
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

ANALYSIS OF OPERATIONAL DATA AND DETEC-TION OF ANOMALIES DURING THE SUPERCOM-PUTER JOB EXECUTION
ANALÝZA PROVOZNÍCH DATA A DETEKCE ANOMÁLIÍ PŘI BĚHU VÝPOČETNÍCH ÚLOH NA
SUPERPOČÍTAČI

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. PETR STEHLÍK
AUTOR PRÁCE
SUPERVISOR doc. Ing. JIŘÍ JAROŠ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
Using the full potential of an HPC system can be difficult when such systems reach the
exascale size. This problem is increased by the lack of monitoring tools tailored specifically
for users of these systems. This thesis discusses the analysis and visualization of operational
data gathered by Examon framework of a high-performance computing system. By applying
various data mining techniques on the data, deep knowledge of data can be acquired. To
fully utilize the acquired knowledge a tool with a soft-computing approach called Examon
Web was made. This tool is able to detect anomalies and unwanted behaviour of submitted
jobs on a monitored HPC system and inform the users about such behaviour via a simple
to use web-based interface. It also makes available the operational data of the system in a
visual, easy to use, manner using different views on the available data. Examon Web is an
extension layer above the Examon framework which provides various fine-grain operational
data of an HPC system. The resulting soft-computing tool is capable of classifying a job
with 84 % success rate and currently, no similar tools are being developed. The Examon
Web is developed using Angular for front-end and Python, accompanied by various libraries,
for the back-end with the usage of IoT technologies for live data retrieval.

Abstrakt
Tato práce se zabývá analýzou a vizualizací shromážděných provozních dat superpočítače.
Použitím různých technik na dolování dat byly získány hluboké znalosti o provozních datech
superpočítače monitorovaného systémem Examon. S pomocí těchto znalostí byl vytvořen
nástroj se soft-computing přístupem nazvaný Examon Web. Ten je rozšiřující vrstvou sys-
tému Examon, která poskytuje různá detailní provozní data HPC systému. Examon Web je
schopen rozpoznat anomálie a nežádoucí chování úloh spuštěných na monitorovaném HPC
systému a informovat uživatele o tomto chování prostřednictvím webového rozhraní. Exa-
mon Web také zpřístupňuje provozní data systému vizuálním a snadno konzumovatelným
způsobem, přičemž používá různé pohledy na dostupná data. Výsledný nástroj je schopen
klasifikovat úlohu do dvou tříd s úspěšností 84 %. Examon Web byl vyvinut pomocí frame-
worku Angular pro front-end a Pythonu, doprovázeného různými knihovnami, pro back-end
s využitím IoT technologií pro získávání aktuálních provozních dat superpočítače.

Keywords
big data, neural networks, deep learning, high performance computing, HPC, anomaly
detection, web, GUI, back-propagation, decision trees, Angular, Python, Cassandra,
KairosDB, MQTT, Internet of Things, IoT, WebSocket

Klíčová slova
big data, neurální sítě, hluboké sítě, superpočítač, HPC, detekce anomálií, web, GUI, back-
propagation, rozhodovací stromy, Angular, Python, Cassandra, KairosDB, MQTT, Internet
of Things, IoT, WebSocket

Reference
STEHLÍK, Petr. Analysis of Operational Data and Detection of Anomalies During the
Supercomputer Job Execution. Brno, 2018. Master’s thesis. Brno University of Technology,
Faculty of Information Technology. Supervisor doc. Ing. Jiří Jaroš, Ph.D.

Rozšířený abstrakt
V posledních několika letech jsme téměř na dosah superpočítače s výkonem přes 1 exaFLOP.
To znamená, že superpočítače jsou stále větší a složitější, s čímž souvisí problém využití
plného potenciálu takového systému. Tento problém se umocňuje díky nedostatku nástrojů
pro monitorování, které jsou specificky přizpůsobeny uživatelům těchto systémů. Cílem této
práce je vytvořit nástroj, nazvaný Examon Web, pro analýzu a vizualizaci shromážděných
provozních dat superpočítače a provést nad těmito daty hloubkovou analýzu pomocí neurál-
ních sítí. Ty určí, zda daná úloha běžela korektně, či vykazovala známky podezřelého
a nežádoucího chování jako je nezarovnaný přístup do operační paměti nebo např. nízké
využití alokovaých výpočetních zdrojů. O těchto zjištěných faktech je uživatel informován
pomocí grafického uživatelského rozhraní. Examon Web je postavený na frameworku Ex-
amon, který sbírá a procesuje metrická data ze superpočítače a následně je ukládá do
databáze určené pro velká data–KairosDB. Implementace této práce zahrnuje mnoho disci-
plín od návrhu a implementace GUI, přes rozsáhlou datovou analýzu, těžení dat a neurální
sítě až po implementaci různých rozhraní na serverové straně. Examon Web je zaměřen
zejména na uživatele superpočítače, ale může být také využíván systémovými administrá-
tory. GUI je vytvořeno ve frameworku Angular společně s knihovnami Dygraphs a Boot-
strap. Uživatel díky tomu může jednoduše analyzovat časové řady různých metrik své
úlohy spustěné na superpočítači a stejně jako administrátor se může informovat o součas-
ném stavu celého superpočítače. Tento stav je zobrazen jako několik globálně agregovaných
metrik v posledních 30 minutách nebo jako 3D model (či 2D model) celého superpočítače,
který získává živá data ze samotných uzlů superpočítače pomocí protokolu MQTT. Pro
kontinuální získávání dat bylo využito rozhraní WebSocket, ve kterém byl implementován
vlastní mechanismus přihlašování a odhlašování konkretních metrik zobrazovaných v mod-
elu. Při analýze spuštěné úlohy má uživatel dostupné tři různé pohledy na danou úlohu.
První pohled nabízí celkový přehled o úloze a informuje uživatele o využitých zdrojích,
času běhu a celkovém vytížení části superpočítače, kterou úloha využila společně s infor-
mací z neurálních sítí o podezřelosti úlohy. Další dva pohledy zobrazují jednotlivé metriky
z výkonnostiního energetického hlediska. Pro naučení neurálních sítí bylo potřeba vytvořit
novou datovou sadu tvořených daty ze superpočítače Galileo. Tato datová sada obsahuje
přes 1100 úloh spuštěných a monitorovaných na tomto superpočítači z čehož 500 úloh bylo
ručně anotováno a následně použito pro trénování neurálních sítí. Neurální sítě využívají
model back-propagation, který je vhodný pro anotování časových sérií fixní délky. Celkem
bylo vytvořeno 12 sítí pro metriky zahrnující vytížení procesoru, paměti a dalších části
a například také podíl celkového času procesoru v úsporném režimu C6. Tyto sítě jsou na
sobě nezávislé a po experimentech jejich finální konfigurace 80-20-4-3-1 (80 vstupních až
1 výstupní neuron) podávaly nejlepší výsledky. Poslední síť (v konfiguraci 12-4-3-1) anoto-
vala výsledky předchozích sítí, kde na vstup této sítě jsou přiloženy výsledky předešlých sítí.
Celková úspěšnost celého systému klasifikace do 2 tříd je 84 %, což je na použitý model velmi
dobrá úspěšnost. Výstupem této práce jsou dva produkty. Prvním je uživatelské rozhraní
a jeho serverová část Examon Web, která jakožto rozšiřující vrstva systému Examon pomůže
s popularizací a rozšířením daného systému mezi další uživatele či přímo další superpočí-
tačová centra. Druhým výstupem je částečně anotovaná datová sada, která může pomoci
dalším lidem v jejich výzkumu a je výsledkem spolupráce VUT, UNIBO a CINECA. Oba
výstupy budou zveřejněny s otevřenými zdrojovými kódy. Examon Web byl prezentován na
konferenci 1st Users’ Conference v Ostravě pořádanou organizací IT4Innovations. Dalším
rozšíření této práce může být kompletní anotace datové sady a také rozšíření Examon Web
o rozhodovací stromy, které určí přesný důvod špatného chování dané úlohy.

Analysis of Operational Data and Detection of
Anomalies During the Supercomputer Job Exe-
cution

Declaration
Hereby I declare that this master thesis was prepared as an original author’s work under the
supervision of Dr Jiří Jaroš. The supplementary information was provided by Dr Andrea
Bartolini, et. al. All the relevant information sources, which were used during preparation
of this thesis, are properly cited and included in the list of references.

. .
Petr Stehlík

May 21, 2018

Acknowledgements
I would like to thank my supervisor Dr Jiří Jaroš for leading this thesis and Dr Andrea
Bartolini and his team (namely Dr Francesco Beneventi and Dr Andrea Borghesi) for ad-
vising this thesis. This work was done with the usage of facilities of CINECA located in
Bologna, Italy and IT4Innovations in Ostrava, Czech Republic. The base of Examon Web
was done during the PRACE Summer of HPC internship in CINECA.

This work was supported by The Ministry of Education, Youth and Sports from the
Large Infrastructures for Research, Experimental Development and Innovations project
“IT4Innovations National Supercomputing Center – LM2015070”.

Contents

1 Introduction 4

2 Related Work 6
2.1 HPC System Monitoring . 6
2.2 Job Monitoring . 9
2.3 Job Classification . 10

3 Theoretical Background 11
3.1 High Performance Computing . 11

3.1.1 Top-down analysis . 11
3.2 Job Scheduling . 14
3.3 HPC System Monitoring . 14

3.3.1 IPMI . 14
3.3.2 Examon . 15

3.4 Data Mining Techniques . 17
3.5 Neural Networks . 17

3.5.1 Decision Tree . 18
3.5.2 Backpropagation Network . 18

4 Design 21
4.1 Target Audience & Users . 21
4.2 Examon Web . 22

4.2.1 Front-end . 22
4.2.2 Back-end . 24

4.3 Job Anomaly Detection . 25
4.3.1 Data . 25
4.3.2 Data Acquisition . 26
4.3.3 Data Labelling . 27
4.3.4 Data Processing . 27
4.3.5 Metric Networks . 27
4.3.6 Job Network . 28

5 Implementation 29
5.1 Graphical User Interface . 30

5.1.1 Homepage . 30
5.1.2 User Management . 30
5.1.3 Job Module . 31
5.1.4 System Module . 34

1

5.1.5 Cluster Module . 34
5.1.6 Front-end Adaptations . 36

5.2 Back-end . 36
5.2.1 REST API . 37
5.2.2 MQTT and WebSocket Communication 40

5.3 Dataset Creation . 43
5.4 Job Classification . 45
5.5 Job Anomaly Classification . 46
5.6 Summary . 47

6 Conclusions 49
6.1 Current Deployment . 49
6.2 Contributions & Impact . 50
6.3 Further Work . 50

Bibliography 51

A Appendices 55
A.1 PBS Pro Hooks Lifecycle . 55
A.2 Examon Web Job Info Wireframe . 56
A.3 Examon Web Cluster Overview Wireframe 57
A.4 Example Jobs Spotted During Labelling . 58
A.5 Networks’ Error Rates . 62
A.6 Poster for IT4Innovations’ 1st User Conference 63
A.7 Contents of the Attached Media . 64

2

Acronyms

𝜇Ops micro-operations. 11–13

BMC baseboard management controller. 14, 15

CPU Central Processing Unit. 4, 6, 10–12, 14, 25, 32, 34, 36, 38, 43, 47, 49

CQL Cassandra Query Language. 24

GPU Graphics Processing Unit. 4, 16, 32

GUI Graphical User Interface. 5, 27, 30

HPC High Performance Computing. 4, 6, 8–11, 13–15, 21, 25, 26, 49, 50

I2C Inter-Integrated Circuit. 16

IoT Internet of Things. 6

IPMI Intelligent Platform Management Interface. 14–16

IPS instructions per second. 25

MIC Many Integrated Core processor architecture. 16

MQTT Message Queue Telemetry Transport. 2, 6, 15, 16, 22–25, 36, 37, 39–43, 49

PMBus Power Management Bus. 16

PMU Performance Monitoring Unit. 12, 13, 15, 16

REST REpresentational State Transfer. 22–24, 26, 30, 36–39, 47, 49

SPA single-page application. 22

TLB translation lookaside buffer. 13

WMA weighted moving average. 25

3

Chapter 1

Introduction

In recent years we are getting closer and closer towards exascale computing. With this goal
in sight, the supercomputing systems are getting bigger, more powerful and more complex.
These facts make it difficult to fully utilize the whole potential of the computing resources
in the most efficient manner.

Future HPC systems will feature thousands of nodes each fitted with tens or even
hundreds of CPU cores, large memory and a wide range of accelerators or GPUs. These
systems must be connected via complex inter-node communication networks designed in
intricate schemes such as N-dimensional torus or hypercubes [41]. From this point of view,
it is getting harder to operate HPC systems at their peak performance. Another side of
this problem is power consumption and energy efficiency. Hardware vendors are producing
extremely efficient chips and other accompanying components but this is a solution only for
a fraction of the problem. The quest towards the exascale supercomputer requires precise
control of the energy and power consumed by the nodes and their components but also to
precisely control the environment, mainly the cooling infrastructure, in which the system
is operated.

