
í) y)
VYSOKÉ UCENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

J)
FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ
FACULTY OF INFORMATION T E C H N O L O G Y
D E P A R T M E N T OF INFORMATION SYSTEMS

NOVÝ ÚSVIT POJMENOVÁVÁNÍ, ADRESOVÁNÍ A
SMĚROVÁNÍ NA INTERNETU
A NEW DAWN OF NAMING, ADDRESSING AND ROUTING ON THE INTERNET

TEZE K DIZERTACNI PRACI
DISSERTATION THESIS NOTES

AUTOR PRÁCE Ing. Vladimír VESELÝ
AUTHOR

VEDOUCÍ PRÁCE Prof. Ing. Miroslav ŠVÉDA, CSc.
SUPERVISOR

BRNO 2 0 1 3 - 2 0 1 5

Abstrakt

Internet roku 2015 se potýká s problémy, které jsou důsledky špatného designu pojmenovávání a
adresování v TCP/IP a jež mají přeneseny vliv i na škálovatelnost směrování. Problémy jako růst páteřních
směrovacích tabulek, neefektivní multihoming sítí či mobilita zařízení a mnohé další zadávají k otázce,
jestli není třeba architekturu Internetu pozměnit. V teoretické části je kvantifikován dopad problémů,
možná řešení a zejména je formálně definována teorie kompilující poznatky významných publikací
zabývajících se problematikou pojmenování, adresování a směrování v počítačových sítí. Tato práce se
zabývá dvěma konkrétními technologiemi, jež mají ambicí Internet měnit - Locator/Id Separation
Protocol a Recursive InterNetwork Architecture. Výstupem práce jsou vylepšení funkcionality obou výše
zmíněných technologií. Za účelem praktického ověření dopadů našeho výzkumu jsou vyvinutý a popsány
nové simulační modely pro OMNeT++, které jsou věrné úrovni detailu popisu ze specifikací.

Klíčová slova
Internetová architektura, pojmenovávání a adresování, směrování, oddělení lokátorů a identifikátorů,
LISP, rekurzivní mezisíťová architektura, RINA, OMNeT++

Abstract

Internet of the year 2015 struggles with problems that are just implications of flawed naming and
addressing the concept of TCP/IP, which have an impact on overall routing scalability. Problems such
as default-free zone routing table growth, cumbersome multihoming or mobility motivate question
whether the Internet deserves major architecture redesign. In the theoretical part, the impact of problems
above is evaluated, solutions are discussed and unifying theory compiled and described using formal
methods taking into account revered papers about naming, addressing and routing. This work provides
in-depth Investigation of two technologies - Locator/Id Separation Protocol a Recursive InterNetwork
Architecture. Research contribution is an operational improvement of technologies mentioned above.
New OMNeT++, full-fledged simulation modules compliant with behavior in the specification are used
to as verification tool.

Keywords

Internet architecture, naming and addressing, routing, locator/id split, LISP, Recursive InterNetwork
Architecture, RPNA, OMNeT++

i

Contents
1 Introduction 1
2 Networking Fundamentals 2

2.1 Present Problems of Internet 2
2.1.1 Routing Scalability 3
2.1.2 Decoupling Identification and Location 4
2.1.3 Multihoming 5
2.1.4 Mobility 6
2.1.5 Traffic Engineering 7
2.1.6 Renumbering V

2.2 Burden on Control Plane 8
2.3 Chapter Summary 8

3 Naming and Addressing Concepts 9
3.1 Basic Terminology 9
3.2 Theory 12
3.3 Possible Solution 15

3.3.1 Ideal Solution Properties 15
3.3.2 Existing Proposals 15
3.3.3 Proposals Comparison 18

3.4 Chapter Summary 20
4 Locator/ID Separation Protocol 21

4.1 Overview 21
4.1.1 Tunneling 21
4.1.2 Mapping System 23
4.1.3 Coexistence between LISP and Non-LISP 24

4.2 State-of-the-Art 25
4.3 Contribution 25

4.3.1 Map-Cache Synchronization 26
4.3.2 Merged RLOC Probing 30
4.3.3 Results 31

4.4 Chapter Summary 36
5 Recursive Internet Architecture 38

5.1 Overview 38
5.1.1 Nature of Applications and Application Protocols 38
5.1.2 Core Terms 39
5.1.3 Connection-oriented vs. Connectionless 40
5.1.4 Delta-t Synchronization 40
5.1.5 Separation of Mechanism and Policy 40
5.1.6 Naming and Addressing 41

5.2 RINA Components 42
5.2.1 Nodes 42
5.2.2 IPC Management Components 43
5.2.3 IPC Process Components 43

5.3 Contribution 53
5.3.1 Installation 54
5.3.2 Design 54

5.4 Chapter Summary 60
6 Conclusion 61

6.1 Summary about LISP 61
6.2 Summary about RINA 62
6.3 Future Work 63

7 Bibliography 64

ii

1 Introduction
§j? -"Yesterday is gone. Tomorrow has not yet come. We have only today.Let us begin." Mother Teresa
§<g> What are goals and motivations of this thesis?

Nowadays Internet routing and addressing concept are facing a variety of challenges that were not so
apparent in early days of the TCP/IP stack. Among those challenges, there are multihoming, mobility,
traffic engineering, renumbering, node (a.k.a. device1) localization and identification and routing
scalability connected with the growth of the global routing tables.

IRTF's R R G 2 was, and IETF's I A B 3 is for a long time in charge of observing trends in routing,
collecting statistics and suggesting architectural recommendations influencing tendencies in future
networking. In this thesis, we try to describe and evaluate the impact of these trends. Moreover, we
gather relevant proposals and compare them with each other. Among documents and proposals
discussed by IAB, there were also Locator/ID Separation Protocol (LISP) and Recursive Internet
Architecture (RINA) that received both positive and also negative reviews. We believe that both of them
are addressing the same fundamental issues (which serve as the motivation behind our research), but
they employ a very different approaches. While the first one is trying to repair the most apparent
problems using existing architecture. The objective of the second one is to redeem the Internet from
scratch as the clean-slate architecture.

The encompassing (and challenging) dissertation goal is to define general naming and
addressing theory. Moreover, we want to investigate properties of this theory regarding the impact on
the routing. Because nothing impacts routing more (in either positive or negative way) than how names
and addresses are employed to network objects. The underlying goal of this dissertation is to provide a
detailed technical overview and analysis of two technologies (LISP and RINA) aimed at improving the
current problems of the Internet. The contribution lies in enhancing LISP cache management algorithm
and related data transfer to improve its performance. Moreover, we verified LISP contribution
functionality with own accurate simulation models. For RINA, fundamental concepts were formalized
using finite-state machine diagrams and a comprehensive set of simulation models was developed.
Besides these two main achievements, this thesis provides a deep review of the building blocks of
internetworking with the focus on naming and addressing concepts. The aim of the thesis is to shed more
lights on the fundamental problems of the current Internet architecture and to evaluate the two of
possible solutions

The thesis is divided into the following chapters. Chapter 2 provides an overview of current
weaknesses of the Internet and describes factors that influence them. Chapter 3 outlines a general theory
for addressing and naming using formalism and compares proposed or existing solutions. Chapter 4
presents protocol LISP, its implementation in simulator environment and covers proposed control plane
improvements together with the measured impact of this proposal on the overall operation. Chapter 5
delineates RINA and its approach towards the system of recursive encapsulation of one general layer,
and then it focuses on its globally first simulator implementation and measured aspects. Chapter 6 draws
conclusions from the research outcomes.

1 Node or Device: With reference of this thesis it is any equipment connected to Internet capable of communication.
E.g. routers, switches, computers, etc.
2 Routing Research Group (RRG). For more, please visit website of this former ad hoc group
https://trac.tools.ietf.org/group/irtf/trac/wiki/RoutingResearchGroup.
3 Internet Architecture Board (IAB). For more, please visit https://www.iab.org/.

i

https://trac.tools.ietf.org/group/irtf/trac/wiki/RoutingResearchGroup
https://www.iab.org/

2 Networking Fundamentals
§j? -"You realize that our mistrust of the future makes it hard to give up the past." Chuck Palahniuk
§<g> What problems are tormenting the Internet now?

If we want to be thorough when describing theoretical fundaments for this thesis, we need to start with
the high-level overview of networking and work down to low-level parts. The Internet as technology is
continuing sequence of evolutional steps. However, since its beginning it is all about few basic principles
that had not changed. Internet architecture is about best-effort communication with global connectivity
across the simple but resilient network where intelligence is on the end-to-end basis rather than hidden
in the network as RFC 1958 [1] stated.

The goal of this chapter is to point out present problems of the Internet and discuss their impact
on routing table size and control plane load.

Among some driven factors of nowadays Internet [2] are:

• the widespread availability of wireless (including Wi-Fi and cellular networks) connectivity
allowing more non-PC devices perform ad hoc connections;

• deployment of virtualization increasing the number of logical computing systems;
• more cloud computing and peer-to-peer applications changing traffic characteristics towards

less deterministic and stochastic models of CDNs 4 ;
• reaching the Zettabyte era more quickly due to the overall increase in broadband speeds.

Issues below are only consequences of Internet usage, which are completely different comparing
to Internet conventions and user base 30 years ago.

What we are experiencing is that more and more hosts5 and routers6 are connected to the
Internet every day using different wired and/or wireless technologies. Also growing the amount of
transferred data comes hand to hand with an increasing number of users. Paths between nodes on the
Internet are becoming shorter, faster, more redundant and more reliable. More existing IPv4 addresses
are used as Provider Independent (PI)7 rather than Provider Aggregatable (PA)8 addresses of Internet
Service Provider (ISP)9. The free IPv4 address space is depleted, and IPv6 is still fighting to reach at
least 5% of overall traffic (see [3] as a representative statistic example of mid-size NREN 1 0) despite the
fact that it has been more than 17 years since its standardization.

During last years, lots of discussions were held (for more general information, please see [4],
[5] and [6]) whether current Internet architecture could sustain its expansion in the middle and long
range future. Somebody argues that new better resources are being invented faster than available
technology could keep up tempo with them. Somebody disagree that every resource has physical
boundaries that cannot be passed on, and that pose as a limiting factor. Nevertheless, the impact of the

4 Content delivery network (CDN). For more, see https://en.wikipedia.org/wiki/Content delivery network.
5 Host: Device that can send/receive packets, but does not participate in forwarding of packets.
6 Router: Device that forwards packets across the network layer.
7 Provider Independent (PI) addresses: Address prefix that organization receives from its Regional Internet
Registry (RIR). Benefits of using PI addresses relies in fact that if organization needs to change ISP then it does
not need to renumber its address space. ISP change means just slight change of routing information propagated to

8 Provider Aggregatable (PA) addresses: Address prefix that organization receives from its provider. The PA
address advantage is that all networks of a given ISP - components of ISP's address space - could be replaced
with single aggregate prefix propagated to DFZ.
9 Numbering of Internet is govern by Internet Corporation for Assigned Names and Numbers (ICANN)
organization which assigns available prefixes to RIRs. RIR delegates prefixes to Local Internet Registries (LIR)
which carry out assignments of address to their customers. LIRs usually operate as ISPs in that area.
1 0 National research and education network (NREN). For more, see https://en.wikipedia.org/wiki/NREN.

2.1 Present Problems of Internet

to DFZ.

2

https://en.wikipedia.org/wiki/Content
https://en.wikipedia.org/

current situation on routing on the Internet is something that we can clearly observe and at least partially
predict future tendencies even though we have not yet reached limits of nowadays resources.

The most severe and apparent issues - namely routing table growth, lack of locator/identifier
semantics split, cumbersome multihoming and mobility, ineffective inbound traffic engineering and
renumbering due to the change of ISP - are listed down below in Sections from 2.1.1 to 2.1.6. Some of
the problems are based on a review from RFC 6227 [7], RFC 4984 [8], some of them from mutual
community observations of current trends. These problems are currently being solved by band-aid
mechanisms and architecture patches (e.g., mobility frameworks). However, those solutions usually lack
wide-spread deployment to be really deal breakers and/or do not seem to be long-term scalable.

2.1.1 Routing Scalability

The most affected nodes struggling with the situation are Default Free Zone (DFZ)1 1 routers. Every
year the size of Routing Information Base (RIB)12 and Forwarding Information Base (FIB)13 of
those routers increases. The rate, at which a number of prefixes is growing in the RIB, is the object of
discussions [9] but it seems to be slightly faster than linear (sometimes called superlinear) for a couple
of last years [10], [11]. We can see historical progress in the size of Border Gateway Protocol (BGP)
[12] RIB and FIB for IPv4 and also IPv6 on the following graphs depicted in Fig. 1, Fig. 2,
Fig. 3 and Fig. 4 from [13]. The year is on the X-axis, and the number of prefixes is on
the Y-axis.

Current numbers are taken from a router in one of the APNIC research and development
autonomous systems (AS)14. They are relevant to the date of this publication:

• IPv4 RIB = 1 682 113 prefixes;
• IPv4 FIB = 573 400 prefixes;
• IPv6 RIB = 96 409 prefixes;
• IPv6 FIB = 24 857 prefixes.

Previous numbers mean that this particular router sees 573 400 IPv4 destination networks in
today's Internet where there are 1 682 113 different paths to them and vice versa for IPv6. The prefixes
count is going to increase with advancing depletion of IPv4 space and progressing deployment of IPv6.

Each prefix must be processed which increases the control plane15 load. This raises
consumption of router's C P U performance and memory and last but not least increases the size and a
potential number of exchanged routing updates. This presents routing scalability issue for future routers
- sometimes the same problem is also known as DFZ RIB/FIB growth.

It is believed [8] (assuming nowadays growth and available hardware and software) that we will
still have resources to build devices capable of dealing with this problem efficiently. However, what is
becoming a concern is a price of these devices.

The worst consequence can be that only large Tier 1 ISPs could afford investments connected
with maintenance and operation of DFZ. Technologically the routers: a) must maintain increasing state
information in RIB and converge usable routes quickly enough; b) must populate FIB from RIB fast and
must be prepared for enlarging the size of FIB itself; c) must perform forwarding lookups (and at best
also routing decisions) at line-rate speeds; d) must use H W that does have reasonable power
consumption or cooling demands. From the business perspective, we must understand that DFZ is run

1 1 Default Free Zone (DFZ): Backbone of the Internet where routers must keep complete routing tables with all
reachable destination networks. In opposite of this are Tier 3 ISP or networks or end customers that are using
usually only partial routing information - they have complete knowledge about local connectivity and any other
network beyond is available via default route.
1 2 Routing Information Base (RIB): Basically abstract data structure holding information from a given routing
source that holds information about all reachable destination networks and paths to those destinations.
1 3 Forwarding Information Base (FIB): The FIB is optimized version of RIB. It is consulted most of the time
when forwarding packets because it is supported by specialized HW.
1 4 Autonomous System (AS): Set of devices under one administration domain.
1 5 Control plane: Part of the router responsible for maintaining routing table with the help of routing protocols
and handling L3 issues (defragmentation, filtering, traffic classification/marking, QoS policing/shaping,
cryptographic operations, etc.)

3

solely by private entities without any centralized supervision [14]. They are making a profit from it, so
all the policies (like acceptance and processing of prefix) are in their hands. From their perspective, it is
not beneficial that cost of routing infrastructure would grow too rapidly especially due to the factors
they are unable to control (e.g. increasing number of Tier 3 ISP customers that want to multihome). To
put it simpler - no ISP (especially the one operating at DFZ) would be happy from upgrading its
infrastructure (buying better routers) to maintain the same level of service just because of the rising
requirements of the routing system.

The final verdict (see [15]) is that vendors and ISPs are (under current conditions) able to deal
with the growth of the Internet. However, scalable and cheaper solution would be welcomed to reduce
costs and prepare for future demands.

02 03 04 05 OS 07 OS 09 10 11 12 13 11 15 0 2 0 3 M 0 5 0 6 ° 7 0 8 W 1 0 1 1 1 2 1 3 i 4 1 5

Este Date
Fig. 1: IPv4 - All BGP entries in FIB Fig. 2: IPv4 - Active BGP entries in RIB

Fig. 3: IPv6 - All BGP entries in FIB Fig. 4: IPv6 - Active BGP entries in RIB

2.1.2 Decoupling Identification and Location
RFC 2101 [16] was the first to lay down some theoretical fundaments decoupling identification and
location (sometimes also referred to as loc/id split). IP address serves multiple roles nowadays:

1) Identification - Identifier is a bit string that is used during the communication's lifetime. It
identifies communicating parties in a way that IP address verifies the source of packets.

2) Localization - Locator is a bit string that specifies packet destination where it should be
delivered. It locates the place on the Internet, where a device is attached. Routing protocols
interpret IP address as a locator and build up routing tables based on the situation that routers
route traffic towards a destination. The locator is also known as Point of Attachment (PoA)16.

1 6 Point of Attachment (PoA): Device's interface (and address of this interface) by which it is connected to some
network reachable via Internet. Device could have and use simultaneously more than one PoA for communication.

4

Identifiers and locators have different requirements on uniqueness and lifetime. Identifiers must
be unambiguous on each set of communicating parties while locators must be unambiguous within one
or more routing domains. Identifiers must be valid at least during the maximum lifetime of
communication between given devices. Locators must be valid as long as a routing system within a
routing domain needs them.

Let us focus on real-life implications of the fact that IP address is used both as identifier and
locator. What if any node has more than one IP address, which one identifies it? The topological device
is situated at one place, although PoA addresses express the networks to which device is connected.
Moreover, PoA could have a completely different location from the perspective of DFZ. Another
example is multiple virtual machines on one host system. One approach is that we have a virtual network
inside host system. However, in this case, we might run into the problem that we have to use N A T 1 7 , or
we lack address space. Another approach is that virtual machines share host system address. However,
how can we then differentiate between virtual machines from a network perspective?

Of course that current TCP/IP status quo without any distinction between identifiers and locators
works. However, locator/identifier separation would be the inherent solution for some problems
discussed in this subchapter. The most notable advantages (see [17] for details) of decoupling locator
and identifier are: a) reduction of DFZ routing tables because they would contain only locators, which
would improve scalability of control plane; b) be design support for mobility and multihoming by
employing mapping between two distinct namespaces (to one identifier may belong multiple locators)
comparing to hacks when using only single namespace of blurred locators and identifiers.

2.1.3 Multihoming

Multihoming stands for the situation when the customer is using two or more ISPs for transit services
as it is defined in RFC 4116 [18].

Below are some of the reasons why customers demand multihoming:

• Redundancy - Customers are looking for high availability of their services. Hence, their (both
customers and ISPs) networks should be operational at best 99.999% of all the time (this
represents approximately 5 minutes of allowed outage during whole year) to meet this
constraint. From the perspective of Internet connection, this could be accomplished by having
more than one ISP to avoid a single point of failure.

• Load-balancing - Traffic could be load-balanced between multiple working links leading
into/out from customers AS to avoid congestion or to increase the available communication
bandwidth.

• Traffic Engineering - Customer wants to influence how traffic is handled and treated, e.g., for
example, to avoid problematic paths, to isolate some sets of addresses, etc. (for more, see RFC
2260 [19])

• Transport-Layer survivability - BGP driven multihoming provides at some level (i.e.,
successful convergence in certain time frame) session survivability for transport protocols;

A mandatory prerequisite for multihoming is that every customer is uniquely identified on the
Internet - this is done by autonomous system number (ASN)18. Multihoming is nowadays
accomplished with the help of BGP, which informs others about the path to customer's network via two
or more ISP transit systems.

Multihoming works with PA and PI addresses. For both cases, customer's prefix is propagated
to DFZ. Nevertheless, for P A case also primary ISP (assignee of customer addresses) must advertise
both aggregates and also P A prefix. Otherwise, the path via primary ISP would not work because of
longest-prefix match19 routing lookup.

1 7 Network Address Translation (NAT). For more, see RFC 1631.
1 8 Autonomous System Number (ASN): Globally unique identifier 16 or 32 bits long assigned by ICANN and
maintained in online database on http://www.iana.org/assignments/as-numbers/as-numbers.xhtml.
1 9 Longest-prefix match: Algorithm used by routers to retieve best available (the most accurate) entry from
routing/forwarding table or any other table containing IP network entries. For more see D.E.Comer, Computer
Networks and Internets (5th ed.), p. 368, ISBN 978-0-13-606698-9, 2008.

5

http://www.iana.org/assignments/as-numbers/as-numbers.xhtml

The trouble with multihoming is closely connected with IP address semantics problem described
in the previous section - IP addresses PoA not a node. Reachability of multihomed networks is
dependent on the route. However, IP routing takes into only account destination and next-hop IP
addresses which identify PoAs.

Assume network graph in Fig. 5 with one router connected with two interfaces (two PoAs) to
different ISPs for the sake of requested connection redundancy. If one PoA experiences outage (e.g.,
192.168.1.1 on primary red route), then it does not imply that router and LANs behind it are unavailable.
The routing algorithm can find a backup route for LANs , but it cannot help to reroute PDUs intended
for PoA, which is currently down. Multihoming is not inherent use-case to IP. Route dependency of
multihomed networks remains unsolved despite the fact that it firstly appeared in 1972 (more than 40
years ago) as Tinker Air Force Base multihoming request [20].

Fig. 5: Multihoming problem illustration

2.1.4 Mobility

During the last years, the idea of the Internet of Things (IoT)20 became more real and widely accepted
as probable use-case of Internet. Some predictions expect that 20-75 billion nodes will be connected to
the Internet by the year 2020 [21]. Basically, a throng of devices with own IPv6 addresses would need
access to the Internet. Mobility is the ability of a node or whole network to change its topological
connectivity without disruption of ongoing communication (remark: application mobility is not covered
in this thesis though it is often associated with this term). Authors of TCP/IP stack had never thought
about this use-case. Thus, IETF had to supplement solutions like Mobile IP [22], Mobile IPv6 [23] or
HMIPv6 [24] or Multipath TCP [25] later.

These solutions include:

a) Dynamic renumbering of mobile entity - considered unsuitable because dynamic IP address
change without any further notice may disrupt existing communication.

b) Renumbering and creating a tunnel between old and new location - it requires the deployment
of the home agent and foreign agent concepts known from cellphone networks.

c) The ability of a mobile entity to actively announce its new location - usually comes hand to
hand with dynamic changes to DFZ routing tables as the mobile entity moves from one location
to another.

A looming current problem (for not just IoT) is how to accommodate possibly billions of
smartphones, tablets, printers, and PDAs with the IPv4/IPv6 capability to access the Internet and to
provide session survivability when those devices roam from one network to another. N A T is often being
used to overcome this limitation. However, N A T breaks end-to-end principle21 [26] and due to that
NAT is being considered as the temporary fix rather than a solution. Mobility should not be attained
feature of some special protocol or technique. Therefore, mobility support should be inherent to the
network architecture.

2 0 Internet of Things (IoT): Refers to unique identification of objects in Internet where nearly any device is
equipped with IP address and capable of communication via IP. It is merely buzzword overused in marketing
expectations of future Internet growth. More at http://en.wikipedia.org/wiki/Internet of Things
2 1 End-to-end principle: Application-specific functions ought to reside in the end hosts of a network rather than
in intermediary nodes.

