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Abstrakt 
Náplní této práce je teoretický úvod a následné praktické zpracování tématu 

Molekulární signatura jako optimální mul ti-objektivní funkce s aplikací v predikci 
v onkogenomice. Úvodní kapitoly jsou zaměřeny na téma rakovina, zejména pak 
rakovina prsu a její podtyp triple negativní rakovinu prsu. Následuje literární přehled z 
oblasti optimalizačních metod, zejména se zaměřením na metaheuristické metody a 
problematiku strojového učení. Část se odkazuje na onkogenomiku a principy 
microarray a také na statistiku a s důrazem na výpočet p-hodnoty a bimodálního indexu. 

Praktická část je pak zaměřena na konkrétní průběh výzkumu a nalezené závěry, 
vedoucí k dalším krokům výzkumu. Implementace vybraných metod byla provedena 
v programech Matlab a R, s využitím dalších programovacích jazyků a to konkrétně 
programů Java a Python. 

Klíčová slova: 
Optimalizační metody, Strojové učení, triple negativní karcinom prsu, Lineární 

diskriminantní analýza, onkogenomika, microarray, RNA, gen, molekulární podpis, p-
value, index bimodality, Matlab, R 

Abstract 
Content of this work is theoretical introduction and follow-up practical 

processing of topic Molecular signature as optima of multi-objective function with 
applications to prediction in oncogenomics. Opening chapters are targeted on topic of 
cancer, mainly on breast cancer and its subtype Triple Negative Breast Cancer. 
Succeeds the literature review of optimization methods, mainly on meta-heuristic 
methods for mul ti-objective optimization and problematic of machine learning. Part is 
focused on the oncogenomics and on the principal of microarray and also to statistics 
methods with emphasis on the calculation of p-value and Bimodality Index. 

Practical part of work consists from concrete research and conclusions 
lead to next steps of research. Implementation of selected methods was realised in 
Matlab and R, with use of other programming languages Java and Python. 

Keywords: 
Optimization methods, Machine learning, triple-negative breast cancer, Linear 

discriminant analysis, oncogenomics, microarrays, RNA, gene, molecular signature, p-
value, Bimodality index, Matlab, R 
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Introduction 
The problematic of the cancer generally is one of the most discussed problems 

all around the world. The breast cancer is the biggest killer for the women with a lot of 
subtypes. Thanks to the gene expression measurement technologies the breast tumors 
could be categorized into these molecular subtypes that brought the development of 
symptoms and treatments which are still not completely clarify in any cases. One of the 
most aggressive and recurring type is basal-like or let say triple negative breast cancer 
subtype. Also this type of breast cancer does not react on the traditional types of 
chemotherapy and its prediction is difficult. The basal-like prognosis is bad and in this 
particular case there is no single gene whose distribution of expression levels are 
significantly different in the class of patients who are responders to chemotherapies and 
to who are not. It is why a lot of studies are focused on the ways of robust prediction of 
the outcome of chemotherapy treatment. Genomic predictors of the responses to 
chemotherapy take often as input the expression levels of a subset of genes (a molecular 
signature) and combine them into a classification function that allocates the patient 
cases to the pCR/noPCR phenotype. It would state a sub-classification of the basal-like 
molecular class, these opening research tracks to designing new treatments dedicated to 
the basal-like noPCR patient cases. These solutions and conclusions are very important 
for clinicians and for searching of right cure. 

This research is focused on the application of optimization methods to find 
required prediction in chemotherapy for this breast cancer subtype. 
The first chapters take a closer look on cancer and mainly on the breast cancer and its 
subtype Triple Negative Breast cancer which is hard predictable and the most 
aggressive type of cancer and the main subject of this study. Next ones give us the 
review about problematic of oncogenomics with description of RNA and function of the 
microarray techniques and their use for clinical and statistical research and statistical 
validation. Theoretical preparation also takes a closer look to optimization and 
metaheuristic methods with a more detailed analysis of machine learning problematic. 
And the end of theory is devoted to statistical methods as Mann-Wilcoxon-Whitney test 
and Bimodality index. 

The last chapters contain from the research of gene expression analysis and prediction 
of chemotherapy response in breast cancer realized on ESIEE Paris. In research are used 
Machine learning method of Linear discriminant analysis and Wilcoxon Mann Whitney 
test, which is statistic method for p-value finding. Because of importance of robustness 
later the research digress from supervised analysis to use method of unsupervised 
analysis, specifically Bimodal Index. 
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1 Cancer 
Cancer is recognized as a heterogeneous disease with distinct subtypes and 

outcomes that can be predicted by a limited number of biomarkers. Cancer is highly 
complex disease which can encompass multiple genomic alterations, including point 
mutations, translocations, gene amplifications, epigenetic modifications, deletions, 
aberrant splicing, and altered gene expression. These changes may be inherited or 
somatically acquired during progression from a normal to a cancerous cell. 
The reason of the beginning of cancer, also called malignancy, is an abnormal growth of 
cells so it is genetic disease caused by accumulation of mutation to D N A leading to 
unrestrained cell proliferation and neoplasm formation. This D N A is not able to repair 
itself or cause the cell die, cells start to grow and divide uncontrollably and change to 
the cancer cell. Cancer cells multiply and display normal cells, as the tumour is larger it 
develops his own blood supply. Since cancer cells do not stick together as normal cells 
they can change the place and enter the blood vessels or lymphatic system near the 
tumour to travel to locations in the body and form additional tumours. It is referred as 
metastatic or advanced cancer.[10], [18] 

1.1. World disease 
The global cancer burden has changed dramatically over time. And still it is one 

of the most growing and important field in biomedicine. 

Years of life lost to cancer 
fcwnstea ag«-4t*Kla-*ac*d :cta. >*ars tc<4t per 100.000 peopte 2006 

l.morleu 1,72*2 0T7 2,0/5^.424 2 4 » 3,022 3jP30f mow No Data 

Figure 1 - Global cancer map [9] 

In the figure 1 we can see decomposition of sickness on the world. For example 
the countries with rank low on the human development index (Sub-Saharan Africa) 
suffer from relatively high rates of cervical cancer. More developed countries (United 
States, Canada) have been able to bring down their cervical cancer rates though more 
Pap testing, there are also other types of cancer which are problematic for Western 
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countries. For example lung cancer is higher in countries which were historically 
depending on tobacco farming and production. [9] 

1.2. Cancer types 
There are more than one hundred types of cancer, including breast cancer, skin 

cancer, lung cancer, colon cancer, prostate cancer and lymphoma. Symptoms depend 
every single type. Gene-expression biomarkers have enabled the identification of sub
classes of cancers and prognostic signatures in breast and lung cancers. 
For every specific type of cancer there is prevention and then tests and, if suspicion, 
how to found and cure relevant type (X-rays, medical and surgical history, smoking and 
work history, CT, MRI, biopsy, bronchoscope, sputum testing). [10], [16] 

International Agency for Research on Cancer 

Cancer Incidence Worldwide 
Breakdown of the estimated 12.7 million new cases, World-age 
standardised incidence rates and the most commonly diagnosed 
cancers by the different regions of the world, 2008. 

Ctnii and Eaaern brnot 
Southern 

SoulhAmsi 

Source: GLOBOCAN 2008. v. 1.2. Cancer Incidence and Mortality Worldwide. 
I ARC, 2010 (http://globocan.iarc.tr) 
Map updated February 2011 http://info.can cerresearchuk.org/cancerstats/ 

Figure 2 - Map of worldwide cancer incidence, updated 2011 [46] 
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CANCER Global Killer 

The disease accounts for 7.4 million deaths worldwide 
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Figure 3 - the most killing type of cancers [published by Executive healthcare] 

Around the world the most dangerous and killing cancers are lung, prostate and breast 
cancers. Figure 2 show the worldwide incidence of cancer and figure 3 shows the main 
cancer killers and their representation. 

The aim of this research is to find new ways of prediction in breast cancer, 
namely triple negative subtype, which is difficult to predict. 

1.3. Cancer Treatment 
For the cancer therapy we can use more types of treatment like surgery, 

chemotherapy, radiation therapy, hormone therapy, targeted therapy, bone-directed 
therapy and medicaments. The most often use type of treatment next to surgery is 
probably chemotherapy. Treatment can include chemotherapy, radiation and surgery. 
Also for some types of cancer, e.g. prostate, we can use cryotherapy and hormonal 
therapy. [10] 

1.4. Chemotherapy 
Chemotherapy is a type of treatment that includes a drug or combination of 

drugs to treat cancer. The goal of chemo is to cure the cancer, keep the cancer from 
spreading, stop or slow the growth of cancer cells, ki l l cancer cells that can spread to the 
rest of body and relieve symptoms caused by disease. It is considered as a systemic 
therapy, this means that it can affect all body and work throughout it. 
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Chemotherapy is dividing to the two types called adjuvant and neo-adjuvant 
chemotherapy. Neo-Adjuvant chemotherapy is the chemotherapy used before surgery or 
radiation therapy to shrink the tumour. This type has a pathologic complete response 
and its effect is unclear and the opinions of clinicians are different. On the other side 
adjuvant chemotherapy is used after surgery and should be effective for preventing 
disease recurrence. 

There is the increasing number of the chemotherapy options, more than one 
hundred chemo drugs are used in many combinations with different side-effects, i.e. 
however, chemotherapy not even affects rapidly growing cancer cells but they can also 
affect healthy cells that grow rapidly like white blood cells, red blood cells and 
platelets, also hair follicles have cells that can affect by chemotherapy and it is leading 
to hair loss, also called alopecia, cells lining in stomach can be affected too. This cause 
vomiting and diarrhoea and may be associated with nausea (for example Platinum-based 
drugs, which caused nausea, vomiting, kidney and nerve damage or other side eribulin 
which caused fewer, damage of gastrointestinal sector and hair loss and we have more 
other examples). Other side effects can be trouble with memory, mouth sores or fatigue. 
Also it is important to be careful because of infections, since immunity is weak during 
and after chemotherapy. But nowadays lot of these side effects can be managed. 
Because of use of the lot of combinations and drugs for chemotherapy there is 
decreasing number of resistance cancers to this type of treatment or possibilities of local 
chemotherapy treatments. 