One of the first things which can help with these problems is to give the users and
system administrators of such facilities a definite place where they can easily analyze the
utilization, energy consumption, performance and status of their executed tasks or the
whole system in easy-to-consume visual manner.

In order to obtain and gather operational data of a supercomputer system Examon
framework [4] is used. The Examon framework serves as the base for the tool developed and
evaluated in this thesis called Examon Web. Examon is a fine grain monitoring framework
which collects and handles a wide set of sensors and performance counters of the cluster
computing resources, job scheduling data and infrastructure metrics all sampled at a fine
granularity. With Examon Web, users and system administrators will be able to analyze
operational data of HPC systems and jobs running on them using and combining data from
the Examon framework. Examon Web will also provide detection of anomalies and poor
performance during job execution using neural networks which can classify whether a job
ran well or if it is in some way suspicious of unwanted behaviours such as poor performance
or execution failure.

The system administrators are provided with many tools from hardware and software
vendors of their systems which provide detailed information about the system and its parts
but, usually, all this information is difficult to process in real-time by a single person.

Every user of a supercomputer needs to know whether their submitted job finished
successfully and performed well. So far this tedious task is usually performed manually

4

using only the output of their program and over-simplified metrics such as job runtime and
total utilized resources.

Both of these problems can be solved by Examon Web. For system administrators, it will
provide a simple interface to oversee the status of their cluster in a single view. Users will
have the option to monitor their jobs in real-time while Examon Web will provide useful
information about the job and its status with the ability to inform users about possible
problems with the job.

The goal of this thesis is to create a tool which will analyze operational data of a
supercomputer and based on the gathered data detect anomalies during job execution.
This information will be presented to a user via a GUI tailored for this tool.

The structure of this thesis is as follows: in Chapter 2 Examon Web is compared and
aligned with currently available tools, the theoretical background needed for this thesis is
presented together with the description of Examon framework in Chapter 3. In the following
Chapter 4 the proposed design of the whole Examon Web is presented together with target
audience and users. Afterwards, in Chapter 5 the implementation Examon Web and its
underlying systems (namely neural networks) are laid out and in the last Chapter 6 the
achieved results, summary and further work plans are discussed.

5

Chapter 2

Related Work

Nowadays there are several tools and libraries for collecting data from nodes and their com-
ponents. CPUs embed performance counters accessible via software libraries in operating
system structures and dedicated instructions inside them [2].

Using the read values a set of architectural, physical and performance quantities can
be measured and evaluated. The top-down analysis introduced by Yasin, et. al. [57] uses
specific counters to understand applications’ bottlenecks using top-down analysis approach
starting from a narrow set of metrics. It is possible, by looking at the microoperations flow
inside CPU’s pipeline, to detect and identify where the executed program was bound.

The related work is separated into three sections each presenting a specific field discussed
and used in this thesis. Section 2.1 is about how an HPC system can be monitored and the
state of the art tools are mentioned including data visualization tools as well. In Section
2.2 the related work in job monitoring is discussed and in the last Section 2.3 current state
of classification of jobs run on HPC systems is shown.

2.1 HPC System Monitoring
There are several approaches to gather performance and energy metrics from HPC systems
on a user-level basis. Usually, these approaches require user’s intervention and scripting
such as PAPI [12], Intel vTune [45], Linux perf tools [32] or Intel Performance Counter Mon-
itor [11] and introduce interference on the program’s execution. Moreover, these approaches
cannot be used in a reasonable way for continuous monitoring deployed system-wide.

Beneventi, et al. [4] present the Examon (exascale monitoring) framework to overcome
this limitation by wrapping the above-mentioned profiling libraries in a modular and ex-
tendable framework for accessing the performance metrics with a regular sampling. The
collected data are then propagated to a scalable data handling back-end based on Internet
of Things (IoT) and big data technologies.

Stefanov, et al. [49] introduced a monitoring framework called DiMMon as well. The
framework is designed as a distributed modular system with heterogeneous agents which
can measure and process different metrics or direct data flow of measured data.

If we compare Examon and DiMMon, Examon is built on top of the Internet of Things
technologies (i.e. MQTT [28]), whereas DiMMon is a true agent-based system with custom
message passing using UDP packets and custom message protocol in between its agents
inside the system. This means the Examon’s architecture is more homogenous and easier
to maintain than DiMMon’s as seen in Figure 2.1. Also from the overhead standpoint,

6

Node1

pmu_pub

Broker1

Node2

pmu_pub

Noden

pmu_pub

Cassandra
node1

MQTT

Nodei

pmu_pub

BrokerM

Nodei+1

pmu_pub

NodeN

pmu_pub

Cassandra
nodeM

Grafana Apache
Spark

CLUSTER

MQTT Brokers

Applications

NoSQL

ADMIN

MQTT2Kairos MQTT2kairos

KairosDB

Matlab Examon Web

Management
Node

ipmi_pub

Figure 2.1: A side-by-side comparison of DiMMon (upper) and Examon (lower) archi-
tectures. The main difference between these tools is the approach to distribution of tasks.
DiMMon takes advantage of heterogeneous agents which together complete the needed task
such as data collection or data-processing. On the other hand, Examon deploys homoge-
neous agents across the whole cluster which send the collected data to one central point
(big-data database) where data are processed as needed by users. Figures taken from [49]
and [4] respectively.

7

Examon is more effective using below 1 % of system resources compared to DiMMon’s 3 %
utilization.

Beneventi, et. al also discuss storage and other processing in their paper which is, in
these days, a crucial part of analytics. Stefanov, et. al had another paper [54] published on
utilizing collected data to analyze and classify job behaviour.

System-wide monitoring systems are available and widely used in today’s HPC facilities
not just as a research work used only on a couple of facilities but also as established projects
used across the world’s HPC facilities. One of best-known tools is Ganglia [29].

Ganglia is a scalable distributed monitoring system for HPC systems. Ganglia agents
retrieve data from several sensors and store it on a per-metric basis using RRDtool [38].
Its architecture is based on a hierarchical design which relies on multicast-based protocol
in listen/announce manner. It uses a tree of point-to-point connections amongst cluster
nodes in order to collect the nodes’ states. Its main drawback is the lack of a simple way
to combine information from different metrics and a not so easy to use web interface.

Having collected different kinds of data, the next logical step is to present and visualize
it to the users in a meaningful and comprehensible way. A survey of surveys was conducted
of the state-of-the-art data analysis and visualization tools [30] from which we can infer the
best-known tools for visualization.

For performance visualization tools in large-scale data centres, we refer to [23] which
discusses the state of art performance visualizations and [13] which discusses large-scale
trace data analysis and visualization techniques. Taking into account the work of Beneventi,
et al. on Examon, they use Grafana [37], an open source and flexible framework for time-
series data visualization on the web. Even though Grafana is one of the best tools to
visualize this kind of data, it lacks two major features in case of performance analysis:
1) no intuitive way to combine multiple data sources together (job and sensor data) to
create per-job views; 2) complex initial setup for views able to handle tens or hundreds of
sensor data streams needed for example to observe trends on the whole machine, therefore
rendering Grafana useless for system overview use-cases.

Splunk [6] and ElasticSearch [19] are tools for visualization and analysis of various
machine data. These tools are general in their nature and require difficult setup and initial
time investment in order to fully utilize all their functions. With this in mind, Examon
Web will provide an easy-to-use and comprehend interface while requiring minimal setup.

Monitoring of certain metrics that are also handled by Examon can be done using
tools such as Nagios [1] or Zabbix [39]. These tools provide automatic alerting based on
thresholds and monitoring of various metrics ranging from hardware to software services.
At first, the goal of Examon Web can be seen similar to these tools but Examon Web
will aim for different usages. Nagios or Zabbix can alert system administrators about a
potential problem but Examon Web will aim to help with identifying the problems and
why they happened and the ideal scenario will be to use one of these tools and Examon
Web together.

Showerman [48] proposes a set of visualization approaches applied to data collected on
an HPC system. Data collected from several sensors with a sampling time of one minute
is stored in a database, to be later analysed and visualized. This work is orthogonal to a
part of this thesis since it proves the benefit of observing data coming from a wide range of
sources. On the other hand, the work of Showerman lacks a real-time monitoring capability.
Moreover, the visualization approaches require a direct interaction with the database and
are therefore much less accessible than Examon Web.

8

Gimenez, et al. [17] present a tool for memory performance visualization and analysis.
The main goal is to help users to optimize their application since memory usage is often the
major bottleneck for HPC applications. Their work is exclusively focused on memory (and
related measurements) while Examon Web will be able to handle a wide range of different
metrics other than memory.

2.2 Job Monitoring
When it comes to monitoring and mainly managing jobs in HPC facilities, a couple state-
of-the-art tools are usually taken into account. Slurm [25], PBSPro [55] and TORQUE-
based [10] systems such as MOAB HPC Suite [9]. The MOAB is specifically targeted
for enterprise usage and therefore is not considered in this thesis as it is not suitable for
educational and scientific purposes.

Slurm and PBSPro are very much alike with the difference Slurm is rather plugin-based
with over 100 plugins available while PBSPro is shipped with many features. Historically
PBSPro (or its predecessors) were widely used but in recent years many HPC facilities are
turning over to Slurm [8].

Using job managers to monitor jobs on user level can be done in various ways. The
most direct approach in many cases is manual monitoring of jobs using commands available
through a local job manager. On the other hand, the easiest and most user-friendly way is
to automatically monitor jobs, collect data about them and present collected data to users.

Figure 2.2: Anonymized job overview extracted from IT4I Extranet interface [24].

9

One can find tailored tools for job monitoring in HPC facilities around the world such
as Extranet back-office interface at IT4Innovations in Ostrava, Czech Republic [24] which
can be seen in Figure 2.2. No specific research was found on this topic and therefore we can
conclude that work done in this thesis regarding job monitoring can be seen as innovative.
One indirect way of monitoring jobs can be done using Ganglia tool and custom-built
plugins but no specific example was found and this approach is only theoretical.

2.3 Job Classification
Only minor amount of work has been done to classify supercomputer jobs based on their
behaviour. Voevodin et. al. [54] used random trees and statistical info about their jobs–
median and oscillation rate. Metrics contained L1 and L3 cache misses per second, system
and CPU load and other. Using this limited set of features they were successful in job
classification into 3 groups: normal, abnormal and suspicious.

This thesis focuses on a similar goal with the extension of providing insights on why a
suspicious job was labelled suspicious. The same target is discussed in further work but no
other work was found on this topic.

The paper’s target group are system administrators only which are sent a daily report
of suspicious jobs while this thesis will focus on users rather than system administrators in
order to help users create more effective programs.

10

Chapter 3

Theoretical Background

The base of theoretical background needed to design and implement the Examon Web is
presented in this chapter. First, a basic description of an HPC system is shown together
with the top-down performance analysis and how an HPC system can be monitored. Sec-
tion 3.2 describes how jobs submitted to a supercomputer are managed and how the jobs
can be monitored. In the Section 3.4 techniques required to mine useful knowledge of the
data gathered using Examon framework are presented, and in the last Section 3.5, back-
propagation neural network and decision trees are described as these two neural network
models are used in Examon Web.

3.1 High Performance Computing
Supercomputers differ in many ways compared to general-purpose computers but also share
a lot in common. Here, we will focus on the differences. A supercomputer is a massive
computer with a high level of computing performance designed to undertake on massively
parallel tasks. Supercomputers are built with up to tens of millions of CPU cores with
enough operational memory for each core. The basic unit of a supercomputer is a node.
Each node can contain different hardware and nodes that are similar and near themselves
create partitions. All nodes are interconnected in a specific manner. For interconnection
special network architectures were created such as InfiniBand [43] or Intel Omni-Path [5].

Only Intel CPUs are taken into account in this thesis since the majority of current
supercomputers uses Intel-based CPUs. The top-down analysis description and figures are
sourced from [22, 57].

3.1.1 Top-down analysis

To make applications take advantage of CPU microarchitectures, we need to know how the
application is utilizing available hardware resources. Modern CPUs use pipelining, hardware
threading, out-of-order execution, instruction-level parallelism or speculative branching to
fully utilize available resources. Even with these features, we can find constructs such as
linked data structures with indirect addressing, that result in inefficiencies. This behaviour
commonly causes many idle instructions in the CPU pipeline while waiting for data to be
retrieved and no other instructions available to execute in the meantime.

In order to fully understand the hardware pipeline of a modern CPU, it is better to
divide the pipeline into two parts, front-end and back-end. Front-end fetches instructions
of a program and decodes it into low-level hardware operations called micro-operations

11

(𝜇Ops). The 𝜇Ops are then sent to the back-end’s allocation unit and then executed once
an execution unit is available. The moment when a 𝜇Op finishes is called retirement and
during the retirement results of the 𝜇Op are committed to CPU registers or written back
to memory.

Figure 3.1: Schematic of a CPU microarchitecture divided into front-end and back-end
parts.

