600 700 800 900 1000 900 910 920 930 940 950 960 970 980 990 1000
Simulation step [-] Simulation step [-]
MSP Real-Time Adjusting mode, sample time = 0,01 s Zoomed - MSP Real-Time Adjusting mode, sample time =0,01s
012 T T T T T T T T 0.012 T T T T T T T
o) /
5 o1 T
S
B 7 onf 4
5 008 1
El /
a
& 006 Fa 0.01
]
<
5004 /A
E 0.009 E
E]
0.02 1
it 1 ‘
& | EESES S NN N ESESEEEEES. - ‘ NSRS [ESENEERNEY ‘ ‘ ‘
0 100 200 300 400 500 600 700 800 900 1000 900 910 920 930 940 950 960 970 980 990 1000
Simulation step [-] Simulation step [-]
MSP Real-Time Period mode, sample time =0,01s Zoomed - MSP Real-Time Period mode, sample time =0,01 s
_ 012 T T T T T T T T o012 T L — T T T T
) \I‘
£ 01 B |
]
= 7 0.011 H I R
5008 q i
S
H / | / A
& 0.06 q WM T T
» a
5 0.04
8 0.041 yans|
5 0.009 - d
E] L 4
E002]]
@ 2 I I L h = — 0ea . . L . L
0 100 200 300 400 500 600 700 800 900 1000 900 910 920 930 940 950 960 970 980 990 1000
Simulation step [-] Simulation step [-]
Simulink Desktop Real-Time, sample time = 0,001 s w1073 Zoomed - Simulink Desktop Real-Time, sample time = 0,001 s
0.08 T T T T T T T T 2 T T T T T T T T
= 5
c
S /
7 008 q 15 q
S s
O S 1y R 04 g BB) ARt | [y
& T [wh | Wl
s 7
2
& ooz q 0.5 B
H /
0 0 S0 SR NN N
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
Simulation step [-] Simulation step [-]
MSP Real-Time Adjusting mode, sample time =0,001s %103 Zoomed - MSP Real-Time Adjusting mode, sample time = 0,001 s
0.08 T T T T T T T T 2 T T T T T T T
E 7
5
= 0.06 q 15 q
E /
S
3 |
o |
& 004 A 1
(] 1 M
8 A
& 002F B 05 g
£
N 4 e B B 4 e e B e e e e
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
Simulation step [-] Simulation step [-]
MSP Real-Time Period mode, sample time =0,001 s %1073 Zoomed - MSP Real-Time Period mode, sample time = 0,001 s
0.08 T T T T T T T T 2 T T T T T
= 7
§
= 0.06 4/ asp q
5
3 / l
Zooal] 1 L1 . |
®
: 7
2
® 002 4 05 1
i /
1 000 0 0 B
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 9000 9100 9200 9300 9400 9500 9600 9700 2800 9900 10000

Simulation step [-]

Simulation step [-]

Figure 30 Real-Time variants comparison

There is no significant difference in performance between MSPRT and SLDRT at the maximum
supported simulation rate (1kHz). At simulation rate of 100Hz, probably because of its
complexity, SLDRT shows worse performance than MSPRT. If the synchronization with the
real time is not important compared to step period stability, MSPRT in Period Mode is the best

option.

BRNO 2020

42

SOFTWARE

SPEED MEASURING

One of the things that are closely related to correct timing is speed measurement. Because of
unstable period, the derivative of the encoder signal with the derivative block provided by
Simulink became impracticable and too noisy even after relatively strong filtering (Fig.31).
This led to the creation of new block, designed purely for measuring real elapsed time, MSP
Simulation Time. Less noisy derivative then can be created as the data difference divided by the
time difference. A difference between Simulink derivative and “manually” created derivative
Is shown in figure 31. Both signals were sampled at 500Hz and filtered with the same filter.

80 | - | | | | -
Speed cbtained by Simulink derivation block
—Speed obtained by using MSP Simulation time block for derivation

60

Speed [rad/s]

60 I | | I I I
0 2 4 6 8 10 12 14 16 18 20

Time [s]

Figure 31 Comparison of speed signal obtained by different methods

4.2.6 SIMULATION INITIALIZATION

To access the hardware, a block Msp config must be placed somewhere in the block scheme.
This block ensures valid communication and real-time settings. The initialization sequence:

Clear old
handles

Connect
Hardware

Set Real-Time
Settings

Allocate
Buffers
Add Listener

Start
Simulation

Figure 32 Simulink initialization sequence

BRNO 2020 43

SOFTWARE

To avoid any unexpected errors related to incorrectly terminated communication, Simulink
clears the communication object instances in the first step of the initialization sequence. If the
Fast Restart option is enabled, this step is ignored, and Simulink keeps the communication
channel opened between simulations.

In the next step, a proper control byte is sent to the hardware, which prepares it for the
simulation. If the hardware responds that it is ready for the simulation, Simulink creates
required buffers for the data flows and continues in the initialization procedure. Otherwise,
simulation is terminated.

After successful hardware connection, an event listener that executes MATLAB function before
every simulation step is registered. In this function, a data that controls the hardware are
collected from the Simulink buffer and sent to the hardware. A new data from the hardware are
received and implemented into the Simulink’s buffer, so the system works with the fresh data
in every new step. The simulation propagation is shown on figure 33.

Stepn,
Matlab Matlab
Function ’_' Function F’ @
' Data Buffer y
¥ 1 » iy v
L L@ J J 'k i L L@
- &
& * & ®

3|
>
N

HW Control
HW Sensors

HW Control
HW Sensors

&

<
<
<

0
0

Figure 33 Hardware communication in Simulink simulation

An Initialization sequence is finalized by preparing the real-time synchronization.

4.3 MICROCONTROLLER

The whole software is written in order to contain a minimum of calculations in the
microcontroller. In most cases, data are sent to MATLAB in raw format, as received from the
sensors, and pre-processed for usage on the computer side. The program in the MCU is based
on the state machine, which changes states based on the control byte, received from the user
application in PC,

4.3.1 STATE MACHINE

After powering the device by plugging the USB cable to PC and turning on the main switch,
the MCU begins its initialization sequence. In this sequence, the MCU performs system
initialization (clock configuration, interrupts, 1/0 pins configuration, ...) and tries to begin the
communication with the sensors. After the initialization sequence, the MCU performs
gyroscope calibration as well as visual opening sequence and jumps to either Idle state if all the
sensors are connected and ready or Error state if any of the sensor is not responding, or other
error occurred during the initialization sequence. The Error state is visually signalized by the
flashing red LED on the device LED panel. The MCU is not getting any data from the sensors
in Idle/Error state.

BRNO 2020 44

SOFTWARE

When the user starts communication with the MCU from his application, the MCU jumps to
Matlab State, periodically asks sensors for data, and fills the buffers that are sent to the user
application, when application asks for them.

With the start of Simulink simulation, MCU clears data in encoder buffers, light off all LEDs
and reset the motor control to its default state, so the simulation always starts from the same
reference point.

There are other states, where the MCU can go from Matlab state. A scheme of the state machine
Is shown in Figure 34.