Because of these aspects it is important to find good diagnose and tailor chemotherapy 
according to individual patient and tumour variables. [10], [46] 
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2 Breast cancer 
Breast cancer (BC) is the most common cancer for women and the second 

leading cause of cancer deaths after lung cancer. Two-third of women with breast 
cancer is over 50, and the most of the rest are between 39 and 49. It is a reason why 
there is mandatory testing in Czech Republic up to 40. Only 1 % of breast cancer is 
diagnosed to men. Studies show that there is the connection between some types of BC 
and ethnicity. 

As in all forms of cancer, the abnormal tissue that makes up breast cancer is the 
patient's own cells that have multiplied uncontrollably. BC develops in the breast tissue, 
primarily in the milk ducts (ductal carcinoma, the most common type) or glands 
(lobular carcinoma). It usually begins with the formation of a small, confined tumour 
(lump) or as calcium deposits (micro calcifications) and then spreads though channels 
within the breast to the lymph nodes or to the other organs through the blood stream. 
The tumour than may grow and invade tissue around. 

The symptoms connected with the breast cancer are at figure 4. 

A lump, or 
thickening that feels 

different from the 
rest of your breast 

A change in 
skin texture, such 

as dimpling 

r . 1 

Discharge (liquid) 
from your nipple 

Your nipple becomes 
inverted (pulled inl 
or changes shape 

A rash or redness 

M i 
on the skin or 

M i around your nipple 

1 . w 

Swelling in your 
armpit or around 
your collarbone 

Figure 4 - Breast cancer symptoms [48] 

BC subtypes can be separated to different types based on the way the cancer 
cells looks under the microscope. Most of them are carcinomas, a type that starts in 
cells, i.e. epithelial cells, that line organs and tissues. Namely this type of carcinoma for 
BC is called adenocarcinoma and starts in glandular tissue. In some cases a breast 
tumour can be mixture of invasive and in situ cancer or combination of different types. 
Cancer in situ is considered non-invasive or pre-invasive, which means that the cells 
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have not spread outside the breast. However, some cases of the Ductal carcinoma in situ 
can go on to become invasive, but for now there is no study how to know which cases 
will be invasive and which ones will not. There are two types of the invasive carcinoma, 
depends on the place of start, ductal and lobular carcinoma. Next to these mostly 
common types of cancer we can find the less common types as inflammatory BC, paget 
disease of the nipple, phyllodes tumour, angiosarcoma and specially invasive breast 
carcinoma as adenoid cystic, papillary carcinoma, mixed carcinoma, micropapillary 
carcinoma and etc. [10] 

Figure 5 - Difference of the BC cells for Normal breast tissue and breast tissue with 
dinase - Ductul carcinoma in situ [10] 

BC is in other way classified based on proteins on or in the cancer cells. 
Test to classify breast cancer are estrogen receptor (ER), progesterone receptor (PR) and 
HER2/neu testing. Receptors are proteins in or on certain cells that can attached 
hormones and especially these two hormones which normally help the breast cancer 
cells to growth. BC types contain from one or both of these receptors. BCs with ERs are 
called ER-positive and progesterone receptors cancers are called PR-positive. 
Tumours with increased levels of HER2 are referred as HER2-positive and in this case 
they contain from a growth-promoting protein (HER2). From these can be BCs 
classified in way based on hormone receptors and HER2 status as hormone 
receptor-positive, hormone receptor-negative, HER2 positive, HER2 negative and triple 
negative or triple positive. To know the group of classification is important because 
of differences between reactions on the treatment. [10] 

The last form of classification is the classification based on gene expression. 
This classification based on molecular features, divides BCs to five molecular subtypes 
that are presently established, these are Luminal A , Luminal B, HER2-positive, basal-
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like (BLBC) and Claudin low, each with significantly molecular heterogeneity and 
different subset of genetic and epigenetic abnormalities. [30] 

The Luminal types are ER-positive. The gene expression patterns are similar to 
normal cells that line the breast ducts and glands. Luminal A is slow growing and low 
grade subtype of cancer with the best prognosis. Luminal B is more aggressive and 
growth faster compared Luminal A and their outlook is not good. HER2 have extra 
copies of the HER2 gene and have tend to growth more quickly and have a worse 
prognosis than previous Luminal cancers, even these cancers often can be treated 
successfully thanks to chemotherapy therapies targeted on HER2. 
Basal type lack estrogen or progesterone receptors and have normal amount of HER2, 
this cancer types are common for women with BRCA1 gene mutations and are also 
more common for young Afro-American women. These are high-grade cancers which 
grow quickly and have poor outlook. However, hormone therapy and anti-HER2 
therapies (Trastuzumab, Lapatinid) are not effective against these cancer types. 
Chemotherapy can be helpful, but also not in every case. The less known type of breast 
cancer is Claudin low. In the papers of A. Prat and Ch. M . Perou is the one of the first 
mention about Claudin Low subtype. This subtype is related close to basal-like subtype, 
how is obvious from papers, first work of Prat and Perou shows that in their first 
opinion was Claudin Low subtype of the basal-like but in second study few years later 
they elucidated it like isolated subtype with similar features like basal-like. It is possible 
to use this subtype for compare of predictions. Even that this testing, called PAM50 is 
available, it is still not clear that it is more helpful in guiding treatment than previous 
test based on protein classification. [10], [26], [27] 

A l l these classifications are the subjects of research and can be use to find the way how 
to get relevant data about breast cancer. 

Studies are still lack a complete picture about biological heterogeneity of BC 
with respect to molecular alternations, treatment sensitivity and cellular composition. 
Moreover, this complexity is not totally reflected by the main clinical parameters, 
e.g. age, node status, tumour size, ethnic, histological grade and etc. and pathological 
markers, i.e. estrogen receptor, progesterone receptor and human epidermal growth 
factor receptor 2, all of which are normally used in the clinic for assessment of 
diagnosis and to select treatment. [26] 

How was written in previous paragraphs the causes of breast cancer are unclear. 
Next to overweight, alcohol use, menopause, and hormone therapy are the most 
significant factors advanced age and family history. Logical risk increases little bit for 
woman who has certain benign, i.e. that tumours that are not cancerous, breast lumps 
and significantly for that one who had previously other type of cancer (endometrial, 
ovarian or colon). Women whose have female ascendant with cancer in family are two 

14 



to three times more prone to disease, but it does not mean that the disease will intervene 
them, around 85% women have BC coming from family history. 

BRCA1 and BRCA2 are two genes responsible for this familial cancer. These 
genes predispose a woman to have the breast cancer, or also to ovarian cancer and are 
associated also with pancreas cancer and melanoma (BRCA2). Also other genes (PTEN, 
A T M , TP53, CHEK2) can increase the risk of breast cancer generally but this risk is 
lower and there can become different lists of top mutated genes from different studies. 
The group of mutated genes is significantly for every particular breast cancer class, for 
example for basal-like and triple negative gene breast cancer is called TP53, which is 
also the gene of ovarian cancer, this shows the connection between these two types of 
cancer. Lot of studies still are fastening on these mutated genes which can show us 
strictly on the disease and it can give material for one other article. [30] 

Other studies are going around in the difference between risk for other ethnicity 
like African-American women, Europeans and Caucasians. There is the opinion that 
also hormone Estrogen affects the incidence of the breast cancer and some discussions 
are about effect of birth control pills. The conclusion is that there is lot of reasons and 
causes for BC, so the list can be long and still there are lot of theories and researches 
around this problematic. 

Same like other cancer types also the breast cancer have different types which 
grow and spread at different rates, some need years while others grow and spread 
quickly. Some lumps are benign, means not cancerous, however these can be 
premalignant. [10] 

Breast cancer is treatable if detected early and classification of the further 
cancer subtypes can throw light on the understanding of disease and better cure of 
cancer. 

2.1. Triple-Negative Breast Cancer 
A l l the breast cancers are characterized by using three biological factors ER, PR 

and HER2 expression status. However, Triple-Negative Breast Cancer (TNBC) is the 
bad responder to all of these three factors unlike other types of BC because of absence 
of the therapeutically targetable hormone receptors and HER2 protein over expression. 

For this cancer subtype is also poor overall prognosis and there is no predictive 
biomarker of response or survival to allow tailored therapy for patients with disease. It 
means that Basal-like BC subtype comprises the majority of Triple Negative Breast 
Cancer, because of the lack ER and PR and normal amount of HER2. Unfortunately, 
other 20-30% of cases fall into other types. By this fact, that significant molecular 
heterogeneity even exists, i.e. B L B C has become more known as TNBC, but however, 
not all TNBCs can be identified as B L B C by gene expression. There are the various 
differences between cohorts in the proportion of B L B C within TNBC, it can be explain 
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by false negative immunohisto chemical results, otherwise the significant biological 
heterogeneity exists and the aim is to elucidate the clinical heterogeneity of TNBC as 
defined by three biomarkers for identifying the known intrinsic subtypes. This can be 
used for improving clinical outcomes and adapted therapy will require further 
stratification by biologic subtype. 

A l l these aspects leading to that TNBC is the most aggressive BC from the all 
known types. It is spreading very fast and aggressively and mainly extends to lung and 
brain. Also it is the most recurring breast cancer after treatment, the five year survival 
rates tend be lower than for other types. Prediction of this cancer type is very difficult. 
Thanks to this specification is this breast cancer subtype responsible for a huge number 
of the breast cancer deaths, because these factors also influence prognosis and the 
available treatment options, which are in this case limited to chemotherapy. In spite of 
that fact TNBC has typically higher rates of chemo sensitivity compared with hormone 
receptor-positive BCs. [10], [28] 
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3 Basis of oncogenomics 
Oncogenomics is a relatively new sub-field of genomics that applies "high 

trough put technologies" to characterize genes associated with cancer. The goal of 
oncogenomics is to identify new oncogenes or tumour suppressor genes. The steps and 
main goals of oncogenomics are shown at the figure 6. [17] 

Cancer research =0=* Oncogenomics 
Systematically Identify all genes 

which may cause cancer 

Improve Diagnosis 
Use molecular markers of gene mutations 

for early detection of cancer 

Prognosis 
Use markers of gene mutations to classify 
cancers and predict their clinical outcome 

Therapeutics 
Use gene mutations found in cancer 

as targets of drug therapy 

Figure 6 - Goals in oncogenomics [17] 

3.1. Datasets for oncogenomic research 
Biological databases dedicated to cancer data and oncogenomic research are 

occasionally available to cancer researchers as resources which have banked 
oncogenomic research data. There are some public available datasets for use in the 
research, e.g. Cancer Genome project (somatic intragenic mutations in cancer), Cancer 
Genome Anatomy Project (information of research on cancer genome, transcriptome 
and proteome), Progenetix (cytogenetic tumour data), Oncomine, IonOGen and 
RTCGD. Other datasets comes from special laboratories around whole world. There are 
just few professionals with deep specialization for getting data from the cancer tumour 
samples. [17] 

3.2. Prediction in transcriptomic datasets 
Biomarkers and gene expression data analysis can be guided to following topics 

as biomedical findings and clinical applications, statistical and data mining 
methodologies applied strengths and limitations. Changes in gene expression can be 
measured by different types of techniques ranging from smaller to large-scale 
approaches, and different in terms of their reliability and genome coverage. Traditional 
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gene expression analysis for cancer biomarker discovery has comprised the profiling of 
in vitro or in vivo tissue from tumours. [16] 
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4 RNA 
Ribonucleic acid (RNA) is one of the three major biological macromoleculesm 

other two are D N A and protein, that are essential for all known forms of life. 

