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Abstract 
Using the full potential of an H P C system can be difficult when such systems reach the 
exascale size. This problem is increased by the lack of monitoring tools tailored specifically 
for users of these systems. This thesis discusses the analysis and visualization of operational 
data gathered by Examon framework of a high-performance computing system. By applying 
various data mining techniques on the data, deep knowledge of data can be acquired. To 
fully utilize the acquired knowledge a tool with a soft-computing approach called Examon 
Web was made. This tool is able to detect anomalies and unwanted behaviour of submitted 
jobs on a monitored H P C system and inform the users about such behaviour via a simple 
to use web-based interface. It also makes available the operational data of the system in a 
visual, easy to use, manner using different views on the available data. Examon Web is an 
extension layer above the Examon framework which provides various fine-grain operational 
data of an H P C system. The resulting soft-computing tool is capable of classifying a job 
with 84 % success rate and currently, no similar tools are being developed. The Examon 
Web is developed using Angular for front-end and Python, accompanied by various libraries, 
for the back-end with the usage of IoT technologies for live data retrieval. 

Abstrakt 
Tato práce se zabývá analýzou a vizualizací shromážděných provozních dat superpočítače. 
Použitím různých technik na dolování dat byly získány hluboké znalosti o provozních datech 
superpočítače monitorovaného systémem Examon. S pomocí těchto znalostí byl vytvořen 
nástroj se soft-computing přístupem nazvaný Examon Web. Ten je rozšiřující vrstvou sys­
tému Examon, která poskytuje různá detailní provozní data H P C systému. Examon Web je 
schopen rozpoznat anomálie a nežádoucí chování úloh spuštěných na monitorovaném H P C 
systému a informovat uživatele o tomto chování prostřednictvím webového rozhraní. Exa­
mon Web také zpřístupňuje provozní data systému vizuálním a snadno konzumovatelným 
způsobem, přičemž používá různé pohledy na dostupná data. Výsledný nástroj je schopen 
klasifikovat úlohu do dvou tříd s úspěšností 84 %. Examon Web byl vyvinut pomocí frame-
worku Angular pro front-end a Pythonu, doprovázeného různými knihovnami, pro back-end 
s využitím IoT technologií pro získávání aktuálních provozních dat superpočítače. 
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Rozšířený abstrakt 
V posledních několika letech jsme téměř na dosah superpočítače s výkonem přes 1 exaFLOP. 
To znamená, že superpočítače jsou stále větší a složitější, s čímž souvisí problém využití 
plného potenciálu takového systému. Tento problém se umocňuje díky nedostatku nástrojů 
pro monitorování, které jsou specificky přizpůsobeny uživatelům těchto systémů. Cílem této 
práce je vytvořit nástroj, nazvaný Examon Web, pro analýzu a vizualizaci shromážděných 
provozních dat superpočítače a provést nad těmito daty hloubkovou analýzu pomocí neurál-
ních sítí. Ty určí, zda daná úloha běžela korektně, či vykazovala známky podezřelého 
a nežádoucího chování jako je nezarovnaný přístup do operační paměti nebo např. nízké 
využití alokovaých výpočetních zdrojů. O těchto zjištěných faktech je uživatel informován 
pomocí grafického uživatelského rozhraní. Examon Web je postavený na frameworku Ex­
amon, který sbírá a procesuje metrická data ze superpočítače a následně je ukládá do 
databáze určené pro velká data-KairosDB. Implementace této práce zahrnuje mnoho disci­
plín od návrhu a implementace GUI , přes rozsáhlou datovou analýzu, těžení dat a neurální 
sítě až po implementaci různých rozhraní na serverové straně. Examon Web je zaměřen 
zejména na uživatele superpočítače, ale může být také využíván systémovými administrá­
tory. GUI je vytvořeno ve frameworku Angular společně s knihovnami Dygraphs a Boot-
strap. Uživatel díky tomu může jednoduše analyzovat časové řady různých metrik své 
úlohy spuštěné na superpočítači a stejně jako administrátor se může informovat o součas­
ném stavu celého superpočítače. Tento stav je zobrazen jako několik globálně agregovaných 
metrik v posledních 30 minutách nebo jako 3D model (či 2D model) celého superpočítače, 
který získává živá data ze samotných uzlů superpočítače pomocí protokolu M Q T T . Pro 
kontinuální získávání dat bylo využito rozhraní WebSocket, ve kterém byl implementován 
vlastní mechanismus přihlašování a odhlašování konkrétních metrik zobrazovaných v mod­
elu. Při analýze spuštěné úlohy má uživatel dostupné tři různé pohledy na danou úlohu. 
První pohled nabízí celkový přehled o úloze a informuje uživatele o využitých zdrojích, 
času běhu a celkovém vytížení části superpočítače, kterou úloha využila společně s infor­
mací z neurálních sítí o podezřelosti úlohy. Další dva pohledy zobrazují jednotlivé metriky 
z výkonnostiního energetického hlediska. Pro naučení neurálních sítí bylo potřeba vytvořit 
novou datovou sadu tvořených daty ze superpočítače Galileo. Tato datová sada obsahuje 
přes 1100 úloh spuštěných a monitorovaných na tomto superpočítači z čehož 500 úloh bylo 
ručně anotováno a následně použito pro trénování neurálních sítí. Neurální sítě využívají 
model back-propagation, který je vhodný pro anotování časových sérií fixní délky. Celkem 
bylo vytvořeno 12 sítí pro metriky zahrnující vytížení procesoru, paměti a dalších části 
a například také podíl celkového času procesoru v úsporném režimu C6. Tyto sítě jsou na 
sobě nezávislé a po experimentech jejich finální konfigurace 80-20-4-3-1 (80 vstupních až 
1 výstupní neuron) podávaly nejlepší výsledky. Poslední síť (v konfiguraci 12-4-3-1) anoto-
vala výsledky předchozích sítí, kde na vstup této sítě jsou přiloženy výsledky předešlých sítí. 
Celková úspěšnost celého systému klasifikace do 2 tříd je 84 %, což je na použitý model velmi 
dobrá úspěšnost. Výstupem této práce jsou dva produkty. Prvním je uživatelské rozhraní 
a jeho serverová část Examon Web, která jakožto rozšiřující vrstva systému Examon pomůže 
s popularizací a rozšířením daného systému mezi další uživatele či přímo další superpočí-
tačová centra. Druhým výstupem je částečně anotovaná datová sada, která může pomoci 
dalším lidem v jejich výzkumu a je výsledkem spolupráce V U T , UNIBO a C I N E C A . Oba 
výstupy budou zveřejněny s otevřenými zdrojovými kódy. Examon Web byl prezentován na 
konferenci lst Users' Conference v Ostravě pořádanou organizací IT4Innovations. Dalším 
rozšíření této práce může být kompletní anotace datové sady a také rozšíření Examon Web 
o rozhodovací stromy, které určí přesný důvod špatného chování dané úlohy. 
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Chapter 1 

Introduction 

In recent years we are getting closer and closer towards exascale computing. Wi th this goal 
in sight, the supercomputing systems are getting bigger, more powerful and more complex. 
These facts make it difficult to fully utilize the whole potential of the computing resources 
in the most efficient manner. 

Future H P C systems will feature thousands of nodes each fitted with tens or even 
hundreds of C P U cores, large memory and a wide range of accelerators or GPUs. These 
systems must be connected via complex inter-node communication networks designed in 
intricate schemes such as N-dimensional torus or hypercubes [ ]. From this point of view, 
it is getting harder to operate H P C systems at their peak performance. Another side of 
this problem is power consumption and energy efficiency Hardware vendors are producing 
extremely efficient chips and other accompanying components but this is a solution only for 
a fraction of the problem. The quest towards the exascale supercomputer requires precise 
control of the energy and power consumed by the nodes and their components but also to 
precisely control the environment, mainly the cooling infrastructure, in which the system 
is operated. 

One of the first things which can help with these problems is to give the users and 
system administrators of such facilities a definite place where they can easily analyze the 
utilization, energy consumption, performance and status of their executed tasks or the 
whole system in easy-to-consume visual manner. 

In order to obtain and gather operational data of a supercomputer system Examon 
framework [4] is used. The Examon framework serves as the base for the tool developed and 
evaluated in this thesis called Examon Web. Examon is a fine grain monitoring framework 
which collects and handles a wide set of sensors and performance counters of the cluster 
computing resources, job scheduling data and infrastructure metrics all sampled at a fine 
granularity. Wi th Examon Web, users and system administrators will be able to analyze 
operational data of H P C systems and jobs running on them using and combining data from 
the Examon framework. Examon Web will also provide detection of anomalies and poor 
performance during job execution using neural networks which can classify whether a job 
ran well or if it is in some way suspicious of unwanted behaviours such as poor performance 
or execution failure. 

The system administrators are provided with many tools from hardware and software 
vendors of their systems which provide detailed information about the system and its parts 
but, usually, all this information is difficult to process in real-time by a single person. 

Every user of a supercomputer needs to know whether their submitted job finished 
successfully and performed well. So far this tedious task is usually performed manually 
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using only the output of their program and over-simplified metrics such as job runtime and 
total utilized resources. 

Both of these problems can be solved by Examon Web. For system administrators, it will 
provide a simple interface to oversee the status of their cluster in a single view. Users will 
have the option to monitor their jobs in real-time while Examon Web will provide useful 
information about the job and its status with the ability to inform users about possible 
problems with the job. 

The goal of this thesis is to create a tool which will analyze operational data of a 
supercomputer and based on the gathered data detect anomalies during job execution. 
This information will be presented to a user via a GUI tailored for this tool. 

The structure of this thesis is as follows: in Chapter 2 Examon Web is compared and 
aligned with currently available tools, the theoretical background needed for this thesis is 
presented together with the description of Examon framework in Chapter 3. In the following 
Chapter 4 the proposed design of the whole Examon Web is presented together with target 
audience and users. Afterwards, in Chapter 5 the implementation Examon Web and its 
underlying systems (namely neural networks) are laid out and in the last Chapter 6 the 
achieved results, summary and further work plans are discussed. 
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Chapter 2 

Related Work 

Nowadays there are several tools and libraries for collecting data from nodes and their com­
ponents. CPUs embed performance counters accessible via software libraries in operating 
system structures and dedicated instructions inside them [2]. 

Using the read values a set of architectural, physical and performance quantities can 
be measured and evaluated. The top-down analysis introduced by Yasin, et. al. [57] uses 
specific counters to understand applications' bottlenecks using top-down analysis approach 
starting from a narrow set of metrics. It is possible, by looking at the microoperations flow 
inside CPU's pipeline, to detect and identify where the executed program was bound. 

The related work is separated into three sections each presenting a specific field discussed 
and used in this thesis. Section 2.1 is about how an H P C system can be monitored and the 
state of the art tools are mentioned including data visualization tools as well. In Section 
2.2 the related work in job monitoring is discussed and in the last Section 2.3 current state 
of classification of jobs run on H P C systems is shown. 

2.1 H P C System Monitoring 

There are several approaches to gather performance and energy metrics from H P C systems 
on a user-level basis. Usually, these approaches require user's intervention and scripting 
such as P A P I [12], Intel vTune [15], Linux perf tools [32] or Intel Performance Counter Mon­
itor [11] and introduce interference on the program's execution. Moreover, these approaches 
cannot be used in a reasonable way for continuous monitoring deployed system-wide. 

Beneventi, et al. [ ] present the Examon (exascale monitoring) framework to overcome 
this limitation by wrapping the above-mentioned profiling libraries in a modular and ex­
tendable framework for accessing the performance metrics with a regular sampling. The 
collected data are then propagated to a scalable data handling back-end based on Internet 
of Things (IoT) and big data technologies. 