Power on

Initialization
[code : 0]

System Initialization (Clock, Interrupts, Timer);
Peripherals Initialization (SPI, |2c, ADC, QEI, PWM,..);
110 Cofiguration (LEDs, Buttons);

Sensors Initialization;

Calibration;

Visual Opening Sequence (LEDs);

Change state —> [Idle / Error]

Auto

Idle

[code : 10]
Sensors operation: OFF; PWM generator: OFF;
LEDs visual "M": ON;LED1 Flashing: ON;

Error

[code : 90-99] (based on error)
Sensors operation: OFF; PWM generator: OFF;
LEDs visual "M": ON; LED20 Flashing: ON;

Communication Communication
channel opened channel closed
HW Diagnostics Matlab Calibration
[code : 60] VMATLAB [code : 20] MATLAB [code : 40]
IMU check; Command | LEDs: OFF; Command | Al axis Gyroscope calibration;
Thermometer check; Sensors operation: ON;
ﬁncoders Chec':]; . PWM generator Reset;
otor current check;
Change state [Matlab] Auto Auto |Change state —>[Matlab]
Simulink Simulink
simulation start simulation finish
Simulation
[code : 30]

QEI1, QEI2: Reset;
All LEDs: OFF;

PWM generator: Reset; ‘

Figure 34 MCU State machine

BRNO 2020 45

SOFTWARE

4.3.2 PERIPHERALS

DsPIC provides many peripherals, that are designed to handle their functionality parallel with
the CPU, without taking any CPU time. Since the goal is to handle simulations up to 1KHz
sampling rate, as many as possible core independent peripherals should be used to ensure
enough CPU time to execute all the necessary operations in one sampling period.

QUADRATURE ENCODER INTERFACE (QEI)

For sensing both motor encoder and flywheel encoder, a QEI module is used. A QEI provides
a simple interface to incremental encoders. The output from the motor/flywheel encoders are
two channels, Phase A and Phase B. The Quadrature Decoder logic increments the counter
when Phase A leads Phase B, and decrements when Phase B leads Phase A. The value is stored
in 32-bit Position register, so the motor can make up to 2,147,483,648 ticks in both directions
without overflowing, what is more than 2 million motor revolutions. [15]

e By B By By

QEB

e LI I

POSCNT

UPDN

Figure 35 QEI principle

PWM GENERATORS

Although it is possible to easily create PWM signal with the comparator and a bit of logic, to
avoid CPU computing time, a High-Speed PWM module is used to control the DC motor. Since
the h-bridge (chapter 3.2.4) is using two PWM signals for its operation, two PWM generators
are required. Both generators use one shared 16-bit register MPER to control the switching
period and two 16-bit registers PG1DC and PG2DC for changing the duty cycle. Desired PWM
is a combination of these three registers. A Direction is coded in the received duty cycle number,
which is a 16-bit unsigned integer. [15]

ANALOG-TO-DIGITAL CONVERTER (ADC)

There are two signals that need to be converted from analog to digital, a battery voltage
information and an output from the hall sensor measuring the motor current. DSPIC have three
ADC SAR (successive approximation register) cores, with up to 12-bit resolution for this task.

The usable battery voltage is in the range from 3.2V to 4.2V. Since the ADC inputs in the dsPIC
are only up to 3.3V tolerant, the information about the battery voltage is divided in half by
voltage divider, making the voltage range from 1.6V to 2.1V. This analog value is then
digitalized and brought to the end user in percentage form. [15]

I°C (INTER-INTEGRATED CIRCUIT)

DsPIC use an 1°C module to communicate with the MPUG050 and thermometer IC. Both
sensors use a maximal possible 400kHz clock for 1°C communication.

BRNO 2020 46

WORKBOOK

5 WORKBOOK

An aim of this chapter is to provide a list of the exercises for the work with MSP device. The
chapter states 16 complex exercises focused on the known mechatronic problems. Many of the
principles discussed in the tasks are a common source of the headaches for university students.
Efforts have been made to ensure that principle of tasks is repeated as little as possible.

This chapter lists only exercise titles with a brief description of the exercise. The complete
workbook with specific task definition, background, and in some cases with example solutions,
is available in the appendix A. Background is written in a simple and understandable manner
so that any student should be able to complete the given task after reading it.

List of tasks:

1.

10.

11.

12.

Introduction to MSP — An exercise is focused on the Simulink basics and the
acquaintance of a user with the MSP device, its implementation in the Simulink and
prepare for the next exercises.

Position regulation — An exercise dealing with designing the PID position controller
for a DC motor.

Velocity regulation — Velocity PID controller design, exercise also contains a static
feed-forward implementation.

DC Motor system identification — Basics of the system modelling and estimating
model parameters based on the measurements.

IR-Compensation — An exercise using IR-compensation to stabilize the motor speed
with variable load.

Motor music — An exercise combining art with technology.
Parrot — An exercise using data buffering.

Crash detection — Task focused on the Boolean logic; a “crash” is made of hand impact
on the rotating motor.

H-bridge temperature — An exercise aimed at the power electronics heating problem,
specifically h-bridge.

LED Water-level — An integrated accelerometer in a combination with the LED bar
can be used to create a water-level indicator.

Canon stabilization — An integrated accelerometer in a combination with simple motor
regulator can be used to stabilize the position of the motor relative to the table.

MATLAB Game — An exercise focused on the creativity of a user; the task is to develop
a custom game using hardware.

BRNO 2020 47

WORKBOOK

13. Oscillating flywheel — An exercise focusing on the basics of damped oscillation and
estimating model parameters.

14. Motor vibrations analysis — An exercise focused on examining motor vibrations in
frequency domain.

15. Real-time parameter estimation — An exercise that uses RLS to determine change of
motor parameters online. Parameters are changed by the switch on the back side of the
device.

16. Flywheel control — An exercise that uses a state-space controller for positioning the
flywheel.

BRNO 2020 48

CONCLUSION

6 CONCLUSION

This thesis focuses on the development of an educational model for students of mechatronic.
The main parts of this model are the motor and the flywheel, which are connected by a
removable rubber band. With the addition of a motor current sensor, a flywheel position sensor,
an IMU, a simple button and a LED interface, the model becomes a device that offers a wide
range of options for teaching basic mechatronic problems. The final product was named
Mechatronics Starter Pack, given the purpose for which the model was intended.

In the first part of the thesis a research on a USB has been conducted, and after the consideration
of all options, using a USB bridge proved to be the best option for the communication as it
meets all the requirements. Several USB bridges were tested, and, the best choice turned out to
be the FT2232H bridge from FTDI.

The practical part is divided into two parts, the first is devoted to hardware design, the second
to software development. The design of mechanical construction and the selection of suitable
components for the power, control and sensory part of the electronics are among the tasks that
had to be fulfilled in the hardware part. One of the main parts of the device is the motor, which
had to be chosen in order to the device to be safe and could be powered from an integrated
battery. The designed electronics consists of three main PCBs, the control board, the power
board, and the interface board. All these parts have been integrated into a compact box that uses
a single USB cable to communicate and power the entire device. Further testing confirmed the
expected energy management design of the device, the battery does not discharge in optional
conditions and power electronics does not overheat with fully loaded motor.

Simultaneously with the hardware design, a software development took place. The software
includes the practical implementation of the communication on the software side, a program
running in the MCU and an interface allowing the user to easily interact with the hardware in
MATLAB/Simulink programming environment. A toolbox was created for these purposes,
which, in addition to the ability to control the hardware with the MATLAB functions also brings
the Simulink library, which allows easy hardware control with its own blocks. The limiting
factor of the simulation has become the normal mode, where Simulink is unable to stably clock
the individual steps and period fluctuations occurs in certain steps. This problem has been
partially solved by creating a custom timing method.