First, we need to define an abstract concept that represents the hardware resources
needed to process one 𝜇Op–pipeline slot. The top-down analysis assumes there are several
pipeline slots available for each CPU core, at each clock cycle. We can use specially designed
on-chip Performance Monitoring Unit (PMU) to analyze how well the pipeline slots are
utilized.

PMUs are specific pieces of logic specially dedicated to performance monitoring. The
monitoring is done by counting specific hardware events happening on the system. Ex-
emplary events can be cache misses, branch mispredictions or 𝜇Ops retirement. When
specific events are combined we can calculate high-level metrics such as cycles per instruc-
tion (CPI). Each microarchitecture makes available slightly different PMUs but overall the
number of PMUs is in hundreds. There also exist predefined events and metrics useful
for top-down analysis in order to turn this information into useful knowledge about the
program’s performance issues.

The status of pipeline slots is sampled at the allocation point right in between the front-
end and back-end borders. An allocation point is a place where 𝜇Ops leave front-end and
enter the back-end pipeline.

We can derive four possible categories of an empty pipeline slot based on the simplified
pipeline as seen in Figure 3.1 causing a stall in the CPU pipeline. Each item in the list is

12

annotated with an expected range of hotspots in a well-tuned HPC application. The figures
are taken from [22].

∙ retiring (30–70 %): 𝜇Op successfully retires

∙ back-end bound (20–40 %): front-end has a 𝜇Op ready but can’t deliver it because
the back-end isn’t ready to handle it

∙ front-end bound (5–10 %): front-end’s inability to fill the slot with a 𝜇Op

∙ bad speculation (1–5 %): 𝜇Op doesn’t retire because of incorrect branch prediction
or due to a clearing event

These categories (as seen in Figure 3.2) cover the top level of top-down analysis and
are the most crucial in determining the bottlenecks in programs. Each of them is calcu-
lated using a specific set of PMUs. The Examon framework takes care of this and can be
abstracted in this text.

Figure 3.2: Top-down analysis hierarchy with only major categories and levels shown.
Adapted from [57].

Front-end bound pipeline slots can be separated into two categories, fetch latency and
fetch bandwidth. The latter is linked with cache and TLB misses. The former is caused
when there is high instructions per second (IPC) count and therefore can dominate the
performance.

Bad Speculation includes pipeline slots wasted because of incorrect speculations. We
can distinguish between slots than don’t retire and slots in which the pipeline was blocked
due to recovery from bad speculations.

Retiring slots are again split into two categories. The successfully retired 𝜇Ops are
denoted as a base and the general goal is to achieve having all slots in this category.
Microsequencer category labels 𝜇Ops such as floating point assists that lower performance
but still, these 𝜇Ops retire successfully.

Back-end bound category consists of memory and core bounds. Memory bound stalls
are caused by the memory subsystem meaning mainly cache misses at different levels. Core
bound stalls mean short starvation periods or uneven execution ports utilization.

13

3.2 Job Scheduling
Scheduling a job on an HPC system is a crucial step in a job execution. If a job requires a
larger portion of the HPC system it might even take days to allocate that many computa-
tional resources. The job is submitted to a queue with a calculated priority. The calculation
of priority includes many parameters which are set up by system administrator depending
on their preferences but usually the larger the job, the lower the priority. Basic features of
current state-of-the-art schedulers include:

∙ define workflows or dependencies via interfaces

∙ automatic executions

∙ monitor the job’s execution via API

∙ different queues and priorities to control execution order

In this thesis, monitoring a job’s execution is extensively used. Other features are rather
user-related and heavily used by everyday HPC users. Monitoring a job is usually done in
a rude and simple way (i.e. only checking exit status and total running time).

The schedulers that are widely used across system include PBSPro [55] and Slurm [25].
In the former, to access monitoring information specially designed plugins called hooks
can be used. The latter provides an interface to create plugins which can obtain such
information.

An example of a job’s lifetime events can be seen in the Appendix A.1 from which
various data can be obtained such as allocated resources, queueing time, user info or job
parameters.

3.3 HPC System Monitoring
In this section, we describe how an HPC system can be monitored and what tools can
be used. Examon framework is presented in great detail with emphasis on data storage
and accessibility. Only technologies designed for system monitoring are presented here but
Examon also utilizes non-standard ways of monitoring using performance counters located
on CPUs which have been shown in Section 3.1. This section is mainly focused on the
Examon framework which is heavily used throughout this thesis.

3.3.1 IPMI

IPMI (Intelligent Platform Management Interface) [34] is a set of interface specifications
for system management and monitoring. In terms of HPC IPMI allows querying node level
statistics such as power consumption, utilization and temperature at different locations on
the motherboard. IPMI is completely independent of the host’s CPU, firmware or OS and
the communication is done using out-of-band (LAN) network. The most used scenario is
to power on a node remotely using only IPMI without the need for direct access to other
node’s hardware.

IPMI’s architecture consists of several modules of which the BMC (baseboard manage-
ment controller) is the centrepiece of all. It provides the intelligence to the whole IPMI
architecture and is a specialized microcontroller embedded on the motherboard. Various
sensors such as temperatures, cooling fan speeds, power or OS status report to BMC via

14

Figure 3.3: Basic IPMI architecture showing BMC’s interfaces for communication with
vendor’s hardware.

different bus interfaces as seen in Figure 3.3. Using this data, we can determine the state
of the monitored node, control it, do basic diagnostic tasks and much more.

3.3.2 Examon

Examon is a highly scalable framework for performance and energy monitoring of HPC
systems developed at UNIBO [51]. It collects and processes various monitoring data from
several sources. Its architecture is separated into several layers and described in this section.

In Figure 3.4, we can see the following layers (from bottom): 1) at cluster level, we have
data collection agents (PMU, IPMI and job scheduler), 2) data transport layer realized
via MQTT [27], 3) database layer which consists of KairosDB and Cassandra and 4) the
application layer which connects to the database layer or transport layer (MQTT) and
Examon Web will reside in this layer.

Node1

pmu_pub

Broker1

Node2

pmu_pub

Noden

pmu_pub

Cassandra
node1

MQTT

Nodei

pmu_pub

BrokerM

Nodei+1

pmu_pub

NodeN

pmu_pub

Cassandra
nodeM

Grafana Apache
Spark

CLUSTER

MQTT Brokers

Applications

NoSQL

ADMIN

MQTT2Kairos MQTT2kairos

KairosDB

Matlab Examon Web

Management
Node

ipmi_pub

Sensors

Transport

Database

Front-ends

Figure 3.4: High-level architecture of Examon framework split into layers.

15

Data Collection

Examon collects two types of data: 1) physical sensor measurements and 2) workload data
obtained from the job manager. The agents running on nodes collect various sensor data
scattered across the system and publish it in a uniform format <unix timestamp>;<value>
via MQTT to the upper layer of the stack. They are composed of two APIs, MQTT and
Sensor API. The former implements the MQTT protocol functions and it is the same among
all the collectors while the latter implements custom sensor functions related to the data
sampling and is unique for each kind of collector. Considering the specific sensor API object,
we can distinguish collectors that have direct access to hardware resources like PMU, IPMI,
GPU, MIC, I2C and PMBus and collectors that sample data from other applications as
batch schedulers (PBS and Slurm) and tools such as perf, PAPI, and PCM.

The second type of data regards the jobs running in the system and its workload. To
collect such data, the job scheduler is extended by a plugin that collects this data and
publishes them via MQTT in JSON format.

Communication Layer (MQTT)

MQTT (Message Queuing Telemetry Transport) protocol implements the “publish-
subscribe” messaging pattern and requires three different agents as seen in Figure
3.5.

The publisher has the role of sending messages on a set topic to a predefined broker.
The subscriber subscribes to certain topics at a broker and waits for incoming messages.
The broker has the functions of receiving data from publishers, making topics available
and delivering data to subscribers. Basic MQTT communication mechanism is as follows.
When a publisher agent sends some data having a certain topic, the topic is created and
managed at the broker and any subscriber to that topic will receive the associated data
as soon as available to the broker. In terms of Examon, collector agents have the role of
“publishers”.

Figure 3.5: Publisher-subscriber MQTT model.

Storage Layer

Examon stores collected data mainly for visualization and analytical purposes. It uses a
distributed and scalable time series database (KairosDB) that is built on top of a NoSQL
database (Apache Cassandra [26]) as back-end. An MQTT subscriber (MQTT2Kairos) was
implemented to provide a bridge between the MQTT datastream and the KairosDB data
insertion mechanism. MQTT2Kairos takes advantage of predefined MQTT topics structure
to automatically form the KairosDB insert statements and eventually queries as well.

16

Applications Layer

The data gathered by Examon can serve multiple purposes, as mentioned in the application
layer. For example, machine learning techniques can be applied to extract predictive models
or devise online fault detection mechanisms as discussed in this thesis. Another usage is
real-time visualization on the web as extensively described in Chapter 4.

3.4 Data Mining Techniques
The basic techniques required to obtain meaningful data for further analysis are described
in this section. Data mining [21] is a crucial step in developing a working classification
model and understandable visualizations. The process of data mining can be seen as a
pipeline of several individual steps shown in Figure 3.6.

Figure 3.6: Data mining pipeline showing several stages of data during the data mining
process.

We begin at the data storage where all collected raw data reside. With the help of
various querying mechanisms, the raw data is cleaned of incomplete, corrupt and irrelevant
records. This process is generally known as data cleaning. The cleaned data is then stored in
a temporal data warehouse such as in-memory storage structures (i.e. lists or dictionaries)
but can also be stored permanently for further analysis.

Next is data selection where only relevant data is selected for next steps. This step can
be done multiple times in order to precisely select only extremely relevant data in case of
large datasets.

During data cleaning and selection we can do further data processing such as noise
reduction, attribute construction (derive new attributes from existing data), aggregation,
generalization and normalization in order to provide better data for the next step.

What follows is the process of data mining itself where we extract insightful knowledge
from pattern evaluation. In the context of this thesis when we talk about data mining we
do data classification. Other types of data mining are data characterization, clustering or
evolution analysis.

3.5 Neural Networks
Section 3.4 showed data mining techniques which often require the help of neural networks.
In this section, we present best-known and widely used neural networks for classification
(decision tree) and anomaly detection (backpropagation network). The sources used in this
section for equations and descriptions cover [31, 18].

17

3.5.1 Decision Tree

A decision tree is a decision support tool that uses the properties and values of features
that are classified. A decision tree resembles a tree-like structure as shown in Figure 3.7
where nodes in the tree can be thought of as units asking a yes/no question and the subtree
is selected based on the answer. The decision tree has a definitive number of layers where
the last one is the final segmentation layer of the classified feature.

The questions can also be conditions (e.g., comparators or thresholds) which can be
modified during a training session of such tree. To modify the weights, one can use the
backpropagation algorithm described below in Section 3.5.2.

Their main advantage is they are simple to understand and generally easy to interpret
and visualize. Moreover, the supplied data require very little preparation including but not
limited to normalization or dummy variables. On the other hand, decision trees can be
easily over-designed in too complex structures and such trees won’t generalize well, often
overfitted on given dataset.

Figure 3.7: Example of a simple decision tree classifying sampled binary numbers. Each
node sends the input to a corresponding child node on the left (0) or on the right (1). The
leaf nodes are drawn as squares whereas the internal nodes as circles.

3.5.2 Backpropagation Network

Backpropagation networks are multi-layer feed-forward networks with supervised learning.
There is no interconnection between neurons in the same layer but layers are fully connected
to the next neighbouring layer in order to be able to do forward and backward propagation
of values.

Forward-propagation

Each neuron in all layers but the input one disposes of a weight for each input initialized
to a random value in the range < 0, 1 >, linear base function and sigmoidal activation
function.

18

When forward propagating an input vector, the vector is laid out onto the input neurons.
The vector is recalculated using following formulas for the next layer until the input vector
is propagated to the output layer which outputs the response of the whole network itself.

The base function is shown in equation 3.1:

𝑓(�⃗�) =

𝑛∑︁
𝑖=0

𝑤𝑖𝑥𝑖 (3.1)

where �⃗� is the input vector, 𝑤 are weights for each input of a given neuron and 𝑛 is the
length of the neuron input vector and bias (term used as in [18, 31]) value resulting in
𝑛 = |𝑥| + 1.

The sigmoidal activation function is presented in equation 3.2 where 𝜆 is a constant set
to 𝜆 = 1 and in further equations left out because of this fact.

𝑔(𝑢) =
1

1 + 𝑒−𝜆𝑢
(3.2)

The output of a neuron is then given by using the equations 3.1 and 3.2:

𝑦 = 𝑔(𝑓(�⃗�)) (3.3)

Back-propagation

Back-propagation is used only when the network is trained and is one of the base methods
for training feed-forward networks. The method is based on adjusting weights depending
on the error calculated by equation 3.4 for an output neuron 𝑝 using produced output (𝑜)
and desired output (𝑑) values.