Štefanov, et al. [ ] introduced a monitoring framework called D i M M o n as well. The 
framework is designed as a distributed modular system with heterogeneous agents which 
can measure and process different metrics or direct data flow of measured data. 

If we compare Examon and D i M M o n , Examon is built on top of the Internet of Things 
technologies (i.e. M Q T T [28]), whereas D i M M o n is a true agent-based system with custom 
message passing using U D P packets and custom message protocol in between its agents 
inside the system. This means the Examon's architecture is more homogenous and easier 
to maintain than DiMMon's as seen in Figure 2.1. Also from the overhead standpoint, 

(i 



I Processing] | Processing] 

I Recevie I | Check \~ **| Check ] | Recevi 

Send I 

Processing Processing 

Processing 

Processing I Processing I 

Z X T Sensor | | Sensor | | Sensor | 

Node 

Sys tem-wide metr ics 

I Response 

Ana l y s i s of individual job 

I Processing I 

Processing Processing 

Sensor | | Sensor | | Sensor | 

Node 

Applications 

• 

I NoSQL 

Figure 2.1: A side-by-side comparison of D i M M o n (upper) and Examon (lower) archi­
tectures. The main difference between these tools is the approach to distribution of tasks. 
D i M M o n takes advantage of heterogeneous agents which together complete the needed task 
such as data collection or data-processing. On the other hand, Examon deploys homoge­
neous agents across the whole cluster which send the collected data to one central point 
(big-data database) where data are processed as needed by users. Figures taken from [ ] 
and [ ] respectively. 
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Examon is more effective using below 1 % of system resources compared to DiMMon's 3 % 
utilization. 

Beneventi, et. al also discuss storage and other processing in their paper which is, in 
these days, a crucial part of analytics. Štefanov, et. al had another paper [ ] published on 
utilizing collected data to analyze and classify job behaviour. 

System-wide monitoring systems are available and widely used in today's H P C facilities 
not just as a research work used only on a couple of facilities but also as established projects 
used across the world's H P C facilities. One of best-known tools is Ganglia [29]. 

Ganglia is a scalable distributed monitoring system for H P C systems. Ganglia agents 
retrieve data from several sensors and store it on a per-metric basis using RRDtool [38]. 
Its architecture is based on a hierarchical design which relies on multicast-based protocol 
in listen/announce manner. It uses a tree of point-to-point connections amongst cluster 
nodes in order to collect the nodes' states. Its main drawback is the lack of a simple way 
to combine information from different metrics and a not so easy to use web interface. 

Having collected different kinds of data, the next logical step is to present and visualize 
it to the users in a meaningful and comprehensible way. A survey of surveys was conducted 
of the state-of-the-art data analysis and visualization tools [30] from which we can infer the 
best-known tools for visualization. 

For performance visualization tools in large-scale data centres, we refer to [ ] which 
discusses the state of art performance visualizations and [13] which discusses large-scale 
trace data analysis and visualization techniques. Taking into account the work of Beneventi, 
et al. on Examon, they use Grafana [37], an open source and flexible framework for time-
series data visualization on the web. Even though Grafana is one of the best tools to 
visualize this kind of data, it lacks two major features in case of performance analysis: 
1) no intuitive way to combine multiple data sources together (job and sensor data) to 
create per-job views; 2) complex initial setup for views able to handle tens or hundreds of 
sensor data streams needed for example to observe trends on the whole machine, therefore 
rendering Grafana useless for system overview use-cases. 

Splunk [6] and ElasticSearch [19] are tools for visualization and analysis of various 
machine data. These tools are general in their nature and require difficult setup and initial 
time investment in order to fully utilize all their functions. Wi th this in mind, Examon 
Web will provide an easy-to-use and comprehend interface while requiring minimal setup. 

Monitoring of certain metrics that are also handled by Examon can be done using 
tools such as Nagios [1] or Zabbix [39]. These tools provide automatic alerting based on 
thresholds and monitoring of various metrics ranging from hardware to software services. 
At first, the goal of Examon Web can be seen similar to these tools but Examon Web 
will aim for different usages. Nagios or Zabbix can alert system administrators about a 
potential problem but Examon Web will aim to help with identifying the problems and 
why they happened and the ideal scenario will be to use one of these tools and Examon 
Web together. 

Showerman [ ] proposes a set of visualization approaches applied to data collected on 
an H P C system. Data collected from several sensors with a sampling time of one minute 
is stored in a database, to be later analysed and visualized. This work is orthogonal to a 
part of this thesis since it proves the benefit of observing data coming from a wide range of 
sources. On the other hand, the work of Showerman lacks a real-time monitoring capability. 
Moreover, the visualization approaches require a direct interaction with the database and 
are therefore much less accessible than Examon Web. 
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Gimenez, et al. [17] present a tool for memory performance visualization and analysis. 
The main goal is to help users to optimize their application since memory usage is often the 
major bottleneck for H P C applications. Their work is exclusively focused on memory (and 
related measurements) while Examon Web will be able to handle a wide range of different 
metrics other than memory. 

2.2 Job Monitoring 

When it comes to monitoring and mainly managing jobs in H P C facilities, a couple state-
of-the-art tools are usually taken into account. Slurm [25], PBSPro [55] and T O R Q U E -
based [10] systems such as M O A B H P C Suite [9]. The M O A B is specifically targeted 
for enterprise usage and therefore is not considered in this thesis as it is not suitable for 
educational and scientific purposes. 

Slurm and PBSPro are very much alike with the difference Slurm is rather plugin-based 
with over 100 plugins available while PBSPro is shipped with many features. Historically 
PBSPro (or its predecessors) were widely used but in recent years many H P C facilities are 
turning over to Slurm [8]. 

Using job managers to monitor jobs on user level can be done in various ways. The 
most direct approach in many cases is manual monitoring of jobs using commands available 
through a local job manager. On the other hand, the easiest and most user-friendly way is 
to automatically monitor jobs, collect data about them and present collected data to users. 

Job i * V k J X » - ^ 5 

AJ location Graphs  
Aggregate load_pne last custom 

12 00 14:00 lb 00 18 00 
• cn196 New: 16.1 Avg: 15.9 Max 16.5 
• cn197 New: 16.2 Avg: 16.2 Max 16.7 
• cn199 New: 16,2 Avg: 16.1 Max 16.6 
• cn200 New: 16.2 Avg: 16.2 Max 16.7 

Job's nodes 

Node A Load ; cpu : 

cn196 16.26 100.0 

cn197 16.25 100.0 

cn199 16.25 100.0 

cn2O0 16.23 100,0 

Aggregate 6 0 9 400.0 

Average 16.25 100.0 

Job attributes 

Figure 2.2: Anonymized job overview extracted from IT4I Extranet interface [ ]. 
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One can find tailored tools for job monitoring in H P C facilities around the world such 
as Extranet back-office interface at IT4Innovations in Ostrava, Czech Republic [ ] which 
can be seen in Figure 2.2. No specific research was found on this topic and therefore we can 
conclude that work done in this thesis regarding job monitoring can be seen as innovative. 
One indirect way of monitoring jobs can be done using Ganglia tool and custom-built 
plugins but no specific example was found and this approach is only theoretical. 

2.3 Job Classification 

Only minor amount of work has been done to classify supercomputer jobs based on their 
behaviour. Voevodin et. al. [51] used random trees and statistical info about their jobs-
median and oscillation rate. Metrics contained L I and L3 cache misses per second, system 
and C P U load and other. Using this limited set of features they were successful in job 
classification into 3 groups: normal, abnormal and suspicious. 

This thesis focuses on a similar goal with the extension of providing insights on why a 
suspicious job was labelled suspicious. The same target is discussed in further work but no 
other work was found on this topic. 

The paper's target group are system administrators only which are sent a daily report 
of suspicious jobs while this thesis will focus on users rather than system administrators in 
order to help users create more effective programs. 
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Chapter 3 

Theoretical Background 

The base of theoretical background needed to design and implement the Examon Web is 
presented in this chapter. First, a basic description of an H P C system is shown together 
with the top-down performance analysis and how an H P C system can be monitored. Sec­
tion 3.2 describes how jobs submitted to a supercomputer are managed and how the jobs 
can be monitored. In the Section 3.4 techniques required to mine useful knowledge of the 
data gathered using Examon framework are presented, and in the last Section 3.5, back-
propagation neural network and decision trees are described as these two neural network 
models are used in Examon Web. 

3.1 High Performance Computing 

Supercomputers differ in many ways compared to general-purpose computers but also share 
a lot in common. Here, we will focus on the differences. A supercomputer is a massive 
computer with a high level of computing performance designed to undertake on massively 
parallel tasks. Supercomputers are built with up to tens of millions of C P U cores with 
enough operational memory for each core. The basic unit of a supercomputer is a node. 
Each node can contain different hardware and nodes that are similar and near themselves 
create partitions. A l l nodes are interconnected in a specific manner. For interconnection 
special network architectures were created such as InfiniBand [ ] or Intel Omni-Path [5]. 

Only Intel CPUs are taken into account in this thesis since the majority of current 
supercomputers uses Intel-based CPUs. The top-down analysis description and figures are 
sourced from [22, 57]. 

3.1.1 Top-down analysis 

To make applications take advantage of C P U microarchitectures, we need to know how the 
application is utilizing available hardware resources. Modern CPUs use pipelining, hardware 
threading, out-of-order execution, instruction-level parallelism or speculative branching to 
fully utilize available resources. Even with these features, we can find constructs such as 
linked data structures with indirect addressing, that result in inefficiencies. This behaviour 
commonly causes many idle instructions in the C P U pipeline while waiting for data to be 
retrieved and no other instructions available to execute in the meantime. 

In order to fully understand the hardware pipeline of a modern C P U , it is better to 
divide the pipeline into two parts, front-end and back-end. Front-end fetches instructions 
of a program and decodes it into low-level hardware operations called micro-operations 
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(//Ops). The //Ops are then sent to the back-end's allocation unit and then executed once 
an execution unit is available. The moment when a //Op finishes is called retirement and 
during the retirement results of the //Op are committed to C P U registers or written back 
to memory. 

Front-end 

Instruction Cache (L1) 

Buffers 

Pre-decode Instruction Queue 

Decoders 

micro-Op Cache 

Allocate Rename Retire 

Scheduler 

PortO 

Execution 
Unit 

Port 1 

Execution 
Unit 

Port 5 

Execution 
Unit 

Port 2 

Execution 
Unit 

Port 3 

Execution 
Unit 

Port 4 

Execution 
Unit 

Memory control 

Unified L2 Cache <• Line Fill Buffers < > Data Cache (L1) 
Back-end 

Figure 3.1: Schematic of a C P U microarchitecture divided into front-end and back-end 
parts. 

First, we need to define an abstract concept that represents the hardware resources 
needed to process one //Op-pipeline slot. The top-down analysis assumes there are several 
pipeline slots available for each C P U core, at each clock cycle. We can use specially designed 
on-chip Performance Monitoring Unit (PMU) to analyze how well the pipeline slots are 
utilized. 

PMUs are specific pieces of logic specially dedicated to performance monitoring. The 
monitoring is done by counting specific hardware events happening on the system. Ex­
emplary events can be cache misses, branch mispredictions or //Ops retirement. When 
specific events are combined we can calculate high-level metrics such as cycles per instruc­
tion (CPI). Each microarchitecture makes available slightly different P M U s but overall the 
number of P M U s is in hundreds. There also exist predefined events and metrics useful 
for top-down analysis in order to turn this information into useful knowledge about the 
program's performance issues. 

The status of pipeline slots is sampled at the allocation point right in between the front-
end and back-end borders. A n allocation point is a place where //Ops leave front-end and 
enter the back-end pipeline. 