One part of the thesis is the creation of a list of tasks that can be performed with the device.
These tasks were compiled into a Workbook, in which, in addition to a specific assignment,
instructions for completing the given tasks are also described, and for selected tasks also their
expected output. Tasks are focused on the following areas of mechatronics:

Simulink programming basics
Signal processing

System modelling

Control algorithms

Model parameter estimation

From the beginning, the device was designed so that it maintains a low price with a large
number of feasible tasks and does not need additional resources for functionality. Compared to
the Double Drive mentioned in the introduction, the newly created product does not need a
power supply or a special cable and can be instantly used on any computer with installed

BRNO 2020 49

CONCLUSION

MATLAB. With sufficiently low production costs, students could be allowed to take the
equipment home and improve their skills in form of self-studying. Approximate price
calculation of one piece in case of the production of 100 pieces:

Table 9 Approximate price of MSP Device

Component Cost (CZK)
Main board components 300
Battery board components 400
Interface board components 100
All boards production 50
Motor 700
IMU + thermometer 80
Batteries and battery holder 100
Screws, spacers, cables, bearing, main switch, ... 150
Flywheel (2pcs) 200
3D printed chasse 20
Boards soldering 100
=2200 CzZzK

BRNO 2020 50

LIST OF ABBREVIATIONS

LIST OF ABBREVIATIONS

ADC Analog-To-Digital Converter

API Application Programming Interface
CPR Count per revolute

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DC Direct current

DC Duty Cycle

DLL Dynamic Link Library

DSP Digital Signal Processor

FFT Fast Fourier Transform

FIFO First In-First Out

FME Faculty of Mechanical Engineering
FTDI Future Technology Device International
1/0 Input / Output

1°C Inter-Integrated Circuit

IC Integrated Circuit

IMU Inertial Measurement Unit

loT Internet of Things

JTAG Joint Test Action Group

LDO Low-dropout

LED Light-Emitting Diode

Li-lon Lithium lon

LQR Linear Quadratic Regulator

MCU Microcontroller Unit

MEMS Micro-Electro-Mechanical Systems
MISO Master In, Slave Out

MOSI Master Out, Slave In

MPSSE Multi-Protocol Serial Synchronous Engine
MSP Mechatronics Starter Pack

MSPRT Mechatronics Starter Pack Real-Time
PC Personal computer

PCB Printed circuit board

BRNO 2020 51

LIST OF ABBREVIATIONS

PE
PID
PLL
PWM
QEI
RLS
RMSE
SAR
SLDRT
SPI
SS
SUV
UART
UsB

Parameter Estimation
Proportional-Integral-Derivative
Phase-Locked Loop

Pulse Width Modulation
Quadrature Encoder Interface
Recursive Least Square Method
Root-Mean-Squared Error
Successive Approximation Register
Simulink Desktop Real-Time

Serial Peripheral Interface

Slave Select

Sport Utility Vehicle

Universal Asynchronous receiver-transmitter

Universal Serial Bus

BRNO 2020

52

APPENDIX

BIBLIOGRAPHY

[1] MATOUSEK, David. USB prakticky. 1. dil, S obvody FTDI. Praha: BEN — technicka
literatura, 2003, 270 s. ISBN 80-7300-103-9.

[2] Universal serial Bus Specification Revision 2.0. USB Implementers Forum, Inc. 27.4.2000.
650p. Available at: ush.org/document-library/ush-20-specification

[3] Unscrambling USB Type -C and Its Communication Protocols — Targus Australia. [online].
[cit. 2020-06-23]. Available at: https://au.targus.com/blogs/discover-targus/unscrambling-
usb-type-c-and-its-communication-protocols

[4] FT600Q-FT601Q IC Datasheet Version 1.05 [online]. [cit. 2020-06-23]. Available at:
https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT600Q-FT601Q%
201C%?20Datasheet.pdf

[5] FT2232H Dual High Speed USB to Multipurpose UART/FIFO IC Datasheet Version 2.6
[online]. [cit. 2020-06-23]. Available at: https://www.ftdichip.com/Support/Documents/
DataSheets/ICs/DS_FT2232H.pdf

[6] FTDI MPSSE Basics Version 1.1 [online]. [cit. 2020-06-23]. Available at:
https://www.ftdichip.com/Support/Documents/AppNotes/AN_135 MPSSE_Basics.pdf

[7] Interfacing FT2232H Hi-Speed Devices to SPI Bus Application Note AN_114 Version 1.1
[online]. [cit. 2020-06-23]. Available at: https://www.ftdichip.com/Support/Documents/
AppNotes/AN_114 FTDI_Hi_Speed USB_To_SPI_Example.pdf

[8] LG LGABF1L1865 Cell Specifications [online]. [cit. 2020-06-23]. Available at:
https://secondlifestorage.com/showthread.php?tid=1774

[9] Pololu Robotics & Electronics [online]. Pololu Corporation [cit. 2020-06-23]. Available at:
https://www.pololu.com/product/4883

[10] LTC4002- 2-Cell Standalone Li-lon Switch Mode Battery Charger [online]. [cit. 2020-
06-23]. Available at: https://www.analog.com/media/en/technical-documentation/data-
sheets/4002f.pdf

[11] BQ2980xy Voltage, Current, Temperature Protectors with an Integrated High-Side
NFET Driver for Fast/Flash Charging Single-Cell Li-lon and Li-Polymer Batteries
datasheet (Rev. E) [online]. [cit. 2020-06-23]. Available at: https://www.ti.com/product/
BQ2980

[12] TPS61088-Q1 10-A Fully-Integrated Synchronous Boost Converter datasheet (Rev.
A) [online]. [cit. 2020-06-23]. Available at: https://www.ti.com/product/TPS61088-Q1

[13] DRV8870 data sheet, product information and support | Tl.com [online]. [cit. 2020-06-
23]. Available at: https://www.ti.com/product/DRV8870

[14] ACST712: Fully Integrated, Hall-Effect-Based Linear Current Sensor IC [online]. [cit.
2020-06-23]. Awvailable at: https://www.allegromicro.com/en/products/sense/current-
sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs712

BRNO 2020 53

http://www.orlicky.net/index.php?id_zpravy=12632122891534665977
https://au.targus.com/blogs/discover-targus/unscrambling-usb-type-c-and-its-communication-protocols
https://au.targus.com/blogs/discover-targus/unscrambling-usb-type-c-and-its-communication-protocols
https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT600Q-FT601Q%20IC%20Datasheet.pdf
https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT600Q-FT601Q%20IC%20Datasheet.pdf
https://www.ftdichip.com/Support/Documents/%20DataSheets/ICs/DS_FT2232H.pdf
https://www.ftdichip.com/Support/Documents/%20DataSheets/ICs/DS_FT2232H.pdf
https://www.ftdichip.com/Support/Documents/AppNotes/AN_135_MPSSE_Basics.pdf
https://www.ftdichip.com/Support/Documents/%20AppNotes/AN_114_FTDI_Hi_Speed_USB_To_SPI_Example.pdf
https://www.ftdichip.com/Support/Documents/%20AppNotes/AN_114_FTDI_Hi_Speed_USB_To_SPI_Example.pdf
https://secondlifestorage.com/showthread.php?tid=1774
https://www.analog.com/media/en/technical-documentation/data-sheets/4002f.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/4002f.pdf
https://www.ti.com/product/BQ2980
https://www.ti.com/product/BQ2980
https://www.ti.com/product/TPS61088-Q1
https://www.ti.com/product/DRV8870
https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs712
https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs712

APPENDIX

[15] DsPIC33CK256MP508-16-Bit-Microcontrollers and Digital Signal Controllers
[online]. [cit. 2020-06-23]. Available at: https://www.microchip.com/wwwproducts/
en/dsPIC33CK256MP508

[16] MPU-6050 Datasheet, PDF - Alldatasheet [online]. [cit. 2020-06-23]. Available at:
https://www.alldatasheet.com/datasheet-pdf/pdf/517744/ETC1/MPU-6050.html

[17] Position-Angle-Displacement-Speed-Acceleration [online]. [cit. 2020-06-23].
Available at: https://circuit.rocks/triple-axis-accelerometer-and-gyro-breakout-mpu-6050

[18] AS5147 Rotary sensor [online]. ams, 2020 [cit. 2020-06-23]. Available at:
https://ams.com/as5147

[19] KIRCHNER, Tomas. Vyroba a implementace enkodérové jednotky. Vysoké uceni
technické v Brn¢. Fakulta strojniho inzenyrstvi, 2018.

