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1. Introduction	

1.1. Inborn	errors	of	metabolism	–	hereditary	enzymopathies				

Enzymes	are	biological	catalysts	capable	of	substrate	conversion	into	a	product	

with	 high	 efficiency.	 The	 group	 is	 mainly	 consisted	 of	 proteins	 (exceptions	 are	 few	

catalytic	RNA)	and	 it	 is	 influencing	a	vast	number	of	 substrates	 (amino	acids,	 sugars,	

organic	acids,	fatty	acids,	complex	lipids,	purines,	porphyrins,	etc.).	In	human	genome	

there	 are	over	 5000	genes	 coding	enzymes,	 therefore	 there	 are	hundreds	of	 human	

enzyme	 defects	 –	 enzymopathies.1	 Inborn	 errors	 of	 metabolism	 are	 inherited	 in	

monogenic	or	Mendelian	form,	due	to	the	fact	that	one	gene	determinates	the	disease.	

Majority	of	the	IEMs	are	of	autosomal	recessive	inheritance	(67%),	autosomal	dominant	

inheritance	is	21%,	6%	are	X-linked	and	the	rest	6%	are	associated	with	mitochondrial	

inheritance.2	From	pathological	point	of	view	inborn	errors	of	metabolism	(IEM)	can	be	

divided	into	three	groups:	IEM	leading	to	intoxication,	IEM	of	energetic	metabolism	and	

disorders	of	a	complex	molecules.		

First	group	includes	errors	in	metabolism	of	intermediates,	which	leads	into	an	

accumulation	of	(toxic)	compounds	ahead	of	the	metabolic	block	leading	into	an	acute	

or	 progressive	 intoxication.	 This	 includes	 errors	 in	 amino	 acid	 catabolism	

(phenylketonuria,	 tyrosinemia,	 maple	 syrup	 urine	 disease,	 etc.),	 almost	 all	 organic	

acidurias	 (propionic,	 methylmalonic,	 isovaleric	 aciduria,	 etc.),	 inborn	 errors	 of	

metabolism	 of	 urea	 cycle,	 saccharides	 intolerance	 (hereditary	 fructose	 intolerance,	

galactosemia),	 intoxication	 by	 metals	 (defects	 of	 transport	 proteins)	 (hereditary	

hemochromatosis,	Wilson’s	disease,	Menkes	syndrome)	and	porphyria.	All	diseases	in	

this	 first	 group	 have	 common	 marks:	 they	 are	 not	 influencing	 embryonal	 or	 fetal	

development	 and	 after	 an	 asymptomatic	 period,	 those	 diseases	manifest	 by	 clinical	

symptoms	of	the	“intoxication”	which	may	be	acute	(nausea,	vomiting,	thromboembolic	

complications,	 acute	 liver	 failure,	 etc.)	 and/or	 chronic	 (late	 thrive,	 ectopia	 lentis,	

cardiomyopathy,	 etc.).	 Clinical	 manifestations	 have	 often	 late	 start	 and	 they	 are	

intermittent.3	 Diagnostics	 is	 based	 on	 direct	 evaluation	 of	 amino	 acids	 in	 urine	 and	

plasma,	organic	acids	 in	urine,	acylcarnitines	 in	plasma	and	saccharides	 (and/or	 their	

alcohol	or	phosphate	derivates)	in	urine.	Diseases	involved	in	the	metabolism	of	metals	

(e.g.	Wilson’s	 disease,	 hemochromatosis)	 are	 estimated	 upon	 the	 levels	 of	 relevant	
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protein	carriers	(e.g.	ceruloplasmin)	or	the	concentration	of	the	metals	itself.3,4		Most	of	

these	disease	are	treatable	and	require	removal	of	the	toxins.	This	may	be	achieved	by	

special	diets	and/or	by	special	medications	 (e.g.	carnitine,	penicillin-amine,	etc.).	The	

errors	in	synthesis	and	degradation	of	neurotransmitters	(e.g.	monoamines,	GABA	and	

glycine)	 and	 amino	 acids	 can	 be	 also	 included	 into	 this	 group,	 although	 the	

pathophysiology	 is	 different.	 These	 diseases	 have	 much	 in	 common:	 they	 are	 both	

inherited	errors	of	intermediate	metabolism,	their	diagnostics	is	based	on	examination	

of	urine,	plasma	and	cerebrospinal	fluid	and	some	of	them	are	treatable.		

The	 second	 group	 includes	 inborn	 errors	 of	 intermediate	 metabolism	 with	

symptoms	which	are	caused	by	production	or	consumption	of	energy	in	liver,	myocardia,	

brain,	muscle	 or	 other	 tissue.	 One	 part	 of	 the	 diseases	 are	mitochondrial	 disorders,	

which	may	be	most	severe	(the	exception	may	be	long-chain	acyl-CoA	dehydrogenase	

deficiency	 and	 very	 long-chain	 acyl-CoA	 dehydrogenase	 deficiency).	 Inherited	 lactic	

acidemia	 (deficit	 of	 pyruvate	 carboxylase,	 pyruvate	 dehydrogenase	 and	 enzymes	 of	

Krebs	 cycle,	 pyruvate	 carrier	 defects),	 defects	 of	 the	 respiratory	 cycle,	 b-oxidation	

defects	and	creation/degradation	of	ketones	belong	into	this	second	group.	Less	severe	

are	 disorders	 of	 energy	 metabolism	 located	 in	 the	 cytoplasm	 (defects	 of	 glycolysis,	

gluconeogenesis	and	metabolism	of	glycogen,	hyperinsulinism,	creatinine	metabolism	

and	 pentose-phosphate	 metabolism).	 Usual	 symptoms	 are	 hypoglycemia,	

hyperlactacidemia,	 hypotonia	 (a.k.a.	 floppy	 baby	 syndrome),	 hepatomegaly,	

cardiomyopathy,	myopathy,	 sudden	 infant	 death	 syndrome	 (SIDS),	 heart	 failure	 and	

brain	defects.	Some	of	pentose-phosphate	metabolism	and	mitochondrial	defects	may	

interfere	with	embryonal	and	fetal	development	causing	malformations,	dysplasia	and	

dysmorphia.5	 Diagnosis	 is	 complicated,	 based	 on	 several	 examinations	 including	

biopsies	and	molecular	diagnostics	tools.		

The	 third	 group	 of	 disorders	 influences	 cellular	 organelles	 and	 synthesis	 or	

catabolism	 of	 complex	 molecules.	 Symptoms	 are	 progressive,	 long-term	 and	

independent	on	diet	or	intercurrent	diseases.	All	lysosomal	and	peroxisomal	disorders,	

disorders	 of	 intracellular	 transport	 and	 processes	 (e.g.	 a1-antitrypsin,	 disorders	 of	

glycosylation,	 and	 inherited	 errors	 of	 cholesterol	 synthesis)	 are	 belonging	 into	 this	

group.	Almost	none	of	them	are	treatable,	so	far.	For	some	lysosomal	storage	disease,	

the	enzymatic	replacement	therapies	are	available.3	In	this	thesis,	for	further	work	of	
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developing	and	testing	new	metabolomics	tools,	two	well-known	IEM’s		-	medium	chain	

acyl-CoA	 dehydrogenase	 deficiency	 (MCADD)	 and	 adenosine	 deaminase	 deficiency	

(ADA)	were	chosen.			

	

1.1.1. Medium	chain	acyl-CoA	dehydrogenase	deficiency	(MCADD)		

The	group	of	mitochondrial	fatty	acid	oxidation	disorders	(FAODs)	is	known	since	

1970s	and	its	combine	incidence	is	1:9300	(data	processed	in	2010	based	on	new	born	

screening	(NBS)	programs	in	Australia,	Germany	and	USA).6	Today	there	is	at	least	15	

disorders	 associated	 with	 fatty	 acid	 metabolism.7	 One	 of	 the	 most	 common	 fatty	

oxidation	 defect	 is	medium	 chain	 acyl-CoA	 dehydrogenase	 deficiency	 (MCAD	OMIM	

#201450)	which	is	inherited	by	autosomal	recessive	trait.	The	disease	was	described	and	

published	for	the	first	time	by	Gregersen	et	al.	in	1976.8	There	are	9	members	of	ACAD	

family.	First	five	are	responsible	for	beta-oxidations:	short,	medium,	long	and	very-long	

chain	acyl-CoA	dehydrogenase	(SCAD,	MCAD,	LCAD,	VLCAD,	respectively)	and	ACAD-9	

(VLCAD-2).	 Other	 four	 members	 are	 involved	 in	 amino	 acid	 oxidation	 pathways:	

iso(3)valeryl-CoA	 dehydrogenase	 (i3VD)	 for	 leucine,	 iso(2)valeryl-CoA	 dehydrogenase	

(i2VD	 or	 short/branched	 chain	 acyl-CoA	 dehydrogenase	 or	 2-methylbutyryl-CoA	

dehydrogenase)	 for	 isoleucine,	 tryptophan	 isobutyryl-CoA	 dehydrogenase	 (iBD)	 for	

valine	and	glutaryl-CoA	dehydrogenase	(GD)	for	lysine.	Except	VLCAD	and	VLCAD-2	all	

other	enzymes	are	water	soluble	homotetramers,	which	each	subunit	has	approximate	

mass	of	43	kDa	and	containing	a	FAD9.	The	VLCAD1	is	homodimer	with	a	70	kDa	subunits	

and	one	FAD	molecule.	The	native	state	has	a	mass	of	154	kDa.10		
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Figure	1:	A	ribbon	diagram	of	a	tetramer	MCAD.	Green	ribbons	are	representing	protein	

structure	in	tetrahedral	conformation,	red	dots	represent	enzyme	substrate	-	octanoyl	

carnitine	and	blue	dots	location	of	the	FAD.	(Picture	was	created	in	PyMOL11	based	on	

1udy	PDB	structure12)	

	

The	monomer	structure	is	composed	of	3	main	domains	which	N-terminal	and	C-

terminal	domain	consists	mainly	from	a-helices.	The	middle	domain	is	created	by	two	

orthogonal	β-sheets	which	lies	at	the	surface	of	the	enzyme	(Figure	1).	The	cavity	for	the	

substrate	is	laying	between	the	helices	structure	and	it	can	accommodate	substrate	of	

length	up	 to	12	carbons.	 Its	C2-C3	portion	 is	 stacked	between	 the	carboxyl	group	of	

Glu376	 and	 isoalloxazine	 ring	 of	 FAD,	 in	 a	 position	 for	 the	 a-β-dehydrogenation	

reaction.9		

Substrates	 for	 the	 medium	 chain	 acyl-CoA	 dehydrogenase	 (MCAD)	 enzyme	

(EC.1.3.99.3)	are	acyl	carnitines	with	medium	size	carbon	moiety	(length	from	4	-12).	

The	 enzyme	 starts	 the	 β-oxidation	 pathway,	 which	 is	 localized	 in	 mitochondria,	 by	

introduction	of	double	bond	into	a	β-position	of	acyl-Coenzyme	A	(acyl-CoA).		
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Clinical	picture	can	be	highly	variable,	but	generally	with	trigger	mechanisms	like	

metabolic	stress	(fever,	fasting)	or	other	illness	can	lead	to	hypo-ketotic	hypoglycemia	

with	lethargy,	resulting	into	a	coma	and	death.	At	the	other	side	of	the	clinical	spectrum	

are	asymptomatic	patients,	with	no	symptoms	for	years,	 identified	retrospectively	by	

newborn	 screening.	 Up	 to	 70	 mutations	 were	 found	 in	 ACADM	 (gene	 is	 located	 at	

1p31.1)	gene	so	far,	the	prevalent	mutation	is	c.985A>G	(K329E).13	The	incidence	varies	

differently	through	the	world	with	high	number	of	cases	in	north	Europe	and	no	case	in	

Japan:	Denmark	1:8954,13	England	1:10	000,14	Netherlands	1:30	000,15	Germany	1:133	

000,	overall	 incidence	in	USA	1:15	000,16	Greece	1:16	000,17	and	general	 incidence	in	

south	Europe	with	exception	of	Greece	1:300	000.18	The	most	common	presentation	of	

MCADD	is	between	3	and	15	months.	However,	the	symptoms	may	appear	at	any	age	

from	 newborn	 to	 the	 adult.	 If	 untreated	 syptoms	 may	 cover	 fasting	 intolerance,	

hypoglycemia,	hyperammonemia,	acute	encephalopathy	commonly	initiated	by	regular	

infectious	 diseases	 or	 fasting.19	 These	 conditions	 can	 be	 avoided	 by	 preventing	 the	

hypoglycemia.	Patients	are	exhibiting	high	levels	of	adipic,	suberic	and	sebacic	acids	in	

urine.	As	well	as	5-OH-hexanoic	acid	and	hexanoylglycine	were	excreted	 in	excessive	

amounts.	 Contrary,	 7-OH-octanoic	 acid,	 9-OH-decanoic	 acid,	 octanoylglycine	 and	

decanoylglycine	 were	 excreted	 in	 limited	 amounts.20	 Several	 glycine	 conjugates	 are	

occurring	 as	 well	 (n-hexanoylglycine,	 3-phenylpropionylglycine	 and	 suberylglycine).21	

Above	mentioned	biochemical	picture	depends	on	clinical	status	and	can	vanish	during	

the	period	of	normalcy.		

Many	diseases,	including	MCADD,	are	screened	in	the	majority	of	the	developed	

world.	The	tandem	mass	spectrometry	has	become	a	routine	tool	in	the	diagnosing	of	

inherited	metabolic	diseases	and	plays	a	key	role	in	the	newborn	screening.	A	typical	

FIA-TMS	analysis	takes	less	than	minute	per	sample.	Dozens	of	diagnostically	relevant	

molecules	 are	 analyzed	 with	 very	 high	 specifity	 and	 sensitivity.22	Main	 biomarker	 is	

octanoylcarnitine	 (C8)	 and	 secondary	 markers	 are	 hexanoylcarnitine	 (C6),	

decanoylcarnitine	(C10)	and	decenoylcarnitine	(C10:1),	respectively.	Determination	of	

elevated	 acylcarnitines	 and	 their	 ratios	with	other	 acylcarnitines	 (e.g.	 acetylcarnitine	

(C2),	dodecanoylcarnitine	(C12)	–	C8/C2;	C8/C12;	C8/C6)	 is	used	for	determination	of	

MCADD	in	dried	blood	spots,	taken	within	1-3	days	after	birth.23		
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1.1.2. Adenosine	deaminase	deficiency	

Deficiency	 of	 adenosine	 deaminase	 (ADA)	 (OMIM	 #102700,	 chromosome	

20q13.11)	 belongs	 to	 the	 broad	 group	 of	 inborn	 errors	 of	 purine	 metabolism.	 Its	

incidence	is	between	1:200000	and	1:1000000.	Most	defects	of	purine	metabolism	are	

autosomal	 recessively	 inherited,	 only	 exceptions	 are:	 hypoxanthine-guanine	

phosphoribosyl	 transferase	 deficiency	 (HPRT)	 and	 phosphoribosyl-pyrophosphate	

synthetase	 superactivity	 (PRPS)	 which	 are	 X-linked	 inherited	 and	 familial	 juvenile	

hyperuricaemic	 nephropathy	 (FJHN)	 and	 IMP	 dehydrogenase	 1	 (IMPDH1)	 retinitis	

pigmentosa	 which	 are	 autosomal	 dominantly	 inherited.24	 Adenosine	 deaminase	

(E.C.3.5.4.4.)	is	responsible	for	transformation	of	adenosine	and	2’-deoxyadenosine	into	

inosine	and	2’-deoxyinosine	and	it	is	highly	expressed	in	lymphoid	cells.	There	are	two	

isoforms	of	ADA:	ADA1	which	 is	monomeric	(41	kDa)	and	predominantly	 intracellular	

(Figure	2)	and	ADA2	is	a	homodimer	largely	expressed	in	the	plasma.		