𝐸𝑝 =
1

2

𝑚∑︁
𝑗=1

(𝑑𝑝𝑗 − 𝑜𝑝𝑗)
2 (3.4)

The change of weights is calculated using equation 3.5 where ∇𝐸𝑝 is the derived error
gradient and 𝜇 the learning rate.

∆𝑤𝑝 = −𝜇∇𝐸𝑝 (3.5)

To calculate one particular change of weight we use formula 3.6 where 𝑙 is the given
layer of the network, 𝑗 is the 𝑗-th neuron in layer 𝐿 and 𝑖 is the 𝑖-th input of the neuron 𝑗.

∆𝑙𝑤𝑗𝑖 = 𝜇𝑙𝛿𝑗
𝑙𝑥𝑖 (3.6)

For the output layer 𝑙 of the network we use formula 3.7.

𝛿𝐿𝑗 = (𝑑𝑗 − 𝑙𝑦𝑗)
𝑙𝑦𝑗(1 − 𝑙𝑦𝑗) (3.7)

For hidden layers of the network, we use the same principle propagating the error
backwards from the output layer as shown in equation 3.8 where 𝜆 = 1 and therefore left
out.

∆𝑙𝑤𝑗𝑖 = 𝜇𝑙𝛿𝑗
𝑙𝑥𝑖 = 𝜇

𝑛𝑙+1∑︁
𝑘=1

(𝑙+1𝛿𝑘
𝑙+1𝑤𝑘𝑗)

𝑙𝑦𝑗(1 −𝑙 𝑦𝑗)
𝑙𝑥𝑖 (3.8)

19

Each repetition of forward and backward propagation of all inputs is called an epoch.
Finally, we can choose when to update the weights, in batches after all input vectors were
processed or using the stochastic method where weights are updated after processing each
input vector.

20

Chapter 4

Design

The design of Examon Web is centred around the needs of HPC users and missing func-
tionality of currently available tools such as Intel vTune. First, the target audience and
users are defined in section 4.1. Next in Section 4.2, the interface and backend of Examon
Web are laid out with basic wireframes provided in the Appendices. In the final Section
4.3, the job anomaly detection tool design is described.

4.1 Target Audience & Users
There are two main groups in the target audience for Examon Web. HPC system admin-
istrators and active users. Both groups differ in the level of details and domains of the
available data. Where system administrators require mainly a global overview of the whole
system with the availability to perform drill-down analysis down to the node-level info,
users of HPC systems are oriented by the job-relative domain in order to precisely identify
the resources used by their jobs.

System administrators are mainly seeking to overview the status of their monitored
facilities. As stated in Chapter 2, system administrators can use other state-of-the-art
tools such as Ganglia to monitor their system but these tools usually don’t provide an easy
to consume global system overview and therefore most of the facilities develop their own
tools for this task. Examon Web can fill in this gap in the current tools while not trying
to substitute such tools in order to encourage system administrators to use, e.g. Ganglia,
and Examon Web together.

Using Examon Web as a basic monitoring tool can bring indirect benefits such as seeing
the hotspots in the architecture of their mainframe thanks to a cluster visualization. Using
the same view administrators can also see malfunctioning or powered-off nodes which then
can be easily physically located in the cluster room.

HPC system users are the major target audience for Examon Web. By the combination
of sensor and job data, users will be able to deeply analyze their jobs. They will be able to
check the resource utilization in fine detail. Part of this analysis will be automated by the
job anomaly detection tool which will provide quick insights on the performance of their
jobs and the probable reason what caused the unwanted behaviour.

Using the same tool Examon Web can provide intelligent self-organizing dashboards.
Such dashboards can organize the charts of sensor metrics in order of their importance in
the displayed job. The order of metrics will be determined during implementation.

21

With the job data available, users will also be able to check the status of their jobs such
as the queueing time, resource utilization or simply whether their jobs are finished yet.
When it comes to rather large jobs that need a significant portion of a cluster, Examon
Web can be used by users the same way the administrators do. To check the cluster status
and the condition the cluster is in.

4.2 Examon Web
In this section, we will describe the Examon Web for the aggregation and visualization
of collected and live data. In Figure 4.1, a high-level schematic of the Examon Web and
its connection to the monitoring framework are laid out. The front-end is a web applica-
tion available to users via a regular web browser as a single-page application (SPA) [33]
built using the Angular framework. It consists of several views targeted to different users,
displaying time-series charts, a visualization of a cluster and single-number metrics.

Back-end

Examon framework

Front-end

HTTP REST API WebSocket

KairosDBCassandra
Cluster

HTTP REST API WebSocket

Pre-processing

MQTT
broker

Post-processing agents

Cassandra KairosDB

databases

Cassandra KairosDB

WebSocket agents

Sensor Agent Job Agent

MQTT agents

Sensor data Job data

Figure 4.1: High-level schematics of Examon Web architecture.

The back-end of Examon Web resides on a server and serves as an interconnection
between front-end and the data sources while ensuring a consistent data format that is fed
to the front-end. The back-end exploits Examon framework, specifically by connecting to
its data sources available via KairosDB, Cassandra cluster and MQTT broker.

4.2.1 Front-end

The front-end component is the client side of Examon Web which connects to the back-end,
retrieves data and visualizes them to the user. It uses two different interfaces: the HTTP
REST API [15] service and the WebSocket [14] interface.

The REST API implements a request-response communication mechanism and it is
used to retrieve time-series-based data from the back-end. The goal is to give a concise

22

but informative insight on resource requested and used by each job (both running and
completed ones).

The WebSocket interface implements a socket-like communication in order to feed live
data straight to the application without polling (conversely to the REST API). The interface
should be implemented with the help of Socket.IO library [44]. This enables the application
to continuously fetch new data without the need of any request to the server.

The Examon Web front-end uses the Angular [53] framework as its base on top of which
several other libraries are used. The crucial ones are Dygraphs [52] and Bootstrap [40]. The
former produces powerful time-oriented charts utilizing the canvas HTML element. The
latter is a CSS framework to generate uniform user interface across the whole application
and various browser. The front-end consists of three major parts. The job information
dashboard visualizing job-related data, cluster dashboard visualizing cluster-level aggre-
gated data and the last part rendering a live visualization of a cluster utilizing the MQTT
data stream.

Job Information Dashboard

The main task of the job information dashboard is to inform a user about their submitted
jobs and their state. The job ID assigned by the job scheduler is used in the Examon Web
to look up the desired job. The user interface offers to query by manual input or, for ease
of access, a list of currently active jobs. The last successfully finished job is also displayed.
An active job is a job that is currently in a queue, a finished job is a job removed from the
queue and stored in the Cassandra cluster.

Once the job ID is submitted a request is sent to the back-end which will then assess
whether the job is active, finished or non-existent and responds with appropriate data. In
the case of a job being successfully found, the application performs additional queries to
retrieve additional data to provide more details in form of time-series based charts.

The low-fidelity wireframe of job overview dashboard can be seen in Appendices A.2.

Cluster Dashboard

The cluster dashboard is very similar to the job dashboard in terms of used components
and the form of data. The main difference between them is that the cluster dashboard is
mainly designed for a panoramic view of the whole cluster.

The dashboard provides insights on the supercomputer in the form of time-series chart
as seen in low-fidelity wireframe in Appendices A.3. Each time-series chart is accompanied
by two single-number metrics providing the latest and average value of given metric.

Cluster Visualization

The cluster visualization dashboard can be split into two types. The first type displays
the cluster via a 3D render model with which a user can interact. Users can go through
the cluster and select any node to the see node’s details such as temperatures or loads.
This type of visualization can be displayed if the facility can provide a 3D model of their
supercomputer.

Otherwise, the second type of cluster visualization can be made using only generated
2D model displaying nodes as simple boxes with their name and current metric value.

23

In both cases, the nodes are colour-coded in terms of heatmaps to easily spot hotspots
in the cluster. Also, both types utilize the MQTT data stream delivered via WebSocket
interface to display desired metrics.

4.2.2 Back-end

The back-end resides at the server which serves requests from the Examon Web’s front-end.
It implements the same interfaces as front-end (HTTP REST API and the WebSocket) and
on the other side it connects to various database sources and an MQTT broker.

REST API

REST API is used to retrieve the offline data stored in KairosDB and Cassandra cluster
while maintaining consistent API with JSON-formatted responses. The JSON data format
was chosen because it is native to the front-end and easy to convert in the back-end.
After successfully receiving a request (from the front-end) the Flask [46] micro-framework
executes a set of pre-processing routines to parse the request and to delegate the task to the
correct internal function. These functions utilize Cassandra or KairosDB database driver
in order to connect to the mentioned databases and retrieve data.

In the case of the Cassandra driver, a prepared Cassandra Query Language (CQL)
query is used to fetch a specific set of data. This data is then post-processed in order to
provide the front-end with consistent JSON-formatted data. In the case of KairosDB, a
set of built-in functions enable to retrieve a subset of available data, which is aggregated
by KairosDB itself. This subset contains only the selected metric in given time range with
specified tags. These built-in functions (i.e. sum or avg) move post-processing phase, with
respect to interaction with Cassandra, to the KairosDB itself.

WebSocket

The interface is used to retrieve live data from the MQTT stream. A subscription-based
model was designed for immediate data retrieval. The model is applied to the two Web-
Socket agents (sensor and job agents). This interface allows handling the continuous real-
time data stream generated by the cluster.

Once the front-end instance is connected to the WebSocket interface, back-end pre-
processes the request and use one of the two available WebSocket agents. The two agents
are intended for two different data sources coming from MQTT broker (job and sensor-
related data) while having similar purposes. The need for two separate agents was the form
of data received from the MQTT broker. Job-related data is received in JSON compared
to sensor data which is received in <timestamp>;<value> format.

A front-end instance subscribes to a sensor metric or job ID. This creates a Socket.IO
room inside the WebSocket agent with a given keyword (sensor metric or job ID) if such
room does not exist, otherwise only increases the number of participants in the already
present room. Front-end instance can subscribe to one keyword at a time for each Web-
Socket agent. Every time a value with a keyword, that is also an existing room, is received,
the updated value is sent to all subscribed users in such room. This way the agents can
manage which data should be sent via WebSocket to front-end instances or stored without
any WebSocket interaction.

24

The MQTT agent for sensor data gathers data from MQTT topics used by sensors in
the cluster and computes a weighted weighted moving average (WMA) of data using the
equation 4.1:

𝑣𝑛𝑒𝑤 = 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × 𝛼 + 𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 × (1 − 𝛼) (4.1)

where 𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 value is set to the first available value during initialization and afterwards to
the last 𝑣𝑛𝑒𝑤 and 𝛼 = 0.75 as a default value was chosen based on a short-term evaluation.
The agent exposes data using a Python dictionary where the key values are gathered metrics.

Job data agent subscribes to all MQTT topics related to job data published by PBS
hooks. Each job must fulfil two conditions in order to be marked as a finished job. The
first condition is the job must be finished before its timeout time (computed from the start
timestamp and its required time). The second condition is a specific set of MQTT messages
received in order: 1) runjob event, 2) jobs_exec_start event(s) and 3) jobs_exec_end
event(s). In case of 2) and 3) the agent expects the same number of events as is the number
of allocated cores. Once the front-end instance subscribes to a job, all messages with given
job ID trigger a callback function which sends the updated record to all subscribed instances
which then update their view.

4.3 Job Anomaly Detection
When a user runs a job on an HPC system, usually the only way to monitor the behaviour
and state of their program is to manually inspect the output of it and eventually the
execution time and exit code. With large and long jobs this way of monitoring is not
a viable solution. Using neural networks it is possible to detect anomalies in programs’
runtime observing side effects of such behaviour such as low or extremely high IPS, high
cache misses or CPU power-saving states. The designed solution for job anomaly detection
is presented in this section together with the data, its filtering and processing needed for
anomaly detection.

4.3.1 Data

The necessary data are gathered via Examon framework and stored in KairosDB database
and the Cassandra cluster. We can split the data into two categories, job and metric data.

The job data come from the job scheduler which reports various info about the job,
mainly the allocated nodes, cores and other computational resources. We use this data for
determining the job’s execution time, its resource allocations and location of the job in a
cluster (node names and core numbers). The job data is sent via MQTT and stored directly
in a Cassandra cluster.

Using the job data, metric data can be queried. It is measured and gathered indepen-
dently of the job data and monitored on per-core, per-CPU or per-node basis categorized
into metrics. Each measured value is then sent via MQTT to KairosDB and stored ac-
cording to its cluster location and metric. There are over 30 metrics monitored including
but not limited to core load, C6 and C3 CPU state shares, system, CPU, IO and memory
utilization or various temperatures gathered from various places inside a node or CPU.

For detecting job anomalies, twelve major metrics were chosen for the best reflection of
the job performance. A short summary of the chosen metrics is shown in table 4.1.

25

Table 4.1: Overview of measured metrics with crucial information about the resolution and
their units.

