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1 Introduction 

Statistical analysis has a long history in various linguistic disciplines. It is no different in 

phonetics. By its very nature, i.e. being a physical quantity, the temporal dimension of speech 

lends itself to this kind of analysis. Statistical analysis requires thorough preparation, which is 

typically not included in philological courses. Hence, the aim of this bachelor’s thesis is to 

connect the basics of statistical analysis and phonetics, serving as a basic guide for students 

interested in conducting their own analyses. A further aim is to demonstrate the application of 

these methods to a set of data concerning the imitation of English vowel duration variability in 

speech (Kopecký, 2023). 

Linguistics as a discipline allows for the use of a full range of methods, from qualitative 

to quantitative, and their combinations. Since the early 20th century, when modern linguistics 

emerged, qualitative methods have been dominant. However, various linguistic disciplines have 

recently applied quantitative methods more frequently. The first part of this thesis deals with 

statistical approaches that have become established in linguistic practice, specifically in 

phonetics. It introduces standard statistical tools such as the Shapiro-Wilk test, t-test, Analysis 

of Variance (ANOVA), Mann-Whitney U-test, etc. Important aspects of the different 

approaches are mentioned since choosing the correct method is an essential step in analyzing a 

given data set. The second part of this thesis focuses on applying selected methods from the 

theoretical part of this bachelor’s thesis on data taken from a master thesis entitled Imitation of 

English Coda-Voicing-Induced Vowel Duration Variability by Czech Learners (Kopecký, 

2023). A range of analyses is conducted on this data.  

The use of quantitative methods in linguistics is no older than approximately 70 years. 

(Köhler, 2012) When compared with formal mathematics and logics, which appeared in 

linguistics around the same time, quantitative methods were established much slower within 

the field. The first linguist who tried to use quantitative methods in the sense we know it today 

was George Kingsley Zipf. He started implementing the quantitative methods into qualitative 

aspects of mathematics and theoretical models. Köhler (2012) says that Zipf’s “pioneering work 

is now considered as the cornerstone of QL [quantitative linguistics].” (Köhler, 2012, p. 13)  

Scientific quantitative research in the linguistics field has been getting more attention in 

the past two decades. Before the 21st century, the majority of linguistics circles were not eager 

to include statistical methods into their research, arguing that using quantitative evaluation is 

useless because it is the qualitative aspect of things that is interesting. (Gries, 2013). According 

to Gries (2013), they did not realize that “quantitative and qualitative methods go hand in hand: 
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qualitative considerations precede and follow the results of quantitative methods” (p. 4). In 

empirical studies, counting linguistics as one of them, understanding and choosing correct 

statistical methods is necessary for conducting a quantitative study. Gries (2013) points out 

three goals of such studies which are description, explanation, and prediction. The use of 

statistical methods is crucial in all three steps in order to correctly prepare the data, conduct the 

analysis, and explain the results as well as predict what future studies might look like. 

Further, Gries (2013) demonstrates that simply looking at the data without a deeper 

statistical analysis is not enough and can lead to incorrect generalizations. Adopting his 

example, let us illustrate the importance of the use of quantitative methods. He fabricates a 

small corpus with a distribution of tenses and aspects. The dataset initially seems to corroborate 

a hypothesis about aspect, which predicts the predominant use of present tenses with 

imperfective aspects and past tenses with perfective aspects. However, after employing the chi-

squared test, a statistical tool suitable for this data, it is revealed that the tense-aspect 

distribution might merely be caused by chance (to put it more clearly, there is a high probability 

that the observed co-occurrence is caused by chance). This simple example clearly 

demonstrates the importance of using statistics in linguistics disciplines as well. 

Looking solely at phonetics, Köhler (2012) points out that the use of statistical methods 

is crucial and phoneticians “could not investigate anything without the measurement of the 

fundamental quantities like sound pressure, length (duration) and frequency (pitch)” (p. 12). 

All of these are features which can be represented through numbers. Hence, quantitative 

analysis is adequate. 

Quantitative research is either exploratory in that it looks for prominent patterns in 

collected data which are used to inform theorizing, or it intends to test theory-driven hypotheses. 

It is important to follow several steps in order to achieve an accurate analysis. According to 

Kubát (2016), to test a hypothesis empirically, all the steps can be represented as a cycle. The 

theory stands at the very beginning. The next step is to formulate a hypothesis derived from the 

theory. The hypothesis then needs to be formalized (formalizing means converting the 

hypothesis into the language of numbers, i.e., to express the hypothesis’ prediction in terms of 

measurable quantities so that it can either be confirmed or not by the data collection and 

analysis). Only after these steps can an experiment be carried out adequately. Hypothesizing 

after the results are known (referred to as HARKing, Kerr, 1998) is a grave error in research 

design, potentially leading to biased conclusions. In quantitative linguistics, the experiment 

usually involves some kind of computation or measurement. The obtained results are then 

statistically analyzed, determining either the confirmation of the hypothesis or not. One might 
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think that this is the final step of the research. However, the researcher’s work is complete only 

after interpreting the findings linguistically and connecting them back to the initial theory. The 

key takeaway is that linguistics stands at both the beginning and the end of research; the 

experiment is only a tool that allows us to investigate language objectively. 

2 Types of Variables 

The application of statistical tests is essential to draw meaningful conclusions from the data. 

Before any of these tests can be carried out, it is crucial to recognize the properties of the 

variables involved. Addressing these preliminary considerations is important for ensuring the 

accuracy and reliability of the statistical testing. 

This part explores the fundamental process which is involved in classifying the observed 

phenomena. Classification refers to a systemic process that categorizes the phenomena (e.g., 

items, characteristics) based on shared attributes. During the process of classification, a value 

is assigned to each of these phenomena. As a result, a variable is set up. This process allows us 

to simplify complex data in order to enable a correct understanding and carry out an analysis. 

There is more than just one way of classifying examined attributes, and each way has an impact 

on choosing an appropriate statistical test. In other words, the classification is a result of the 

researcher’s decision based on theoretical assumptions. In this thesis, classification is taken 

from Brzezina (2018) and Köhler (2012). 

The first type of variable is called a nominal variable. Nominal variables are classified 

based on whether or not they possess a certain property. Statements about the observed elements 

are then evaluated as either true or false within these categories, and there is no hierarchy 

between the levels of a nominal variable. As a linguistic example, Brzezina takes the category 

of “[s]peaker’s gender [...] because we can assign speakers in the dataset to one of two groups: 

(1) male speakers and (2) female speakers.” (Brzezina, 2018, p.7) For a better understanding, it 

is possible to formalize the relation as follows: 

 

P(A) = P(B) or P(A) ≠ P(B) 

 

where P is the property under consideration, and A and B are two different participants or items 

(cf. Köhler 2012). 

Categorizing observed elements solely on belonging to a group or not is not always 

sufficient. Hence, in these cases, the type of ordinal variables may be necessary. The similarity 
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with a nominal variable is that the classification works with distinct categories. However, the 

categories are not evaluated only as true or false but can also be compared and scaled. Hence, 

determining whether the “object possesses more, or less, of a given property, or the same 

amount of it” (Köhler, 2012, p.17) is possible. Brzezina (2018) introduces a linguistic example 

illustrating this variable, namely, ranked descriptions of a speaker’s proficiency level in a 

foreign language. The labels beginner, pre-intermediate, intermediate, upper-intermediate, 

advanced, and mastery, as well as the corresponding levels A1, A2, B1, B2, C1, C2, together 

form the levels of an ordinal variable. Formally: 

 

P(A) > P(B), P(A) = P(B) or P(A) < P(B) 

 

where P is the property under consideration, and A and B are two different participants or items. 

 Likert scale data is an example of a specific type of ordinal data. A Likert scale is 

commonly used in surveys and questionnaires to measure attitudes, opinions, or perceptions. It 

allows respondents to express the degree of their agreement or disagreement with a particular 

statement (strongly agree, agree, neutral, disagree, strongly agree). Jamieson (2004) points out 

that these “response categories have a rank order, but the intervals between values cannot be 

presumed equal” (p. 1217) 

 The third type of variables are scale variables. It involves measuring a particular 

property and subsequently determining the magnitude of this property. With this approach, the 

most detailed level of description can be obtained, as it enables the measurement of differences 

between examined categories and an application of fundamental mathematical operation 

(addition, subtraction, multiplication, and division). A clear linguistic example in phonetics is 

the measurement of voice onset time (VOT) because the time between the release of a stop 

consonant and the onset of voicing can take any value on the scale. Formally: 

 

P(A) − P(B) = d 

 

where P is the property under consideration, A and B for two different objects, and d stands for 

the numerical value of the difference. 