	

Figure	 2:	 A	 ribbon	 diagram	 of	 a	 monomeric	 ADA1	 with	 adenosine	 substrate.	 Grey	

ribbons	represent	protein	structure	and	black	sphere	in	the	middle	is	a	central	atom	of	

Ni.	Blue	group	of	nitrogen	can	be	seen	close	to	the	Ni	atom.	 	(Picture	was	created	in	

PyMOL11	based	on	3iar	PDB	structure)	
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In	patients	with	heritable	deficiency	of	ADA	the	actions	of	 its	metabolites	and	

related	products	impair	with	lymphocyte	differentiation,	function	and	viability	(deoxy-

adenosinetriphosphate	 (deoxyATP)	 appears	 to	 be	 highly	 toxic	 for	 bone	 marrow).	 If	

untreated,	it	can	result	in	fatal	ADA-SCID	with	lymphopenia,	impaired	differentiations	

and	function	of	T-lymphocytes,	B-lymphocytes	and	“natural	killers”	(NK)	cells,	auditory	

defects,	cognitive	 impairment	and	other	systemic	malfunctions.25	First	reports	are	by	

Giblett	 et	 al.	who	 reported	 two	 unrelated	 girls	with	 impaired	 cellular	 immunity	 and	

almost	 no	 ADA	 activity	 in	 red	 cells.	 First	 child	 had	 recurrent	 respiratory	 infections,	

candidiasis,	and	marked	lymphopenia	from	birth.	Second	child	as	without	symptoms	up	

to	second	year	of	life.	At	the	age	of	24	months	mild	upper	respiratory	infections	began	

and	at	the	age	of	30	months	severe	pulmonary	insufficiency	and	hepatosplenomegaly	

had	progressed.26	

As	mentioned	above	ADA	genes	are	located	on	chromosome	20q13.11.	There	is	

over	 60	 gene	mutations	 of	ADA	 located	 in	 patients	with	 immune	deficiency.	 Several	

others	were	found	in	a	small	group	of	patients	with	so	called	partial	ADA	deficiency,	who	

were	clinically	unaffected	due	to	significant	ADA	activity	in	nucleated	cells	despite	their	

absence	of	ADA	activity	in	red	blood	cells.		

The	most	 effective	 treatment	 of	 ADA	 deficiency	 is	 a	 transplantation	 of	 bone	

marrow	from	a	human	leukocyte	antigen	(HLA)-identical	donor	which	leads	mostly	to	

full	immune	system	recovery.	Investigate	study	report	that	6.5-year	survival	rate	is	86%	

and	 83%	 from	 matched	 sibling/matched	 donor	 and	 67%	 from	 MUD	 (HLA-matched	

unrelated	 donor).	 Other	 option	 is	 transplantation	 form	 a	 HLA-haploidentical	 donor	

which	 has	 been	 also	 successful,	 but	with	 higher	morbidity	 and	mortality	 (43%).	 The	

survival	rate	for	mismatched	unrelated	donor	is	29%.	Alternative	sources	of	stem	cells	

require	 a	 conditioning	 regimen	 and	 posttreatment	 immunosuppression	 to	 prevent	

graft-versus-host	 disease	 (GVHD).25,27	 Recovery	 of	 humoral	 immunity	 is	 also	 less	

effective.	The	alternative	to	the	transplantation	is	an	enzyme	replacement	therapy	(ERT)	

where	bovine	ADA	attached	to	the	polyethylene-glycol	(PEG-ADA)	is	injected	into	muscle	

once	or	 twice	weekly.	The	high	 levels	of	plasma	PEG-ADA	can	effectively	degrade	2’-

deoxyadenosine	(dAdo)	and	reverse	intracellular	pool	of	deoxyATP.	Survival	may	be	high	

as	78%	over	twenty	years.	However,	this	treatment	is	expensive	and	not	available	in	all	

countries.	 It	was	also	proven	 that	 this	 therapy	decrease	number	and	 functionality	of	
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lymphocytes	over	the	time,	leaving	patients	vulnerable	to	infection,	autoimmunity	and	

malignancy.28,29	Autologous	transplant	of	hematopoietic	stem	cells	corrected	by	gene	

transfer	has	been	examined	as	a	potential	treatment.	So	far	few	dozens	of	patients	were	

treated	 like	that.25	 In	year	1990,	a	 first	clinical	 trial	was	set	using	retroviral-mediated	

transfer	of	the	adenosine	deaminase	gene	into	the	T	cells	of	two	children,	after	2	years	

the	treatment	ended,	but	the	integrated	vector	persisted.	First	successful	use	of	gene	

therapy	treatment	in	history.30	

	

1.2. Metabolomics	

The	field	of	metabolomics	is	highly	evolving	branch	of	the	„omics“	research.	Its	

main	goal	 is	high	throughput	 identification	and	quantification	of	small	molecule	 (less	

than	1500	Da).31	The	set	of	low	molecular	weight	compounds	is	called	metabolome.	In	

recent	years,	the	metabolome	grows	rapidly	by	including	not	only	compounds	produced	

by	organism	metabolism	(e.g.	human	metabolome),	but	also	by	microbes	present	within	

the	 organism	 (microbiome),	 compounds	 related	 to	 the	 diet	 and	 drugs	 or	 other	

environmental	 compounds	 and	 their	 metabolites.	 All	 these	 molecules	 together	 are	

creating	 highly	 diverse	 metabolome	 which	 is	 a	 subject	 of	 study	 for	 metabolomics.	

Metabolites	 can	 be	 divided	 into	 several	 groups	 by	 their	 physicochemical	 properties	

(hydrophobicity/hydrophilicity,	 acidity/basicity	 and	 boiling	 point).	 Volatility	 of	 the	

compounds	can	vary	from	low	molecular	volatile	compounds	such	as	isoprene	or	carbon	

dioxide	 present	 in	 the	 breath	 up	 to	 high	 molecular	 weight	 compounds	 (e.g.	 lipids,	

gangliosides,	small	peptides).		
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Figure	3:	Intensity	of	physiological	and	environmental	influence	genome,	proteome	and	

metabolome.		

	

Hydrophobicity/hydrophilicity	has	wide	range	from	highly	polar	amino	acids	up	

to	non-polar	lipids.32	Physiological	state	and	influence	of	the	environment	are	the	most	

influencing	factors	of	metabolome	(Figure	3).	Today	metabolomics	studying	microbial,	

plant	 environmental	 and	 mammalian	 systems.33	 In	 2005	 Metabolomic	 Standard	

Initiative	(MSI)	was	assembled	to	set	standards	for	data	exchange,	communicate	results	

and	 bring	 general	 consensus	 around	 proposed	 standards.	 The	 aim	 is	 to	 provide	 a	

common	mechanism	for	describing	the	work	so	that	the	data	can	be	made	available	to	

others	 for	evaluation.	Also	to	suggest	an	extension	or	 repeat	of	previously	published	

work,	if	necessary.34	Within	last	five	years	the	number	of	publications	published	per	year	

almost	tripled	in	the	field	of	metabolomics	(Figure	4).		
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Figure	4:	Number	of	publications	in	mass	spectrometry	metabolomics	since	2010.	The	

data	were	obtained	from	Web	of	Science	10.1.2017	using	key	words	“metabolomics”	

and	“mass	spectrometry”.		

	

1.2.1. Targeted	and	Semi-Targeted	Metabolomics	

Nowadays,	 three	different	methodological	approaches	can	be	distinguished	 in	

the	 field	 of	 metabolomics.	 First	 two,	 targeted	 and	 semi-targeted	 approach	 can	 be	

characterized	as	a	quantification	of	small	group	(several	dozens	in	case	of	semi-targeted	

approach)	 of	 (related)	 metabolites	 using	 mass	 spectrometers	 based	 on	 triple	

quadrupoles	 (QqQ)	 coupled	 with	 ultra-high	 performance	 liquid	 chromatography	

(UHPLC)	or	capillary	electrophoresis	(CE).		The	acquisition	is	usually	based	on	multiple-

reaction-monitoring	(MRM)	principle	on	triple	quadrupoles.	The	first	quadrupole	is	used	

as	for	selection	of	a	parent	ion	of	interest	(metabolite),	in	the	second	quadrupole	the	

fragmentation	of	that	ion	occurs	and	in	the	third	quadruple	the	most	abundant	fragment	

is	 selected	 for	 the	 detection,	 in	 order	 to	 achieve	 highest	 sensitivity.	When	multiple	

metabolites	are	being	analysed,	 this	process	 is	 repeated	 for	each	of	 them	creating	a	

cycle	(MRM).	Each	metabolite	takes	time	for	analysis	(cycle	or	dwell	time)	thus	analytes	

are	monitored	intermittently.35	Metabolite	identity	is	already	known;	thus,	no	further	

identification	 is	 required.	 Development	 of	 related	 analytical	 methods	 is	 based	 on	

isotopically	labelled	internal	standards	(analogues	of	metabolites)	which	provides	high	

selectivity	 and	 precision.	 The	 result	 is	 absolute	 quantification	 of	 detected	

metabolites.33,36		
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1.2.2. Untargeted	metabolomics	

The	third	option,	untargeted	metabolomics,	is	the	most	suitable	one	for	the	new	

biomarker	 and	 metabolite	 discoveries.	 Analyses	 are	 designed	 to	 obtain	 as	 much	

information	 as	 possible	 about	 the	 sample	 without	 any	 priory	 knowledge.	

Instrumentation	is	based	on	mass	spectrometers	capable	of	data	acquisition	with	high	

resolving	 power	 together	 with	 high	 mass	 accuracy	 (e.g.	 Orbitrap,	 TOF	 and	 Q-TOF	

instruments,	 FTICR)	 and	nuclear	magnetic	 resonance	 (NMR).32	 The	 key	 bottleneck	 in	

untargeted	metabolomics	is	identification.	This	is	caused	by	several	factors:	the	diversity	

of	 small	 molecule	 structures	 is	 huge	 (e.g.	 PubChem	 contains	 almost	 90	 million	

compounds,	 tested	 compounds	 -	 2	 millions);	 different	 variety	 of	 physicochemical	

properties	 (variability	 is	 bigger	 than	 in	 proteomics);	 the	 number	 of	 tools	 for	 semi-

automated	 process	 of	 metabolite	 identification	 developed	 and	 tested	 on	 the	

experimental	 conditions	 are	 limited.	 Nowadays,	mass	 spectrometry	 and	 the	 nuclear	

magnetic	resonance	are	the	most	frequent	methods	used	for	structure	elucidation	and	

metabolite	 identification.37	 Another	 important	 part	 of	 untargeted	metabolomics	 is	 a	

sample	preparation,	since	it	is	highly	influencing	the	number	of	potentially	detectable	

compounds.	In	order	to	sustain	high	metabolite	coverage,	the	non-selective	sample	pre-

treatment	methods	 such	 as	 protein-solvent	 precipitation	 and	dilution	 are	 commonly	

used.	 The	 comprehensive	metabolomics	 and	 lipidomics	 covers	 compounds	with	 ~40	

orders	 of	 magnitude	 on	 scale	 of	 octanol/water	 coefficient	 scale,	 thus	 extraction	

efficiency	should	be	optimized.38	It	is	worth	mentioning	that	there	is	no	single	method	

or	 platform	 possibly	 covering	 all	 of	 metabolome.	 Hence,	 there	 is	 a	 necessity	 for	

development	of	more	robust	methods	and	strategies	using	as	few	analytical	platforms	

as	possible.		

	

1.2.3. Mass	spectrometry	in	metabolomics	

The	roots	of	mass	spectrometry	(MS)	are	more	than	one	hundred	years	old	when	

pioneer	 of	 the	mass	 spectrometry	 J.J.	 Thomson	was	 able	 to	 sort	 constituents	 of	 the	

beams	 into	positive	 ray	parabolas	 each	with	defined	mass-charge-ratio.39	 In	 general,	

mass	 spectrometers	 are	 operating	 by	 formation	 of	 negatively	 or	 positively	 charged	

species	(ions),	their	separation	is	done	by	mass-to-charge	ratio	(m/z).	To	reduce	ion-ion	
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and	 ion-molecules	 interactions	 the	 instruments	 are	working	under	high	 vacuum.	 For	

formation	of	ions	(ionization)	many	techniques	were	developed.	Ionization	techniques	

can	be	divided	by	energy	applied	-	“soft”	and	“hard”	ionization	techniques	and	by	the	

place	where	ionization	occurs	-	in	vacuum	(“matrix	assisted	laser	desorption/ionization”	

-	MALDI,	“electron	impact”	-	EI)	and	those	which	occurs	at	atmospheric	pressure	(APCI,	

ESI,	etc).		Great	milestone	was	publication	of	Electrospray	Ionization	(ESI)	by	John	Fenn40	

which	is	now	one	the	most	used	ionization	technique	in	metabolomics.	Majority	of	the	

molecules	 are	 usually	 singularly	 charged	 due	 to	 their	 low	molecular	weight	which	 is	

capable	of	carrying	only	one	charge.	Unlike	the	proteomics	where	peptides/proteins	are	

carrying	multiple	charge.	Mass	spectrometers	are	capable	of	 scanning	mass	 range	of	

interest	 (metabolomics	 20	 –	 2000	 m/z,	 some	 instruments	 up	 to	 6000	 m/z)	 with	

acquisition	time	of	several	spectra	per	second.	Many	information	about	the	sample	can	

be	 acquired	 due	 to	 measuring	 “full-scan”	 and	 MSn	 spectra	 operating	 in	 data	

independent	acquisition	(DIA)41	or	data	dependent	acquisition	(DDA).42	Such	approach	

might	 be	 very	 helpful	 in	 metabolite	 identification	 and	 structure	 elucidation.	 	 The	

advances	in	electronics	and	precise	manufacturing	provided	scientist	with	a	broad	range	

of	platforms	capable	precise	measurements	–	time	of	flight	(TOF),	quadrupole,	Fourier	

transform	 and	 hybrid	 instruments	 (quadrupole-TOF	 (QTOF),	 ion	 trap-Orbitrap,	 triple	

quadrupoles	(QQQ)).		

Previous	liquid	chromatography	(LC)	instrumentation	has	not	provided	sufficient	

chromatographic	 resolution	 as	 gas	 chromatography	 (GC)	 and	 thus	 the	 LC	 was	 not	

frequently	used.	The	introduction	of	ultra(-high)	performance	liquid	chromatography	on	

the	market	by	Waters	Inc.	in	2004	allowed	LC	to	become	major	separation	technique	in	

metabolomics.	 Nowadays	 the	 most	 comprehensive	 platforms	 for	 metabolomics	 are	

combining	capillary	electrophoresis,	gas	chromatography	(or	two	dimensional	GC)	and	

liquid	 chromatography	 (UHPLC)	 as	 a	 separation	 techniques	 coupled	 with	 mass	

spectrometers	 as	 detectors.	 In	 order	 to	 find	 most	 discriminating	 features	 statistical	

methods	based	on	data	clustering,	dimension	reduction	and	multiple	hypothesis	testing	

are	applied.43		
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1.2.4. Mass	spectrometry	in	detection	of	inborn	errors	of	metabolism	

Before	 1980,	 the	 gas	 chromatography	 analysis	 was	 usually	 required	 for	 the	

diagnosis	of	organic	acid	and	fatty	acid	metabolism	errors.	The	identification	was	based	

just	on	the	retention	times.	In	late	1970’	the	introduction	of	mass	spectrometry	greatly	

improved	 the	 analysis	 of	 organic	 acids	 –	 GC/MS	 became	 a	 gold	 standard	 for	

identification	of	metabolic	disorders	from	urine.44	It	is	almost	three	decades	since	the	

tandem	mass	spectrometry	(MS/MS)	entered	this	field.	It	has	a	positive	impact	on	the	

number	 of	 screened	 diseases,	 development	 of	multi-disease	 screening	 tests	 and	 on	

number	of	newborn	screening	(NBS)	programs	around	the	world.	Great	excitement	was	

especially	 about	 the	 detection	 of	 acylcarnitine	 profile	which	was	 difficult	 to	 analyse	

because	the	molecules	polarity,	zwitterionic	nature,	concentration	levels	and	the	lack	of	

a	chromophore.45	

The	newborn	screening	was	established	in	order	to	detect	diseases	in	their	pre-

clinical	 state.	 Thus,	 the	 disease	 can	 be	 diagnosed	 and	 treated	 before	 it	 can	 develop	

clinical	symptoms	and	be	dangerous	to	the	children.	In	a	broader	way	NBS	may	include	

medical	 examination	 by	 doctors	 (ophthalmologist,	 orthopaedist,	 paediatrician).	 Here	

the	NBS	is	meant	in	more	narrow	way	as	a	laboratory	analysis	of	a	biological	material,	

where	levels	of	diagnostically	important	metabolites	are	measured.	Since	the	1st	June	

2016	–	18	disorders	are	routinely	screened	in	Czech	Republic.	Among	screened	disorders	

belong:	 congenital	 hypothyroidism	 (CH),	 congenital	 adrenal	 hyperplasia	 (CAH),	 cystic	

fibrosis	 (CF),	 inborn	 errors	 in	 metabolism	 of	 amino	 acids	 (phenylketonuria	 (PKU),	

hyperphenylalaninemia	(HPA),	argininemia	(ARG),	citrulinemia	type	I.	(CIT),	maple	syrup	

urine	disease	(MSUD),	classical	homocystinuria	-		cystathionine	beta	synthase	deficiency	

(CBS,	pyridoxine	non-responsive	form),	homocystinuria	based	on	deficiency	of	methylene	

tetrahydrofolate	 reductase	 (MTHRF),	 glutaric	 aciduria	 type	 I	 (GA	 I)	 and	 isovaleric	

aciduria	 (IVA)),	 inborn	 errors	 in	 metabolism	 of	 fatty	 acids	 (medium	 chain	 acyl-CoA-

dehydrogenase	 deficiency	 (MCADD),	 long	 chain	 acyl-CoA-dehydrogenase	 deficiency	

(LCADD),	 very-long	 chain	 acyl-CoA-dehydrogenase	 deficiency	 (VLCADD),	 carnitine	

palmitoyltransferase	I	deficiency	(CPT	I),	carnitine	palmitoyltransferase	II	deficiency	(CPT	

II),	carnitine	acyl-carnitine	translocase	deficiency	(CACT))	and	biotinidase	defiency	(BTD).			