6

http://en.wikipedia.org/wiki/Internet

2.1.5 Traffic Engineering

Traffic directing and diversion to use other paths than those precomputed by IGP /EGP is called
traffic engineering (TE). We differentiate between two types according to direction of traffic flow:

• Outbound traffic engineering - Intra-AS TE, where we try to influence how traffic is leaving
AS. IGP metrics is usually altered to support this goal so that preferred exit from AS is utilized.
Another way, how to accomplish outbound TE, is to depreferentiate or to filter some routes from
BGP neighbors.

• Inbound traffic engineering - Inter-AS TE, where more specific routes are propagated with the
help of BGP to divert traffic from normal paths (aggregated prefixes). Those altered specific
routes are more preferred because they temper BGP decision process [12], [27].

Nowadays inter-AS TE is done rather than intra-AS TE. Reasons, why to do TE, are similar just
as in the case of multihoming. Among those reasons are load-balancing (to match traffic with network
capacity), policing (to restrict transition of certain traffic through a given AS), cost reduction and support
of various QoS and Service-level Agreements (SLA)24.

TE is performed by tuning BGP attributes of the certain routes and/or introducing more specific
prefixes into DFZ routing tables. This effectively increases RIB and FIB sizes and presents an additional
load to the control the plane. Moreover, network administrators spent hours configuring TE only to
discover that the neighboring BGP peer completely rewrites (or ignores) routes attributes, thus
preventing the rest of the Internet to learn and conform to intended TE. Hence, network architecture
should support nonrefusable TE by design.

2.1.6 Renumbering

Usually, the organization has one ISP where its network is completely inside ISP's AS. In this case, the
organization25 does not need to advertise its network prefix globally because it is a part of provider
address space - P A addresses is assigned to the organization. However, if an organization wants to
change ISP, then it must be prepared to renumber all its nodes according to P A address block enforced
by a new ISP. Another option is to ask Regional Internet Registry (RIR) 2 6 for PI address block, but there
are two drawbacks associated with it:

1) The organization still would not avoid at least initial renumbering when changing from P A to
PI addresses.

2) The demand could not be met because RIR is already missing PI prefixes large enough
(especially with IPv4 address space depletion), or it is against RIRs regulations. PI addresses
make the process of migrating between ISP easier; still each PI prefix must be separately
advertised to DFZ.

Not only renumbering process could be costly and error-prone (see RFC 5887 [28]) even with
the existence of automated tools (e.g. DHCP, S L A A C , etc.), but also some of the organizations may feel
stuck or being held as a hostage of theirs ISPs that provide them with P A prefix.

The renumbering problem grows with the size of the network and number of nodes it contains.
Moreover, change of host's addresses negatively affects access control lists and firewall setups or
configuration files outside the scope of renumbered network.

2 2 Interior Gateway Protocol (IGP). For more, see http://en.wikipedia.org/wiki/Interior gateway protocol.
2 3 Exterior Gateway Protocol (EGP). For more, see http://en.wikipedia.org/wiki/Exterior gateway protocol.
2 4 Service-level Agreement (SLA): SLA is an agreement between two or more parties, where one is the customer
and the others are service providers. SLAs commonly include segments to address: a definition of services,
performance measurement, problem management, customer duties, warranties, disaster recovery, and termination
of agreement. For more, see https://en.wikipedia.org/wiki/Service-level agreement.
2 5 Organization a.k.a. Customer: Entity operating end network with own addressing plan and routing policies.
2 6 Regional Internet Registry (RIR): Organization that manages allocation and registration of internet numbers
(IP addresses, autonomous system numbers, well-known port, etc.). Currently world is divided into five RIR based
on geographical position: AfriNIC, ARIN, APNIC, LACNIC and RIPE NCC.

7

http://en.wikipedia.org/wiki/Interior
http://en.wikipedia.org/wiki/Exterior
https://en.wikipedia.org/wiki/Service-level

2.2 Burden on Control Plane
The count of routing updates has the major influence on control plane processing delay. Among elements
impacting it belongs:

• Interconnection Richness - The Internet is becoming flatter in a sense that more and more
different paths exist between the same ASes [29]. Unfortunately, this interconnection richness
is stressing control plane seriously, and it occurs even though the prefix count remains the same;

• Traffic Engineering - More specific prefixes with different attributes expressing desired TE
effect place more overhead on control plane;

• Multihoming - Multihoming AS neighboring with more than one ISP (transit AS) requires more
than one interconnection leading towards DFZ;

• Rapid Shuffling of Prefixes - Some ASes deploy rapid shuffling of prefixes in order to divert
traffic to less loaded links or to optimize traffic by depreferencing (or even canceling) certain
routes that do not meet S L A criteria;

• Anti-Route Hijacking - Owning AS advertises purposely more specific prefixes as the
counter measure when fighting against IP hijacking;

The previous list outlined some of the reasons, why are there many more specific prefixes in
BGP and why is the router's control plane bothered with irregular routing updates.

.U.LL..L IblllLnJiim .1 ill
02 03 04 05 06 07 08 09 10 11 12 13 14 15

Date

Fig. 6: IPv4 FIB table updates

04 05 06 07

Fig. 7: IPv6 FIB table updates

Graphs in Fig. 6 and Fig. 7 depict the number of FIB table updates for both IPv4 and IPv6.
Currently, BGP is experiencing approximately 1 500 updates per hour for IPv4. If there are peaks in
IPv4 then they are getting larger and massive (two orders of magnitude) comparing to the usual
state.What is more surprising is that this number is approximately 104 400 updates per hour for IPv6.
This implies that current IPv6 setup is more intensive on the control plane.

2.3 Chapter Summary
We mentioned problems tormenting nowadays Internet - routing (in)scalability, decoupling location
and identification, cumbersome multihoming, overcomplicated mobility, the impact of inbound traffic
engineering and unwieldy renumbering of end-networks. We outlined negative consequences in the
frame of TCP/IP for each mentioned problem and discuss their impact on the control plane.

This chapter content should support the conclusion that also others come to - the current Internet
architecture shows design flaws and sooner or later it will face the crisis emerging from consequences
of its poor design.

8

3 Naming and Addressing Concepts
§<g> - 'Now you people have names. That's because you don't know who you are. We know who we

are, so we don't need names." Neil Gaiman
§<g> Can we formulate any encompassing theory of naming, addressing and routing?
§<g> What about any solutions dealing with aforementioned problems?

Problems of addressing and naming are closely connected with networking since its beginning. It
directly affects the efficiency of routing and forwarding. Once syntax and semantic of device addressing
are employed, the whole system is hard to change. The current Internet addressing scheme is the most
obvious example of this problem. Although the present IPv4 address scheme has improved since its
definition in the 1980s, it currently represents the major obstacle not only because of address depletion
problem but also for deployment of multihoming and mobility to name a few of the issues.

The role of IPv4 is to identify and localize the communication interfaces of connected devices.
This principle works fine if address assignment follows the network topology and network devices are
preserving their membership to local networks. Many other concepts of the Internet were built around
this assumption. Communication between network applications requires identifying addresses of
network interfaces where the applications are reachable. Enabling IP address change during
communication would require modification of datagram delivery mechanism causing complications for
network devices as well as for end points. Routing architecture can efficiently react to connectivity
changes detecting dead routes or identifying new routes or routes with better metrics. While exterior
gateway routing protocol BGP provides flexibility for propagating information about relocating IP
address this always leads to growing global routing tables because of breaking address to topology
location dependency. This has a negative impact on routing performance.

The goal of this chapter is to provide the necessary background for practical part of this
dissertation thesis (next two chapters). We try to outline basic motivation why naming and addressing
are still issues of current Internet architecture, which is majorly based on Vint Cerf s and Robert Kahn's
TCP/IP from 1974.

In the first subchapter, we layout basic terminology using formal apparatus. In Subchapter 3.2,
we try to synthesize working theory employing knowledge from revered articles on this topic. Then, we
test compliance with TCP/IP related protocols and tools with this theory. The longest Subchapter 3.3
describes conceptual properties of the ideal solution and introduces many of existing candidates.

3.1 Basic Terminology
This introduction provides theoretical foundations of naming and addressing. Namely it puts together
all pertinent knowledge regarded with deep and utmost respect to papers by John Shoch [30], Carl
Sunshine [31], Jerome Saltzer [32], Noel Chiappa [33] and John Day [20].

Natural thinking about basic terms yields following meanings:

• the object is a structure that is considered to be worthy of the distinct name or address;
• the name identifies what object is;
• the address identifies where the object is;
• the route identifies which direction object is;

Naming
Let us start with an object. Object o is a software (or hardware) structure

that is considered to be worthy of identification (e.g., variable, service, interface).
A l l objects of the same type form a set 0 = {o\o is object}. We can work with a
single object or a subset of objects, thus it is important to define power set of
objects T(0).

9

Now, let us settle on the meaning of the following terms regarding
naming. To be more accurate and consistent within this theory, we define name
as a string over the alphabet21: Vn is name o n 6 1*. However, it is important to
note that name may be any kind of identifier (e.g., string, color, number). All
names form the namespace as a set of names NS = {n\n is name}: NS Ql* from
which all names for a given set of objects are taken.

Any name identifies (a subset of) object(s), identify is relation
I: NS X T(0). Previous definition allows name to identify none, one or even
more object(s) of 0. Identifying more than one object may be useful for use-
cases such as multi-cast or broadcast communication.

Imagine space of IPv4 addresses; some address blocks are assign to
owners (e.g., FIT-BUT's address block 147.229.0.0/16), some addresses from
these blocks are being used by devices (e.g., private addresses), some
addresses cannot be even sold (e.g., block 240.0.0.0/4 of reserved class E
addresses). Naming theory should be granular enough to support all previous
use-cases.

Assignment marks name in the namespace as available for binding,
deassignment reverses this operation. Hence, the namespace is composed of
two disjunctive sets of names, assignable NSassig and unassigned NSunassig:
NS — NSassig U NSunasSig: NSassig H NSunassig — 0.

Binding is choosing a mapping from assigned name to a particular
(subsets of) object(s) xor (subsets of) nameii); unbinding reverses this
operation:

NS

o

binding is relation B: NSassig xM,M = P(NS) U ? (0) .

Name can be either bound or unbound (available for binding):

name n 6 NSassig is bound o 3m 6 M : (n, m) 6 B;
name n 6 NSassig is unboundo Vm E M:(n,m) £ B.

direct aliasing

B e
B
o
Q ©

indirect aliasing
B

B Q O

Please notice, that name can be bound to either object(s) a.ka. direct
alias or other nameii) a.ka. indirect alias. Improper indirect aliasing may
cause circular referencing (e.g., name "a" is bound to name "b" and name "b"
is bound to name "a"), which is undesired. Hence, a chain of bindings should
end with direct aliasing providing identification of (set of) object(s).

We can measure distinctiveness of name using following adjectives. Unique indicates that there
is one and only one identifying name, whereas unambiguous indicates that there is possibly more than
one identifying name:

• name n 6 NS, which identifies o 6 T(0), is unique
<^> 3n, n 6 NS: (n, o) E / A (n, o) E / —> n = n.

• name n E iVS, which identifies o E J'(O), is unambiguous
» 3 n , f i e JVS: (n, o) 6 / A (n, o) E /.

Indirect aliases may be bound to unique name without breaking
its uniqueness. Usage of multiple J/recf aliases changes the unique
name to unambiguous.

Making Address Topological
Before investigating terms concerning address, we need to define terms related to topology, which are
based on [34]. Topology on a set X is a collection T of subsets Z having following properties:

• 0 and X are in T;

2 7 Let I be alphabet, the set of symbols {a}. 2* is the set of all finite sequences w in alphabet I in form
w = a1a2a3 ... an, where any symbol at E S for i = 1,...,n. We call w as the string over alphabet.

10

• The union of the elements of any subcollection of T is in T;
• The intersection of the elements of any finite subcollection of T is in T;

Fig. 8 illustrates three examples of topologies T±, T2, T3 (in compliance with definition) and three
examples of non-topologies T4, T5, T6 (properties of topology are not met).

Topological space is an ordered pair (X, T) consisting of a set X and topology T on X.

Fig. 8: Examples of topologies and non-topologies

Function f: X -> Y between two topological spaces (X,TX) and (Y, TY) is called a
homeomorphism if it has the following properties:

o / is a bijection (one-to-one and onto);
o / i s continuous;
o the inverse function / _ 1 exists (and / is an open mapping);

If topological spaces (X, Tx) and (Y, TY) are homeomorphic (if homeomorphism exists) then it
is guaranteed that points "near" point x 6 X are mapped to points "near" point y E 7 (e.g. in Fig. 9);

Yz = f(x2)

V,T2

(AS,T)

Fig. 9: Homeomorphism illustration

Addressing
Let us return to terms important for addressing. The address is a
topological^ dependent name (i.e., address contains leads about the
position in topology). Address space AS is a set of addresses AS = {a\a is
address} with a given scope. Address space is topological space, it is a
namespace with a topology T imposed on it: (AS, T):ASQ NS.

We can perform same operations (e.g., assign, bind) and observe
same properties (e.g., uniqueness) with addresses as with names. Address
locates (a subset of) addressable object(s): locate is relation L: AS x T(0).
Instead of identifying, we are using term locating concerning addresses.
However, both identify and locate are relations with same outcomes.

Resulting Properties
The name need not to be meaningful throughout the domain and need not be drawn from a uniform
namespace, whereas the address must be meaningful and must be drawn from uniform (flat or
hierarchical) address space. Flat address space has limitations; most notably no hierarchy leaves routing

11

action without any help. Hierarchical address space has pros (reduction of routing table sizes) and also
cons (what is topologically close may be far away on hierarchical tree branches, which leads to
suboptimal routing). However, any structure/hierarchy in the name or address is intended to make some
operation easier (i.e., search for an identifier in a directory).

The address is a name, but the name is not necessarily address. The address is bound either to
name(s) or object(s) in order to locate it(/them). Therefore, the address is always a pointer in topology
(e.g., position of the node in the graph, grid coordinates). The name is merely a label without any context
to location.

The route is the specific information needed to forward a piece of information to its specified
address. Routing action may require one or a series of steps in order to forward information to reach a
destination. There should be mechanism mapping address into an appropriate route.

Address is location dependent if it encodes (even the part of) topology information
(i.e., address string depends on where the address is present in the topology). Address, which is route
dependent, encodes (even the part of) route information. Because there may be more than one route to
a given location, we want addresses to be location dependent but route independent.

3.2 Theory
Employing knowledge from ISO/IEC 7498-3 [35], Saltzer's RFC 1498 [36] and Chapters 5 and 8 of
Day's book [20], we will try to postulate some synthesis of the naming and addressing theory.

The object address is a name of the object to which it is bound. The object cannot be located
without identification, nor can the object be identified without localization. Therefore, no reason exists,
why to distinguish term name from address because identifying and locating the object are relations
yielding same results. Hence, this means that object name and object address are same because they do
not identify distinct objects. E.g., i f "OBJ" is the name, then it is also its address, which help us to
identify/localize an object in the scope of other objects. The previous statement is the final resolution of
name-address dichotomy.

There are three objects that should be named in computer networks:

1) services/applications/users - Services are functions that are being used, e.g. service is Internet
browsing. The application is using services, e.g. Internet browser. The user is a particular
computer running Internet browser. Difference between service, application and user are in this
sense non-essential, and we are going to use them indistinguishably within this subchapter;

2) nodes - Nodes are computers that run services. Some nodes are hosts (service consumers) while
other nodes provide auxiliary functions to run services (e.g., routing and forwarding by routers);

3) network attachments points a.k.a. PoAs - PoAs are (Internet-connected) interfaces of a given
node;

The natural way, how to relate to previous objects, is to use terms application/service name,
node address, network attachment point address, even thou that we could use application address or
network attachment point name in compliance with this theory.

Following three bindings exist between objects above:

1) directory - Directory is service to node mapping used to find service's location (i.e.,
communication endpoint);

2) routes - Route is a sequence of node addresses calculated by the routing algorithm; route
interconnects a given pair of source and destination nodes;

3) paths - Path2 8 is a node to PoA mapping of the nearest neighbor (i.e., next-hop); path
interconnects PoAs of adjacent nodes.

Naming and addressing are free to use any form of identifier that seems helpful. It could be a
binary or printable character string. The namespace and address space could be flat or hierarchical; the

2 8 Term "path" here differs from path known from graph theory. Better would be to use "link", however, we follow
original terms by Jerome Saltzer.

12

same object can even use different identifiers a.k.a. aliases, where some of them may be flat and others
hierarchical.

Naming requirements (for more about them in frame of general networking, please see [31]) can
be described in terms of bindings and binding changes among objects mentioned above:

• A given service may run on one or more nodes. Any service may need to move from one node
to another without losing its identity;

• A given node may be connected to one or more PoAs. Any node may need to move from one
PoA to another without losing its identity;

• A given pair of PoAs may be connected by one or more paths. Any of those paths may need to
change without affecting the identity of the PoAs.

Each requirement contains some identity preservation, which is guaranteed when the name does
not change during the moves - object name must be invariant when referring to some property of
particular scope. This can be accomplished by maintaining a list of bindings between services, nodes,
and PoAs. Basically, we name proper objects and then keep track of bindings between them.

To wit, service/user names do not change with location, node names do not change as PoA
endpoints, and PoAs do not change as particular path endpoints. However, following rules do not mean
that names should be assigned to a given object only once, and they cannot change after that. Essentially,
names could be changed but this act must comply with previous requirements. Also, the identity of an
object exists regardless of whether we can express it with some name.

If we want to send a packet to a given service, then following actions are done:

1) Find nodes on which the requested service operates. The task is service name resolution, which
consists of directory search in order to discover a proper binding between service and node(s);

2) Find routes between source and destination nodes and pick the next-hop node, where the packet
should be forwarded. This process is a.ka. routing, where the initial result is route as the
sequence of node names, and next result is next-hop node name;

3) Find PoAs of the next-hop node en route, i.e., perform node name location to reach node(s)
found in the previous step;

4) Find paths between the current and the next-hop node's PoAs, i.e. discover the binding between
the same PoAs pair and the path. This action is done by identifying a set of paths which leads
among PoAs acquired in the previous step.

Each of previous steps might return either single or multiple alternatives. In the case of multiple
returned objects, a choice must be made which of them to use. While these choices are distinct, they
might interact - e.g., we may swap communication to a different node running the same service
according to the path aptness.

We can easily satisfy basic object's properties using this theory - what it is, where it is and
which way it is. To wit, when speaking of network applications, the service name provides an answer
to what, node and PoA names provide answer to where, routes and paths provide answer to which way.
The difference between node address and PoA address allows us to create a logical over the physical
address space relation. A network addressing system must support at least one level of indirection.

Resulting mode of this theory is illustrated in Fig. 10. Let us briefly inspect emerging properties
of this model:

• Directory and path mappings are similar in a way that both of them track the binding of objects
one hop away.

• Two nodes could be interconnected via multiple distinct routes (containing different interim
nodes).

• Two adjacent nodes could be interconnected via multiple distinct paths (separate physical
connections).

• The route could be viewed as a concatenation of paths in a relaxed context.

The application name should be location independent. Node address should be location
dependent (the logical address). PoA names are route dependent (the physical address). PoA address
should be unambiguous only within a particular scope, and PoA addresses need not to belong to the
same namespace (e.g., Ethernet and FDDI addresses are from different namespaces).

13

Fig. 10: Theoretical naming and addressing model for computer networks

Despite the fact that Saltzer's and Schoch's papers are more than 30 years old and extensively cited,
very few have been done to integrate their ideas into computer networking praxis. To wit, at least two
following fundamental requirements exist for a correct addressing and naming system: 1) recognition
of objects - applications, nodes, and PoAs; 2) distinguishing changeable bindings - application to node,
node to route, node to PoA, and PoA to path.

Unfortunately, IPv4 does not follow those two requirements at all! Current Internet architecture
contains only PoAs and routes; it completely misses application and node names. IPv4 address ought to
identify a node, but it retains semantic of interface address. Unfortunately, this makes multihoming
impracticable because IPv4 address labels only node's PoA not a node itself. What is worst, IP address
names the same thing as M A C address. Routes are then falsely bound to an IP address. Instead of the
general directory, the Internet is stuck with well-known port numbers (SSH is on 22, Telnet on 23,
SMTP on 25, HTTP on 80 and so on) and they are no more than a suffix to the network address.
Basically, a node layer is missing. On Fig. 11 current broken model is depicted:

Port number

Route

IP address

MAC address

Path 1
Fig. 11: Broken Internet naming and addressing model

Previous illustrates that major flaw exists in current TCP/IP naming architecture. Mostly
because of this poor design, Internet suffers from issues described in Subchapter 2.1.

14

3.3 Possible Solution
This subchapter introduces theoretical properties of any solution based on Subchapter 2.1 analysis and
RFC 6227 [7]. Moreover, it describes and compares features of existing candidates. Details of each
candidate are out of the scope of this summary.

3.3.1 Ideal Solution Properties

One of the major goals for any upcoming change of the Internet architecture is to make the routing
system scalable with respect to a number of prefixes, users and interconnections between autonomous
systems.

As stated above overloading of IP address semantics causes collisions and limited flexibility.
Hence, it is expected that a solution would decouple identifier namespace from location address space.
Nevertheless, there are two approaches how separation should be performed: a) by splitting hosts,
identifiers, and locators; b) by removing end-site prefixes from globally routable prefixes. The solution
should contain the fix and should be compatible with either case. Ideally identifiers should be allocated
at the birth of object, they never change, nor are they re-used. Hence, identifiers must be location-
independent. Locators should point to device's position in the network, and they should change
whenever the topology changes, thus locators must be location dependent.

The more scalable solution for multihoming is strongly desired to allow organizations
multihome without adding pressure to DFZ routing tables.

As for mobility more efficient approach is wanted that allows mobile entity topological changes
at a high rate. Hypothetically ideal solution should decouple mobility completely from routing.

TE is a necessity for a network operation of any organization. However, solution for inbound
traffic engineering should pose no burden to the scaling of the routing system.

Renumbering is an inconvenience for either small or large scale networks. Even with the
existence of working methodologies like RFC 4192 [37] how to renumber without the Flag Day it is
still difficult to make this process cheap and smooth for any organization. Therefore, it is required that
organizations could renumber their networks easily with as less disruption as possible.

Previous features refer to existing and above thoroughly described issues. Nevertheless, there
are two more properties, which any solution should incorporate. The routing system is secured through
additional protocol-specific mechanisms (i.e. mutual authentication of routing updates with the help of
HMACs) that were introduced later during target routing protocol lifecycle. Hence, the solution must
provide the same level of routing security, or better must be secure by design. Also, any solution must
be deployable from technical and practical perspective - it must allow incremental deployment and
provide necessary backward compatibility with nowadays employed services.

3.3.2 Existing Proposals

RFC 6115 [38] clearly states that: a) R R G has rough consensus on separating identity and location of
devices but does not have consensus how to do it properly; b) R R G has consensus that multihoming and
traffic engineering issues need to be solved in a scalable manner.