 In some cases, the choice of which variable is used depends solely on the researcher's 

decision. The operationalization of the observed properties can be chosen arbitrarily. However, 

this decision impacts not only the selection of adequate statistical methods but also the scope 

and nature of the conclusions that can be derived from the research. For instance, the variable 
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of age could be fit for all three types of variables. In terms of the nominal variable, age could 

be operationalized as a binary category of people who are retired and those who are still in 

productive age and working. To fit the type of the ordinal variable, age would need to be divided 

into different levels, such as “children”, “young adults”, “adults”, “the elderly”. For the most 

detailed representation of age, scale variables seem like an ideal choice since they can take on 

specific values, allowing for precise measurement and analysis. 

3 Statistical Testing and Formal Characteristics of a Hypothesis 

Statistical testing is a mathematical procedure that allows researchers to interpret hypotheses 

under consideration. Through hypotheses, one usually attempts to find relationships between 

selected variables, understanding these relationships as the result of certain general 

mechanisms. By doing so, it is possible to uncover the underlying principles and links that 

explain how these variables interact and influence each other. Nonetheless, the hypothesis itself 

must have specific characteristics in order to be statistically testable. 

 In empirical research, a hypothesis is not just any prediction considering variables, but 

it must fulfill specific criteria. Gries (2013) defines the statistically testable hypothesis as a 

statement that meets the following criteria: “it is a general statement that is concerned with 

more than just a singular event; it is a statement that at least implicitly has the structure of a 

conditional sentence (if …, then … or the …, the …) or can be paraphrased as one; it is 

potentially falsifiable” (p. 11). A falsifiable hypothesis is one that can be proven wrong through 

empirical evidence, meaning that one must find an event that would contradict the hypothesis. 

Further, Gries (2013) claims that this approach “implies that the scenario described in the 

conditional sentence must also be testable. However, these two characteristics are not identical” 

(p. 11). The difference between these two features comes from the fact that not all the statements 

that are falsifiable are possible to be tested. 

Focusing on specific steps in statistical testing, firstly it is necessary to determine the 

variables involved, e.g. when studying the relationship between the pronunciation of a specific 

speech sound and the geographical origin of the speaker, the pronunciation and the speaker’s 

origin are the two observed variables. 

As a next step, one needs to formulate the null hypothesis (H0) and the alternative 

hypothesis (H1). The null hypothesis assumes that there is no relationship between the 

variables. The alternative hypothesis, on the other hand, suggests that a certain relationship 

exists between them. This hypothesis should come from a priori theoretical reasoning, which 
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predicts that the relationship is a consequence of some underlying mechanisms. Continuing 

with the example of pronunciation and speaker’s origin, the null hypothesis states that the 

geographical origin of the speaker is not associated with the pronunciation of a particular speech 

sound. The alternative hypothesis states that the regional dialect background and the way 

speakers pronounce the given speech sounds are related. It should be noted that finding a 

relationship does not automatically mean proving causality. In other words, the actual outcome 

of a statistical analysis is essentially just the acceptance or rejection of the null hypothesis. 

Based on the chosen statistical test (see below), the validity of the null hypothesis is 

tested. In other words, it means that we are determining the probability of rejecting the null 

hypothesis when it is actually true. The probability is assessed through the significance level, 

which is usually set at 5% (0.05) (assessing the significance level is a crucial step that needs to 

be done before starting the testing). The significance level determines when the null hypothesis 

is rejected. Rejecting the null hypothesis with the significance level of 0.05 means that there is 

a 5% chance that we are wrongfully rejecting it while it is actually true. When the value, usually 

referred to as a p-value, is higher than the chosen significance level, we do not falsify the null 

hypothesis. If the p-value is smaller, the null hypothesis is rejected, and the alternative 

hypothesis is accepted. However, rejecting the null hypothesis does not mean verification of 

the alternative hypothesis. Moreover, over the past decade, there has been an ongoing 

discussion about the interpretation and importance of the p-value in empirical research. For 

instance, Amrhein et al. (2019) represent a strong position against using the p-value in the 

research, c.f. “Let’s be clear about what must stop: we should never conclude there is ‘no 

difference’ or ‘no association’ just because a P value is larger than a threshold such as 0.05 or, 

equivalently, because a confidence interval includes zero. Neither should we conclude that two 

studies conflict because one had a statistically significant result and the other did not. These 

errors waste research efforts and misinform policy decisions.” (p. 305-306) A less radical 

position can be found, for example, in the work of Perezgonzales (2015). The author does not 

fully reject the approach, but he provides guidelines on how to appropriately apply statistical 

methods, modifying the original null hypothesis significance testing (NHST) approach and 

offering alternatives. A critical evaluation of the debate regarding the 

meaningfulness/meaninglessness of using p-values in empirical research is beyond the scope of 

this thesis – it is a highly intriguing and complex issue. 
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4 Statistical Tests 

The selection of the appropriate statistical test primarily depends on the nature of the variables 

which are analyzed. For the analysis of nominal values, which are categorical in nature, 

researchers are usually concerned with their frequencies. In such cases, the chi-square test or 

Fisher’s exact test are usually the best choices (Gómez, 2013). In terms of scale variables, it is 

crucial to determine the properties of the distribution of the data because the choice of the 

appropriate test depends on this property. Specifically, the normality of the distribution is 

usually tested. This property of the distribution is one of the most important requirements that 

have to be met for a proper application of the chosen test. According to Razali et. al., “the most 

commonly used and effective diagnostic tool for checking normality of the data” (p. 21) is the 

quantile-quantile plot, usually referred to as the Q-Q plot. However, the visualization itself is 

not always sufficient, and one must rely on more than just the plot. Hence, the normality is 

further calculated, usually by the Shapiro-Wilk test. 

 If the condition of the normal distribution of the data is met, it is necessary to use the 

parametric statistical tests, namely t-test (in case of analyzing two variables), or ANOVA (in 

case of analyzing multidimensional data). On the other hand, if the condition of the normal 

distribution of the data is not met, we choose the non-parametric tests, specifically the Mann-

Whitney test (in case of analyzing two variables) or Kruskal-Wallis (in case of analyzing 

multidimensional data). See Table 1. 

 

  Two groups Multiple groups 

Parametric tests t-test ANOVA 

Non-parametric 

tests 

Mann-Whitney U-

test 

Kruskal-Wallis 

test 

 

Table 1: Classification of statistical tests based on their characteristics. 

 

Given the nature of the analyzed data (see below) in the following, section I will briefly 

characterize only the properties of tests used for scale variables. 

4.1 Shapiro-Wilk test 

The Shapiro-Wilk test was originally designed to evaluate normality in smaller samples, but 

since then, it has been extended to be used in larger samples. This test involves fitting ordered 
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values to a regression line. The Shapiro-Wilk test is particularly important in situations where 

only a limited number of observations are available, and visualization alone is not sufficient to 

determine whether the observed values are normally distributed. (Razali et al., 2011) Formally: 

 

W =
(∑ 𝑎𝑖𝑦𝑖

𝑛
𝑖=1 )2

∑ (𝑦𝑖−𝑦̅)2
𝑛
𝑖=1

 

 

where yi represents the observations (after ordering from smallest to largest), ȳ is the sample 

mean, and ai are coefficients. 

 

4.2 T-test 

The t-test is one of the most common parametric tests which can be used for samples that are 

independent. It can be applied to two small data sets with independently collected data. As with 

all statistical tests, the nature of the t-test is to test the validity of the null hypothesis, hence 

determining if there is any relationship between the observed variables. What is essential for 

the t-test is the comparison of the means of two groups. However, t-test does not depend solely 

on the difference between the means. It also takes into account the standard deviations and the 

sample sizes of the groups. Formally describing the null hypothesis as: 

 

H0: x̄1 = x̄2 

 

where x̄1 and x̄2 are the means of two groups. The formula for alternative hypothesis H1 is: 

 

H1: x̄1 ≠ x̄2 

 

where x̄1 and x̄2 are the means of two groups. Further, the formula for the t-test is: 

 

t = 
𝑥̅1− 𝑥 2

√
𝑠1

2

𝑛1
+
𝑠2
2

𝑛2

 

 

where x̄1 and x̄2 are the means of two groups, s1 and s2 are the standard deviations of two groups, 

and n1 and n2 are the sample sizes of two groups. 
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Required assumptions for this test are as follows: 1. the data have to be normally 

distributed, 2. the variance of the data needs to be equal or very similar, and 3. the data must 

have interval scores. (Gómez, 2013). 

4.3 Analysis of Variance (ANOVA) 

Analysis of Variance (ANOVA) is a statistical test that allows for the comparison of the means 

of more than two different groups. Similar to the t-test, a fundamental assumption of ANOVA 

is the normal distribution of the values in given groups. The goal of this statistical test is to 

determine whether there are statistically significant differences between the means of three or 

more independent groups. 

 Formally, the null hypothesis, which assumes no differences among groups under 

analysis, is: 

H0: x̄1= x̄2= x̄3= x̄4= x̄5 = …= x̄n 

 

where n corresponds to the number of tested groups. The rejection of H0 (and consequently 

accepting the alternative hypothesis H1) happens in cases when at least one group differs 

significantly.  