(www.novorezeneckyscreening.cz)	As	a	screening	material	a	single	3.2-mm	dried	blood	
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spot	 (equivalent	 to	 3.1	 µL	 of	 blood)	 is	mostly	 used	 together	with	 plasma	 and	 urine	

samples.	 It	 seems	 that	 the	 best	 time	 for	 sample	 collection	 for	 a	 large	 number	 of	

disorders	lies	between	48	–	72	hours.	45,46		

For	the	NBS	purpose	is	probably	most	effective	the	use	of	flow	injection	analysis	

coupled	with	tandem	mass	spectrometry	(FIA-TMS)	with	heated	electrospray	ionization.	

Although,	 mass	 spectrometer	 without	 purification	 or	 chromatography	 is	 not	 really	

selective,	the	tandem	mass	spectrometry	in	MRM	mode	(as	described	in	Chapter	1.2.1)	

can	overcome	 this	 issue.	 It	 is	worth	mentioning	 that	 relatively	 short	 time	of	analysis	

(approx.	2	min)	provides	a	high	throughput	and	selective	screening	at	very	cost-effective	

rates.44		

As	an	extension	of	NBS	the	“selective	screening”	was	introduced,	depending	on	

laboratory	several	diseases	can	be	screened.	The	analysis	usually	 involves	separation	

technique	 such	 as	 gas	 chromatography,47	 capillary	 chromatography48	 and	 liquid	

chromatography49.	 Initial	 approach	 in	 LC	 separation	 was	 a	 reversed-phase	

chromatography	based	C18	with	acidic	mobile	phase.	Nevertheless,	many	compounds	

like	ATP	did	not	elute	as	a	defined	peaks	and	many	polar	compounds	did	not	retain	and	

were	 eluted	 in	 the	 void	 volume.	 More	 efficient	 method	 is	 hydrophobic	 interaction	

chromatography	(HILIC)	on	an	amino	propyl	columns	capable	of	separating	broad	range	

of	 metabolites	 including	 amino	 acids,	 sugar	 phosphates,	 coenzyme	 A	 derivatives,	

nucleosides,	nucleotides	and	carboxylic	acids	using	both	positive	and	negative	ionization	

mode.35	

	

1.2.5. Structural	elucidation	and	metabolite	identification	

As	 mentioned	 previously	 in	 the	 text	 structural	 elucidation	 and	 metabolite	

identification	 are	 key	 bottlenecks	 in	 the	 field	 metabolomics.	 Since	 the	 confident	

assignment	 is	 sometimes	 almost	 impossible	 to	 achieve,	 the	 Metabolomic	 Standard	

Initiative	established	four	levels	of	identification	(Table	1).50	

	

	

	

	



	 20	

Table	1:	Level	of	confidence	in	metabolite	identification	set	by	Metabolomic	Standard	

Initiative.50		

	

Definitive	identification	(Level	1)	requires	at	least	two	orthogonal	properties	(e.g.	

retention	 time/index,	m/z,	 fragmentation	 spectra)	 of	 a	 chemical	 standard	 analysed	

under	 identical	 analytical	 conditions.	 However,	 even	 at	 this	 level	 of	 identification	 is	

almost	impossible	to	distinguish	some	isomers,	especially	stereoisomers.	In	that	case,	

the	 development	 of	 an	 unambiguous	 separation	 method	 is	 required.	 Putative	

annotation	 (Level	 2	 or	 3)	 is	 mainly	 based	 on	 comparison	 of	 data	 acquired	 in	 other	

laboratories	 by	 different	 analytical	methods	 instead	 of	 direct	 data	 analysis	 acquired	

from	an	authentic	standard.	In	GC-MS,	fragmentation	spectral	libraries	can	be	used	for	

putative	annotation	because	the	electron	impact	(EI)	fragmentation	patterns	are	easily	

Level	 Confidence	of	identity	 Description	

1	 Identified	compounds	

A	minimum	of	two	independent	

and	orthogonal	data	 relative	 to	

an	 authentic	 compound	 are	

necessary	 (e.g.	 retention	 time	

and	 mass	 spectrum,	 retention	

time	 and	 NMR	 spectrum,	

accurate	 and	 tandem	 MS,	

accurate	 mass	 and	 isotope	

pattern)	

2	 Putatively	annotated	compounds	

No	chemical	standard	available,	

based	 on	 physicochemical	

properties	 and/or	 structural	

similarity	 with	

public/commercial	 spectral	

library	 (or	 other	 laboratories	

published	results)	

3	
Putatively	characterized	compound	

classes	

Based	 upon	 physicochemical	

properties	 and	 spectral	

similarity	 with	 known	

compounds	of	chemical	class	

4	 Unknown	compounds	

Although	 unidentified	 and	

unclassified,	 these	 metabolites	

can	 still	 be	 differentiated	 and	

quantified	 based	 upon	 spectral	

data	
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matched	 between	 different	 platforms.	 In	 case	 of	 UHPLC-MS	 the	 accurate	 m/z	 is	

obtained	 as	 a	 first	 property	 for	 identification,	 combined	with	 RT	 and	 fragmentation	

spectra	 are	 used	 for	 comparison	 with	 experimantal	 and/or	 computationally	 derived	

databases	 (e.g.	Metlin,	HMDB,	Foodb.ca,	mzCloud,	MoNA,	LipidMaps,	etc.).33	 	At	 the	

Level	4	confidence	of	identity,	two	different	kind	of	compounds	can	be	distinguished	–	

“known	unknowns”	and	“unknown	unknowns”.	Identification	of	“known	unknowns”	is	

based	on	examination	of	acquired	mass	spectra	with	those	present	in	the	database,	thus	

the	metabolite	is	known	and	was	already	described.	The	real	challenge	is	identification	

of	“unknown	unknowns”	because	those	metabolites	were	never	described	before	and	

they	 are	 truly	 novel	 to	 the	 scientists	 (to	 the	 best	 of	 our	 knowledge).	 Due	 to	 high	

sensitivity	of	analytical	techniques	(LC-MS)	unknown	compounds	may	appear	even	in	

the	well-studied	organisms.51	

	

1.2.6. “Seven	golden	rules”	of	identification	

In	2007	Tobias	Kind	and	Oliver	 Fiehn	published	 “Seven	golden	 rules”	as	basic	

suggestion	for	metabolite	identification	that	is	currently	accepted	by	the	metabolomic	

community.52		

By	 application	 of	 the	 first	 rule	 the	 number	 of	 elements	 for	 computing	 the	

summary	formula	is	restricted	(e.g.	molecule	of	1000	Da	containing	only	carbon	will	have	

83	carbons	at	maximum).		

Second	rule	are	LEWIS	and	SENIOR	check.	In	order	to	determine	correct	chemical	

formula,	the	ion	species	must	be	set	to	the	neutral	state	(uncharged).	Than	calculation	

of	the	formula	is	done	by	using	all	combinations	of	all	set	elements	(e.g.	C,	H,	N,	O,	P,	S,	

Cl,	Br).	LEWIS	rule	demands	that	all	atoms	(especially	carbon,	oxygen,	nitrogen)	share	

electrons	 that	meet	 the	“octane	rule”	 (all	s	and	p	 valences	shell	are	 filled).53	SENIOR	

theorem	requires	three	different	rules:54		

i)	The	sum	of	valences	or	the	total	number	of	atoms	having	odd	valences	is	even;	

ii)	The	sum	of	valences	is	greater	than	or	equal	to	twice	the	maximum	valence;	

iii)	The	sum	of	valences	is	greater	than	or	equal	to	twice	the	number	of	atoms	

minus	1.	
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The	 third	 rule	 applying	 isotopic	 pattern	 filter	 based	 on	 relative	 isotopic	

abundances	(RIA).	Molecules	synthetized	in	nature	contains	isotopes	according	to	the	

average	nature	abundance	and	are	 listed	 for	each	element.55	Hydrogen/Carbon	ratio	

check	is	applied	as	a	fourth	rule.	Most	abundant	ratios	are	between	2.0	>	H/C	>	0.5.	Fifth	

and	 sixth	 rule	 are	 used	 to	 check	 ratios	 and	 probability	 of	 heteroatoms	 and	 other	

elements	by	heuristic	rules.	Seventh	rule	is	applicable	for	gas	chromatography	analyses	

where	 derivatization	 of	 sample	 is	 necessary.	 MSTFA	 (N-

Methyltrimethylsilyltrifluoroacetamide;	 CAS:	 24589-78-4)	 is	 common	 compound	

involved	in	the	sample	preparation	step.	Trimethylsilyl	(TMS	–	C3H8Si)	groups	have	to	be	

subtracted	for	calculated	underivatized	molecule.		

	

1.2.7. Spectral	trees		

Each	 compound	 produces	 different	 mass	 spectra	 if	 exposed	 to	 diverse	

fragmentation	techniques	and	various	collisional	energies.	Spectral	tree	is	an	intuitively	

organized	multistage	tandem	mass	spectra	acquired	at	different	collision	energies,	and	

techniques	(Figure	5).	If	you	picture	a	spectral	tree	in	the	three	dimensional	space	than	

on	 the	 X	 axis	 are	 plotted	 fragments	 of	 precursor	 ion(s).	 Y	 axis	 represents	 level	 of	

fragmentation	 (MSn).	 The	 depth	 of	 each	 column	 (Z	 axis)	 represents	 spectra	 of	 each	

individual	 fragment	 acquired	 at	 different	 collisional	 energies	 and	 by	 various	

fragmentation	 techniques.	 Curated	 database	 based	 on	 the	 spectral	 trees	 can	 highly	

increasing	 chance	 for	 positive	 match	 in	 a	 “spectrum	 search”	 findings	 and	 thus	

metabolite	identification.		
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Figure	 5:	 Spectral	 tree.	On	 the	 X	 axis	 are	 plotted	 fragments	 of	 precursor	 ion.	 Y	 axis	

represents	level	of	fragmentation	(MSn).	The	depth	of	each	column	(Z	axis)	represents	

spectra	 of	 each	 individual	 fragment	 acquired	 at	 different	 collisional	 energies	 and	 by	

various	fragmentation	techniques.	(www.mzcloud.org	4.8.2016)		

	

1.2.8. Influence	of	high	resolution	

Electrospray	 ionization	 is	 preferable	 ionization	 technique	 because	 of	 its	

capability	to	produce	“whole”	molecular	ions	that	aids	initial	metabolite	identification.	

On	 contrary,	 EI	 ionization	 creates	 fragmentation	 patterns	 which	 provide	 unique	

information	for	database	search	(e.g.	GC	data	against	commercial	NIST	database).	

Analysis	of	 complex	 samples	by	modern	 separation	 techniques	 in	 conjunction	

with	 high	 resolution	 exact	 mass	 spectrometry	 can	 bring	 huge	 number	 of	 features,	

characterized	 by	 exact	 mass	 and	 chromatographic	 behaviour.	 High	 resolution	 mass	

spectrometry	analysers	are	usually	based	on	the	FTICR,	the	double	focused	magnetic	

sectors,	reflectron	time-of-flight	mass	analysers	or	ion	trap.	The	last	two	techniques	are	

mostly	used	in	the	analysis	of	biological	samples.	Resolution	of	several	tens	of	thousands	

of	FWHM	(full-width-at-half-maximum)	with	the	acquisition	of	high-speed	data	transfer	

of	up	to	100	Hz	can	be	achieved	with	the	current	time-of-flight	instruments	(TOF)	for	

which	scan	speed	is	independent	of	resolution.	In	contrast,	mass	spectrometers	based	
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on	orbital	ion	trap	using	Fast	Fourier	Transform	(FFT)	allow	resolution	of	up	to	500,000	

FWHM	(at	200	m/z)	at	the	expense	of	lower	scan	rates.	For	this	reason,	their	greater	

mass	 resolution	 generally	 requires	 a	 longer	 scanning	 and,	 consequently,	 fewer	 data	

points	are	obtained	over	the	studied	peak.	This	could	cause	problems	for	the	detection	

functions,	 deconvolution	 and	 quantification.	 Mass	 spectrometry	 measurements	

accurate	 to	 four	 decimal	 places	 are	 very	 important	 in	 prediction	 of	 the	 molecular	

formula.	With	increasing	resolution,	the	number	of	compounds	with	apparently	same	

m/z,	decreases	due	to	 lower	 interference	of	 the	 isobaric	matrix.	 In	many	analyses	of	

highly	 complex	 samples	 (e.g.	metabolomics,	 proteomics),	 the	balance	between	mass	

spectral	acquisition	speed	and	mass	resolution	is	a	problem.56	

Chromatographic	separation	of	complex	biological	samples	is	still	a	big	challenge.	

Serum	metabolome	in	human,	is	chemically	highly	variable	and	consists	of	many	classes	

of	metabolites,	including	amino	acids,	purines,	lipids	(e.g.,	glycerolipids,	phospholipids),	

hydroxycarboxylic	acids,	etc.	The	analysis	of	these	complex	matrices	is	usually	difficult	

and	requires	a	number	of	different	separation	techniques	(liquid	chromatography,	gas	

chromatography,	capillary	electrophoresis).31,57	In	addition,	the	concentration	levels	of	

metabolites	may	change	over	six	orders	of	magnitude.		

Metabolomics	and	high	resolution	mass	spectrometry	itself	have	brought	a	fresh	

perspective	 into	 a	 clinical	 diagnostic.	Within	 the	 last	 few	years	many	 innovative	 and	

precise	 analytical	methods	 have	 been	 developed	 creating	 a	 low-cost	 highly	 efficient	

medical	care.		
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2. Aims	of	the	work		

• Investigate	of	pathophysiological/pathobiochemical	changes	connected	with	

medium	 chain	 acyl-CoA	 dehydrogenase	 deficiency	 (MCADD)	 by	 means	 of	

untargeted	metabolomics	

• Study	 a	 “spectral	 trees”	 as	 a	 tool	 of	 metabolite	 identification	 in	 patients	

suffering	from	adenosine	deaminase	deficiency	(ADA)	

• Describe	 the	 influence	 of	 a	 mass	 spectrometry	 resolution	 on	 feature	

(metabolite)	detection	in	LC-HRMS	untargeted	metabolomics	by	theoretical	

simulations	and	experimental	measurements		
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3. Materials	and	methods	

3.1. Chemicals	

Solvents	acetonitrile,	methanol	and	water	(all	LC-MS	quality)	and	acetone	(HPLC	

quality)	as	well	as	formic	acid,	acetic	acid	and	ammonium	hydroxide	were	purchased	

from	 Sigma-Aldrich	 (St.	 Louis,	 USA).	 Standards	 of	 PGPC	 (1-O-hexadecanoyl-2-O-(9-

carboxybutanoyl)-sn-glyceryl-3-phosphocholine)	and	PAzPC	(1-O-hexadecanoyl-2-O-(9-

carboxyoctanoyl)-sn-glyceryl-3-phosphocholine)	 were	 purchased	 from	 Avanti	 Polar	

Lipids,	Inc.	(Alabaster,	AL).		