Theoretically, there are three ways how to decouple identity and locality:

• Map-and-encap network-based architecture - It evolves from Robert Hinden's ENCAPS
protocol [39]. When a source sends the packet towards destination outside of source network,
the packet must traverse through border router between two address spaces (locator space and
identifier space). Here at first border router performs mapping of an identifier to appropriate
locator ("map" phase). Then the packet is encapsulated using returned locator address ("encap"
phase). Hence, map-and-encap principle wraps a new header (called outer header) using locator
addresses around the original header (called inner header) with identifier addresses. When
encapsulated packet reaches the destination network, the border router strips off the outer header
and sends the original packet towards the receiver. Map-and-encap usually does not require

15

changes to hosts or to the core routing infrastructure (that is DFZ). Unfortunately, with
additional overlay encapsulation comes size overhead.

• Rewriting hybrid network-based architecture - Originally this principle comes from papers
written by Robert Smart and David Clark 8+8 [40] and later by Mike O'Dell GSE [41]. It utilizes
IPv6 so that in the upper part of IPv6 address PCI's fields is stored locator and in the lower part
identifier. If a source sends packet outside its domain, border router takes addresses containing
only identifiers and fills upper bits with appropriate locators. Then locators are removed from
addresses upon reception by destination border router. Rewriting schemes may differ whether
they perform either destination or both destination and source addresses rewrites;

• Host-based architecture - Decisions in this architecture are purely in hands of hosts. Thus, hosts
prepare and fill all relevant PCI fields (including locators and identifiers) as the packet is being
dispatched by the operating system. Interim devices like routers are usually transparent to this
approach.

According to [42], possible solutions could be categorized into two classes that are not in the
opposite. Over the years following terms were established to describe them:

• Core-Edge Separation (CES) - A subset address space (edge) corresponding to end site
addresses is separated from the transit DFZ (core). This "edge" address space is then handled
differently for routing. Subsequently DFZ routing table increases its site only a new ISP transit
network instead of a new edge network. Some mapping system is needed to glue core and edge
address spaces. CES is depicted schematically in Fig. 12 where it shows communication
between PC-A and PC-B using (green) identifiers and (red) locators;

• Core-Edge Elimination (CEE) - The goal of C E E is to eliminate all PI and de-aggregated P A
prefixes from the core. Hosts then use either P A addresses provided by ISPs or usually
something different (not in IP address namespace) as an identifier. Some changes in host
network behavior are necessary to deploy CEE. Illustrated in Fig. 13.

16

153.171.0.0/16
Fig. 13: Core-Edge Elimination solution

Down below in Tab. 1 is the summarized list of solution candidates.

Locator/Id Split Protocol (LISP)
LISP focuses on separation of locators and identifiers into two distinct address spaces using mapping
and encapsulation on routers residing on the borders between those two spaces. Only locators are
present in DFZ, thus are a possible subject of topological aggregation. With the separation of
identifiers comes the ability to renumber cost effectively and get rid of more-specific prefixes in DFZ.
With LISP, there is no need to change hosts or DFZ routers. LISP utilizes robust mapping system
based on a pull model, where queries are data driven. However, it may introduce delay or even packet
losses, when ID-to-loc mapping is being discovered. [43]

Host Identifier Protocol (HIP)
Network layer employs IP address as a locator, transport and application layer uses the identifier in
the form of a cryptographic private-public key pair. Each host is responsible for generating this kind
of pair. HIP makes use of DNS or distributed hash table (DHT) to obtain the identifier. [44]

Level 3 Multihoming Shim Protocol for IPv6 (Shim6)
Shim6 splits locator/id in a manner that IPv6 address field contains locator and extension header
contains an identifier. Shim6 employs initial 4-way handshake with DNS lookup during which locator
sets are exchanged. Keepalive mechanism tracks locator's reachability. [45]

Routing Architecture for the Next Generation Internet (RANGI)
RANGI append one new layer between network and transport layer just as HIP. Hence, flows and
connection are bound to host identifier instead of IP address that now serves as a locator. Unlike to
HIP, RANGI host identifiers are hierarchical with an organized structure. [46]

Internet Vastly Improved Plumbing (Ivip)
Ivip works with map-and-encap principle as LISP. However, Ivip uses global mapping system instead
of a hierarchical pull model. It maps only single locator to a given identifier and mappings are updated
in real-time. Ivip employs direct IP-in-IP encapsulation. [47]

Hierarchical IPv4 Framework (hIPv4)
hIPv4 introduces an additional hierarchy of IPv4 address space by dividing it into area and endpoint
locators. Both of them are inserted as optional fields into new shim header between network and
transport layer. hIPv4 utilizes DNS for locator distribution. [48]

Name Overlay Service for Scalable Internet Routing (NOL)
NOL utilizes session layer and introduces new devices performing translation between public P A and
private PI address namespace that prevent PI from entering DFZ. N O L leverages DNS to store name
as a new kind of record. [49]

Global Locator, Local Locator, and Identifier Split (GLI-Split)
GLI-Split decouples addresses into global/local locators and static identifiers. It encodes two different
namespaces (each one 64 bits or less) onto single IPv6 address. The communication with legacy
Internet is without any proxies or stateful N A T . [50]

17

Tunneled Inter-Domain Routing (TIDR)
Loc/ID split is performed on BGP level as a new attribute. When a packet to identifier prefix is being
routed, it is encapsulated into the tunnel. [51]

Identifier-Locator Network Protocol (ILNP)
ILNP decouples identity and locality inside IPv6 address field. Multiple locators might be used by a
device simultaneously, whereas applications bind to a single identifier. ILNP needs DNS for
backward/forward resolution of locators/identifiers to the domain name. [52]

Name-Based Sockets (NBS)
NBS are a new alternative for socket-based communication. Unlike nowadays BSD sockets that are
bind to IP addresses, NBS are bind to domain names. Applications communicate using domain names
where appropriate IP address selection is left on TCP/IP stack. [53]

A Practical Transit-Mapping Service (APT)
APT is a copy of LISP with operational restrictions that helps to more clear Loc/ID split design. APT
uses periodical synchronization of the mapping system. Identifier to locator mappings are carried
using new BGP attribute. [54]

Internet Routing Overlay Network with Routing and Addressing in Networks with Global
Enterprise Recursion (IRON-RANGER)

IRON-RANGER utilizes own tunneling and path M T U discovery protocol called S E A L which
redefines the semantics of some ICMP messages. IRON-RANGER is architecturally derived from
ISATAP. [55]

Tunneling Route Reduction Protocol (TRRP)
TRRP interconnects border routers between core and edge using GRE. DNS lookup (above
overloaded T X T resource record) helps to find tunnel endpoint. TRRP does not support multicast.
[56]

Six/One Router (Six/One)
Six/One rewrites edge's local and core's remote addresses at the borders. Six/One takes advantage of
special IPv6 extension header. [57]

Tab. 1: Candidates summary

3.3.3 Proposals Comparison

The following table Tab. 2 summarizes properties of each proposal above. Abbreviations used as
columns names mean:

• type - Whether proposal employs map-and-encap ("M"), rewrite ("R"), host-based principle
("H") or it is something inherently different ("diff');

• CE - Whether proposal is Core-Edge Separation ("CES"), Core-Edge Elimination ("CEE") or
generally different ("diff) solutions;

• IPv - Internet Protocol version - Which IP version does proposal supports ("v4/v6/v4v6");
• RS - Routing Scalability - Whether proposal reduces DFZ routing tables sizes ("yes/no");
• DIL - Decoupling of Identification and Localization - Whether proposal performs ("yes")

locator/identifier split or not ("no");
• MH - Multihoming - Whether proposal supports better multihoming or not ("yes/no"), or it is

supported conditionally together with utilization of multipath transport protocol ("cond");
• Mob - Mobility - Whether proposal supports seamless mobility or not ("yes/no"), or it is

supported conditionally together with utilization of multipath transport protocol ("cond");
• TE - Traffic Engineering - Whether proposal contains TE by design or not ("yes/no"), or it is

supported conditionally with utilization of multipath transport protocol ("cond");
• Ren - Renumbering - Whether proposal supports easier renumbering ("yes/no");
• Dep - Deployability - Whether proposal allows communication between upgraded and non-

upgraded devices ("yes/no") or whether it is not applicable ("n/a").

18

Name type CE IPv RS DIL M H Mob T E Ren Dep
L I S P M CES v4v6 yes yes yes yes yes yes yes
HIP H C E E v6 yes yes yes yes no yes no

SHIM6 H C E E v6 no yes yes no no no yes
R A N G I H C E E v6 yes yes yes yes yes yes yes

Ivip M CES v4v6 yes yes yes yes yes yes yes
MPv4 diff diff v4 yes yes cond cond cond yes no
N O L R diff v4v6 yes yes yes yes yes no no

GLI-Split R C E E v6 yes yes yes yes yes yes yes
TIDR M CES v4v6 no yes yes no yes yes yes
I L N P R C E E v6 yes yes yes yes yes yes yes
NBS diff C E E v4v6 yes yes cond cond cond no no
A P T M CES v4v6 yes yes yes yes yes yes yes

I R O N - R A N G E R M CES v4v6 yes yes yes yes yes yes yes
T R R P M CES v4v6 yes no yes no yes no yes

Six/One R CES v6 yes yes yes no no yes yes
R I N A diff diff v4v6 yes yes yes yes yes yes yes

Tab. 2: Properties comparison of existing proposals

Main CES features are summarized in the following list and Fig. 14 below:

Edge networks are separated from DFZ routing tables or are at least highly aggregated. Routing
scalability is visible in direct proportion to how widely is CES solution adopted;
CES benefits are available immediately to adopters - multihoming, inbound TE and if possible
also mobility;
Deployment of CES does not affect DFZ routers, but new devices on the border between core
and edge are needed to interconnect this two address spaces together with mapping system;
CES solutions do not require host stack, API or application changes;
Tunneling and overlaying impose additional size overhead on fragments, thus introducing M T U
concerns when employing CES.

LISP, APT, Ivip, IRON-RANGER, TRRP:

Locator Identifier Name

IP address IP address FQDN

outer header

Six/One:

Locator

inner header

identifier Name

IP address IP address FQDN

IPv6 extension header PC! field

Fig. 14: CES types

Main C E E features are summarized in the list and Fig. 15 below:

• The most of C E E solutions separates locators and identifiers into two different namespaces.
• C E E benefits are visible and widely available to adopters only after majority of network migrate;
• Routing scalability is attained in a way that applications are no longer dependent on stable PI

(or de-aggregated PA) addresses. Hence, P A addresses could be easily preferred and
administratively more available than PI addresses.

19

• C E E host stack must determine which locator should use. Besides that, potential set of locators
could be retrieved, thus implying resolving multihoming, inbound TE, and mobility issues;

• DFZ routers are not affected, and no additional tunneling devices are needed, however, a new
infrastructure must be present to provide mapping between identifiers and locators;

• C E E solutions need host stack changes and applications augmentations;
• The most of C E E solutions do not support IPv4 and have some troubles with N A T so

additionally clutches are needed.

HIP,Shim6, RANGI:
Locator identifier Name

Pv6 address HIT/ULID/HI FQDN

ILNP, GLI-Split:

Locator

IPv6 extension header PC! field

Identifier Name

64 bit long locator 64 bit long identifier FQDN

IPv6 address PCI field

Fig. 15: CEE types

It is assumed that CES are easier for voluntarily adoption rather than CEE. On the one hand, the
purpose of the routing system is to serve hosts. Hence, the goal is to make routing system more scalable
with the help of CES solution that targets network, not hosts. On the other hand, C E E solutions are
believed to lead to better final shape of the Internet, because of: a) routing should be as simple as possible
without unnecessary tunneling clutches; b) utilization of IP address as identifier is a fundamentally
wrong concept. One can say that CES is "network-centric" and CEE is "host-centric". Unfortunately,
no hybrid solution between CES and C E E does exist.

Both of them need a scalable mapping system. Nevertheless, CES mapping system is arguably
more efficient because: a) CES lookups are needed only for initial communication towards a host inside
edge network in opposite to C E E lookups that must be performed by senders and receivers for any newly
established communications; b) CES mapping system is better designed for caching to alleviate
unnecessary resolutions; c) it is unlikely that organizations already using PI addresses would downgrade
for P A addresses.

3.4 Chapter Summary
This chapter offered theoretical background on naming, addressing, and routing issues. We postulated
complete naming and addressing model based on a synthesis of respected works in this field. Before
anything else, we outlined ideal solution properties and organized their goals according to the
importance and beneficial effect. We enumerated existing feasible candidates and briefly mention their
specifics. Then we compared and categorized all possible solutions.

The ideal solution should have following properties: a) provide complete naming architecture
with one or more levels of addressing indirection, where employed addresses are location dependent but
route independent; b) inherently support use-cases like network multihoming, device's mobility, and
owner regulated traffic engineering.

Drawing on overall results and findings, we decided to pursue LISP and RINA more closely to
see whether they comply with postulated naming and addressing model and at the same time fit to
achieve the most of the ideal solution goals.

20

4 Locator/ID Separation Protocol
§<g> -'Perhaps it's impossible to wear an identity without becoming what you pretend to be." O.S.Card
§<g> What is LISP? What components, messages and function does LISP employ?
§<g> Can we improve LISP's operation?

LISP is currently one of the most discussed CES solutions that could bring alleviation to "pain points"
of nowadays Internet, such as mobility, multihoming, decoupling identity and locality. LISP works with
map-and-encap principle benefiting from own mapping system to distribute information about
identifier-locator pairs.

LISP development started after IAB Workshop in 2006, and it supposes to be the response
dealing with major problems introduced in Subchapter 2.2. LISP should reduce DFZ routing table
growth, stop prefix deaggregation, allow easier multihoming and mobility without the BGP and split
locator and identifier namespaces. LISP should be deployed without any changes to hosts or DNS. It
must support both IPv4 and IPv6 seamlessly. Moreover, it is agnostic to any network protocol (it could
be used with future IPv7 or any new invention working on this layer). Transition mechanisms are part
of LISP protocol standard. Thus, it supports communication with the legacy non-LISP world.
Nevertheless, the enterprise is always skeptical and slow when adopting new technology. Hence, it is a
great research challenge to investigate LISP features using modeling and simulation as the referential
testbed tools producing meaningful outcomes.

In this chapter, we would like to dive into the LISP and explore its capabilities and limitations.
The main goal of this chapter is: a) to provide an in-depth presentation of LISP; b) to illustrate known
LISP issues; c) to propose improvements and implement them in the form of new simulation models for
OMNeT++; and d) to evaluate the impact of suggested improvements.

4.1 Overview
Majority of this subchapter is based on RFC 6830-6834 [58], [59], [60], [61] that standardize LISP
protocol and its interfaces as experimental.

The main idea behind LISP is to separate localization and identification. Following the example
of G S M network could serve as an analogy for this. Cellphone identifier is a telephone number, and cell
phone localizator is operator's network, which connects the device. If somebody calls the number ("to
identify") then operator's network searches for particular base transceiver station ("to localize") with
which cell phone is associated right now in order to establish the call. Whenever owner travels with cell
phone abroad, cell phone changes also operator's network (locator). However, callers are still using the
same number (identifier) to reach owner despite the fact that locality has changed.

LISP accomplishes similar behavior by splitting the IP address into two namespaces:

• Routing Locator (RLOC) namespace where addresses fulfill their localization purposes by
telling where is device connected to the network (red cloud on Fig. 16);

• Endpoint Identifier (EID) namespace where each device has a unique name that identifies it
from each other (green cloud on Fig. 16).

Also a non-LISP namespace exists (and probably always will exist), where direct LISP
communication is (even intentionally) not supported (blue cloud on Fig. 16). Apart from namespaces
also exist: a) specialized routers performing map-and-encap that interconnects different namespaces;
b) dedicated devices maintaining mapping system; and c) proxy routers allowing communication
between LISP and the non-LISP world.

4.1.1 Tunneling

A LISP mapping system performs lookups to retrieve a set of RLOCs for a given EID. Tunnel routers
between namespaces utilize these EID-to-RLOC mappings to perform map-and-encapsulation.

21

Map-and-encap routers Mapping devices RLOC namespace

EID namespace
„LISPsite"

''•Proxy fornonLISP world

Fig. 16: Basic LISP scheme

Version | IHL | Type of Service Total Length

Identification Rags I Fragment Offset

Time to Live Protocol = 17 Header Checksum

IPv4 Source RLOC

IPv4 Destination RLOC

Source Port Destination Port = 4341

•.I a l i 3 ^ . 1 * . ML

ength UDP Checksum

N n nr.p,'M an. \/p rti nn
MÚMumám Instance ID/Locator Status Bits

Version IHL Type of Service Total Length

Identification Rags J Fragment Offset

Time to Live Protocol Header Checksum

IPv4 Source EID

IPv4 Destination EID

Version Traffic Class

Payload Length Next Header = 17 Hop Limit

IPv6 Source RLOC

" N | L | E | V ' | I Rags|
Inda

IPv6 Destination RLOC

Source Port Destination Pat = 4341

UDP Length

Nonce'Map-Version

Instance ID/Locator Status Bits

Version Traffic C

Length Hop Limit

IPv6 Source EID

IPv6 Destination EID

Version IHL Type of Service

Identification

Protocol = 17

Total Length

Flags Fragment Offset

Header Checksum

IPv4 Source RLOC

IPv4 Destination RLOC

Source Port

UDP Length

re"

Destination Port = 4341

Nonce/Map-Versi on

Instance ID/Locator Status Bits

Version Traffic Class

Payload Length Hop Limit

IPv6 Source EID

IPv6 Destination EID

IPv6 Source RLOC

IPv6 Destination RLOC

Fig. 17: LISP packet variants

8 16 24 32

Version Traffic Class Row Label

Payload Length I Next Header = 17 | Hop Limit

Source Port Destination Port = 4341

UDP Length UDP Checksum

N | L | E | V | 11 Flags Nonce/Map-Versi on

Instance ID/Locator Status Bits

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Tune to Live Protocol Header Checksum

IPv4 Source EID

IPv4 Destination EID

The original (inner) header (with EIDs as addresses) is encapsulated by a new (outer) header
(with RLOCs as addresses), which is appended when crossing borders from EID to R L O C namespace.
Whenever a packet is crossing back from R L O C to EID namespace, the packet is decapsulated by
stripping outer header off. LISP supports both IPv4 and IPv6. Moreover, LISP is agnostic to address
family thus it can seamlessly work with any upcoming network protocol. Transition mechanisms are
part of the protocol standard. Hence, LISP supports communication with the legacy non-LISP world.
LISP places between inner and outer header additional PCI in the form of UDP header succeeded by
LISP header. LISP uses reserved port numbers - 4341 for data and 4342 for signalization. Currently,
any combination of IP headers is supported - IPv4 outer / IPv4 inner, IPv4 outer / IPv6 inner, IPv6 outer
/ IPv4 inner, IPv6 outer / IPv6 inner. However, the map-and-encap principle is so generic that LISP
could inherently support any network layer protocol. Fig. 17 depicts all variants of LISP packets.

Basic components are Ingress Tunnel Router (ITR) and Egress Tunnel Router (ETR). Both
are border devices between EID and R L O C space; the only difference is in which direction they operate.
The single device could be either ITR-only or ETR-only or ITR and ETR at the same time (thus
abbreviation xTR).

ITR is the exit point from EID space (a.ka. LISP site) to R L O C space, which encapsulates the
original packet. This process may consist of querying mapping system followed by updating local map-
cache of recently used mappings. Map-cache improves the performance of the system (i.e., EID-to-
R L O C mapping pairs are stored for a limited time to reduce signalization overhead).

ETR is the exit from R L O C space to EID space that decapsulates original header. Outer header,
auxiliary UDP, and LISP headers are stripped off. ETR is also announcing all LISP sites (their EID
addresses) and by which RLOCs they are accessible.

If we inspect structure of LISP packet somewhere in R L O C space then:

• Inner header source IP = sender's EID address;
• Inner header destination IP = receiver's EID address;
• Outer header source IP = ITR's R L O C address;
• Outer header destination IP = ETR's R L O C address.

4.1.2 Mapping System

Before moving to LISP mapping system concretely, let us discuss how those things are handled
theoretically. Any Internet mapping system is nothing else than the huge distributed database. Simple
mapping information is represented in a single database record.

LISP mapping system is primarily employing two components - Map Resolver (MR) and
Map Server (MS). Looking for EID-to-RLOC mapping is an analogous process as DNS name
resolution (see Fig. 18). In the case of DNS, the host asks its DNS resolver (configured within OS)
which IP address belongs to a given FQDN. DNS server responds with a cached answer or delegates the
question recursively or iteratively to another DNS server according to the name hierarchy. In the case
of LISP, querier is ITR that needs to find out which RLOCs could be used to reach a given EID. ITR
has preconfigured M R , which is bothered each time mapping is needed.

Queries performing EID-to-RLOC mapping are data-driven. This behavior means that a new
data transfer between LISP sites may require a mapping lookup, which causes that data dispatch is
stopped until a mapping is retrieved. This behavior allows LISP to operate a decentralized database of
EID-to-RLOC mappings. Replication of whole (potentially large-scale) database is unnecessary because
mappings are accessed on-demand, just like as in DNS a host does not need to know complete domain
database. Tunnel routers maintain map-cache of recently used mappings to improve the performance of
the system.

Following list contains all LISP mapping signalization messages with their brief description.
They are without inner header - just the outer header, followed by UDP header (with source and
destination ports set on 4342), and followed by appropriate LISP message header.

• LISP Map-Register - Each ETR announces as authority one or more LISP site(s) to the MS with
this message. Each registration contains authentication data and the list of mappings and their
properties;

23

• LISP Map-Notify - UDP cannot guarantee message delivery. MS may optionally (when the
proper bit is set) confirm reception of LISP Map-Register with this message;

• LISP Map-Request - ITR generates this request whenever it needs to discover current EID-to-
R L O C mapping and sends it preconfigured M R ;

• LISP Map-Reply - This is solicited a response from the mapping system to a previous request
and contains all RLOCs to a certain EID together with their attributes. Each ITR has its map-
cache where reply information is stored for a limited time and used locally to reduce
signalization overhead of mapping system. Moreover, mapping system generates LISP Negative
Map-Reply as a response whenever given identifier is not the EID, and thus proxy routing for
non-native LISP communication must occur.

Fig. 18: Comparison between DNS and LISP mapping system

M R processes ITR's LISP Map-Requests. Either M R responds with LISP Negative Map-Reply
if queried address is from a non-LISP world (not EID), or LISP Map-Requests is delegated further into
a mapping system to appropriate MS.

Every MS maintains mapping database of LISP sites that are advertised by LISP Map-Register
messages. If MS receives LISP Map-Request then: either a) MS responds directly to querying ITR (it is
allowed to do that because MS has all the necessary information in its mapping database); or b) MS
forwards request towards designated ETR that is successfully registered to MS for target EID.

Each R L O C is accompanied by two attributes - priority and weight. Priority (one-byte long
value in the range from 0 to 255) expresses each R L O C preference. The locator with the lowest priority
is preferred and is going to be used as the outer header address. Priority value 255 means that the locator
must not be used for traffic forwarding. Incoming communication may be load-balanced based on the
weight value (in the range from 0 to 100) between multiple RLOCs sharing the same priority. Zero
weight means that RLOC usage for load-balancing depends on ITR preferences.

xTRs perform RLOC probing (checking of non-local locator liveness) in order to always use
current information. R L O C probing is done with the help of special variant LISP Map-Request and LISP
Map-Reply messages (with the appropriate bit set on). Let us called them LISP Map-Request Probe and
LISP Map-Reply Probe.