The mathematical procedure is more complex as compared to the t-test since it consists 

of several steps which compute variances and determine whether there are statistically 

significant differences among the group means (for more details, cf. Gómez, 2013, p. 52-58). 

4.4 Mann-Whitney U-test 

The Mann-Whitney U-test, also known as the Wilcoxon rank-sum test, belongs to the group of 

non-parametric tests. Due to its characteristics, it is considered to be an alternative to the t-test, 

except that the data do not show normal distribution. The computation is based on ranking the 

data. Specifically, the test uses ranks of the combined data from both groups. (Nachar, 2008) 

Further, the following formulas are used for computation: 

 

𝑈1 = 𝑁1𝑁2 +
𝑁1(𝑁1 + 1)

2
− 𝑅 

𝑈2 = 𝑁1𝑁2 − 𝑈1 
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where N1 is the sample size of the smaller sample, N2 is the sample size in the other sample, R 

is the sum of ranks of the smaller sample. For testing statistical significance, we choose the 

smaller value between U1 and U2. (Gómez, 2013) 

4.5 Kruskal-Wallis Test 

The Kruskal-Wallis test is used for analyzing data of more than two groups. Similar to the 

Mann-Whitney U-test, it does not require for the data to come from a normal distribution. The 

null hypothesis of the Kruskal-Wallis test assumes that the measurements in the different groups 

have the same medians. 

 

𝐻0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑚 

 

where 𝜇 is the median of a specific group, and m is the number of groups. 

This test is particularly useful when dealing with non-parametric data or when the 

assumptions of ANOVA are not met. By ranking the combined data from all groups and 

comparing the sum of ranks among the groups, the Kruskal-Wallis test determines whether 

there are statistically significant differences between the groups' medians. If the null hypothesis 

is rejected, it suggests that at least one group median is different from the others. (Ostertagova 

et al., 2014) 

 

𝐻1: at least for one pair i, j is true that 𝜇̃𝑖 ≠ 𝜇𝑗 

 

where 𝜇 is the median of a specific group and i and j are two different groups. The complete 

formula for Kruskal-Wallis test is as follows: 

 

𝐻 = [
12

𝑛(𝑛 + 1)
∑(

(𝑆𝑅𝑖)
2

𝑛𝑖
)

𝑖

] − 3(𝑛 + 1) 

 

where n is the total size of the sample, ni is the specific group’s sample size, (SRi)
2 is the total 

of the ranks related to the specific group. (Hendl, 2004) 
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4.6 Correlation Coefficients 

Correlation is a statistical measure of association between two variables, i.e., the extent to which 

two variables are related. It indicates how changes in one variable are associated with changes 

in another. Correlation coefficients, which range from -1 to 1, demonstrate the strength and 

direction of this relationship. A positive correlation is observed in cases where when one 

variable increases, the other tends to increase, too. The negative correlation, on the other hand, 

can be found in cases where when one variable increases, the other tends to decrease. A 

correlation close to 0 suggests little to no linear relationship between the variables. It is 

important to realize that correlation does not imply causation. It simply reflects a pattern of 

association between the variables. (Franzese et al., 2018) 

When measuring the strength of associations, the researchers usually choose between 

three most frequently used methods. In the case of parametric data, the Pearson correlation 

coefficient is used. When working with non-parametric data, the choice is between the 

Spearman rank correlation coefficient and the Kendall Tau coefficient. (Gómez, 2013) 

4.6.1 Pearson Correlation Coefficient 

The Pearson correlation coefficient is a measure of the linear relationship between two 

continuous variables (interval and rational scales). It quantifies the strength and direction of 

that relationship. The value of Pearson correlation coefficient, i.e., Pearson’s r, ranges from -1 

to 1: 

-1 ≤ r ≤ 1 

where r is the Pearson correlation coefficient. If the correlation coefficient equals 1, it indicates 

a perfect positive linear relationship, -1 indicates a perfect negative linear relationship, and 0 

indicates no linear relationship. (Gómez, 2013) The complete formula for calculating the 

Pearson correlation coefficient is as follows: 

𝑟 =
𝑁∑𝑥𝑦−∑𝑥∑𝑦

√{𝑁∑𝑥
2
−(∑𝑥)2}{𝑁∑𝑦

2
−(∑𝑦)2}

  

where r is the Pearson correlation coefficient, N is the number of samples, Σ is the sum, and x 

and y are two different variables. 
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4.6.2 Spearman Rank Correlation Coefficient 

The Spearman rank correlation coefficient, also known as Spearman’s rho, ρ, is a non-

parametric measure of the strength and direction of the association between two ranked 

variables. As opposed to Pearson’s correlation, which works with variables measured on an 

interval scale, Spearman’s rank correlation measures the monotonic relationship of variables 

that are ordinal or data with non-normal distribution. (Gómez, 2013) Formally: 

 

𝜌 = 1 −
6∑𝐷2

𝑁(𝑁2−1)
  

where ρ is the Spearman rank correlation coefficient, ΣD2 is the sum of all squares of the rank 

differences, and N is the sample size. 

4.6.3 Kendall Tau Correlation Coefficient 

Similarly to the Spearman rank correlation coefficient, Kendall’s tau is a non-parametric 

statistical test that evaluates the relationship of variables that are ordinal. It is based on the 

concept of concordant and discordant pairs of observations and is particularly useful for 

determining the strength and direction of a monotonic relationship between two ranked 

variables. Compared to Spearman’s rho, Kendall’s tau is generally more resistant to outliers. 

(Hendl, 2004) Formally: 

𝑡𝑘 =
𝑆

𝐷
=
𝑃 − 𝑄

𝐷
 

where P is the number of all concordant pairs, Q is the number of all discordant pairs, and D 

is the maximal number of all possible concordant pairs, resp. discordant pairs (its value is n(n-

1)/2). 

5 Language Material 

The data set used in this bachelor’s thesis was taken from a master thesis with the title Imitation 

of English Coda-Voicing-Induced Vowel Duration Variability by Czech Learners (Kopecký, 

2023). The core of the experiment was to investigate the duration of vowels depending on the 

voicing of the coda. In this study, various words were analyzed as the participants pronounced 

them under different conditions. By controlling different aspects of the experiment, such as the 

elicitation method (shadowing and baseline conditions), the experiment sought to determine 

whether the voicing has a significant effect on vowel duration. This complex approach allowed 
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a detailed understanding of phonetic variation and provided insight into the production of 

speech. 

 The variable called “session” captures the number of the session in which the data were 

collected, with two possible values: 1 and 2. In the first session, the participants pronounced 

words in both, baseline and shadowing condition. In session number 2, only the shadowing 

elicitation method was used. 

 The “task” variable categorizes the type of activity participants were engaged in during 

data collection. The two tasks are shadowing and baseline. Shadowing involves participants 

repeating words immediately after hearing them, while baseline refers to a condition without 

such repetition. This distinction helps in understanding how these different speaking conditions 

affect speech pronunciation characteristics. 

 The “CodaVoi” variable indicates whether the coda was present or removed. When the 

coda was removed, the vowel durations were consistent across both voiced and voiceless 

contexts, suggesting no significant difference in vowel length due to the absence of the coda. 

In contrast, when the coda was present, the words were analyzed in their original form, 

considering both English and Czech pronunciations. This differentiation helps in understanding 

the impact of the coda on vowel duration within different linguistic contexts. 

 Vowel duration, “vDur”, is a numeric variable representing the duration of the vowel in 

seconds. The duration range indicates variability in vowel length, which can be analyzed in 

relation to other variables, such as coda voicing or task. 

 Coda duration, “cDur”, is another numeric variable that measures the duration of the 

coda in seconds. This variable helps in understanding the temporal characteristics of the coda 

(which in this dataset always corresponds with the final consonant, hence, the terms are used 

interchangeably) in relation to vowel duration. 

 The “speaker” variable identifies the individual speakers with unique IDs. There are 24 

speakers. This variable allows for the examination of individual differences in speech 

production. The unique subject number assigned to each participant is represented by the 

variable “sbjNo”. 

 The “sex” variable indicates the gender of the speaker, with categories woman and man. 

The predominance of female participants can be considered when analyzing gender-related 

differences in speech production. 

“Age” is a numeric variable representing the age of the participants. The ages range from 

19 to 25 years. This relatively narrow age range ensures that age-related variability is 

minimized, focusing the analysis on other factors. 
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6 Hypotheses 

Based on the data described in Chapter 5 and in accordance with the aim of this bachelor’s 

thesis, which is to explore the possibilities of the application of statistical tests, the following 

hypotheses are formulated for the data presented in the appendix. Since the goal of this work is 

to demonstrate the potential application of statistical tests, the simplest approaches are 

presented first. In these basic analyses, the relationships between only two variables will be 

examined. Further, more complex analyses that take into consideration three or more variables 

are introduced. Starting with the simpler methods allows us to lay a foundation for 

understanding the fundamental relationships in the data and the use of statistical tests. The goal 

of this step-by-step approach is to present a comprehensive understanding of the possibilities 

of statistical testing. 

