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Chapter 1

Introduction

Optimization is a process in which the best variant from many possibilities is

chosen. It is very important for increasing effectiveness, or decreasing demands

of the computational system.

The optimization process could be very complicated. The main challenges,

which can make the process of finding the optimal value of a given objective

function more difficult, are [19]:

• premature convergence to a local optimum,

• noisy function with no useful information about the gradient of the func-

tion,

• unexpected shape of the function with sudden change of the course,

• function with long slight declining or increasing section, which resembles

a constant function.

Therefore, it is necessary to wisely choose a suitable optimization method, and

devote some time to its modification according to the given problem.

This doctoral thesis is focused on optimization used in hydrological mode-

lling. The applied and analysed technique chosen within this thesis is method

called particle swarm optimization (PSO). It is inspired by behaviour of social

organisms in the nature. The main advantages are low number of parameters,

which need to be adjusted, and no requirement of knowledge about gradient of

the optimized function [9].
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CHAPTER 1. INTRODUCTION

1.1 Main goals

Particle swarm optimization was analysed within this doctoral thesis due to its

advantages. The PSO was successfully used in many real life case studies, and

its applicability and efficiency were proved. It is relatively recent optimization

technique, and thus, new modifications can be made to improve its optimization

ability.

Main goals of the doctoral thesis are following:

• provide a literature review about the particle swarm optimization method

with emphasis to its utilization in hydrological modelling,

• create algorithms of different modified versions of PSO with the imple-

mentation in C++ programming language,

• propose new algorithm of PSO, and implement it in C++ programming

language,

• test the existing PSO modifications with the new proposed variant on

chosen benchmark objective functions,

• applied the best PSO algorithms on case studies regarding rainfall-runoff

simulations and training artificial neural networks.

This doctoral thesis will extend the range of global optimization techniques.

The results will contribute to utilization of PSO method in real-life optimization

problems. New algorithms will have high application potential not only in the

field of hydrological modelling. Completed algorithms become basis for other

research projects, and they will be available for later use.
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Chapter 2

Particle swarm optimization in hydrological modelling

2.1 Introduction to optimization

Optimization is a process which serves to find the optimal values of mathe-

matical function. In many cases, the problem is searching for extremes of

the function. The optimization problem is defined by function f , and by n-

dimensional search space Rn. The function f is called an objective, error, or

fitness function. The problem can be defined as

f :Rn →R. (2.1)

If the optimization problem is a minimization of the objective function, the

algorithm searches for the minimal value Xmin ∈Rn, for which [18]

∀X ∈Rn : f (Xmin)≤ f (X). (2.2)

The main aim of optimization is to find the best set of parameters of the ob-

jective function in an acceptable amount of time. This process is very important

in many professions.

2.1.1 Optimization methods

The solution of optimization problem can be found through many optimization

methods. Probabilistic methods of meta-heuristic technique are based on popu-

lations. In this approach, many individuals, which represent possible solutions

of the objective function, are stored in the memory. Evolutionary computation

3



CHAPTER 2. PSO IN HYDROLOGICAL MODELLING

Figure 2.1: Simplified system of evolutionary computation technique (adapted
from [18])

(EC) is one of the largely explored probabilistic method. The simplified system

of this technique is depicted on Figure 2.1.

2.1.2 Swarm intelligence

Particle swarm optimization (PSO) is one of the optimization method along with

ant colony optimization [2], glowworm swarm optimization [10], or artificial bee

colony algorithm [8], which is part of the swarm intelligence (SI) technique.

In the SI, each individual of a social community (e.g. ant, termite, bee, fish,

bird, etc.) is usual, but as a unit they are able to accomplish a complicated task

due to mutual cooperation [3]. The behaviour of organisms follows three simple

rules [16]:

• separation - to avoid an overcrowding and collision (Fig. 2.2a),

• cohesion - to stay close to the neighbours (Fig. 2.2b),

• alignment - to match the direction and magnitude of velocity vector with

the neighbours (Fig. 2.2c).

2.2 Original equations

Particle swarm optimization is inspired by successive and unpredictable fly of

birds [9]. The method has only a few parameters to adjust, and it is relatively

easy to implement and use. The main advantage is also the fact, that PSO does
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CHAPTER 2. PSO IN HYDROLOGICAL MODELLING

a b c

Figure 2.2: Rules of behaviour in SI, a) separation, b) cohesion, c) alignment
[11]

not need gradient information of the objective function during the iterative

search [7, 12, 13].