	

3.2. Samples	

3.2.1. Medium	chain	acyl-CoA	dehydrogenase	deficiency	

Two	 sets	 of	 patient	 samples	 were	 chosen	 for	 the	 experiment.	 First	 dataset	

consists	of	dry	blood	spots	from	healthy	newborns	(control	group,	n=25)	and	patients	

suffering	 from	MCADD	 (8	 patients,	 n=25;	 from	 subsequent	 sampling).	 Four	 patients	

were	compound	heterozygotes	and	four	were	homozygous	with	mutation	c.985A>G.	In	

order	to	confirm	the	results	and	validate	the	chemical	species	(metabolites)	identified	

in	untargeted	metabolomics	experiment	a	second	set	of	samples	from	250	newborns	

was	used	for	targeted	metabolite	analysis.	All	samples	were	obtained	from	Laboratory	

for	 inherited	metabolic	 disorders	 (University	 Hospital	 Olomouc,	 CZ)	 within	 the	 pilot	

project	of	Czech	newborn	screening	program.	Written	informed	consent	according	to	

the	Declaration	of	Helsinki	by	the	World	Medical	Association	(WMA)	was	obtained	from	

the	volunteers	for	all	samples	used	in	the	analyses.	

	

3.2.2. Adenosine	deaminase	deficiency	

For	metabolite	profiling	of	urine	4	samples	of	patients	suffering	from	adenosine	

deaminase	 deficiency	 (ADA)	 and	 4	 control	 samples	 were	 chosen.	 All	 samples	 were	

obtained	 from	 Laboratory	 for	 inherited	 metabolic	 diseases	 in	 University	 Hospital	

Olomouc,	CZ	within	the	Czech	newborn	screening	program.	Written	informed	consent	

according	to	the	Declaration	of	Helsinki	by	the	World	Medical	Association	was	obtained	
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from	the	volunteers	for	all	samples	used	in	the	analyses.	Creatinine	concentration	was	

measured	at	the	Department	of	Clinical	biochemistry	of	University	Hospital	in	Olomouc.	

	

3.2.3. Control	samples	

Plasma	 samples	 from	 healthy	 volunteers	 were	 collected	 at	 the	 University	

Hospital	Olomouc	(Czech	Republic).	The	samples	were	pooled	and	then	stored	at	-80°C	

until	analysis.	Written	informed	consent	according	to	the	Declaration	of	Helsinki	by	the	

World	Medical	Association	 (WMA)	was	obtained	 from	 the	volunteers	 for	 all	 samples	

used	in	the	analyses.	

	

3.3. Sample	preparation	and	processing	methods	

3.3.1. Medium	chain	acyl-CoA	dehydrogenase	deficiency	

3.3.1.1. Untargeted	metabolomics	experiment	

Two	discs	(3.2	mm)	were	dissected	from	dry	blood	spot	and	extracted	in	pure	

methanol	(100	µL)	and	incubated	in	shaker	(30	min,	25°C).	Afterwards	the	samples	were	

centrifuged	(24	400	x	g,	15	min,	4°C).	Supernatant	(50	µL)	was	mixed	with	water	(50	µL)	

and	analysed	by	LC-MS	untargeted	metabolomics	method	adopted	from	Bajad	et	al.49	

The	 stationary	 phase	 employed	 an	 aqueous	 normal	 phase	 separation	 system	

using	 amino-propyl	 stationary	 Luna	 NH2	 3	 µm	 100	 Å,	 150	 x	 2	 mm	 (Phenomenex,	

Torrance,	USA).	An	Dionex	UltiMate	3000	Rapid	Separation	LC	system	(Thermo	Fisher	

Scientific,	MA,	USA)	was	used	 for	 liquid	 chromatography	and	binary	gradient	elution	

consisted	 of	 20	 mM	 ammonium	 acetate	 in	 water,	 pH	 9.45	 (mobile	 phase	 A)	 and	

acetonitrile	(mobile	phase	B).	The	gradient	elution	with	flow	rate	of	0.3	mL/min	was:	

t=0.0,	95%	B;	t=15.0,	30%	B;	t=17.0,	5%	B;	t=23.0,	5%	B;	t=23.1,	95%	B;	t=28.0	min	95%	

B.	The	injection	volume	was	10	µL.		

An	Orbitrap	Elite	(Thermo	Fisher	Scientific,	MA,	USA)	was	used	for	untargeted	

metabolomics	experiments.	The	polarity	was	set	to	positive	for	full	scan	mode	(120	000	

FWHM)	within	range	of	70	-	1200	m/z.	Settings	of	the	electrospray	ionization	were	as	

follows:	Heater	temperature	of	300°C;	Sheath	Gas	of	35	arb.	units;	Auxiliary	gas	of	10	

arb.	units;	Capillary	temperature	of	350°C	and	source	voltage	was	+3.0	kV.	A	Thermo	
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Tune	 Plus	 2.7.0.1103	 SP1	 was	 used	 as	 instrument	 control	 software	 and	 data	 were	

acquired	 in	 profile	 mode	 and	 processed	 in	 Thermo	 Excalibur	 2.2	 SP1.48	 software	

(Thermo	Fisher	Scientific,	MA,	USA).		

Quality	control	(QC)	samples	were	prepared	by	pooling	all	patient	and	control	

samples	together	(10	µL).	Blank	sample	was	prepared	by	the	same	procedure	without	

discs	from	dry	blood	spot.	All	samples	in	the	batch	were	randomized.	QC	samples	were	

analysed	and	used	as	previously	published.58	Fragmentation	spectra	MSn	were	acquired	

on	an	Orbitrap	Elite	using	CID	(collision-induced	dissociation)	and	HCD	(higher-energy	

collisional	dissociation)	fragmentation	method	with	detection	via	FTMS	(resolution	60	

000	FWHM)	in	both	positive	and	negative	mode	as	required.	Settings	for	MS2	and	MS3	

experiments	were:	act.Q.	of	0.25,	act.	time	of	10	ms	(for	MS3	20	ms)	and	normalized	

collision	energy	of	35	NCE	(Normalized	collisional	energy).	HCD	fragmentation	settings	

were:	act.Q.	of	0.10	and	normalized	collision	energy	of	40	NCE.		

	

3.3.1.2. Targeted	analysis	–	confirmation	experiment	

In	order	to	confirm	new	metabolic	findings,	the	samples	from	additional	MCADD	

patients	 (n=25)	 and	 healthy	 controls	 (n=250)	 were	 measured	 by	 FIA-TMS	 method	

routinely	 used	 for	 metabolite	 target	 analysis	 (MassChrom®	 Amino	 Acids	 and	

Acylcarnitines/Non	Derivatised,	Chromsystems,	DE)	with	addition	of	specific	transitions	

for	 the	 selected	 phospholipids	 (Table	 2).	 A	 liquid	 chromatography	 system	 Dionex	

UltiMate	3000	Rapid	Separation	LC	system	(Thermo	Fisher	Scientific,	MA,	USA)	coupled	

with	a	triple	quadrupole	mass	spectrometer	API	4000	(AB	Sciex,	CA,	USA)	operating	in	

MRM	mode	was	used	for	metabolite	targeted	analysis.		
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Table	2:	Table	of	phosphatidylcholines	MRM	transition	added	to	the	metabolite	target	

analysis.	

Q1	(m/z)	 Q3	(m/z)	 Compound	

666.4	 184.1	 PAzPC	-	PC(16:0;9:0(COOH))	

625.5	 184.1	 lipid	(PC)	

638.4	 184.1	 PC(18:0;5:0(COOH))	

652.4	 184.1	 PC(16:0;8:0(COOH))	

639.4	 184.1	 lipid	(PC)	

838.6	 184.1	 lipid	(PC)	

840.6	 184.1	 lipid	(PC)	

623.5	 184.1	 lipid	(PC)	

	

	

3.3.1.3. Data	processing	

Data	from	untargeted	metabolomics	experiment	were	processed	in	R	software59	

with	XCMS,60–62	CAMERA63	and	muma64	packages.	Peak	finding	was	performed	by	XCMS	

package	using	“matchedFilter”	method	and	1900	features	were	identified.	Isotopes	and	

adducts	 across	 the	 list	 of	 features	 were	 grouped	 by	 CAMERA	 package.	 First	 zero	

imputation	was	done	by	 function	of	XCMS	“fillpeaks”	which	 integrates	a	noise	 in	 the	

same	 retention	 time	 of	 missing	 peak.	 Features	 containing	more	 than	 30%	 of	 zeros,	

isotopes	and	adducts	were	excluded	from	further	processing.		

Quality	control-based	robust	LOESS	(LOcal	regrESSion)	signal	correction	method	

was	 applied.58,65	 The	 curve	 was	 fitted	 through	 the	 QC	 points	 (based	 on	 LOESS)	 and	

smoothing	factors	were	calculated	for	each	feature.	Smoothing	factors	with	ratio	of	the	

maximum	and	the	minimum	of	smoothing	values	higher	than	10	were	deleted	from	the	

data	 set.	The	 feature	values	were	divided	by	 smoothing	 factors	and	used	 for	 further	

processing.	Coefficients	of	variation	were	calculated	and	all	features	with	a	value	higher	

than	30%	were	rejected	from	further	processing,	reducing	the	number	of	features	to	

273.	Zero	 imputation	was	applied	on	the	dataset.	 	Zero	values	were	replaced	by	two	

thirds	of	minimal	value	per	features	within	each	sample	group.	Data	were	transformed	

by	centered	logratio	(clr)	transformation	and	mean	centered,	respectively.66	
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For	statistical	evaluation	both	unsupervised	(principal	component	analysis	(PCA))	

and	supervised	methods	(orthogonal	partial	least	squares	discriminant	analysis	(OPLS-

DA))	were	applied.	S-plot	from	OPLS-DA	was	used	to	elucidate	features	important	for	

discrimination.	This	function	was	calculated	using	the	muma	package	in	R.	

Spectra	acquired	in	metabolite	target	analysis	were	evaluated	in	MultiQuant™	

2.1.1	(AB	Sciex,	CA,	USA)	and	statistically	processed	in	R.	Data	were	referenced	to	the	

D3-octanoylcarnitine	 as	 an	 internal	 standard.	 Finally,	 the	 data	 were	 visualised	 by	

boxplots	 and	 scatter	 plots.	 Statistical	 significance	 (p-value)	 was	 calculated	 by	 non-

parametric	Wilcoxon	Rank	Sum	test.	

	

3.3.1.4. Confirmation	of	important	discriminatory	metabolite	features	

In	order	 to	 identify	 features	 from	the	above	process	 (S-plots	 from	OPLS)	 four	

levels	of	identification	reliability	were	applied	as	described	in	Chapter	1.2.4.	Instead	of	

simple	fragmentation	spectra	approach	“spectral	trees”	were	applied	(these	are	sets	of	

MSn	 data	 using	 different	 fragmentation	 techniques	 and	 collision	 energies	

(www.mzcloud.org)).	The	determination	of	lipid	acyls	and	the	level	of	their	saturation	

were	elucidated	in	negative	mode	using	CID	fragmentation	up	to	MS3.	PAzPC	and	PGPC	

standards	were	used	for	determination	of	general	lipid	retention	time	at	this	separation	

conditions.	For	drawing	and	annotating	structures	ACD/ChemSketch	(ON,	CA)	software	

was	used.	

	

3.3.2. Adenosine	deaminase	deficiency		

3.3.2.1. LC-MS	metabolite	profiling	of	urine	samples		

Ultra-high	performance	liquid	chromatography	Dionex	UltiMate	3000	Rapid	Separation	

LC	system	(Thermo	Fisher	Scientific,	MA,	USA)	coupled	with	hybrid	mass	spectrometer	

Orbitrap	Elite	(Thermo	Fisher	Scientific,	MA,	USA)	was	used	for	the	analyses.	Aqueous	

normal	phase	system	containing	amino-propyl	column	Luna	(3	μm	NH2	100	Å,	100	x	2	

mm	(Phenomenex,	Torrance,	USA))	was	used	for	the	separation	with	mobile	phase	A	

consists	 of	 ammonium	acetate	 (20	mmol/L,	 pH	 9.75)	 and	B	 of	 acetonitrile.	Gradient	

elution	with	flow	of	300	μl/min	was	t=0.0,	B	95%;	t=1.0	95%	B;	t=7.0	5%	B;	t=13.0	5%	B;	

t=13.1	95%	B;	t=17.0	95%	B.	Column	was	tempered	to	35°C	and	injection	volume	was	2	
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μl.	Hybrid	mass	spectrometer	Orbitrap	Elite	operated	in	positive	ionization	mode	with	

electrospray	 ionization	 settings	 as	 follows:	 Ion	 source:	 250°C;	 Capillary	 temperature	

350°C;	Ion	source	voltage	+3kV;	Sheath	gas	35	Arb;	Auxiliary	gas	15	Arb.	All	data	were	

acquired	 in	 centroid	mode	 in	mass	 range	70	 –	 1200	m/z	with	 resolution	of	 120	000	

FWHM.	MSn	fragmentation	spectra	were	acquired	with	resolution	of	60	000	FWHM.		

	

3.3.2.2. MSn	analyses	of	selected	purine	metabolites	in	human	urine		

Four	patient	samples	suffering	from	adenosine	deaminase	deficiency	was	used	

for	 analyses.	 All	 samples	 were	 diluted	 to	 creatinine	 concentration	 of	 1	 mmol/L.	

Metabolite	 profiling	was	 performed	 by	UHPLC	with	 detection	 on	Orbitrap	 Elite.	 LTQ	

Tune	Plus	2.7.0.1103	SP1	was	used	for	acquiring	data	in	data-dependent	mode	(DDA)	

where	 the	 most	 intense	 fragments	 (n=5)	 from	 MS2	 were	 selected	 for	 further	 MSn	

fragmentation.	Spectra	were	detected	by	FTMS	with	resolution	60	000	FWHM.	Settings	

for	CID	fragmentations	were:	act.Q.	0.25;	act.	time	20	ms;	normalized	collision	energy	

35.	 Settings	 for	 HCD	were:	 activation	 time	 0.10	ms;	 normalized	 collision	 energy	 50.	

Isolation	window	was	set	to	2	Da.	All	acquired	spectra	were	assembled	into	a	respective	

spectral	trees.		

Data	 were	 processed	 in	 Compound	 Discoverer	 1.0.0.692	 (Thermo	 Fisher	

Scientific,	USA).	For	fragment	annotation	software	Mass	Frontier	7.0.5.9	SP3	(HighChem,	

SK)	and	mzCloud	database	(www.mzcloud.org,	HighChem,	SK)	were	used.		

	

3.3.3. Influence	 of	 a	mass	 spectrometry	 resolution	 on	 feature	 (metabolite)	

detection	in	LC-HRMS	untargeted	metabolomics	

3.3.3.1. Sample	preparation	and	LC-HRMS	method		

Samples	 were	 prepared	 using	 a	 method	 modified	 from	 Yuan	 et	 al.67	 Pooled	

human	 plasma	 sample	 (500	 µL)	 was	 solvent-precipitated	 by	 mixture	 of	 acetonitrile,	

acetone	 and	methanol	 (v/v	 1:1:1,	 1500	µL,	 -80°C)	 and	 incubated	overnight	 at	 -80°C.	

Samples	were	centrifuged	(24	400	x	g,	15	min,	4°C),	freeze-dried	and	re-suspended	in	1	

mL	of	10%	methanol:90%	water.		The	LC	method	followed	that	of	Wang,	J.	et	al.68	using	

a	Dionex	UltiMate	3000	Rapid	Separation	LC	system	(Thermo	Fisher	Scientific,	MA,	USA).	

Samples	were	analysed	on	an	Acquity	UPLC	BEH	C18,	2.1	x	100	mm,	1.7	µm	column	
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(Waters,	MA,	USA).	The	mobile	phase	consisted	of	water	with	0.1%	formic	acid	(mobile	

phase	A)	and	methanol	with	0.1%	formic	acid	 (mobile	phase	B).	A	 flow	rate	of	0.350	

mL/min	was	used	with	the	following	elution	gradient:	t=0.0,	0.5%	B;	t=4.0,	70%	B;	t=4.5,	

98%	B;	t=10.4,	98%	B;	t=10.6,	0.5%	B;	t=15.0	min,	0.5%	B.	The	column	temperature	was	

set	at	40°C	and	the	injection	volume	was	2	µL.	Peaks	in	the	retention	window	from	1	–	

15	minute	were	chosen	for	data	processing.	