4.1.3 Coexistence between LISP and Non-LISP

Flag Day is not an option in case of migration to LISP just as in the case of IPv6. Moreover, there will
always be networks that do not intend to deploy LISP or where LISP deployment is not beneficiary or
possible. Special devices are needed to interconnect LISP and a non-LISP world where IP address
locality and identity are not decoupled. Communication between those two worlds differs according to
the direction, how IP addresses are interpreted during routing procedure and what issues are connected
with it:

• non-LISP •=> LISP - Hosts and routers do not know anything about loc/id split. Hence, EIDs are
considered as ordinary addresses and natively routed to "EID network entry point";

• LISP •=> non-LISP - ITR must recognize that the destination address is not EID. Hence, there
are no RLOCs associated with it. The packet is then delivered to "LISP world exit point".

24

Two approaches are proposed for LISP/non-LISP coexistence purposes: a) address translation;
b) proxies providing ITR and ETR roles (both briefly documented bellow and in [59]).

No matter whether a) or b) is used, the both of them supports Day 1 benefits so that the number
of adopters does not determine overall functionality and quality of LISP deployment. Therefore, site
profits from LISP (i.e. easier mobility or multihoming) immediately after migration. Full control over
inbound TE is the most noticeable adoption gain because of priority and weight attributes that are
mandatory to follow by any LISP implementation. Compare LISP load-balancing (according to
priority/weight - inherent parts of LISP protocol design) and BGP policies that should accomplish the
same goal. Unfortunately, BPG policies cannot be enforced and are prone to reconfiguration when
traversing ASes.

The research community has limited options how to observe and expand LISP features in a safe
environment of simulator where different scenarios could be easily scheduled and verified later.

One of a few attempts is CoreSim developed by Coras et al. [62]. It is written in Perl, and it
allows predict ITR and MS behavior at a macro-scale level using traffic traces, BGP data, and latency
estimations. However, CoreSim estimations use rather a general mathematical model taking into account
only the distance [63]. Currently, limited LISP implementation exists authored by Hoefling et al. [64]
to support LISP MobileNode NAT traversal [65]. However, it is intended for outdated INET-20100323
and OMNeT++ 4.0. Previously, LISP map-cache performance have been evaluated employing high-
level simulation that is not taking into account protocol implementation specifics [66].

Among additional goals of this thesis is to provide the community with a variety of simulation
models supporting up-to-date version of LISP protocol.

LISP architectural implications are discussed in IETF draft [67] followed by companion paper [68].
Previous papers outline and discuss two major issues for LISP threatening its scalability - Site-Based
State Synchronization Problem and Locator Path Liveness Problem.

Site-Based Synchronization Problem occurs whenever EID-to-RLOC mappings (including
locator statuses) may need to be shared among nodes. Remember that LISP mapping queries are data-
driven. There is no need to rediscover mapping for the same data traffic by one xTR if this mapping is
already known to other site's xTRs. Sharing of mapping improves routing of packets in case of
asymmetrical traffic flows. Imagine that traffic is leaving the site via two xTRs - one is actively
dispatching all traffic, another is backing up its functionality. Map-cache on active xTR is populated
with records whereabouts map-cache on backup has no mapping state. Whenever traffic shifts from
active path to backup path, former backup xTR experiences map-cache misses

Locator Path Liveness Problem is formulated by a question whether given set of source
locators and a set of destination locators, can bi-directional connectivity be determined between the
(srcRLOC, dstRLOC) address pairs? Locator Path Liveness Problem is present not only in LISP but its
variants also apply to other candidates like HIP, SHIM6 or IRON-RANGER. In the case of LISP, if ITR
chooses destination RLOC, which is not reachable, then traffic is discarded somewhere along the path
towards destination LISP site.

This subchapter introduces two proposed improvements targeting some of the issues from
previously mentioned papers that increase LISP performance - map-cache synchronization and merged
R L O C probing. In order to evaluate contribution, we developed brand new OMNeT++ simulation
modules for LISP and also for Virtual Router Redundancy Protocol that is being deployed
simultaneously on ITR.

4.2 State-of-the-Art

4.3 Contribution

25

4.3.1 Map-Cache Synchronization

Assume multiple redundant routers are acting as first hops in the high-availability scenario like in Fig.
19. Those routers are simultaneously clustered into V R R P groups and act as LISP's xTRs - they run
LISP and V R R P at the same time.

The performance of map-and-encap depends on the fact whether xTR's map-cache contains
valid EID-to-RLOC mapping or not. Dispatched data traffic drives map-cache record creation. If map-
cache misses the mapping, then, a mapping system needs to be asked, and initiating data traffic is
meantime dropped. This fact is illustrated in Fig. 19 for EID address y.y.y.y. On the one hand, packets
(with y.y.y.y as destination) can traverse 1TR1 without any problem (locator c.c.c.c is present in map-
cache). On the other hand, same packets are discarded on ITR2, which misses the mapping. Packet
dropping is a valid step as long as the mapping is not discovered because map-and-encap cannot occur
without proper information. The rationale behind this behavior is the same as in the case of ARP
throttling [11], where any triggering traffic should be discarded to protect control-plane processing and
prevent superfluously recurrent mapping system queries.

Fig. 19: Site-Based State Synchronization Problem illustration

Each xTR has its map-cache, and its content may differ even within the same LISP site because
different traffic may initialize various map-cache entries. Hence, xTRs can easily experience severe
packet drops and LISP control message storms due to the map-cache misses when Master change occurs
within V R R P group.

Previous is known as Site-Based State Synchronization Problem. If we have two or more
redundant xTRs, then we want to reduce packet drops as much as possible in case there is a traffic shift
from an active to a backup device. xTR outage leads to the off-site signalization storm (lots of LISP
Map-Request/Reply messages being exchanged) and dispatching delay for ordinary traffic.

This problem is described as the one of LISP weak-points in [69] and theoretically investigated
in [70]. The viable solution would be to provide map-cache content synchronization that should
minimize map-cache misses upon failure. Inspired by that, we present our solution addressing this
problem.

We have decided to implement it as a technique maintaining synchronized map-caches within a
predefined synchronization set (SS) of ITRs. Any solicited LISP Map-Reply triggers synchronization
process among SS members.

SS members are identified and reached using the IP address. Following strategies might be used
when choosing appropriate SS member address:

• SS address comes from non-LISP world - Either IP address should be loopback or address of
dedicated interconnection shared by all SS members. In the first case, unique device loopbacks

26

need to employ additional routing. In the second case, the additional port for the dedicated
connection is seldom available. Also, tracking of SS member needs additional LISP control
plane updates;

• SS address comes from LISP world:
o SS address is R L O C - SS membership is bound to the operability of a given RLOC

interface, but this has negative implications for the situation, where xTR has more than
one R L O C available. Although, it is easy to track SS member status using return value
of R L O C probing;

o SS address is EID - The best option reflecting LISP's ideology. EID as SS address
should be reachable via direct routing (xTRs share common EID segment) or unless all
RLOCs to this EID are down (which could be also used to track peer synchronization
status).

Each record in the map-cache is equipped with a time-to-live (TTL) parameter. TTL expresses
how long the record is considered to be valid and usable for map-and-encap. By default, every record
uses the same initial TTL value. Map-caches within SS must maintain the same T T L on shared records;
otherwise a loss of synchronization might occur (on some ITRs, identical records could expire because
of no demand for traffic).

Either SS membership may be completely stateless, or SS member may maintain a state of its
synchronization peers. The stateful approach allows sending of partial synchronization updates. We
have implemented two modes of synchronization reflecting previous observation:

1) Na'ive - The whole content of map-cache is transferred to SS. A l l mappings are then updated
according to the new content and TTLs are reset. This approach works fine, but it obviously
introduces significant transfer overheads;

2) Smart - Only record that caused synchronization is transferred. However, peer synchronization
status have to be employed to deal with the situation when SS member goes back up and
completely lacks any mapping. At that time, a whole set of map-cache content must be sent (not
just a partial update). Moreover, we bound this mode with the following policy. When TTL
expires, the ITR must check record usage during the last minute (one minute should be a period
long enough to detect ongoing communication). If the mapping has not been used (based on the
last lookup time of cache record), then it is removed from the cache. Otherwise, its state is
refreshed by query followed by synchronization.

Both approaches guarantee that devices within SS could forward rerouted LISP data traffic
without packet loss or interruption because they share the same content as ITR's map-cache of
malfunctioned former Master.

Synchronization itself is done with the help of two new LISP messages - one carries
synchronization data, another optionally acknowledges successful synchronization:

• LISP CacheSync - It contains map-cache records, which are being synchronized, and
authentication data, which protect SS members from spoofed messages;

• LISP CacheSync Acknowledgement) - Because LISP leverages UDP, it cannot guarantee
message delivery. However, we decided to employ the same principle as for LISP Map-Register
and LISP Map-Notify. Hence, LISP CacheSync delivery may be optionally confirmed by
echoing back LISP CacheSync Ack message.

Message structure of LISP CacheSync is depicted in Fig. 21 and LISP CacheSync Ack in Fig.
22. Notable differences when comparing to LISP CacheSyncZ(Ack) with the structure of LISP Map-
Register/Notify are:

• Both messages also include new Type values - LISP CacheSync is 5, LISP CacheSync
Acknowledge is 6;

• LISP CacheSync header contains C flag. When C flag is set on, then synchronization
acknowledgment is requested by a sender. Receiver (i.e., SS member) must reply with LISP
CacheSync Ack containing all the map-cache records that have been successfully processed.
LISP CacheSync message is resent after the acknowledgment awaiting timeout (by default with
cumulative value 2 n u m 0 f R e t r i e s) ;

27

• There is no need for A flag in Cache Record and L and p flags in RLoc (for details about flag
meanings, please see [58]);

• As in the case of LISP Map-Register/Notify, LISP CacheSyncZ(Ack) mandatorily contain nonce
and authentication using H M A C to avoid spoofing of false unsolicited cache synchronization
information.

The diagram in Fig. 20 depicts F S M implementing map-cache synchronization where transitions
are denoted with "input / action" labels. Our solution provides a clean-slate way how to alter the content
of the map-cache reliably. Nevertheless, others might try to leverage options already available in LISP.
Unfortunately, each one has some disadvantage.

The first approach is to alter existing LISP Map-Requests by forcing included map-reply record
field to contain more than one record. However, this approach is unreliable because it lacks
acknowledgment scheme and cannot solve all following wrong goings. What if receiver side does not
recognize this option inside LISP Map-Request1? What if LISP Map-Request did not reach receiver?
What if the receiver wants to process only part of synchronization information? What if SS-members
need to synchronize map-cache when the condition for sending LISP Map-Request is not met?

The second approach is that LISP already contains an on-demand renewal of mapping
information called Solicit-Map-Request (SMR). SMR is a mechanism how ETRs may rate-limit
requests and notify ITRs about mapping change. When mapping changes, ETR starts to send LISP Map-
Request (with the SMR-bit set on) messages to ITRs with which it recently exchanged data. Then, ITR
generates SMR-invoked LISP Map-Request to discover new mapping. If we want to use SMR to push
new mappings into ITR's map-cache, then the best way seems to be extending the functionality of M R
(see [70]). However, this approach yields significant off-site signalization overhead.

< 8

ID g i _

I e l

Initiate Map-Cache Synchronization

t r u e
/ send LISP CacheSync with C=1 to all SS members

Prepare all && enqueue LISP CacheSync for retransmission
map-cache entries upon ack awaiting Hmer expiration

Naive

()—[><^Syncing mode?^>
sync data
prepared C X ^ A c k required?^> (f̂ J)

Smart t r u e

P ^ ^ Ü S m e m b e r " ^ ^ Prepare single f a l s e
Bring

f a l s e
map-cache entry / send L Bring

f a l s e

NOJI

1

Acknowledgment Awaiting Timer Expiration

Dequeue
LISP CacheSync

%

Prepare enqueued
LISP CacheSync

message prepared
/ send prepared LISP CacheSync

&& reset ack awaitinc

Process Map-Cache Synchronization

Process received
map-cache entries

/send LISP CacheSync Ack
with all successfully processed
map-cache entries

all map-cache
enlries processed ^ X ^ ^ .

[X ^ A c k required?^> ^CZj

Fig. 20: Map-cache synchronization operation

28

n = Cache Record Count

m = RLx Count

oo ny
Y

pjoooy OUOBQ
Fig. 21: LISP CacheSync message format

n = Cache Record Count

m = RLoc Count

oony
Y

pjoooy 81(060
Fig. 22: LISP CacheSync Acknowledgment message format

4.3.2 Merged RLOC Probing
Locator Path Liveness Problem concerns whether a destination locator is reachable via particular source
locator or, in other words, whether bi-directional connectivity exists between a given pair of locators.
Problem relevant to LISP is depicted in Fig. 23 where xTR-Al asks for Site B locators. In this case, two
locators are available (1.0.0.1 and 2.0.0.1). xTR-Al chooses the second one as a destination address for
packets. If the link between ISP1 and ISP2 goes (un)intentionally down, 2.0.0.1 is not reachable
anymore, and xTR-Al must somehow find out this fact.

Fig. 23: Locator Path Liveness Problem illustration

Locator Path Liveness detection (checking whether R L O C is reachable or not) does not scale
very well in large networks because the reachability of every destination locator must be probed against
every source locator of a given device. Complexity of such a task is generally 0(nx m), where n is a
number of source and m a number of destination locators. However, instead of brute-force probing some
hints might be used to mitigate (but not to avoid) such complexity, e.g. piggybacking, timeouts,
existence of underlying routing, positive feedback from protocol control messages or other protocols.

To make Locator Path Liveness Problem even more complicated, let us imagine a situation when
LISP site has two or more ITRs with different destination locator reachability. One ITR has connectivity,
and another has not (e.g. xTR-Al and xTR-A2 on Fig. 23). Hence, all packets processed by that ITR are
going to be discarded somewhere in the network. Unfortunately, neither IGP responsible for routing the
packet to faulty ITR nor hosts have capabilities to detect this issue from their internal point of view.

In order to find a remedy for this problem, we focused on the behavior of Cisco referential
implementations and their RLOC-probing algorithm checking locator reachability. ITR is probing
assigned locators for each configured EID. This behavior is in compliance with [58] but it leads to
repeated check of the same locator multiple times, which represents scalability issue in larger networks.

We decided to decrease protocol overhead by merging EIDs to check locator liveness with a
single R L O C probe that we call merged RLOC probing.

The simple but rather a trivial approach would be to make the following assumption: "If the
same locator is reachable for one EID then it would also be reachable for other EID." Hence, the router
can generate only single RLOC probe during one liveness checking period. If it receives positive LISP
Map-Reply Probe, it may consider probed locator as alive for all EIDs in map-cache that are using it.
More sophisticated approach is to:

1) On sender, check liveness of a given locator with a single LISP Map-Request Probe containing
one or more query records. Each query record specifies cached EID that uses probed RLOC;

2) On receiver, respond with LISP Map-Reply Probe that includes locator status updates for all
queried EIDs contained in request (or only subset of those EIDs that are in up state);

3) Back on the sender, refresh locator status of relevant EIDs in map-cache according to answer(s)
in reply.

30

Above described mechanism is compatible with RFC description and does not need any protocol
extensions. Yet, it preserves the accuracy of Cisco's R L O C probing algorithm but with only single
R L O C probe exchanged. We have integrated all above described algorithms - Cisco's, Simple and
Sophisticated - in our LISP simulation module.

4.3.3 Results

This section presents results of evaluation of newly implemented mechanisms. Each measured
phenomenon has its subsection with dedicated network graph and scenario. The goal of this subchapter
is to show: a) the impact of synchronization on a packet drop rate (and a number of map-cache misses)
and to enumerate the burden of deploying it on control plane; and b) the impact of merged RLOC
probing on control plane processing.

Impact of Map-Cache Synchronization
We prepared simulation network that contains a LISP site (network EID 192.168.1.0/24 reachable via
two RLOCs 11.0.0.1 and 12.0.0.1) with two routers (xTRl and xTR2), which provide highly-available
V R R P default gateway (192.168.1.254) for two hosts interconnected by switch SW. Hostl and Host2
are pinging IPv4 EIDs (172.16.[0-19].0/24) randomly thus generating traffic that triggers LISP mapping
system queries. A l l routing is done statically. Hence, there is no need to employ routing protocol on
Core router. We prepared special xTR called xTR_Responderl that: a) registers destination EIDs to
MRMS; and b) responds to hosts ICMP messages. The whole network graph is depicted in Fig. 24. Also
this scenario (named "LispSyncTest") is located in / e x a m p l e s / a n s a / l i s p S y n c T e s t folder of
available source codes.

etho y'''RLOC space

Host2 '192.168.1.254 \
ethO *•..._
192.168.1.102/24

Fig. 24: LISP testing network for Map-Cache synchronization

The testing scenario is focused on cache misses due to the missing mapping rather than expired
ones because of default TTL value (1 day). Five minutes time slot with the single V R R P Master outage
is the simplest illustration of how to compare the impact of map-cache synchronization. During the
outage, all xTRl ' s interfaces shut down (i.e., they are physically disconnected from the network). Yet,
the x T R l ' s control plane is operational (generating scheduled LISP messages, which are not delivered).

We scheduled following phases for the test run focusing on map-cache synchronization:

#1) At first, all xTRs register their EIDs. In the case of xTR_Responderl, EID space is modeled
with the help of loopback interfaces - twenty of them ranging with addresses from
172.16.0.0/24 to 172.16.19.0/24 reachable via single R L O C 21.0.0.1. In case of x T R l and
xTR2, EID 192.168.1.0/24 is reachable via two RLOCs 11.0.0.1 and 12.0.0.1;

31

#2) xTRl and xTR2 form V R R P group with VID 10 and virtual address 192.168.1.254, which
is used by Hostl and Host2 as default-gateway. xTRl is Master because of higher priority
(xTRl has 150, xTR2 only 100) as long as it is operational.

#3) Hostl starts pinging ten random EIDs in the range from 172.16.0.0/24 to 172.16.9.0/24.
Because EIDs are chosen randomly, they may be duplicate. Each first ICMP packet causes
mapping query and is dropped.

#4) Then right before a new LISP registration (at t=119s), xTRl failure occurs. Hosts traffic
is diverted to a new V R R P Master, which is xTR2.

#5) After phase 4), also Host2 starts to ping ten random EIDs from 172.16.10.0/24 to
172.16.19.0/24. Same duplicity rule as in 3) applies.

#6) xTRl recovers from the outage at t=2 35 s and once again all hosts traffic goes through it.

Depending on the map-cache synchronization type, additional map-cache misses might occur.
xTRl and xTR2 synchronized themselves via their RLOCs (11.0.0.1 for xTRl and 12.0.0.1 for xTR2).

The scenario has been tested with three simulation configurations, which we can divide
according to the used map-cache synchronization technique: a) no synchronization at all (default LISP
behavior); (3) naive mode; and y) smart mode. Impact on map-cache is summarized in Tab. 3 for all
previously mentioned different configuration runs. Fewer map-cache misses are considered better.

We do not employ LISP synchronization acknowledgment scheme for p/y-runs, the impact of
acks is analyzed later. The scenario offers testing of all three kinds of addressed for SS member
identification - e.g., nonLISP with 10.0.0.0/30; RLOC with 11.0.0.1 and 12.0.0.1; and EID with
192.168.1.1 and 192.168.1.2) with same results. Nevertheless, we use EIDs as the most feasible options.

Before interpreting results, please note that Hostl randomly (using same random generator
seeds) chose eight different EIDs, Host2 six EIDs, fourteen distinct ping destinations in the summary.

a cache iche
Phase misses KS sses

xTRl xTR2 xTRl xTR2 xTRl xTR2
#3 8 0 8 0 8 0
#5 0 14 0 6 0 6
#6 14 0 0 0 0 0

Total 22 14 8 6 8 6

Tab. 3: Count of map-cache misses under different configurations in scenario with one outage
Without any synchronization, traffic diversion to a new V R R P Master always causes misses due

to unknown mappings. We can see it in phases #5 and #6 for a-run when the router starts to dispatch
LISP data with the empty map-cache.

If synchronization is employed, then, only new destinations lead to map-cache miss. This is
because a new V R R P Master already has mappings discovered by neighbor xTR. Hence, there is a
difference in phase #5 for a-run (empty cache) and p/y-runs (cache in sync with SS member). The
difference (36 cache misses versus 14) would be even more significant in the case of multiple VRRP
Master outages. Please note that every map-cache miss is also connected with the data packet drop.

In order to compare synchronization modes, we conducted measurement taking into account all
LISP control messages processed by LISPCore module, namely their packet sizes. We assume that
larger size is always a greater burden for router's control plane processing. Fig. 25 shows results (a-run
= blue crosses, P-run = green triangles, y-run - red circles), where each symbol represents one LISP
control message.

We can see that smart outperforms naive because it is less intensive while only single mapping
is transferred during synchronization, not a whole map-cache. Moreover, both synchronization modes
are better than no synchronization on protocol overhead because they decrease the number of mapping
queries (i.e., exchanged messages count). The difference is not so significant on Fig. 25, especially
between naive and no sync mode. However, it is getting more obvious as the number of V R R P outages
increases. Following table and figure prove this claim for the same network but with two xTRl outages
- basically phases #4 and #6 repeat twice.

32

Phase
1 xTRl xTR2 xTRl xTR2 xTRl xTR2

#3a 8 0 8 0 8 0
#5a 0 14 0 6 0 6
#6a 14 0 0 0 0 0
#5b 0 0 0 0 0 0
#6b 14 0 0 0 0 0

Total 36 14 8 6 8 6

Tab. 4: Count of map-cache misses under different configurations in scenario with two outages

Repetition of phases 4), 5) and 6) is denoted in Tab. 4 with letters: "a" for the first outage; and
"b" for the second outage. In Tab. 4, we can observe that a total number of cache misses for a-run has
increased by 14. xTRl had gone down (losing its map-cache content), then went back (repopulating
map-cache once again with 14 EIDs) and then this cycle repeats once again. For (3-run and y-run,
additional outages pose no change, because xTRl completely synchronizes itself with xTR2 (xTR2 sends
the whole map-cache as soon as it detects the status of the one of xTRVs RLOCs up), when it is once
again operational. Fig. 26 shows an increase in a number of processed LISP control message for no
synchronization, where impacts of other synchronization techniques remain same.

LISP synchronization acknowledgment mechanism poses an additional control plane burden. In
order to evaluate acknowledgment impact, we conducted measurement on the same network with two
outages. The results in a number of processed LISP control messages bytes are depicted in Fig. 27 and
can be compared with Fig. 25.

It is apparent that protocol overhead on the number of messages has increased. In the case of no
synchronization, it slightly outperforms naive mode by a total size of processed bytes. However, the
smart mode still has the best characteristic even with enabled acknowledgments. Once again, we can
expect that additional outages or more EID ping destinations would influence results in favor of (3/y-
runs over a-run.