It is a polymeric molecule made up of one or more nucleotides. Each nucleotide 
is made up of a base (adenine, cytosine, guanine and uracil), ribose sugar and 
a phosphate. Instead the DNA, RNA has a hydroxyl (-OH) group. RNA is typically 
found in a single-stranded form. The lack of a paired strand allows R N A to fold into 
complex, three-dimensional structures. RNA is important for protein synthesis and gene 
regulation. Primarily it is synthesized from D N A by an enzyme known as R N A 
polymerase during a process called transcription. The new RNA sequences are 
complementary to their D N A template, rather than being identical copies of the 
template. R N A is then translated into proteins by structures called ribosome. 

There are three types of R N A involved in the translation process: messenger 
R N A (mRNA), transfer (tRNA) and ribosomal RNA (rRNA). 

A "Central Dogma" of molecular biology tells that the flow of genetic information in 
a cell is from D N A through R N A to proteins. This "Dogma" comes from the process 
known as transcription, a RNA copy of a segment of DNA, or messenger R N A 
(mRNA), is made. This strand of RNA can then be read by a ribosome to form 
a protein. Some R N A molecules are passive copies of D N A and often play crucial, 
active roles in the cell, e.g. switching genes on and off, critical protein synthesis 
machinery in ribosomes. [7], [12] 

RNA DNA 
Ribonucleic acid Deoxyribonucleic acid 

Figure 7 - RNA and DNA [48] 
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4.1. MicroRNAs 
MicroRNAs (miRNAs) are the short endogenous non-coding RNAs, of about 22 

(19-26) nucleotides in length, which modulate post-transcriptional gene regulation. 
These molecules are involved in several cellular functions like apoptosis, cell 
development and differentiation, oncogenesis, tumour suppression and more others. The 
researches in this area established the involvement of miRNAs in various disease 
progressions, including certain types of cancer and researches shows that expression 
profiles of miRNAs are effective in classifying different types of human cancer. It is 
essential not only classify the diseases but also their molecular subtypes, because 
tumours might contain the discriminative signatures that are further propagated in the 
different forms of the disease.. It acts primarily by negatively regulating the expression 
of target mRNAs through translational inhibition and mRNA degradation. The 
complexity of post-transcriptional control of gene expression by miRNAs remains 
a significant challenge. It has the potential to alter entire pathways due to their ability to 
target multiple genes simultaneously. miRNAs have been identified as prognostic 
various markers of breast cancer type and associated with breast tumours defined by 
their HER2 or ER/PR status. Approximately 50% of known human miRNAs are 
intronic, non-coding. miRNAs carry a unique signature that differs cancer subtypes and 
reveal new cancer subtypes. Generally, studies of miRNA are still big challenge and 
have a big importance, because understand can help in many fields of medicine. [24], 
[25] 

Figure 8 - Character and function of mRNA in cell [48] 
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4.2. Microarray 
Modern biology and genomic sciences are rooted in infectious disease research. 

A comprehensive characterization of all of the genetic, genomic and epigenetic 
modifications associated with the cancer is critical for the understanding of the origins 
of tumour process and for finding the targets of therapeutic interventions. Microarrays is 
a technology for biology-molecular analysis designed to simultaneously monitor whole 
genome host and pathogen gene expression, providing a complete view of progression 
of an infectious disease state-how a pathogen responds to its host and the host to its 
pathogen. Utilization of high-density nucleic acid microarrays is one the most effective 
approaches to identifying these key molecular events. [19] 

In the other words it is a laboratory tool used for measure the expression of large 
numbers of genes at the same time. Gene expression is the process when information 
from gene is used in the synthesis of functional gene product. For example for genetic 
code stored in D N A is interpreted by gene expression (transcription, R N A processing, 
translation). 

The types of microarrays mainly depend on the company which produce 
the platform and also differ on the way of fabrication, accuracy, efficiency, cost, work. 
The most common used is microarrays from company Affymetrix, than Eppendorf and 
Illumina. In principle microarrays are microscope slides (glass or silicon) that are 
printed with thousands of microscopic spots in the defined positions with each spot 
containing a known D N A / R N A sequence or gene. The D N A molecules attached to each 
slide act as probes to detect gene expression or the set of messenger R N A (mRNA) 
transcripts expressed by a group of genes. 

Tumor area identified 
and marked on slide 

Figure 9 - Process of testing using microarray [48] 
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To perform a microarray analysis, mRNA test samples are typically collected 
from both experimental samples (from an individual with a disease) and a reference 
sample (healthy individual). They are then converted into complementary D N A (cDNA) 
and each is labelled with a fluorescent probe of a different colour (green, red). Then are 
both samples mixed together and allowed to bind the microarray slide. The process is 
called hybridization. Following hybridization, the microarray platform is scanned to 
measure the expression of each gene printed on the slide. Spot takes the colour of 
sample which expression is higher or it comes yellow if there is equal expression in 
the two samples. The steps of full process are shown in the figure 9. 

Data gathered through microarrays can be used to create gene expression 
profiles, which show simultaneous changes in the expression of many genes in response 
to a particular condition or treatment. These experiments are able to determine 
the relative expression of tens or thousands of genes in same time, this resulting with 
large databases and it is necessary to analyse this databases and take from it biologically 
relevant data, like the potential cancer biomarker genes, however it is not easy task 
across all different experiments, researches, microarray platforms or cancer types. 
Because of the large non constant variability of experiments and difference between 
microarrays techniques it is also important to find correct parameters of experiment to 
significantly affect the output of analyse which has biological and medical meaning. For 
the cancer research the analysis of microarray data the patterns of gene expression can 
be use for find a diagnosis or prognostic characterizing of a concrete illness stage or for 
detecting and proposing the role of specific genes in the cancer development 
i.e. detecting of cancer biomarkers. There are few methods for determination of 
potential cancer biomarkers, for example to cast the problem as multiple criteria 
optimization problem. [49] 

Expect of different types of D N A microarrays we can also use other methods, 
like northern blotting, real-time polymerase chain reaction (RT-PCR) and serial analysis 
of gene expression (SAGE) or multiplex PCR. These tools, same like microarrays, 
allow the detection of differentially expressed genes, up- or down-regulated genes in 
relation to specific clinical conditions or functional pathways. Studies may be expanded 
or follow validation studies using additional gene expression data measured with 
alternative experimental platforms or other "omic" approaches. [15], [16] 
An important goal in cancer research is to identify significant genomic alterations 
responsible for the emergence and progression of disease. With Microarray it is now 
possible to perform extensive analysis of tumour genomes. 

In other words the goal of cancer research is ultimately to improve the diagnosis and 
the treatment of cancer through more accurate disease classification and patient 
stratification, which allows for the design of therapies that are more targeted to specific 
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cancer subtypes and potentially improves effectiveness of existing regimens based on 
therapeutic response and adverse events. [18] 

One third of human miRNA host genes are hybritized by probes on U133plus2 
Affymetrix gene chip. Many intronic miRNAs show significantly correlated expression 
profiles with their host genes. 70% of miRNAs has expression profiles are significantly 
correlated with their host gene. The expression of these miRNAs can be inferred from 
the expression of their host genes and can be evaluated as putative prognostic markers 
in breast cancer and its subtypes using gene expression data. 

Problem is that the number of features in the microarray datasets can be tens of 
thousands but the number of cases rarely exceeds a few hundred and often is less than 
one hundred. So it is for what were involved methods which are available to work with 
p>>n class prediction problems. [11] 

4.3. Transcriptomic datasets 
Breast cancer is a complex heterogeneous disease for which a substantial 

resource of trancriptomic data is available. It has traditionally been sub-classified 
depending, amongst other factors, on the expression of different receptor proteins, such 
as estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth 
factor receptor 2 (HER2). These "biomarkers" allow us to tailor the level of clinical 
interventional. While ER-positive the second positive should be deleted tumours receive 
hormone therapies and HER2-positive cancers receive targeted therapies, "triple 
negative" cancers lacking these markers currently have no targeted therapies and cause 
a disproportionate number of breast cancer deaths. 

In addition to the traditional classifications using these biomarkers, in recent 
years, whole genome D N A microarrays have been utilised to further classify this 
disease, initially into five molecular subtypes based on gene expression profiles 
Luminal A and luminal B (ER-positive tumours), HER2 (HER2-positive tumours), 
normal-like and basal. It is important to identify which breast cancer patients are at risk 
of developing a more aggressive phenotype so as to tailor the level of clinical 
intervention. Prognostic biomarkers can be used to assess the inherent likelihood of 
a patient exhibiting a particular outcome. There is a wide spectrum of survival requiring 
the identification of additional novel prognostic markers. Triple negative subtype has no 
such prognostic biomarkers currently in clinical use. But still there is a great deal of 
transcriptomics data currently available to facilitate the identification of novel 
molecular biomarkers associated with breast cancer and its subtypes. [11] 
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5 Optimization methods 
In computer sciences, dynamic programming is an approach to solve faster 

certain kinds of problems because they can be split into sub-problems which overlap. 
Main idea of the optimization methods is to solve complex search problems with 
discrete optimization concepts and algorithms, including constraint programming, local 
search and mixed interreges programming. Optimization methods are designed to 
overcome inverse problems. The first roots we can find in 19th century in economy 
work of Edge worth and Pareto. 