An	Orbitrap	Elite	hybrid	mass	spectrometer	(Thermo	Fisher	Scientific,	MA,	USA)	

was	operated	in	either	positive	or	negative	mode	at	30	000,	60	000,	120	000,	240	000	

and	 480	 000	 FWHM	 at	 400	m/z	 over	 the	 ranges	 70–500	m/z	 and	 300–2000	m/z	

(acquisition	at	480	000	FWHM	was	possible	by	using	a	Tune	Plus	Developer’s	Kit,	kindly	

provided	by	Thermo	Fisher	Scientific,	MA,	USA).	Two	regions	were	chosen	in	order	to	

increase	sensitivity	and	ensure	one	scan	per	spectrum	(according	to	Mathieu	equation).	

To	eliminate	variances	due	to	sample	injection,	separation	and	detection,	analyses	of	

plasma	samples	were	performed	in	sextuplicate	for	each	mass	spectrometry	resolution.	

Settings	 of	 the	 electrospray	 ionization	 were	 as	 follows:	 heater	 temperature	 250°C;	

sheath	 gas	 35	 arbitrary	 units;	 auxiliary	 gas	 15	 arbitrary	 units;	 capillary	 temperature	

300°C	 and	 source	 voltage	 +3.0	 kV.	 A	 Thermo	 Tune	 Plus	 2.7.0.1103	 SP1	was	 used	 as	

instrument	control	 software	and	data	were	acquired	 in	centroid	mode	using	Thermo	

Excalibur	2.2	SP1.48	software	(Thermo	Fisher	Scientific,	MA,	USA).	

	

3.3.3.2. In	silico	calculations	

In	 order	 to	 simulate	 effect	 of	 the	mass	 spectrometry	 resolving	 power	 on	 the	

compound	detection/identification	in	a	metabolite	rich	biofluid	the	in	silico	calculations	

were	performed.	A	comprehensive	list	of	compounds	known	to	constitute	the	human	

metabolome	was	established.	A	list	of	positively	ionizable	metabolites	from	the	HMDB	

(www.hmdb.ca),	 LipidMaps	 (www.lipidmaps.org)	 and	 KEGG	

(http://www.genome.jp/kegg/)	 databases	was	 compiled	 (41	 474	metabolites	 in	 total	

after	 removing	 duplicates).	 All	 calculations	 were	 performed	 using	 R	 software59	 in	

conjunction	 with	 the	 package	 Rdisop.69–72	 For	 each	metabolite,	 the	 isotopic	 pattern	

based	 on	 the	 chemical	 formula	 was	 generated.	 From	 the	 database	 generated	 list,	

adducts	 for	 M,	 M+1	 and	 M+2	 isotopes	 ([M+H]+,	 [M+NH4]+,	 [M+Na]+,	 [M+K]+,	

[M+ACN+H]+)	were	calculated	(622	110	features).	Mass	distribution	graphs	for	15	000,	
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30	000,	60	000,	120	000,	240	000,	480	000,	960	000,	1	920	000	and	3	840	000	FWHM	at	

m/z	400	were	then	plotted.	By	removing	isobars	from	the	metabolite	list	(41	474)	based	

on	m/z,	a	list	of	unique	m/z	was	generated	(15	722).	For	each	unique	m/z	in	the	list,	the	

theoretical	mass	spectrometry	peak	width	[m/z	-	x;	m/z	+	x]	was	calculated,	where	x	=	

m/z	mass/(resolving	 power*((400/(m/z	mass))^(1/2))).	 Consequently,	 the	 entire	 final	

list	 of	 622	 110	 features	 was	 searched	 against	 the	 interval	 defining	 the	 number	 of	

features	not	detectable	due	to	isobaric	matrix	interferences	within	the	calculated	range	

of	each	unique	m/z	(15	722).		

The	influence	of	resolution	on	the	number	of	detected	peaks	was	calculated	for	

m/z	up	to	2000.	The	 list	of	generated	 in	silico	features	(622	110)	was	filtered	to	give	

unique	m/z	values	(227	060).	The	first	value	from	the	list	of	unique	m/z	was	taken	and	

the	peak	width	based	on	resolution	and	 its	m/z	were	calculated.	All	m/z	values	 lying	

within	the	peak	width	were	grouped	and	removed	from	the	 list.	The	final	number	of	

groups	was	considered	to	be	the	number	of	peaks	detectable	in	the	mass	spectrum	for	

the	given	resolution	and	mass	range.	

	

3.3.3.3. LC-MS	data	processing	

The	acquired	dataset	from	the	plasma	samples	was	processed	using	the	three	

most	 frequently	 used	 software	 based	 on	 different	 feature	 detection	 algorithms,	 i.e.,	

XCMS	1.44	(in	R	software	environment),	Compound	Discoverer	2.0.0.303	and	MZmine	

2.13.1	 centWave	 algorithm	 in	 XCMS,	 to	 detect	 regions	 of	 interest	 (ROI)	 within	 the	

particular	m/z	 value.	 The	 Continuous	Wavelet	 Transform	 (CWT)	 was	 applied	 to	 the	

intensity	values	of	the	ROI	and	local	maxima	in	the	CWT	coefficients	for	each	scale	were	

determined.61	Peak	detection	algorithms	are	mainly	influenced	by	the	parameters	ppm	

mass	 error	 (ppm)	 and	 signal-to-noise	 ratio	 (snthresh).	 Various	 values	 of	 these	

parameters	were	tested	(ppm	=	2,	4,	6,	8,	10,	12,	14,	16,	18,	20;	snthresh	=	10,	12,	14,	

16,	18,	20,	22,	24,	26,	28,	30)	 and	after	detailed	 study	of	 the	 results,	 “ppm=	8”	and	

“snthresh=20”	were	chosen	as	the	best	settings.		

Retention	 time	 correction	 in	 each	 software	 was	 performed	 for	 individual	

sextuplicates.	The	processed	lists	of	features	for	the	ranges	70–500	m/z	and	300–2000	

m/z	 for	 each	 resolving	 power	were	merged	 at	 400	m/z	 in	 order	 to	 obtain	 the	 final	

number	of	features	in	the	spectra	per	resolving	power.	Coefficient	of	variance	(CV)	was	
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calculated	based	on	detected	areas	across	six	replicate	injections.	Peaks	with	CV	>	30%	

were	considered	as	noise	and	removed	from	further	calculations.	

	

3.3.3.4. Peak	detection	algorithm	settings	

For	 XCMS	 the	 component	 detection	 parameters	 were	 set	 as	 follows:	 xset	 <-	

xcmsSet(files=cdffiles,	 method	 =	 'centWave',	 ppm	 =	 8,	 snthresh	 =	 20,	 prefilter	 =	 c(4,	

10000),	 integrate	 =	 1,	 mzdiff	 =	 -0.001,	 verbose.columns	 =	 F,	 fitgauss	 =	 TRUE,	

peakwidth=c(3,10),	nSlaves=6).	Nodes	in	Compound	Discoverer	2.0.0.303	were	used	as	

follows:	Select	 Spectra	 (Lower	 RT	 Limit	 =	 1;	 rest	were	 left	 default);	Detect	Unknown	

Compounds	(Mass	tolerance	=	8	ppm;	S/N	threshold	=	3;	Min.	Peak	Intensity	=	10000;	

Ions	=	[M+H]+1,	[M+H-H2O]+1,	[M+H-NH3]+1,	[M+K]+1,	[M+Na]+1,	[M+NH4]+1;	Min.	#	

Scans	 per	 peak	 =	 4;	 Min.	 #	 Isotopes	 =	 1;	 rest	 were	 left	 default);	 Group	 Unknown	

Compounds	(Mass	tolerance	=	8	ppm;	RT	tolerance	[min]	=	0.05;	rest	were	left	default).	

In	MZmine	Centroid	Mass	Detector	at	 threshold	5000	was	used	 than	Chromatogram	

Builder	with	Minimum	height	 10000.	 As	 chromatogram	deconvolution	method	 Local	

minimum	 search	 was	 used	 with	 parameters	 as	 follows:	 Chrom.	 Threshold	 =	 85%,	

Minimum	RT	range	(min)	=	0.2,	Minimum	relative	height	=	1%,	Minimum	absolute	height	

=	10000,	Min	ration	of	peak	top/edge	=	2,	Peak	duration	range	(min)	=	0	–	10.	
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4. Results	&	Discussions		

4.1. New	potential	 biomarkers	 of	 oxidative	 stress	 in	 patients	 suffering	 from	

MCADD	

Principal	component	analysis	(PCA)	used	for	data	evaluation	showed	separation	

between	 group	 of	 patients	 and	 control	 group	 (Figure	 6).	 Statistical	 unsupervised	

methods	(e.g.	PCA)	more	likely	reflects	true	relationship	between	samples	according	to	

their	 metabolic	 state	 than	 supervised	 methods	 (e.g.	 linear	 discriminant	 analysis).	

Supervised	methods	have	given	sample	groups	in	advance	and	based	on	this	grouping	

are	detecting	distinguishing	variables.	On	the	contrary	the	unsupervised	methods	have	

no	such	information	and	thus	more	likely	reflect	the	reality.		In	order	to	extract	most	

differentiating	features	orthogonal-partial	least	square	discriminant	analysis	(OPLS-DA)	

was	 used	 (Figure	 7).	 Based	 on	 the	 derived	 S-plot	 (Figure	 8)	 which	 is	 representing	 a	

visualization	of	covariance	and	correlation	between	features	and	the	selected	groups	of	

samples.	Parameters	for	selecting	most	discriminant	features	were	as	follows:	p1	>=	+/-

10	and	p1(corr)	>=	+/-0.5.	
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Figure	6:	Principal	component	analysis	of	dried	blood	spots	of	patients	suffering	from	

MCADD	and	healthy	controls.		
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Figure	7:	Orthogonal	partial	least	square	discriminant	analysis	(OPSL-DA)	of	dried	blood	

spots	of	patients	suffering	from	MCADD	and	healthy	controls.		
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Figure	8:	OPLS-DA	derived	S-plot	of	the	most	discriminating	features.	

	

Features	which	meet	the	selection	criteria	(n=14)	are	showed	in	Table	3.	Already	

known	biomarkers	octanoylcarnitine	(C8),	hexanoylcarnitine	(C6)	and	decenoylcarnitine	

(C10:1)	 where	 found	 as	 well	 as	 new	 compound	 1-O-hexadecanoyl-2-O-(9-

carboxyoctanoyl)-sn-glyceryl-3-phosphocholine	(PAzPC)	–	all	MSI	Level	1	identification.	

As	 putatively	 annotated	 compounds	 (MSI	 Level	 2)	 another	 phosphocholines	 1-O-

octadecanoyl-2-O-(5-carboxybutanoyl)-sn-glyceryl-3-phosphocholine	

PC(18:0;5:0(COOH))	 and	 1-O-hexadecanoyl-2-O-(8-carboxyheptanoyl)-sn-glyceryl-3-

phosphocholine,	 PC(16:0;8:0(COOH))	 were	 identified	 based	 upon	 fragmentation	

similarity	with	PAzPC	and	phospholipids	alike	presented	in	the	databases.	In	most	MSn	
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spectra	acquired	 in	negative	 ionization	mode	we	have	 identified	palmitic	acid	moiety	

(255.2330	 m/z)	 (Figure	 9-11;	 14-16)	 and	 3-(hexadecanoyloxy)-2-hydroxypropyl	 2-

(dimethylaminoethyl)	 phosphate	 of	m/z	 value	 480.3096	 (Figure	 9	 and	 14).	 Likewise,	

stearic	 acid	 moiety	 (283.2643	 m/z)	 and	 3-(octadecanoyloxy)-2-hydroxypropyl	 2-

(dimethylaminoethyl)	 phosphate	 (508.3398	m/z)	 in	 case	of	 PC(18:0;5:0(COOH))	were	

detected	 (Figure	 12,	 13).	 In	 positive	 ionization	 mode	 phosphocholine	 moiety	 was	

detected	 (184.0733	 m/z)	 in	 all	 phosphatidylcholines	 presented	 in	 Table	 3.	 The	

phosphocholine	moiety	 confirmation	was	done	by	 subsequent	MS3	 fragmentation	 in	

positive	ionization	mode.	Compounds	labelled	MSI	Level	3	in	Table	3	were	identified	as	

phosphatidylcholines	 (PC)	 regarding	 to	 the	 presence	 of	 phosphocholine	 in	

fragmentation	spectra	in	positive	ionization	mode.	No	sufficient	negative	fragmentation	

spectra	were	acquired	due	to	low	abundance	of	the	metabolites.	Rest	of	the	compounds	

listed	in	the	Table	3	was	labelled	as	“unknowns”	(MSI	Level	4).	
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Table	 3.	 List	 of	 the	most	 significant	 features	 identified	 by	 the	 S-plot.	Restriction	 parameters	 (p1	 =	 +/-10	 and	 p1(corr)	 =	 +/-0.5);	 Levels	 of	

identification	–	see	text	for	explanation;	PC	=	phosphatidylcholine

abs(p1)	S-Plot	 Positive	(m/z)	 Error	(ppm)	 Chemical	formula	 RT	(sec)	 Name	
Level	of	

identification	

+	13.68	 666.4354	 2.0167	 C33H65O10NP	 514.1	 PC(16:0;9:0(COOH))	-	PAzPC	 1	

+	13.1	 288.2172	 1.0201	 C15H30O4N	 407.6	 Octanoylcarnitine	(C8)	 1	

-	11.18	 838.5666	 1.7339	 C39H85O15NP	 511.1	 lipid	(PC)	 3	

-	10.93	 625.5256	 0.7066	 C30H76O9NP	 426.2	 lipid	(PC)	 3	

-	10.84	 141.1136	 	 	 411.8	 unknown	 	

-	10.81	 599.5092	 	 	 427.2	 unknown	 	

+	10.68	 314.2327	 0.2864	 C17H32O4N	 401.2	 Decenoylcarnitine	(C10:1)	 1	

-	10.53	 840.5834	 3.7607	 C39H87O15NP	 510.9	 lipid	(PC)	 3	

+	10.48	 638.4037	 1.3941	 C31H61O10NP	 510.0	 PC(18:0;5:0(COOH))	 2	

-	10.46	 623.5091	 -0.7329	 C30H74O9NP	 426.1	 lipid	(PC)	 3	

-	10.4	 385.2756	 	 	 425.0	 unknown	 	

+	10.21	 260.1859	 0.9685	 C13H26O4N	 417.4	 Hexanoylcarnitine	(C6)	 1	

+	10.21	 652.4194	 1.5374	 C32H63O10NP	 515.2	 PC(16:0;8:0(COOH))	 2	

+	10.01	 639.4089	 6.5858	 C38H58O5NP	 510.3	 lipid	(PC)	 3	
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Figure	9:	MS
2
	fragmentation	spectra	of	1-O-hexadecanoyl-2-O-(9-carboxyoctanoyl)-sn-

glyceryl-3-phosphocholine	(PAzPC).	

	

	

Figure	10:	MS
3
	fragmentation	spectra	of	1-O-hexadecanoyl-2-O-(9-carboxyoctanoyl)-sn-

glyceryl-3-phosphocholine	(PAzPC)	and	its	fragment	480.3096	m/z.	
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Figure	11:	MS
3
	fragmentation	spectra	of	1-O-hexadecanoyl-2-O-(9-carboxyoctanoyl)-sn-

glyceryl-3-phosphocholine	(PAzPC)	and	its	fragment	605.3426	m/z.	Palmitic	acid	moiety	

can	be	observed.	

	

	

Figure	12:	MS
2
	fragmentation	spectra	of	1-O-octadecanoyl-2-O-(5-carboxybutanoyl)-sn-

glyceryl-3-phosphocholine	PC(18:0;5:0(COOH)).	
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Figure	13:	MS
3
	fragmentation	spectra	of	1-O-octadecanoyl-2-O-(5-carboxybutanoyl)-sn-

glyceryl-3-phosphocholine	PC(18:0;5:0(COOH))	and	its	fragment	577.3124	m/z.	Stearic	

acid	moiety	can	be	observed.		