In the following part, the analyzed phenomenon is presented first. Next, hypotheses are 

formulated, and the reasoning behind these choices is described. 

  

6.1 The influence of consonant quality in terms of voicing on the duration 

of the preceding vowel 

H0: The status of the consonant in terms of phonological voicing has no effect on the duration 

of the preceding vowel. 

H1: Vowels that appear before phonologically voiced consonants have a longer duration than 

those which appear before voiceless consonants. 

The differences between voiced and voiceless consonants and their impact on vowel duration 

are tested regardless of other variables 

6.2 The influence of consonant quality in terms of voicing on the duration 

of the preceding vowel considering the type of elicitation 

H0: The status of the consonant in terms of phonological voicing has no effect on the duration 

of the preceding vowel in a selected group. 

H1: Vowels that appear before phonologically voiced consonants have a longer duration than 

those which appear before voiceless consonants. 

The same hypothesis as in case 1. is tested, with the difference being that the data is tested 

separately for the two distinct categories, i.e., baseline and shadowing. It is based on the 
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possibility that the method of data elicitation may influence the results. In the baseline 

condition, where the speaker is not influenced by any other linguistic material, the expected 

mechanism may or may not appear. Generally, one can assume that in the case of shadowing, 

there would be a greater influence on the observed mechanism. The reason being that the 

speakers are directly influenced by the pronunciation patterns of native speakers, potentially 

leading to more significant differences in vowel duration before voiced and voiceless 

consonants. 

6.3 The influence of data elicitation method on the duration of the vowel 

preceding voiced consonant 

H0: The method of data elicitation has no effect on the duration of vowels preceding 

phonologically voiced consonants.  

H1: Duration of vowels preceding phonologically voiced consonants differ with regard to the 

character of data elicitation. 

This hypothesis tests the differences in vowel duration only before voiced consonants. The 

impact of the data elicitation method is examined, i.e., the vocal duration is compared both in 

the baseline group and in the shadowing group. Unlike with analysis 2, the influence of 

elicitation on the underlying mechanism is not observed - that is, it does not examine the 

differences in vowel duration based on whether the following consonant is voiced or voiceless. 

Instead, it focuses on whether the method of elicitation affects the duration of vowels within 

the same context (in this case, the context refers to the voicing of consonants following the 

vowel). By isolating the variable of the elicitation method, a more detailed view into whether 

the conditions of the experiment, such as baseline and shadowing, have a significant effect on 

vowel length. This is important in order to understand how external factors, e.g. the native 

speaker’s pronunciation patterns in shadowing, can alter the participant’s speech patterns 

compared to a more neutral baseline. 

6.4 The influence of data elicitation method on the duration of vowels 

preceding voiceless consonants 

H0: The method of data elicitation has no effect on the duration of vowels preceding 

phonologically voiceless consonants. 

H1: Duration of vowels preceding phonologically voiceless consonants differs with regard to 

the character of data elicitation. 
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The same hypothesis as in 3 is tested. However, this one is focused on the duration of vowels 

before voiceless consonants. The aim is to investigate whether the method of data elicitation 

influences the vowel duration in this specific context. 

6.5 Differences in consonant duration based on voicing 

H0: There is no difference in the duration of phonologically voiced and voiceless consonants. 

H1: Phonologically voiced consonants are shorter than phonologically voiceless consonants. 

This hypothesis is based on the assumption that vowels preceding voiced consonants are 

typically longer. Hence, the total duration of vowels and consonants should be approximately 

the same length, c.f.: “The vowel before a voiced coda is longer, and the coda itself is shorter, 

whereas the vowel preceding a voiceless consonant is shorter and the voiceless coda seems to 

compensate for this by being slightly longer.” (Kopecký, 2024, p.19) 

6.6 The relation between vowel and consonant duration 

H0:  There is no relation between the duration of vowels and consonants. 

H1: The longer the vowel, the shorter the consonant. 

As in the case of hypothesis 6.5, this hypothesis is based on the same assumption. However, it 

provides a more detailed examination of this relationship, as it is looked at within the context 

of a single word form. This method does not test solely the differences. It predicts that there 

will be a correlation between the duration of vowels and consonants. Specifically, it is expected 

that the longer the vowel, the shorter the consonant, and vice versa. This analysis should be 

applied to individual word forms to reduce the mixed effect. This specific approach helps to 

avoid the mixed effect that might arise from different words and contexts. It provides a clearer 

picture of the mechanism. 

6.7 The influence of the speaker’s gender 

All of the presented hypotheses can be tested based on gender as well, as all the categories can 

be divided accordingly. Just as the data can be split into the conditions of baseline and 

shadowing, it can also be divided by gender. 
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6.8 Differences in vowel duration based on consonant voicing - 

multidimensional analysis 

H0: There are no differences in vowel duration across the selected groups of data. 

H1: There are differences in vowel duration across the selected groups of data. 

This hypothesis involves a multidimensional analysis of four specific data groups. Namely, 

voiced-baseline, voiceless-baseline, voiced-shadowing, voiceless-shadowing. It is a variant of 

the test presented in 2. The groups combine the variables of the elicitation method and 

consonant voicing. This analysis should precede the one presented in 2. If the null hypothesis 

is rejected, then it makes sense to examine the differences as outlined in 2. However, if the null 

hypothesis is not rejected, it indicates that these factors do not affect the vowel duration, and 

there is typically no further testing. 

7 Results 

The results correspond to the order and areas of the observed topics and analyses discussed in 

the chapter about hypotheses. This is to ensure a structured and coherent presentation of the 

data. 

 

Ad 6.1 The influence of consonant quality in terms of voicing on the duration of the 

preceding vowel 

Table 2 presents values of vowel durations in contexts with voiced and voiceless consonants, 

providing several statistical measures: mean, median, standard deviation (SD), and Shapiro–

Wilk p-values. Firstly, the mean vowel length for voiced consonants is 0.1906 seconds, while 

for voiceless consonants, it is 0.1447 seconds. This indicates that, on average, vowels are longer 

when followed by voiced consonants. Secondly, the median values support this observation. 

The median vowel length is 0.1862 seconds for voiced consonants and 0.1374 seconds for 

voiceless consonants, confirming that vowels tend to be longer in the presence of voiced 

consonants. The standard deviation (SD) values give us insights into the variability of vowel 

lengths. For voiced consonants, the SD is 0.0713, indicating a wider spread of values around 

the mean. In contrast, the SD for voiceless consonants is 0.0580, suggesting less variability. 

This higher variability in the voiced context may reflect the influence of additional factors that 

affect vowel length. Lastly, to test the normal distribution of the data, one can use a Q-Q plot 

for visualization (Figure 2). In order to label the data as normally distributed, the ordered data 
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points are plotted in quantiles against the normal distribution. If the data follow the normal 

distribution, they lie close to a straight 45-degree line. If there are noticeable deviations from 

the straight line, the data are probably not normally distributed (Das et al., 2016). However, for 

an exact measurement of the normality, the use of the Shapiro-Wilk test is required. The 

Shapiro-Wilk p-values for both voiced and voiceless consonants are less than 0.001, indicating 

that the distribution of vowel lengths deviates from normality in both cases. This proves that 

the data is not normally distributed. Consequently, the Mann-Whitney U-test is used for a 

comparison of differences between vowel durations. Since the calculated p-value < 0.001, the 

null hypothesis is rejected (at the significance level α = 0.05), and we can conclude that, for 

these samples, vowel durations in contexts with voiced and voiceless consonants are 

statistically significant. 

 All the information derived from Table 2 can be visualized using a violin plot (Figure 

1). Once again, the voiced category shows a symmetrical distribution with a wider spread 

around the median, indicating higher variability. In contrast with the voiceless category which 

has a narrower distribution, indicating less variability. The visualization of the data distribution 

through Q-Q plots can be seen in Figure 2. 

 

 vDur_voiced  vDur_voiceless  

Mean  0,1906 0,1447 

Median  0,1862 0,1374 

SD 0,0713 0,0580 

Shapiro–Wilk, p-value <0.0001 <0.0001 

 

Table 2: Mean, median, and standard deviation of vowel durations for all data. vDur_voiced means the 

duration of vowels preceding voiced consonants, vDur_voiceless means the duration of vowels 

preceding voiceless consonants. P-values represent results of Shapiro-Wilk test which tested normal 

distribution of the data. 
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Figure 1: Graphs presenting data from Table 2. 

 

Figure 2: Q-Q plots presenting data from Table 2. 
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Ad 6.2. The influence of consonant quality in terms of voicing on the duration of the 

preceding vowel considering the type of elicitation 

A hypothesis considering the relationship between the vowel duration depending on the context 

is tested, analogically to the first hypothesis. However, in this case, the data are split into two 

groups based on the type of elicitation. Meaning that the hypothesis is first tested separately for 

the baseline data and for the shadowing ones. The aim here is to examine whether the baseline 

or shadowing conditions influence the validity of the hypothesis.  