We can derive four possible categories of an empty pipeline slot based on the simplified 
pipeline as seen in Figure 3.1 causing a stall in the C P U pipeline. Each item in the list is 
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annotated with an expected range of hotspots in a well-tuned H P C application. The figures 
are taken from [22]. 

• retiring (30-70 %): //Op successfully retires 

• back-end bound (20-40 %): front-end has a //Op ready but can't deliver it because 
the back-end isn't ready to handle it 

• front-end bound (5-10 %): front-end's inability to fill the slot with a //Op 

• bad speculation (1-5 %): //Op doesn't retire because of incorrect branch prediction 
or due to a clearing event 

These categories (as seen in Figure 3.2) cover the top level of top-down analysis and 
are the most crucial in determining the bottlenecks in programs. Each of them is calcu­
lated using a specific set of P M U s . The Examon framework takes care of this and can be 
abstracted in this text. 
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Figure 3.2: Top-down analysis hierarchy with only major categories and levels shown. 
Adapted from [57]. 

Front-end bound pipeline slots can be separated into two categories, fetch latency and 
fetch bandwidth. The latter is linked with cache and T L B misses. The former is caused 
when there is high instructions per second (IPC) count and therefore can dominate the 
performance. 

Bad Speculation includes pipeline slots wasted because of incorrect speculations. We 
can distinguish between slots than don't retire and slots in which the pipeline was blocked 
due to recovery from bad speculations. 

Retiring slots are again split into two categories. The successfully retired //Ops are 
denoted as a base and the general goal is to achieve having all slots in this category. 
Microsequencer category labels //Ops such as floating point assists that lower performance 
but still, these //Ops retire successfully. 

Back-end bound category consists of memory and core bounds. Memory bound stalls 
are caused by the memory subsystem meaning mainly cache misses at different levels. Core 
bound stalls mean short starvation periods or uneven execution ports utilization. 
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3.2 Job Scheduling 

Scheduling a job on an H P C system is a crucial step in a job execution. If a job requires a 
larger portion of the H P C system it might even take days to allocate that many computa­
tional resources. The job is submitted to a queue with a calculated priority. The calculation 
of priority includes many parameters which are set up by system administrator depending 
on their preferences but usually the larger the job, the lower the priority. Basic features of 
current state-of-the-art schedulers include: 

• define workflows or dependencies via interfaces 

• automatic executions 

• monitor the job's execution via A P I 

• different queues and priorities to control execution order 

In this thesis, monitoring a job's execution is extensively used. Other features are rather 
user-related and heavily used by everyday H P C users. Monitoring a job is usually done in 
a rude and simple way (i.e. only checking exit status and total running time). 

The schedulers that are widely used across system include PBSPro [55] and Slurm [25]. 
In the former, to access monitoring information specially designed plugins called hooks 
can be used. The latter provides an interface to create plugins which can obtain such 
information. 

A n example of a job's lifetime events can be seen in the Appendix A . l from which 
various data can be obtained such as allocated resources, queueing time, user info or job 
parameters. 

3.3 H P C System Monitoring 

In this section, we describe how an H P C system can be monitored and what tools can 
be used. Examon framework is presented in great detail with emphasis on data storage 
and accessibility. Only technologies designed for system monitoring are presented here but 
Examon also utilizes non-standard ways of monitoring using performance counters located 
on CPUs which have been shown in Section 3.1. This section is mainly focused on the 
Examon framework which is heavily used throughout this thesis. 

3.3.1 I P M I 

IPMI (Intelligent Platform Management Interface) [ ] is a set of interface specifications 
for system management and monitoring. In terms of H P C IPMI allows querying node level 
statistics such as power consumption, utilization and temperature at different locations on 
the motherboard. IPMI is completely independent of the host's C P U , firmware or OS and 
the communication is done using out-of-band (LAN) network. The most used scenario is 
to power on a node remotely using only IPMI without the need for direct access to other 
node's hardware. 

IPMI's architecture consists of several modules of which the B M C (baseboard manage­
ment controller) is the centrepiece of all. It provides the intelligence to the whole IPMI 
architecture and is a specialized microcontroller embedded on the motherboard. Various 
sensors such as temperatures, cooling fan speeds, power or OS status report to B M C via 
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Figure 3.3: Basic IPMI architecture showing B M C ' s interfaces for communication with 
vendor's hardware. 

different bus interfaces as seen in Figure 3.3. Using this data, we can determine the state 
of the monitored node, control it, do basic diagnostic tasks and much more. 

3.3.2 Examon 

Examon is a highly scalable framework for performance and energy monitoring of H P C 
systems developed at U N I B O [51]. It collects and processes various monitoring data from 
several sources. Its architecture is separated into several layers and described in this section. 

In Figure 3.4, we can see the following layers (from bottom): 1) at cluster level, we have 
data collection agents ( P M U , IPMI and job scheduler), 2) data transport layer realized 
via M Q T T [27], 3) database layer which consists of KairosDB and Cassandra and 4) the 
application layer which connects to the database layer or transport layer (MQTT) and 
Examon Web will reside in this layer. 

Applications 

Figure 3.4: High-level architecture of Examon framework split into layers. 
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Data Collection 

Examon collects two types of data: 1) physical sensor measurements and 2) workload data 
obtained from the job manager. The agents running on nodes collect various sensor data 
scattered across the system and publish it in a uniform format <unix timestamp>; <value> 
via M Q T T to the upper layer of the stack. They are composed of two APIs, M Q T T and 
Sensor A P I . The former implements the M Q T T protocol functions and it is the same among 
all the collectors while the latter implements custom sensor functions related to the data 
sampling and is unique for each kind of collector. Considering the specific sensor A P I object, 
we can distinguish collectors that have direct access to hardware resources like P M U , IPMI, 
G P U , MIC, I2C and PMBus and collectors that sample data from other applications as 
batch schedulers (PBS and Slurm) and tools such as perf, P A P I , and P C M . 

The second type of data regards the jobs running in the system and its workload. To 
collect such data, the job scheduler is extended by a plugin that collects this data and 
publishes them via M Q T T in JSON format. 

Communication Layer ( M Q T T ) 

M Q T T (Message Queuing Telemetry Transport) protocol implements the "publish-
subscribe" messaging pattern and requires three different agents as seen in Figure 
3.5. 

The publisher has the role of sending messages on a set topic to a predefined broker. 
The subscriber subscribes to certain topics at a broker and waits for incoming messages. 
The broker has the functions of receiving data from publishers, making topics available 
and delivering data to subscribers. Basic M Q T T communication mechanism is as follows. 
When a publisher agent sends some data having a certain topic, the topic is created and 
managed at the broker and any subscriber to that topic will receive the associated data 
as soon as available to the broker. In terms of Examon, collector agents have the role of 
"publishers". 

Publisher 
publish 

Publisher 

Figure 3.5: Publisher-subscriber M Q T T model. 

Storage Layer 

Examon stores collected data mainly for visualization and analytical purposes. It uses a 
distributed and scalable time series database (KairosDB) that is built on top of a NoSQL 
database (Apache Cassandra [26]) as back-end. A n M Q T T subscriber (MQTT2Kairos) was 
implemented to provide a bridge between the M Q T T datastream and the KairosDB data 
insertion mechanism. MQTT2Kairos takes advantage of predefined M Q T T topics structure 
to automatically form the KairosDB insert statements and eventually queries as well. 
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Applications Layer 

The data gathered by Examon can serve multiple purposes, as mentioned in the application 
layer. For example, machine learning techniques can be applied to extract predictive models 
or devise online fault detection mechanisms as discussed in this thesis. Another usage is 
real-time visualization on the web as extensively described in Chapter 4. 

3.4 Data Min ing Techniques 

The basic techniques required to obtain meaningful data for further analysis are described 
in this section. Data mining [21] is a crucial step in developing a working classification 
model and understandable visualizations. The process of data mining can be seen as a 
pipeline of several individual steps shown in Figure 3.6. 
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Figure 3.6: Data mining pipeline showing several stages of data during the data mining 
process. 

We begin at the data storage where all collected raw data reside. Wi th the help of 
various querying mechanisms, the raw data is cleaned of incomplete, corrupt and irrelevant 
records. This process is generally known as data cleaning. The cleaned data is then stored in 
a temporal data warehouse such as in-memory storage structures (i.e. lists or dictionaries) 
but can also be stored permanently for further analysis. 

Next is data selection where only relevant data is selected for next steps. This step can 
be done multiple times in order to precisely select only extremely relevant data in case of 
large datasets. 

During data cleaning and selection we can do further data processing such as noise 
reduction, attribute construction (derive new attributes from existing data), aggregation, 
generalization and normalization in order to provide better data for the next step. 

What follows is the process of data mining itself where we extract insightful knowledge 
from pattern evaluation. In the context of this thesis when we talk about data mining we 
do data classification. Other types of data mining are data characterization, clustering or 
evolution analysis. 

3.5 Neural Networks 

Section 3.4 showed data mining techniques which often require the help of neural networks. 
In this section, we present best-known and widely used neural networks for classification 
(decision tree) and anomaly detection (backpropagation network). The sources used in this 
section for equations and descriptions cover [31, 18]. 
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3.5.1 Decision Tree 

A decision tree is a decision support tool that uses the properties and values of features 
that are classified. A decision tree resembles a tree-like structure as shown in Figure 3.7 
where nodes in the tree can be thought of as units asking a yes/no question and the subtree 
is selected based on the answer. The decision tree has a definitive number of layers where 
the last one is the final segmentation layer of the classified feature. 

The questions can also be conditions (e.g., comparators or thresholds) which can be 
modified during a training session of such tree. To modify the weights, one can use the 
backpropagation algorithm described below in Section 3.5.2. 

Their main advantage is they are simple to understand and generally easy to interpret 
and visualize. Moreover, the supplied data require very little preparation including but not 
limited to normalization or dummy variables. On the other hand, decision trees can be 
easily over-designed in too complex structures and such trees won't generalize well, often 
overfitted on given dataset. 

Figure 3.7: Example of a simple decision tree classifying sampled binary numbers. Each 
node sends the input to a corresponding child node on the left (0) or on the right (1). The 
leaf nodes are drawn as squares whereas the internal nodes as circles. 

3.5.2 Backpropagation Network 

Backpropagation networks are multi-layer feed-forward networks with supervised learning. 
There is no interconnection between neurons in the same layer but layers are fully connected 
to the next neighbouring layer in order to be able to do forward and backward propagation 
of values. 

Forward- propagat ion 

Each neuron in all layers but the input one disposes of a weight for each input initialized 
to a random value in the range < 0,1 >, linear base function and sigmoidal activation 
function. 
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When forward propagating an input vector, the vector is laid out onto the input neurons. 
The vector is recalculated using following formulas for the next layer until the input vector 
is propagated to the output layer which outputs the response of the whole network itself. 

The base function is shown in equation 3.1: 

n 
f(x) = ^2wiXi (3.1) 

i=0 

where x is the input vector, w are weights for each input of a given neuron and n is the 
length of the neuron input vector and bias (term used as in [18, 31]) value resulting in 
n = \x\ + 1. 

The sigmoidal activation function is presented in equation 3.2 where A is a constant set 
to A = 1 and in further equations left out because of this fact. 

9(u) = - J _ X u (3.2) 
1 + e A u 

The output of a neuron is then given by using the equations 3.1 and 3.2: 

y = g(f(x)) (3.3) 

Back-propagation 

Back-propagation is used only when the network is trained and is one of the base methods 
for training feed-forward networks. The method is based on adjusting weights depending 
on the error calculated by equation 3.4 for an output neuron p using produced output (o) 
and desired output (d) values. 

j m 

£

P = 2 E f e - » » ) 2 (3-4) 

The change of weights is calculated using equation 3.5 where VEp is the derived error 
gradient and \x the learning rate. 