To summarize the evaluation of map-cache synchronization technique, we provide Tab. 5,
which shows a/pYy-run (i.e., none, naive and smart sync) statistics for different scenarios (i.e.,
one/two/three outage(s) with or without acknowledgment). xTRl ' s statistic numbers are depicted with
following column meanings: "miss" as the number of map-cache miss occurrence; "cnt" as the total
count of LISP control plane messages sent and received; "size" as processed messages count by LISP
control plane measured in total byte size. We added to Tab. 5 also same statistics section for the scenario
with three outages in order to analyze trends even thou that it is not described via dedicated table and
graph above. Results show a linear growth in complexity.

single xTRl outage scenario single xTRl outage with sync ack scenario
a ß Y a ß Y

miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size
22 81 4 458 8 62 4 328 8 62 3 796 22 81 4 458 8 71 5 458 8 71 4 394

two xTRl outages scenario two xTRl outages with sync ack scenario
a ß Y a ß Y

miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size
36 109 5 718 8 63 4 614 8 63 4 082 36 109 5 718 8 73 6 030 8 73 4 966

three xTRl outages scenario three xTRl outages with sync ack scenario
a ß Y a ß Y

miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size miss cnt size
50 137 6 978 8 64 4 900 8 64 4 368 50 137 6 978 8 75 6 602 8 75 5 538

Tab. 5: xTRl's statistics for different map-cache synchronization scenarios

33

msg-s ize: vector LispSyncTestxTRI LlSPIispMsgLogger
^.InEUeKan^s/ansafcpfcpSyncTes^iesLls^cheSyiKliaive-O.uec CactaSyncNaNe-0-2015O2'-3-'O 35 5-496 CacheSyncNaive

^.inErjEKaniptei/areafer^pSyncTes^iesub/tjacheSyrKSniiart 0 vec CacheSyrKSmart-0-20150218-10:35:44-8736 CacheSyrc Smart

-X-AkIfe>:arn pisslansa/fep/fcpSy ncTest/resufc/NoSync-0.vec NOSync-D-20150218-10:34:20-9112 NoSync

0 50 100 150 200 250 300

time
Fig. 25: xTRl's LISP control messages occurrence and total processed byte size in scenario with single outage

msg-size:vector LispSyncTestxTRI LlSPIispMsgLogger
•^finet/eK&ntfesfansaflisp/lispSync^^ :-• : }: -:-2ZZ. Z.=.: -s : . - • - ; \ ; vs-2:utages

-av 'sx i " ; sj:.'ansa: s • s 3 y :~s--,-''s- .rs.'Ca ;~s3yc3™i :-" ;u:ics=-C v s ; Ci;"*5;- • " i "-I ;..:i;sj:-0-Iu ' 50Z ' "- ' C 3~ ' 3 - 3 " l "a : ~s:. • : i -a :-" :.-.::ri

*^neiJBxampJBs/ansafcp/IJspSyncTBSiJrBsults^b5ync-2oulagES-0 vec No3y"c-2ci.i:i;si-0-20"502"-3-"0 36 •2-3696 \c5yic-2oUages

5000

4000-

1 50 100 150 200 250 300

5000

4000-

5000

4000-

3000-

2000-

1000-

3000-

2000-

1000-

3000-

2000-

1000-

n
0 50 100 150 200 250 300

time
Fig. 26: xTRl's LISP control messages occurrence and total processed byte size in scenario with two outages

msg-size vector LispSyncTestxTRI LlSPIispMsgLogger
-s-,sxariiple^arKafcpVkpSyrKTe5yre5ut5Kache5yrc\j vs-2c_i:issi-',vAck-0 vsc CacheSyrKHaKfe-2oulsge5-wAck-0-2015021B-10:38:43-92B0 Cache5yncMaivE-2outag'

-^finsl'sx&^lssfonsafepVlispSyn^^ 1 '-9540 Cach23yncSrnart-2autag

-*^AwWwan(ile^ansafcpVkpSyrKTe^e5ut5*lDSync-2ou-J5ss-G vsc \;3y-c-2cLi:i5Si-0-20"o'E"-3-"0 3G "^-359G \o5ync-2aulage5

6000-

5000-

4000
at

•: i
aj 3000-

) 50 100 150 200 250 300

6000-

5000-

4000
at

•: i
aj 3000-

-6000

:5000

4000

-3000

6000-

5000-

4000
at

•: i
aj 3000-

-6000

:5000

4000

-3000

6000-

5000-

4000
at

•: i
aj 3000-

-6000

:5000

4000

-3000

6000-

5000-

4000
at

•: i
aj 3000-

-6000

:5000

4000

-3000

2000- :2000

1000 1000

:2000

1000

n I

:2000

1000

0 50 100 150 200
time

250 300

Fig. 27: xTRl's LISP control messages occurrence and total processed byte size in scenario with two outages + ack

34

file:///o5ync-2aulage5

Impact of Merged RLOC Probing
We took the previous network and adjusted it. Currently, it contains a LISP site with just one xTR router
and one end-device called Hostl. More important are LISP sites that are reachable via xTR_Responderl
and xTR_Responder2. We simulate multiple EID networks reachable via the same xTRs with the help
of loopback interfaces. Each xTR_Responder has forty loopbacks with EID addresses in the range of
172.16.[0-39].0/24. Each EID is being registered towards MRMS as reachable via xTR_ResponderVs
R L O C 21.0.0.1 and xTR_ResponderT s R L O C 22.0.0.1. V R R P functionality on xTR is disabled because
it is not needed for this scenario. Hostl might randomly generate ICMP traffic towards destination EIDs,
but this is not necessary for merged R L O C probing analysis. A l l communicating parties are
interconnected via Core employing static routing configuration. The whole network graph is depicted
in Fig. 28. Also this scenario (named "LispProbeTest") is located in
/ e x a m p l e s / a n s a / l i s p P r o b e T e s t folder of available source codes.

Fig. 28: LISP testing network for merged RLOC probing

R L O C probing starts immediately after LISP routing control plane is initialized. Following
phases occur no matter on used RLOC probing algorithm:

• Probing xTR sends LISP Map-Request Probe to R L O C address for a given set of EIDs;
• Probed xTR responds with LISP Map-Reply Probe announcing that RLOC is up;
• In case that LISP Map-Request Probe was not replied, probing xTR repeats the probe at time

t-next = tiast + 2num0fRetries, where tlast is the time last probe was sent and numOfRetries
is a number of retry attempts to send this probe. By default, after three unsuccessful LISP Map-
Request Probe, R L O C is marked as down and the next probe is scheduled after 60 seconds.

Optional phase 3) behavior is solely based on Cisco implementation observations. Also Cisco's
LISP implementation has some other specifics: a) postponed start of first EID registration (t + 60
seconds since control plane initialization); b) postponed start of RLOC probing for IPv6 RLOCs
(t + 30 since the first IPv4 probe). We have integrated this behavior into the LISP simulator. However,
we are not employing it in order to provide better readability of this scenario's results.

These phases repeat by default every minute to keep R L O C reachability up-to-date. This interval
could be decremented to a lower value, but protocol overhead increases in an inverse relationship.

Measurement is focused on a number of LISP Map-Request/Reply Probes exchanged between
xTR_Responderl and xTR_Responder2 and the amount of corresponding bytes processed by
xTR_Responderl 's LISP control plane. We assume that five minutes simulation time is a period long
enough to show the trend of each R L O C probing algorithm. During this period, five R L O C probe
batches occur. Except mandatory EID registrations, no other LISP control traffic is spoiling the results.

We have conducted two simulation scenarios in order to observe complexity trends. The first
one is for the network with forty different EIDs (twenty IPv4 172.16.[0-19].0/24 and twenty IPv6
2001:db8:acl0:[0-19]::/64) on xTR_Responders reachable via RLOCs 21.0.0.1 and 22.0.0.1, the second
with eighty different EIDs (forty IPv4 172.16.[0-39].0/24 and forty IPv6 2001:db8:acl0:[0-39]::/64).

35

A l l three algorithms are evaluated separately as different configuration simulation runs - Cisco's default
algorithm as S-run, simple as e-run and sophisticated as 1-mn algorithm variants of merged RLOC
probing.

40 EIDs scenario 80 EIDs scenario
5 £ X 5 £ X

cnt size cnt size cnt size cnt size cnt size cnt size
805 55 500 25 8 520 25 28 530 1 605 110 900 25 15 920 25 56 330

Tab. 6: xTR_Responderl's statistics for different RLOC probing algorithm scenarios

Total count of sent and received LISP control messages are shown in Tab. 6. Columns have
following meaning: "cnt" as the total count of LISP control plane messages sent and received; "size" as
the amount processed messages by LISP control plane measured in total byte size.

Apart from five LISP Map-Register, xTR_Responderl five times: a) sends LISP Map-Request
Probe and receives LISP Map-Reply Probe; b) receives xTR_Responder2 's probes and responds to them
with replies. It is apparent that a count of exchanged messages is drastically lower when using any
merged R L O C probing algorithm. Cisco's algorithm generates R L O C probe for each EID-to-RLOC
mapping, which means forty/eighty LISP Map-Request Probe and forty/eighty LISP Map-Reply Probe
messages per single phases #1 and #2 occurrences. Opposite to that any merged R L O C algorithm
exchanges only single LISP Map-Request/Reply Probe pair between xTR_Responders.

msg-sizevedor LispProbeTest xTRResponderl LISPIispMsgLogger
-X-ftiel/eKainJesfansafcp/lsF^obETBSt/rBsunsrasc^O.VEC Oscc-0-20150218-14:11:20-10644 Oscc-
-aV^ner/exaiia^storaafcp^pActeTe^OTe^uts^iifte-auec Siia^e-0-201G0218-14:l1:39-9860 Siifte
^nEUE/am^Eslansafc^isE^obETest/rssuns,'3oEhisticatsd-0'jec 3oEhi5:ci:sE-G-:G'502•8-14:11:57-3804 Sop^isticalEd

0 20 40 60 80 100 120 140 160 180 200 220 240

time
Fig. 29: xTR_Responderl's LISP messages occurrence and total processed byte size in scenario with forty EIDs

In Fig. 29, we can see that e-run has better protocol overhead measured in the total amount of
bytes processed by xTR_Responderl. This is because each probe carries only single EID chosen in a
round-robin fashion, where successful reception of LISP Map-Reply Probe refreshes R L O C state for all
EIDs that are using it. In the case of the sophisticated algorithm, all relevant EIDs are packed in single
probe thus (significantly) increasing its size (but still half of Cisco's total processed byte size). On the
other hand simple merged R L O C probing algorithm might seem to be too simple and lacking of accuracy
if we want the use-case where the same R L O C is up for some EIDs, and down for another EIDs. In that
case, sophisticated variant offers the same functionality but with better granularity.

4.4 Chapter Summary
This chapter described in great detail all routing aspects of LISP. In the first subchapter, we started with
a basic overview of LISP functionality and its main components. We focused on the distributed mapping
system of LISP including how map-cache content impacts LISP routing performance. We outlined LISP

36

signalization messages together with their semantics. We discussed ways how LISP coexists with
traditional TCP/IP networks and what are transition possibilities and deployment options.

The last subchapter described one of the main contributions of this thesis. Two major issues are
introduced that limit LISP operation - Site-based Synchronization Problem and Locator Path Liveness
Problem. Furthermore, we proposed concrete map-cache synchronization techniques and merger RLOC
probing algorithms, which should reduce protocol overhead and increase LISP routing performance.
Hence, these improvements should at least partially deal with problems above. Moreover, we developed
and implemented brand new simulation modules of LISP (and as a byproduct also VRRP) intended for
OMNeT++. Employing these modules, we tested and successfully proved the effectiveness of proposed
improvements.

If we want to qualify and quantify impact of our propositions the following items hold:

• Both naive and smart map-cache synchronization modes significantly reduce (theoretically to
zero) map-cache misses for sites with multiple ITRs;

• Smart mode outperforms naive mode in protocol overhead (in number of processed bytes):
o having approx. 11 % lower overhead for scenarios without acknowledgment and both

are better than no synchronization;
o having approx. 17% lower overhead for scenarios with acknowledgment, where smart

is always better than no synchronization, and naive gets better with more outages;
• Merged R L O C probing decreases radically protocol overhead (in processed bytes count) of

locator liveness checking:
o the simple algorithm reduces overhead by approx. 85%;
o the sophisticated algorithm reduces overhead by approx. 50%;

37

5 Recursive Internet Architecture
§<g> -"In order to understand recursion, one must first understand recursion." Anonymous
§<g> What is RINA and what are its most distinctive features?
§<g> Can we prove RINA 's feasibility as the clean-slate architecture?

RINA is the clean-slate architecture aimed to change the whole Internet unlike just temporary fixes for
current status quo. RINA concept is based on John Day's thoughts, lectures and book [20] regarding
ISO/OSI initiative failure, TCP/IP development, commercial adoption of the Internet and other
technical/political events in Internet history.

This chapter familiarizes the reader with RINA basics. Based on our experience, we must admit
that "mental-shift" from nowadays networking towards RINA is not easy at all. Hence, the reader is
advised to seek further in related references when confused.

Among main goals of this chapter are the following items: a) to introduce RINA as a new
networking paradigm; b) to provide an in-depth explanation of RINA's operation; c) to revisit and
improve some of RINA specifications; d) to develop the first RINA simulator as a new educational and
research tool.

5.1 Overview
This subchapter introduces theoretical background. However, explanation of the whole Recursive
Internet Architecture is far beyond the scope of this thesis. Hence, only parts relevant to the current
RINASim functionality are captured. Synthesis of RINA information provided below comes from the
following sources: [71], [72], [73], [74] and [75].

5.1.1 Nature of Applications and Application Protocols

Is application a part of IPC environment or not? The set of Internet applications was rather simplistic
before WWW - one application with a single instance using only one protocol. Hence, there is nearly
no distinction between an application and its networking part. However, the web completely changed
this situation - one application protocol may be used by more than one application and also one
application may have many application protocols.
Following terms are recognized in the frame of RINA, and their relationship is depicted in Fig. 30:

• Application Process (AP) - Program instantiation to accomplish some purpose;
• Application Entity (AE) - A E is the part of AP, which represents application protocol and

application aspects concerned with communication.

Fig. 30: Application Protocol and Application Entities relationship

There may be multiple instances of the Application Process in the same system. AP may have
multiple AEs, each one may process different application protocol. There also may be more than one
instance of each A E type within a single AP.

38

A l l application protocols are stateless; the state is and should be maintained in the application.
Thus, all application protocols modify shared state external to the protocol itself on various objects
(e.g. data, file, HW peripherals). Because of that, there is only one application protocol that contains
trivial operations (e.g., read/write, start/stop). Data transfer protocols modify state internal to the
protocol, the only external effect is the delivery of SDUs.

5.1.2 Core Terms

The data transport and internetworking tasks together (generally known as networking) constitute inter
process communication (IPC). IPC between two APs on the same operating system needs to locate
processes, evaluate permission, pass data, schedule tasks and manage memory. IPC between two APs
on different systems works similarly plus adding functionality to overcome the lack of shared memory.

In traditional networking stack, the layer provides a service to the layer immediately above it.
As RINA name suggests, recursion and repeating of patterns are the main feature of the whole
architecture. Layer recursion became more popular even in TCP/IP with technologies like Virtual
Private Networks (VPNs) or overlay networks (e.g., OTV 2 9) . Recursion is a natural thing whenever we
need to affect the scope of communicating parties. However, so far it was just recursion of repeating
functions in existing layers. RINA is based on following core ideas:

— "Networking is interprocess communication... and IPC only!" [76]

— "Application Processes communicate via a service provided by a distributed application that
provides IPC. The application processes that make up this Distributed IPC Facility provide a protocol
that implements an IPC mechanism, and a protocol for managing distributed IPC (routing, security and
other management tasks). " [77]

In ISO/OSI or TCP/IP, there is a set of layers each with completely different functions. RINA,
on the other hand, yields idea of the single generic layer with fixed mechanisms but configurable
policies. This layer is in RINA called Distributed IPC Facility (DIF) - a set of cooperating APs
providing IPC. There is not a fixed number of DIFs in RINA; we can stack them according to application
or network needs. From the DIF point of view actual stack depth is irrelevant, DIF must know only
(N+l)-layer above and (N-l)-layer below. DIF stacking partitions network into smaller, thus, more
manageable parts.

Q

DIFB DIFC

Fig. 31: DIF, DAF, DAP and IPCP illustration

2 9 Overlay Transport Virtualization (OTV). For more, see http://www.cisco.eom/c/en/us/solutions/data-center-
virtualization/overlav-transport-virtualization-otv/index.html

39

http://www.cisco.eom/c/en/us/solutions/data-cen

The concept of RINA layer could be further generalized to Distributed Application Facility
(DAF) - a set of cooperating APs in one or more computing systems, which exchange information using
IPC and maintain shared state. A DIF is a D A F that does only IPC. Distributed Application Process
(DAP) is a member of a DAF. IPC Process (IPCP) is special AP within DIF delivering inter-process
communication. IPCP is an instantiation of DIF membership; computing system can perform IPC with
other DIF members via its IPC process within this DIF. An IPCP is specialized DAP. The relationship
between all newly defined terms is depicted in Fig. 31.

DIF limits and encloses cooperating processes in the one scope. However, its functionality is
more general and versatile apart from rigid TCP/IP layers with dedicated functionality (i.e., data-link
layer for adjacent node communication, a transport layer for reliable data transfer between applications).
DIF provides IPC to either another DIF or to DAF. Therefore, DIF uses a single application protocol
with generic primitive operations to support inter-DIF communication.

5.1.3 Connection-oriented vs. Connectionless

The clash between connection-oriented and connectionless approaches (that also corrupted ISO/OSI
tendencies) is from RINA perspective quite easy to settle. Connection-oriented and connectionless
communication are both just functions of the layer that should not be visible to applications. Both
approaches are equal, and it depends on application requirements which one to use. On the one hand,
connectionless is characterized by the maximal dissemination of the state information and dynamic
resource allocation. On the other hand, connection-oriented limits the dissemination and tends toward
static resource allocation. The first one is good for low volume stochastic traffic. The second one is
useful for scenarios with deterministic traffic flows.

If the applications request the allocation of communication resources, then layer determines
what mechanisms and policies to use. Allocation is accompanied by access rights and description of
QoS demands (e.g., what minimum bandwidth or delay is needed for correct operation of application).

5.1.4 Delta-t Synchronization

A l l properly designed data transfer protocols are soft-state. There is no need for explicit state
synchronization (hard-state) and tools like SYNs and FINs are unnecessary.

Initial synchronization of communicating parties is done with the help of Delta-t protocol (see
[78] and [79]). Delta-t was developed by Richard Watson, who proposed time-based synchronization
technique. He proved that conditions for distributed synchronization were met if the following three
timers are realized: a) Maximum Packet Lifetime (MPL); b) Maximum time to attempt retransmission
a.ka. maximum period during sender is holding PDU for retransmission while waiting for a positive
acknowledgment (a.ka. R-timer); c) Maximum time before Acknowledgement (a.ka. A-timer).

Delta-t assumes that all connections exist all the time. Synchronization state is maintained only
during the activity, but after 2-3 M P L periods without any traffic it may be discarded which effectively
resets the connection. Because of that, there are no hard-state (with explicit synchronization) protocols
only soft-state ones. Delta-t postulates that port allocation and synchronization are distinct.

5.1.5 Separation of Mechanism and Policy

Just to remind the reader that mechanism is fixed, the policy is flexible part of any IPC. In the same
subchapter, the most common mechanisms have been cataloged using ontology. Nevertheless, this
mechanism list is not final and even to several mechanisms exist dozens/hundreds of different policies,
how exactly are these mechanisms implemented and enforced.

If we focus only on mechanisms connected with data transfer, then we can clearly separate them
into two groups:

• tightly-bound that must be associated with every PDU, which handle fundamental aspects of
data transfers (e.g., the sequence number of every PDU, integrity check using hashes associated
with the PDU content);

40

• loosely-bound that may be associated with some data transfer PDUs, which provide additional
features (namely reliability and flow control).

Both groups are coupled through state-vector maintained separately per flow; every active flow
has its state-vector holding state information. For instance, the behavior of retransmission and flow
control can be heavily influenced by chosen policies and they can be used independently on each other.

This implies that only single generic data transfer protocol based on Delta-t is needed, which
may be governed by different transfer control policies. This data transfer protocol modifies state internal
to its P M , where application protocol (carried inside) modifies state external to P M .

5.1.6 Naming and Addressing
Application Process communicates in order to share state. In 5.1.1, we mentioned that AP consists of
AEs. We need to differentiate between different APs and also different AEs within the same AP. Thus,
RINA is using Application Process Name (APN) as globally unambiguous, location-independent,
system-dependent name. Application Process Instance Identifier (API-id) differentiates between
multiple instances of the same AP in the system. Application Entity Instance Identifier (AEI-id),
which is unambiguous for a single AP, helps us to identify different A E instances of same Application
Entity Name (AEN) within AP. Application Naming Information (ANI) references a complete set of
identifiers to name particular application; it consists of four-tuple A P N , API-id, A E N , and AEI-id. The
only required part of ANI is A P N ; others are optional. Distributed Application Name (DAN) is
globally unambiguous name for a set of system-independent APs.

Ports with
port-ids

EFCPIs with
CEP-ids

IPCP A.1
Port allocation

PC

• State synchronization
Fig. 32: IPCP local identifiers overview

IPC Process has A P N to identify it among other DIF members. An RINA address is a synonym
for IPCP's A P N with a scope limited to the layer and structured to facilitate forwarding. A P N is useful
for management purposes but not for forwarding. Address structure may be topologically dependent
(indicating the nearness of IPCPs). A P N and address are simply two different means to locate an object
in different context. There are two local identifiers important for IPCP functionality - port-id and
connection-endpoint-id. Port-id binds this (N)-IPCP and (N+1)-IPCP/AP; both of them use the same
port-id when passing messages. Port-id is returned as a handle to the communication allocator and is
unambiguous within a computing system. Connection-endpoint-id (CEP-id) identifies a shared state
of one communication endpoint. Since there may be more than one flow between the same IPCP pair,

41

it is necessary to distinguish them. For this purpose, Connection-id is formed by combining source and
destination CEP-ids with QoS requirements descriptor. CEP-id is unambiguous within IPCP and
Connection-id is unambiguous between a given pair of IPCPs. Fig. 32 depicts all relevant identifiers
between two IPCPs.

Watson's delta-t implies port-id and CEP-id in order to help separate port allocation and
synchronization. RINA's connection is a shared state between N-PMs - ends identified by CEP-ids.
RINA's flow is when connection ends are bound to ports identified by port-ids. The lifetimes of flow
and its connection(s) are independent of each other.

The relationship between node and PoA is relative - node address is (N)-address, and its PoA
is (N-l)-address. Routes are sequences of (N)-addresses, where (N)-layer routes based on this addresses
(not according to (N-l)-addresses). Hence, the layer itself should assign addresses because it
understands address structure.

5.2 RINA Components
To understand RINA architecture means to understand each of its elements. This subchapter starts with
a description of high-level RINA network nodes and then goes deeper and outlines various IPC
Management and IPCP components.

5.2.1 Nodes

There are only three basic kinds of nodes in RINA network (illustrated in Fig. 33). Each kind represents
computing system running RINA:

• Hosts - end-devices for IPC containing AEs in the top layer; they employ two or more DIE
levels;

• Interior routers - interim devices, which are interconnecting (N)-DIF neighbors via multiple
(N-l)-DIFs; they employ two or more DIE levels;

• Border routers - interim devices, which are interconnecting (N)-DIF neighbors via (N-l)-
DIFs, where some of (N-l)-DIFs are reachable only through (N-2)-DIFs; they employ three or
more DIE levels.