Optimization problems are seldom single-objective. Usually, there are several 
contradictory criteria or objectives that must be satisfied simultaneously. Multi 
objective optimization (MOP) is a discipline centred in the resolution of this kind of 
problems. The techniques can be classified into exact and approximate (stochastic and 
heuristic) algorithms. MOP (single or multi objective) can be divided into two 
categories. Those whose solutions are encoded with real-valued variables (known as 
continuous optimization problems) and solutions which are encode by using discrete 
variables. These problems are usually called Multi objective combinatorial optimization 
problems (MCOP). Most of Metaheuristics for solving MOPs are designed to deal with 
continuous type of problems. However many real problems are MCOPs. [1], [3] 

5.1. Discrete optimization methods 
Discrete optimization forms a class of computationally expensive problems of 

significant theoretical and practical interest. Algorithms systematically search the space 
of possible solutions. [1] 

A discrete optimization problem (DOP) can be expressed as a set of data and 
function (S,f). The set S is a finite or countable infinite set of all solutions that satisfy 
specified constraints. The function f is the cost function that maps each element of the 
set S into the set of real numbers R. The objective of a DOP is to find a optimal solution 
xopt, such that f(xopt) <= f(x) for all x belongs S. The feasible space S is typically very 
large. For this reason, a DOP can be reformulated as the problem of finding a minimum-
cost path in a graph from a designated initial node to one of several possible goal nodes. 
Each element x in S can be viewed as a path from the initial node to one of the goal 
nodes. This graph is called a state space. Often it is possible to estimate, so-called 
heuristic estimate, the cost to reach the goal state from an intermediate state, it can be 
effective in guiding search to the solution. If the estimate is guaranteed to be an 
underestimate, the heuristic is called an admissible heuristic. Admissible heuristics have 
desirable properties in terms of optimality of solution. [1] 

Application is in a number of diverse problems such as VLSI layouts, robot 
motion planning, test pattern generation and facility location can be formulated as 
DOPs. 
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Also other more common problems or interest like a roll cutting at paper mills, 2D 
board cutting, terminal location, production planning, routing/scheduling, game 
(Sudoku) we can subsume between problems which can be resolved with help of 
Optimization methods. [2] 

5.2. Greedy Optimization 
Greedy algorithm is an algorithm that follows the problem for solving heuristic 

problems in the way to make the locally optimal choice at each stage with the hope of 
finding a global optimum. 

In many problems, a greedy strategy does not in general produce an optimal solution, 
but nonetheless a greedy heuristic may yield locally optimal solutions that approximate 
a global optimal solution in a reasonable time. 

To construct the solution in an optimal way algorithm maintains two sets. One contains 
chosen items and the other contains rejected items. 
The greedy algorithm consists of four functions. 

1. A function that checks whether chosen set of items provide a solution. 

2. A function that checks the feasibility of a set. 
3. The selection function tells which of the candidates is the most promising. 
4. An objective function, which does not appear explicitly, gives the value of 

a solution. 

Unlike Dynamic Programming, which solves the sub-problems bottom-up, a 
greedy strategy usually progresses in a top-down fashion, making one greedy choice 
after another, reducing each problem to a smaller one. The limit approaches in selecting 
molecular signatures. 

Dynamic programming is effective for problems of small size (same like methods such 
as brand and bound). 

Multi objective functions whose optima can be found are very rare. The reason 
why the optimization problem could be solved is that the two objectives of the function 
were separable. Greedy is a strategy that works well on optimization problems with 
the following characteristics which are Greedy-choice property (A global optimum can 
be arrived at by selecting a local optimum) and Optimal substructure (An optimal 
solution to the problem contains an optimal solution to sub-problems). [3], [4], [5] 
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6 Meta-heuristic methods 
Meta-heuristic is a rather unfortunate term often used to describe a major 

subfield of stochastic optimization. Stochastic optimization is the general class of 
algorithms and techniques which employ some degree of randomness to find optimal 
solution to hard problems. It is applicable to a very wide range of problems. Meta-
heuristic are used for a harder problems, approximate algorithms are mandatory. It 
makes far loose assumption, against of classical Optimization methods, and sometimes 
makes none at all. 

Meta-heuristics share a number of common characteristics concerning in particular 
following two elements encoding and fitness evaluation. Encoding is the way how to 
represent the candidate solutions of the search space and fitness function is the way of 
measuring the quality of the candidate solutions. This evaluation function introduces an 
order among the solutions of the search space, allowing thus the comparison of pair 
solutions. It provides just a general optimization framework that can potentially be 
applied to various search problems. It must be carefully adapted to the given problem 
and integrate problem-specific knowledge. Techniques which constitute meta-heuristics 
algorithms range from simple local search procedure to complex learning processes. 

Not a commonly accepted definition of meta-heuristics is that they can be 
considered as high-level strategies that guide a set of simpler heuristic techniques in 
the search of the optimum. For the problems with more than two criteria, there are no 
many effective exact procedures, due the simultaneous difficulties of NP-difficult 
complexity and the multi-criterion nature of the problems. 

Among these techniques, evolutionary algorithms for solving MOPs are very popular, 
giving rise to a wide variety of algorithms. For example hill-climbing method is 
a simple meta-heuristic algorithm. It starts with random behaviour set. Then it makes 
a small, random modification to it and try the new version, if it is better than throw the 
old one away. If the newest version is better, throw away the current version and also 
throw away the newest version. It is repeated as long as it is possible. The algorithm can 
be also little bit more aggressive with utilise of some modifications. Hill-climbing 
exploits a heuristic belief about your space of candidate solutions which is usually true 
for many problems. That similar solutions tend to behave similarly, so small 
modifications will generally result in small, well-behaved changes in quality, allowing 
us to "climb the hill" of quality up to good solutions. This belief is one of the central 
defining features of meta-heuristic. [3], [15] 
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6.1. Division of Meta-heuristic methods 
The solving methods can be divided into two classes, algorithms which are 

specific to a given problem, neighbourhood-based local search methods and Meta-
heuristics, which are applicable to a large variety of MCOPs. 

There is more ways of dividing Meta-heuristics depends on literature and way of 
look on it. But generally one type of strategy is an improvement on simple local 
algorithms, this include simulated annealing, Tabu search, Scatter search. Other type 
has the learning components to research. Other can be the classification dimension 
a single solution or population/based research. [22] 

Multiebjective optimization methods 

Preferences 

A pnori Interactive A posteriori 

Resolution algoi ithm • 

Exact algorithms Heuristics 

Parallel Lexicographic 
selection selection 

Figure 10 - One of the examples of dividing meta-heuristics optimization problems 

The approaches used for MCOPs resolution can be classified in three main 
categories. 

First is Scalar approaches. This method implies the transformation of the MCOP 
from multi-objective problem into a single-objective one. Algorithms based on 
aggregation, which combine the various cost functions into only one objective function 
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F. Require for the decision maker to have a good knowledge of its problem. The Scalar 
approaches include Aggregation, E-constraint and goal programming. 

Second category is a Pareto Approaches. It is based on use of the concept of 
Pareto optimality in their search. The process of selection of the generated solutions is 
based on the concept of non-dominance. And last one Non-Pareto and non-Scalar 
approaches, which are the operators to treat the various objectives separately. These 
approaches mostly based on populations of solutions, the research is carried out by 
treating the various non-commensurable objectives separately. We can fractionate them 
to two selections use for Genetic algorithms. It is Parallel selection and lexicographic 
selection. We can also create hybrids of various meta-heuristic algorithms. [1], [15] 

The Genetic algorithms are the one of the most growing and in cynosure they are 
the methods of Meta-heuristic. The point of population-based methods is to inspirit 
themselves with the concepts from biology. One set of techniques, known as 
Evolutionary Computation borrows liberally from biology, genetics and evolution. It 
generally resembles techniques. An algorithm chosen from this collection is 
Evolutionary Algorithm (EA). Most EAs may be divided into generational algorithms, 
which update the entire sample once per iteration, and steady-state algorithms, which 
update the sample a few candidate solutions at the time. EAs include the Genetic 
Algorithm and Evolution strategies. Each of them have generation and steady-state 
version. New samples (populations) are generated or revised based on the results from 
older one. [3] 

In addition to the algorithms above, there are hybrid and parallel meta-heuristics. 
Parallel meta-heuristic use the techniques of parallel programming to run multiple 
searches in parallel. 

A hybrid meta-heuristics combines a meta-heuristic with other optimization 
approaches, as algorithms from mathematical programming, constraint programming 
and machine learning. Both components of this method are running concurrently to 
exchange information to guide the search. [22] 

28 



7 Machine Learning 
Machine learning (ML), as a sphere of artificial intelligence, is the discipline to 

concern the design and development of algorithms that allow to systems to evolve 
behaviours based on empirical data, such as sensor data or databases, in the case of 
bioinformatics. 

Main task of the M L is to extract useful features from given data and build a statistical 
model over this data. It arises from the need of automated or artificial systems to have 
possibility to find a decision based on a given model. [20] 

The objective of a system of pattern recognition is either to estimate a real value 
(regression) or to estimate an appropriate label (classification) corresponding to a given 
input data. The model, the name of this method to cue, is based on some knowledge 
acquired by training on the select learning data. This method has huge use in the 
application on the problems from the real world. The spectrum of application is very 
broad. M L is useful in fields like data mining, text categorisation, biomedical problems 
as data analysis, Magnetic Resonance Imaging, signal processing, automatic speech 
recognition, speaker identification, character recognition, diagnostic and system 
monitoring and decision, page ranking and image processing. And more recently and in 
last year's increasing number of application is in the field of biomedical engineering. 
For example we can to mention Biocomputing or D N A sequence identification, 
Automatic analysis of digital mammography or electrographs and biometrics, which 
contain from personal identification based on biological data or neurosciences, which 
are also strong branch of M L methods. And there is growing number of applications in 
home-machine interface and behaviour analysis, like Driver behaviour analysis, elderly 
and disabled behaviour analysis at home or brain/computer interface. [20], [21] 
There are two types of M L classification algorithms supervised and unsupervised 
learning; their schemas are in figure 11. 
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Figure 11 - Supervised vs. unsupervised classification 

Supervised algorithms use a set of available labelled training data, so the class labels are 
known beforehand and it is also known the correct output should be, so there is 
the relationship between input and output. Supervised problems are categorized into 
"regression" and "classification" problems. In the regression problem the prediction of 
the results is within a continuous output, mean that input variables are mapped to some 
continuous function. In the classification problem on the other side is used discrete 
output for prediction of results, so the input variables are mapped into discrete 
categories. Unsupervised learning is use a set of available unlabeled or partially labelled 
training data, so there is no idea how the results should look like. The structure is 
derived from data because there is no necessity to know the effect of variables, so there 
is no teacher to correct the results, i.e. no feedback. To this category belong for example 
associative memory or clustering methods, where the structure is derived based on 
relationships among the variables in the data. [21], [39] 
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In general, the main problem of classification is to find the right function that 
can maps an R x l input feature vector to a class label in which the information about 
data is encoded in an appropriate way. When the classification problem is defined, there 
is the big variety of mathematical tools, like optimization algorithms to be used to build 
a model. [21] 

In general the machine learning methods consist from few steps to receive ideal 
prediction. Three frequently occurring kinds of objectives which work with thousand of 
features for each case in D N A microarray investigation are class comparison, class 
prediction and class discovery. [20] 

Class comparison means identification of differentially expressed genes in cells 
from different type of tissue of different kinds of patients or in cells exposed to different 
experimental conditions. The characteristic feature is that the classes which are defined 
during the process should to be defined independently of the expression data. It can 
identify the genes that are differentially expressed between patients who respond to 
a specified treatment and those who do not respond. 