PSO contains a population of particles i = 1, ...,S, where S is total number of

individuals. Particles represent a potential solution of the optimization problem,

and every new generation of individuals is closer to the searched optimum.

The problem space has dimension d = 1, ...,Dim, where Dim is total number of

parameters.

Each particle i has its own position Xi = (xi
1,xi

2, ...,xi
Dim) in the space, and

velocity Vi = (vi
1,vi

2, ...,vi
Dim), which are stored in the memory. Each particle

i also maintains its previous best position Pi = (pi
1,pi

2, ...,pi
Dim), and the best

position among all particles G= (g1,g2, ...,gDim) [4, 6, 9].

The original PSO algorithm consists of two main equations. One equation is

for computing particle’s velocity

vi
d(t+1)= vi

d(t)+ c1 ·r1d(t) · (pi
d(t)−xi

d(t))+ c2 ·r2d(t) · (gd(t)−xi
d(t)), (2.3)

and the second equation calculates particle’s position

xi
d(t+1)= xi

d(t)+vi
d(t+1), (2.4)

where t is time step, r1d and r2d are members of vectors R1 and R2 of random

numbers uniformly distributed in the range of [0,1], respectively, c1 and c2 are

acceleration constants predefined by the user.
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CHAPTER 2. PSO IN HYDROLOGICAL MODELLING

2.3 Modifications of PSO

In the optimization process, the premature convergence could appear, where

the model could converge to the local optimum instead of the global one. Many

researches were devoted avoiding this phenomenon [1, 14, 15].

The original PSO equation for calculating particle’s velocity was modified to

improve the optimization performance of the algorithm. The velocity from the

previous time step is updated by a given parameter. The parameter is inertia

weight, or constriction factor.

Other possibility for increasing the optimization ability is to use distributed

version of the algorithm. In this approach, the population is divided into several

complexes, where the PSO algorithm runs at each complex individually.

2.4 Objective functions

During optimization, the main aim is to find an optimal value of an objective

function f . For testing and comparison purposes, the benchmark problems

are solved. Optimization based on hydrological indexes is commonly used in

practical experiments within the field of hydrological modelling.

2.4.1 Benchmark problems

Benchmark problems serve for comparing different optimization techniques,

or for testing new proposed optimization method. Benchmark functions are

precisely defined, the user knows their formula, range of the search space,

and the position of the optimal value. Results of finding the optimal value are

comparable across different research for all scientists.

2.4.2 Hydrological indexes

Optimization methods in hydrological modelling are used for calibration of

models, estimation of rainfall-runoff relationships, meteorological forecasts, or

runoff predictions. Hydrological index serves as an objective function, and it

can also determines the quality of hydrological model.
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Chapter 3

A comparison of selected modifications of the particle
swarm optimization algorithm

In this chapter, 27 modifications of the original particle swarm optimization

(PSO) algorithm are compared. The analysis evaluated nine basic PSO types,

which differ according to the swarm evolution as controlled by various inertia

weights and constriction factor. Each of the basic PSO modifications was anal-

ysed using three different distributed strategies. In the first strategy, the entire

swarm population is considered as one unit (OC-PSO). The second strategy peri-

odically partitions the population into equally large complexes according to the

particle’s functional value (SCE-PSO). The final strategy periodically splits the

swarm population into complexes using random permutation (SCERand-PSO).

All variants were tested using 11 benchmark functions.

This chapter is based on the publication: JAKUBCOVÁ M., MÁCA P., AND PECH P., 2014:
A comparison of selected modifications of the particle swarm optimization algorithm. Journal of
Applied Mathematics, vol. 2014, Article ID 293087, 10 pp, doi: 10.1155/2014/293087.
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CHAPTER 3. A COMPARISON OF SELECTED MODIFICATIONS

Table 3.1: Summary of PSO modifications

Label Equation

AdaptW w = (wmax −wmin) ·Ps +wmin
ChaoticRandW w(iter)= 0.5 · rand()+0.5 · z
ChaoticW w(iter)= (wmax −wmin) · itermax−iter

itermax
+wmin · z

ConstantW w = c
ConstrFactor K = 2

|2−ϕ−
p
ϕ2−4·ϕ |

LinTimeVaryingW w(iter)= itermax−iter
itermax

· (wmax −wmin)+wmin

NonlinTimeConstW w(iter)= wini ·uiter

NonlinTimeW w(iter)= ( 2
iter

) 0.3

RandomW w = 0.5+ rand()
2

3.1 Methodology

In the present study, nine variants of PSO algorithm were used and tested (Tab.