Awp = -nVEp (3.5) 

To calculate one particular change of weight we use formula 3.6 where I is the given 
layer of the network, j is the j - t h neuron in layer L and i is the i-th input of the neuron j. 

A l

W j i = nl5jlXi (3.6) 

For the output layer I of the network we use formula 3.7. 

5f = ( d j - l y j ) l y j ( l - l y j ) (3.7) 

For hidden layers of the network, we use the same principle propagating the error 
backwards from the output layer as shown in equation 3.8 where A = 1 and therefore left 
out. 

A'wji = n%lXi = i i Y , { l + ^ k l + l w k j ) l

y j { l - l y3)lXi (3.8) 

k=l 

19 



Each repetition of forward and backward propagation of all inputs is called an epoch. 
Finally, we can choose when to update the weights, in batches after all input vectors were 
processed or using the stochastic method where weights are updated after processing each 
input vector. 
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Chapter 4 

Design 

The design of Examon Web is centred around the needs of H P C users and missing func­
tionality of currently available tools such as Intel vTune. First, the target audience and 
users are defined in section 4.1. Next in Section 4.2, the interface and backend of Examon 
Web are laid out with basic wireframes provided in the Appendices. In the final Section 
4.3, the job anomaly detection tool design is described. 

4.1 Target Audience &: Users 

There are two main groups in the target audience for Examon Web. H P C system admin­
istrators and active users. Both groups differ in the level of details and domains of the 
available data. Where system administrators require mainly a global overview of the whole 
system with the availability to perform drill-down analysis down to the node-level info, 
users of H P C systems are oriented by the job-relative domain in order to precisely identify 
the resources used by their jobs. 

System administrators are mainly seeking to overview the status of their monitored 
facilities. As stated in Chapter 2, system administrators can use other state-of-the-art 
tools such as Ganglia to monitor their system but these tools usually don't provide an easy 
to consume global system overview and therefore most of the facilities develop their own 
tools for this task. Examon Web can fill in this gap in the current tools while not trying 
to substitute such tools in order to encourage system administrators to use, e.g. Ganglia, 
and Examon Web together. 

Using Examon Web as a basic monitoring tool can bring indirect benefits such as seeing 
the hotspots in the architecture of their mainframe thanks to a cluster visualization. Using 
the same view administrators can also see malfunctioning or powered-off nodes which then 
can be easily physically located in the cluster room. 

HPC system users are the major target audience for Examon Web. By the combination 
of sensor and job data, users will be able to deeply analyze their jobs. They will be able to 
check the resource utilization in fine detail. Part of this analysis will be automated by the 
job anomaly detection tool which will provide quick insights on the performance of their 
jobs and the probable reason what caused the unwanted behaviour. 

Using the same tool Examon Web can provide intelligent self-organizing dashboards. 
Such dashboards can organize the charts of sensor metrics in order of their importance in 
the displayed job. The order of metrics will be determined during implementation. 
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With the job data available, users will also be able to check the status of their jobs such 
as the queueing time, resource utilization or simply whether their jobs are finished yet. 
When it comes to rather large jobs that need a significant portion of a cluster, Examon 
Web can be used by users the same way the administrators do. To check the cluster status 
and the condition the cluster is in. 

4.2 Examon Web 

In this section, we will describe the Examon Web for the aggregation and visualization 
of collected and live data. In Figure 4.1, a high-level schematic of the Examon Web and 
its connection to the monitoring framework are laid out. The front-end is a web applica­
tion available to users via a regular web browser as a single-page application (SPA) [33] 
built using the Angular framework. It consists of several views targeted to different users, 
displaying time-series charts, a visualization of a cluster and single-number metrics. 

Front-end 

HTTP REST API WebSocket 

HTTP REST API WebSocket Back-end 

Cassandra KairosDB 

Post-processing agents 

Pre-processing 

Cassandra KairosDB 

databases 

Sensor Agent Job Agent 

WebSocket agents 

*1 

Sensor data Job data 

MQTT agents 

Cassandra 
Cluster 

Examon framework 
KairosDB 

Figure 4.1: High-level schematics of Examon Web architecture. 

The back-end of Examon Web resides on a server and serves as an interconnection 
between front-end and the data sources while ensuring a consistent data format that is fed 
to the front-end. The back-end exploits Examon framework, specifically by connecting to 
its data sources available via KairosDB, Cassandra cluster and M Q T T broker. 

4.2.1 Front-end 

The front-end component is the client side of Examon Web which connects to the back-end, 
retrieves data and visualizes them to the user. It uses two different interfaces: the H T T P 
R E S T A P I [15] service and the WebSocket [14] interface. 

The R E S T A P I implements a request-response communication mechanism and it is 
used to retrieve time-series-based data from the back-end. The goal is to give a concise 
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but informative insight on resource requested and used by each job (both running and 
completed ones). 

The WebSocket interface implements a socket-like communication in order to feed live 
data straight to the application without polling (conversely to the R E S T API) . The interface 
should be implemented with the help of Socket.10 library [44]. This enables the application 
to continuously fetch new data without the need of any request to the server. 

The Examon Web front-end uses the Angular [ ] framework as its base on top of which 
several other libraries are used. The crucial ones are Dygraphs [ ] and Bootstrap [10]. The 
former produces powerful time-oriented charts utilizing the canvas H T M L element. The 
latter is a CSS framework to generate uniform user interface across the whole application 
and various browser. The front-end consists of three major parts. The job information 
dashboard visualizing job-related data, cluster dashboard visualizing cluster-level aggre­
gated data and the last part rendering a live visualization of a cluster utilizing the M Q T T 
data stream. 

Job Information Dashboard 

The main task of the job information dashboard is to inform a user about their submitted 
jobs and their state. The job ID assigned by the job scheduler is used in the Examon Web 
to look up the desired job. The user interface offers to query by manual input or, for ease 
of access, a list of currently active jobs. The last successfully finished job is also displayed. 
A n active job is a job that is currently in a queue, a finished job is a job removed from the 
queue and stored in the Cassandra cluster. 

Once the job ID is submitted a request is sent to the back-end which will then assess 
whether the job is active, finished or non-existent and responds with appropriate data. In 
the case of a job being successfully found, the application performs additional queries to 
retrieve additional data to provide more details in form of time-series based charts. 

The low-fidelity wireframe of job overview dashboard can be seen in Appendices A.2. 

Cluster Dashboard 

The cluster dashboard is very similar to the job dashboard in terms of used components 
and the form of data. The main difference between them is that the cluster dashboard is 
mainly designed for a panoramic view of the whole cluster. 

The dashboard provides insights on the supercomputer in the form of time-series chart 
as seen in low-fidelity wireframe in Appendices A.3 . Each time-series chart is accompanied 
by two single-number metrics providing the latest and average value of given metric. 

Cluster Visualization 

The cluster visualization dashboard can be split into two types. The first type displays 
the cluster via a 3D render model with which a user can interact. Users can go through 
the cluster and select any node to the see node's details such as temperatures or loads. 
This type of visualization can be displayed if the facility can provide a 3D model of their 
supercomputer. 

Otherwise, the second type of cluster visualization can be made using only generated 
2D model displaying nodes as simple boxes with their name and current metric value. 
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In both cases, the nodes are colour-coded in terms of heatmaps to easily spot hotspots 
in the cluster. Also, both types utilize the M Q T T data stream delivered via WebSocket 
interface to display desired metrics. 

4.2.2 Back-end 

The back-end resides at the server which serves requests from the Examon Web's front-end. 
It implements the same interfaces as front-end ( H T T P R E S T A P I and the WebSocket) and 
on the other side it connects to various database sources and an M Q T T broker. 

R E S T A P I 

R E S T A P I is used to retrieve the offline data stored in KairosDB and Cassandra cluster 
while maintaining consistent A P I with JSON-formatted responses. The JSON data format 
was chosen because it is native to the front-end and easy to convert in the back-end. 
After successfully receiving a request (from the front-end) the Flask [ ] micro-framework 
executes a set of pre-processing routines to parse the request and to delegate the task to the 
correct internal function. These functions utilize Cassandra or KairosDB database driver 
in order to connect to the mentioned databases and retrieve data. 

In the case of the Cassandra driver, a prepared Cassandra Query Language (CQL) 
query is used to fetch a specific set of data. This data is then post-processed in order to 
provide the front-end with consistent JSON-formatted data. In the case of KairosDB, a 
set of built-in functions enable to retrieve a subset of available data, which is aggregated 
by KairosDB itself. This subset contains only the selected metric in given time range with 
specified tags. These built-in functions (i.e. sum or avg) move post-processing phase, with 
respect to interaction with Cassandra, to the KairosDB itself. 

WebSocket 

The interface is used to retrieve live data from the M Q T T stream. A subscription-based 
model was designed for immediate data retrieval. The model is applied to the two Web­
Socket agents (sensor and job agents). This interface allows handling the continuous real­
time data stream generated by the cluster. 

Once the front-end instance is connected to the WebSocket interface, back-end pre-
processes the request and use one of the two available WebSocket agents. The two agents 
are intended for two different data sources coming from M Q T T broker (job and sensor-
related data) while having similar purposes. The need for two separate agents was the form 
of data received from the M Q T T broker. Job-related data is received in JSON compared 
to sensor data which is received in <timestamp>; <value> format. 

A front-end instance subscribes to a sensor metric or job ID. This creates a Socket.10 
room inside the WebSocket agent with a given keyword (sensor metric or job ID) if such 
room does not exist, otherwise only increases the number of participants in the already 
present room. Front-end instance can subscribe to one keyword at a time for each Web­
Socket agent. Every time a value with a keyword, that is also an existing room, is received, 
the updated value is sent to all subscribed users in such room. This way the agents can 
manage which data should be sent via WebSocket to front-end instances or stored without 
any WebSocket interaction. 
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The M Q T T agent for sensor data gathers data from M Q T T topics used by sensors in 
the cluster and computes a weighted weighted moving average ( W M A ) of data using the 
equation 4.1: 

Vnew — ^current X Q! + f p r e m o u s X (1 Oi) (44) 

where vprevious value is set to the first available value during initialization and afterwards to 
the last vnew and a = 0.75 as a default value was chosen based on a short-term evaluation. 
The agent exposes data using a Python dictionary where the key values are gathered metrics. 

Job data agent subscribes to all M Q T T topics related to job data published by PBS 
hooks. Each job must fulfil two conditions in order to be marked as a finished job. The 
first condition is the job must be finished before its timeout time (computed from the start 
timestamp and its required time). The second condition is a specific set of M Q T T messages 
received in order: 1) runjob event, 2) jobs_exec_start event(s) and 3) jobs_exec_end 
event(s). In case of 2) and 3) the agent expects the same number of events as is the number 
of allocated cores. Once the front-end instance subscribes to a job, all messages with given 
job ID trigger a callback function which sends the updated record to all subscribed instances 
which then update their view. 

4.3 Job Anomaly Detection 

When a user runs a job on an H P C system, usually the only way to monitor the behaviour 
and state of their program is to manually inspect the output of it and eventually the 
execution time and exit code. Wi th large and long jobs this way of monitoring is not 
a viable solution. Using neural networks it is possible to detect anomalies in programs' 
runtime observing side effects of such behaviour such as low or extremely high IPS, high 
cache misses or C P U power-saving states. The designed solution for job anomaly detection 
is presented in this section together with the data, its filtering and processing needed for 
anomaly detection. 

4.3.1 Data 

The necessary data are gathered via Examon framework and stored in KairosDB database 
and the Cassandra cluster. We can split the data into two categories, job and metric data. 