Metric name Metric tag unit sampling rate base
core’s load load_core % 2s per-core
C6 states C6res % 2s per-core
C3 states C3res % 2s per-core
instructions per second ips IPS 2s per-core
system utilization Sys_Utilization % 20s per-node
CPU utilization CPU_Utilization % 20s per-node
IO utilization IO_Utilization % 20s per-node
memory utilization Memory_Utilization % 20s per-node
L1 and L2 bounds L1L2_Bound % 2s per-core
L3 bounds L3_Bound % 2s per-core
front-end bounds front_end_bound % 2s per-core
back-end bounds back_end_bound % 2s per-core

KairosDB provides us with a REST API for querying metric data in various ways. The
queries are formed using JSON objects and results are also returned as JSON objects. The
KairosDB limits all stored data to 21-day window.

For complete data acquisition, we combined the job data and metric data together and
queried only jobs which fit several conditions described in 4.3.2.

4.3.2 Data Acquisition

First, job data need to be queried and filtered according to several rules:

∙ job runtime must be between 10 and 60 minutes

∙ job must occupy the whole node (multiplies of 16 cores)

∙ job must be run within the 21-day period

All data points are aggregated by 30 seconds on cluster level using averaging aggregator
available in KairosDB. Cluster level can be achieved by averaging every used core and node
in the job to one time-series per metric.

The rule of minimum 10 minutes is because shorter jobs are usually a development, not
the production version of a program and in current HPC facilities, such program is very
cheap to run and therefore no deep performance analysis is needed. The same goes for jobs
smaller than one node (16 cores in case of Galileo supercomputer).

Jobs longer than one hour are not suited for training the network because of too large
input vectors and the loss of information in further data processing.

26

4.3.3 Data Labelling

In order to correctly label all chosen jobs and their metrics, a simple graphical user interface
must be created. The GUI is based on Examon Web. Visualization is done in time series
fashion using a charting library. This helps to better understand the in time correlations
between all metrics combined.

4.3.4 Data Processing

After labelling the job, all metric data with labels are generated and can be worked on
further. All metric vectors must be interpolated to a fixed set of values in order to be
applied to the input neurons of the metric networks.

All values should also be normalized to values between < 0.0, 1.0 > for more precise
training. If the values are kept as they were recorded, there is a high chance of incorrect
labelling of such metric.

4.3.5 Metric Networks

To achieve best results/speed ratio a backpropagation neural network is created for each
metric. This gives the total of twelve networks completely independent of each other mean-
ing the training process can be fully parallelized.

The number of input neurons must be determined depending on the dataset and the
results during the implementation phase. With small input vectors the networks might
over-generalize and with too wide input layer the network will have too many connections
which can result in poor performance and generally the networks can easily overfit.

Figure 4.2: Visualization of metric’s backpropagation network. On the left side there is a
set of input neurons and on the right one output neuron.

All metric networks should be configured the same way to achieve uniform results and
for easier detection of overfitting or over-generalization. The suggested configuration should
be 60 - 180 input neurons, with 2 or 3 hidden layers depending on the input vector size.
The output layer will be only one neuron since the problem distinguishes only two states

27

between which we can determine the level of certainty. In Figure 4.2 the proposed metric
network is shown to better understand the architecture.

4.3.6 Job Network

Once all metric networks label their input data, the output will be the job network’s input
which results to a vector of 12 values each signifying a given metric.

The job classification network is created with 12 input neurons, one hidden layer of 4
neurons and one output neuron as this is an expected structure which should work well.

The job network should be trained on a labelled dataset as will be the metric networks
but when evaluating the job classification network we can choose between the real outputs
of the metric networks or the expected outputs from the classified dataset. Both evaluations
should be very similar.

28

Chapter 5

Implementation

This chapter describes the implementation of the proposed Examon Web system with sev-
eral extensions needed during the implementation. In the first section 5.1 the graphical
user interface is presented with three versions of it each used for a different purpose. In the
second section 5.2 the back-end of Examon Web is presented. Next section 5.3 describes the
process and results of creating an annotated dataset suitable for several back-propagation
neural networks which are presented in section 5.4. The job anomaly classification network
utilizing decision trees is proposed in section 5.5 and all is summed up in the section 5.6.

The high-level schematic overview of implemented modules and other parts of Examon
Web can be seen in Figure 5.1 to show how it is organized and what modules share common
parts. Each displayed part is described in the following text.

Back-end Front-end (AppModule)

Job Module

Kairos Module

MQTT Module
(WebSocket)

Classifier Module

User Module

Authorization module

AP
I I

nt
er

ce
pt

or

Kairos Connector

MQTT Manager

Cassandra
Connector

Database (SQLite)
Connector

Session Manager

Session & Authorization
Management

Setup Component

Users Module

Job Module

Lookup
Component

Job Info
Component

Job Chart
Component

System Module

Cluster Module

W
eb

So
ck

et

muapi built-in modules

Figure 5.1: High-level schematic overview of Examon Web’s modules and other major parts
on both back-end and front-end sides.

29

5.1 Graphical User Interface
In this section, we present the implemented GUI architecture and major building blocks
(modules in Angular terminology) used during the development. Afterwards, three different
versions of Examon Web front-end are described as well their purpose.

The graphical user interface as designed in section 4.2 is built using TypeScript language
and the Angular framework1 and its scaffolding tool Angular CLI which provides a quick
and easy way to bootstrap new components, services and modules.

Angular framework enforces a specific architecture of the application. The main build-
ing blocks are modules, components, services, templates and directives which are briefly
explained.

Modules declare a compilation context of a given set of components which are dedicated
to a specific workflow, set of capabilities or an application domain. Modules can associate
their components with services and by this form a functional unit. Each Angular application
has at least a root module which provides a bootstrap mechanism for the application. Each
module also defines the routing between its components. Examon Web utilizes modules
heavily and each clearly separable functionality is defined as a module.

Components are defined using a class that contains the data and logic for their tem-
plate. Components handle the data manipulation and store component-specific data entered
by a user.

Templates are a combination of HTML and Angular markup that modifies the contents
of the HTML document before and after it is displayed.

Services handle data and logic which is not directly linked to a specific view and are
shared across multiple components or even modules. Services are injected into components
using dependency injection mechanism.

The core of Examon Web resides in the AppModule module which, using various compo-
nents, handles users sessions, Examon Web module’s discovery and other globally needed
functionality such as navigation bar. Handling of user access is done via LoginComponent
and LogoutComponent with the help of AuthService service which manages sessions in the
local storage.

ApiInterceptor is an extension to regular HttpClient which adds the Authorization
header with a session token (if available) to each HTTP request sent to back-end and
handles HTTP response codes appropriately.

All modules except the Cluster module utilize HTTP REST API made available by the
back-end and this API is described in detail in section 5.2.1

5.1.1 Homepage

The homepage is the initial page which user sees upon successfully logging in. The list of
available modules obtained from the root router is displayed to which a user can navigate
next. The homepage can be seen in Figure 5.2.

5.1.2 User Management

User management is handled by the UsersModule which can add, edit and remove users.
Users dispose of certain role specified by a role number where 0 indicates an administrator
account with no restrictions apart from deleting themselves. The second role, defined as a

1Specifically Angular version 4.3.

30

Figure 5.2: Homepage with all available modules.

user account can access all features but with limited privileges. Guest users are capable of
view-only operations while not being able to access sensitive content.

These roles can be redefined and extended up to 255 different roles thanks to the design
of both front-end and back-end.

The back-end and front-end can be set to a special state called Setup Mode where the
SetupComponent is used when the back-end responds with HTTP 442 status code. This
status code is not defined in the HTTP standard and is application specific. The HTTP
code states that the API has not been set up yet and needs an initial administrator account.
The front-end handles this state by redirecting the user to the setup page where they can
set the username and password for the initial administrator account.

The initial listing of users can be seen in Figure 5.3. The overview provides the username,
email, name, surname and the role of a user and two actions buttons to view/edit the
specified user and to delete the user. The delete button is not available for the main
administrator account or the currently active user and only administrators can delete an
account.

Figure 5.3: The user listing showing all three types of users.

5.1.3 Job Module

The next major module is focused on the jobs submitted to the supercomputer by users.
All jobs are collected by the Examon framework and stored in the Cassandra database.

On the initial job page, the user with lower than administrator privileges only sees
jobs submitted with their username (to protect the privacy of other users since the job

31

managers collect detailed information up to environment variables which can be used to
hold confidential data such as credentials to various services).

Figure 5.4: Latest job listing showing all recently submitted and finished jobs on the cluster
with the option to click through each one of them or look up a job by its ID.

The listing as seen in Figure 5.4 displays the job ID, name, account, duration in seconds,
start and end time of the job. These are only the basic data to help determine the desired
job. By clicking on a row of a specified job the user is directed to the job detail dashboard.

The user can also look up a job by its ID which will redirect them to the job detail
dashboard.

The job detail dashboard offers 3 views. The general overview of the job displaying
various info about the job, a dashboard displaying performance-oriented metrics in time-
series charts and a dashboard focused on energy consumption displaying time-series charts
as well.

The general overview informs the user about crucial information of the job such as
the number of required nodes, cores, memory, GPUs together with the job ID and name,
account, user and several others as seen in Figure 5.5.

The dashboard also provides the user with information about the queue, start and end
times of the job, often useful to see how long the job took to execute. The state of the job
and aggregated metrics are displayed as well telling the user the totals of CPU and GPU
power, average temperature and utilization of the hardware used during the runtime of the
job. The last piece of information on this dashboard is a chart showing the average core
load during the execution.

The performance dashboard can be seen in Figure 5.6. It collects and displays several
pre-selected metrics crucial to determine the overall performance of the job and detect
possible problems in forms of time-series charts. The displayed metrics are:

∙ node utilization

∙ instructions per seconds

∙ CPU frequency

∙ system, memory, and IO utilization

32

Figure 5.5: The general overview with information about a specific job.

Figure 5.6: Performance dashboard presenting the user performance related metrics in time
series charts.

33

∙ front and back-end bound instructions shares

∙ CPU power saving states (C3 and C6)

The energy dashboard is very similar to the performance one only displaying different met-
rics:

∙ power consumption

∙ CPU temperature

∙ CPU, DRAM and other components’ power

5.1.4 System Module

The system module is made of only the system dashboard which displays the cluster’s load,
temperature and power consumption during the last 30 minutes. Together with the time
series charts, there are also single number metrics showing the average and latest values of
each metric as seen in Figure 5.7.

Figure 5.7: The system dashboard offers the overview of the whole cluster in easy to
consume charts.

5.1.5 Cluster Module

The cluster module offers a single view on the monitored cluster. Depending on the setup,
the cluster view can be a rendered interactive 3D model as shown in Figure 5.8 made using
Blend4Web library and a Blender model which can be interacted with. The other option
is an HTML generated 2D view of the cluster (seen in Figure 5.9). Both options use a
colour-coded scale to easily determine the hotspots and possible problems in the cluster
only by quickly taking a look at the model. The colour range starts at deep blue indicating
the minimum of received values ending at red signifying the maximum value recorded.

The user can choose from different metrics to be displayed including but not limited to:

∙ ambient temperature

∙ CPU load, power, temperature

34

Figure 5.8: The interactive 3D model of the Galileo supercomputer fed by the live metrics
data.

Figure 5.9: The 2D HTML generated model of D.A.V.I.D.E. supercomputer supplied with
data via WebSockets.

35

∙ system, memory or IO utilization

The data to the model is delivered via the WebSocket interface with a simple
subscription-based model which is elaborated in section 5.2.2. The front-end uses the
Socket.IO library to implement WebSocket communication which also enables us to utilize
the room functionality as described later.

5.1.6 Front-end Adaptations

During the development, several alternative versions of the Examon Web’s front-end were
produced. The first fully functional front-end was specifically designed for the Galileo su-
percomputer2 located in CINECA, Bologna, Italy. This version included the interactive
3D model of the cluster itself and was the cornerstone for further development both front-
end and back-end. It lacked the subscription mechanism for receiving live data from the
MQTT stream and because of that performance issues occurred during the deployment
process where the back-end was not able to handle the incoming MQTT data. This ver-
sion utilized WebSockets for live job monitoring where the user could browse through jobs
currently running on the cluster and monitor them in real time.

The second version was tailored for the newly installed D.A.V.I.D.E. supercomputer3 in
the same facility. This supercomputer is built using the POWER8 processors and therefore
the formerly monitored metrics had to be adjusted due to the different CPU architecture.
Moreover, the 3D model was replaced with an HTML generated overview since there was
no 3D model available for the cluster. D.A.V.I.D.E. also replaced the PBSPro job manager
with SLURM which does not publish job information before or during the submission of
a job but only after the job has been finished. This lead to the removal of the live job
monitoring on the Examon Web front-end.

The third and last version dropped almost all functionality in favour to maximize the
effectivity of the front-end. The single purpose was to annotate a dataset made of various
metrics collected during the operation of the Galileo supercomputer. The front-end listed
only jobs available in the dataset and reduced the job dashboard to a single view with the
metrics selected for job behaviour analysis. The only additional part was the annotation
component which was used to mark a metric or the whole job as suspicious and after-
wards this annotation was stored in a database. This version was crucial for creating a
representative dataset designed for machine learning described in next sections.