	

	

Figure	14:	MS
2
	fragmentation	spectra	of	1-O-hexadecanoyl-2-O-(8-carboxyheptanoyl)-

sn-glyceryl-3-phosphocholine,	PC(16:0;8:0(COOH)).		
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Figure	15:	MS
3
	fragmentation	spectra	of	1-O-hexadecanoyl-2-O-(8-carboxyheptanoyl)-

sn-glyceryl-3-phosphocholine,	PC(16:0;8:0(COOH))	and	its	fragment	591.3290	m/z.	

	

	

Figure	16:	MS
3
	fragmentation	spectra	of	1-O-hexadecanoyl-2-O-(8-carboxyheptanoyl)-

sn-glyceryl-3-phosphocholine,	PC(16:0;8:0(COOH))	and	its	fragment	480.3072	m/z.	

The	oxidative	stress	is	a	damage	potentially	resulting	from	misbalance	between	

oxidants	and	antioxidants	in	the	way	of	oxidants.	Truncated	polyunsaturated	fatty	acids	

indicate	the	presence	of	oxidative	stress	in	patients	suffering	from	MCADD.	Free	radicals	

(superoxide	O2
-
;	hydroxyl	OH·;	alkoxyl	RO·	nad	peroxyl	RO·2)	and	also	non-radical	species	

(hydrogen	peroxide	H2O2;	peroxynitrite	ONOO-)	 are	products	 as	 common	product	of	

aerobic	 metabolism	 and	 also	 as	 a	 product	 of	 pathophysiological	 state.
73,74

	 Reactive	
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oxygen	species	(ROS)	are	interacting	with	polyunsaturated	fatty	acids	and	it	is	initiated	

by	formation	of	carbon-centred	radicals	and/or	hydroperoxides	of	polyunsaturated	fatty	

acids	 (PUFAs)	 (peroxidation	 of	 PUFAs).	 It	 is	 one	 of	 the	 well	 understood	 process	

generation	of	oxidative	stress.
75
	The	result	of	this	interactions	are	lipids	which	contains	

carboxyl	or	carbonyl	group	in	the	end	of	the	short	carbon	chain	of	their	sn2	position.	

Several	 oxidized	 lipids	 were	 found	 to	 be	 stable	 for	 analysis	 (PAzPC,	 PoxnoPC	 (1-O-

hexadecanoyl-2-O-(9-oxononanoyl)-sn-glyceryl-3-phosphocholine)).76	 According	 the	

literature	 PAzPC	 is	 associated	with	 oxidative	 stress.
75,77

	 As	 published	 previously	 ROS	

decrease	 mitochondrial	 membrane	 potential	 and	 increase	 in	 the	 ratio	 of	 Bax/Bcl2	

leading	 to	 mitochondria	 mediated	 pathway	 involved	 in	 apoptosis.
78
	 Mitochondrial	

dysfunction	may	 result	 in	 deterioration	 of	 the	 function	 of	 adipocytes	 in	 the	 way	 of	

upkeep	of	glucose	homeostasis	over	fading	insulin	signalling,	downregulation	of	Glut4	

expression,	 and	 decrease	 in	 adiponectin	 secretion.
79
	 As	 previously	 published	

accumulation	of	C10:1	and	C8	in	mitochondria	can	result	in	increase	of	lipid	peroxidation	

and	 decrease	 of	 non-enzymatic	 antioxidant	 defense.
80,81

	 Many	 bioactive	 lipids	 may	

contain	oxidation	products	of	PUFAs.	By	oxidation	of	 1-	palmitoyl-2-arachidonoyl-sn-

glycero-3-phosphorylcholine	(PAPC)	many	oxidized	species	may	be	obtained	including	

PGPC	 and	 PC(16:0;8:0(COOH)).	 Whereas	 origin	 of	 the	 PC(18:0,5:0(COOH))	 can	 be	

considered	as	a	result	of	the	common	oxidation	mechanism	on	related	 lipids	bearing	

unsaturated	 fatty	acid	at	sn-2	position.82	This	observation	 is	 supported	by	decreased	

levels	of	PAPC	in	patients	(Figure	17).	PAzPC	is	thus	considered	as	a	result	linoleic	acid	

moiety	oxidation	as	reported	previously.
83
		

Relatively	 strong	 correlation	 between	 PAzPC	 and	 PC(16:0,8:0(COOH))	 and	

PC(18:0,5:0(COOH))	were	found	0.8929	and	0.8096,	respectively	(Figure	18-19).	On	the	

other	hand,	the	observed	correlation	between	C8	was	low	(less	than	0.54)	(Figure	20-

22).	These	findings	suggest	common	formation	mechanism	in	patients.	As	mentioned	

above	 PAzPC	 is	 associated	 with	 oxidative	 stress	 and	 correlation	 findings	 support	

hypothesis	 that	 PC(16:0,8:0(COOH))	 and	 PC(18:0,5:0(COOH))	may	 be	 associated	with	

oxidation	 stress.	 Consequent	 study	 should	 be	 done	 in	 order	 of	 confirmation	 of	 this	

study.
84
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Figure	 17:	 Boxplot	 and	 Scatter	 diagrams	 of	 1-	 palmitoyl-2-arachidonoyl-sn-glycero-3-

phosphorylcholine	containing	samples	(n=25)	and	controls	(n=250);	data	from	FIA-TMS).		

	

Figure	18:	Correlation	graph	between	PAzPC	and	PC(16:0,8:0(COOH)).	
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Figure	19:	Correlation	graph	between	PAzPC	and	PC(18:0,5:0(COOH)).	

	

Figure	20:	Correlation	graph	between	PAzPC	and	octanoylcarnitine.	

	



	 48	

	

Figure	21:	Correlation	between	PC(18:0,5:0(COOH))	and	octanoylcarnitine.	

	

Figure	22:	Correlation	between	PC(16:0,8:0(COOH))	and	octanoylcarnitine.	

	

In	order	to	confirm	our	findings	comparison	experiment	on	the	second	cohort	

was	performed.	Control	samples	(n=250)	and	MCADD	patients	(n=25)	were	analysed	by	

FIA-TMS	 operating	 in	 MRM	 mode	 with	 specific	 transitions	 of	 most	 differentiating	

phospholipids	 (Table	 2).	 Calculated	 p-values	 for	 PAzPC	 was	 1.927×10
-14
),	 for	

PC(16:0,8:0(COOH))	3.354×10-
15
	and	for	PC(18:0,5:0(COOH))	was	2.391×10

-15
.		
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Figure	 23:	 Boxplot	 and	 Scatter	 diagrams	 of	 PAzPC	 containing	 samples	 (n=25)	 and	

controls	(n=250);	data	from	FIA-TMS).		

	

Figure	 24:	 Boxplot	 and	 Scatter	 diagrams	 of	 PC(18:0,5:0(COOH))	 containing	 samples	

(n=25)	and	controls	(n=250);	data	from	FIA-TMS).		
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Figure	 25:	 Boxplot	 and	 Scatter	 diagrams	 of	 PC(16:0,8:0(COOH))	 containing	 samples	

(n=25)	and	controls	(n=250);	data	from	FIA-TMS).		

Results	 from	 FIA-TMS	 validate	 findings	 from	 untargeted	 experiment	 and	

underline	the	significance	of	these	three	markers	(Figure	23-25).	
84
	

	

4.2. Spectral	 trees	 as	 a	 useful	 tool	 in	 identification	 of	 small	 molecule	 in	

metabolomics	

In	 order	 to	 detect	 potentially	 new	 metabolites	 associated	 with	 ADA	 and	

metabolic	degradation	of	 the	accumulated	 substrates	 the	acquired	 LC-MS	data	were	

processed	by	different	software.	Based	on	the	biochemical	transformations	by	phase	I	

and	phase	 II	metabolisation,	 31	metabolites	of	 adenosine	 and	deoxyadenosine	were	

suggested	and	detected	in	the	raw	data	by	Compound	Discoverer	1.0.0.692	(Table	4).	

Most	 frequent	 metabolic	 transformations	 were	 methylation,	 oxidative	 deamination,	

dehydration	 and	 desaturation.	 By	 means	 of	 “spectral	 tree”	 approach	 several	

metabolites	 were	 confirmed	 and	 also	 false	 positive	 hits	 from	 Compound	 Discoverer	
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were	removed.	The	combination	of	CID	and	HCD	fragmentation	techniques	gives	useful	

information	necessary	for	elimination	of	MS	and	FT	artefacts.	
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Table	4:	Metabolites	of	adenosine	and	deoxyadenosine	suggested	and	detected	in	the	raw	data	by	Compound	Discoverer	1.0.0.692	

Parent	

Compound	

Suggested	

Formula	

Molecular	

Weight	
Transformations	 Composition	Change	

Adenosine	 C11	H15	N5	O4	 281.1124	 Methylation	 "+(C	H2)"	

Adenosine	 C10	H14	N4	O6	 286.0913	 Hydration,	Oxidative	Deamination	to	Alcohol	 "-(N)	+(H	O2)"	

Adenosine	 C15	H21	N7	O6	 395.1553	 Glutamine	Conjugation	 "+(C5	H8	N2	O2)"	

Adenosine	 C11	H14	N4	O5	 282.0964	 Oxidative	Deamination	to	Alcohol,	Methylation	 "-(N)	+(C	H	O)"	

Adenosine	 C10	H13	N5	O3	 251.1018	 Dehydration,	Reduction	 "-(O)"	

Adenosine	 C12	H12	N4	O6	 308.0757	 Oxidative	Deamination	to	Ketone,	Acetylation	 "-(H	N)	+(C2	O2)"	

Adenosine	 C11	H15	N5	O3	 265.1175	 Dehydration,	Reduction,	Methylation	 "-(O)	+(C	H2)"	

Adenosine	 C10	H6	N4	O4	 246.0384	 Dehydration,	Desaturation,	Oxidative	Deamination	to	Ketone	 "-(H7	N)"	

Adenosine	 C15	H20	N6	O5	 364.1495	
Dehydration,	 Oxidative	 Deamination	 to	 Alcohol,	 Ornithine	

Conjugation	
"+(C5	H7	N	O)"	

Adenosine	 C12	H17	N5	O5	 311.1230	 Reduction,	Acetylation	 "+(C2	H4	O)"	

Adenosine	 C11	H15	N5	O5	 297.1073	 Oxidation,	Methylation	 "+(C	H2	O)"	

Adenosine	 C14	H20	N6	O6	 368.1444	
Demethylation,	 Oxidative	 Deamination	 to	 Alcohol,	 Ornithine	

Conjugation	
"+(C4	H7	N	O2)"	

Adenosine	 C10	H13	N5	O4	 267.0968	 	 "none"	

Adenosine	 C10	H11	N5	O3	 249.0862	 Dehydration	 "-(H2	O)"	

Adenosine	 C11	H16	N4	O6	 300.1070	 Hydration,	Oxidative	Deamination	to	Alcohol,	Methylation	 "-(N)	+(C	H3	O2)"	
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Table	4:	Metabolites	of	adenosine	and	deoxyadenosine	suggested	and	detected	in	the	raw	data	by	Compound	Discoverer	1.0.0.692	

Parent	

Compound	

Suggested	

Formula	

Molecular	

Weight	
Transformations	 Composition	Change	

Deoxyadenosine	 C11	H15	N5	O4	 281.1124	 Oxidation,	Methylation	 "+(C	H2	O)"	

Deoxyadenosine	 C10	H14	N4	O6	 286.0913	 Hydration,	Oxidation,	Oxidative	Deamination	to	Alcohol	 "-(N)	+(H	O3)"	

Deoxyadenosine	 C15	H21	N7	O6	 395.1553	 Oxidation,	Glutamine	Conjugation	 "+(C5	H8	N2	O3)"	

Deoxyadenosine	 C11	H14	N4	O5	 282.0964	 Hydration,	Oxidative	Deamination	to	Ketone,	Methylation	 "-(N)	+(C	H	O2)"	

Deoxyadenosine	 C10	H13	N5	O3	 251.1018	 	 "none"	

Deoxyadenosine	 C12	H12	N4	O6	 308.0757	 Oxidation,	Oxidative	Deamination	to	Ketone,	Acetylation	 "-(H	N)	+(C2	O3)"	

Deoxyadenosine	 C11	H15	N5	O3	 265.1175	 Methylation	 "+(C	H2)"	

Deoxyadenosine	 C10	H6	N4	O4	 246.0389	
Desaturation,	 Desaturation,	 Oxidative	 Deamination	 to	

Ketone	
"-(H7	N)	+(O)"	

Deoxyadenosine	 C15	H20	N6	O5	 364.1495	 Oxidative	Deamination	to	Ketone,	Ornithine	Conjugation	 "+(C5	H7	N	O2)"	

Deoxyadenosine	 C12	H17	N5	O5	 311.1230	 Hydration,	Acetylation	 "+(C2	H4	O2)"	

Deoxyadenosine	 C11	H15	N5	O5	 297.1073	 Oxidation,	Oxidation,	Methylation	 "+(C	H2	O2)"	

Deoxyadenosine	 C11	H18	N6	O5	S	 346.1059	 Demethylation,	Reduction,	Taurine	Conjugation	 "+(C	H5	N	O2	S)"	

Deoxyadenosine	 C10	H13	N5	O4	 267.0968	 Oxidation	 "+(O)"	

Deoxyadenosine	 C10	H11	N5	O3	 249.0862	 Desaturation	 "-(H2)"	

Deoxyadenosine	 C12	H17	N5	O4	 295.1281	 Reduction,	Acetylation	 "+(C2	H4	O)"	

Deoxyadenosine	 C9	H11	N5	O2	 221.0913	 Dehydration,	Demethylation,	Reduction	 "-(C	H2	O)"	
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Main	metabolites	accumulated	in	adenosine	deaminase	deficiency	–	adenosine	

(Figure	26)	 and	deoxyadenosine	 (Figure	27),	were	detected	and	 identified.	 Figure	28	

shows	the	structure	of	the	adenosine	acquired	spectral	tree	as	can	be	visualized	in	Mass	

Frontier	7.0.5.9.	SR3.	In	case	of	adenosine	the	spectral	tree	is	relatively	simple.	Small	

molecules	usually	not	fragment	further	than	MS
3
	level	since	consequential	fragments	

are	very	small	(less	than	50	m/z)	and	thus	are	beyond	the	point	of	detection	in	some	

mass	spectrometers.	On	contrary	some	spectral	trees	can	be	pretty	extensive,	which	can	

be	seen	on	case	of	Acetyl-CoA	(https://www.mzcloud.org/DataViewer#Creference4596;	

downloaded	6.9.2016)	where	fragmentation	goes	to	level	MS
6
	with	many	precursors	for	

CID	and	HCD	fragmentation	spectra.	

Characteristic	substructures	of	adenosine	can	be	clearly	seen	 in	Figure	29	and	

Figure	30.	Figure	31	shows	complementary	structural	 information	acquired	from	HCD	

fragmentation	where	also	fragments	of	ribose	moiety	can	be	seen.	By	comparison	of	

acquired	 data	 with	 available	 databases	 and	 commercial	 standard,	 the	 MSI	 Level	 1	

identification	can	be	assign.		

	

Figure	26:	Structure	of	the	adenosine	

(MSI	Level	1)	

	

Figure	27:	Structure	of	the	2’-

deoxyadenosine	(MSI	Level	1)	

	

	

Figure	28:	Spectral	tree	structure	of	the	adenosine	(Visualized	in	Mass	Frontier	7.0.5.9.	

SR3)	
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Figure	29:	MS
2
	fragmentation	spectrum	of	adenosine	(exp.	268.1052	m/z;	CID;	NCE	35).	

	

Figure	30:	MS
3
	fragmentation	spectrum	of	adenosine.	Selected	precursor	ion:	adenine	

(exp.	136.0623	m/z;	CID;	35	NCE).	



	 56	

	

Figure	31:	MS
2
	fragmentation	spectrum	of	adenosine	(exp.	268.1052	m/z;	HCD;	NCE	50).	