In class prediction are also classes defined independently of the expression data. 
The point of the class prediction is in developing a multi-gene classifier that can be than 
applied to expression profiles of samples whose class is unknown. The main aim of 
class prediction is to develop a classification function it can be used to predict if every 
new patient will respond to the therapy based on the gene expression profile of the 
tumour. It has use in the medical problems of therapy selection, diagnostic classification 
or prognostic prediction. 

In class discovery there is no classification defined independently of 
the expression profile. In this method the objective is to discover subsets (clusters) of 
the cases revealed by gene expression profiles and to identify the genes that distinguish 
the clusters or to discover classes of co-regulated genes. [29], [31] 
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8 Class prediction 
The four main components to developing a class predictor are Feature selection, 

selecting a prediction model, fitting a prediction model to training data and estimating 
the prediction error that can be expect in future use of the model with independent data. 

8.1. Feature selection 
Feature selection (FS) is trying to give the answer for the question which features 

should be used for create a predictive model, which are provide the most discriminatory 
information. It is the key to developing an accurate class predictor. FS can be applied to 
both supervised and unsupervised learning. [23] 

The aim of feature selection techniques are to select the minimum set of relevant 
highly informative attributes for gain the relevant results, i.e. method is looking for 
a subset of features that leads to the best generalisation performance of the classifier 
when trained on this subset. The function is than often the efficiency of a subsequent 
classifier trained on the given set of this features. It is the apparent need in lot of 
biomedical applications, some literature subsume FS between techniques of sequence, 
microarray and spectral analysis. [20], [23] 

The subset of features can be different for every method. The solution of this 
problem can be to evaluate for every subset of features by training a classifier with each 
subset, observing performance and select the subset with the best performance. 

In contrast to the other dimensionality reduction techniques, like principal 
component analysis or information theory using, FS do not change the original 
representation of the variables, only select a subset of them. This is the main advantage 
of these methods because it preserves the original significance of the variables. But it 
means also disadvantage that we need to find the optimal model parameters for 
the optimal feature subset, even there is no guarantee that the parameters are optimal for 
full feature set as for the optimal feature subset. [20], [23] 

The next paragraph is focused on supervised learning; the FS for unsupervised 
learning is more complex. 

The intentions of FS are various. The most important are to avoid the over fitting 
and improve performance of the model, to provide faster and more effective models and 
to gain deeper into the underlying processes for data generation. The FS techniques 
differ from each other in the way of finding the optimal subset of relevant features in 
the model hypothesis space in the model selection. This subset, named feature vector (p) 
form the classifier and is the collection of r scalar or matrix of the representative classes 
in the feature space R, where r<R. [21], [22], [23], [31] 

The methods for FS can be divided to three groups, accordingly how they 
combine the feature selection with the construction of the model classifier. 
The categories are filter methods, wrapper methods and embedded methods. 
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The characteristics of the individual advantages and disadvantages and examples of 
using techniques are shown in table Figure 12. 

The filter techniques assess the relevance of features by looking at the intrinsic 
properties of the data. The score is calculated and low-scoring features are removed and 
the rest of features are the subset which is presented to the classification algorithm, so 
the feature subset is independent on the model selection step. 
On the other side wrapped methods embed the model hypothesis search within 
the feature subset search. The various subsets of features are generated and evaluated in 
the defined space of the possible variables. The evaluation of the specific subset of 
features is acquired by training and testing a specific classification model. 
The algorithm is wrapped around the classification model to find the space of all feature 
subsets. Wrapper-based feature selection algorithms can be used only if the features are 
uncorrelated and independent on each other and for large number of features. [29] 
For example hill-climbing method, simulated annealing, genetic algorithm, greedy 
forward selection, greedy backward selection, or more other efficient methods (depth-
first search, branch and bound search and others) of search algorithms competence to 
this group can be used, but each has its own limitations. Heuristic search methods are 
used to search the optimal subset of features, they depends on the size of the space of 
features subsets, which grows exponentially with the number of the number of features. 
These methods can be divided into two classes Deterministic and Randomized search 
algorithms. 

The last category is embedded techniques, where the search for the optimal 
subset of features is build into the classifier construction, i.e. combine space of features 
subset and hypotheses. These methods are also specific to a given learning algorithm. 

Advantages and disadvantages of all three classes are shown in Figure 12. [21] 

33 



Model search Advantages Disadvantages Examples 
Filter Univariate 

Fast 

Ignores feature 

dependencies Euclidean distance 

Scalable 

Ignores interaction with the 
classifier i-test 

Independent of the 
classifier 

Multivariate 
Models feature 

dependencies 

Slower than univariate 

techniques 

Correlation-base feature 
selection 

Independent of classifier 
Less scalable than 

unovariate techniques Markov blanket filter 

Better computional 
complexity than wrapper 

methods 

Ignores interaction with the 

classifier 

Wrapper Deterministic 
Simple Risk of over fitting Beam search 

Interacts with the classifier 
More prone than 

randomized 

Models feature 
dependencies 

Classifier dependent 
selection 

Less computationallz 
intensive than randomized 

methods 

Randomized 
Less prone to local optima Computationally intensit Simulated annealing 

interacts with the classifier 

Classifier dependent 

selection Genetic algorithms 

Models feature 

dependencies 

Higher risk of over fitting 

than deterministic 

Embedded interacts with the classifier 

Classifier dependent 

selection Decision trees 

Better computational 
complexity than wrapper 

methods 
Feature selection using the 

weight vector 

Models feature 

dependencies 

Figure 12 - A taxonomy of feature selection techniques 
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8.2. Application of feature selection methods 
Next to other applications for this work is important application for 

Bioinformatics for microarray analysis. 
The goal of microarray data, which is giving a great challenge for computational 

techniques, is their large dimensionality, i.e. several tens of thousands of genes and 
small sample size. So there can be more noisy variables than relevant one, i.e. the noisy 
variable that is not related to the thing being predicted. And thanks the high amount of 
the noisy variables the prediction can be less accurate, how is known from the theory of 
linear regression. To use right feature selection can help not to lose the genes with 
the good influence for class prediction. 

The univariate filter techniques dominate because their outputs are intuitive and easy to 
understand and could fulfil the objectives and expectations to validate the results 
coming from the laboratories or literature searches, also good for select the genes in 
a multivariate way for other techniques like data analysis techniques and less of time 
needed. 

For identifying of different expressed genes can be used simple heuristics. They can be 
divided to three groups parametric, non-parametric and model-free methods. Parametric 
methods assume the given distribution from which the samples are generated. The most 
used for microarray analysis are t-test and his modification and A N O V A . Modifications 
of t-test better deal with small sample size and statistics. Model-free methods are 
frequently borrowed from statistics as Wilcoxon rank-sum test and some other specific 
methods. For multivariate gene selection are mainly used combinations of wrapped and 
embedded methods. [23], [29] 

The most commonly used approach to FS is to identify differentially expressed 
genes among the classes when considered individually. For two classes, for example 
compute t-test or Mann-Whitney Wilcoxon test for each gene. For the entry to the class 
predictor are than chose the genes which are differentially expressed at the specified 
significant level. There is lot of the methods from several authors which provides 
the good discrimination of the classes. 

We can use the technique of cross validation to provide the performance of the true 
system performance on the new data with using test data. [21], [29], [31] 

8.3. Modelling and fitting prediction model to training data 
The main aim of this step is to choose the type of classifier and a suitable 

training algorithm. Training is the procedure of classification when the classifier learns 
relationships between feature vectors and their labels or regression values, so training 
algorithm is built using set of labelled feature training data. On the other side we need to 
have separate validation and test data for evaluation. This are generated by the learning 
algorithm and are used, which are generally collected in the same time or took from 
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existing labelled data. Finally we can apply our classifier on unknown or unlabeled data 
to classify their class. 
Generally classifier (model) is the system with parameters to find the right decision 
borders over training algorithm. When data are labelled incorrectly we are talking about 
cost of error, which measure the cost of taking decision. There are two types of cost of 
error, false positive and false negative. False positive case means that for example 
patient is healthy but the classifier predicts that he or she is sick. False negative case on 
the other side not to recognize the warning signs of sickness and declaring that the 
patient is perfectly health, even it is not right decision. The cost of this type of error 
could include death. 

There are two other parameters for evaluating the performance of the training system 
like training performance and generalisation. Training performance respond to the 
performance of the classifier to be able correctly identify the classes of the training data 
during the training phase, this performance is not a good indicator of the most 
significant performance. Generalisation on the other side shows performance of the 
classifier to identify the classes of new data that were not introduced in the training 
phase. [21], [22], [29] 

There is a lot of classifiers for training-based classification, here are mention just few of 
the most common ones. The first group are statistic-based classifiers (Statistical pattern 
recognition), this type of classifiers methods include Bayes classifier, Naive Bayes 
Classifier, Linear and Quadratic Discriminant Analysis, Support vector machine, hidden 
Markov models, nearest neighbour. Other groups are artificial neural networks and 
Decision trees. 