3.1), including eight modifications using inertia weight parameter w, and one

modification with constriction factor K .

All nine modifications are used with three strategies of swarm distribution.

Changes in behaviour of the population for each modification and strategy

were observed. The first distributed strategy considered the whole population

as one unit called OC-PSO. In the next swarm distributions, the population

was divided into several complexes according to the particle’s functional value

(SCE-PSO), or through random permutation (SCERand-PSO).

For comparison purposes, 11 benchmark functions prepared for the special

session on real-parameter optimization of CEC 2005 [17] were used. All func-

tions have shifted global optima, some of them is rotated, or with noise. The

aim is to find the minimum of all functions.

3.2 Results

The non-parametric Wilcoxon test was used for statistical comparison. Inputs to

those calculations were the best fitness values achieved for all modifications. The

null hypothesis H0 of the Wilcoxon test is that differences between algorithms

8



CHAPTER 3. A COMPARISON OF SELECTED MODIFICATIONS

have a median of zero.

The strategy SCE-PSO produced the best solution in seven functions. Strat-

egy SCERand-PSO produced the best solution in two functions ( f9, f10), and

in one function ( f5), the best solution was from strategy OC-PSO. For func-

tion f1, there was no significant difference between strategy SCE-PSO and

SCERand-PSO.

Upon closer examination, “AdaptW” and “NonlinTimeConstW” are the best

modifications for unimodal functions ( f1 - f5). The poorest variants are “Con-

stantW” and “ConstrFactor”. The best PSO modification for multimodal func-

tions ( f6 - f11) is “AdaptW”, and the poorest is “ConstantW”.

For rotated functions ( f3, f7, f8, f10, f11), the best modification of the PSO

algorithm appears to be “AdaptW”, and the poorest is “CostantW”. For functions

where there is no transformation matrix to rotate them, is the best variant

“AdaptW”, and the poorest are “ConstantW” and “ConstrFactor”.

It is clear that the best modification of the particle swarm optimization

algorithm for the selected benchmark functions is “AdaptW”, i.e. adaptive

inertia weight. The variant called “NonlinTimeConstW” also produced good

results. On the other hand, the poorest modifications appear to be “ConstantW”

and “ConstrFactor”.

3.3 Conclusions

The main aim of this work was to find the global minima of 11 benchmark

functions prepared for the special session on real-parameter optimization of

CEC 2005. In total, 27 variants of particle swarm optimization algorithm were

compared. Eight modifications were performed using the parameter inertia

weight, and one modification using constriction factor. All modifications were

tested with three strategies of swarm distribution, which were in terms of

population. The population was either considered as a single unit, or it was

divided into several complexes.

The best modification of the PSO algorithm is the variant called “AdaptW”.

The best choice for selected benchmark functions is to use the parameter of

inertia weight, where the w value is adapted based on a feedback parameter.

9



CHAPTER 3. A COMPARISON OF SELECTED MODIFICATIONS

The best strategy for swarm distribution is SCE-PSO. Shuffled complex

evolution particle swarm optimization with allocation of particles into complexes

according to their functional values is better than OC-PSO and SCERand-PSO.

The original particle swarm optimization has slow convergence to the global

optimum, and the shuffling mechanism improves the optimization.

10



Chapter 4

Parameter estimation in rainfall-runoff modelling using
distributed versions of particle swarm optimization
algorithm

This chapter provides the analysis of selected versions of the particle swarm

optimization (PSO) algorithm. The tested versions of the PSO were combined

with the shuffling mechanism, which splits the model population into complexes,

and performs distributed PSO optimization. One of them is a new proposed PSO

modification - APartW, which enhances the global exploration and local exploita-

tion in the parametric space during the optimization process through the new

updating mechanism applied on the PSO inertia weight. The performances of

four selected PSO methods were tested on 11 benchmark optimization problems.