	

Spectral	trees	of	2’-deoxyadenosine	in	(Figure	x28)	and	adenosine	(Figure	x32)	

looks	similar	due	to	almost	identical	structure.	Fragmentation	spectra	are	also	similar	

(Figure	x33,	x34).	Difference	can	be	seen	in	HCD	spectrum	in	Figure	x35,	where	compare	

to	the	adenosine	(Figure	x31)	2’-deoxyadenosine	contains	more	fragments	from	ribose	

moiety.	 By	 comparison	 of	 acquired	 data	 with	 available	 databases	 and	 commercial	

standard,	the	MSI	Level	1	identification	can	be	assign.	
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Figure	32:	Spectral	tree	structure	of	the	2’-dexyadenosine	(Visualized	in	Mass	Frontier	

7.0.5.9.	SR3).	

	

	

Figure	33:	MS
2
	fragmentation	spectrum	of	2’-deoxyadenosine	(exp.	252.1096	m/z;	CID;	

NCE	35).	
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Figure	34:	MS
3
	fragmentation	spectrum	of	2’-deoxyadenosine.	Selected	precursor	ion:	

adenine	(exp.	136.0594	m/z;	CID;	35	NCE).	
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Figure	35:	MS
2
	fragmentation	spectrum	of	adenosine	(exp.	252.1096	m/z;	HCD;	NCE	50).	

	

Slightly	 more	 complicated	 situation	 appears	 in	 case	 of	 1-methyl	 adenosine,	

although	the	structure	fragmentation	is	almost	the	same	(Figure	36)	as	for	adenosine	

and	2’-deoxyadenosine	(Figure	28	and	Figure	32,	respectively).	Fragmentation	spectrum	

from	CID	at	MS
2
	level	shows	addition	of	methyl	group	on	the	adenine	moiety	(Figure	

37),	however	 from	this	spectrum	we	are	not	able	 to	determine	 its	exact	position.	By	

means	of	spectral	tree,	the	data	acquired	at	MS
3
	shows	methyl	moiety	at	position	one	
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on	adenine	(Figure	38).	Complementary	data	acquired	by	HCD	fragmentation	are	seen	

at	Figure	39.	By	comparison	of	acquired	data	with	available	databases	and	commercial	

standard,	the	MSI	Level	1	identification	can	be	assigned.			

	

Figure	36:	Spectral	tree	structure	of	the	1-methyladenosine	(Visualized	in	Mass	Frontier	

7.0.5.9.	SR3).	

	

	

Figure	37:	MS
2
	fragmentation	spectrum	of	1-methyladenosine	(exp.	282.1188	m/z;	CID;	

NCE	35).		
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Figure	38:	MS
3
	fragmentation	spectrum	of	1-methyladenosine.	Selected	precursor	ion:	

1-methyladenine	(exp.	150.0771	m/z;	CID;	35	NCE).	

	

	

Figure	39:	MS
2
	fragmentation	spectrum	of	1-methyladenosine	(exp.	282.1188	m/z;	HCD;	

NCE	50).	

	

Another	 interesting	molecule	which	was	 identified	 in	 this	 experiment	was	 1-

methyl-5-oxoadenosine.	 Strong	 structure	 similarity	 between	 previously	 described	

compounds	results	in	the	same	scheme	of	the	spectral	tree.	Fragmentation	at	MS
2
	level	
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reveals	two	modifications	of	adenine	–	addition	of	oxygen	and	methyl	group	(Figure	40).	

Based	on	structural	similarity	with	1-methyladenine	the	exact	position	of	methyl	group	

was	determined.	The	exact	position	of	oxygen	was	resolved	by	mass	spectra	at	MS
3
	level	

fragmentation	(Figure	41)	and	by	complementary	information	from	HCD	fragmentation	

spectra	 (Figure	 42).	 By	 comparison	 of	 acquired	 data	 with	 available	 databases	 and	

structurally	similar	compounds,	the	MSI	Level	2	identification	was	assigned.	

	

	

Figure	 40:	MS
2
	 fragmentation	 spectrum	 of	 1-methyl-5-oxoadenosine	 (exp.	 298.1151	

m/z;	CID;	NCE	35).		
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Figure	 41:	 MS
3
	 fragmentation	 spectrum	 of	 1-methyl-5-oxoadenosine.	 Selected	

precursor	ion:	1-methyl-5-oxoadenine	(exp.	166.0729	m/z;	CID;	35	NCE).	

	

Figure	 42:	MS
2
	 fragmentation	 spectrum	 of	 1-methyl-5-oxoadenosine	 (exp.	 298.1151	

m/z;	HCD;	NCE	50).	

	

As	 mentioned	 previously,	 2’-deoxyadenosine	 is	 a	 general	 product	 of	 DNA	

degradation	 and	 it	 is	 behaving	 as	 a	 cytotoxic	 metabolite	 in	 place	 of	 intensive	 cell	

proliferation	such	as	bone	marrow	or	thymus.
24,85

	The	most	severe	alteration	of	ADA	is	

accumulation	of	2’-adenosinetriphoshate	(inhibitor	of	ribonucleotide	reductase)	in	the	
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erythrocytes	 and	 leukocytes.
86,87

	 These	 effects	 result	 in	 a	 high	 concentration	 of	 2’-

deoxyadenosine	 in	 peripheral	 body	 fluids.	 Several	 metabolites	 were	 reported	 to	 be	

found	 in	 the	 urine	 metabolome	 of	 ADA	 patients	 detectable	 mainly	 by	 GC/MS:	 2’-

deoxyadenosine,	 adenosine,	 1-methyladenosine,	 N6-methyladenosine,	 2’-O-

methyladenosine	and	N6,2’-	dimethyladenosine.
87
	The	summary	of	elucidated	modified	

adenosine-like	metabolites	found	in	this	study	can	be	found	in	the	Table	5.	The	origin	of	

1-methyladenosine	 (Figure	 43)	 can	 be	 estimated	 as	 a	 degradation	 product	 of	 tRNA,	

rRNA,	 mRNA	 or	 snRNA	 from	 apoptotic	 lymphocytes.
87,88

	 1-methyl-5-oxoadenosine	

(Figure	44)	may	be	considered	as	an	oxidative	product	of	1-methyladenosine,	although	

2’-O-methyladenosine	can	be	found	also	as	a	degradation	product	of	tRNA,	rRNA,	mRNA	

or	snRNA.
88
	The	rest	of	compounds	in	Table	5	are	result	of	malfunction	of	adenosine	

deaminase.		

	

Table	 5:	 Summary	 of	 adenosine-like	metabolites	 in	 urine	 of	 patients	 suffering	 from	

adenosine	deaminase	deficiency.		

m/z	teor.	 m/z	exp.	 error	ppm	 Name		

MSI	level	of	

identification	

252.1091	 252.1096	 2.78	 2'-deoxyadenosine	 1	

268.104	 268.1052	 4.48	 adenosine	 1	

282.1197	 282.1188	 -3.20	 1-methyladenosine	 1	

298.1146	 298.1151	 1.68	 1-methyl-5-oxoadenosine	 3	

	

	

Figure	43:	Structure	of	the	1-

methyladenosine	(MSI	Level	1)	

	

Figure	44:	Structure	of	the	1-methyl-5-

oxoadenosine	(MSI	Level	3)	
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4.3. Influence	of	a	mass	spectrometry	resolution	on	metabolite	detection	in	LC-

MS	untargeted	metabolomics	

This	part	of	the	thesis	is	focused	on	investigation	of	relationship	between	mass	

spectrometry	resolution,	scanning	speed	and	feature	detection	capability	in	the	field	of	

metabolomics,	both	theoretical	and	experimental	methods	were	used.		

The	effect	of	 the	 separation	 cannot	be	 included	 in	 the	 calculation	due	 to	 the	

potentially	 unpredictable	 behaviour	 of	 the	 compounds	 during	 the	 separation	 (for	

example,	 lipids	 with	 very	 similar	 exact	 mass,	 but	 different	 formulas	 and	

chromatographic	 behaviour)	 and	 large	 variability	 chromatography	 methods.	 That	

means,	 the	 following	 calculations	 are	 only	 valid	 for	 flow	 injection	 analysis	 and	

metabolomics	"worst	case	scenario"	experiments	in	separation	methods.	

	

4.3.1. In	silico	calculations	

In	 silico	 calculations	were	 performed	 in	 order	 to	 examine	 the	 distribution	 of	

overlapping	m/z	represent	(622	110)	metabolites,	isotopes	and	adducts	in	the	range	of	

50	 to	 2000	 m/z.	 The	 first	 step	 was	 to	 filter	 the	 combined	 list	 to	 identify	 unique	

metabolite	m/z	values.	These	unique	m/z	values	are	plotted	on	the	X	axis	in	Figure	45,	

while	the	Y	axis	shows	the	number	of	m/z	values	which	lies	in	the	interval	[m/z	-	x;	m/z	

+	x],	as	described	in	Materials	and	Methods	-	Chapter	2.3.3.	The	coordinates	of	each	dot	

shown	in	Figure	45	represents	a	unique	m/z	value	(X	axis)	and	the	number	of	functions	

that	are	apparently	identical	at	a	given	resolution,	and	are	not	distinguishable	within	the	

curve	of	 the	mass	 spectrometry	peak	 following	 a	Gaussian	profile	 (Y-axis).	 The	 scale	

variance	(sigma	squared)	of	the	mass	spectral	peak	was	 inversely	proportional	to	the	

resolution.	This	means	that	the	number	of	 indistinguishable	elements	decreases	with	

increasing	resolution.	The	two	main	areas	with	the	highest	number	of	m/z	overlap	can	

be	 seen	 in	 Figure	 45.	 The	 first	 important	 area	 is	 between	 400	m/z	 600	 and	m/z,	

corresponding	 to	 the	 short	peptides	 (di-,	 tri-,	 tetra-)	and	partially	 secosteroids,	 lipids	

with	 a	 lower	 m/z	 (e.g.	 glycerophosphocholines,	 glycerophosphoethanolamines).	 A	

second	area	was	750	m/z	and	1050	m/z,	corresponding	mainly	to	the	lipid	class.	Three	

colour	lines	in	Figure	45	representing	percentiles	(0.99;	0.75;	0.50)	of	the	dot	density	

distribution.	
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Figure	45:	Mass	distribution	by	In	silico	calculations	at	a	resolution	of	15	000	(A),	120	

000	(B)	and	960	000	(C)	FWHM.	X-axis	shows	the	number	of	unique	values	of	m/z	within	

the	filtered	list	of	compiled	metabolites,	while	the	Y-axis	indicates	the	number	of	values	

m/z	which	fits	into	the	interval	[m/z	-	x;	m/z	+	x],	where	x	is	based	on	the	resolution.	

Lines	 indicate	 different	 percentiles	 (upper	 of	 0.99,	 0.75	 and	 0.50,	 respectively).	
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Independent	colour	dots	indicate	the	polarity:	green	=	polar,	red	=	nonpolar	(based	on	

their	logP	values	-	octanol	/	water).		

	

Figure	46	shows	the	maximum	number	and	the	median	value	of	the	calculated	

overlapping	m/z	at	a	particular	resolution.	Number	of	m/z	masked	by	the	isobaric	matrix	

interference	is	decreased	in	conformity	with	the	power	function	of	limiting	one.	Above	

resolution	240	000	FWHM,	the	maximum	number	of	indistinguishable	functions	did	not	

fall.	Evaluation	of	the	data	structure	showed	that	it	was	caused	by	isobaric	compounds	

with	high	structural	diversity.	For	example,	the	m/z	244.1549	corresponding	to	[M+K]
+
	

ion	mass	205.1951	(C15H24),	which	refers	to	a	group	sesquiterpenes	and	prenols	with	

130	 possible	 overlaps.	 Other	 most	 abundant	 overlaps	 (m/z	 205.1956,	 298.2746,	

322.2746,	450.3219)	are	generally	attributed	to	various	lipid	adducts,	which	correspond	

to	those	lipids	(see	Figure	45).	Mean	values	(dashed	line)	shows	that,	even	at	very	high	

resolution,	it	is	not	possible	to	separate	all	the	features	completely.	At	a	resolution	of	3	

840	000	FWHM	a	maximum	of	35.2%	of	the	features	are	represented	by	a	particular	m/z	

without	 overlaps,	while	 for	 a	 typical	 resolution	 of	 60	 000	 FWHM,	only	 3.63%	of	 the	

features	could	be	separated.
56
		

	

	

	

Figure	 46:	 Regression	 of	 overlapping	 features	 based	 on	 the	 resolution	 (in	 silico	

calculation).	The	solid	line	represents	the	maximum	value	unrecognizable	function	by	
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resolution.	Dashed	line	shows	the	mean	indistinguishable	functions	in	the	list	m/z	for	

each	resolution.	Percentage	of	m/z	values	represented	in	the	mass	spectrum	of	a	single	

value	is	shown	by	the	red.	

	

Comparison	of	influence	on	each	individual	100bin-m/z-region	generated	in	silico	

was	performed	(Figure	47).	In	the	range	from	0	to	600	m/z	(Figure	47A),	a	big	substantial	

increase	 of	 features	 from	 1.47	 ratio	 (0-100	m/z)	 to	 23.11	 ratio	 (501-600	m/z)	 was	

observed.	In	the	range	of	600-1400	m/z,	the	opposite	trend	was	observed	from	14.43	

ratio	to	2.80	ratio	(Figure	47B).	The	curves	in	Figure	47C	show	similar	trends	in	the	range	

of	1400	to	2000	m/z	(ratio	of	2.85	to	3.67),	but	rather	different	trend	than	the	previous	

dependence	was	observed	because	the	data	plateau	at	resolution	higher	than	960	000	

FWHM.	 Therefore,	 these	 theoretical	 calculations	 in	 FWHM	 resolution	 of	 millions	

continue	to	have	an	impact	on	the	calculated	number	of	unique	masses.	Nevertheless,	

an	extremely	high	resolution	has	a	huge	impact	on	distinguishing	the	isotopic	patterns,	

which	are	helpful	in	structure	elucidation.		

	

	

	

	

	

	

	

	

	



	 69	

	

	

Figure	47:	Relative	 increase	 in	100bin-m/z-region	detected	features	from	the	 in	silico	

calculations.	 The	 Y-axis	 represents	 the	 ratio	 of	 the	 detected	 features	 to	 a	 specific	

resolution	value	normalized	to	the	15	000	FWHM.	X	axis	represents	a	resolution	of	15	

000	up	to	3	840	000	FWHM.	

	

4.3.2. LC-MS	data	

The	plasma	sample	were	analysed	at	different	mass	spectrometry	resolutions	up	

to	 480	 000	 FWHM	 resolution	 in	 order	 to	 investigate	 its	 influence	 on	 the	 number	 of	

detected	features.	Analysis	time	was	15	minutes	with	elution	gradient	and	peak	capacity	

P	 =	 167	 (N	 =	 90	 000	 to	 576	 000	 N/m).	 Total	 ion	 chromatogram	 and	 extracted	 ion	

chromatograms	of	selected	isomeric	compounds	are	shown	in	Figures	48	-	50.		
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Figure	48:	Total	ion	chromatogram	in	positive	mode	–	Upper	part	of	the	figure	is	TIC	for	

mass	range	70	–	500	m/z	and	part	is	TIC	of	a	second	mass	range	350	–	2000	m/z.		

	

Figure	49:	Total	ion	chromatogram	in	negative	mode	–	Upper	part	of	the	figure	is	TIC	for	

mass	range	70	–	500	m/z	and	part	is	TIC	of	a	second	mass	range	350	–	2000	m/z.		
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Figure	50:	Separation	of	selected	isomeric	compounds	on	the	column.	Upper	part	of	the	

figure	is	pair	leucine/isoleucine;	middle	part	is	pair	citrate/isocitrate;	lower	part	of	the	

figure	is	pair	glucose/fructose	(hexose)	

	

Three	different	software	were	used	for	data	processing	LC-MS	(data	shown	in	

Figure	51).	Software	XCMS,	MZmine	and	Compound	Discoverer	yielded	similar	trends,	

i.e.,	sharp	increase	in	the	number	of	detected	features	with	maximum	at	60	000	FWHM	
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five	 times	 the	number	of	elements	on	 the	positive	mode	as	compared	with	negative	

mode.	This	observation	may	be	originating	from	the	fact	that	plasma	metabolites	are	

mainly	ionized	in	the	positive	mode.	The	physico-chemical	properties,	and	composition	

of	the	mobile	phase	may	also	contribute	to	the	observed	effects.
89
	Considering	a	fewer	

features	detected	in	the	negative	mode,	the	need	for	higher	resolution	is	less	important.	