[20] LM75B: Digital temperature sensor and thermal watchdog [online]. NXP, 2015 [cit.
2020-06-23]. Available at: https://www.nxp.com/docs/en/data-sheet/LM75B.pdf

[21] Simulink Desktop Real-Time [online]. The MathWorks [cit. 2020-06-23]. Available at:
https://www.mathworks.com/products/simulink-desktop-real-time.html

[22] K.LT.T. (2000) [online]. Fandom [cit. 2020-06-23]. Available at: https://knight-
rider.fandom.com/wiki/K.I1.T.T._(2000)

[23] Lumped Parameter Characterization of a Permanent Magnet DC Motor [online]. [cit.
2020-06-23]. Available at: https://my.mech.utah.edu/~me3200/labs/motorchar.pdf

[24] Damped Oscillations [online]. PHYSICS LibreTexts, 2020 [cit. 2020-06-24]. Available
at: https://phys.libretexts.org/Bookshelves/University Physics/Book%3A_University Phy
sics_(OpenStax)/Map%3A_University_Physics_I_- Mechanics%2C_Sound%2C_Oscillat

ions%2C_and_Waves_(OpenStax)/15%3A_Oscillations/15.06%3A_Damped_Oscillations

[25] Fast Fourier Transform - MATLAB fft [online]. The MathWorks [cit. 2020-06-26].
Available at: https://www.mathworks.com/help/matlab/ref/fft.ntml

[26] BRABLC, M., SOVA, V. and GREPL, R. Adaptive feedforward controller for a DC
motor drive based on inverse dynamic model with recursive least squares parameter
estimation. In: Proceedings of the 2016 17th International Conference on
Mechatronics - Mechatronika, ME 2016. 2017. ISBN 9788001058831. Available at:
https://ieeexplore.ieee.org/document/7827809.

[27] BRUNTON, S. L. and KUTZ, J. N. Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.

[28] Control Tutorials for MATLAB and Simulink - Function rscale: Finding the Scale
Factor to Eliminate Steady-State Error [online]. [cit. 2020-06-23]. Available at:
http://ctms.engin.umich.edu/CTMS/index.php?aux=Extras_rscale

BRNO 2020 54

https://www.microchip.com/wwwproducts/en/dsPIC33CK256MP508
https://www.microchip.com/wwwproducts/en/dsPIC33CK256MP508
https://www.alldatasheet.com/datasheet-pdf/pdf/517744/ETC1/MPU-6050.html
https://circuit.rocks/triple-axis-accelerometer-and-gyro-breakout-mpu-6050
https://ams.com/as5147
https://www.nxp.com/docs/en/data-sheet/LM75B.pdf
https://www.mathworks.com/products/simulink-desktop-real-time.html
https://knight-rider.fandom.com/wiki/K.I.T.T._(2000)
https://knight-rider.fandom.com/wiki/K.I.T.T._(2000)
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_I_-_Mechanics%2C_Sound%2C_Oscillations%2C_and_Waves_(OpenStax)/15%3A_Oscillations/15.06%3A_Damped_Oscillations
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_I_-_Mechanics%2C_Sound%2C_Oscillations%2C_and_Waves_(OpenStax)/15%3A_Oscillations/15.06%3A_Damped_Oscillations
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_I_-_Mechanics%2C_Sound%2C_Oscillations%2C_and_Waves_(OpenStax)/15%3A_Oscillations/15.06%3A_Damped_Oscillations
https://ieeexplore.ieee.org/document/7827809
http://ctms.engin.umich.edu/CTMS/index.php?aux=Extras_rscale

APPENDIX

APPENDIX

A WORKBOOK

EXERCISE #1: AN INTRODUCTION TO MSP

The first exercise is very simple and basically requires no special knowledge about the
mathematics or the physics. The exercise is here to acquaint the user with the MSP device, its
implementation in the Simulink and prepare for the further exercises.

TASK

Create a program in a Simulink that will do the following:

When no button is pressed, the motor is still. All LEDs are turned off.

Use the button number 1 to rotate the shaft at the 50% duty cycle, clockwise. Also, light
5 random green LED:s.

Use button number 4 to rotate the shaft at the 50% duty cycle, counter-clockwise. Light
5 random red LEDs.

When the button number 1 and 2 are pressed simultaneously, the motor spins at the
100% duty cycle, clockwise. All green LEDs are turned on.

When the button number 3 and 4 are pressed simultaneously, the motor spins at the
100% duty cycle, counter-clockwise. All red LEDs are turned on.

When all the buttons are pressed simultaneously, the motor is still, and all the LEDs
perform a famous Knight-rider visual sequence.

Figure 36 Knight Rider [22]

Create a test signal: Make a random stair signal and a sine wave signal, the values
changes within one revolution. Use a manual switch to jump from the sine wave to
stairs. This test signal will be used in further tasks.

The motor in the device contains a Quadrature Encoder with a resolution of 48 ticks per
revolute on a motor shaft. Determine a ticks per revolute on an output shaft and a gear
transition.

Prepare Subsystem for getting real position (in radians), which will be used in the further
tasks.

BRNO 2020 55

APPENDIX

EXERCISE #2: A POSITION REGULATOR
TASK

e Create and set up a motor position PID regulator. Use the test signal from the previous
exercise as a reference signal. Plot results and regulator impact into Scope.
e Add static friction compensation to regulator.

BACKGROUND

Conventional regulators are used for the most linear systems. More than 95% of the industrial
systems use PID-based controllers, most of them are PIl. There are many methods and
algorithms for setting up the PID regulators. This task is focused on method called trial—error.

The Exercise can be considered as the following unity-feedback system:

Controller

Figure 37 System with PID controller

The plant in the schema represents DC motor. Control signal (u) represents the motor input
voltage, and y is a feedback signal, in this case motor position from encoder. An error signal (e)
is computed as a difference between reference signal (r) and the measured position of the motor
(y)- This error signal is fed onto the controller, which computes the motor input voltage based
on the equation:

de(t)

PR)

u(t) = Kye(t) + K; j e(t)dt + K,

Where K, is a proportional gain, K; is an integral gain and K, is a derivative gain. These are
the constants, which needs to be tuned. Increasing the proportional gain will result in faster
response but will also tend to overshoot more. The addition of an integral term K; to the
controller helps to reduce steady—state error but deteriorates the stability. After overshooting,
integral part needs some time to remove integrated value. Another problem that needs to be
solved in certain systems is a wind-up effect (integrator is integrating even after exceeding
actuator limits). Adding derivative term K; adds damping to the system, decreasing
overshooting but increasing noise in system. K, in the systems is usually very low compared to
Ki or Kp.

BRNO 2020 56

APPENDIX

EXPECTED RESULTS:

PID position regulation
T

T
5
=)
e
o0
=]
c
<
5 —— Desired position [rad]
——Measured Position [rad] > .
I | I | I | I
0 5 10 15 20 25 30 35 40

Time [s]

Impact of PID components

0.5

Impact [-]
(=]

-0.5

10 20 25 30 35 40

Time [s]

Figure 38 PID position control
As shown in figure 15, even with well-tuned PID, error between desired and measured position
in the scan reach up to 0.1 radians in steady state. This is caused by static friction and

unlinearities relevant with motor starting from still state. A static friction can be compensated
by saturating the minimal motor voltage.

PID position regulation
T

T
5
=
s
@ 0
=)
j=
<
5 ——Desired position [rad]
——Measured Position [rad]
| I I | | | |
0 5 10 15 20 25 30 35 40
Time [s]
; Impact of PID components
T T T ——
—P
—1
0.5- —pf
S N]\ N ,J& ________________ i N P NG
b=y s
E
0.5 =
1 | | | | | | |

0 5 10 15 20 25 30 35 40
Time [s]

Figure 39 PID position control with static friction compenstation

Motor positioning with PID controller and static friction compensation gives significantly better

results for positioning to the stair signal. A Maximal steady-state error for this signal is 0.02
rad.

BRNO 2020 57

APPENDIX

EXERCISE #3: A VELOCITY REGULATOR

This exercise is the second part of the PID controller design. Controlled variable is motor
velocity this time.