When examining the first two columns of Table 3, which compare the voiced-baseline and 

voiceless-baseline, differences can be seen. The mean value for the voiced condition is 0.1750 

seconds, which is higher than the mean value for the voiceless condition at 0.1382 seconds. The 

median values are in accordance with this trend, further supporting the conclusion that, on 

average, the measurements for the voiced are greater than those for the voiceless. Looking at 

the standard deviation values, one can observe that it is higher for the voiced (0.0698) than for 

the voiceless (0.0589). This suggests a slightly greater variability within the data points in the 

first condition. Lastly, the Shapiro-Wilk test results for both conditions show p-values smaller 

than 0.001, meaning that both data groups significantly deviate from a normal distribution. As 

a result, the Mann-Whitney U-test is applied to compare the differences between the voiced and 

voiceless contexts. Given that the p-value is less than 0.001, the null hypothesis is rejected (at 

the significance level α = 0.05). The conclusion that there is a statistically significant difference 

in vowel durations between contexts with voiced and voiceless consonants is drawn. 

 Comparing vowel durations in voiced-shadowing and voiceless-shadowing conditions 

reveals similar differences as in the case above. Both mean and median values are higher for 

the voiced-shadowing condition than those for the voiceless. Marginal differences between their 

standard deviations are again evident, just as in the previous case, with the standard deviation 

for the voiced condition being slightly larger. The Shapiro-Wilk test p-values are both less than 

0.001, indicating that neither group follows a normal distribution. Using the Mann-Whitney U-

test to compare the voiced-shadowing and voiceless-shadowing conditions, we find that the 

calculated p-value is less than 0.001. This leads to the rejection of the null hypothesis (at the 

significance level α = 0.05), concluding that the differences in vowel durations between the 

voiced and voiceless contexts in shadowing conditions are statistically significant. 

 Despite the fact that statistically significant differences can be observed in both cases, 

the difference between voiced-baseline and voiceless-baseline is smaller than the difference 

between voiced-shadowing and voiceless-shadowing. If we assume that non-native speakers 

imitate what they hear (what is natural), then shadowing has an impact and the differences in 



25 

 

this category are larger. Specifically, the difference between median values for baseline 

conditions is 0.0418, whereas for shadowing conditions, it is 0.525. This confirms the 

assumption that people have a greater tendency to imitate during shadowing. Visualization of 

the data is presented in Figure 3 and Figure 4. 

 

  

v_Dur_voiced 

- baseline 

vDur_voiceless 

- baseline 

vDur_voiced 

- shadowing 

vDur_voiceless 

- shadowing 

Mean 0,1750 0,1382 0,1982 0,1477 

Median 0,1643 0,1225 0,1936 0,1411 

SD 0,0698 0,0589 0,0708 0,0573 

Shapiro–Wilk, p-value <0.0001 <0.0001 <0.0001 <0.0001 

 

Table 3: Mean, median, and standard deviation of vowel durations based on the type of elicitation. 

vDur_voiced - baseline means the duration of vowels preceding voiced consonants in baseline 

conditions, vDur_voiceless - baseline the means duration of vowels preceding voiceless consonants in 

baseline conditions, vDur_voiced - shadowing means the duration of vowels preceding voiced 

consonants in shadowing conditions, vDur_voiceless - shadowing means the duration of voiwels 

preceding voiceless consonants in shadowing conditions. P-values represent results of Shapiro-Wilk test 

which tested normal distribution of the data. 

 

 

Figure 3: Graphs presenting data from Table 3. 
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Figure 4: Q-Q plots presenting data from Table 3. 

 

Ad 6.3 The influence of data elicitation method on the duration of the vowel preceding 

voiced consonant 

Looking at specific columns from Table 3, the comparison between the “vDur_voiced – 

baseline” and “vDur_voiced – shadowing” conditions reveals some differences. The voiced - 

shadowing condition has a higher mean value (0.1982 seconds) compared to the voiced - 

baseline (0.1750 seconds), indicating an overall increase in the duration under shadowing. The 

median values also follow this trend, with the shadowing condition at 0.1936 seconds and the 

baseline at 0.1643 seconds, suggesting that the central value is higher for shadowing. The 

difference in their standard deviations is minimal, the specific values being 0.0708 for 

shadowing and 0.0698 for baseline condition. Both groups exhibit statistically significant 

deviations from normality, as indicated by the Shapiro-Wilk p-values being less than 0.001. 
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This proves that the data is not normally distributed. The Mann-Whitney U-test is used for 

comparison (since non-normal distribution of the data). Its p-value < 0.001, i.e., the null 

hypothesis is rejected (at the significance level α = 0.05), and we can conclude that there is a 

statistically significant difference between vowel duration (in voiced context) in a baseline 

group, on the one hand, and a group of shadowing, on the other. 

 

Ad 6.4 The influence of data elicitation method on the duration of vowels preceding 

voiceless consonants 

Moving onto other columns from Table 3 and comparing solely the “vDur_voiceless - baseline” 

and “vDur_voiceless - shadowing” conditions reveals distinct differences. The voiceless 

shadowing condition has a higher mean value (0.1477 seconds) compared to the voiceless 

baseline (0.1382 seconds), indicating higher vowel durations under shadowing. The median 

values also reflect this since its value in the shadowing condition is 0.1411 seconds and in the 

baseline 0.1225 seconds, suggesting a higher central tendency for shadowing. The standard 

deviation is, as in the previous case, almost the same. However, this time, the shadowing 

condition is slightly lower (0.0573) than the baseline (0.0589), implying a marginally lesser 

variability in the data. Both conditions show significant deviations from normality, as indicated 

by the Shapiro–Wilk p-values being less than 0.001. As in the previous cases, the Mann-

Whitney U-test is used for a comparison of differences between vowel durations. The calculated 

p-value = 0.022, therefore the null hypothesis is rejected (at the significance level α = 0.05), 

and we can conclude that the difference is statistically significant, although the significance 

level is lower than in previous cases. 

 

Ad 6.5 Differences in consonant duration based on voicing 

Table 4 exhibits data for an analysis of consonant duration based on voicing, comparing voiced 

and voiceless consonants. The mean duration of voiced consonants is 0.1229 seconds, while 

voiceless consonants have a longer mean duration, specifically 0.1535 seconds. Similarly, the 

median duration of voiced consonants is lower than the one for voiceless consonants, 0.1143 

and 0.1475 seconds. Based on the information, a conclusion that, on average, voiceless 

consonants last longer than voiced consonants can be drawn. The standard deviation of the 

durations is 0.0487 for voiced consonants and 0.0451 for voiceless consonants, indicating 

almost the same variability of the data. Lastly, both p-values of the Shapiro-Wilk test are less 

than 0.001, meaning that the durations do not follow a normal distribution. This proves that the 

data is not normally distributed. Therefore, the Mann-Whitney U-test is used for a comparison 



28 

 

of differences between consonant durations. The calculated p-value < 0.001 which means that 

the null hypothesis is rejected (at the significance level α = 0.05) and we can conclude that 

voiced consonants are significantly shorter than voiceless consonants. For the visualization of 

violin and Q-Q plots, see Figure 5 and Figure 6. 

 

  cDur_voiced cDur_Voiceless 

Mean 0,1229 0,1535 

Median 0,1143 0,1475 

SD 0,0487 0,0451 

Shapiro–Wilk, p-value <0.0001 <0.0001 

 

Table 4: Mean, median, and standard deviation of coda durations for all data. cDur_voiced means the 

duration of voiced codas, vDur_voiceless means the duration of voiceless codas. P-values represent 

results of Shapiro-Wilk test which tested normal distribution of the data. 

 

 

Figure 5: Graphs presenting data from Table 4. 
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Figure 6: Q-Q plots representing data from Table 4. 

 

Ad 6.6 The relation between vowel and consonant duration 

According to the hypothesis, the longer the vowel, the shorter the consonant. Thus, it is 

expected that there should be a negative correlation between durations of vowels and 

consonants. 

First, the correlation was observed for all data. The correlation coefficient measured by 

Kendall's τ is -0.134. This coefficient indicates a slight inverse relationship between the 

observed variables. In other words, as one variable increases, the other variable tends to 

decrease. The weak correlation suggests that while a trend of the variables moving in opposite 

directions can be observed, the relationship is not strong. However, the significance of the p-

value of the correlation indicates that even though it is a weak relationship, it is consistent and 

reliable across the dataset. Specifically, the p-value for this correlation coefficient is less than 

0.001, which is highly significant. Based on this value, one can state that the probability of 

observing such a correlation by random chance is less than 0.1%. Therefore, the rejection of 

the null hypothesis of no correlation can be done with a high degree of confidence. 