5.2 Back-end
The back-end is created in the Python language with the help of several libraries. The
major framework used in the back-end is Flask [46]. It is a micro-framework used for
building various web applications. In relation to this thesis, Flask is used as a web server
which makes available the HTTP REST API together with the WebSocket interface which
is handled by a Flask-SocketIO [20] extension.

Another Python package used for developing back-end is an author-made package called
muapi [50]. The name stands for “modular User-oriented REST API”. This library provides
a Flask-based application with user and session management, simple MongoDB or SQLite
database connector, automatic REST API module discovery and a configurator interface.

2http://www.hpc.cineca.it/hardware/galileo
3http://www.hpc.cineca.it/content/davide

36

http://www.hpc.cineca.it/hardware/galileo
http://www.hpc.cineca.it/content/davide

The following endpoints are made available by the muapi package:

∙ / [GET] – list all routes and HTTP methods available

∙ /authorization [GET, POST, DELETE]

– GET – check the validity of a user session located in the Authorization HTTP
header field

– POST – obtain a session by providing correct user credentials
– DELETE – invalidate a session

∙ /users [GET, POST]

– GET – get a list of all users (requires at least the user role)
– POST – add a new user (requires the administrator role)

∙ /users/<user ID> [GET, POST, DELETE] – all methods require at least user role

– GET – get a user specified by their ID
– POST – update a specified user
– DELETE – delete a specified user (requires the user role or administrator role in

case of deleting a user other than themselves)

Modules are a crucial part of the muapi functionality. One can create a module by
instantiating the Module class available in the package and placing it in a directory specified
by a configuration file loaded by the application. Afterwards, the module is registered,
imported and made available by the server. Further information about modules, their
creation and usage can be found in muapi’s wiki documentation4.

In the following text, the endpoints specific to this thesis are described. First, the REST
endpoints are laid out and afterwards the WebSocket communication together with how
the MQTT data stream is handled via the subscription-based model.

5.2.1 REST API

The API is a set of muapi modules separated by functionality very similar to the front-
end design. Each module has a specific set of use-cases and utilizes various approaches to
the given problem. The first module described is the job module handling job lookup and
retrieval, afterwards the Kairos module fetching data from the KairosDB data source, then
the MQTT module together with the WebSockets subscription-based model is presented
and finally the classifier module is briefly described as the core of classifier is in the training
phase described in Section 5.4.

Job Module

Job module handles all requests regarding the job information retrieval. The following
endpoints are available via the API:

∙ /jobs/latest [GET] – fetch the latest jobs from database
4https://github.com/petrstehlik/muapi/wiki/Creating-a-Module

37

https://github.com/petrstehlik/muapi/wiki/Creating-a-Module

∙ /jobs/<job_id> [GET] – fetch job information specified by its ID

All endpoints utilize the Cassandra database connector where all job-related information
is stored. The connector is configured using the muapi configuration interface. The data
source contains two tables made of the same data but with different sets of keys. The first
table is indexed only by the job ID used in the /jobs/<job_id> endpoint when querying
specific job only with the knowledge of its ID.

The second table uses a compound key made of the user ID, start time and job ID.
This tuple needs to be partly specified when querying this table with the ALLOW FILTERING
property. The /jobs/latest endpoint differentiates between different users. In case of the
administrator role, the database is queried without the user ID specified. Otherwise, the
user ID is obtained from the PAM interface [35] and only jobs with the specified user ID are
returned. This ensures no information leakage is probable because the user ID is obtained
via an independent API.

The latest 100 jobs are always fetched unless there are fewer jobs present in the database.
The jobs are then ordered by the start time and returned as a response.

The need for a unified model representing a job arose during development because of
different fields present in case of the PBSPro and SLURM job managers. These differences
are unified in the Job model which returns all information in the unified format.

Kairos Module

The metrics data are obtained via the Kairos module which utilizes the forked
pyKairosDB [3] package extending the original pyKairosDB [36] package with HTTP Basic
auth and other features. This package encapsulates requests to the KairosDB REST API
handling the timestamp manipulation and raw HTTP requests. Moreover, an aggregation
Python module was developed to update the KairosDB query with aggregation parameters.
These parameters are used during querying various metrics with the different sampling
rate and unifies the rate throughout requests.

The module offers the following endpoints, all of which with the only HTTP GET
method available:

∙ /kairos/health – get health status of KairosDB cluster

∙ /kairos/status – get status of KairosDB cluster which returns the deadlock state
and datastore availability

∙ /kairos/metrics – list all metric names in the database

∙ /kairos/tags – list all tag names in the database

∙ /kairos/tagvalues – list all tag values in the database

∙ /kairos/core – fetch metric data with core level aggregation (lowest level meaning
no vertical aggregation is done)

∙ /kairos/cpu – fetch metric data on cpu level (aggregate cores by CPU sockets)

∙ /kairos/node – fetch metric data on node level (aggregate metric by node tag)

∙ /kairos/cluster – fetch metric data with cluster level aggregation by cluster tag
(full vertical aggregation)

38

The endpoints fetching metric data share common GET parameters required for suc-
cessfully querying the database. The parameters from and to specify the querying time
window in UNIX milliseconds timestamps. metric parameter sets the metric name for
which to query, this parameter can be set multiple times in the request which will result in
multiple queries made to the database each with a different metric name specified. Using
the node or core parameter the query will be limited to a given set of nodes or cores. The
cluster parameter is set in the back-end configuration since the Examon Web is always
deployed for a specific cluster.

The optional parameter aggregate can be set in order to reduce the size of returned
data and to omit probable gaps due to missing data in the database. The sampling rate is
set in seconds with aligned start time and values in the time frames are averaged.

After successfully querying the data from KairosDB REST API, the data can be re-
turned in raw format by setting the raw parameter in the request. Otherwise, the obtained
data is processed in order to be easily parsed by the front-end’s charting library and ren-
dered. The post-processing is done on the back-end because of large datasets which can
extremely slow down the front-end rendering.

An example query with all available features can look like this:

/kairos/node?
node=davide10&node=davide11&
from=1525363805000&to=1525369818000&
metric=PCIE_Proc1_Power&metric=PCIE_Proc0_Pwr&
aggregate=10

The metric data do not include confidential data and therefore no authentication is
required to make requests for this module.

MQTT Module

MQTT module makes available two REST endpoints which utilize the MQTTManager de-
scribed in section 5.2.2 together with the subscription mechanism:

∙ /metric/<metric> [GET] – get metric data

∙ /metric/nodes [GET] – get list of nodes of collected data

Both endpoints were used mainly during the development and currently are not used in
any part of the front-end.

All other endpoints in this module are WebSocket ones, specifically:

∙ subscribe-metric – subscribe to a metric

∙ unsubscribe-metric – unsubscribe from a metric

Both endpoints use the /render namespace to distinguish from other WebSocket end-
points in the back-end.

Classifier Module

The pinnacle of this thesis is the classifier module used for classifying the jobs based on their
effectivity of the execution. Using a predefined set of metrics and a trained backpropagation
neural networks determine the likeliness of suspicious behaviour of the job’s execution.

39

The module makes available two endpoints, one of which is used for annotating the
dataset and the other for obtaining the result.

∙ /classifier/<job_id> [GET] – get the likeliness of suspicious behavior

∙ /classifier/<job_id> [POST] – set annotations for metrics and whole job

The GET method utilizes the KairosDB database where cluster-level metric data is
fetched and evaluated without aggregation. Each metric is split into windows contain-
ing 80 values due to the design of the networks (see section 5.4). Afterwards, the calculated
annotations are gathered and the average, minimum and maximum values of the whole
dataset for the metric. These calculated metric values are then passed to the final network
which annotates the whole job. The results are sent back to the front-end to be interpreted
by the user.

The POST method expects a JSON object with metric names and the jobber with values
0 for non-suspicious behavior or 1 for suspicious behavior. These values are then stored in
an SQLite database with the job ID as the primary key. This data was used for dataset
creation. The process of annotation is described in section 5.3.

5.2.2 MQTT and WebSocket Communication

The data gathered by Examon framework is distributed via MQTT protocol to the broker
where it is processed and stored in a database cluster. The MQTT broker is publicly
accessible, and therefore, Examon Web can utilize this data in order to display metric data
with a minimum delay.

All published MQTT topics use the key value scheme for topic names meaning a key is
followed by its value. This way a precise structure of the metric can be reconstructed upon
receiving an MQTT message.

The data can be split into two categories: 1) job data which comes from the job manager
and 2) metric data comes from various publishers deployed on each node of a supercomputer.

Job data can be sent within one or three MQTT topics depending on the job manager.
PBSPro MQTT publisher uses three topics to signal the state of a job:

∙ jobs_runjob – when a job is submitted to the job manager’s queue

∙ jobs_exc_begin – execution of the given job starts

∙ jobs_exc_end – a job finishes and is cleared from the manager

Each MQTT message payload includes the job ID and several other information about
the job such as requested resources.

The SLURM job manager publishes only a single MQTT message after the job is finished
and cleared off the queue with the topic ending with jobs_info value. The payload is a
sum of all information similar to the set published by the PBSPro manager. Both job
managers publish the messages in a topic in the following format:

org/<organization>/cluster/<cluster name>/<job’s topic>

For the job data, a JobManager class was developed used to gather job data from the
MQTT broker mainly because of multiple messages coming from PBSPro manager. This

40

data is kept in the internal structure and is handled once all the required messages are
received. The behaviour of JobManager can be modified using callback methods built in
the class.

Metric data is published with key-value topics as well. The format is more complex
then job-related data in order to maintain minimal payload size of the messages because
of large volumes of these messages published by each publisher. The MQTT topic is in
following format5:

org/<organization name>/
cluster/<cluster name>/
node/<node name>/
plugin/<plugin name>/
chnl/data/<item>/<item number>/<metric name>

During the deployment of the Examon framework on D.A.V.I.D.E. supercomputer the
topic was extended with several other keys:

org/<organization name>/
cluster/<cluster name>/
node/<node name>/
plugin/<plugin name>/
chnl/data/<item>/<item number>/
cmp/<compartment>/
id/<item id>/
unt/<unit>/<metric>

The message payload is always in format value; UNIX timestamp.
Metric data is used for the cluster visualization feeding the 3D or 2D model with live

data. Further development might include utilizing this data for live data in job-related
charts.

The metric data manager in the first deployment was subscribed to all metric-related
topics but the MQTT data stream was extremely large and unable to be handled by a single
server with low hardware resources (2 Intel Xeon E3 cores and 4 GB RAM) and the MQTT
message handling overloaded the server all the time. Therefore, the further development
was needed and the subscription-based mechanism was devised, see Figure 5.10 for the
schema of this mechanism.

Once the user visits the cluster dashboard of Examon Web, a subscription message is
sent via the front-end’s WebSocket connection to the back-end. The back-end keeps a list
of subscribed metrics and the number of users subscribed.

If the announced metric cannot be found in the subscribed ones but is present in available
metrics a new MQTT topic subscription is made using a predefined topic to the metric and
new Socket.IO room is created with the same name as the metric. Otherwise, the number
of subscribers is increased and the WebSocket connection joins the metric room.

Back-end also runs the MQTTManager similar to the JobManager presented earlier with
the additional methods supporting subscribing and unsubscribing to MQTT topics solving
the performance issues of the previous version.

Once the back-end is subscribed to the selected MQTT broker’s topic, initial data is
sent to the front-end. It is a bulk of collected metric data gathered during the initialization

5Line breaks are inserted for better readability.

41

MQTT data
manager

calculate moving
average

register
participant

remove
participant

WebSockets WebSockets UI UserMQTT broker

subscribe topic

Examon
Framework

Examon Web
backend

Examon Web
backend

Examon Web
frontend

Examon Web
frontend

choose metricunsubscribe previous
metric and

subscribe new metric

unsubscribe metric

subscribe metric

publish data

initial data
initial data calculate value

range and render

metric data

metric data
calculate value
range and render

publish data

publish data

leave page

subscribe metric

beforeUnloadHandler

unsubcribe metric

unsubcribe metric

unsubcribe metric

Figure 5.10: Flow model of WebSocket–MQTT subscription mechanism.

42

so front-end can render at least partial data for the user right after subscription to the
topic. When the manager receives data, the topic and payload are parsed and the received
value is averaged using a weighted moving average as presented in section 4.2.2. During
the reception of the metric data, the minimum and maximum values are stored as well, and
used by the front-end to calculate the colour range for the model.

The user can change the displayed metric or leave the page. On these actions the unsub-
scribe message is sent via WebSocket where back-end decreases the number of participants
in a given metric room and if the number has reached zero the whole room is deleted and the
MQTTManager unsubscribes from the MQTT topic at the broker. The averaged metric data
is kept in memory for future subscribers in order to send the initial data to the front-end.

5.3 Dataset Creation
The backpropagation networks require an annotated dataset for their training. Currently,
no suitable dataset was found to fit the needs of this specific case of analyzing time series
data based on the fluctuation and absolute levels.