TASK

e Create and set up a PID velocity controller. Use an appropriate stair and sine wave
signals within the actuator limits.

e Do several measurements of the motor velocity for a different voltage levels. Plot U-w
characteristic of motor for static load and approximate this characteristic with
appropriate function.

e Use function description from previous point and create a PID velocity controller with
a static feedforward.

e Use RMSE to evaluate the difference between the reference signal and the real signal.

BACKGROUND

The scheme of the system in the first part of the task remains the same, with only difference
that instead of position, a velocity reference and feedback signals are required. To get the motor
velocity, a derivation of the position signal from the motor encoder is needed. Due to problems
related to Simulink timing in normal mode, it is recommended to use the block MSP Simulation
Time from the MSP library and manually derivate signal (fig. 40)

@ T

MSP- Motor » » -
Encoder

L

_©

. " 71 -

MSP- Simulation = =
Time

Figure 40 Simulink - Manual derivation using MSP library

A Derivation brings a noise into the system and must be filtered. Getting a well-filtered velocity
signal is a key aspect for a good velocity regulation. A filter mut be efficient enough to remove
the high frequency noise, but a time constant of the filter cannot be too high, because of delaying
the signal. The position can be regulated good enough with the proportional regulator only, to
get good results in the velocity regulation, a high impact of the integration part is required.

The second task is to use a static feedforward. While PID regulator is based on the error that
has already occurred, the feed forward is proactive, meaning that the feedforward predicts the
actuation needed to achieve the zero error. In this task, feedforward is represented by a function,
which is determined from the U-o characteristic. Based on the measured data and the

BRNO 2020 58

APPENDIX

mathematical model of a DC motor (Exercise #4), a linear approximation can be used. An
equation of this linear approximation can now be used to create a model of the feedforward.

Feed-forward

Controller

Figure 41 PID velocity control with feed-forward

The system can be controlled in an open loop with simple feedforward, but this method is never
used, since the system cannot handle unexpected disturbances. A better way is to use
feedforward model as a prediction of the desired value and “help” the PID controller. As shown
in figures below, the impact of PID controller is significantly lower when used in combination
with the feedforward.

The last task is to express the error in measurements compared to the desired state. RMSE (root-
mean-squared error) is a frequently used formula to measure the difference between data series.
RMSE is always non-negative and a value of 0 means the perfect fit.

RMSE = \/Zz—l(xl;_ Xt)? ©)

where x;, and x,, are the data time series observed over T samples.

BRNO 2020 59

APPENDIX

EXPECTED RESULTS
Velocity Control
\

'E‘ °l ﬂ
g
£
>
[=]
°
> ~—Desired velocitv
=20 ~ |—Measured velocity: PID
——Measured velocity: PID + Feed-forward | | | | | :
0 5 10 15 20 25 30 35 40
Time [s]
1 Impact of Controller: PID without feed-forward
I I I I
—P
0.5 !
—) —bD
§ o
g r 8
E
-0.5 — -
1 | | | | | | |
0 5 10 15 20 25 30 35 40

Time [s]

Impact of Controller: PID with feed-forward

1 T T T
: o— e
o
E

0.5 —PID
—Feed-forward
A \ \ \ ! \ | \
0 5 10 15 20 25 30 35 40

Time [s]

Figure 42 Motor velocity control
RMSE for a data shown in the graphs:
RMSEpp = 3.744
RMSEp;p, = 3.6838

RMSEPID+ FF — 30969

BRNO 2020 60

APPENDIX

EXERCISE #4: DC MOTOR SYSTEM IDENTIFICATION

Mathematical models of systems are a corner stone for many control strategies. These models
are usually obtained by analysing the physical properties of the observed phenomena. However,
models can involve parameters, which cannot be measured and needs to be estimated.

e Determine resistance of the motor winding R,,.

e Determine the motor constant c¢.

e Determine the motor constant of a viscous friction b.
e Determine the motor rotary inertia J.

BACKGROUND

DC motor is complex electromechanical system, which can be described by two differential
equations:

e Electrical equation

Ug(t) = Rgi(t) + Lg dl—(tt) + chpw(t) 4)
where U, [V] is a motor voltage,
R, [2] is motor wiring resistance,
i(t) [A] is a current flowing through motor,
L, [H] is a motor wiring inductance,
cp [Vs/rad] is a motor’s back EMF constant,
w(t) [rad/s] is a motor rotational velocity.

e Mechanical equation

dw(t)

ci(t) =] ——+ ba(t) — Mz)
where] [kgm?] IS a motor rotary inertia,
b [Nms/rad] isa coefficient of a viscous friction,
Mz [Nm] is a load torque.

More accurate model would include a temperature dependence on the wiring resistance in the
electrical equation and a dry friction in the mechanical equation. In this task, these
unlinearities are neglected and the model without these factors is adequate.

Parameters can be determined in several ways. A wiring resistance can be identified from the
electrical equation when a motor is powered by the voltage and stopped by the torque. The
equation (4) then simplifies to:

BRNO 2020 61

APPENDIX

_Uq ()
EET0))

Be careful not to hold the motor still for a long time, as it can not only damage the motor, but
also the motor and power electronics starts to heat up, the wiring resistance raises, and the
measure will be incorrect. With known wiring resistance, a motor constant can be easily
determined from the electrical equation, considering a constant voltage.

(6)

Similarly, coefficient of viscous friction can be determined from steady state, with constant w
and i. Assuming no load torque, mechanical equation simplifies to:

cgi(t) = bw(t) (1)

For getting the value of the motor rotary inertia, we can use a mechanical time constant. It is
defined as the time taken by the motor to go from the rest to 63% of the final speed. Since the
mechanical time constant is much slower than the electrical, inertia can be calculated ignoring

the inductance effects (L, Z—i = 0). Inertia then equals [23]:

2
] — Tmech(R;b + C¢) (8)

where T,..n [S] 1S amechanical time constant.

Step response

351

30

25

Velocity [rad/s]
o
T

10
5 (-
0 | —Measured data
X 3.008 —Filtered data
YO0
.5 1 | | | |
2,95 3 3.05 3.1 3.15 3.2 3.25 3.3 3.35 34 3.45

Time [s]

Figure 43 Motor Step response

Due to unwanted delay, which is critical in determining the mechanical time constant z,,, the
recommended way is to not use a filter, or use a very fast filter when measuring data, and
filter the data in the post-processing. Matlab function filtfilt performs zero-phase filtering by
processing the data in both forward and reverse directions.

BRNO 2020 62

APPENDIX

Another different way to get all the parameters is to use a tool Parameter Estimation (PE),
which is a part of Simulink Design Optimization toolbox. All that PE needs is an input data,
in this case a motor voltage and an output data, in this case motor velocity. A parameter
impact must be incorporated in the submitted output data. Data for the estimation, as well as
the simulated output with estimated parameters is shown on the fig.44:

Parameter estimation - DC motor

-
o
1

-
o
T

(5]
T

'
(3]
T

Motor voltage [V]
(=]
T

-
(=]
T

! I \ I | |
0 1 2 3 4 5 6 7 8 9 10
Time [s]

-
o

40 — ——Measured output
- = =Simulated output with estimated parameters

N
o o

Velocity [rad/s]

[
o

Time [s]

Figure 44 Parameter Estimation

Disadvantage of using the PE is that with incorrect initial values of the parameters, PE can fall
into the local minima during the estimation and estimated parameters are then far from the
reality.

Comparison of parameters obtained by different methods is shown in tab. 10.

Table 10 Estimated parameters

Parameter Value from | Estimated value from | Parameter

the datasheet the measurements Estimation
Motor wiring R, [2] 10.91 114 11.965
Motor constant c¢ [Vs/rad] 0.4 0.3665 0.41207
Viscous friction coefficient b [Nms/rad] - 0.00063 0.0002
Moment of inertia J [kg - m?] - 0.00088 0.00079

BRNO 2020 63

APPENDIX

EXERCISE #5 IR — COMPENSATION

TASK

e Create a controller with an IR — compensation, use hand to add load to the motor. Plot
the velocity, current and IR impact into the graphs.