Physical medium Multiplexing RMTs \ Physical medium '

Fig. 33: Example of RINA network with three levels of DIFs and different nodes

42

As seen in Fig. 33, the main difference between node kinds is in an overall number of DIF levels
present in a computing system. Due to the limited number of network interface cards (NIC), Hosts
usually have a single 0-DIF (connected to the physical medium) and a few 1-DIFs leveraging on this
lowest level DIF. Interior routers have potentially a lot of 0-DIFs (for each interface) but only a few
relaying 1-DIFs. Border routers also perform relaying but serve as gateways between those (N-l)-IPCs,
which are not connected directly. Thus, (N-2)-DIF is needed to reach physical medium.

5.2.2 IPC Management Components

IPC Management is an integral part of any D A P responsible for managing supporting DIFs and
providing their services to participating APs.

Only IPC Resource Manager and DIF Allocator interface are exclusive to IPC Management,
other components are also present in IPC Process and described later.

DIF Allocator
The primary task of DIF Allocator (DA) is to return a list of DIFs where destination application may
be found given ANI and access control information. Additional and more complex D A description is
available in [80]. D A contains and works with multiple mapping tables to provide its services:

• Naming information table - provides association between A P N and its synonyms;
• Search table - provides mapping between requested A P N and the list of DAs where to search

for it next;
• Neighbor table - maintains a list of adjacent peers when trying to reach other DAs;
• Directory - contains records mapping APNs with access rights to the list of supporting DIFs

including DIF's name, access control information and provided QoS.

IPC Resource Manager
IPC Resource Manager (IRM) (see specification [81]) as its name suggests manages D A F resources.
This involves multiple different tasks:

• I R M processes allocate calls by delegating them to appropriate local IPCPs in relevant DIFs;
• I R M manages D A queries and acts upon their responses. When the D A response contains more

than one DIF, I R M chooses which DIF to use;
• I R M manages the use of flows between AEs and DIFs. I R M may choose to multiplex a single

or multiple A E flows into a single/multiple flows to a set of DIFs;
• I R M initiates joining or creating D A F and/or DIF. IRM acts upon the DAF, or DIF lost (e.g.,

sending notifications or perform subsequent actions).

5.2.3 IPC Process Components

IPC Process is instance within DIF, which allows the computing system to do IPC with other DIF
members. Each IPC process performs (secure/reliable) data transport, (authenticated) enrollment,
(de)allocation of resources, routing, management and more. Functions could be categorized under one
of following categories: a) data transfer; b) data transfer control; and c) IPC management. Each category
with different processing timescale and complexity - a) is simplest and performed the most often, c) the
least often but the functionality is rather complex.

IPC provides API to a DIF/DAF above, which requested its service. Basic IPC API offers four
operations: allocate (allocates communication resources); deallocate (releases previously allocated
resources); send (passes SDU to IPC) and receive (retrieves SDU from IPC). Calls may be further
subdifferentiated as allocate request, allocate response, deallocate submit and deallocate deliver.

Graphical representation of IPC Process and its most important components is depicted in Fig.
34. A brief description of each component and their functionality is provided below figure. Some
components outlined below also contain policy descriptions. Those policies are mentioned because they
are relevant to our contribution.

43

State Vector
Error Control R o w C o n t r o |

Delimiting

Data Transfer

SDU Protection

Enrollment

Flow Allocator

Resource Allocator

Relaying & Multiplexing
Task >

a) Data Transfer

Common Distributed
Application Protocol

»
c) Management

Fig. 34: IPC Process components

Enrollment
Enrollment takes place whenever IPCP joins existing DIF. IPCP newcomer creates a connection with
other IPCP (which is already a member) allocating (N-l)-flow. Enrollment occurs after successful
connection establishment. Enrollment procedure of a new member should be dependent on a connection
use-case. For instance, there may be a different exchange of messages for: a) the new member joining
DIF for the first time; b) the IPCP that had been already a member of DIF and right now is rejoining.
The new member either tells or gets its address to/from a DIF. Enrollment procedure is codified in [82].

APwithAE

SDU Protection

IRM-controlled RMT

Delimiting

EFCPI

SDU Protection

RMT

Delimiting -

EFCPI -

SDU Protection -

RMT-

CDAP message opCode invokeld

(N-1)-|IPCP

- c J

SDU SDU SDU sequence SDU
delimiter flags number data

user-data field

PDU

SDU

user-data field

< SDU SDU sequence PDU
delimiter flags number data

src
CEP-id

dst
CEP-id

QoS-id

PDU

SDU

version
src

Address
dst

Address Connection-Id
PDU

length
PDU
type

flags sequence
number

user-data field

Fig. 35: Message passing between RINA components

44

Delimiting
SDU in RINA is a contiguous chunk of data. IPC might fragment SDU (when passing it down) or
combine user-data (when passing it up). Hence, the operation performed by Delimiting module (for
specification see [83] and [84]) is to delimit SDU into/from PDU's user-data preserving its identity.
Employed mechanism indicates the beginning and/or the end of SDUs. Either internal (special pattern)
or external (SDU length in PCI) delimiting could be used.

Encapsulation/Decapsulation of data messages happens in RINA components lying in the data
path. Fig. 35 depicts this process DIF/DAF together with messages nomenclature.

Data Transfer with Error/Flow Control
Error and Flow Control Protocol (EFCP) is split into two independent PMs coupled and coordinated
through a state vector. As EFCP name suggests, EFCP guarantees data transfer and data control. Full
EFCP functionality is described in [85]. However, these specifications are currently being revisited.

Data Transfer Protocol (DTP) implements mechanisms tightly coupled with transported
SDUs, e.g., fragmentation, reassembly, sequencing. DTP P M operates on a data PDU's PCI with fields
requiring minimal processing - source/destination addresses, QoS requirements, Connection-id,
optionally sequence number or checksum. DTP carries user-data.

Data Transfer Control Protocol (DTCP) implements mechanisms that are loosely coupled
with transported SDUs, e.g., (re)transmission control using various acknowledgment schemes and flow
control with data-rate limiting. DTCP functionality is based on Watson's Delta-t and DTCP P M
processes control PDUs. DTCP provides error and flow control over user-data.

There is EFCP instance (EFCPI) module per every active flow. EFCPI consists of DTP and
DTCP submodules. DTCP policies are driven by the quality of service demands. DTCP submodule is
unnecessary for flows that do not need it, i.e., flows without any requirements for reliability. Control
traffic stays out of the main data transfer.

Relaying and Multiplexing Task
Relaying and Multiplexing Task (RMT) modules have two main responsibilities - relaying and
multiplexing as characterized in [86]. The goal of multiplexing is to pass PDUs from EFCPIs and RIB
Daemon to appropriate (N-l)-flows and reverse of that. Relaying handles incoming PDUs from (N-l)-
ports that are not directed to its IPCP and forwards them to other (N-l)-ports using the information
provided by its forwarding policy.

R M T instances in hosts and bottom layers of routers usually perform just the multiplexing task,
while RMTs in top layers of interior/border routers do both multiplexing and relaying. In addition to
that, RMTs in top layers of border routers perform flow aggregation. Primary R M T functions are
demonstrated in Fig. 33.

Each (N-l)-port handled by R M T has its set of input and output buffers. The number of buffers,
their monitoring, their scheduling discipline and classification of traffic into distinct buffers are all
matter of policies.

R M T is a straightforward high-speed component. As such, most of its management (state
configuration, forwarding policy input, buffer allocation, and data rate regulation) is handled by the
Resource Allocator, which makes the decisions based on observed IPC process performance.

Each IPC process has to solve the forwarding problem: given a set of EFCP PDUs and (N-l)-
flows leading to various destinations, to which flow should be each P D U forwarded? In RINA, the
decision is handled by the R M T and its PDUForwardingPolicy. The PDUForwardingPolicy may
consist of looking up the PDU's destination in its forwarding table (resembling the forwarding
mechanism in traditional TCP/IP routers), but it is not a requirement; other experimental forwarding
paradigms (such as forwarding based on topological addressing) may not require a forwarding table at
all. When in need of deciding for an output (N-l)-port for a PDU, the PDUForwardingPolicy is given
the PDU's PCI and then it returns a set of (N-l)-ports to which the P D U has to be sent. This provides
enough granularity to implement multiple communication schemes apart from unicast (such as multicast
or load-balancing) because the decision is left to the PDUForwardingPolicy. E.g., a simple forwarding
policy would return a single (N-l)-port based on PDU's destination address and QoS-id, whereas in case
of a load-spreading policy and multiple (N-l)-ports leading to the same destination, the policy could
split traffic by PDUs' flow-ids and always return a single (N-l)-port from the set.

45

SDU Protection
SDU Protection is the last part of the IPCP data path, before an SDU is handed over to an underlying
DIF. It is responsible for protecting SDUs from untrusted (N-l)-DIFs by providing mechanisms for
lifetime limiting, error checking, data integrity protection and data encryption. It also provides
mechanisms for data compression and a potential placeholder for other two-way manipulations.

SDU Protection handles each (N-l)-flow separately due to different levels of trust. This gives
SDU Protection the ability to skip some mechanisms in favor of performance for trusted networks while
still being protected from untrusted networks. Therefore, SDU Protection employs various policies, e.g:
a) NullSDUProtection that performs no transformations; b) BasicSDUProtection that applies life time
limiting and error checking; c) CryptographicSDUProtection that extends the BasicSDUProtection by
adding cryptographic encryption of data and an integrity check using a cryptographic hash of the content.

Flow Allocator
Flow Allocator (FA) processes allocate/deallocate IPC API calls and further management of all IPCP's
flows. F A instantiates a Flow Allocator Instance to manage each flow; F A is controller/container for all
Flow Allocator Instances.

Flow Allocator Instance (FAI) is created upon allocate request call, and it manages a given
flow for its whole lifetime. FAI handles creating/deleting EFCPI(s) while managing a single flow's
connection. FAI returns port-id to the allocation requestor upon successful allocation as a referencing
handle. FAI participates only on port allocation, not on synchronization, which is the responsibility of
EFCPI. The FAI maintains a mapping between flow's local port-id and connection's local CEP-id.

F A contains Namespace Management (NSM) interface for assigning and resolving names
(including synonyms) within DIF. This activity involves maintaining the table with entries that map
requested ANI to IPCP's address.

Flow object contains all information necessary to manage any given flow between
communicating parties. It is carried inside create/delete flow request/response messages controlling F A
and FAI operation. Flow object contains: source and destination ANI, source and destination port-ids,
connection-id, source and destination address, QoS requirements, a set of policies, access control
information, hop-count, current and maximal retries of create flow requests.

Flow allocation processes for (N)-DIF between two APs on different systems is depicted in Fig.
36. It assumes that relevant (N-l)-flows have been already allocated using the same principle as the one
being described but on different DIF's rank.

#1) API issues allocate request that is delivered to IPCP A.l. If it is valid and well-formed, then it
spawns FAI to manage requested flow. FAI resolves APJ 's A P N to one of DIF A addresses
(A. 3). It instantiates EFCPI (with CEP-id) and creates bindings between EFCPI and RMT.
Create flow request is sent as the last step;

#2) Create flow request arrives at "System 2". IPCP A.2's F A processes the request and discuss
NMS. It discovers that request is not intended for any local AP. F A looks up the destination
discovering that A. 3 should be a next-hop. F A forwards the request to "System 3";

#3) The request arrives at IPCP A. 3. Over there, F A determines by querying N M S that create flow
request destination address is its address. Thus, destination AP resides on this system. FAI is
spawned and determine whether the request can be accommodated. If not then negative create
flow response is sent back to the requestor. Otherwise, FAI notifies destination AP with allocate
request;

#4) If destination AP accepts or rejects the request then either positive or negative allocate response
is returned to FAI. Based on the response, FAI binds port-id, instantiates EFCPI, creates
bindings. Flow object is updated (with local port-id and CEP-id) and sent back as
positive/negative create flow response. Response is just relayed (not processed) on interior
routers (IPCP A. 2);

#5) Originating A . i ' s FAI receives create flow response and updates relevant flow object. If the
response is positive, then, FAI notifies source AP with positive allocate response and APs may
commence data transfer. If the response is negative, then FAI invokes retry policy to correct
flow creation or deal appropriately with failure (i.e., passing negative allocate response).

46

Interior
Router

System 1 System 3

Fig. 36: Flow allocation process

Original specification [87] were refined as the subject of this thesis contribution. Detail
description of flow allocation and deallocation is provided in Figures Fig. 37, Fig. 38, Fig. 39 and Fig.
40. Transitions are denoted with "input / action" labels. F A and FAI maintain state for any given flow
and refuse inappropriate transitions (e.g., initiating deallocation before the allocation is successful).
These transitions are omitted for clarity. There are four different FSMs. Fig. 37 depicts F A operation
reacting upon notification from RIBd. Fig. 38 and Fig. 39 show flow allocation procedure for initiating
and responding FAIs. Fig. 40 illustrates flow's lifecycle after successful allocation, and it is mutual for
both initiating and responding FAIs.

NewFlowRequstPolicy is invoked after FAI's instantiation. Policy subtasks involve both
1) evaluation of access control rights; and 2) translation of QoS requirements specified in allocate
request to appropriate RA's QoS-cubes. AllocateRetryPolicy occurs whenever initiating FAI receives
negative create flow response. This policy allows F A I to reformulate the request and/or to recover
properly from failure. AllocateNotifyPolicy controls a proper time when source AP is going to be notified
of the result of allocation by initiating FAI. It may be either when EFCPI is created, or when allocation
is confirmed by destination or any other notification strategy may be employed. SeqRollOverPolicy is
invoked simultaneously by both initiating and responding FAIs whenever PDU's sequence number
threshold is reached. The policy usually spawns new EFCPIs and changes bindings.

Resource Allocator
If a DIF has to support different qualities of service, then different flows will have to be allocated to
different policies and traffic for them treated differently. Resource Allocator (RA) delineated in [88]
is a component accomplishing this goal by handling management of various IPCP resources, namely it:

• controls creating/deleting and enlarging/shrinking of R M T queues;
• modifies EFCPI's DTCP policy parameters;
• controls creating/deleting of (N-l)-flows and their assignment to proper R M T queue(s);
• manages QoS classes and their assignment to R M T queue(s);
• manages routing information affecting RMT's relaying or initiates congestion control.

47

R A maintains a catalog of meters and dials by monitoring various management resources. Each
catalog item can be manipulated and shared with other IPC processes within DIF.

Generating information necessary for PDUForwardingPolicy is one of the tasks of RA, namely
its subcomponent called PDU Forwarding Table Generator. For this purpose, R A uses pieces of
information provided by other sources, most notably the RoutingPolicy.

The RoutingPolicy exchanges information with other IPCPs in the DIF in order to generate a
next-hop table for each PDU (usually based on the destination address and the id of the QoS class the
PDU belongs to). The next-hop table is then converted into a PDU Forwarding Table with input from
the PDU Forwarding Table Generator, by selecting an N - l flow for each "next-hop". RoutingPolicy may
resemble distance vector and link-state routing protocols used in today's Internet, but the current research
is also aimed at other paradigms such as topological/hierarchical routing, greedy routing or M A N E T -
like routing.

Flow Allocator

Allocate Request
t rue
/ send negative a

i—\ f a l s e
(1—t><[srnalforrned7> T>

locate response

Create FAI

FAI succ
/ pass a/

^
essfully created
ocare request to FAI

NewF lowRequ estPol Icy

policy failed
/return negative result

policy invoked f a l se f a l se

Map QoS to
RA's Qos-cubes

policy succeeded
/

M_CREATE(flow)

O Create FAI

FAI successfully created
/pass allocate request to FAI

f a l s e
/forward M_CREATE(flow)

f a l se
/hopCc t r ue

/ send negative M_CREATE_R(flow)

Deallocate Request

/pass dea/focarerequesrto FAI

O - - h > o
/pass dea/focarerequesrto FAI

O - - h > o

Fig. 37: Flow Allocator operation

48

Initiating Flow Allocator Instance

Instantiated

Allocate Request

receive allocate request f a l se
/invoke NewFlowRequestPolicy

EFCPI successfully created

true
/ pass allocate request

to dst AP

Create EFCPI C> Create bindings

f a l s e
/invoke Al locate Notify Policy

bindings successfully created
/send M_CREATE(flow}

&& invoke AllocateN

policy evaluation requested

Degenerate Data Transfer

receive allocate response
from dstAP

t r u e
/invoke NewFlowRequestPolicy establishment successful

f a l s e
/ invoke Allocate Notify Policy

Establish IPC
between local APs

• O Create bindings

f a l s e
/ invoke Allocate Notify Policy

bindings successfully created
/ invoke AllocateNotifyPolicy

policy evaluation requested

M_CREATE_R(flow)

receive M_CREATE_R(flow)

ris

bindings successfully created
/ invoke AllocateNotifyPolicy

true
3 posit ive?^ D>j Create bindings

policy evaluatbn requested

AllocateNotifyPolicy

t r u e
/ send positive allocate response

f a l s e
/ send negative allocate response

allocation succeeded / ^ ^ N X

Flow Allocated

allocation failed

Flow Allocation Failed

Fig. 38: Flow Allocator Instance operation of initiating IPCP

49

Responding Flow Allocator Instance

Instantiated

M_CREATE(flow)

o
receive M_C RE ATE (flow)
/invoke NewFlowRequestPolicy

t r u e
/ pass allocation request

/send r
M_CREATE_R(flow)

Allocation Response

receive allocate response

4s response posi t ive^

EFCPI successfully created

C> Create EFCPI t > Create bindings

f a l s e
/ send negative

Q M_CREATE_R(flow)

bindings successfully created
/send positive

M_CREATE_R(flow)

Flow Allocated

Fig. 39: Flow Allocator Instance operation of responding IPCP before the flow was allocated

Initiating and/or Responding Flow Allocator Instance

sequence numbers threshold reached

SeqRollOverPolicy

EFCPI successfully created bindings successfully changed

{ ^) [>| Create EFCPI | [> | Change bindings |

receive deallocate submit

Flow Allocate)

Deallocate Submit

bindings successfully deleted
/send M_DELETE(flow)

OA Delete bindings

M_DELETE_R(flow)

receive M_DELETE_R(flow)
II timer expired

o - - o

M_DELETE(flow)

bindings successtully deleted
/ send M_DELETE_R(flow)

(^) D=j Delete bindings |
Flow Deallocated

after2*MPL
/deinstantiate FAI

Delnstan tlated

Fig. 40: Flow Allocator Instance operation after the flow was allocated

RIB Daemon
A l l information maintained by IPC tasks such as FA, RA, and others is available and updated through
RIB Daemon (RIBd) described in [89] and [90]. Information exchange is necessary to coordinate the
distributed IPC. Different update strategies for different kinds of information may be used to
synchronize state between different DIF member subsets.

Resource Information Base (RIB) is a logical database of information accessible via RIB
Daemon. By logical database, we mean that some of RIB information may be stored in the dedicated
database and the rest in IPCP components. Periodic or solicited events can cause RIB to be
queried/updated by IPCP peers via management C D A P messages. RIBd provides an API to perform an
operation on both local and remote RIB.

Common Distributed Application Protocol
Subsection 5.1.1 postulates that there is only a single application protocol required and this is the
Common Distributed Application Protocol (CDAP). DIFs use C D A P for all non-data communication
(i.e., IPC management such as maintaining RIB, controlling flow allocation, joining a DIF). DAFs may
not use C D A P for backward compatibility. However, CDAP expressiveness should allow the transition
of legacy protocols. CDAP is based and patterned on two existing protocols - A C S E (see [91] and [92])
for the establishment phase, CMIP [93] for the data transfer phase.

CDAP subpart for data transfer is object-oriented (with built-in scope and filter support)
protocol offering six primitive operations: create; delete; read (i.e., get value); write (i.e., put or set
value); start (i.e., execute action) and stop (i.e., suspend action). The collection of objects is dependent
on used A E , which provides access rights to them.

CDAP has modular structure composed of three submodules to provide flexibility:

• The common application connection establishment (CACE) submodule;
• The authentication (Auth) submodule provides authentication of the communication endpoints.

A range of submodules will be available to support different kinds (e.g., none authentication,
shared password, certificates) of authentication policies employing different cryptographic tools
(e.g., a-/symmetric ciphers for confidentiality, M A C codes for integrity);

• The C D A P submodule.

C D A P offers following eighteen message types summarized in Tab. 7 [94]:
Opcode Description

MJCONNECT Initiate a connection from a source application to a destination application
M_CONNECT_R Response to M_CONNECT carries information or an error indication

M_RELEASE Orderly close of a connection
M_RELEASE_R Response to M_RELEASE carries final resolution of close operation

MJCREATE Create an application object

MjCREA TE_R Response to M_CREATE carries result of creating request, including
identification of the created object

M_DELETE Delete a specified application object
M_DELETE_R Response to M_DELETE carries result of deletion attempt

M_READ Read the value of a specified application object
M_READ_R Response to M_READ carries part or all of object value or error indication

MJCANCELREAD Cancel a prior read issued using M_READ.
M_CANCELREAD_R Response to M_CANCELREAD indicates outcome of cancelation

MJVRITE Write a specified value to a specified application object
M_WRITE_R Response to MJWRITE carries result of write operation

M_START Start the operation of a specified application object, used when the object
has operational and non-operational states

M_START_R Response to M_START indicates the result of the operation
M_STOP Stop the operation of a specified application object

M_STOP_R Response to M_STOP indicates the result of the operation

Tab. 7: CDAP message types

51

Connection management between two applications is divided into two traditional phases -
establishment and data transfer. An AP issues allocate request to underlying DIF's IPCPC specifying
the destination A P N and QoS requirements. If the allocation is successful, IPCP returns port-id to be
used as a handle for all communication leveraging this flow. When the previous phase is completed,
C A C E sends a M_CONNECT message to start authentication using Auth submodule. Additional
message exchange might follow in order to support different authentication mechanisms. If it is
successful then the connection is established and C D A P transits to data transfer phase.

Another contribution is further refinement of C A C E specifications [95]. Detail description of
CDAP operation is provided in Figures Fig. 41, Fig. 42 and Fig. 43. Once again transitions are denoted
with "input / action" labels. There are three different FSMs. Fig. 41 depicts establishment phase on
initiating the process. Fig. 42 shows the same but from the perspective of the responding process. Fig.
43 outlines data transfer phase for both initiator and responder once they successfully reach
"Established". For the sake of readability, only correct transitions are shown. Incorrect transitions upon
receiving unexpected CDAP message terminate from any state in "Error" marked as "wrong input".
Both initiator and responder might "indicate deallocation", thus entering "Deallocating" state at any
given moment.

Depending on whether (N-l)-flow should be preserved or not, the transition from
"Deallocating" (based on keepFlow boolean) may delete any state associated with connection and
transit to the "Null" state.