	

	

Figure	51:	Number	of	detected	 features	 in	plasma	 samples.	 Each	part	of	 the	picture	

represents	 results	 from	different	software	 in	both	positive	 (yellow	 line)	and	negative	

mode	(blue	line):	A)	XCMS	(raw	features),	B)	MZmine	(raw	features),	C)	Compound	list	

(grouped	features	as	a	compounds).	
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In	plasma	samples	in	the	positive	mode	at	60	000	FWHM,	6778	features	were	

detected	 (MZmine,	 Figure	 51B).	 Error	 bars	 at	 higher	 resolutions	 will	 result	 in	 more	

individual	 ion	 signals,	 and	 therefore	 represents	 a	 challenge	 for	 detecting	 peak	

algorithms.	In	contrast,	the	number	of	features	found	in	the	in	silico	calculations	at	60	

000	 FWHM	 was	 49	 529	 (Figure	 52).	 Although	 both	 analyses	 took	 into	 account	

metabolites,	the	most	abundant	isotopes	and	adducts,	the	number	of	features	for	the	

plasma	 samples	 should	 be	 theoretically	 higher	 because	 it	 includes	 fragments,	 noise	

features	 and	 other	 components,	 possibly	 generated	 by	 electrospray	 ionization.	 The	

discrepancy	in	the	number	of	features	can	occur	for	various	reasons.	A	large	number	of	

compounds	listed	in	the	databases	are	present	in	biological	samples	at	concentrations	

below	 the	 detection	 limit	 of	 existing	 profiling	 methods	 (e.g.,	 hormones,	

neurotransmitters).	 In	 addition,	 non-targeted	metabolite	 extracts	 contain	 exogenous	

substances	(pharmaceuticals,	food	metabolites,	xenobiotics,	etc.).	Other	features	may	

be	chemically	and/or	biologically	unstable,	 and	 thus	may	be	 lost.	Poor	 ionizability	of	

certain	 compound	 classes	 may	 also	 reduce	 the	 number	 of	 the	 detected	 features.	

Another	 limitation	 is	 that	 some	 compounds	 are	 not	 retained	 (or	 captured)	 on	 the	

column,	thus	undetectable.	Furthermore,	isobars	can	exhibit	unpredictable	behaviour	

under	 given	 separation	modes	 (for	 example,	 reverse	 phase,	 normal	 phase,	 aqueous,	

HILIC).	 In	 previously	 published	 works,	 it	 was	 demonstrated	 that	 right	 choice	 of	

separation	method	will	also	influence	the	number	of	detected	features.
90–92

	Together	

with	high	resolution,	the	yield	of	features	from	an	untargeted	metabolomic	experiment	

may	be	significantly	increased.		
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Figure	 52:	 Number	 of	 detectable	 compounds	 based	 on	 the	 list	 of	 unique	 masses	

(227	060)	by	same	calculation	as	Figure	47	in	the	thesis.		

	

Figure	 53	 represent	 a	 histogram	 of	m/z	 values	 (according	 XCMS)	 in	 plasma	

samples	showing	the	distribution	of	the	individual	data	points	in	Figure	51.	The	trend	of	

the	curves	is	generally	almost	the	same	as	observed	in	the	in	silico	calculations	(Figure	

45).	Region	300-800	m/z	showed	a	strong	dependency	on	resolution	in	positive	mode	

(Figure	53A).	In	contrast,	the	area	of	800-1400	m/z	showed	almost	the	same	number	of	

functions	 for	60	000	and	120	000	FWHM	(Figure	53A),	 suggesting	 less	need	 for	high	

resolution	in	the	region.	Resolution	of	the	orbital	ion	trap	detector	is	not	linear	with	m/z	

(Figure	54).	This	effect	results	in	lower	resolution	in	the	higher	m/z	values,	and	thus	less	

number	of	detected	features.	In	the	negative	ionization	mode	(Figure	53B),	all	curves	in	

resolutions	of	from	15	000	to	120	000	FWHM	showed	similar	profiles.	The	number	of	

detected	features	with	m/z	of	400	with	a	resolution	of	240	000	and	480	000	FWHM	was	

significantly	 reduced	 due	 to	 the	 insufficient	 scanning	 frequency	 (data	 points).	 This	

problem	can	be	overcome	by	using	mass	spectrometer	with	higher	scanning	speed.	
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Figure	53:	Histograms	values	m/z	from	plasma	samples	in	the	positive	(A)	and	negative	

mode	(B)	(XCMS).	Each	point	on	the	lines	represents	the	frequency	of	m/z	values	in	the	

window	50	Da.	The	numbers	 in	the	legend	shows	the	resolution	and	scanning	speed,	

respectively.	
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Figure	54:	Dependency	of	m/z	and	resolution	in	Orbitrap	based	mass	spectrometers	

	

In	 the	 mass	 spectrometers	 based	 on	 orbital	 ion	 trap,	 the	 high	 resolution	 is	

achieved	by	 longer	acquisition	of	 ions	 in	the	trap,	and	thereby	the	frequency	of	data	

points	is	reduced
93
	(Figure	55).	It	is	widely	known	that	a	minimum	of	four	data	points	

per	peak	should	be	present	for	the	automatic	detection	algorithms	function.
61
	Thus,	in	

order	to	minimize	the	impact	of	this	parameter,	the	experiment	was	performed	in	which	

the	 minimum	 number	 of	 data	 points	 was	 set	 to	 3	 (centWave).	 Regardless	 of	 the	

resolution,	higher	number	of	functions	was	found	(Figure	56).	However,	close	inspection	

of	the	data	revealed	that	most	of	the	reported	peaks	were	false	positive	hits.	This	may	

indicate	that	60	000	to	120	000	FHWM	is	a	good	compromise	in	terms	of	resolution	and	

scanning	speed	for	metabolomics	on	the	mass	spectrometer	used	in	this	study.		
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Figure	55:	Lower	number	of	data	points	(upper	picture	–	60	000	FWHM,	lower	picture	

480	000	FWHM)		
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Our	compiled	list	is	covering	metabolites	present	in	the	biological	system,	but	it	

is	not	taking	 into	account	differences	 in	tissue/bio-liquid	distribution.	 It	also	contains	

exogenous	 compounds	 (drugs,	 xenobiotics,	 food	and	plant	metabolites)	 that	may	be	

present	to	a	varying	extent	 in	biological	samples,	depending	on	their	nature.	 In	silico	

calculations	in	this	study	were	focused	on	human	plasma	and	it	would	be	interesting	to	

see	its	application	in	plant	metabolomics	where	many	metabolites	preferably	ionized	in	

the	negative	mode.	A	different	scenario	can	also	occur	in	lipidomics	or	glycomics,	which	

are	heavily	influenced	by	the	high	number	of	structural	isomers.
56
	

	

	

Figure	56:	CentWave	algorithm	in	XCMS	with	minimum	3	points/peak	for	peak	picking.		
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5. Conclusion	

The	aim	of	this	work	was	focused	on	the	development	and	the	improvement	of	

methods	involved	in	the	diagnosis	of	inherited	metabolic	diseases.	Certain	key	aspects	

and	bottlenecks	in	this	field	were	suggested	by	several	separated	experiments.		

The	 untargeted	 metabolomics	 approach	 applied	 on	 the	 dry	 blood	 spots	 (25	

MCADD	 samples	 and	 25	 healthy	 controls)	 showed	 14	 significant	 metabolites	

discriminating	 those	 two	 groups	 from	each	other.	 Among	 them,	 already	well	 known	

biomarkers	of	MCADD	(C8,	C10,	C10:1)	were	correctly	identified	with	MSI	identification	

Level	 1.	 Another	 eight	 compounds	were	 identified	 as	 phosphatidylcholines.	 Some	of	

them	belong	to	a	group	of	oxidized	phosphatidylcholines	(PAzPC	-	PC(16:0,9:0(COOH));	

PC(16:0,8:0(COOH);	 PC	 (18:0,5:0(COOH)))	 associated	 with	 oxidative	 stress.	 These	

findings	were	also	confirmed	by	FIA-TMS	experiment	 (MCADD	=	25,	Controls	=	250).	

These	 phosphatidylcholines	 correlated	 with	 disease	 markers	 mutually	 with	 R	 >	 0.8	

pointing	to	a	common	mechanism	of	origin.	Combination	of	untargeted	metabolomics	

followed	by	 targeted	metabolomics	 in	a	wider	patient	cohort	point	out	 that	patients	

suffering	from	MCADD	experience	oxidative	stress.	

In	the	second	part	a	novel	approach	of	“spectral	trees”	was	tested	in	structure	

elucidation	of	metabolites	 in	urine	 samples	of	adenosine	deaminase	deficiency.	Four	

metabolites	 associated	 with	 ADA	 were	 successfully	 identified.	 Three	 of	 them	 (2’-

deoxyadenosine,	 adenosine,	 1-methyladenosine)	were	 already	 found	 in	 the	 urine	 of	

patients	suffering	 from	ADA.	Most	of	 them	are	associated	with	degradation	of	 tRNA,	

rRNA,	mRNA	or	snRNA.	Novel	biomarker	of	ADA	1-methyl-5-oxoadenosine	is	probably	

an	oxidation	product	of	1-methyladenosine.		

The	 third	 part	 of	 the	 thesis	 was	 focused	 on	 influence	 of	 mass	 spectrometry	

resolution	on	number	of	detected	features	 in	untargeted	metabolomics	experiments.	

Theoretically	and	experimentally	we	addressed	a	relation	between	resolution	and	scan	

speed	in	orbital-ion-trap	based	mass	spectrometers.	In	silico	calculations	showed	that	

with	 increasing	 resolution	more	 features	 can	 be	 detected	 (limited	 by	 the	maximum	

number	of	features	possible	for	the	particular	biological	matrix).	LCMS	data	showed	that	

in	 the	 real	 assays	 the	 optimal	 resolution	 was	 60	 000	 -	 120	 000	 FWHM	 in	 positive	

ionization	mode	 and	 60	 000	 FWHM	 in	 negative	 ionization	mode	 for	 ESI.	 In	 order	 to	
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retrieve	the	highest	amount	of	information	in	current	analytical	assays,	according	to	our	

findings,	the	resolution	around	60	000	–	120	000	FWHM	is	necessary.		
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6. List	of	abbreviations	

ACAD	 	 acyl-CoA-dehydrogenase	

ADA	 	 adenosine	deaminase	(deficiency)	

APCI	 	 atmospheric	pressure	chemical	ionization	

ARG	 	 argininemia	

BTD	 	 biotinidase	defiency	

C10		 	 decanoylcarnitine	

C10:1		 	 decenoylcarnitine	

C12		 	 dodecanoylcarnitine	

C2		 	 acetylcarnitine	

C6		 	 hexanoylcarnitine	

C8		 	 octanoylcarnitine	

CACT	 	 carnitine	acyl-carnitine	translocase	deficiency	

CAH	 	 congenital	adrenal	hyperplasia	

CBS	 	 classical	homocystinuria	-		cystathionine	beta	synthase	deficiency	

CE	 	 capillary	electrophoresis	

CF	 	 cystic	fibrosis	

CH	 	 congenital	hypothyroidism	

CID	 	 Collision-induced	dissociation	

CIT	 	 citrulinemia	type	I.	

clr		 	 centered	logratio	transformation		

CPT	I	 	 carnitine	palmitoyltransferase	I	deficiency	

CPT	II	 	 carnitine	palmitoyltransferase	II	deficiency	

CWT	 	 Continuous	Wavelet	Transform	

DDA	 	 data	dependent	acquisition		

DIA	 	 data	independent	acquisition		

DNA	 	 deoxyribonucleic	acid		

ESI	 	 electrospray	ionization	

FAD	 	 flavin	adenine	dinucleotide		

FAODs			 Fatty	acid	oxidation	disorders	

FFT	 	 Fast	Fourier	transformation	
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FIA	 	 flow	injection	analysis	

FIA-TMS		 flow	injection	analysis-tandem	mass	spectrometry	

FJHN	 	 familial	juvenile	hyperuricaemic	nephropathy	

FT	 	 Fourier	transformation	

FTICR	 	 Fourier	transform	ion	cyclotron	resonance		

FTMS	 	 Fourier	transform	mass	spectrometry	

FTMS		 	 Fourier	Transform	Mass	Spectrometry	

FWHM		 Full-width-at-half-maximum	

GA	I	 	 glutaric	aciduria	type	I	

GABA	 	 gamma-Aminobutyric	acid		

GC	 	 gas	chromatography		

GVHD	 	 graft-versus-host	disease	

HCD		 	 Higher-energy	collisional	dissociation		

HILIC	 	 hydrophilic	interaction	liquid	chromatography	

HLA	 	 human	leukocyte	antigen	

HMDB	 	 Human	Metabolome	Database	

HPA	 	 hyperphenylalaninemia	

HPLC	 	 High	performance	liquid	chromatography	

HPRT	 	 hypoxanthine-guanine	phosphoribosyl	transferase	deficiency	

HRAM	 	 High	resolution	accurate	mass	

IEM	 	 Inborn	errors	of	metabolism		

IMPDH1	 inosine-5'-monophosphate	dehydrogenase	dehydrogenase	1	

IVA	 	 isovaleric	aciduria	

KEGG	 	 Kyoto	Encyclopedia	of	Genes	and	Genomes	

LC	 	 Liquid	chromatography	

LC-HRMS	 Liquid	chromatography-high	resolution	mass	spectrometry	

LC-MS			 liquid	chromatography-mass	spectrometry	

LCAD	 	 long-chain	acyl-CoA-dehydrogenase	

LOESS			 local	regression	

m/z	 	 mass-to-charge	ratio	

MALDI		 matrix	assisted	laser	desorption/ionization		

MCAD			 medium	chain	acyl-CoA	dehydrogenase	enzyme	
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MCADD		 Medium	chain	acyl-CoA	dehydrogenase	deficiency	

MRM	 	 multi-reaction-monitoring	mode	

MS	 	 mass	spectrometry	

MS/MS		 Tandem	mass	spectrometry	

MSI		 	 Metabolite	Standards	Initiative	

MS
n
	 	 Multistage	fragmentation	mass	spectrometry	spectrum/spectra	

MSTFA		 N-Methyltrimethylsilyltrifluoroacetamide;	CAS:	24589-78-4	

MSUD	 	 maple	syrup	urine	disease	

MTHRF	 homocystinuria	 based	 on	 deficiency	 of	 methylene	 tetrahydrofolate	

reductase	

MUD	 	 HLA-matched	unrelated	donor	

NBS		 	 newborn	screening	

NCE	 	 normalized	collision	energy		

NIST	 	 National	Institute	of	Standards	and	Technology	(www.nist.gov)		

NK	 	 natural	killers	

NMR	 	 nuclear	magnetic	resonance	

OPLS-DA		 orthogonal	partial	least	squares	discriminant	analysis	

PAPC		 1-O-hexadecanoyl-2-O-(5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenoyl-sn-

glyceryl-3-phosphocholine	

PAzPC		 1-O-hexadecanoyl-2-O-(9-carboxyoctanoyl)-sn-glyceryl-3-

phosphocholine	

PC	 	 phosphocholine	

PCA		 	 principal	component	analysis	

PEG	 	 polyethylene	glycol		

PGPC		 1-O-hexadecanoyl-2-O-(9-carboxybutanoyl)-sn-glyceryl-3-

phosphocholine	

PKU	 	 phenylketonuria	

PoxnoPC		 1-O-hexadecanoyl-2-O-(9-oxononanoyl)-sn-glyceryl-3-phosphocholine	

PRPS	 	 phosphoribosyl-pyrophosphate	synthetase	superactivity	

PUFAs			 polyunsaturated	fatty	acids		

QC		 	 Quality	control	

ROI	 	 Regions	of	interest	



	 84	

ROS		 	 reactive	oxygen	species	

SCAD	 	 short-chain	acyl-CoA-dehydrogenase		

SIDS	 	 Sudden	infant	death	syndrome		

TIC	 	 total	ion	chromatogram	

TMS	 	 Trimethylsilyl	(C3H8Si)	

TOF	 	 Time-of-flight	

UHPLC		 ultra-high	performance	liquid	chromatography	

VLCAD		 very	long-chain	acyl-CoA-dehydrogenase	

WMA	 	 World	Medical	Association	
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L.	 Najdekr,	 D.	 Friedecky,	 H.	 Podmore,	 G.	 Woffendin,	 T.	 Adam.	 „New	 phospholipid	
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2014.	Book	of	abstracts,	p13,	Poster	ID	146	
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Niagara-on-the-lake	(CA)	3
rd
	–	7

th
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