B ACKGROUND

IR compensation is a method used to improve the speed regulation. It is used in the applications
where the stability of the speed is crucial and fluctuations in speed may be unacceptable. Motor
speed deflections are caused by external disturbances or the variable load. Because of negative
correlation between torque and speed, with increasing load the motor speed decreases and
current flowing through motor increases. IR compensation makes the motor input voltage rise
if motor current goes up. This helps to stabilize the motor speed, even without the velocity
feedback. System with a bad conditioned IR compensation may result in an unwanted speed
increase as the load increases.

An example of the expected graph:

IR Compensation

N
o

Velocity [rad/s]
3
%

0 | | | | | |
0 5 10 15 20 25 30 35
Time [s]
— T
<06 .
0.4 .
[]
£02 1
(&) 0 \ I I I | i
0 5 10 15 20 25 30 35
Time [s]

‘- - -Default duty dycle —IR Impact —Total duty cycle‘

-
(=}
o

10 15 20 25 30 35
Time [s]

Duty cycle [%]
g

o
o
[3,}

Figure 45 IR-compensation

Added load can be seen on the second graph. At time approx. 12 second, actuator came to its
limit, what resulted in the speed decrease.

The compensation is usually far from the perfect since the temperature variation of resistance
and other factors are not included.

BRNO 2020 64

APPENDIX

EXERCISE #6 MOTOR MUSIC

TASK

e Make the DC motor play some famous song by changing the h-bridge switching

frequency.

B ACKGROUND

To complete this exercise, a little knowledge of the music is required. Tones in the songs are
defined by its frequency and amplitude. As may be noticed, a DC motor makes different sounds
with different switching frequencies. This is caused by the magnetostriction phenomena which
can be heard. In a combination with variable duty cycle and spin rotation, a DC motor can be

used as a cool musical instrument.

EXERCISE #7 PARROT

TASK

e Manually rotate flywheel to draw some cool image in the scope. Make motor re-draw

this image after few seconds.

BACKGROUND
Task can be done with a simple data buffering and P regulator.

Parrot
4.5 ; | |
A /\
‘*Flywheel position /\ 4 \
4 —Motor position ,"I \ / \

ved
(3}
I
_—

w
I
=

Position [rad]
N
(5.}

1.5/ _,
/

0 j \ | /) |
0 2 4 6 8 10 12 14 16 18 20
Time [s]
Figure 46 Parrot task
65

BRNO 2020

APPENDIX

EXERCISE #8 CRASH DETECTION

TASK

e Spin the motor at optional speed and direction. Use hand to simulate a “crash”. Motor
should spin in the opposite direction after “crash”.

B ACKGROUND

An ideal crash would cause a step change in current and acceleration. Hand impact is unlikely
to have a step response, but the response should be sharp enough. The main part of this exercise
is to make an algorithm that detects this event and executes an action based on this event. It is
important for the trigger to execute only once for a given period, since executing the action that
flips the actual direction will cause even higher acceleration or current increase. This is more
of programming task with an emphasis on the Boolean logic.

Example solution is shown in figure 47. For this case, acceleration was used, and a trigger level
was set to +20 rad/s®>. After acceleration exceeds this value, motor changes its rotational
direction and trigger turns off for 2 seconds. The same results are possible with the motor
current signal.

Crash detection

2]
o

Velocity [rad/s]
Acceleration [radlszl
o

\ —Velocity Trigger level \
| | ‘ | —Acceleration ‘ | | | |
50
0 1 2 3 4 5 6 7 8 9 10 11
Time [s]
= 1
by
— e
o Sos
©
3%
b . I | B | —
£5 0
oo
E ——Trigger status
05 I I \ \ ___Duty cycle I I \ I]
0 1 2 3 4 5 6 7 8 9 10 11
Time[s]

Figure 47 Crash detection

BRNO 2020 66

APPENDIX

EXERCISE #9 H — BRIDGE TEMPERATURE
TASK

e Measure the h-bridge temperature with a fixed motor and 100% duty cycle.

e Approximate the temperature with the first-order system and estimate the steady-state
temperature.

BACKGROUND

In the practise, we often encounter the problem of the power electronics and the motor heating
and most of the times, these processes have an exponential progress. Although we cannot define
the exact equation for this process because of many unknown disturbances, we can approximate
it with the first-order system, and if we determine the gain and the time constant of the system,
we can determine the steady temperature and therefore know how long the system can be loaded
by a given power.

A 60-second-long measurement is shown on figure 48. Estimated steady-state temperature for
this measurement is 56 °C.

H-bridge temperature

60 T I

——Measured temperature
58 — Approximated temperature -
- - ~Estimated temperature

o
(=)

(3. (%)) (%
o L =

Temperature [°C]

£y
[=-]

46

0 20 40 60 80 100 120
Time [s]

Figure 48 H-bridge temperature task

BRNO 2020 67

APPENDIX

EXERCISE #10 LED WATER-LEVEL

TASK

e Use an integrated accelerometer and all LEDs to create a water-level indicator from the
device.

e Use an integrated accelerometer to change the motor speed after rotating the device.
(Motor does not rotate in the default position and the rotational velocity increases as the
device is turned on the side).

B ACKGROUND

A device contains an inertial measurement unit, which, in combination with LEDs can change
the device to a simple water — level indicator. The gravitational force is spread into three axes
of accelerometer. Since these axes are right-angled to each other, it is possible to calculate the
angle between the vector of the gravity field and the sensor position. The recommended way is
to use function atan2.

Figure 49 MSP Device tilt
Opitcn = atan2(Az, Ax) €)]

An accelerometer data can be obtained from IMU block in the MSP library. The value from
sensor for each axis is formatted in signed integer data type, so the range of values that can
sensor provide is from -32 768 to 32768. Sensor operates in default settings; thus, the sensitivity
is equal to +/— 2g for accelerometer and +/— 250 deg/sec for gyroscope. If the device is perfectly
levelled and not moving, then the X/Y accelerometer axis should read 0 and the Z accelerometer
axis should read 1g, which is +16384 for our sensitivity. In reality, it is highly unlikely to be
exactly the expected value due to noise and error.

Accelerometer data must be normalized for creating the water level indication. This can be done
experimentally for all axis, by rotating the device on sides, calculating the limit values, and
normalizing the range to the LEDs numbers. With correct accelerometer data, lighting LEDs is
an easy programming task.

BRNO 2020 68

APPENDIX

EXERCISE #11 CANON BALANCE

TASK

e Turn the device so that the LEDs are pointing downwards. Use an integrated
accelerometer to stabilize the motor position relative to table (see fig.50).

Figure 50 Canon balance task

BACKGROUND

For the motor stabilization, the accelerometer data must well-filtered and adjusted to correlate
with the motor encoder input. the negative value of an angle can be used as a reference position
for the PI regulator.

For more accurate results in this exercise, it is possible to use different types of fusion
algorithms, like Complementary filter, or variation of Kalman filter, but any of these topics
takes its own chapter and is not necessary for this application.

EXERCISE #12 MATLAB GAME
TASK

e Create a game in MATLAB, which will use any of the features of the MSP device
(Accelerometer, buttons, LEDs...). For inspiration, take a look at integrated Arkanoid
game, which is controlled by the tilt of the device. This game can be started by command
mspgame.

Figure 51 Arkanoid game. This demostration game has been created
by the second-year undergraduate student Ondrej Svik.

BRNO 2020 69

APPENDIX

EXERCISE #13 OSCILLATING FLYWHEEL
TASK

e Place a rubber band between the motor disc and the flywheel. Hold the motor still, rotate
the flywheel aside and let it oscillate.

e Determine the period and the angular frequency of the oscillating flywheel.

e Determine the attenuation and the logarithmic decrement of the attenuation.

e Estimate all coefficients in the equation of the instantaneous deflection and simulate the
process. Plot measurement, simulation, and exponential envelope in one graph.