Further, the data are split into two groups, voiced and voiceless. For voiced data, the 

correlation coefficient τ = -0.103, indicating a weak inverse relationship (just as it is in the case 

of analyzing all the data). Similar to the overall data, the p-value is less than 0.001, which means 

this correlation is also statistically significant. This suggests that for voiced data, there is a 
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significant, however weak, inverse relationship. For the voiceless data, the correlation 

coefficient τ = -0.028, which is very close to zero. Such a small number indicates almost no 

relationship. In contrast with the two previous analyses (all data and voiced data), the p-value 

here is 0.269, which is not statistically significant. This means that there is no evidence of a 

significant correlation within the voiceless data. Visualizations of correlations are presented in 

Figure 7 and Figure 8. 

 

  Kendall's τ P-value 

All data -0,134 <0.001 

Voiced -0,103 <0.001 

Voiceless -0,028 0,269 

 

Table 5: Correlation coefficients between v_Dur and c_Dur measured by Kendall’s τ separately for 

groups of all data, voiced, and voiceless. 

 

 
Figure 7: Correlation between v_Dur and c_Dur, all data.  
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Figure 8: Correlation between v_Dur and c_Dur separately for voiced and voiceless categories. 

 

For a more detailed analysis, the individual words were tested separately (see Table 6). 

Avoiding the mixed effect was another reason for conducting these individual analyses. When 

the data were normally distributed, Pearson's correlation coefficient was used to assess 

relationships. For non-normally distributed data, Kendall's τ method was applied. This approach 

allows proper capture of the nuances in the data, ensuring that chosen correlation measures are 

appropriate for the distribution of each dataset. 

 The values of correlation coefficients and p-values for individual words can be seen in 

Table 6, with statistically significant correlations highlighted in bold. Specifically, for vowels 

preceding voiced consonants, there are seven statistically significant correlations and three non-

significant ones. In contrast, for vowels preceding voiceless consonants, there is only one 

statistically significant correlation and nine non-significant ones. The high number of 

statistically significant correlations for voiced environments suggests that the relationship is 

strong and consistent. This implies that the following voiced consonants have a meaningful and 

measurable impact on the duration of vowels. On the contrary, the results for vowels preceding 

voiceless consonants are quite different. With only one statistically significant correlation and 

nine non-significant ones, it appears that the voiceless consonants do not have a strong or 

consistent impact on the duration of preceding vowels. The majority of the relationships for 
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voiceless vowels are weak or not strong enough to rule out random chance as the deciding 

factor. 

 

Word Pearson’s ρ Kendall's τ P-value Voicing 

bad  -0,174 0,031 yes 

bat -0,135  0,258 no 

bed  -0,171 0,038 yes 

bet  -0,119 0,143 no 

calf  -0,104 0,205 no 

calve  -0,172 0,038 yes 

cub -0,306  <0.001 yes 

cup -0,129  0,285 no 

dock -0,340  0,003 no 

dog -0,313  <0.001 yes 

gab -0,174  0,033 yes 

gap -0,166  0,165 no 

hid  -0,120 0,143 yes 

hit 0,036  0,770 no 

peck -0,228  0,054 no 

peg -0,192  0,109 yes 

seat -0,223  0,061 no 

seed  -0,051 0,669 yes 

tab  -0,254 0,002 yes 

tap -0,089  0,273 no 

 

 

Table 6: Correlation coefficients measured by Pearson’s ρ and Kendall's τ for individual words, their 

p-values, and the status of the consonant in terms of phonological voicing. 
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Figure 9: Correlations between v_Dur and c_Dur for individual words (only those with statistically 

significant correlations). 

 

Ad 6.7 The influence of the speaker’s gender 

It is possible to test all of the mentioned hypotheses based on gender as well. To avoid the 

mechanical repetition of applying hypotheses to data divided by gender, I will illustrate this by 

providing only an analysis of the relationship between vowel duration before voiced consonants 

for both men and women. 

The analysis of vowels preceding voiced consonants for men and women reveals 

differences in their duration. For men, the mean duration of these vowels is 0.1978 seconds, 

with a median of 0.1915 seconds and a standard deviation of 0.0839. In contrast, values for 

women are smaller, with a mean duration of 0.1876 seconds, a median of 0.1855 seconds, and 

a standard deviation of 0.0653. The Shapiro-Wilk p-value is less than 0.001 in both cases, 
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meaning that data in either of these groups are not normally distributed. The p-value of the 

Mann-Whitney U-test is 0.2878. Thus, the null hypothesis is not rejected (at the significance 

level α = 0.05). Based on this test, we conclude that there is no statistically significant difference 

in the duration of vowels in front of voiced consonants between women and men. The very 

same trend is also visible in case of the duration of vowels before voiceless consonants (p-value 

= 0.4792). See Figure 10 and Figure 11 for visualization of the data presented in Table 7. 

 

  

vDur_Voiced 

- men 

vDur_Voiceless 

- men 

vDur_Voiced 

- women 

vDur_Voiceless 

- women 

Mean  0,1978 0,1483 0,1876 0,1430 

Median  0,1915 0,1453 0,1855 0,1341 

SD 0,0839 0,0632 0,0653 0,0558 

Shapiro–Wilk, p-value 0,001 <0.0001 <0.0001 <0.0001 

 

Table 7: Mean, median, and standard deviations of v_Dur with respect to gender and the status of the 

consonant in terms of phonological voicing. 

 

 
Figure 10: Graphs presenting data from Table 7. 
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Figure 11: Q-Q plots representing data from Table 7. 

 

Ad 6.8 Differences in vowel duration based on consonant voicing - multidimensional 

analysis 

Referring back to Table 3, which presents the statistical measures for four different groups, 

namely, “v_Dur_voiced – baseline”, “v_Dur_voiceless – baseline”, “v_Dur_voiced – 

shadowing”, and “v_Dur_voiceless - shadowing”. In this section, the results of the 

multidimensional analysis are presented. In other words, the differences in values within a 

sample consisting of four different groups are tested. Since the data distribution in each group 

does not exhibit normal distribution, the Kruskal-Wallis test is used. This non-parametric test 

gives a p-value less than 0.001. Hence, significant differences in at least one group’s mean 

compared to others occur. It is important to highlight that in the context of analyzing a specific 

experiment, this test would be used as the initial step in determining statistically significant 

differences across observed groups. 
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 All the phenomena can be seen also in visualizations in Figure 3 and Figure 4. 

8 Other Methods 

I would like to emphasize that the methods previously mentioned are far from being the only 

possible and ideal way of analyzing given material. Like all statistical methods, they have their 

own limitations and weaknesses. I am well aware that in addition to these methods I have 

presented, there are other more complex methods commonly used in phonetics. In some cases, 

these methods are capable of handling the phonetic data more effectively. In this section, I will 

briefly introduce some of the other methods which are possible to use in these kinds of research. 

 One of the possible methods of analyzing data that is commonly used in phonetics is 

called Linear Mixed Models. Matuschek et al. (2017) argue that “[l]inear mixed-effects models 

have increasingly replaced mixed-model analyses of variance for statistical inference in 

factorial psycholinguistic experiments.” (p. 305) They attribute the shift from ANOVA to linear 

mixed-effect models (LMMs) to substantial advantages that LMMs have over more traditional 

methods. One of the most significant benefits is their ability to analyze nested data structures, 

which are frequently encountered in research with repeated measures or clustered data. Further, 

LMMs can simultaneously account for both fixed and random effects, which helps in 

controlling for variability that comes from subject-specific and item-specific differences, 

leading to more accurate results. They are also better at managing missing data efficiently, 

ensuring that the integrity of the analysis is maintained even when data is incomplete. Overall, 

by allowing researchers to explore relationships between variables more precisely than 

traditional ANOVA, LMMs have become the preferred choice for many researchers. 

(Matuschek et al., 2017) 

 Next, Vasishth et al. (2018) introduce another possible method, namely Bayesian data 

analysis. In their paper, they go into detail about Bayesian linear mixed models in combination 

with one of the statistical programming languages, R. A step-by-step tutorial of fitting a dataset 

with information about voice onset times is presented. Apart from this thorough analysis, the 

advantages of using this method are highlighted as well. As one of the benefits of Bayesian 

methods, Vashishth et al. (2018) point out that “researchers can (i) flexibly define the 

underlying process that they believe to have generated the data; (ii) obtain direct information 

regarding the uncertainty about the parameter that relates the data to the theoretical question 

being studied.” (p. 174) Additionally, the fact that Bayesian models provide flexibility in 
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defining models and the ability to quantify uncertainty through credible intervals rather than 

binary significance tests is emphasized. 

9 Conclusion 

The goal of this bachelor’s thesis was to present various statistical methods and their application 

in phonetic research. Given that this thesis was also intended to serve as a kind of guide for 

students who are not familiar with statistics and are interested in conducting their analyses. 

Basic procedures were described and explained. Furthermore, the possibilities of different 

hypotheses derived from a single dataset were discussed in detail. Eight specific problems were 

identified, and for each, one or two statistically testable hypotheses were set up. Detailed 

descriptions of the analyses were provided, along with justifications for the selection of 

statistical tests. 