The job data come from the job scheduler which reports various info about the job, 
mainly the allocated nodes, cores and other computational resources. We use this data for 
determining the job's execution time, its resource allocations and location of the job in a 
cluster (node names and core numbers). The job data is sent via M Q T T and stored directly 
in a Cassandra cluster. 

Using the job data, metric data can be queried. It is measured and gathered indepen­
dently of the job data and monitored on per-core, per-CPU or per-node basis categorized 
into metrics. Each measured value is then sent via M Q T T to KairosDB and stored ac­
cording to its cluster location and metric. There are over 30 metrics monitored including 
but not limited to core load, C6 and C3 C P U state shares, system, C P U , 10 and memory 
utilization or various temperatures gathered from various places inside a node or C P U . 

For detecting job anomalies, twelve major metrics were chosen for the best reflection of 
the job performance. A short summary of the chosen metrics is shown in table 4.1. 
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Table 4.1: Overview of measured metrics with crucial information about the resolution and 
their units. 

Metric name Metric tag unit sampling rate base 

core's load load_core % 2s per-core 

C6 states C6res % 2s per-core 

C3 states C3res % 2s per-core 

instructions per second ips IPS 2s per-core 

system utilization Sys_Utilization % 20s per-node 

C P U utilization CPU_Ut i l i za t ion % 20s per-node 

10 utilization IO_Utilization % 20s per-node 

memory utilization Memory_Utilization % 20s per-node 

L I and L2 bounds L l L 2 _ B o u n d % 2s per-core 

L3 bounds L3_Bound % 2s per-core 

front-end bounds front_end_bound % 2s per-core 

back-end bounds back end_bound % 2s per-core 

KairosDB provides us with a R E S T A P I for querying metric data in various ways. The 
queries are formed using JSON objects and results are also returned as JSON objects. The 
KairosDB limits all stored data to 21-day window. 

For complete data acquisition, we combined the job data and metric data together and 
queried only jobs which fit several conditions described in 4.3.2. 

4.3.2 Data Acquisition 

First, job data need to be queried and filtered according to several rules: 

• job runtime must be between 10 and 60 minutes 

• job must occupy the whole node (multiplies of 16 cores) 

• job must be run within the 21-day period 

A l l data points are aggregated by 30 seconds on cluster level using averaging aggregator 
available in KairosDB. Cluster level can be achieved by averaging every used core and node 
in the job to one time-series per metric. 

The rule of minimum 10 minutes is because shorter jobs are usually a development, not 
the production version of a program and in current H P C facilities, such program is very 
cheap to run and therefore no deep performance analysis is needed. The same goes for jobs 
smaller than one node (16 cores in case of Galileo supercomputer). 

Jobs longer than one hour are not suited for training the network because of too large 
input vectors and the loss of information in further data processing. 
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4.3.3 Data Labelling 

In order to correctly label all chosen jobs and their metrics, a simple graphical user interface 
must be created. The GUI is based on Examon Web. Visualization is done in time series 
fashion using a charting library. This helps to better understand the in time correlations 
between all metrics combined. 

4.3.4 Data Processing 

After labelling the job, all metric data with labels are generated and can be worked on 
further. A l l metric vectors must be interpolated to a fixed set of values in order to be 
applied to the input neurons of the metric networks. 

A l l values should also be normalized to values between < 0.0,1.0 > for more precise 
training. If the values are kept as they were recorded, there is a high chance of incorrect 
labelling of such metric. 

4.3.5 Metric Networks 

To achieve best results/speed ratio a backpropagation neural network is created for each 
metric. This gives the total of twelve networks completely independent of each other mean­
ing the training process can be fully parallelized. 

The number of input neurons must be determined depending on the dataset and the 
results during the implementation phase. Wi th small input vectors the networks might 
over-generalize and with too wide input layer the network will have too many connections 
which can result in poor performance and generally the networks can easily overfit. 

x 

x 

X 

X 

X 

Figure 4.2: Visualization of metric's backpropagation network. On the left side there is a 
set of input neurons and on the right one output neuron. 

A l l metric networks should be configured the same way to achieve uniform results and 
for easier detection of overfitting or over-generalization. The suggested configuration should 
be 60 - 180 input neurons, with 2 or 3 hidden layers depending on the input vector size. 
The output layer will be only one neuron since the problem distinguishes only two states 
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between which we can determine the level of certainty. In Figure 4.2 the proposed metric 
network is shown to better understand the architecture. 

4.3.6 Job Network 

Once all metric networks label their input data, the output will be the job network's input 
which results to a vector of 12 values each signifying a given metric. 

The job classification network is created with 12 input neurons, one hidden layer of 4 
neurons and one output neuron as this is an expected structure which should work well. 

The job network should be trained on a labelled dataset as will be the metric networks 
but when evaluating the job classification network we can choose between the real outputs 
of the metric networks or the expected outputs from the classified dataset. Both evaluations 
should be very similar. 
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Chapter 5 

Implementation 

This chapter describes the implementation of the proposed Examon Web system with sev­
eral extensions needed during the implementation. In the first section 5.1 the graphical 
user interface is presented with three versions of it each used for a different purpose. In the 
second section 5.2 the back-end of Examon Web is presented. Next section 5.3 describes the 
process and results of creating an annotated dataset suitable for several back-propagation 
neural networks which are presented in section 5.4. The job anomaly classification network 
utilizing decision trees is proposed in section 5.5 and all is summed up in the section 5.6. 

The high-level schematic overview of implemented modules and other parts of Examon 
Web can be seen in Figure 5.1 to show how it is organized and what modules share common 
parts. Each displayed part is described in the following text. 

Back-end 

Cassandra 
Connector 

Job Module 
Cassandra 
Connector 
Cassandra 
Connector 

Classifier Module Classifier Module 

Kairos Connector 

Classifier Module 

Kairos Connector Kairos Connector 

Kairos Module 

MQTT Manager MQTT Module 
(WebSocket) 

muapi built-in modules 

Database (SQLite) 
Connector 

User Module 
Database (SQLite) 

Connector 
Database (SQLite) 

Connector 

Authorization module Authorization module 
Session Manager 

Authorization module 

Front-end (AppModule) 

Session & Authorization 
Management 

Setup Component 

Users Module 

Job Module 

Lookup 
Component 

Job Info 
Component 

Job Chart 
Component 

System Module 

Cluster Module 

Figure 5.1: High-level schematic overview of Examon Web's modules and other major parts 
on both back-end and front-end sides. 
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5.1 Graphical User Interface 

In this section, we present the implemented GUI architecture and major building blocks 
(modules in Angular terminology) used during the development. Afterwards, three different 
versions of Examon Web front-end are described as well their purpose. 

The graphical user interface as designed in section 4.2 is built using TypeScript language 
and the Angular framework1 and its scaffolding tool Angular C L I which provides a quick 
and easy way to bootstrap new components, services and modules. 

Angular framework enforces a specific architecture of the application. The main build­
ing blocks are modules, components, services, templates and directives which are briefly 
explained. 

Modules declare a compilation context of a given set of components which are dedicated 
to a specific workflow, set of capabilities or an application domain. Modules can associate 
their components with services and by this form a functional unit. Each Angular application 
has at least a root module which provides a bootstrap mechanism for the application. Each 
module also defines the routing between its components. Examon Web utilizes modules 
heavily and each clearly separable functionality is defined as a module. 

Components are defined using a class that contains the data and logic for their tem­
plate. Components handle the data manipulation and store component-specific data entered 
by a user. 

Templates are a combination of H T M L and Angular markup that modifies the contents 
of the H T M L document before and after it is displayed. 

Services handle data and logic which is not directly linked to a specific view and are 
shared across multiple components or even modules. Services are injected into components 
using dependency injection mechanism. 

The core of Examon Web resides in the AppModule module which, using various compo­
nents, handles users sessions, Examon Web module's discovery and other globally needed 
functionality such as navigation bar. Handling of user access is done via LoginComponent 
and LogoutComponent with the help of AuthService service which manages sessions in the 
local storage. 

Apilnterceptor is an extension to regular HttpClient which adds the Authorization 
header with a session token (if available) to each H T T P request sent to back-end and 
handles H T T P response codes appropriately. 

A l l modules except the Cluster module utilize H T T P R E S T A P I made available by the 
back-end and this A P I is described in detail in section 5.2.1 

5.1.1 Homepage 

The homepage is the initial page which user sees upon successfully logging in. The list of 
available modules obtained from the root router is displayed to which a user can navigate 
next. The homepage can be seen in Figure 5.2. 

5.1.2 User Management 

User management is handled by the UsersModule which can add, edit and remove users. 
Users dispose of certain role specified by a role number where 0 indicates an administrator 
account with no restrictions apart from deleting themselves. The second role, defined as a 

1 Specifically Angular version 4.3. 
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Jobs @ System 

® Jobs 
Job- re la ted info 

Ö System 
Sys tem 

^Cluster 
Cluster 

0 Users 
Manage users , update prof i les and 

passwords . 

Figure 5.2: Homepage with all available modules. 

user account can access all features but with limited privileges. Guest users are capable of 
view-only operations while not being able to access sensitive content. 

These roles can be redefined and extended up to 255 different roles thanks to the design 
of both front-end and back-end. 

The back-end and front-end can be set to a special state called Setup Mode where the 
SetupComponent is used when the back-end responds with HTTP 442 status code. This 
status code is not defined in the H T T P standard and is application specific. The H T T P 
code states that the A P I has not been set up yet and needs an initial administrator account. 
The front-end handles this state by redirecting the user to the setup page where they can 
set the username and password for the initial administrator account. 

The initial listing of users can be seen in Figure 5.3. The overview provides the username, 
email, name, surname and the role of a user and two actions buttons to view/edit the 
specified user and to delete the user. The delete button is not available for the main 
administrator account or the currently active user and only administrators can delete an 
account. 

Users management 

Home Jobs Q Sys tem s Cluster admin '•* Logout 

U s e r n a m e 

admin 

Role 

Admin is t rator 

user@user.user User 

Figure 5.3: The user listing showing all three types of users. 

5.1.3 Job Module 

The next major module is focused on the jobs submitted to the supercomputer by users. 
A l l jobs are collected by the Examon framework and stored in the Cassandra database. 

On the initial job page, the user with lower than administrator privileges only sees 
jobs submitted with their username (to protect the privacy of other users since the job 
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managers collect detailed information up to environment variables which can be used to 
hold confidential data such as credentials to various services). 

Job Lookup 
Enter the job ID ^ 

Latest jobs 

Duration (s) 

114,330 

114,324 

114,308 

114,375 

113,984 

114,080 

147 

Start time 

21:59:14 02/05/18 

21:58:30 02/05/18 

21:57:23 02/05/1S 

21:55:42 02/05/18 

21:56:37 02/05/18 

21:53:17 02/05/18 

23:23:17 03/05/13 

18:10:05 03/05/18 

End time 

05:44:44 04/05/18 

05:43:54 04/05/18 

05:42:31 04/05/18 

05:41:57 04/05/18 

05:36:21 04/05/18 

05:34:37 04/05/18 

23:25:44 03/05/18 

19:50:18 03/05/18 

Figure 5.4: Latest job listing showing all recently submitted and finished jobs on the cluster 
with the option to click through each one of them or look up a job by its ID. 

The listing as seen in Figure 5.4 displays the job ID, name, account, duration in seconds, 
start and end time of the job. These are only the basic data to help determine the desired 
job. By clicking on a row of a specified job the user is directed to the job detail dashboard. 

The user can also look up a job by its ID which will redirect them to the job detail 
dashboard. 

The job detail dashboard offers 3 views. The general overview of the job displaying 
various info about the job, a dashboard displaying performance-oriented metrics in time-
series charts and a dashboard focused on energy consumption displaying time-series charts 
as well. 