Initiating process

indicate deallocation wrong input

Fig. 41: Establishment phase on initiating process

52

Responding process

receive invalid M_CONNECT
/send negative M_CONNECT_R

ConnectPending

entry:
i n t numOfConnects++

recewe valid M CONNECT

allocation succeeded
/ send positive
allocation response

numOfConnects 1
>

M a x C o n n e c t R e t r i e s
timer expired

Authenticating
authentication failed
/ send negative M_CONNECT_R

&& reset timer

authentication succeeded
/send positive

M CONNECT R

!keepFlow
/ deallocate

Deallocating Deallocating
Error entry:

b o o l keepFlow

!
<1

terminate connection
/ sendM RELEASE

Error entry:
b o o l keepFlow

!
<1

terminate connection
/ sendM RELEASE

L l Established

allocation failed
/ send negative allocation response

indicate deallocation wrong input

Fig. 42: Establishment phase on responding process

Initializing and Responding processes
wrong input

!keepFlow
/ deallocate

receive M_REI_EASE_R
|| timer expired

Fig. 43: Data transfer phase on initiating/responding process

terminate connection
/send M_RELEASE with
rec tui reResponse = t r u e entry: reset timer

5.3 Contribution
Simulation often serves for validating and verifying new technologies, which do not have a yet
implementation. The simulation also finds weak points and drawbacks during test runs and subsequently
allows one to enhance development process based on feedbacks. Hence, the implementation of the
RINA Simulator (RINASim) is a natural step to support ongoing research and development of the
Recursive Internet Architecture.

We are developing the RINASim in the frame of European project PRISTINE. RINASim is a
stand-alone framework for OMNeT++ discrete event simulator environment. RINASim is coded from
scratch and independent on another library. The main purpose is to offer the community with reliable

53

and the most up-to-date tool (in the sense of RINA specification compliance) for simulating RINA-
based computer networks. Thanks to the OMNeT++'s built-in result analysis and graphical simulation
output, RINASim may be used not only for research but also as an educational tool.

This subchapter introduces RINASim installation guideline, development design and
description of components interactions. Moreover, it illustrates RINA principles and RINASim
functionality on one of the basic examples. Subchapter contains only the most relevant information due
to the limited space, for more, please see PRISTINE deliverable 2.4 [96].

5.3.1 Installation

RINASim is developed in OMNeT++ 4.6, but its source codes are fully backward compatible with older
OMNeT++ versions that support C + l l language standard and GCC 4.9.2 compiler. A l l source codes
(including master and other thematic branches) are publicly available on the project's GitHub repository
[97]. Apart from this official channel, RINASim stable release snapshots are periodically published on
Open Source Project repository [98].

RINASim installation is a straightforward process with two phases: 1) importing the project into
OMNeT++ IDE; 2) compiling the project, which creates one static library (l i b r i n a s i m c o r e
containing simulation core) and one dynamic library (l i b r i n a s i m also containing various policies
linked together with core).

5.3.2 Design

This subsection provides a general overview of RINASim components design, which includes high-
level abstract models of computing systems (like hosts and routers) and also their low-level submodules
(like IPCP). In general, a structure of RINASim models follows the structure proposed in the RINA
specification. This intentional correspondence enables anyone understanding the RINA specifications
to easily orient in RINASim too. Though this structure does not always stand for the most natural
representation of RINA concepts in simulation models, it provides a framework for evaluating properties
of the architecture and to identify missing or inaccurate information in the original specification. During
the design of simulation models, we were able to identify several places where specifications should be
refined to provide complete and unambiguous information. Following lines reflect RINASim design
relevant to a date of this thesis.

Computing System Modules
RINASim offers a variety of high-level models simulating the behavior of independent computing
system. These models can be employed to set quickly up simulation experiments. Through
parameterization and extension, it is possible to test different deployments and settings. Based on the
RINA specifications, we can distinguish between the following node types:

© ©
appl icat ionProcess! d i fAl locatur

Ö
ipc Resource Manager

ipcPrdcess!

ipcPrccessO

© ©
appl icat ion Process 1

Ö
ipcResourceManager

ipcPrccessO

© a
AP[nofAP] d i fAl locato i

a
ipc ResourceManager

I
ipcPrc cessl

P
ipc Pre zessO

© a
plication Process [num Of A Ps] dif Al locator

a
ipcResourceManager

%
ipc Pre ressl

ipc Pre zessO
Fig. 44: Host nodes structure examples

54

• Host nodes, which represent devices or systems that run distributed applications. These nodes
implement the full RINA stack and, also, contains an application process(es). AP instances are
configured to communicate with each other to simulate the behavior of an arbitrary RINA
application. Currently, there are several predefined host nodes depending on a number of APs
and AEs. Fig. 44 illustrates some of host nodes internal structure. The most of depicted hosts
contain two IPCPs, which models usual end-system with a single NIC. The host may contain
only single IPCPs, which would allow IPC with only one directly connected neighbor.
Alternatively, host may contain more than two IPCPs; (O)-rank IPCPs represent multiple NICs,
and (l+)-rank IPCPs represent different DIFs host memberships;

l"tö''o'Flouiö'3l"t

Ö

ipcPrc -essO ipcPrc cessl

Ö

ipcPrc cessO ipcPrc zess2 ipcPrc cessl

Ö

ipc Process! ipcPrc cessJ ipcProcess2

Fig. 45: Router nodes structure examples

• Routers (intermediate nodes), which can be either interior or border. A router is a device that
interconnects different underlying DIFs and often does not run user applications. Just as in
RINA specification, there are either interior or border routers depending on DIF stack depth
(influenced partially also by a number of interfaces). Fig. 45 illustrates two interior routers and
one border router simulation models.

Of course, there are many more possible combinations of host and router configurations than
the ones currently defined in RINASim. However, the aim of providing predefined node models is not
to cover all of the possible combinations but rather to offer the most used ones enabling to set quickly
up simulation scenarios. Defining new node or router with required structure is not a complicated task.
Nevertheless, the present collection of prepared models seems to be enough.

Policies
RINA specifications present the proposed network architecture as a generic framework, where
mechanisms are intended to perform basic common functionality and policies are defined to select the
most appropriate implementation of variable functionality. Rather than providing an exhaustive
implementation of policies for each parameterized function, RINASim provides interfaces that are used
by the core implementation to call functions defined by the selected policies.

The RINASim policy framework is based on OMNeT++ N E D module interfaces [99], which
helps to minimize the need for modifying existing C++/NED source codes. Instead of placing a simple
module with a policy implementation inside the simulation network graph, a placeholder interface
module is used. This design allows the potentially unlimited amount of user policy implementations to
be defined and easily switchable via the configuration files (by setting a proper parameter of the
encompassing module). Each policy consists of an N E D module interface and a base C++ class. Fig. 47
shows an example of policy module interfaces (modules with "Policy" suffix in names) with loaded
policies (blue labels above them).

DAF Modules
D A F components can be divided into three submodules: a) Application Processes (containing one or
more Application Entities), which represents IPC endpoints; b) IPC Resource Manager, which
interconnects APs and available IPCPs; c) DIF Allocator, which helps during A P N discovery and
management process. Components relationship and internal structure (described below) are depicted in
Fig. 46.

55

The a p p l i c a t i o n P r o c e s s module contains a p p l i c a t i o n E n t i t y submodules for each
flow representing the connection between two applications. a p p l i c a t i o n E n t i t y handles enforcing
access control (by evaluating flow allocation requests), flow management and governing application
protocol. Each a p p l i c a t i o n E n t i t y contains i a e (submodule interface, which allows pluggable
change of application protocols) and the c o m m o n D i s t r i b u t e d A p p l i c a t i o n P r o t o c o l
submodule that sends and receives messages on behalf of a p p l i c a t i o n E n t i t y .

The c o m m o n D i s t r i b u t e d A p p l i c a t i o n P r o t o c o l submodule provides a simple object-
based protocol for distributed applications. Currently, it is the part of RIBd and A E . C D A P is modeled
as a compound module consisting of five main submodules:

• cace - Common Application Connection Establishment protocol instance processing
M_CONNECT and M_RELEASE requests and responses;

• a u t h - providing authentication services during connection initialization); cdap (providing
usual C D A P message exchange;

• c d a p S p l i t t e r - delivering messages to appropriate upper submodules;
• cdapMsgLog - logger for an accounting of processed messages.

The d i f A l l o c a t o r module handles locating a destination application based on its name. D A
is a component of the DAP's IPC Management that takes ANI and access control information and returns
a list of DIF-names through which the requested application is available. Moreover, the
d i f A l l o c a t o r module provides statically configured knowledge about simulation network graph.
The d i f A l l o c a t o r modules consists of five auxiliary submodules that maintain state information
and help to deliver D A services:

• da - core functionality;
• n a m i n g l n f o r m a t i o n - mapping between A P N synonyms;
• d i r e c t o r y - mapping between A P N and DIF-names;
• s e a r c h T a b l e - mapping between A P N and peer D A instance where to continue search;
• n e i g h b o r T a b l e - mapping between peer D A and neighboring D A instances.

The ipcResourceManager module currently queries D A module to find suitable IPCP and
relays communication between A E and IPCP. The ipcResourceManager consists of two
submodules:

• i r m - acting as a broker between APs and IPCPs when handling the flow (de)allocation calls;
• c o n n e c t i o n T a b l e - maintaining state information for a given flows.

DIF Modules
A l l currently implemented DIF components are enclosed to the I P C P r o c e s s container module
(instantiation of IPCP). The I P C P r o c e s s contains following submodules, and overall structure is
shown in Fig. 47:

• Enrollment, which governs enrollment of IPCP into DIF;
• Flow Allocator, which processes flow (de)allocation;
• EFCP, which provides data transfer services optionally with transfer control;
• Relaying and Multiplexing module, which handles incoming and outgoing PDUs;
• Resource Allocator, which monitors resources namely (N-l)-flows and available QoS;
• RIBDaemon, which is in charge of processing management messages;
• Routing policy, which maintains PDU forwarding rules.

The e n r o l l m e n t module is in charge of enrollment procedure, which occurs upon successful
connection establishment between IPCPs. It consists of core functionality submodule and table
(e n r o l l m e n t T a b l e) maintaining connection state of each enrollment F S M .

The f l o w A l l o c a t o r module handles (de)allocation request and response calls from the IRM,
RIBDaemon or A E . The f l o w A l l o c a t o r module consists of three submodules (and currently three
supported policy interfaces):

56

• f a - core functionality involving instantiation of FAIs;
• nFlowTable - mapping between (N)-flow and bound FAI;
• f ai_<portId>_<CEPid> - managing a whole flow lifecycle.

The Error and Flow Control Protocol is modeled as one compound module. This module
dynamically spawns e f cpi_<CEPid> (EFCP instance) and d e l i m i t i n g submodules per one flow.
There is also the e f cpTable module maintaining bindings between Delimiting and EFCPI. Apart
from that, the MockEFCPI processes management PDUs sent/received by local RIBDaemon. Each
EFCPI contains the d t p submodule (providing data transfer services), the d t p S t a t e submodule
(maintaining state-vector) and a few policies related to DTP functionality. Optionally, EFCPI may also
contain the d t c p submodule and several DTCP policies, whenever transfer control is requested for a
communication (i.e., due to the reliable transmission demand).

The relayAndMux module represents a stateless function that takes incoming PDUs and relay
them within current IPC or pass them to an outgoing port. In particular the R M T takes PDUs from (N-
l)-ports, consults their address fields and perform one of the following actions: a) relay P D U between
(N-l)-ports; b) pass PDU to EFCPI; and c) multiplex PDU from EFCPI to (N-l)-port.

The relayAndMux consists of multiple simple modules of various types, some of them are
static, and some of them are instantiated dynamically at runtime. Among dynamically created modules
are R M T ports (representing (N-l)-flow communication endpoints) and associated input/output queues.
Among static submodules are:

• rmt - core functionality;
• a l l o c a t o r - managing addition, removal and reconfiguration of R M T queues and ports;
• p d u F o r w a r d i n g P o l i c y - mapping table of destination addresses and QoS-ids to output

ports that is used by the relaying functionality of the RMT;
• other policy module interfaces monitoring queue lengths and scheduling P D U departures.

The r e s o u r c e A l l o c a t o r monitors the operation of the IPCP and makes adjustments to its
operation to keep it within the specified operational range. Its forwarding and queuing functionality are
customizable by policies. The r e s o u r c e A l l o c a t o r consists of multiple simple modules of various
types, namely:

• r a - core functionality that manages connections to other local IPCPs with the help of
nmlFlowTable submodule;

• pduFwdGenerator - uses custom policies to manage p d u F o r w a r d i n g P o l i c y entries;
• other policies executed upon R M T queue allocation.

The ribDeamon is the IPCP's management heart. It receives/sends C D A P management
messages and notifies other submodules about management changes. RINASim's RIBDaemon consists
of three submodules:

• r i b d - core functionality mainly listening to calls from other DIF components and notifying
them upon C D A P message reception;

• c o m m o n D i s t r i b u t e d A p p l i c a t i o n P r o t o c o l - same submodule as in case of D A F
components description;

• r i b d S p l i t t e r - splitter is delegating C D A P management messages to/from the
mockEFCPI or appropriate EFCPIs.

The r o u t i n g P o l i c y module is used by pduFwdGenerator to populate correctly/update
the p d u F o r w a r d i n g P o l i c y .

57

DAF components

a c
aoo cat.onProcessI difAllocato-

(3
ipc Resou rce M a nager

I IPCResourceManager

I Common Distributed Application Protocol

59

5.4 Chapter Summary
In this chapter, we described core RINA principles. We tried to summarize RINA theory in the text that
lacks any usage of the term without previous thorough definition / context explanation because we know,
how hard the "mental shift" from TCP/IP concepts towards RINA is.

The second subchapter went into more details about various RINA components. It started with
a description of different kinds of high-level RINA nodes including hosts, interior routers, and border
routers. Subsequently, we dived deep into low-level RINA components that are being used by DIF and
DAF. Besides that as the research contribution, we thoroughly analyzed and enhanced (particularizing
functional descriptions and equipping them with FSMs) RINA specifications namely for F A and
C A C E P operation.

The last subchapter described RINASim including installation guideline, design notes, and
demonstration. RINASim philosophy benefits from clever OMNeT++ module interfacing in order to
allow flexible change of used policies. Moreover, Subchapter 5.3 ending contained a thorough
illustration of RINA principles using RINASim demo scenario. Demonstration description should show
the impact of recursion and help others to understand enrollment and flow (de)allocation procedures in
praxis. Moreover, demonstration setup may be employed as the template when creating new scenarios.

We have designed and implemented RINASim as the first full-scale RINA simulator containing
a wide gamut of functions that are extensible and replaceable. RINASim reliably proves following RINA
properties: isolation of namespaces and address spaces across DIFs; enrollment and flow allocation
recursion and their impact; routing based on available resources reflecting QoS attributes; easy
application protocol prototyping when employing C D A P messages (and action primitives they
substitute); and others. Hence, RINA offers by design complete naming scheme and fulfills most of the
ideal solution properties as described in Chapter 3.

The main contribution of this chapter is RINASim as a tool that helps: 1) researchers to
prototype and test new policies and mechanisms in native and full-compliant RINA environment;
2) others to visualize and understand RINA principles.

60

6 Conclusion
§<g> - " A story has no beginning or end: arbitrarily one chooses that moment of experience from which

to look back or from which to look ahead." Graham Green
§<g> What has been done and accomplished in frame of this dissertation thesis?
§<g> What are the important results?

We pursue a difficult and complex task to define and to discuss elementary naming, addressing and
routing principles of computer networks.

The thesis begins with an overview of networking fundamentals and points out design issues of
traditional TCP/IP stack that are becoming more apparent as more users and devices are accessing the
Internet each day. We tried to qualify causes and quantify their (future) impact (when following current
trends). The Internet developed incrementally throughout previous 40 years. However, Internet struggles
to redesign its communication schemes after the adoption of TCP/IP and its global expansion.

We collected and studied relevant papers and works written on the topic of naming, addressing
and routing. We formulated low-level foundations using formal math apparatus. We compiled
encompassing high-level theory and checked its compliance among existing addressing and naming
techniques. This work allowed us to reevaluate problems of current Internet in the new light, which
confirmed that abovementioned problems of TCP/IP are consequences of incomplete architecture that
lacks necessary levels of indirection. We investigated properties of existing candidates, which aspire to
deal with this situation. We decided to follow LISP and RINA further with our research efforts.

We thoroughly analyzed LISP use-cases and protocol details (namely the split of locator address
space and identifier namespace). We were able to identify and investigate certain shortcomings of LISP
design. Based on that, we developed improvements to LISP operations and verified them using discrete
event simulator. We implemented the first low-level LISP simulation modules and successfully checked
their compliance with the referential Cisco implementation in the real network. The principle of our
LISP research is included in papers IT 001, [101] and IT 021.

We conducted a similar analysis of RINA and its properties that aim to the clean-slate design of
not only naming and addressing but also other aspects of computer networking. We revisited all
available RINA specifications and try to improve their clarity, particularly parts describing enrollment
and flow (de)allocation procedures. Subsequently, we designed and implemented the first RINA discrete
event simulator called RINASim, which provides a standalone framework with full-fledged RINA
simulation modules for OMNeT++. The core contribution of our RINA research has been published as
an independent framework in [103] and explained in PRISTINE Deliverable 2.4 [96] and Deliverable
2.6 [1041.

Following two subchapters outline some conclusions and results of our research efforts
involving Locator/Id Separation Protocol and Recursive InterNetwork Architecture.

6.1 Summary about LISP
Precise LISP (and VRRP) simulation modules for OMNeT++, which are used as the basis for ongoing
research, represent the main code contribution. Based on well-known designed issues (see [108]), we
investigated, proposed, implemented and tested two improvements - map-cache synchronization and
merged R L O C probing. Our map-cache synchronization techniques minimize map-cache misses, thus
significantly decreasing packet loss. Furthermore, employing our merged R L O C probing algorithms has
an outstanding impact on LISP protocol overhead comparing to simple R L O C probing per every EID.

Despite the accomplished achievements in LISP operation tuning, LISP is unfortunately not an
ultimate solution for current Internet troubles. It breaks several RFC 1958 concepts, and some problems
were revealed during its worldwide deployment (RFC 7215 [105]). Moreover, LISP deployment needs
additional configuration effort to secure LISP against possible attacks and threats (see [106]).

Basically, any solution decoupling locator and identifier has to deal with Locator Path Liveness
problem, and any non-host-based loc/id split has to cope with Site-based State Synchronization problem.
Their impact can be diminished (with for instance map-cache synchronization described above) but not

61

completely treated. Hence, neither LISP nor any CES/CEE proposal reviewed in Chapter 3.3 is the
desired solution.

Another and probably the most serious rebuke of any hybrid or network-based loc/id split is
when a packet is traversing locator namespace then the routing is performed according to the locator,
not an identifier. Previous is strictly in contradiction to the theory reviewed in Chapter 3, and
implications are thoroughly investigated in [68]. LISP suffers from three major problems:

1) Routing should be done based on node names (see Saltzer's [36]). However, "routes" in
nowadays Internet use PoAs. Therefore, all IP "routing" is based on false premises and would
always be route dependent (which is unwanted based on knowledge in Subchapter 3.2). Routing
should be performed based on identifier not locator (otherwise, it leads to Locator Path Liveness
problem):

2) Locator and identifier are not bound to the same object - locator address is an address of the
interim device (which performs header alternation relevant to loc/id split) not the end-device of
communication:

3) A l l identifiers are used in some sense also for locating. An object cannot be located without
identifying it and vice versa (see Saltzer's [32]). There could neither be identification without
localization, nor localization without identification. Thus, there should be no semantic
distinction between identifier and locator on the Internet but vet there is.

Therefore, LISP does not provide proper naming and addressing concept, nor it is even scalable
routing solution for TCP/IP architecture.

6.2 Summary about RINA
RINA as the new (and complete) clean-slate architecture tries to touch and codify every part of
communication within computer networks. Therefore, RINA's knowledge base spans from high-level
reference model description to low-level characterization of each component functionality. Pouzin
Society [107] is a formal body in charge of maintaining specifications with FIT-BUT as one of its
members. In the theoretical part of this dissertation, we revisited and extended parts of RINA
specifications concerning flow allocation and connection establishment procedure. We supplemented
them with FSMs illustrating F A and C A C E operations.

RINASim is the main contribution, and RINASim's development process helped to clarify and
progress some RINA specifications. As the RINASim's chief designers and implementers, we authored
FA, DA, A E , RIBd and R A simulation modules in the frame of this thesis.

RINA is still young in its technological readiness level. Hence, some of RINA's concepts were
doubtful whether they will work or not. Following RINA features would not be possible to prove or
verify without RINASim:

• We simulated and shown basic RINA functionality (enrollment, flow allocation and data
transfer) in this thesis (and in [103]). RINA can achieve IPC employing recursively the same
(DIF and DAF) components, which simplifies implementation of the network stack-
Furthermore, DIF scope isolation allows reusing IPCP's APNs without any duplicity address
problems. Hence, there is no need for global address space due to the DIF isolation:

• RINA allows an easy employment of Aggregated Congestion Control (ACC), see PRISTINE
Deliverable 3.2 [108] for more. A C C improves QoS experience for communicating parties
whenever congestion occurs in the network. RINA offers built-in mechanisms with
programmable policies to handle resource allocation in compliance with QoS demands;

• Custom routing algorithm taking into account division of {location dependent) address space
reduces significantly routing table sizes for distributed cloud installations. Solution above -
called Scalable Forwarding with RINA (SFR), see paper [109] for details - provides proofs
for real-life use-case that topologicals dependent (hierarchical) addresses help in routing
comparing to flat address space.

RINA theory seems to offer complete naming, addressing and routing concepts. Moreover,
RINA's design separating mechanisms and policies is flexible enough to allow scalable changes

62

reflecting demands of future Internet. Nevertheless, RINA needs more validation and verification testing
(preferably) on real-life deployment to support previous claims.

6.3 Future Work
We take this thesis just as the beginning of more advanced research involving OMNeT++ simulator as
a validation tool for new routing paradigms (such as LISP) and alternative architectures (such as RINA).

We would like to discuss our LISP improvements - map-cache synchronization and merged
R L O C probing - within IETF to see whether they can be submitted as draft proposals. Our plans with
LISP simulation modules include to add support for proxy xTR functionality and to recognize more
LISP control flags (like SMR bits). We would like to use further our LISP simulation modules and test
effectiveness of different distributed mapping systems (e.g., LISP-ALT, LISP-DDT). Also, we intend
to upgrade V R R P to support IPv6 addresses and all features of V R R P version 3. We would like our low-
level LISP simulation modules to be considered as the verification tool for other LISP related use-cases
and technologies. Therefore, we want to integrate LISP source codes with official INET framework as
the first step (which is something we already accomplished before [173] or [174]).

We plan to carry on work on RINA research topics and further refine RINASim based on new
knowledge and up-to-date specifications. An additional goal is to conduct a comparative evaluation of
our simulation models with RINA implementation for Linux environment called IRATI. Adoption of
the newest version 6.5 of EFCP, SDU protection module integration, N S M and dynamic D A
functionality are on our development roadmap for the nearest future.

63

7 Bibliography

[I] B. Carpenter, "RFC 1958: Architectural Principles of the Internet," June 1996. [Online].
Available: http://tools.ietf.org/html/rfcl958.

[2] Cisco Systems, Inc., "The Zettabyte Era Trends and Analysis - Cisco," May 2015. [Online].
Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/VNI_Hyperconnectivity_WP.html. [Accessed September 2015].

[3] M . Gregr and T. Podermanski, "IPv6 @ CESNET nework | 61ab.cz," Brno University of
Technology, September 2015. [Online]. Available: http://61ab.cz/live-statistics/ipv6-cesnet-
nework/. [Accessed September 2015].