Obviously there is a lot of different classification algorithms, every with other 
advantages, disadvantages, specification and features. Because during the research is 
used L D A , next chapter is going to put more light especially on this concrete method. 
[31] 

8.4. Linear Discriminant Analysis 
L D A was at first developed for two class problems but later it was transform ate 

also for problems of several classes (multivariate cases). 
A major role of linear classification or say multivariate analysis is to find 

a transformation of multivariate data, to find ideal classifier fitted and trained on 
the given set of features that reduces the data set and make it easier, smaller and better 
representative to understand or analyse. So many significant variables are hidden in 
the original data. Because of this the main deal of L D A is to find a subset of features 
that leads to the best generalisation performance of the classifier which is trained on 
thus training subset. This best subset becomes a function of the classifier. However, 
the new variables can represent better the process under original data. 
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The predictor is fitted to a set of data; parameters of predictor must be specified 
proportionally to the number of genes selected for inclusion in model. 
The objective is to find a transformation such that between-classes distance are 
maximised and the within-classes distances are minimised in the transformed space. 
These distances are measured by using the between-class scatter matrix and within-class 
scatter matrix. In other words the main idea is to find a line, hyperplan or hypercube 
projections such as the samples of different classes are well separated. 
The original distribution of classes should be unimodal, in other case L D A becomes 
ineffective. [21], [22], [29] 
A linear discriminant is a function is f(x) (1) 

where x; denotes the log-ratio or log-signal the i'th gene, 
w; is the weight given to the gene and the summation is over the set of features (genes) F 
selected as the input for the class predictor. 
In the case of two classes there is a threshold value d and the prediction is to class 1 or 
class 2 depending if computation of f(x)(l) is lower or greater than d respectively. [29] 

In real, the means and covariances of a given class are unknown. But there is 
possibility to estimate these values on the basis of training. The problem in L D A is 
coming when the number of features is greater than the number of instances in the class. 
Than the estimation of the covariance does not have full rank and cannot be inversed. 
Other thing is that not even ever covariance can be considered as optimal and so results. 
The measuring of the separation between the projections of two classes is over their 
mean scalars u. There is assumption that the greater the difference in |u i-U2| is the better 
is the separation between classes. In the process of measurement it should be also 
account with the variance of classes and with need of normalization lu.1-u.2l by a factor 
which is proportional to the variance. Also it is important to define the scatter matrices 
S w , proportional to the covariance matrix of the original data of dimension Ro, to define 
the spread in the original data. When there is one of the previous problems the one of 
the method to solve it is to use a pseudo inverse instead of the usual inverse matrix S w 

or use the Shrinkage estimator. For two classes it have to be defined and measured the 
between class scatter matrix (2) 

(1) 

SB = (jul- JU2)(JU1- ju2)T (2) 

37 

http://lu.1-u.2l


which measure the average spread of the 2 classes before the projection. Measure the 
objective function. Similar process is using for multivariate classes cases. [20], [21] 

8.5. Estimating prediction accuracy 
Performance evaluation coming once the model selection and training is 

completed. Its generalization performance needs to be evaluated on previously unseen 
data to estimate its true performance on field data. One of the methods, the most popular 
one, is to split the data into two parts, when the first one is used as representative 
training set R and second is used for testing set N the performance of the algorithm. 
Important is to find ideal size of both sets, there should be almost equal, often N < R. 

Knowing that there are statistically significant genes is not enough. It is important 
to know how accurately is possible to predict in which class the new sample to come 
under. 

For this information is found the fully specified predictor help to the put aside set 
of test samples, i.e. to properly estimate accuracy of a predictor the working set of 
samples must be partitioned into a training and test set. 

The test set represent the set of the samples for which class labels are to be predicted, so 
it cannot be used for the development of the prediction model and for the selecting of 
genes to be used in the model. One of this methods is split-sample method of 
partitioning the set of samples into a training and test set easily, for example two third 
of samples as training set and the rest as test set. Other alternative to the split sample 
method is the cross validation (CV). There are more types of C V k-fold cross 
validation, leave-one-out validation. In k-fold C V are data split, in k iterations, into k>2 
partitions to create k blocks of data. Of these blocks, k-1 is than training data and 
remaining kth block is used for testing. During every iteration the procedure use 
a different block for learning and testing. The advantages of this method are that all data 
are used for training same for testing, but never in the same time and because method is 
repeated k times, the probability of mistake is reduced through averaging. In leave-one-
out validation, the entire data but one is used for each testing session and then testing on 
the remaining cases, repeating N times. Problem of this method is the worst confidence 
interval. [21], [29], [31] 
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9 Statistical methods 
Statistical methods such as supervised classification and machine learning 

identify distinguishing features associated with disease subtype but are not necessarily 
clear or interpretable on a biological level. 

9.1. Statistical validation of prediction 
If clinical predictions are synthesized statistically it is statistical prediction. 

"Clinician" can integrate the output of a statistical prediction scheme and his or her own 
judgments. It can be synthesized that two or more potentially disparate items of 
information are available. Then clinicians must use their own judgment to deal with 
discrepancies in the data. The statistical formula requires no professional judgment to 
arrive at a prediction, statistical data combination. Normally results from experiments 
are compared with public datasets in oncology. It is about comparison of two classes of 
samples to detect statistically important differences between gene expression and which 
aimed to support the prediction of disease emergence or progression. [16], [13] 
There exist huge amount of statistical methods. In variable selection the standard 
approaches to use are two-sample t-test and Wilcoxon-Mann-Whitney test (WMW) 
because the aim is to know which of two groups has generally larger responses. Both of 
them are usually associated with clearly defined set of different hypotheses, the decision 
rule and p-value can be associated with other sets of assumptions. These perspectives 
associated with p-value allow different interpretation of this p-value. 
In contrast to t-test, the Wilcoxon test is robust against outliers, which are frequent in 
microarray and does not require normal distribution of the expression levels within both 
classes which is often questionable, it is why in the research is used W M W test, next 
chapter introduce this statistical method more deeply. [34], [38] 

9.2. Wilcoxon-Mann-Whitney test 
In the statistics W M W test is the alternative test to the independent t-test. This 

test is non-parametric and compares two population means which come from the same 
population. Also can be use for test if two population means are equal or not. The size 
of samples for the test has to be same. The Wilcoxon-Mann-Whitney has few 
alternatives like Mann-Whitney U test for ordinal data, Wilcoxon rank sum test and 
Kendall's test, which is similar to Mann-Whitney U test and can be equivalent to the 
chi-square test. 
The sample for the test drawn from the population is random and independent within 
the other samples and do not affect each other. Using W M W we can decide if the 
population distributions are identical without assuming them to follow the normal 
distribution. 

The equation for measurement is in (3) 
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n 2 ( n 2 + 1) Z " 2 

1=71! + ! 

Ri 
(3) 

Where ni is the sample size one and n 2 sample size two, R; is than the rank of the sample 
size. [36], [37], [38] 

9.3. P-value 
P-value is obtained from the various statistical tests, let say it is statistical 

comparison procedure which can say a lot about statistical data. It helps to determine 
the significance of results during performing a hypothesis test in statistics. It is the way 
of counting probability associated with finding differences in the populations being 
compared. 

Gene 1 

Gene 2 

Gene 3 Control healthy 
material 

Study material 

Statistical comparison 
H o : Control=Cancer 
H j : Control=Cancer 

Figure 13 - Schematic example of how to obtained p-value [49] 

Figure 13 shows the way how to obtain the p-value from expression level for 
every gene in given tissue. 
The criterion is performance is 

P(0< 
a 

q — i + 1 
(4) 

Where q is number of total hypothesis and a wise error rate, P(i) correspond to 
the number of gene under evaluation. For a usually choose value a < 0.05. 
Hypothesis tests are used to test the validity of a claim that is made about a population, 
this claim is called the null hypothesis. The alternative hypothesis is the one we are 
believe if the null hypothesis is concluded to be untrue. A l l hypothesis tests ultimately 
use a p-value to weigh the strength of the evidence. 

P-value is a number between 0 and 1 and is interpreted in the following way: 
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The lower p-value (typically <= 0.05) indicates strong evidence against the null 
hypothesis, it means the large difference between comparing groups, so stronger 
evidence of statistical significance. It is the more significant to have a change in 
level of expression. 
A large p-value (> 0.05) shows opposite, so it fail to reject the null hypothesis 
P-values very close to the cut off (=0.05) are considered to be marginal. 

X 
Observed data 

Figure 14 - P-value distribution 

Each gene with a value of performance measure is going to be minimized. The smaller 
the p-value is the more important is the change of expression of the concrete gene under 
consideration, so for to have a good results small values are the most attractive. 
The p-value counting is also useful for do statistical comparison procedure to get 
the two parameters from both two states of tissues cancer one and healthy one for 
a particular gene. [49] 

9.4. Standard deviation 
SD can be difficult to interpret as a single number on its own. 

A small standard deviation means that the values in a statistical data set are close to the 
mean of the data set, on average, and a large standard deviation mean that the values in 
the data set are farther away from the mean, on average. Generally the standard 
measures how concentrated the data are around the mean; the more concentrated, the 
smaller the standard deviation. 
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A small standard deviation can be a goal in certain situations where the results are 
restricted. A large standard deviation is not necessarily a bad thing. It just reflects a 
large amount of variation in the group that is being studied. 

9.5. Accuracy and robustness of statistics 
To compare classification performance there can be use computing of sensitivity 

(true positive rate), specificity (true negative rate) and accuracy (AC). Sensitivity (SE) 
measure the proportion of actual positives which are correctly identified as such 
complementary to the false negative rate. Specificity (SP) is on the other side true 
negative rate which is noticed as the false positive rate. The ideal predictor has 100% 
sensitivity and specificity. 
Sensitivity is compute as 

SE = TP/(TP + FN) (5) 
Specificity as 

SP = TN/(TN + FP) (6) 

Accuracy as 
AC = (TP + TN)/(TP + FN + TN + FP) (7) 

Where TP is number of true positive (Samples with disease correctly diagnosed as sick), 
T N is number of true negatives (Health samples correctly identified as healthy), FP in 
number of false positive (Samples without disease incorrectly diagnosed as sick) and 
F N in number of false negatives (Sick samples incorrectly diagnosed as healthy). [33] 
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10 Bimodality index 
The Bimodality index belongs to statistical methods. Identifying genes with 

bimodality index from large-scale expression data is important analytical task. 
Bimodality index, not only identify but also rank meaningful and reliable patterns. BI 
can be compute with use of the techniques as K-means, model-based clustering, tests of 
bimodality, mixture model-based algorithm, Dip test, Kurtosis, Markov chain Monte 
Carlo technique or Bimodality Index algorithm (BI). In oncology this way maybe can 
be part of search for clinically important therapeutic targets inside tumour and for 
classification of tumour subtypes to help understand clinical and biological character of 
cancer. 