 Initially, the main characteristics of empirical research based on statistical testing were 

introduced. Further, the significance of understanding the properties of different types of 

variables involved in statistical testing was discussed. Formal properties that statistically 

testable hypotheses must be fulfilled were considered. Next, I presented standard statistical tests 

such as the Shapiro-Wilk test, t-test, Analysis of Variance, Mann-Whitney U-test, etc. The 

character of each test, its limits, and specific contexts of use were discussed, as well as cases 

where these tests are appropriate and where not. The application of these methods was 

demonstrated using data from Kopecký’s (2023) master thesis on the imitation of English vowel 

duration variability by Czech learners. Finally, other possible tests were briefly introduced. 
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Appendices 

Appendix 1: R script for the data analysis 

# Loading data 

# By executing the following command a pop-up window will open  

# select the file cechova_data_for_bc_thesis.csv from you PC 

data <- read.csv(file=choose.files(), header=TRUE) 

 

# Ad 6.1 The influence of consonant quality in terms of voicing on the duration of the 

preceding vowel 

mean(na.omit(data$all_vdur_voiced)) 

median(na.omit(data$all_vdur_voiced)) 

sd(na.omit(data$all_vdur_voiced)) 

shapiro.test(na.omit(data$all_vdur_voiced)) 

 

mean(na.omit(data$all_vdur_voiceless)) 

median(na.omit(data$all_vdur_voiceless)) 

sd(na.omit(data$all_vdur_voiceless)) 

shapiro.test(na.omit(data$all_vdur_voiceless)) 

 

wilcox.test(na.omit(data$all_vdur_voiced), na.omit(data$all_vdur_voiceless)) 

 

# Ad 6.2. The influence of consonant quality in terms of voicing on the duration of the 

preceding vowel  

# considering the type of elicitation 

 

mean(na.omit(data$baseline_vdur_voiced)) 

median(na.omit(data$baseline_vdur_voiced)) 

sd(na.omit(data$baseline_vdur_voiced)) 

shapiro.test(na.omit(data$baseline_vdur_voiced)) 

 

mean(na.omit(data$baseline_vdur_voiceless)) 

median(na.omit(data$baseline_vdur_voiceless)) 
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sd(na.omit(data$baseline_vdur_voiceless)) 

shapiro.test(na.omit(data$baseline_vdur_voiceless)) 

 

wilcox.test(na.omit(data$baseline_vdur_voiced), na.omit(data$baseline_vdur_voiceless)) 

 

mean(na.omit(data$shadowing_vdur_voiced)) 

median(na.omit(data$shadowing_vdur_voiced)) 

sd(na.omit(data$shadowing_vdur_voiced)) 

shapiro.test(na.omit(data$shadowing_vdur_voiced)) 

 

mean(na.omit(data$shadowing_vdur_voiceless)) 

median(na.omit(data$shadowing_vdur_voiceless)) 

sd(na.omit(data$shadowing_vdur_voiceless)) 

shapiro.test(na.omit(data$shadowing_vdur_voiceless)) 

 

wilcox.test(na.omit(data$shadowing_vdur_voiced), 

na.omit(data$shadowing_vdur_voiceless)) 

 

# Ad 6.3 The influence of data elicitation method on the duration of the vowel preceding 

voiced consonant 

 

wilcox.test(na.omit(data$baseline_vdur_voiced), na.omit(data$shadowing_vdur_voiced)) 

 

# Ad 6.4 The influence of data elicitation method on the duration of vowels preceding 

voiceless consonants 

 

wilcox.test(na.omit(data$baseline_vdur_voiceless), 

na.omit(data$shadowing_vdur_voiceless)) 

 

# Ad 6.5 Differences in consonant duration based on voicing 

 

mean(na.omit(data$cdur_voiced)) 

median(na.omit(data$cdur_voiced)) 

sd(na.omit(data$cdur_voiced)) 
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shapiro.test(na.omit(data$cdur_voiced)) 

 

mean(na.omit(data$cdur_voiceless)) 

median(na.omit(data$cdur_voiceless)) 

sd(na.omit(data$cdur_voiceless)) 

shapiro.test(na.omit(data$cdur_voiceless)) 

 

wilcox.test(na.omit(data$cdur_voiced), na.omit(data$cdur_voiceless)) 

 

# Ad 6.6 The relation between vowel and consonant duration 

# all data 

shapiro.test(na.omit(data$all_vdur)) 

shapiro.test(na.omit(data$all_cdur)) 

 

cor.test(data$all_vdur, data$all_cdur, method = "kendall") 

 

# voiced 

shapiro.test(na.omit(data$voiced_vdur)) 

shapiro.test(na.omit(data$voiced_cdur)) 

 

cor.test(data$voiced_vdur, data$voiced_cdur, method = "pearson") 

 

# voiceless 

shapiro.test(na.omit(data$voiceless_vdur)) 

shapiro.test(na.omit(data$voiceless_vdur)) 

 

cor.test(data$voiceless_vdur, data$voiceless_cdur, method = "kendall") 

 

# bad 

shapiro.test(na.omit(data$bad_vdur)) 

shapiro.test(na.omit(data$bad_cdur)) 

 

cor.test(data$bad_vdur, data$bad_cdur, method = "kendall") 
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# bat 

shapiro.test(na.omit(data$bat_vdur)) 

shapiro.test(na.omit(data$bat_cdur)) 

 

cor.test(data$bat_vdur, data$bat_cdur, method = "kendall") 

 

# bed 

shapiro.test(na.omit(data$bed_vdur)) 

shapiro.test(na.omit(data$bed_cdur)) 

 

cor.test(data$bed_vdur, data$bed_cdur, method = "kendall") 

 

# bet 

shapiro.test(na.omit(data$bet_vdur)) 

shapiro.test(na.omit(data$bet_cdur)) 

 

cor.test(data$bet_vdur, data$bet_cdur, method = "kendall") 

 

# calf 

shapiro.test(na.omit(data$calf_vdur)) 

shapiro.test(na.omit(data$calf_cdur)) 

 

cor.test(data$calf_vdur, data$calf_cdur, method = "kendall") 

 

# calve 

shapiro.test(na.omit(data$calve_vdur)) 

shapiro.test(na.omit(data$calve_cdur)) 

 

cor.test(data$calve_vdur, data$calve_cdur, method = "kendall") 

 

# cub 

shapiro.test(na.omit(data$cub_vdur)) 

shapiro.test(na.omit(data$cub_cdur)) 
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cor.test(data$cub_vdur, data$cub_cdur, method = "pearson") 

 

# cup 

shapiro.test(na.omit(data$cup_vdur)) 

shapiro.test(na.omit(data$cup_cdur)) 

 

cor.test(data$cup_vdur, data$cup_cdur, method = "pearson") 

 

# dock 

shapiro.test(na.omit(data$dock_vdur)) 

shapiro.test(na.omit(data$dock_cdur)) 

 

cor.test(data$dock_vdur, data$dock_cdur, method = "pearson") 

 

# dog 

shapiro.test(na.omit(data$dog_vdur)) 

shapiro.test(na.omit(data$dog_cdur)) 

 

cor.test(data$dog_vdur, data$dog_cdur, method = "pearson") 

 

# gab 

shapiro.test(na.omit(data$gab_vdur)) 

shapiro.test(na.omit(data$gab_cdur)) 

 

cor.test(data$gab_vdur, data$gab_cdur, method = "pearson") 

 

# gap 

shapiro.test(na.omit(data$gap_vdur)) 

shapiro.test(na.omit(data$gap_cdur)) 

 

cor.test(data$gap_vdur, data$gap_cdur, method = "pearson") 

 

# hid 

shapiro.test(na.omit(data$hid_vdur)) 
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shapiro.test(na.omit(data$hid_cdur)) 

 

cor.test(data$hid_vdur, data$hid_cdur, method = "kendall") 

 

# hit 

shapiro.test(na.omit(data$hit_vdur)) 

shapiro.test(na.omit(data$hit_cdur)) 

 

cor.test(data$hit_vdur, data$hit_cdur, method = "pearson") 

 

# peck 

shapiro.test(na.omit(data$peck_vdur)) 

shapiro.test(na.omit(data$peck_cdur)) 

 

cor.test(data$peck_vdur, data$peck_cdur, method = "pearson") 

 

# peg 

shapiro.test(na.omit(data$peg_vdur)) 

shapiro.test(na.omit(data$peg_cdur)) 

 

cor.test(data$peg_vdur, data$peg_cdur, method = "pearson") 

 

# seat 

shapiro.test(na.omit(data$seat_vdur)) 

shapiro.test(na.omit(data$seat_cdur)) 

 

cor.test(data$seat_vdur, data$seat_cdur, method = "pearson") 

 

# seed 

shapiro.test(na.omit(data$seed_vdur)) 

shapiro.test(na.omit(data$seed_cdur)) 