[4] IRTF, "Routing Research Group (RRG)," [Online]. Available: https://irtf.org/concluded/rrg.
[Accessed February 2015].

[5] IRTF, "rrg Discussion Archive - Date Index," [Online]. Available: http://www.ietf.org/mail-
archive/web/rrg/current/maillist.html. [Accessed February 2015].

[6] IETF, "Open discussion forum for long/wide-range architectural issues Discussion Archive -
Date Index," [Online]. Available: http://www.ietf.org/mail-archive/web/architecture-
discuss/current/maillist.html. [Accessed February 2015].

[7] T. L i , "RFC 6227: Design Goals for Scalable Internet Routing," May 2011. [Online]. Available:
http://tools.ietf.org/html/rfc6227.

[8] D. Meyer, L . Zhang and K. Fall, "RFC 4984: Report from the IAB Workshop on Routing and
Addressing," September 2007. [Online]. Available: http://tools.ietf.org/html/rfc4984.

[9] G. Huston, "BGP Growth Revisited," November 2011. [Online]. Available:
http://www.potaroo.net/ispcol/2011-1 l/bgp2011.html.

[10] G. Huston, "BGP in 2014," January 2015. [Online]. Available:
http ://www.potaroo. net/ispcol/2015-01 /bgp2014. html.

[II] G. Huston, "Addressing 2014 - And then there were 2!," January 2015. [Online]. Available:
http ://www.potaroo. net/ispcol/2015-01 /addr essing2014. html.

[12] Y . Rekhter, T. L i and S. Hares, "RFC 4271: A Border Gateway Protocol 4 (BGP-4)," January
2006. [Online]. Available: http://tools.ietf.org/html/rfc4271.

[13] G. Huston, "BGP Reports - BGP Table Data," 7 August 2013. [Online]. Available:
http://bgp.potaroo.net/index-bgp.html.

[14] D. Mowery and T. Simcoe, "Is the Internet a US invention?—an economic and technological
history of computer networking," Research Policy, vol. 31, no. 8-9, pp. 1369-1387, December
2002.

[15] M . Boucadair and D. Binet, Solutions for Sustaining Scalability in Internet Growth, France: IGI
Global, 2014.

[16] B. Carpenter, J. Crowcroft and Y . Rekhter, "RFC 2101: IPv4 Address Behaviour Today,"
February 1997. [Online]. Available: http://tools.ietf.org/html/rfc2101.

[17] S. Brim, "LISP Analysis," March 2008. [Online]. Available: https://tools.ietf.org/html/draft-
brim-lisp-analysis-OO.

[18] J. Abley, K. Lindqvis, E. Davies, B. Black and V. Gil l , "IPv4 Multihoming Practices and
Limitations," [Online]. Available: http://tools.ietf.org/html/rfc4116.

[19] T. Bates and Y . Rekhter, "RFC 2260: Scalable Support for Multi-homed Multi-provider
Connectivity," January 1998. [Online]. Available: http://tools.ietf.org/html/rfc2260.

[20] J. Day, Patterns in Network Architecture: A Return to Fundamentals, Boston: Prentice Hall,
2008.

64

http://tools.ietf.org/html/rfcl958
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
http://61ab.cz
http://61ab.cz/live-statistics/ipv6-cesnet-
https://irtf.org/concluded/rrg
http://www.ietf.org/mail-
http://www.ietf.org/mail-archive/web/architecture-
http://tools.ietf.org/html/rfc6227
http://tools.ietf.org/html/rfc4984
http://www.potaroo.net/ispcol/201
http://www.potaroo
http://www.potaroo
http://tools.ietf.org/html/rfc4271
http://bgp.potaroo.net/index-bgp.html
http://tools.ietf.org/html/rfc2101
https://tools.ietf.org/html/draft-
http://tools.ietf.org/html/rfc4116
http://tools.ietf.org/html/rfc2260

[21] Postscapes, "Internet of Things Market Forecast," [Online]. Available:
http://postscapes.com/internet-of-things-market-size. [Accessed February 2015].

[22] C. Perkins, "RFC 5944: IP Mobility Support for IPv4, Revised," November 2010. [Online].
Available: http://tools.ietf.org/html/rfc5944.

[23] C. Perkins, D. Johnson and J. Arkko, "RFC 6275: Mobility Support in IPv6," July 2011. [Online].
Available: https ://tools. ietf. org/html/rfc6275.

[24] H. Soliman, C. Castelluccia, K. ElMalki and L . Bellier, "RFC 5380: Hierarchical Mobile IPv6
(HMIPv6) Mobility Management," October 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5380.

[25] IETF, "Multipath TCP (mptcp)," [Online]. Available:
https://datatracker.ietf.org/wg/mptcp/documents/. [Accessed February 2015].

[26] J. Saltzer, D. Reed and D. Clark, "End-to-end arguments in system design," ACM Transactions
on Computer Systems (TOCS), vol. 2, no. 4, pp. 277-288, 1984.

[27] Cisco Systems, Inc., "Document ID 13753: BGP Best Path Selection Algorithm," 21 May 2012.
[Online]. Available:
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094431.shtml.

[28] B. Carpenter, R. Atkinson and H. Flinck, "Renumbering Still Needs Work," May 2010. [Online].
Available: http://tools.ietf.org/html/rfc5887.

[29] G. Huston, "The BGP World is flat," November 2011. [Online]. Available:
http://www.potaroo.net/ispcol/2011-12/flat.html. [Accessed July 2015].

[30] J. Shoch, 'TEN #19: A note on Inter-Network Naming, Addressing, and Routing," X E R O X
PARC, January 1978. [Online]. Available: http://www.postel.org/ien/pdf/ien019.pdf.

[31] C. Sunshine, "IEN #178: Addressing Problems in Multi-Network Systems," University of
Southern California, April 1981. [Online]. Available: http://www.postel.org/ien/pdf/ienl78.pdf.

[32] J. Saltzer, "Name Binding of Objects," Massachusetts Institute of Technology, 1978. [Online],
Available: web.mit.edu/Saltzer/www/publications/nbo/nbo.pdf.

[33] J. N . Chiappa, "Endpoints and Endpoint Names: A Proposed Enhancement to the Internet
Architecture," 1999. [Online]. Available: http://www.chiappa.net/~jnc/tech/endpoints.txt.

[34] J. Munkres, Topology: A First Course, Prentice Hall College Div, 1974.
[35] ISO, "Information technology - Open Systems Interconnection - Basic Reference Model:

Naming and addressing". Patent ISO/IEC 7498-3:1997, 1997.
[36] J. Saltzer, "On the Naming and Binding of Network Destinations," Local Computer Networks,

pp. 311-317, August 1982.
[37] F. Baker, E. Lear and R. Droms, "RFC 4192: Procedures for Renumbering an IPv6 Network

without a Flag Day," [Online]. Available: http://tools.ietf.org/html/rfc4192.
[38] T. L i , "RFC 6115: Recommendation for a Routing Architecture," February 2011. [Online].

Available: http ://tools. ietf. org/html/rfc6115.
[39] R. Hinden, "RFC 1955: New Scheme for Internet Routing and Addressing (ENCAPS) for IPng,"

June 1996. [Online]. Available: http://tools.ietf.org/html/rfcl955.
[40] R. Smart and D. Clark, "[RRG] GSE History," January 1995. [Online]. Available:

http://www.ietf.org/mail-archive/web/rrg/current/msg02455.html.
[41] M . O'Dell, "GSE: The Alternative Addressing Architecture for IPv6," February 1997. [Online].

Available: http://tools.ietf.org/html/draft-ietf-ipngwg-gseaddr-00.
[42] D. Jen, M . Meisel, H . Yan, D. Massey, L . Wang, B. Zhang and L . Zhang, "Towards A New

Internet Routing Architecture: Arguments for Separating Edges from Transit Core," 2008.
[43] D. Farrinaci, V. Fuller, D. Meyer and D. Lewis, "RFC 6830: The Locator/ID Split Protocol

(LISP)," January 2013. [Online]. Available: http://tools.ietf.org/htmVrfc6830.
[44] R. Moskowitz and P. Nikander, "RFC 4423: Host Identity Protocol (HIP) Architecture," May

2006. [Online]. Available: http://tools.ietf.org/html/rfc4423.

65

http://postscapes.com/internet-of-things-market-size
http://tools.ietf.org/html/rfc5944
https://tools.ietf.org/html/rfc5380
https://datatracker.ietf.org/wg/mptcp/documents/
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094431.shtml
http://tools.ietf.org/html/rfc5887
http://www.potaroo.net/ispcol/2011-12/flat.html
http://www.postel.org/ien/pdf/ien019.pdf
http://www.postel.org/ien/pdf/ienl78.pdf
http://web.mit.edu/Saltzer/www/publications/nbo/nbo.pdf
http://www.chiappa.net/~jnc/tech/endpoints.txt
http://tools.ietf.org/html/rfc4192
http://tools.ietf.org/html/rfcl955
http://www.ietf.org/mail-archive/web/rrg/current/msg02455.html
http://tools.ietf.org/html/draft-ietf-ipngwg-gseaddr-00
http://tools.ietf.org/htmVrfc6830
http://tools.ietf.org/html/rfc4423

[45] E. Nordmark and M . Bagnulo, "RFC 5533: Shim6: Level 3 Multihoming Shim Protocol for
IPv6," June 2009. [Online]. Available: http://tools.ietf.org/htmVrfc5533.

[46] X . Xu, "Routing Architecture for the Next Generation Internet (RANGI)," August 2010.
[Online]. Available: http://tools.ietf.org/html/draft-xu-rangi-04.

[47] R. Whittle, "Ivip (Internet Vastly Improved Plumbing) Architecture," March 2010. [Online].
Available: http://tools.ietf.org/html/draft-whittle-ivip-arch-04.

[48] P. Frejborg, "RFC 6306: Hierarchical IPv4 Framework," July 2011. [Online]. Available:
http://tools.ietf.org/html/rfc6306.

[49] Y . Wang, W. Zhang and J. B i , "Name overlay (NOL) Service for Improving Internet Routing
Scalability," Venice, Italy, July, 2010.

[50] M . Menth, M . Hartmann and D. Klein, "Global Locator, Local Locator, and Identifier Split (GLI-
Split)," Future Internet 2013, vol. V, no. 1, pp. 67-94, January, 2013.

[51] J. Adan, "Tunneled Inter-domain Routing (TIDR)," November 2006. [Online]. Available:
http://tools.ietf.org/html/draft-adan-idr-tidr-01.

[52] R. Atkinson and S. Bhatti, "RFC 6740: Identifier-Locator Network Protocol (ILNP)
Architectural Description," November 2012. [Online]. Available:
http://tools.ietf.org/html/rfc6740.

[53] J. Ubillos, M . Xu , Z. Ming and C. Vogt, "Name-Based Sockets Architecture," September 2010.
[Online]. Available: http://tools.ietf.org/html/draft-ubillos-name-based-sockets-03.

[54] D. Jen, M . Meisel, H . Yan, D. Massey, L . Wang, B . Zhang and L . Zhang, "APT: A Practical
Transit Mapping Service," November 2007. [Online]. Available: http://tools.ietf.org/html/draft-
jen-apt-01.

[55] F. Templin, "RFC 5720: Routing and Addressing in Networks with Global Enterprise Recursion
(RANGER)," February 2010. [Online]. Available: http://tools.ietf.org/htmVrfc5720.

[56] W. Herrin, "Tunneling Route Reduction Protocol (TRRP)," [Online]. Available:
http ://bill. herrin. us/network/trrp. html.

[57] C. Vogt, "Six/One Router: A Scalable and Backwards Compatible Solution for Provider-
Independent Addressing," Seattle, USA, 2008.

[58] D. Farinacci, V. Fuller, D. Meyer and D. Lewis, "RFC 6830: The Locator/ID Separation Protocol
(LISP)," January 2013. [Online]. Available: http://tools.ietf.org/htmVrfc6830.

[59] D. Lewis, D. Meyer, D. Farinacci and V. Fuller, "RFC 6832: Interworking between Locator/ID
Separation Protocol (LISP) and Non-LISP Sites," January 2013. [Online]. Available:
http://tools.ietf.org/htmVrfc6832.

[60] V. Fuller, "RFC 6833: Locator/ID Separation Protocol (LISP) Map-Server Interface," January
2013. [Online]. Available: http://tools.ietf.org/htmVrfc6833.

[61] L . Iannone, D. Saucez and O. Bonaventure, "RFC 6834: Locator/ID Separation Protocol (LISP)
Map-Versioning," January 2013. [Online]. Available: http://tools.ietf.org/htmVrfc6834.

[62] F. Coras, A. Cabellos and L . Jakab, "CoreSim: A Simulator for Evaluating LISP Mapping
Systems," Cluj-Napoca, 2009.

[63] A. Cabellos, J. Domingo Pascual, D. Saucez and O. Bonaventure, "Validation of a LISP
simulator," 2011. [Online]. Available: http://upcommons.upc.edu/e-
prints/bitstream/2117/14351/1/Cabellos.pdf.

[64] D. Klein, M . Hoefling, M . Hartmann and M . Menth, "Integration of LISP and LISP-MN into
INET," in Proceedings of the IEEE 5th International ICST Conference on Simulation Tools and
Techniques, Desenzano del Garda, 2012.

[65] D. Klein, M . Hartmann and M . Menth, "NAT Traversal for LISP Mobile Node," July 2010.
[Online]. Available: http://tools.ietf.org/htmVdraft-klein-lisp-mn-nat-traversal.

[66] J. Kim, L . Iannone and A. Feldmann, "A deep dive into the LISP cache and what ISPs should
know about it," NETWORKING 2011, vol. 6640, no. ISBN: 978-3-642-20756-3, pp. 367-378,
2011.

66

http://tools.ietf.org/htmVrfc5533
http://tools.ietf.org/html/draft-xu-rangi-04
http://tools.ietf.org/html/draft-whittle-ivip-arch-04
http://tools.ietf.org/html/rfc6306
http://tools.ietf.org/html/draft-adan-idr-tidr-01
http://tools.ietf.org/html/rfc6740
http://tools.ietf.org/html/draft-ubillos-name-based-sockets-03
http://tools.ietf.org/html/draft-
http://tools.ietf.org/htmVrfc5720
http://tools.ietf.org/htmVrfc6830
http://tools.ietf.org/htmVrfc6832
http://tools.ietf.org/htmVrfc6833
http://tools.ietf.org/htmVrfc6834
http://upcommons.upc.edu/e-
http://tools.ietf.org/htmVdraft-klein-lisp-mn-nat-traversal

[67] D. Meyer and D. Lewis, "Architectural Implications of Locator/ID Separation," January 2009.
[Online]. Available: http://tools.ietf.org/html/draft-meyer-loc-id-implications-01.

[68] J. Day, "Why Loc/Id Split Isn't the Answer," Pouzin Society, 2008. [Online]. Available:
http://pouzinsociety.org/images/LocIDSplit090309.pdf.

[69] D. Saucez, O. Bonaventure, L . Iannone and C. Filsfils, "LISP ITR Graceful Restart," December
2013. [Online]. Available: https://tools.ietf.org/html/draft-saucez-lisp-itr-graceful-03.

[70] D. Saucez, J. Kim, L . Iannone, O. Bonaventure and C. Filsfils, "A Local Approach to Fast Failure
Recovery of LISP Ingress Tunnel Routers," NETWORKING 2012, vol. 7289, pp. 397-408, 2012.

[71] J. Day, "RINARefModelPartl-0 130925: Part 1 - Basic Concepts of Distributed Systems,"
Pouzin Society, 2013.

[72] J. Day, "RINARefModelPart2-l 130925: Part 2 - Distributed Applications, Chapter 1 - Basic
Concepts of Distributed Applications," Pouzin Society, 2013.

[73] J. Day and E. Trouva, "RINARefModelPart2-2 140102: Part 2 - Distributed Applications,
Chapter 2 - Introduction to Distributed Management Systems," Pouzin Society, 2014.

[74] J. Day, "RINARefModelPart3-l 140102: Part 3 - Distributed InterProcess Communication,
Chapter 1 - Fundamental Structure," Pouzin Society, 2012.

[75] J. Day, "RINARefModelPart3-2 140102: Part 3 - Distributed InterProcess Communication,
Chapter 2 - DIF Operations," Pouzin Society, 2012.

[76] J. Day, "An introduction to the Recursive InterNetwork Architecture," January 2015. [Online].
Available: http://ict-pristine.eu/wp-content/uploads/2014/12/GhentIntroRINAPtl-150119.pdf.
[Accessed April 2015].

[77] J. Day, I. Matta and K. Mattar, "Networking is IPC: a guiding principle to a better internet," in
CoNEXT '08 Proceedings of the 2008 ACM CoNEXT Conference , New York, N Y , USA, 2008.

[78] R. Watson, "Delta-t Protocol Specification," Lawrence Livermore Laboratory, December 1981.
[Online]. Available: http://www.osti.gov/scitech/servlets/purl/5542785.

[79] R. Watson, "The Delta-t transport protocol: features and experience," in Proceedings 14th
Conference on Local Computer Networks, Minneapolis, USA, 1989.

[80] E. Trouva, E. Grasa, J. Day and S. Bunch, "Layer discovery in RINA networks," in IEEE 17th
International Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), Barcelona, Spain, 2012.

[81] J. Day, "D-Base-2011-017: IPC Resource Manager (IRM) Specification," Pouzin Society, 2012.
[82] J. Day, "D-Base-2012-014: Basic Enrollment Specification," Pouzin Society, 2012.
[83] J. Day, "D-Base-2010-007: Delimiting Module," Pouzin Society, 2009.
[84] J. Day, "DelimitingGenerall30904: Delimiting Module," Pouzin Society, 2013.
[85] J. Day, M . Marek, L . Bergesio and M . Tarzan, "EFCPSpecl40824_MT_LBJD_MM_v6.6: Error

and Flow Control Protocol Specification, Data Transfer + Data Transfer Control," Pouzin
Society, 2015.

[86] J. Day, "D-Base-2012-010: Relaying and Multiplexing Task Specification," Pouzin Society,
2012.

[87] J. Day, "D-Base-2011-015: Flow Allocator Specification," Pouzin Society, 2011.
[88] J. Day, "RINA-RFC-2010-002: Notes on the Resource Allocator," Pouzin Society, 2010.
[89] E. Grasa, S. Bunch and P. deWolf, "Specification of Managed Objects for the Demo DIF," Pouzin

Society, 2012.
[90] J. Day, "Notes on the OIB/RIB Daemon," Pouzin Society, 2010.
[91] ISO, "Information technology - Open Systems Interconnection - Service definition for the

Application Service Object Association Control Service Element". Patent ISO/IEC 15953:1999,
1999.

67

http://tools.ietf.org/html/draft-meyer-loc-id-implications-01
http://pouzinsociety.org/images/LocIDSplit090309.pdf
https://tools.ietf.org/html/draft-saucez-lisp-itr-graceful-03
http://ict-pristine.eu/wp-content/uploads/2014/12/GhentIntroRINAPtl-150119.pdf
http://www.osti.gov/scitech/servlets/purl/5542785

[92] ISO, "Information technology - Open Systems Interconnection - Connectionless protocol for the
Association Control Service Element: Protocol specification". Patent ISO/IEC 10035-1:1995,
1995.

[93] ISO, "Information technology - Open Systems Interconnection - Common Management
Information Protocol: Specification". Patent ISO/IEC 9596-1:1998, 1997.

[94] S. Bunch, "D-Base-2010-009: C D A P - Common Distributed Application Protocol," Pouzin
Society, 2010.

[95] S. Bunch, J. Day and E. Trouva, "D-Base-2012-016: Common Application Connection
Establishment Phase (CACEP)," Pouzin Society, 2012.

[96] V. Veselý, M . Marek, T. Hykel and K. Rausch, "Deliverable 2.4: RINA Simulator, basic
functionality," January 2015. [Online]. Available: http://ict-pristine.eu/wp-
content/uploads/2013/12/PRISTINE-D24-RINASim-draft.pdf. [Accessed July 2015].

[97] Brno University of Technology, "kvetak/RINA," GitHub, 2014. [Online]. Available:
https://github.com/kvetak/RINA. [Accessed July 2015].

[98] PRISTINE consortium, "RINASimulator / RINA Sim Code," Open Source Projects, 2014.
[Online]. Available: https://opensourceprojects.eu/p/pristine/rinasimulator/. [Accessed July
2015].

[99] OpenSim Ltd., "OMNeT++ - Manual version 4.6," 2015. [Online]. Available:
https://omnetpp.Org/doc/omnetpp/manual/usman.html#sec534. [Accessed July 2015].

[100] V . Veselý, M . Marek, O. Ryšavý and M . Švéda, "Multicast, TRILL and LISP Extensions for
INET," Journal On Advances in Networks and Services, vol. 7, no. 3&4, pp. 240-251, 2014.

[101] V . Veselý and O. Ryšavý, "Locator/Id Split Protocol Improvement for High-Availability
Environment," in Proceedings of The Tenth International Conference on Networking and
Services, Roma, Italy, 2015.

[102] V . Veselý and O. Ryšavý, "Map-Cache Synchronization and Merged R L O C Probing Study for
LISP," International Journal On Advances in Intelligent Systems, vol. 8, no. 3&4, 2015.

[103] V . Veselý, M . Marek, T. Hykel and O. Ryšavý, "Skip This Paper - RINASim: Your Recursive
InterNetwork Architecture Simulator," in Proceedings of the 2nd OMNeT++ Community
Summit, Zurich, Switzerland, 2015.

[104] V. Veselý, "Deliverable 2.6: RINA Simulator, advanced functionality," November 2015.
[Online]. [Accessed November 2015].

[105] L . Jakab, A. Cabellos-Aparicio, F. Coras, J. Domingo-Pascual and D. Lewis, "RFC 7215:
Locator/Identifier Separation Protocol (LISP) Network Element Deployment Considerations,"
April 2014. [Online]. Available: https://tools.ietf.org/html/rfc7215.

[106] D. Saucez, L . Iannone and O. Bonaventure, "LISP Threats Analysis," August 2015. [Online].
Available: https://tools.ietf.org/html/draft-ietf-lisp-threats-13.

[107] Pouzin Society, "The Pouzin Society - Building A Better Network," 2012. [Online]. Available:
http://www.pouzinsociety.org/. [Accessed November 2015].

[108] PRISTINE consortium, "Deliverable 3.2: Initial specification and proof of concept
implementation of techniques to enhance performance and resource utilization in networks,"
April 2015. [Online]. Available: http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d32-
enhance-performance-and-resource-utilization-in-networks-vl_0.pdf. [Accessed September
2015].

[109] F. Hrizi, A. Laouiti and H. Chaouchi, "SFR: Scalable Forwarding with RINA for Distributed
Clouds," in Proceedings of 6th International Conference On Network of the Future (NoF 2015)
, Montreal, Canada, 2015.

68

http://ict-pristine.eu/wp-
https://github.com/kvetak/RINA
https://opensourceprojects.eu/p/pristine/rinasimulator/
https://omnetpp.Org/doc/omnetpp/manual/usman.html%23sec534
https://tools.ietf.org/html/rfc7215
https://tools.ietf.org/html/draft-ietf-lisp-threats-13
http://www.pouzinsociety.org/
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d32-