BI works with different expression, with two modes centred on the mean expression of 
a gene in two distinct subgroups of samples. The input is than the mixture of two 
populations with distinct means and the samples are characterized belong to each of two 
distributions. For example two components normal mixture-model-based clustering 
algorithm using clustering methods and represent each component as a cluster. This 
algorithm provides also more statistical data as mean, standard deviation or sample 
proportion. Problem is to find appropriate test standard to estimate p-values and chose 
suitable cutoff for this can be adopt likelihood ratio test with hypotheses of bimodal or 
unimodal distribution. It is also often combine with Akaike information criterion or 
Bayesian information criterion or with identification of genes to the assumed mixture 
distribution. K-means method use Clustering algorithms, same like model-based 
clustering. Dip test is defined as the maximum difference between an empirical 
distribution function and the unimodal distribution function that minimizes that 
maximum difference. Other method for find bimodality expression is method (Andrew 
et.al) Profile Analysis using Clustering and Kurtosis (PACK) which is using 
the expectation-maximization algorithm and Kurtosis to tag major and outlier 
bimodality pattern. This method is successful in use for finding biomarkers. 

The algorithm of Bimodality index, found by Wang et al. takes a criterion to 
identify and rank bimodal signatures from gene expression data that provides 
bimodality for fine distinctions between the bimodality expressed genes and give 
a continuous value of bimodality for each gene not only information if bimodality exist 
or not. It is possible than rank genes and focus the interest on those with the strongest 
evidence of useful and more reliable bimodality patterns. 

For a gene with bimodal expression, the distribution can be expressed as 
a mixture of two normal distributions 

y = nN(nv a) + (1 - n)N(ji2t a) (8) 
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Where n is a proportion of samples in one group, 

\ix and \i2 are the means of the expression level of two modes and a is common 

standard deviation, y is than the expression measurement. 

BI = [n(l-n)]1

2S (9) 

The equation BI in (9) computes the bimodality. 

Where 6 = \fii_ — [i2\/o~ is the effect size that measures the distance between the two-

components. 7i and 8 can be estimated for a given dataset. A limitation of this method is 

that it is defined based on a normal mixture with equal variance not for other 

possibilities. 

Values BI are the distributions that are equally separable. Larger BI than shows smaller 

sample sizes and bimodality representation is easily distinguishes. 

Compare to other methods may these described in previous article or others it seems 

that Wank's bimodality index algorithm has really good results in the introduction of 

finding meaningful and reliable bimodal indexes. Wang than using cut-off BI= 1.1 to 

show on the genes with higher bimodality, which should be n his opinion bimodal, so 

useful biological markers. [40], [41], [42], [43], [44] 
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Figure 15 - Bimodal distribution histogram [Statistica help] 
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11 Realisation at ESIEE Paris 
Expression analysis of cancer patients can further lead to an understanding of 

clinical outcomes. No robust genomic signature was ever found predicting the response 
to preoperative chemotherapy in basal-like breast cancer transcriptomic data. 
How is noticed in theoretical part of this work microarray chips are used to measure 
the expression of tens of thousands mRNAs simultaneously. The microarray gene 
expression measurements are complicated and the search for potential cancer 
biomarkers can be improved using optimization methods. Supervised and unsupervised 
classifications are two methods for analyzing the gene expression of data from these 
devices. Supervised classification is the predictive modelling method, which give us the 
way how to analyze quantitative information from the datasets. It selects the 
representative variables from a training set (feature selection), design the classifier fit to 
these variables (model design) and assess the performances of prediction from similar 
platforms (statistical validation) or the same one (cross-validation). 
The molecular signature is the set of genes whose expressions are predictive of 
a molecular class. From machine learning perspective, predictive models built from give 
signature to robustly assign the patients to their proper class across the wide of settings. 
Numerous methods for the gene selection have been proposed in theoretical part of this 
paper. The use of these classification methods is important for clinical practice because 
the predictor realized on smaller signature can be implemented easier and more over 
small signatures can have higher value for biological research. 

In the present work we addressed the computing of molecular signature with use 
of linear discriminant analysis and bimodal index to seeking for robust classification 
and appropriate results. 

11.1. Datasets 
We assessed our predictive modeling on two datasets in oncology gain from 

HG133U Affymetrix microarray. Small and local tumour samples (few hundred cells) 
were drawn by fine needle aspiration by Lajos Pusztai from Anderson Cancer Center. 
Samples are from F N A biopsy, when not many cells are removed just often separated 
from the rest of the breast tissue so it does not show the type of cancer only if it is 
present or not. 

Our expression data microarray contains from 22283 probe sets, indicates genes and 
together 138 cases. First column contains from names of n genes under study, 
the columns to the right contain the measurement for / healthy tissues and in complex 
dataset followed by m cancer tissues. So we obtained text files for samples of basal like 
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pathologic complete response (PCR) with 94 cases and basal like residual disease (RD) 
with 44 cases, HER2 samples also for PCR and RD cases and luminal-A and luminal-B 
BC samples. Because of the aim of the work to find gene signatures for TNBC we were 
mainly working with basal like samples, combine with the correction of methods on 
Luminal A and Luminal B, prospectively others, datasets. 

Datasets are attached in the attachment of this thesis, also with programs. These datasets 
are loading in both case of method use in Matlab and in R. 
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12 Prediction using LDA 
This method application was realised in space of programming language Matlab. 
In each run, N=100, we are using split sample method, which contains to 

3 
wrapper methods, to do random selection of - cases of PCR, R' = 70 cases and of RD, 
N ' = 33 cases as the learning sets. Rest of cases, R " = 24 cases and N " = 11 cases are 
test cases for the future predictor. 

2 
Than we are doing the random selection again on the learning cases - of R' , so 

2 

r = 46 responders and - of N ' , n = 22 responders. They are the learning sets of the run 

and the remaining cases are the test sets, r'= 24 and n'= 11 cases. 

For split sample method was used randperm algorithm. It was necessary at first to 
modify given data and work with them without first column of names of probesets, 
which were saved to other file. 

for d=l:100 
d 

tic 
ss = randperm (94); 

LpCR = PCR_DataMatrix (:,ss(l:70)); % Choose of the first learning set ( -
cases of PCR, R' = 70 cases) from given dataset 
TpCR = PCR_DataMatrix (:,ss(71:end)); % Choose of the first test set (R" = 24 
cases) from given dataset 

qq = randperm (44); 
Lrd = RD_DataMatrix(:,qq(l:33)); % Choose of Learning set (RD, N ' = 33 
cases) 
Trd = RD_DataMatrix(:,qq(34:end)); % Choose of Learning set (RD, N " = 11 
cases) 

casl = toe; 
end 

Here is coming the question of importance of the resampling. The rest of prediction is 
focused on the resample cases. It seems from the figures 11 and 12 that depending on 
the resampling and number of iteration the p-values can be different and also for small 
values which are important for us. 
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Figure 16 - one of the example of plot for the cases with (Green line) and without 
resampling (Red line) 

Figure 17 - other example of the cases with (Green line) and without resampling 
(Red line) 

The first step in the predicting modelling is the selection of a molecular 
signature, i.e. a subset of the N variables. Because the number of subsets is 2 N , efficient 
methods for selecting molecular signatures are used of developed, as was mentioned in 
previous part of the work. Most of these methods coming from the field of Statistics as 
in our case used Wilcoxon-Mann-Whitney test. 
For each gene of both subtypes PCR and RD is computed p-value to the Wilcoxon-
Mann-Whitney test and the results are ranked by the received p-values. The low p-
values show that these genes are robustly differentially expressed in the two phenotypes 
or classes. In the terms of optimization procedures, selecting signature, means the set of 
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subsets of genes, consisting in the k genes of smallest p-value can be placed as greedy 
optimization procedure. However, the "greedy" solution is not in every case optimal. 
The p-value is computed by function ranksum, which is Matkab function from Statistics 
toolbox which is returns the p-value of just a two-sided Wilcoxon rank sum test, what is 
synonym for Wilcoxon-Mann-Whitney test. 

pvale = []; 
for j = 1: size(LpCR,2) 

pvale = [pvale; ranksum(LpCR(:,j), Lrd(:,j))]; % Calculation of p-values for learning 
PCR and RD 

end 
ppvale(:,d)=pvale; 

Subsequently, all genes are ranked in increasing order depends on their p-value, than we 
can select them and predict the test cases R " and N " by a Linear Discriminate 
Analysis, which, how is in more detail described in chapter 8.5., characterize or separate 
two or more classes of objects or events. To decide that a gene in the i(th) place shows 
significantly different relative expression levels with presence of cancer. The key idea 
of potential of biomedical genes finding can be identified as efficient solution of the 
L D A analysis that results representing each gene under analysis through the associated 
p-value, e.g. lead to set of genes with very small p-value. Prediction is by the three top 
ranked genes at first. For each gene, the predictor is fit on the learning sets r and n and 
then is compute sensitivity and specificity of the test cases prediction. The part of 
algorithm is shown here: 

%% Select the 3 top ranked genes IX(l-3) and all patients for training and 
% validation and put in the variables "gene_Train" and "gene_Val" 
gene_Train2=DataTrain(: ,IX( 1:3)); 
gene_Val2=DataTestCompl(: JX( 1:3)); 
Total_Genes_3 = [Total_Genes; IX(1:3)']; 

PCR_Prediction2 = classify(gene_Val2, gene_Train2, labelTrain); % Classiofication 
with the first three top ranked genes, does not matter if NFIB is in or not 

Over the runs we noticed that there is the one probe stronger than others with really low 
p-value compare to the rest of the top genes. It is almost every time the first top gene in 
three top genes, if not we also did the experiment with every iteration selection of this 
gene to the three top selected. 