The general overview informs the user about crucial information of the job such as 
the number of required nodes, cores, memory, GPUs together with the job ID and name, 
account, user and several others as seen in Figure 5.5. 

The dashboard also provides the user with information about the queue, start and end 
times of the job, often useful to see how long the job took to execute. The state of the job 
and aggregated metrics are displayed as well telling the user the totals of C P U and G P U 
power, average temperature and utilization of the hardware used during the runtime of the 
job. The last piece of information on this dashboard is a chart showing the average core 
load during the execution. 

The performance dashboard can be seen in Figure 5.6. It collects and displays several 
pre-selected metrics crucial to determine the overall performance of the job and detect 
possible problems in forms of time-series charts. The displayed metrics are: 

• node utilization 

• instructions per seconds 

• C P U frequency 

• system, memory, and IO utilization 
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# Home & Jobs & System Cluster admin [•* Logout 

Figure 5.5: The general overview with information about a specific job. 

Figure 5.6: Performance dashboard presenting the user performance related metrics in time 
series charts. 
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• front and back-end bound instructions shares 

• C P U power saving states (C3 and C6) 

The energy dashboard is very similar to the performance one only displaying different met­
rics: 

• power consumption 

• C P U temperature 

• C P U , D R A M and other components' power 

5.1.4 System Module 

The system module is made of only the system dashboard which displays the cluster's load, 
temperature and power consumption during the last 30 minutes. Together with the time 
series charts, there are also single number metrics showing the average and latest values of 
each metric as seen in Figure 5.7. 

Figure 5.7: The system dashboard offers the overview of the whole cluster in easy to 
consume charts. 

5.1.5 Cluster Module 

The cluster module offers a single view on the monitored cluster. Depending on the setup, 
the cluster view can be a rendered interactive 3D model as shown in Figure 5.8 made using 
Blend4Web library and a Blender model which can be interacted with. The other option 
is an H T M L generated 2D view of the cluster (seen in Figure 5.9). Both options use a 
colour-coded scale to easily determine the hotspots and possible problems in the cluster 
only by quickly taking a look at the model. The colour range starts at deep blue indicating 
the minimum of received values ending at red signifying the maximum value recorded. 

The user can choose from different metrics to be displayed including but not limited to: 

• ambient temperature 

• C P U load, power, temperature 
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EXA:MON Home Public Job ID Search 

Figure 5.8: The interactive 3D model of the Galileo supercomputer fed by the live metrics 
data. 

Figure 5.9: The 2D H T M L generated model of D . A . V . I . D . E . supercomputer supplied with 
data via WebSockets. 
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• system, memory or 10 utilization 

The data to the model is delivered via the WebSocket interface with a simple 
subscription-based model which is elaborated in section 5.2.2. The front-end uses the 
Socket .10 library to implement WebSocket communication which also enables us to utilize 
the room functionality as described later. 

5.1.6 Front-end Adaptations 

During the development, several alternative versions of the Examon Web's front-end were 
produced. The first fully functional front-end was specifically designed for the Galileo su­
percomputer2 located in C I N E C A , Bologna, Italy. This version included the interactive 
3D model of the cluster itself and was the cornerstone for further development both front-
end and back-end. It lacked the subscription mechanism for receiving live data from the 
M Q T T stream and because of that performance issues occurred during the deployment 
process where the back-end was not able to handle the incoming M Q T T data. This ver­
sion utilized WebSockets for live job monitoring where the user could browse through jobs 
currently running on the cluster and monitor them in real time. 

The second version was tailored for the newly installed D . A . V . I . D . E . supercomputer3 in 
the same facility. This supercomputer is built using the P 0 W E R 8 processors and therefore 
the formerly monitored metrics had to be adjusted due to the different C P U architecture. 
Moreover, the 3D model was replaced with an H T M L generated overview since there was 
no 3D model available for the cluster. D . A . V . I . D . E . also replaced the PBSPro job manager 
with S L U R M which does not publish job information before or during the submission of 
a job but only after the job has been finished. This lead to the removal of the live job 
monitoring on the Examon Web front-end. 

The third and last version dropped almost all functionality in favour to maximize the 
effectivity of the front-end. The single purpose was to annotate a dataset made of various 
metrics collected during the operation of the Galileo supercomputer. The front-end listed 
only jobs available in the dataset and reduced the job dashboard to a single view with the 
metrics selected for job behaviour analysis. The only additional part was the annotation 
component which was used to mark a metric or the whole job as suspicious and after­
wards this annotation was stored in a database. This version was crucial for creating a 
representative dataset designed for machine learning described in next sections. 

5.2 Back-end 

The back-end is created in the Python language with the help of several libraries. The 
major framework used in the back-end is Flask [16]. It is a micro-framework used for 
building various web applications. In relation to this thesis, Flask is used as a web server 
which makes available the H T T P R E S T A P I together with the WebSocket interface which 
is handled by a Flask-SocketIO [20] extension. 

Another Python package used for developing back-end is an author-made package called 
muapi [50]. The name stands for "modular User-oriented R E S T API" . This library provides 
a Flask-based application with user and session management, simple MongoDB or SQLite 
database connector, automatic R E S T A P I module discovery and a configurator interface. 

2

http: //www.hpc. c ineca.it/hardware/galileo  
3

http: //www.hpc. cineca.it/content/davide 
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The following endpoints are made available by the muapi package: 

• / [GET] - list all routes and H T T P methods available 

• /authorization [GET, POST, DELETE] 

— GET - check the validity of a user session located in the Authorization H T T P 
header field 

— POST - obtain a session by providing correct user credentials 

— DELETE - invalidate a session 

• /users [GET, POST] 

— GET - get a list of all users (requires at least the user role) 

— POST - add a new user (requires the administrator role) 

• /users/<user ID> [GET, POST, DELETE] - all methods require at least user role 

— GET - get a user specified by their ID 
— POST - update a specified user 
— DELETE - delete a specified user (requires the user role or administrator role in 

case of deleting a user other than themselves) 

Modules are a crucial part of the muapi functionality. One can create a module by 
instantiating the Module class available in the package and placing it in a directory specified 
by a configuration file loaded by the application. Afterwards, the module is registered, 
imported and made available by the server. Further information about modules, their 
creation and usage can be found in muapi's wiki documentation 4. 

In the following text, the endpoints specific to this thesis are described. First, the R E S T 
endpoints are laid out and afterwards the WebSocket communication together with how 
the M Q T T data stream is handled via the subscription-based model. 

5.2.1 R E S T A P I 

The A P I is a set of muapi modules separated by functionality very similar to the front-
end design. Each module has a specific set of use-cases and utilizes various approaches to 
the given problem. The first module described is the job module handling job lookup and 
retrieval, afterwards the Kairos module fetching data from the KairosDB data source, then 
the MQTT module together with the WebSockets subscription-based model is presented 
and finally the classifier module is briefly described as the core of classifier is in the training 
phase described in Section 5.4. 

Job Module 

Job module handles all requests regarding the job information retrieval. The following 
endpoints are available via the API : 

• /jobs/latest [GET] - fetch the latest jobs from database 
4

https: //github.com/petrstehlik/muapi/wiki/Creating-a-Module 
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• /jobs/<job_id> [GET] - fetch job information specified by its ID 

A l l endpoints utilize the Cassandra database connector where all job-related information 
is stored. The connector is configured using the muapi configuration interface. The data 
source contains two tables made of the same data but with different sets of keys. The first 
table is indexed only by the job ID used in the /jobs/<job_id> endpoint when querying 
specific job only with the knowledge of its ID. 

The second table uses a compound key made of the user ID, start time and job ID. 
This tuple needs to be partly specified when querying this table with the ALLOW FILTERING 
property. The / jobs/latest endpoint differentiates between different users. In case of the 
administrator role, the database is queried without the user ID specified. Otherwise, the 
user ID is obtained from the P A M interface [35] and only jobs with the specified user ID are 
returned. This ensures no information leakage is probable because the user ID is obtained 
via an independent A P I . 

The latest 100 jobs are always fetched unless there are fewer jobs present in the database. 
The jobs are then ordered by the start time and returned as a response. 

The need for a unified model representing a job arose during development because of 
different fields present in case of the PBSPro and S L U R M job managers. These differences 
are unified in the Job model which returns all information in the unified format. 

Kairos Module 

The metrics data are obtained via the Kairos module which utilizes the forked 
pyKairosDB [ ] package extending the original pyKairosDB [ ] package with H T T P Basic 
auth and other features. This package encapsulates requests to the KairosDB R E S T A P I 
handling the timestamp manipulation and raw H T T P requests. Moreover, an aggregation 
Python module was developed to update the KairosDB query with aggregation parameters. 
These parameters are used during querying various metrics with the different sampling 
rate and unifies the rate throughout requests. 

The module offers the following endpoints, all of which with the only H T T P G E T 
method available: 

• /kairos/health - get health status of KairosDB cluster 

• /kairos/status - get status of KairosDB cluster which returns the deadlock state 
and datastore availability 

• /kairos/metrics - list all metric names in the database 

• /kairos/tags - list all tag names in the database 

• /kairos/tagvalues - list all tag values in the database 

• /kairos/core - fetch metric data with core level aggregation (lowest level meaning 
no vertical aggregation is done) 

• /kairos/cpu - fetch metric data on cpu level (aggregate cores by C P U sockets) 

• /kairos/node - fetch metric data on node level (aggregate metric by node tag) 

• /kairos/cluster - fetch metric data with cluster level aggregation by cluster tag 
(full vertical aggregation) 
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The endpoints fetching metric data share common G E T parameters required for suc­
cessfully querying the database. The parameters from and to specify the querying time 
window in U N I X milliseconds timestamps. metric parameter sets the metric name for 
which to query, this parameter can be set multiple times in the request which will result in 
multiple queries made to the database each with a different metric name specified. Using 
the node or core parameter the query will be limited to a given set of nodes or cores. The 
cluster parameter is set in the back-end configuration since the Examon Web is always 
deployed for a specific cluster. 

The optional parameter aggregate can be set in order to reduce the size of returned 
data and to omit probable gaps due to missing data in the database. The sampling rate is 
set in seconds with aligned start time and values in the time frames are averaged. 

After successfully querying the data from KairosDB R E S T A P I , the data can be re­
turned in raw format by setting the raw parameter in the request. Otherwise, the obtained 
data is processed in order to be easily parsed by the front-end's charting library and ren­
dered. The post-processing is done on the back-end because of large datasets which can 
extremely slow down the front-end rendering. 

A n example query with all available features can look like this: 

/kairos/node? 

node=davide10&node=davide11& 

from=1525363805000&to=1525369818000& 

metric=PCIE\_Procl\_Power&metric=PCIE\_ProcO\_Pwr& 

aggregate=10 

The metric data do not include confidential data and therefore no authentication is 
required to make requests for this module. 

M Q T T Module 

M Q T T module makes available two R E S T endpoints which utilize the MQTTManager de­
scribed in section 5.2.2 together with the subscription mechanism: 

• /metric/<metric> [GET] - get metric data 

• /metric/nodes [GET] - get list of nodes of collected data 

Both endpoints were used mainly during the development and currently are not used in 
any part of the front-end. 

A l l other endpoints in this module are WebSocket ones, specifically: 

• subscribe-metric - subscribe to a metric 

• unsubscribe-metric - unsubscribe from a metric 

Both endpoints use the /render namespace to distinguish from other WebSocket end-
points in the back-end. 

Classifier Module 

The pinnacle of this thesis is the classifier module used for classifying the jobs based on their 
effectivity of the execution. Using a predefined set of metrics and a trained backpropagation 
neural networks determine the likeliness of suspicious behaviour of the job's execution. 
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The module makes available two endpoints, one of which is used for annotating the 
dataset and the other for obtaining the result. 