The distributed PSO versions were developed for finding the solution of inverse

problems related to the estimation of parameters of hydrological model Bilan.

This chapter is based on the publication: JAKUBCOVÁ M., MÁCA P., AND PECH P., 2015:
Parameter estimation in rainfall-runoff modelling using distributed versions of particle swarm
optimization algorithm. Mathematical Problems in Engineering, vol. 2015, Article ID 968067, 13 pp,
doi: 10.1155/2015/968067.
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CHAPTER 4. PARAMETER ESTIMATION IN RAINFALL-RUNOFF MODEL

4.1 Methodology

In total, 4 versions of the PSO algorithm were analysed. They differ according to

applied particle’s velocity adaptation. The modifications are called ConstrFactor,

LinTimeVarW, AdaptW, and APartW. The APartW is the new proposed variant,

which combines the global exploration and local exploitation in the space. All

four PSO variants were extended into a distributed version using SCE-PSO

technique.

The distributed versions of PSO were tested on two sets of single-objective

optimization problems. The first set is represented by 11 benchmark problems,

which were specially prepared for CEC 2005 single-objective optimization se-

ssion [17]. The second set consists of 120 optimization problems. On 30 datasets

of MOPEX catchments, 4 benchmark questions were evaluated, which are stan-

dard objective functions used for solving inverse problem related to calibrations

of hydrological models.

4.2 Results

The results of the statistical analysis of the benchmark problems show that

the APartW modification gives significantly better results for three benchmark

functions ( f4, f7 and f11). In functions f3, f5 and f9, there is no significant

difference between APartW and AdaptW. Beyond that, in functions f1 and

f2, both APartW and AdaptW found the global minimum. For multi-modal

functions f6, f8 and f10, the AdaptW variant gives significantly better results.

Table 4.1 displays results from the contrast test of the unadjusted medians

for Bilan calibration according to [5]. After pairwise comparison of all PSO

modifications, the ranks of each method were determined. The best method

seems to be the AdaptW, which achieved the best results two times and the

second rank also two times. On the other hand, the worst is the ConstrFactor

version, which was always worse than the others. Additionally, differences in

medians between LinTimeVarW, AdaptW and APartW are very small, which

indicates similar performances.

In addition to the contrast test, the Wilcoxon pair test of medians was

conducted. The ranks are displayed in the last column in Table 4.1. The obtained

12



CHAPTER 4. PARAMETER ESTIMATION IN RAINFALL-RUNOFF MODEL

Table 4.1: The contrast test of the unadjusted medians with ranking. The Rank
is ranking based of contrast test, W .Rank is ranking based of Wilcoxon pair
test

MSE ConstrFactor LinTimeVarW AdaptW APartW Rank W.Rank
ConstrFactor - 372.66 373.23 373.22 4 4
LinTimeVarW -372.66 - 0.57 0.55 3 3
AdaptW -373.23 -0.57 - -0.01 1 2
APartW -373.22 -0.55 0.01 - 2 1

MAE ConstrFactor LinTimeVarW AdaptW APartW Rank W.Rank
ConstrFactor - 374.78 374.82 374.82 4 4
LinTimeVarW -374.78 - 0.04 0.04 3 3
AdaptW -374.82 -0.04 - 0.00 2 2
APartW -374.82 -0.04 -0.00 - 1 1

MAPE ConstrFactor LinTimeVarW AdaptW APartW Rank W.Rank
ConstrFactor - 374.96 375.02 375.02 4 4
LinTimeVarW -374.96 - 0.06 0.05 3 3
AdaptW -375.02 -0.06 - -0.00 1 1-2
APartW -375.02 -0.05 0.00 - 2 1-2

NS ConstrFactor LinTimeVarW AdaptW APartW Rank W.Rank
ConstrFactor - 375.01 374.91 374.91 4 4
LinTimeVarW -375.01 - -0.10 -0.10 1 1
AdaptW -374.91 0.10 - -0.00 2 2
APartW -374.91 0.10 0.00 - 3 3

results confirm the results from the contrast test. The differences in the ranks

are in the simulations based on mean squared error (MSE) and mean absolute

percentage error (MAPE) objective functions, where APartW variant is better

than the AdaptW, or as good as AdaptW, respectively. In terms of Wilcoxon test,

the APartW is the best modification and ConstrFactor is again the worst.