BACKGROUND
Damped oscillating system can be described by the equation of motion in the form [24]:
d’y dy

Gz Tty =0 (10)

The solution for this equation is an equation that describes the instantaneous deviation of a point
mass around the equilibrium point [24]:

y(t) = Age Ptsin(w t + ¢p) (11)

where y [rad] is the instantaneous deviation,
Ay [rad] is the initial amplitude,
b [ka/s] is the system damping,
w;: [rad/s] s the angular frequency,
@, [rad] is the initial offset.

The period T of the oscillation, initial amplitude A, and initial offset ¢, can be determined
directly from the measured data. Angular frequency can be specified as:

_27'[

we =— (12)

How the amplitude decreases over time is expressed by an equation for the exponential
envelope:

A= Ayje Pt (13)

The only missing parameter b can be determined by approximating the absolute values of the
amplitudes by the exponential function, or by modelling the equation (11) in Simulink and using
Parameter Estimation.

The attenuation is a division of two following amplitudes in the same direction:

A, Age bt
- Aoe—b(t+T) -

1= eb” (14)

Antr

Logarithmic decrement is then a natural logarithm of the attenuation.

BRNO 2020 70

APPENDIX

EXPECTED GRAPH

Oscillating flywheel

—Simulated position
—Measured position
- “Exponential envelope

Position [rad]

0 0.5 1 1.5 2 25 3 35 4
Time [s]

Figure 52 Oscillating flywheel

BRNO 2020 71

APPENDIX

EXERCISE #14 ANALYSING THE MOTOR VIBRATIONS
TASK

e Determine the motor speed, based on the motor vibrations.

B ACKGROUND

In past decades, a vibration diagnostic has become one of the most effective methods for
monitoring machinery condition. There are many sources of vibration when a motor spins,
vibration can be caused by the bearings, gearbox, or unbalanced rotor shaft.

Although vibration can be analysed in the time domain, the analysation is limited by too few
parameters that quantifies the vibration signal. The Analyse in time domain is useful for very
simple sine waves, but for the complex signals as the vibration of the motor, it is necessary to
perform the spectrum analysis.

Fast Fourier Transform (FFT) is a powerful tool that decomposes the analysed signal into
individual sine waves. The result of performing FFT are amplitudes as a function of the
frequencies, which allows analyses in the frequency domain. Most of the vibration analysis are
done in the frequency domain. Instructions to perform FFT in MATLAB can be found at [25].

The spectrum analysis of the motor vibration profile, measured by the accelerometer, can be
used to determine the motor shaft’s speed, as the greatest vibration source here is the unbalanced
motor shaft.

FFT analysis of the accelerometer data is shown on figure 53. The measurement took 10 second,
sampled at 1 kHz with 90% motor duty cycle.

FFT Vibration Analysis
T .

w
(=]
o

T T T T
- X 2615
| L X 87.1 Y 278.5 i
2 200 Y 148.9
° s
>
=100 | -
o
g | \L | ' |
< 0 bl Ry lu o, i | il Lt b ke I AJJ}’L 1 s L fit
0 50 100 150 200 250 300 350 400 450 500
Frequency [Hz]
T T T T
4001 .x 871 -_—Y axis
LN Y 408.8
g
5200+ .
a
E |
< 0 R st hsanie ot " deans il Lo, L i 1 I
0 50 100 150 200 250 300 350 400 450 500
Frequency [Hz]
200 T - T T T
— o615
L ‘ Y 181.2
< 100 X 87.1 il
3 Y 65.33 ‘
g R ' ' |)
< 0 ' it " NW& TR IVTO 0| OWRGRTVRRTLL TRRORIONT, | VO s o JL.M.‘ m ..ULML M il
0 50 100 150 200 250 300 350 400 450 500

Frequency [Hz]
Figure 53: Motor vibration analysis

The motor frequency determined from the motor encoder equals to 86,67 Hz. This value almost
perfectly agrees with the dominant frequency at 87,1 Hz in the FFT plots.

BRNO 2020 72

APPENDIX

EXERCISE #15 REAL-TIME PARAMETER ESTIMATION
TASK

e Use a Recursive Least Squares (RLS) estimation to determine the motor parameters
online, while changing the system parameters by the switch on the back side of the MSP
device (the switch adds extra 12Q resistance into the motor).

B ACKGROUND

The system parameters are usually determined offline, before they are used for the control, but
in specific cases, the parameter can change during operation and must be estimated again. There
are number of complex techniques that can be used for this purpose, some of them are iterative,
others are based on the direct calculations. This exercise is focused on the RLS, as it is one of
the easiest methods to implement and provides level of accuracy that is sufficient for a simple
model of DC motor.

The equations of DC motor (Exercise #4, eq. (4) and (5)) can be written in the form (neglecting
di .
the L - and assuming no load torque M,):

bR R] dw(b)
g)w(t) +—

Cp dt
It is not necessary to estimate every single parameter in (15). Since the parameters are
dependent, they can be combined to new parameters that do not have any physical meaning,
but are suitable for the online parameter estimation:

u(t) = (Cp + (15)

do(t)

P (16)

u(t) = cqw(t) +c,

Choosing the vector of parameters as ¢ = [c;, c,]T and the system states X= [a)(t), d‘;it)], the
equation (16) can be re-written into the matrix form:

u=Xc (17)

The RLS is based on the Least Squares technique. With the known input/output datasets and
the system model, the parameters vector can be determined as [26]:

c=(X"X)'RTu (18)
Where X = [XT, X7, X%, ... X217 and u = [uy, up, us, ...u, 7. Each row in these matrices

represents one input/output sample. The RLS algorithm updates the parameters with every new
measured data, based on the equations:

byi1 = by + Pypi1X(u — Xby) (19)
1 P, xXX'P, (20)
Poii=7\Pon—7T 515 v
A A+ XTP, X

BRNO 2020 73

Value [-]

Speed [rad/s]

Acceleration [rad132]

APPENDIX

Where P, is the covariance matrix in last step, P,,, is the updated covariance matrix, b,, is a
vector of estimated parameters in last step, b,,,1 is the vector of updated parameters, and A is
the forgetting factor. The value of A is in range from 0 to 1 and is usually very close to 1 (e.g.
0,995). The forgetting factor describes how fast parameters converge (higher values means
slower convergence).

Equations (19) and (20) can be modelled in MATLAB or it is possible to use Recursive Least
Squares Estimator block in Simulink, which is a part of System Identification Toolbox.

EXPECTED RESULT

An example result with a sine wave input signal is shown in fig. 54. The figure also shows the
comparison of the measured and simulated states with estimated parameters. The switch was
toggled approximately after 10 seconds of the simulation, A was set to 0.9995.

Estimated parameters
40 T T T

20 C ,
0 |

-20 I I \ \ \
0 5 10 15 20 25 30

Time [s]

\- --Simulated w ——Measured w
T xS - T

5 10 15 20 25 30
Time [s]

100 T T !- - -Simulated dw/dt — Measured dw/dt

|
0 5 10 15 20 25 30
Time [s]

Figure 54 Online parameter estimation

BRNO 2020 74

APPENDIX

EXERCISE #16 FLYWHEEL CONTROL
TASK

e Create Linear-quadratic regulator for positioning the flywheel.

MATHEMATICAL MODEL

A mathematical model of the system is made of two parts, a motor part (equations for the DC
motor) and a mechanical part. DC motor equations were examined in the previous tasks; the
mechanical part is shown in figure 55.

Flywheel

Figure 55 System scheme

There are many ways how the system can be described, in this example a Lagrange equation of
the second kind was used to determine the equations of motion. It can generally be written as:

d (OE J0E, O0E; OE
—(.k)— L2+ =y (21)
dt\dq,/ 0dq; 0q, 0g;
where E. [J] is a kinetic energy of the system,
E, [J] is a potential energy of the system,
E; [J] is an energy of the dissipative forces,
q; [rad] isageneralized rotation, and
Q; [N] is an generalized force.