• /classif ier/<job_id> [GET] - get the likeliness of suspicious behavior 

• /classif ier/<job_id> [POST] - set annotations for metrics and whole job 

The GET method utilizes the KairosDB database where cluster-level metric data is 
fetched and evaluated without aggregation. Each metric is split into windows contain­
ing 80 values due to the design of the networks (see section 5.4). Afterwards, the calculated 
annotations are gathered and the average, minimum and maximum values of the whole 
dataset for the metric. These calculated metric values are then passed to the final network 
which annotates the whole job. The results are sent back to the front-end to be interpreted 
by the user. 

The POST method expects a JSON object with metric names and the jobber with values 
0 for non-suspicious behavior or 1 for suspicious behavior. These values are then stored in 
an SQLite database with the job ID as the primary key. This data was used for dataset 
creation. The process of annotation is described in section 5.3. 

5.2.2 M Q T T and WebSocket Communication 

The data gathered by Examon framework is distributed via M Q T T protocol to the broker 
where it is processed and stored in a database cluster. The M Q T T broker is publicly 
accessible, and therefore, Examon Web can utilize this data in order to display metric data 
with a minimum delay. 

A l l published M Q T T topics use the key value scheme for topic names meaning a key is 
followed by its value. This way a precise structure of the metric can be reconstructed upon 
receiving an M Q T T message. 

The data can be split into two categories: 1) job data which comes from the job manager 
and 2) metric data comes from various publishers deployed on each node of a supercomputer. 

Job data can be sent within one or three M Q T T topics depending on the job manager. 
PBSPro M Q T T publisher uses three topics to signal the state of a job: 

• jobs_runjob - when a job is submitted to the job manager's queue 

• jobs_exc_begin - execution of the given job starts 

• jobs_exc_end - a job finishes and is cleared from the manager 

Each M Q T T message payload includes the job ID and several other information about 
the job such as requested resources. 

The S L U R M job manager publishes only a single M Q T T message after the job is finished 
and cleared off the queue with the topic ending with jobs_info value. The payload is a 
sum of all information similar to the set published by the PBSPro manager. Both job 
managers publish the messages in a topic in the following format: 

org/<organization>/cluster/<cluster name>/<job's topic> 

For the job data, a JobManager class was developed used to gather job data from the 
M Q T T broker mainly because of multiple messages coming from PBSPro manager. This 
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data is kept in the internal structure and is handled once all the required messages are 
received. The behaviour of JobManager can be modified using callback methods built in 
the class. 

Metric data is published with key-value topics as well. The format is more complex 
then job-related data in order to maintain minimal payload size of the messages because 
of large volumes of these messages published by each publisher. The M Q T T topic is in 
following format5: 

org/<organization name>/ 

cluster/<cluster name>/ 

node/<node name>/ 

plugin/<plugin name>/ 

chnl/data/<item>/<item mimber>/<metric name> 

During the deployment of the Examon framework on D . A . V . I . D . E . supercomputer the 
topic was extended with several other keys: 

org/<organization name>/ 

cluster/<cluster name>/ 

node/<node name>/ 

plugin/<plugin name>/ 

chnl/data/<item>/<item mimber>/ 

cmp/<compartment>/ 

id/<item id>/ 

unt/<unit>/<metric> 

The message payload is always in format value; UNIX timestamp. 
Metric data is used for the cluster visualization feeding the 3D or 2D model with live 

data. Further development might include utilizing this data for live data in job-related 
charts. 

The metric data manager in the first deployment was subscribed to all metric-related 
topics but the M Q T T data stream was extremely large and unable to be handled by a single 
server with low hardware resources (2 Intel Xeon E3 cores and 4 G B R A M ) and the M Q T T 
message handling overloaded the server all the time. Therefore, the further development 
was needed and the subscription-based mechanism was devised, see Figure 5.10 for the 
schema of this mechanism. 

Once the user visits the cluster dashboard of Examon Web, a subscription message is 
sent via the front-end's WebSocket connection to the back-end. The back-end keeps a list 
of subscribed metrics and the number of users subscribed. 

If the announced metric cannot be found in the subscribed ones but is present in available 
metrics a new M Q T T topic subscription is made using a predefined topic to the metric and 
new Socket.10 room is created with the same name as the metric. Otherwise, the number 
of subscribers is increased and the WebSocket connection joins the metric room. 

Back-end also runs the MQTTManager similar to the JobManager presented earlier with 
the additional methods supporting subscribing and unsubscribing to M Q T T topics solving 
the performance issues of the previous version. 

Once the back-end is subscribed to the selected M Q T T broker's topic, initial data is 
sent to the front-end. It is a bulk of collected metric data gathered during the initialization 

5 Line breaks are inserted for better readability. 
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Figure 5.10: Flow model of WebSocket-MQTT subscription mechanism. 
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so front-end can render at least partial data for the user right after subscription to the 
topic. When the manager receives data, the topic and pay load are parsed and the received 
value is averaged using a weighted moving average as presented in section 4.2.2. During 
the reception of the metric data, the minimum and maximum values are stored as well, and 
used by the front-end to calculate the colour range for the model. 

The user can change the displayed metric or leave the page. On these actions the unsub­
scribe message is sent via WebSocket where back-end decreases the number of participants 
in a given metric room and if the number has reached zero the whole room is deleted and the 
MQTTManager unsubscribes from the M Q T T topic at the broker. The averaged metric data 
is kept in memory for future subscribers in order to send the initial data to the front-end. 

5.3 Dataset Creation 

The backpropagation networks require an annotated dataset for their training. Currently, 
no suitable dataset was found to fit the needs of this specific case of analyzing time series 
data based on the fluctuation and absolute levels. 

Two datasets similar in purpose were produced. For both datasets, the conditions 
the jobs must fulfil are that they occupied the whole node (multiples of 16 cores) and the 
execution must take at least 10 minutes. The maximum of the execution time was extended 
from 60 minutes to 24 hours as it is limited by the PBSPro job manager to 24 hours. This 
time extension allowed us to collect more data. 

The distribution of job runtimes can be seen in Figure 5.11 for the total of 22 791 jobs 
submitted to the job manager during the time period from 2/11/2017 to 20/11/2017. The 
histogram clearly shows that the majority of jobs is shorter than 10 minutes most of which 
is shorter than 60 seconds. These jobs are relatively cheap to run a debug and are not 
representative enough for the dataset. For both datasets, the jobs were run on the Galileo 
supercomputer where the Examon framework monitored most of the cluster. 

Both datasets were labelled manually by examining each time series metric individually 
and as a set as well. Next follows a set of examples representing the spotted suspicious 
behaviour and an example of a good job run. 

In essence, if the job was balanced and ran well the load_core metric was set close to 
100 % during the whole run and the C6 metric close to 0 %. A n example of this behaviour 
can be seen in Figure A.6. 

The back_end_bound metric could vary during the runtime but if the metric was unbal­
anced it meant a non-uniform cache access which was labelled as suspicious. Other metrics 
were dependent on each other and it was easily spotted if the job was suspicious or not. 

In many cases, the load_core metric was set around 50 % which meant half of the used 
cores were fully utilized while the other half was not used at all. This was also marked as 
suspicious. A n example of such a job can be seen in Figure A.7. 

Other suspicious behaviour was when a job had no load_core at all and the C P U was 
in C6 state during the whole runtime as seen in Figure A.4. 

Less often, jobs with sudden drops in utilization were spotted. These jobs are suspicious 
as well because of a possible indication of a problem in regards to unpredictable data loading 
or other similar issues. This behaviour can be seen in Figure A.5. 

Other examples of suspicious behaviour include a long startup period with 0 % 
load_core at the beginning or the other way a premature end or long result storing period 
with 0 % load_core at the end. 
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Figure 5.11: Histogram chart of job runtimes. Jobs with runtime less than 60 seconds are 
not plotted with the volume of 12 120 jobs. 

First Dataset 

The first, initial, dataset was made of 32 jobs with the additional condition of runtime 
between 10 and 60 minutes. The jobs were collected between dates 31/10/2017 and 
20/11/2017. This dataset was representative enough for proof of work stage of developing 
the neural networks with fast training sessions and fast manual labelling. 

A rough dataset consisted of 442 jobs but during the data acquisition stage, only the 
selected 32 jobs had all needed metric data present in the KairosDB cluster. Again the 
runtimes are mostly placed within the 10 to 20 minutes runtimes as seen in Figure 5.12. 

In the end, the total of 19 jobs was labelled as suspicious and the remaining 13 jobs as 
non-suspicious. Some of their metrics were labelled as suspicious but the job as a whole 
not. Eventually, this helped to remove a certain amount of false positive labels from the 
jobber network. 

Second Dataset 

The second, considerably larger dataset consisted of 3373 candidate jobs to be evaluated. 
After the initial fetching stage about a half (1532) of the jobs had the required metric data. 
The data is first fetched on a per-node aggregation level but the resulting dataset was too 
large (around 40 GB) to be analyzed during the training period. The second round of 
retrieval was done using the original cluster-level aggregation which resulted in a dataset 
considerably smaller (around 160 M B ) . This dataset contains 1172 jobs. The number of 
jobs is smaller due to errors during the fetching of data since the data source was mounted 
on a low resource server which, during large queries, often failed to retrieve the data and 
crashed. 
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Figure 5.12: Histogram chart of job runtimes for the first small unfiltered dataset. 

Wi th the final dataset, the labelling phase was done on 500 jobs which is more than 
enough samples for training a neural network and took more than 20 hours time-wise. 
The remaining unlabelled jobs can be labelled in the future in order to provide a very 
representative dataset for time series machine learning algorithms. 

This dataset will be anonymized and made publicly available after this thesis is defended 
as a cooperation result of C I N E C A , U N I B O and B U T . 

5.4 Job Classification 

The networks are divided into two categories-metric and job. The metric networks are 
configured the same for all metrics and the job network is connected to the outputs of 
each metric network. This way the labels of a metric network can be extracted, optionally 
modified and then set as input to the job network. 

The backpropagation network was developed without any non-system library in order to 
be easily deployed on any machine with Python language. Libraries like Keras [7] or scikit-
learn [ ] were considered during development. For the sole purpose of backpropagation 
network, these libraries can be replaced with custom-made code. 

The design of the network is split into two classes: Network and Neuron. The neu­
ron class facilitates the work of a single neuron in the network keeping its state in the 
class instance. The Network class takes care of the backpropagation and gradient descend 
algorithms and the import and export of a configured network. 

Initial experiments consisted of various network configuration, one of which produced 
the best results. The final network configuration is 80 input neurons with 3 hidden layers 
consisting of 20 neurons, then 4 and finally 3 neurons with one output neuron. Eighty 
input neurons provide good performance/evaluation compromise. Larger input vectors can 
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result in extremely long runs and smaller input vectors might result in poor outputs of the 
networks. 

The j obber network was designed similarly with the difference in input layer consisting 
of 12 neurons (each for one metric network), 4 and 3 neurons in the hidden layers and one 
output neuron. 

A l l networks are independent of each other, therefore certain parallelization could be 
made during the training period. During the training period, all labelled data is loaded 
into memory and then served to each network. A l l networks were logging their progress in 
training by log outputs to the standard output which afterwards could be analyzed. 

A l l networks were set to train a maximum of 25 000 epochs or until the sum error had 
reached 1.0. Wi th the smaller dataset present, the networks were trained with 27 jobs 
keeping the other 5 jobs as the evaluation dataset. The larger dataset was split into 350 
training jobs and 150 jobs as the evaluation sample. 

The gradient descent algorithm was modified with momentum addition [47] in order to 
surpass local minimums and generally to achieve faster convergence where 7 was set to 0.8 
after the trial and error experiments. 