 

cor.test(data$seed_vdur, data$seed_cdur, method = "kendall") 
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# tab 

shapiro.test(na.omit(data$tab_vdur)) 

shapiro.test(na.omit(data$tab_cdur)) 

 

cor.test(data$tab_vdur, data$tab_cdur, method = "kendall") 

 

# tap 

shapiro.test(na.omit(data$tap_vdur)) 

shapiro.test(na.omit(data$tap_cdur)) 

 

cor.test(data$tap_vdur, data$tap_cdur, method = "pearson") 

 

# Ad 6.7 The influence of speakerâ€™s gender 

 

mean(na.omit(data$men_vdur_voiced)) 

median(na.omit(data$men_vdur_voiced)) 

sd(na.omit(data$men_vdur_voiced)) 

shapiro.test(na.omit(data$men_vdur_voiced)) 

 

mean(na.omit(data$men_vdur_voiceless)) 

median(na.omit(data$men_vdur_voiceless)) 

sd(na.omit(data$men_vdur_voiceless)) 

shapiro.test(na.omit(data$men_vdur_voiceless)) 

 

mean(na.omit(data$women_vdur_voiced)) 

median(na.omit(data$women_vdur_voiced)) 

sd(na.omit(data$women_vdur_voiced)) 

shapiro.test(na.omit(data$women_vdur_voiced)) 

 

mean(na.omit(data$women_vdur_voiceless)) 

median(na.omit(data$women_vdur_voiceless)) 

sd(na.omit(data$women_vdur_voiceless)) 

shapiro.test(na.omit(data$women_vdur_voiceless)) 
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wilcox.test(na.omit(data$men_vdur_voiced), na.omit(data$women_vdur_voiced)) 

 

# Ad 6.8 Differences in vowel duration based on consonant voicing - multidimensional 

analysis 

 

values = c(data$baseline_vdur_voiced, data$baseline_vdur_voiceless, 

           data$shadowing_vdur_voiced, data$shadowing_vdur_voiceless) 

group = factor(c(rep(1, length(data$baseline_vdur_voiced)), rep(2, 

length(data$baseline_vdur_voiceless)),  

                 rep(3, length(data$shadowing_vdur_voiced)), rep(4, 

length(data$shadowing_vdur_voiceless)))) 

 

data <- data.frame(values, group) 

kruskal_result <- kruskal.test(values ~ group, data = data) 

print(kruskal_result) 

 

Appendix 2: R script for plots 

library(vioplot) 

# Loading data 

# By executing the following command a pop-up window will open  

# select the file cechova_data_for_bc_thesis.csv from you PC 

data <- read.csv(file=choose.files(), header=TRUE) 

 

# fig01 

vioplot(data$all_vdur_voiced, data$all_vdur_voiceless, names = c("voiced", "voiceless"),  

        col = c("grey40", "gray50"), ylim = c(0,0.6)) 

title(ylab = "s") 

 

# fig02 

par(mfrow = c(1, 2)) 

qqnorm(data$all_vdur_voiced, ylim = c(0,0.5), main = "Voiced") 

qqline(data$all_vdur_voiced, col = "red", lwd = 2) 
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qqnorm(data$all_vdur_voiceless, ylim = c(0,0.5), main = "Voiceless") 

qqline(data$all_vdur_voiceless, col = "red", lwd = 2) 

par(mfrow = c(1, 1)) 

 

# fig03 

vioplot(data$baseline_vdur_voiced, data$baseline_vdur_voiceless,  

        data$shadowing_vdur_voiced, data$shadowing_vdur_voiceless,  

        names = c("voiced-baseline", "voiceless-baseline", "voiced-shadowing", "voiceless-

shadowing"),  

        col = c("grey40", "gray50", "gray60", "gray70"), ylim = c(0,0.6)) 

title(ylab = "s") 

 

# fig04 

par(mfrow = c(2, 2)) 

qqnorm(data$baseline_vdur_voiced, ylim = c(0,0.5), main = "Voiced-baseline") 

qqline(data$baseline_vdur_voiced, col = "red", lwd = 2) 

qqnorm(data$baseline_vdur_voiceless, ylim = c(0,0.5), main = "Voiceless-baseline") 

qqline(data$baseline_vdur_voiceless, col = "red", lwd = 2) 

qqnorm(data$shadowing_vdur_voiced, ylim = c(0,0.5), main = "Voiced-shadowing") 

qqline(data$shadowing_vdur_voiced, col = "red", lwd = 2) 

qqnorm(data$shadowing_vdur_voiceless, ylim = c(0,0.5), main = "Voiceless-shadowing") 

qqline(data$shadowing_vdur_voiceless, col = "red", lwd = 2) 

par(mfrow = c(1, 1)) 

 

# fig05 

vioplot(data$cdur_voiced, data$cdur_voiceless, names = c("voiced", "voiceless"),  

        col = c("grey40", "gray50"), ylim = c(0,0.6)) 

title(ylab = "s") 

 

# fig06 

par(mfrow = c(1, 2)) 

qqnorm(data$cdur_voiced, ylim = c(0,0.5), main = "Voiced") 

qqline(data$cdur_voiced, col = "red", lwd = 2) 

qqnorm(data$cdur_voiceless, ylim = c(0,0.5), main = "Voiceless") 
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qqline(data$cdur_voiceless, col = "red", lwd = 2) 

par(mfrow = c(1, 1)) 

 

# fig07 

plot(data$all_vdur,data$all_cdur, xlab = "vowel duration", ylab = "coda duration",  

     xlim = c(0,0.5), ylim = c(0,0.5)) 

 

# fig08 

par(mfrow = c(1, 2)) 

plot(data$voiced_vdur,data$voiced_cdur, xlab = "vowel duration", ylab = "coda duration",  

     xlim = c(0,0.5), ylim = c(0,0.5), main ="voiced") 

plot(data$voiceless_vdur,data$voiceless_cdur, xlab = "vowel duration", ylab = "coda 

duration",  

     xlim = c(0,0.5), ylim = c(0,0.5), main ="voiceless") 

par(mfrow = c(1, 1)) 

 

# fig09 

par(mfrow = c(3, 3)) 

 

plot(data$bad_vdur,data$bad_cdur, xlab = "vowel duration", ylab = "coda duration",  

     xlim = c(0,0.5), ylim = c(0,0.5), main ="bad") 

 

plot(data$bed_vdur,data$bed_cdur, xlab = "vowel duration", ylab = "coda duration",  

     xlim = c(0,0.5), ylim = c(0,0.5), main ="bed") 

 

plot(data$calve_vdur,data$calve_cdur, xlab = "vowel duration", ylab = "coda duration",  

     xlim = c(0,0.5), ylim = c(0,0.5), main ="calve") 

 

plot(data$cub_vdur,data$cub_cdur, xlab = "vowel duration", ylab = "coda duration",  

     xlim = c(0,0.5), ylim = c(0,0.5), main ="cub") 

 

plot(data$dock_vdur,data$dock_cdur, xlab = "vowel duration", ylab = "coda duration",  

     xlim = c(0,0.5), ylim = c(0,0.5), main ="dock") 
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plot(data$dog_vdur,data$dog_cdur, xlab = "vowel duration", ylab = "coda duration",  

     xlim = c(0,0.5), ylim = c(0,0.5), main ="dog") 

 

plot(data$gab_vdur,data$gab_cdur, xlab = "vowel duration", ylab = "coda duration",  

     xlim = c(0,0.5), ylim = c(0,0.5), main ="gab") 

 

plot(data$tab_vdur,data$tab_cdur, xlab = "vowel duration", ylab = "coda duration",  

     xlim = c(0,0.5), ylim = c(0,0.5), main ="tab") 

 

par(mfrow = c(1, 1)) 

 

# fig10 

vioplot(data$men_vdur_voiced, data$men_vdur_voiceless, data$women_vdur_voiced, 

data$women_vdur_voiceless,  

        names = c("voiced-men", "voiceless-men", "voiced-women", "voiceless-women"),  

        col = c("grey40", "gray50", "gray60", "gray70"), ylim = c(0,0.6)) 

title(ylab = "s") 

 

# fig11 

par(mfrow = c(2, 2)) 

qqnorm(data$men_vdur_voiced, ylim = c(0,0.5), main = "Voiced-men") 

qqline(data$men_vdur_voiced, col = "red", lwd = 2) 

qqnorm(data$men_vdur_voiceless, ylim = c(0,0.5), main = "Voiceless-men") 

qqline(data$men_vdur_voiceless, col = "red", lwd = 2) 

qqnorm(data$women_vdur_voiced, ylim = c(0,0.5), main = "Voiced-women") 

qqline(data$women_vdur_voiced, col = "red", lwd = 2) 

qqnorm(data$women_vdur_voiceless, ylim = c(0,0.5), main = "Voiceless-women") 

qqline(data$women_vdur_voiceless, col = "red", lwd = 2) 

par(mfrow = c(1, 1)) 
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