All the mentioned energies can be evaluated by the equations, deduced from figure 56.

Equation for the kinetic energy:

1 1
E, = EIM% +§Izq§ (22)

BRNO 2020 75

APPENDIX

Potential energy:

1 1
E, = Ek(ch - q2)°R + Ek(‘h - q1)°R (23)

Dissipative function:

o1 . o1 .
Eq; = brg, + Eb(ch — G2)°R + bpqy + Eb(‘h —qG1)°R (24)

where I; [kgm?] is
I, [kgm?] is
k [N/m] is
R [m] is
b [kals] is
b, [kgls] is
br [kals] is

an inertia of the motor disc,

an inertia of the flywheel,

a constant of a spring that substitutes the rubber band’s elasticity,
a radius of both discs,

a damping coefficient of a rubber band,

a damping coefficient of the motor disc,

a damping coefficient of the flywheel bearing

Generalized force in the system is made of the actuator torque, thus Q = M = M,,. The radiuses
of both disks are the same (R1 = R2 = R), the springs and dampers can be assumed to be the
same on both sides, as it is made of the same rubber band (ki=k2=k, b1=b2=b). The members
of the equation (21) can be evaluated:

d (9E,
& (9EK\ _ . 25
dt (6q’1) hi ()
d (9E,

L (28K _ s 26
dt (E)q'z) 242 (26)
9E,
—< -0 (27)
0q,
OF
—~k_p (28)
0q;
oE
a_qp = k(‘h - %)R - k(‘]z - ‘h)R = ZkR(Ch - QZ) (29)
1
oF
a—q” = k(q2 — q1)R — k(g1 — q2)R = 2kR(q2 — q1) (30)
2
OF
a—qj = beqy + b(qy — G2)R — b(g; — 1R = by + 2bR(G; — G2) (31)
OF
a—qj = byGy + b(G, — G)R — b(qy — G2)R = bsGy + 2bR(G, — G1) (32)
BRNO 2020 76

APPENDIX

By substituting the above equations back to the (21), we obtain a system of 2 equations:

I,Gy + begy + 2bR(qy — q2) + 2kR(q1 — q2) = M (33)

LG, + bsqy + 2bR(G, — G1) + 2kR(q2, — q1) = 0 (34)
The moment generated by the motor equals:

M,, = coi (35)
Since we need a motor moment interpreted as a function of the controlled variable (motor
voltage) and the system states, current can be expressed from the electrical DC motor equation

(4), and appointed to (35) to get a new equation

U cdp*qy
Mn = cPp-—p
a a

(36)

STATE—SPACE

For the linear systems, a state-space representation of the system can be written in the following
form:

x =Ax + Bu
y= Cx+ Du

where is the vector of state variables,
is the state matrix,

is the input matrix,

is the output matrix,

is the feedforward matrix,

is the output vector,

is the input vector.

cC< OOWX> X

State vector for our system is chosen as:

q1
q:
=1 7
x q1 (37)
q2
After substituting (36) into (33), we can describe the system in the state-space:
0 0 1 0
0 0 0 1
o by + 52 4 2bR . Ir 8]I
: +5—+
e L L I I h
. q IlRa
1z 2kR 2KkR 2bR bs + 2bR |12 0
I I I I
BRNO 2020 77

APPENDIX

1 0 0 01[%

1o 1 0o ofl|4
Y=10o 0 1 ol|a (39)

0 0 0 1d]g,

PARAMETERS ESTIMATION

Before designing the controller, it is essential to know all the parameters that appear in the
model. Since there are many dependent parameters and it is not necessary to know values for
every single parameter, it is possible to substitute the elements in A and B matrices with a
simplified parameters model, which will decrease the number of estimated parameters and the
original parameters can be calculated backwards. The state-space model for the estimation:

i 0 0 1 071[n 0
2| _ |0 0 0 114 0
G| [p1 —-pl p2 p3 6’11+p7U (40)
G2 p4 —-p4 p5 pélle. 0
1 0 0 01[%
o 1 o oll%
y‘0010]c}1 (41)
0 0 0 1l]g,

The unknown parameters can be estimated e.g. with the Parameter Estimation application. The
estimation results for the random stair signal is shown in figures 56 and 57.

Comparison of measurement vs. model with estimated parameters - Motor
T T T T T T T

B
o
T

w
o
T

Measured motor position N
- --Simulated motor position

Position [rad]
N
(=]
I

0 2 4 6 8 10 12 14 16 18 20
Time [s]
20
o 10
°
o
= 0
o
D
2
n -10
—Measured motor speed
- - -Simulated motor speed
_20 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
Time [s]

Figure 56 Comparison of measurement vs. Model with estimated parameters - Motor

BRNO 2020 78

APPENDIX

STATE-SPACE CONTROLLER

Comparison of measurement vs. model with estimated parameters - Flywheel

40 "N
\
— 7 i X
B30 ¥ \
—_ / et \\
§ 20 / 7
= sl
& X e
310 o it F "
o B s A s S Measured Flywheel Position
o Wl N ,,./ - - -Simulated Flywheel position
I I “e/ | I |
0 2 4 6 8 10 12 14 16 18 20
Time [s]

j: vﬁw f\ fAmin !f \/\/\/ A/\A,NN\ /\/\/\W
. \/\/‘umj /\/\A /\; f\ Ao .\} /\/\{,\,N

| | | | | | |
0 2 4 6 8 10 12 14 16 18 20
Time [s]

Speed [rad/s]
o

Measured Flywheel speed l\/\/\
- - -Simulated Flywheel speed
I I I]

Figure 57 Comparison of measurement vs. Model with estimated parameters - Flywheel

Last step before designing the controller is to check the controllability of the system. The
condition for the controllable system is that the rank of controllability matrix equals the order
of the system. Controllability matrix equals to [27]:

C, = [BAB A*’B ... A" 1B] (42)

MATLAB has a function ctrb(A,B) that calculates the controllability matrix. After checking the
rank of this matrix and ensuring it is equal to 4 (as we have 4 states), we can proceed to
designing the controller.

The principle of the state-space controller lies in the changing of system dynamics. There are
two common methods to design the state-space controller, called the Pole placement and the
LQR. Structure of both methods is the same, both use full-state feedback multiplied by the gain
matrix K and subtracts it from the scaled reference.

Pole placement changes dynamics of the system by choosing the poles location directly. The
problem is that it is not intuitive where a good pole location is. This problem solves LQR, which
finds the optimal K matrix based on the importance of the system states and the actuator cost.
LQR minimizes the cost function, which is defined as:

] = joo(xTQx + uTRu)dt (43)
0

Where the Q and R are weight matrices determined by the control requirements. Since there is
only one input in our system (motor voltage), the R can be chosen to be 1. Q is a diagonal

BRNO 2020 79

APPENDIX

matrix with the size that equals the length of a state vector. The elements of the matrix Q
describe the weight, with which the individual states are regulated and must be tuned.

With the change of the system dynamics, a reference value must be also modified. This can be

done by multiplying the input with the scalar N, which can be computed e.g. with the function
rscale. [28] A scheme of the controller is shown on fig. 58:

r +
—~ u X = Ax + Bu y
—) N y=Cx+Du
X
K

Figure 58 State-space controller scheme

An example of flywheel positioning to the stair signal:

5
‘ ‘ ‘ |*Measured motor position —Measured flywheel position - - -Reference value
)
£
c
)
‘@
O
o
-5 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
Time [s]
10 —Motor voltage
> 5 R
>
& 0
°
> -5 |
-10 N
| | | U
0 2 4 6 8 10 12 14 16 18 20

Time [s]

Figure 59 Flywheel control by LQR

BRNO 2020 80