Aiijp = -(jWp-1 + fiVEp) (5.1) 

The dataset was randomly shuffled after each epoch in order to limit overfitting on the 
training dataset. The final error rates were about 15 % higher compared to non-shuffled 
dataset but during evaluation, the networks with shuffled dataset produced better success 
rate (about 5 % better). 

During experiments, various configurations regarding the learning rate, maximum 
epochs and the momentum gradient descend presence were evaluated. The best results 
were generally achieved with previously mentioned configuration but certain metrics 
provided better results without the momentum gradient descend. Each individual config 
was evaluated and the best resulting configurations were combined to create a well-trained 
set of networks. 

The final evaluation of best-performant network configurations is listed in Table 5.1. 
Each network was evaluated separately on the same dataset and then the full network set 
was presented with the input data, the metric networks evaluated the data and the outputs 
without modification were presented to the jobber network which was eventually evaluated. 
This single complex evaluation shown in the „complex jobber" row is the final result. 

A n example of training period and the resulting error can be found in Figure A.8 where 
we can see multiple networks surpassing a local minimum and then finding, probably, the 
global minimum. These error rates were extracted from the logs as mentioned earlier. 

The success rates were in the range between 70 and 100 % with most of the networks 
between 80 and 90 %. The higher success rate is often hard to achieve and would require 
deep and long-term evaluation and experiments with a larger and more diverse dataset. In 
the end, the resulting complex job evaluation success rate is 84 %, which can be considered 
a very good result. 

5.5 Job Anomaly Classification 

The job anomaly classification network using decision trees was after a careful consideration 
scraped due to the lack of context and background information about the evaluated jobs. 
This network is a great start point for the further work. 
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Table 5.1: The final evaluation result of all trained networks. 
Network name Correctly classified Incorrectly classified Success rate (%) 

C6res 129 21 86 

C3res 150 0 100 

load_core 127 23 84.67 

ips 121 29 80.67 

Sys_Utilization 122 28 81.33 

IO_Utilization 150 0 100 

Mem_Utilization 119 31 79.33 

CPU_Uti l iza t ion 114 36 76 

L lL2_bound 140 10 93.33 

L3_bound 104 46 69.33 

front_end_bound 112 38 74.67 

back end_bound 108 42 72 

jobber 145 5 96.77 

complex jobber 126 24 84 

During dataset labelling a few of possible scenarios were found, which can be summed 
up in several categories to set the basic leaves for the decision tree: 

• unbalanced C P U utilization 

• the job exited with non-zero return value 

• no C P U utilization during the whole job 

• non-uniform memory access 

• long startup and finalization periods 

• premature job ending 

• sudden performance drops 

5.6 Summary 

The final output of this work can be considered quite wide in terms of various fields which 
are incorporated in it. Starting from the UI and front-end as a whole which utilizes the 
most modern and up-to-date technologies and paradigms, continuing to a newly made 
independent Python package publicly available on Python Package Index (PyPi) [ ] with 
a full-featured back-end H T T P R E S T A P I capable of handling user and securing access 
to private information up to the well trained backpropagation neural network capable of 
classifying a job based on time series data together with a large labelled dataset which can 
help other researchers in their machine learning applications. 
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The main focus of this thesis is the final set of neural networks even though the path 
to fully working trained networks was quite difficult laid with many obstacles in the path 
mainly in the availability of the needed data and its extraction from the database which 
itself took more than 5 days due to technical difficulties which appeared only under extreme 
server load. The final configuration of all metric networks is the same with the 80-20-4-3-1 
neurons in each layer. In the end, the resulting complex job evaluation success rate is 84 %, 
which can be considered a very good result but still one which can be worked upon and 
improved. 
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Chapter 6 

Conclusions 

The Examon Web was successfully presented, designed and implemented. The needed 
theoretical background was explained with references to underlying literature. Examon 
Web was set in between current state-of-the-art tools for H P C system monitoring with its 
unique place. 

It was designed using modern approaches in web development such as single-page ap­
plication design, R E S T A P I and WebSocket interface while integrating Internet of Things 
technologies, namely M Q T T together with big data analysis for data acquisition. 

Anomaly detection of suspicious jobs was successfully verified in a proof of concept work 
done during a course on soft computing and then implemented using the second, larger, 
dataset with the success rate of 84 % of correctly labelled jobs using only metric data of it. 
The implementation consists of 12 metric networks labelling metrics such as core load, C P U 
utilization, C6 C P U state share or back-end bound instructions shares. The final network 
which produces the definitive answer about the suspicious behaviour of the job takes the 
output of all 12 metric networks as its input and labels the job itself. The results from 
the metric networks are also presented to the user so the user can see what was labelled as 
suspicious. 

Examon Web is an expansion layer to the Examon framework. Wi th this web-based 
tool, the Examon framework gains completely new use-cases and audience not just amongst 
the research community but also in the H P C users community. This fact serves a critical 
role in the popularization of Examon itself and its possible expansion to many H P C facilities 
around the world. 

Another output of this thesis is the manually labelled dataset of time-series data which 
can be used for research purposes other than job classification such as trend finding analytic 
tool or a time-series prediction tool which can be used in other fields of research as well. 

The final part of the soft-computing tool was not developed due to the lack of back­
ground information of the jobs themselves and without it, any proper labelling could not 
be done. This part is only discussed with the suggested output labels of the decision tree. 

6.1 Current Deployment 

Examon and Examon Web is currently deployed on the D . A . V . I . D . E . supercomputer lo­
cated in C I N E C A , Bologna, Italy. It had also been successfully deployed on the Galileo 
supercomputer for several months before being decommissioned in November 2017 and 
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replaced by the aforementioned D . A . V . I . D . E . The Galileo supercomputer was afterwards 
updated and re-instantiated in the same facility for further use. 

In next months, Examon will be also deployed on a part of the Marconi supercomputer 
which will be the largest deployment of Examon so far. 

6.2 Contributions & Impact 

Examon and Examon Web were presented at the IT4Innovations' 1st User's Conference 
together with a poster showing the features of Examon and Examon Web as seen in Figure 
A.9. 

Two papers about Examon Web were submitted one of which was evaluated as an 
innovative approach to H P C system monitoring but was unfortunately rejected in face 
of great papers of other researchers at the H U S T 2017 conference. The second paper, 
submitted to ISC 2018, was reviewed as intriguing and the work as very promising but 
again due to other great papers and low acceptance rate the paper was rejected. 

The whole implementation of Examon Web and all its parts are available online 1 as 
open-source and anyone can contribute to the project to extend its functionality. The 
labelled dataset will be anonymized and then published online as open-source as well which 
will help with the promotion of participating parties, namely B U T , UNIBO and C I N E C A 
and it can be used by other researchers to create interesting works. 

6.3 Further Work 

Further work can be focused in two directions. First is the expansion of Examon Web 
and making it more general for any cluster and data that are published by the Examon 
framework. This will include very specific and vast configuration options while maintaining 
the user-friendliness which is extremely hard to achieve. 

The second direction is focused on the soft-computing part of the thesis, mainly on the 
decision trees implementation. The classification networks can be also improved to achieve 
better, more precise results with over 90 % success rates. 

x

https: //github.com/petrstehlik/examon-web 
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Appendix A 

Appendices 

A . l P B S Pro Hooks Lifecycle 

Pre-execution Hooks 

J o b is submitted 

__J ' '- q u e j e j o b 

Server queues job 

I ^ ^ m o d i f y j o b 

Job is modified 

m o v e j o b 

Job is moved 

r u n j o b 

Server sends job to M o M 

Execution Hooks 

| M o M receives job | ^ [ exe Cjo b_b e gin 

I77T7 ~ ~ I l e x e c j o b p r o l o g j e 

I M o M runs job top shell | ^ ! > 

I " * ~~^[ e x e c j o b j a u n c h ] 

I M o M runs user program 
e x e c j o b _ p r o l o g j e ] MPT process via rm_spawn " | ^ 

MPT process via pbs_attach f 

e x e c j o b j a u n c h 

^ ( e x e c j o b _ a t t a c h j  

Job runs successfully | | MoMkfflsjob~| X^f e x e c j o b _ p r o l o g j e ] 

I e x e c j o b _ p r e t e r m j e x e c j o b_e p i l a g u e 

j Job is cleaned up e x e c j o b _ e n d j 

N o n - j o b Hooks 

Execution host starts ^ e x e c h o s t _ s t a r t j p j 

Periodic at M o M [ e x e c h o s t _ p e r i o d ic J 

Request a reservation ^ resvsub j 

I Prov ision a vnode 

I Periodic at server | ^ [ p e r i o 

Figure A . l : Simplified view of hook trigger timing. Taken from [56]. 

55 



A.2 Examon Web Job Info Wireframe 

Examon Home System Overview Go 

Details #1 Details #2 

Various basic job info (user, queue, etc.) 

Chart 

Figure A.2: Low-fidelity wireframe of job overview dashboard with all the job info and one 
chart showing core loads. 
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A.3 Examon Web Cluster Overview Wireframe 

Examon Home System Overview 

Time Range Selection • 

Single-number 
metric 

Single-number 
metric 

Single-number 
metric 

Single-number 
metric 

Single-number 
metric 

Single-number 
metric 

Chart 

Chart 

Chart 

Average value 

Current value 

Average value 

Figure A.3: Low-fidelity wireframe of cluster overview dashboard with several single-number 
metric boxes and charts with average and current values next to the right. 
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A.4 Example Jobs Spotted During Labelling 

07:46 07:47 07:43 07:49 07:50 07:51 07:52 07:53 07:54 07:55 

Figure A.4: A job with no load the C P U in C6 state during the whole runtime. Other 
metrics are not included. 
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ure A.5: A job with suspicious drops in utilization. Unsuspicious metrics were removed. 
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Figure A.6: A job with balanced behavior utilizing all allocated resources. Unsuspicious 
metrics were removed. 
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.5 Networks' Error Rates 

Figure A.8: The sum error rates during the training period of all networks. 
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A.6 Poster for IT4Innovations' 1st User Conference 

Examon Web: A Visualization Framework For Live And Collected Power, 
Energy, Performance And Operational Data In Supercomputers 
Petr Stehlík1, Jiří Jaroš1, Andrea Bartolini2, Francesco Beneventi2, Andrea Borghesi2 

'Faculty of Information Technology, Brno University of Technology. CZ ;DEI. University of Bologna, Italy 

INTRODUCTION 
In the race toward exascale computing, supercomput ing systems are 
gett ing more complex. This makes it more difficult to operate the 
comput ing resources, infrastructure and software components at the most 
efficient point. The first step to solve th is is to give users and system 
administrators an overview tool to visually inspect status of the cluster and 
of executed applications. We present Examon Web—open source tool for 
visualization of performance, power and energy statistics of HPC 
applications and cluster status. Examon Web combines data gathered f rom 
job scheduler, various sensors and performance counters to provide visual, 
easy to analyze, insights on the application and cluster status as wel l . 

EXAMON FRAMEWORK 

USED TOOLS & TECHNOLOGIES 

Cassandra 
• KairosDB 

Transport 
• MQTT 
• Socket.lO 
• REST API 

Back-end 
• Python 

Front-end 
• Angular 
• Twitter Bootstrap 
• Dygraphs 
• Blender4Web 

EXAMON WEB ARCHITECTURE 

Figure A.9: The poster presented at the IT4Innovations' 1st User Conference. 
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A . 7 Contents of the Attached Media 

• docs - DTjrjX source code of the thesis 

• xstehll4.pdf - thesis in PDF file 

• examon-web - source code with GIT history of Examon Web containing all 3 versions 
of front-end in GIT branches 

• dataset - large partially annotated dataset used for training neural networks 

• poster.pdf - poster presented at the IT4Innovations' 1st Users' Conference in full 
resolution 
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