%% Select the top ranked gene with the smallest p-value (NFIB) + 2 top ranked genes 
pos_nfib = find(IX== 10875); % Is NFIB in the first 3 top genes? 
if(isempty( find( IX(1:3) == 10875 ) ) ) 

IX(3) = 10875; % If not move him to the third possition 
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end 

Because we need to find how strong and robust our prediction is, the last step is to 
compute the specificity, sensitivity and accuracy. 
The equations for the computing of the statistical measures of the performance of 
a binary classification test sensitivity and specificity, computed are: 

Total Match 
Total number of samples 

PCR Match 
Total number of PCR samples 

NoPCR Match 
Total number of NoPCR samples 

12.1. Results 
The first outcomes showed that the prediction were not significantly higher than 

random guesses but over the runs we noticed that there is the one probe stronger than 
others and the performances of the prediction are higher when this gene was one of the 
selected genes. This probe on the position 10875 in the list is indicating as probe with 
name 211466_at what shows on gene NFIB. The NFIB gene, encode nuclear factor I/B, 
is the protein-coding gene associated to lipoma of colon, polymorphous low-grade and 
adenocarcinoma disease. Even if it is not every time in the top three genes after direct 
resampling and direct top genes selection, we found it and give it as of three top genes. 
The performances of the prediction were higher when gene NFIB was one of the 
selected genes for prediction (NFIB + two other top ranked genes). 

It shows the conclusion that the dataset is predictable but NFIB is necessary to this 
prediction because the prediction should be robust enough if random guesses are outside 
the 95% confidence interval of each performance criteria. Without NFIB gene none of 
prediction is robust so this gene is the mandatory for predicting the response. Other 
thing is that the confusion matrix shows that only around 30% (10 observations) are 
misclassified by linear discriminant function. 

Accuracy = 

Specificity = 

Sensitivity = 
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13 Bimodality index identification 
Identification of bimodal expressed genes is an important task, as genes with 

bimodal expression play role in the cell differentiation, signaling and disease 
progression. Several algorithms have been developed to identify bimodal genes from 
microarray data. BI is giving, similarly as p-value, difference between outputs of two 
groups. The research took the look for computing Bimodality Index mainly because of 
bigger robustness of this method and stronger results. Research was more looking for 
the clear prediction of the single groups for TNBC than for predictable genes with 
bimodality. 

At first we adopted method for computing Bimodal Index in R (Wang et al.), which 
shows new definition of bimodality index, from the R package from the R source 
"http://bioconductor.Org/biocLite.R" we get straight the function Bimodallndex. 
This method is based on calculation of BI for each gene from the estimate parameters of 
a two-component normal mixture model and then ranks the genes by BI. Advantage of 
this method is that BI has an intuitive interpretation because it is derived from a sample 
size calculation, on the other size this method is designed for microarray data under 
the assumption of normal distribution and have to let standard deviation same for both 
classes thereby can arise mistakes in final results. [44] 

The bimodality BI (p) of each probe set (p) is computed together with the values l*(p) 
and h*(p), e.g. low and high modes of the probe sets. This computation is over a set 
S=RUN of responders and non responders cases, e.g. each probe set p has |R|+|N| 
expression levels. 

The bimodality index was proposed as a matrix of the bimodal feature of the gene 
expression levels in a set of patient cases. The higher is index the higher is the bimodal 
feature. 

From Bimodality index computation the probe set with highest bimodality is probe set 
212396_s_at, which shows on probe set KIAA0090 and is same of high bimodality for 
PCR, for RD is the bimodality also high, the probe is on the fifth place. 
The table 1 shows the best ten genes with highest bimodality by Bimodal Index 
computing by Wang for complete dataset (RD+PCR), where the probe 212396_s_at is 
the gene of highest bimodality. 
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Table 1 - Bimodal index for basal_complet by Wang [50] 

"203290_at" HLA-DQA1 major histocompatibility complex 

"215356_at" TDRD12 tudor domain containing 12 

"220624_s_at" ELF5 E74-like factor 5 

"201504_s_at" TSN Translin 

"218890_x_at" MRPL35 mitochondrial ribosomal protein 

"210655_s_at" FOX03 forkhead box 03 

"215733_x_at" CTAG2 cancer/testis antigen 2 

"209728_at" HLA-DRB4 major histocompatibility complex 

"210546_x_at" CTAG1A/B, CTAG2 cancer/testis antigen 1A,2,1B 

"212396_s_at" KIAA0090 EMC1 ER membrane protein complex 

subunit 1 

The histograms show the bimodality of the genes with highest bimodality of PCR, RD 
and complete dataset. 

Histogram of t(BasalComplet[pos_com_max, ]) 

r-j 

o J I I I I I 
o 
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212396_s_at 

Figure 18 - gene of highest bimodality for complet basal data 

52 



Histogram of t(basalPCR[pos_max_PCR, ]) 

• : 
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Histogram of t(basalRD[pos_max_RD, ]) 
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Figure 19 - Max. BI for PCR and RD of basal-like BC 

Next was proposed new and more robust method depending on the quantization errors 
constructed in Python, Java (method defined by René Natowicz) and finally in R for 
computing the bimodality value of a distribution based on quantization level. The 
proposed method in Java is significantly the fastest than versions in Python and R. Also 
version in R shows little bit other results. Bimodal indexes are significantly higher, 
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without explanation why. The method consist from three functions, first one returns the 
one level quantization error: 
qel <- function(E){ 
n <- length(E) 

m <- median(E) 
el =0 

h=l;while (h<=n){el <- sum(abs(E[h]-m));h=h+l} 
return (el) 

} 

Second one returns two level quantization error and two quantizes istar and jstar: 
qe2 <- function(Eprime) { # Eprime is a list of values. 

# 2 level quantization error. 
E=sort(Eprime) 
n=length(E) 

i=l;j=2; 
estar=0.0 
k=3; while(k<=n){estar=estar+(E[k]-E[j]); k=k+l} 
i=2 
while(i<=n-l){ 
j=i+l 

while(j<=n){ 
eij = 0.0 
k = as.integer((i+j)/2) 
1=1; while (K=k){ eij = eij + abs(E[l]-E[i]); 1=1+1} 
while (K=n){eij = eij + abs(E[l]-E[j]); 1=1+1} 
if (eij < estar) { 

estar = eij 
istar=i 
jstar=j 

} 

j=j+l 
} 
i=i+l 

} 
# cat("estar, E[i*], E[j*] : ",estar,E[istar],E[jstar]) 
return( c(estar,E[istar],E[jstar]) ) # quantization error, lower mode, higher mode 

} 
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Last function in this algorithm returns bimodality value: 
bimod <- function(E){ 

el <- qel(E) 
# e2 <- qe2(E) 
pom <- qe2(E) 
i2 <- pom[[2]] 

j2 <- pom[[3]] 
e2 <- pom[[l]] 
bi <- (e2-el)/e2 
return (c(bi,i2,j2)) 

} 

The results of Bimodality index and new proposed algorithm show difference and we 
can use them for comparison of new proposed method. Wang's method shows higher 
bimodalities. The 212396_s_at which is rank 1 in Wang bimodality index is at rank as 
104 with the definition of bimodality in new proposed method. And the gene of highest 
bimodality in new proposed method rating is HLA-DQA1, probeset 203290_at, 
histogram shown in figure 20. HLA-DQA1 is in Wang bimodality ranking on tenth 
place. The first ten ranked genes by highest bimodalities by new proposed method are in 
table 2, gene of the highest bimodality is on the last position in table 2. 

Table 2 - Highest bimodalities measured by the new proposed method 

216560_x_at IGLV3-10 Immunoglobulin lambda variable 3-10 

216623_x_at TOX3 TOX high mobility box family member 3 

209243_s_at PEG3 Paternally expressed 3 

203638_s_at FGFR2 Firoblast growth factor receptor 2 

211560_s_at A L A S 2 Aminlevulinate, delta-, synthase 2 

220624_s_at ELF5 E74-like factor 5 

204885_s_at M S L N Mesothelin 

205916_at S100A7 SI00 calcium binding protein A7 

209728_at HLA-DRB4 Major histocompability complex 

203290_at HLA-DQA1 Major histocompability complex 
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Figure 20 - The highest bimodality gene HLA-DQA1 from new proposed method 

The new proposed method shows the use of advantage of bimodality index possibility to 
separate single classes and use them for prediction of which genes, mean to find which 
gene is touched by each class and select them to the right classes. We can see also from 
the histogram shape the possibility to differ the classes. 
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Resume 
The first part of this work is theoretical summary of problematic around breast 

cancer, oncogenomics and optimization methods. The practical part connect to this 
theoretical introduction took place at university ESIEE Paris in terms of program 
E R A S M U S Plus under supervisor prof. René Natowicz and in collaboration with prof. 
Thiago Souza from Brazil university. 

The work is the only small part of several years' research in area of prediction to 
preoperative chemotherapy in breast cancer. The idea was application of metaheuristic 
methods of optimization and statistics methods to find relevant gene signatures for 
predicting the response to chemotherapy treatments in breast cancer. 
As the most significant were identified p-values by Wilcoxon-Mann-Witney test and 
subsequent application of Linear Discriminant analysis to fit the predictor and predict 
test cases of our datasets. However, prediction accuracy does not show the good results, 
the method shows on the possibilities of prediction and that there is one important gene. 
But the method is not robust and do not give appropriate results. So because of this 
reason and looking for better robust and prediction next part of research is fastening to 
computing of bimodality index which should show significantly good results in field of 
gene expression analysis for finding biologically relevant data. At the end of these we 
are proposing methods of computing bimodality index to find biologically significant 
answer. The new proposed method advantage two side error shows significantly better 
results than Wang's method even it is also established on difference between classes 
near to their mean value with advantage of not necessary normal distribution and 
knowledge of standard deviation (compare to Wang et al. method). It goes fast in Java, 
mean around 25 seconds. There was made the comparison of both methods and from the 
results it shows that the bimodality index give the possibility to find which class of 
genes contain to which one, but it needs closer look and more tests, not only with the 
breast cancer samples but also with probably other types of tissues from other organs. 
Unfortunately more datasets were not available for the research. But for now it is 
possible to say that it is predictable and robust and can be presented in near future for 
significant results for clinicians. 
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OP Optimization problem 
MOPs Multi Objective Problems 
MCOPs Multi Objective Combinatorial Optimization Problems 
DOP Discrete Optimization Problem 

EC Evolutionary Computation 
E A Evolutionary Algorithm 
G A Genetic Algorithm 

ES Evolutionary Strategies 
D N A Deoxyribonucleic Acid 
IonOGen Interactive Oncogenomic Database 
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M L Machine Learning 
L D A Linear Discriminant Analysis 
FS Feature Selection Technique 
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H G Human Genome 
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RD Residual Disease (Non responders) 
Pdf Probability density function 
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mRNA messenger R N A 
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rRNA ribosomal RNA 
cDNA complementary D N A 
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SAGE Serial analysis of gene expression 
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