Two datasets similar in purpose were produced. For both datasets, the conditions
the jobs must fulfil are that they occupied the whole node (multiples of 16 cores) and the
execution must take at least 10 minutes. The maximum of the execution time was extended
from 60 minutes to 24 hours as it is limited by the PBSPro job manager to 24 hours. This
time extension allowed us to collect more data.

The distribution of job runtimes can be seen in Figure 5.11 for the total of 22 791 jobs
submitted to the job manager during the time period from 2/11/2017 to 20/11/2017. The
histogram clearly shows that the majority of jobs is shorter than 10 minutes most of which
is shorter than 60 seconds. These jobs are relatively cheap to run a debug and are not
representative enough for the dataset. For both datasets, the jobs were run on the Galileo
supercomputer where the Examon framework monitored most of the cluster.

Both datasets were labelled manually by examining each time series metric individually
and as a set as well. Next follows a set of examples representing the spotted suspicious
behaviour and an example of a good job run.

In essence, if the job was balanced and ran well the load_core metric was set close to
100 % during the whole run and the C6 metric close to 0 %. An example of this behaviour
can be seen in Figure A.6.

The back_end_bound metric could vary during the runtime but if the metric was unbal-
anced it meant a non-uniform cache access which was labelled as suspicious. Other metrics
were dependent on each other and it was easily spotted if the job was suspicious or not.

In many cases, the load_core metric was set around 50 % which meant half of the used
cores were fully utilized while the other half was not used at all. This was also marked as
suspicious. An example of such a job can be seen in Figure A.7.

Other suspicious behaviour was when a job had no load_core at all and the CPU was
in C6 state during the whole runtime as seen in Figure A.4.

Less often, jobs with sudden drops in utilization were spotted. These jobs are suspicious
as well because of a possible indication of a problem in regards to unpredictable data loading
or other similar issues. This behaviour can be seen in Figure A.5.

Other examples of suspicious behaviour include a long startup period with 0 %
load_core at the beginning or the other way a premature end or long result storing period
with 0 % load_core at the end.

43

Figure 5.11: Histogram chart of job runtimes. Jobs with runtime less than 60 seconds are
not plotted with the volume of 12 120 jobs.

First Dataset

The first, initial, dataset was made of 32 jobs with the additional condition of runtime
between 10 and 60 minutes. The jobs were collected between dates 31/10/2017 and
20/11/2017. This dataset was representative enough for proof of work stage of developing
the neural networks with fast training sessions and fast manual labelling.

A rough dataset consisted of 442 jobs but during the data acquisition stage, only the
selected 32 jobs had all needed metric data present in the KairosDB cluster. Again the
runtimes are mostly placed within the 10 to 20 minutes runtimes as seen in Figure 5.12.

In the end, the total of 19 jobs was labelled as suspicious and the remaining 13 jobs as
non-suspicious. Some of their metrics were labelled as suspicious but the job as a whole
not. Eventually, this helped to remove a certain amount of false positive labels from the
jobber network.

Second Dataset

The second, considerably larger dataset consisted of 3373 candidate jobs to be evaluated.
After the initial fetching stage about a half (1532) of the jobs had the required metric data.
The data is first fetched on a per-node aggregation level but the resulting dataset was too
large (around 40 GB) to be analyzed during the training period. The second round of
retrieval was done using the original cluster-level aggregation which resulted in a dataset
considerably smaller (around 160 MB). This dataset contains 1172 jobs. The number of
jobs is smaller due to errors during the fetching of data since the data source was mounted
on a low resource server which, during large queries, often failed to retrieve the data and
crashed.

44

Figure 5.12: Histogram chart of job runtimes for the first small unfiltered dataset.

With the final dataset, the labelling phase was done on 500 jobs which is more than
enough samples for training a neural network and took more than 20 hours time-wise.
The remaining unlabelled jobs can be labelled in the future in order to provide a very
representative dataset for time series machine learning algorithms.

This dataset will be anonymized and made publicly available after this thesis is defended
as a cooperation result of CINECA, UNIBO and BUT.

5.4 Job Classification
The networks are divided into two categories–metric and job. The metric networks are
configured the same for all metrics and the job network is connected to the outputs of
each metric network. This way the labels of a metric network can be extracted, optionally
modified and then set as input to the job network.

The backpropagation network was developed without any non-system library in order to
be easily deployed on any machine with Python language. Libraries like Keras [7] or scikit-
learn [42] were considered during development. For the sole purpose of backpropagation
network, these libraries can be replaced with custom-made code.

The design of the network is split into two classes: Network and Neuron. The neu-
ron class facilitates the work of a single neuron in the network keeping its state in the
class instance. The Network class takes care of the backpropagation and gradient descend
algorithms and the import and export of a configured network.

Initial experiments consisted of various network configuration, one of which produced
the best results. The final network configuration is 80 input neurons with 3 hidden layers
consisting of 20 neurons, then 4 and finally 3 neurons with one output neuron. Eighty
input neurons provide good performance/evaluation compromise. Larger input vectors can

45

result in extremely long runs and smaller input vectors might result in poor outputs of the
networks.

The jobber network was designed similarly with the difference in input layer consisting
of 12 neurons (each for one metric network), 4 and 3 neurons in the hidden layers and one
output neuron.

All networks are independent of each other, therefore certain parallelization could be
made during the training period. During the training period, all labelled data is loaded
into memory and then served to each network. All networks were logging their progress in
training by log outputs to the standard output which afterwards could be analyzed.

All networks were set to train a maximum of 25 000 epochs or until the sum error had
reached 1.0. With the smaller dataset present, the networks were trained with 27 jobs
keeping the other 5 jobs as the evaluation dataset. The larger dataset was split into 350
training jobs and 150 jobs as the evaluation sample.

The gradient descent algorithm was modified with momentum addition [47] in order to
surpass local minimums and generally to achieve faster convergence where 𝛾 was set to 0.8
after the trial and error experiments.

∆𝑤𝑝 = −(𝛾 ⃗𝑤𝑝−1 + 𝜇∇𝐸𝑝) (5.1)

The dataset was randomly shuffled after each epoch in order to limit overfitting on the
training dataset. The final error rates were about 15 % higher compared to non-shuffled
dataset but during evaluation, the networks with shuffled dataset produced better success
rate (about 5 % better).

During experiments, various configurations regarding the learning rate, maximum
epochs and the momentum gradient descend presence were evaluated. The best results
were generally achieved with previously mentioned configuration but certain metrics
provided better results without the momentum gradient descend. Each individual config
was evaluated and the best resulting configurations were combined to create a well-trained
set of networks.

The final evaluation of best-performant network configurations is listed in Table 5.1.
Each network was evaluated separately on the same dataset and then the full network set
was presented with the input data, the metric networks evaluated the data and the outputs
without modification were presented to the jobber network which was eventually evaluated.
This single complex evaluation shown in the ”complex jobber“ row is the final result.

An example of training period and the resulting error can be found in Figure A.8 where
we can see multiple networks surpassing a local minimum and then finding, probably, the
global minimum. These error rates were extracted from the logs as mentioned earlier.

The success rates were in the range between 70 and 100 % with most of the networks
between 80 and 90 %. The higher success rate is often hard to achieve and would require
deep and long-term evaluation and experiments with a larger and more diverse dataset. In
the end, the resulting complex job evaluation success rate is 84 %, which can be considered
a very good result.

5.5 Job Anomaly Classification
The job anomaly classification network using decision trees was after a careful consideration
scraped due to the lack of context and background information about the evaluated jobs.
This network is a great start point for the further work.

46

Table 5.1: The final evaluation result of all trained networks.
Network name Correctly classified Incorrectly classified Success rate (%)
C6res 129 21 86
C3res 150 0 100
load_core 127 23 84.67
ips 121 29 80.67
Sys_Utilization 122 28 81.33
IO_Utilization 150 0 100
Mem_Utilization 119 31 79.33
CPU_Utilization 114 36 76
L1L2_bound 140 10 93.33
L3_bound 104 46 69.33
front_end_bound 112 38 74.67
back_end_bound 108 42 72
jobber 145 5 96.77
complex jobber 126 24 84

During dataset labelling a few of possible scenarios were found, which can be summed
up in several categories to set the basic leaves for the decision tree:

∙ unbalanced CPU utilization

∙ the job exited with non-zero return value

∙ no CPU utilization during the whole job

∙ non-uniform memory access

∙ long startup and finalization periods

∙ premature job ending

∙ sudden performance drops

5.6 Summary
The final output of this work can be considered quite wide in terms of various fields which
are incorporated in it. Starting from the UI and front-end as a whole which utilizes the
most modern and up-to-date technologies and paradigms, continuing to a newly made
independent Python package publicly available on Python Package Index (PyPi) [16] with
a full-featured back-end HTTP REST API capable of handling user and securing access
to private information up to the well trained backpropagation neural network capable of
classifying a job based on time series data together with a large labelled dataset which can
help other researchers in their machine learning applications.

47

The main focus of this thesis is the final set of neural networks even though the path
to fully working trained networks was quite difficult laid with many obstacles in the path
mainly in the availability of the needed data and its extraction from the database which
itself took more than 5 days due to technical difficulties which appeared only under extreme
server load. The final configuration of all metric networks is the same with the 80-20-4-3-1
neurons in each layer. In the end, the resulting complex job evaluation success rate is 84 %,
which can be considered a very good result but still one which can be worked upon and
improved.

48

Chapter 6

Conclusions

The Examon Web was successfully presented, designed and implemented. The needed
theoretical background was explained with references to underlying literature. Examon
Web was set in between current state-of-the-art tools for HPC system monitoring with its
unique place.

It was designed using modern approaches in web development such as single-page ap-
plication design, REST API and WebSocket interface while integrating Internet of Things
technologies, namely MQTT together with big data analysis for data acquisition.

Anomaly detection of suspicious jobs was successfully verified in a proof of concept work
done during a course on soft computing and then implemented using the second, larger,
dataset with the success rate of 84 % of correctly labelled jobs using only metric data of it.
The implementation consists of 12 metric networks labelling metrics such as core load, CPU
utilization, C6 CPU state share or back-end bound instructions shares. The final network
which produces the definitive answer about the suspicious behaviour of the job takes the
output of all 12 metric networks as its input and labels the job itself. The results from
the metric networks are also presented to the user so the user can see what was labelled as
suspicious.

Examon Web is an expansion layer to the Examon framework. With this web-based
tool, the Examon framework gains completely new use-cases and audience not just amongst
the research community but also in the HPC users community. This fact serves a critical
role in the popularization of Examon itself and its possible expansion to many HPC facilities
around the world.

Another output of this thesis is the manually labelled dataset of time-series data which
can be used for research purposes other than job classification such as trend finding analytic
tool or a time-series prediction tool which can be used in other fields of research as well.

The final part of the soft-computing tool was not developed due to the lack of back-
ground information of the jobs themselves and without it, any proper labelling could not
be done. This part is only discussed with the suggested output labels of the decision tree.

6.1 Current Deployment
Examon and Examon Web is currently deployed on the D.A.V.I.D.E. supercomputer lo-
cated in CINECA, Bologna, Italy. It had also been successfully deployed on the Galileo
supercomputer for several months before being decommissioned in November 2017 and

49

replaced by the aforementioned D.A.V.I.D.E. The Galileo supercomputer was afterwards
updated and re-instantiated in the same facility for further use.

In next months, Examon will be also deployed on a part of the Marconi supercomputer
which will be the largest deployment of Examon so far.

6.2 Contributions & Impact
Examon and Examon Web were presented at the IT4Innovations’ 1st User’s Conference
together with a poster showing the features of Examon and Examon Web as seen in Figure
A.9.

Two papers about Examon Web were submitted one of which was evaluated as an
innovative approach to HPC system monitoring but was unfortunately rejected in face
of great papers of other researchers at the HUST 2017 conference. The second paper,
submitted to ISC 2018, was reviewed as intriguing and the work as very promising but
again due to other great papers and low acceptance rate the paper was rejected.

The whole implementation of Examon Web and all its parts are available online1 as
open-source and anyone can contribute to the project to extend its functionality. The
labelled dataset will be anonymized and then published online as open-source as well which
will help with the promotion of participating parties, namely BUT, UNIBO and CINECA
and it can be used by other researchers to create interesting works.

6.3 Further Work
Further work can be focused in two directions. First is the expansion of Examon Web
and making it more general for any cluster and data that are published by the Examon
framework. This will include very specific and vast configuration options while maintaining
the user-friendliness which is extremely hard to achieve.

The second direction is focused on the soft-computing part of the thesis, mainly on the
decision trees implementation. The classification networks can be also improved to achieve
better, more precise results with over 90 % success rates.

1https://github.com/petrstehlik/examon-web

50

https://github.com/petrstehlik/examon-web

Bibliography

[1] Barth, W.: Nagios: System and network monitoring. No Starch Press. 2008.

[2] Benedict, S.: Energy-aware performance analysis methodologies for HPC
architectures: An exploratory study. Journal of Network and Computer Applications.
vol. 35, no. 6. 2012: pp. 1709 – 1719. ISSN 1084-8045.

[3] Beneventi, F.: pyKairosDB. 2018. [Online; accessed 27/02/2018].
Retrieved from: https://github.com/fbeneventi/pyKairosDB

[4] Beneventi, F.; Bartolini, A.; Cavazzoni, C.; et al.: Continuous learning of HPC
infrastructure models using big data analytics and in-memory processing tools. In
Design, Automation Test in Europe Conference Exhibition (DATE), 2017. March
2017. pp. 1038–1043. doi:10.23919/DATE.2017.7927143.

[5] Birrittella, M. S.; Debbage, M.; Huggahalli, R.; et al.: Intel R○ Omni-path
architecture: Enabling scalable, high performance fabrics. In High-Performance
Interconnects (HOTI), 2015 IEEE 23rd Annual Symposium on. IEEE. 2015. pp. 1–9.

[6] Carasso, D.: Exploring splunk. published by CITO Research, New York, USA, ISBN.
2012: pp. 978–0.

[7] Chollet, F.; et al.: Keras. 2015.

[8] CINECA: MARCONI: migration from PBSPro to SLURM scheduler. 2017. [Online;
accessed 22/12/2017].
Retrieved from: http:
//www.hpc.cineca.it/center_news/marconi-migration-pbspro-slurm-scheduler

[9] Computing, A.: Moab HPC Suite. 2015.

[10] Computing, A.; Computing, G.: Torque Resource Manager. 2017. [Online; accessed
18/11/2017].
Retrieved from: http://www.adaptivecomputing.com

[11] Dementiev, R.; Willhalm, T.; Bruggeman, O.; et al.: Intel Performance Counter
Monitor. 2017. [Online; accessed 16/10/2017].
Retrieved from: http://www.intel.com/software/pcm

[12] Dongarra, J.; London, K.; Moore, S.; et al.: Using PAPI for hardware performance
monitoring on Linux systems. In Conference on Linux Clusters: The HPC
Revolution, vol. 5. Linux Clusters Institute. 2001.

51

https://github.com/fbeneventi/pyKairosDB
http://www.hpc.cineca.it/center_news/marconi-migration-pbspro-slurm-scheduler
http://www.hpc.cineca.it/center_news/marconi-migration-pbspro-slurm-scheduler
http://www.adaptivecomputing.com
http://www.intel.com/software/pcm

[13] Ezzati-Jivan, N.; Dagenais, M. R.: Multi-scale navigation of large trace data: A
survey. Concurrency and Computation: Practice and Experience. vol. 29, no. 10. 2017.

[14] Fette, I.: The websocket protocol. 2011.

[15] Fielding, R.: Representational state transfer. Architectural Styles and the Design of
Netowork-based Software Architecture. 2000: pp. 76–85.

[16] Foundation, P. S.: Python Package Index. 2018. [Online; accessed 015/04/2018].
Retrieved from: https://pypi.org/

[17] Gimenez, A. A.; Gamblin, T.; Jusufi, I.; et al.: MemAxes: Visualization and
Analytics for Characterizing Complex Memory Performance Behaviors. IEEE
transactions on visualization and computer graphics. 2017.

[18] Goodfellow, I.; Bengio, Y.; Courville, A.: Deep Learning. MIT Press. 2016.
http://www.deeplearningbook.org.

[19] Gormley, C.; Tong, Z.: Elasticsearch: The Definitive Guide: A Distributed Real-Time
Search and Analytics Engine. ”O’Reilly Media, Inc.“. 2015.

[20] Grinberg, M.: Flask SocketIO. 2018. [Online; accessed 04/01/2018].
Retrieved from: https://flask-socketio.readthedocs.io/en/latest/

[21] Han, J.; Pei, J.; Kamber, M.: Data mining: concepts and techniques. Elsevier. 2011.

[22] Intel: Tuning Applications Using a Top-down Microarchitecture Analysis Method.
2017. [Online; accessed 25/10/2017].
Retrieved from: https://software.intel.com/en-us/vtune-amplifier-help-
tuning-applications-using-a-top-down-microarchitecture-analysis-method

[23] Isaacs, K. E.; Giménez, A.; Jusufi, I.; et al.: State of the art of performance
visualization. EuroVis 2014. 2014.

[24] IT4Innovations: IT4Innovations Extranet. 2017. [Online; accessed 12/11/2017].
Retrieved from: https://extranet.it4i.cz/

[25] Jette, M. A.; Yoo, A. B.; Grondona, M.: SLURM: Simple Linux Utility for Resource
Management. In In Lecture Notes in Computer Science: Proceedings of Job
Scheduling Strategies for Parallel Processing (JSSPP) 2003. Springer-Verlag. 2002.
pp. 44–60.

[26] Lakshman, A.; Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review. vol. 44, no. 2. 2010: pp. 35–40.

[27] Lee, S.; Kim, H.; k. Hong, D.; et al.: Correlation analysis of MQTT loss and delay
according to QoS level. In The International Conference on Information Networking
2013 (ICOIN). Jan 2013. ISSN 1550-445X. pp. 714–717.
doi:10.1109/ICOIN.2013.6496715.

[28] Locke, D.: Mq telemetry transport (mqtt) v3. 1 protocol specification. IBM
developerWorks Technical Library. 2010.

52

https://pypi.org/
http://www.deeplearningbook.org
https://flask-socketio.readthedocs.io/en/latest/
https://software.intel.com/en-us/vtune-amplifier-help-tuning-applications-using-a-top-down-microarchitecture-analysis-method
https://software.intel.com/en-us/vtune-amplifier-help-tuning-applications-using-a-top-down-microarchitecture-analysis-method
https://extranet.it4i.cz/

[29] Massie, M. L.; Chun, B. N.; Culler, D. E.: The ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing. vol. 30, no. 7.
2004: pp. 817 – 840. ISSN 0167-8191.

[30] McNabb, L.; Laramee, R. S.: Survey of Surveys (SoS)-Mapping The Landscape of
Survey Papers in Information Visualization. In Computer Graphics Forum, vol. 36.
Wiley Online Library. 2017. pp. 589–617.

[31] Mehrotra, K.; Mohan, C. K.; Ranka, S.: Elements of artificial neural networks. MIT
press. 1997.

[32] de Melo, A. C.: The new linux ’perf’ tools. In Slides from Linux Kongress, vol. 18.
2010.

[33] Mikowski, M. S.; Powell, J. C.: Single page web applications. B and W. 2013.

[34] Minyard, C.: IPMI–A Gentle Introduction with OpenIPMI.

[35] Morgan, A. G.; Kukuk, T.: The Linux-PAM System Administrators’ Guide. 2006.

[36] N, P.: pyKairosDB. 2018. [Online; accessed 27/02/2018].
Retrieved from: https://github.com/pcn/pyKairosDB

[37] Ödegaard, T.: Grafana, The Leading Graph And Dashboard Builder For Visualizing
Time Series Metrics. 2016.

[38] Oetiker, T.: RRDtool. 2005. [Online; accessed 20/02/2018].
Retrieved from: https://oss.oetiker.ch/rrdtool/

[39] Olups, R.: Zabbix 1.8 network monitoring. Packt Publishing Ltd. 2010.

[40] Otto, M.; Thornton, J.; et al.: Bootstrap. Twitter Bootstrap. 2013.

[41] Passint, R.; Thorson, G.; Galles, M.: Hybrid hypercube/torus architecture. May 8
2001. uS Patent 6,230,252.
Retrieved from: https://www.google.com/patents/US6230252

[42] Pedregosa, F.; et al.: Scikit-learn: Machine learning in Python. Journal of machine
learning research. vol. 12, no. Oct. 2011: pp. 2825–2830.

[43] Pfister, G. F.: An introduction to the infiniband architecture. High Performance
Mass Storage and Parallel I/O. vol. 42. 2001: pp. 617–632.

[44] Rai, R.: Socket. IO Real-time Web Application Development. Packt Publishing Ltd.
2013.

[45] Reinders, J.: VTune performance analyzer essentials. Intel Press. 2005.

[46] Ronacher, A.: Flask (A Python Microframework). 2018. [Online; accessed
04/01/2018].
Retrieved from: http://flask.pocoo.org/

[47] Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747. 2016.

53

https://github.com/pcn/pyKairosDB
https://oss.oetiker.ch/rrdtool/
https://www.google.com/patents/US6230252
http://flask.pocoo.org/

[48] Showerman, M.: Real Time Visualization of Monitoring Data for Large Scale HPC
Systems. In Cluster Computing (CLUSTER), 2015 IEEE International Conference
on. IEEE. 2015. pp. 706–709.

[49] Stefanov, K.; Voevodin, V.; Zhumatiy, S.; et al.: Dynamically reconfigurable
distributed modular monitoring system for supercomputers (DiMMon). Procedia
Computer Science. vol. 66. 2015: pp. 625–634.

[50] Stehlík, P.: muapi (modular user-oriented REST API). 2018. [Online; accessed
15/05/2018].
Retrieved from: https://github.com/petrstehlik/muapi

[51] UNIBO: DEI UNIBO Website. 2018. [Online; accessed 20/12/2017].
Retrieved from: http://www.dei.unibo.it/en

[52] Vanderkam, D.; Allaire, J.; Owen, J.; et al.: dygraphs: Interface to ‘Dygraphs’
Interactive Time Series Charting Library. R package version 0.5. 2015.

[53] Victor Savkin, V. B.: Angular. 2018. [Online; accessed 04/02/2018].
Retrieved from: https://angular.io/

[54] Voevodin, V.; Voevodin, V.; Shaikhislamov, D.; et al.: Data mining method for
anomaly detection in the supercomputer task flow. In AIP Conference Proceedings,
vol. 1776. AIP Publishing. 2016.

[55] Works, A. P.: PBS Professional R○14.2 Administrator’s Guide. 2017.

[56] Works, A. P.: PBS Professional R○14.2 Plugins (”Hooks“) Guide. 2017.

[57] Yasin, A.: A top-down method for performance analysis and counters architecture. In
Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International
Symposium on. IEEE. 2014. pp. 35–44.

54

https://github.com/petrstehlik/muapi
http://www.dei.unibo.it/en
https://angular.io/

Appendix A

Appendices

A.1 PBS Pro Hooks Lifecycle

Figure A.1: Simplified view of hook trigger timing. Taken from [56].

55

A.2 Examon Web Job Info Wireframe

Figure A.2: Low-fidelity wireframe of job overview dashboard with all the job info and one
chart showing core loads.

56

A.3 Examon Web Cluster Overview Wireframe

Figure A.3: Low-fidelity wireframe of cluster overview dashboard with several single-number
metric boxes and charts with average and current values next to the right.

57

A.4 Example Jobs Spotted During Labelling

Figure A.4: A job with no load the CPU in C6 state during the whole runtime. Other
metrics are not included.

58

Figure A.5: A job with suspicious drops in utilization. Unsuspicious metrics were removed.

59

Figure A.6: A job with balanced behavior utilizing all allocated resources. Unsuspicious
metrics were removed.

60

Figure A.7: A suspicious job with 50 % core utilization. Unsuspicious metrics were removed.

61

A.5 Networks’ Error Rates

Figure A.8: The sum error rates during the training period of all networks.

62

A.6 Poster for IT4Innovations’ 1st User Conference

Figure A.9: The poster presented at the IT4Innovations’ 1st User Conference.

63

A.7 Contents of the Attached Media
∙ docs – LATEX source code of the thesis

∙ xstehl14.pdf – thesis in PDF file

∙ examon-web – source code with GIT history of Examon Web containing all 3 versions
of front-end in GIT branches

∙ dataset – large partially annotated dataset used for training neural networks

∙ poster.pdf – poster presented at the IT4Innovations’ 1st Users’ Conference in full
resolution

64

	Introduction
	Related Work
	HPC System Monitoring
	Job Monitoring
	Job Classification

	Theoretical Background
	High Performance Computing
	Top-down analysis

	Job Scheduling
	HPC System Monitoring
	IPMI
	Examon

	Data Mining Techniques
	Neural Networks
	Decision Tree
	Backpropagation Network

	Design
	Target Audience & Users
	Examon Web
	Front-end
	Back-end

	Job Anomaly Detection
	Data
	Data Acquisition
	Data Labelling
	Data Processing
	Metric Networks
	Job Network

	Implementation
	Graphical User Interface
	Homepage
	User Management
	Job Module
	System Module
	Cluster Module
	Front-end Adaptations

	Back-end
	REST API
	mqtt and WebSocket Communication

	Dataset Creation
	Job Classification
	Job Anomaly Classification
	Summary

	Conclusions
	Current Deployment
	Contributions & Impact
	Further Work

	Bibliography
	Appendices
	PBS Pro Hooks Lifecycle
	Examon Web Job Info Wireframe
	Examon Web Cluster Overview Wireframe
	Example Jobs Spotted During Labelling
	Networks' Error Rates
	Poster for IT4Innovations' 1st User Conference
	Contents of the Attached Media