On Figure 4.1 is displayed the time series of observed and modelled runoff

using APartW method. It gives an example of ensemble simulations with the

Bilan model, where the results from the total 25 model runs are coloured in grey.

It is evident that the envelope curve of the ensemble simulations would cover

most of the observed data points. On the figure, also the streamflow calculated

by the best model is plotted (red line), i.e. the simulation with the highest value

of Nash-Sutcliffe efficiency (NS).

13
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Figure 4.1: Observed streamflow and corresponding simulations from Bilan
model using APartW optimization. The optimized objective function was NS.
Catchment 01531000, year 1976

4.3 Conclusions

The main aim of this chapter was to test 4 selected PSO distributed versions on

single-objective benchmark optimization problems, and to apply them on cali-

bration of hydrological model Bilan. For all 4 PSO versions, 3 275 optimization

problems were analysed, in which 275 minimizations for benchmark problems

(i.e. 11 benchmark function × 25 program runs) and 3 000 inverse hydrological

problems (i.e. 4 objective functions × 30 catchments × 25 program runs) were

solved.

The new proposed variant APartW was compared with other existing PSO

modifications - ConstrFactor, LinTimeVarW and AdaptW on 11 benchmark func-

tions prepared for the special session on real-parameter optimization of CEC

2005. The APartW version is comparable with the AdaptW and LinTimeVarW

variants, whereas the ConstrFactor had the worst performance.

All four PSO modifications were implemented into the Bilan rainfall-runoff

model for solving inverse hydrological problems. Based on the contrast test of

the unadjusted medians and Wilcoxon test, it was found out that the APartW

and AdaptW variants provided the best results. The ConstrFactor performed

14
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the worst.

The results highlighted that distributed versions of PSO are promising in

single-objective optimization problems. It was confirmed that adaptive variants

of the inertia weight are better then linearly decreasing weight. It was also

found out that the PSO modifications with parameters of inertia weight give

significantly better results than the variant with constriction factor.
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Chapter 5

Combination of hybrid artificial neural networks with
particle swarm optimization algorithm for SPEI
forecasting

The recent climatic water balance indicator, the Standardized precipitation

evapotranspiration index (SPEI), was forecasted within this chapter. New tool

for the SPEI simulations was proposed, which is a combination of hybrid artifi-

cial neural networks (ANN) with particle swarm optimization (PSO). The PSO

algorithm was used for training the model weights to achieve higher accuracy

in shorter computational time. In this research, the influence of chosen PSO

modifications, number of inputs into the ANN, number of neurons in the hidden

layer, and influence of the type of optimized objective function on modelled SPEI

drought index were evaluated. The case study was conducted on selected set of

8 US catchments with the data of meteorological observations obtained from

MOPEX database.

This chapter is based on the manuscript: JAKUBCOVÁ M., MÁCA P., AND PECH P., 2015:
Combination of hybrid artificial neural networks with particle swarm optimization algorithm for
SPEI forecasting. Applied Soft Computing.
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CHAPTER 5. COMBINATION OF ANN WITH PSO

5.1 Methodology

The combination of hybrid artificial neural network models with particle swarm

optimization technique was applied for forecasting the SPEI drought index. The

models differ in four variables - in number of inputs, number of neurons in

hidden layer, PSO method used for training, and optimized objective function.

The architecture of the applied artificial neural network models is a mul-

tilayer perceptron with one input layer, one hidden layer of neurons, and one

output layer with one output neuron. The topology is fully connected, and trans-

fer of information is feedforward. The activation function of neurons is the

RootSig.

The weights in ANN models were trained with 5 different PSO optimization

techniques. As optimized objective criteria serve 5 different statistics, which

are often used in hydrological modelling. For SPEI simulations, the integrated

neural network models with different settings were used.

In the research, always 5 artificial neural network models were integrated

into one hybrid ANN model (hANN). The outputs from four models are inputs

into the fifth model as it is displayed on Figure 5.1. The final forecasted SPEI

drought index is the output from the fifth ANN model.

MODt

O
B
S
t

O
B
S
t

O
B
S
t

O
B
S
t

Figure 5.1: Integrated ANN models into hANN. Circles filled with black rep-
resent input layer, circles filled with white represent hidden layer, and circles
filled with grey represent outputs
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CHAPTER 5. COMBINATION OF ANN WITH PSO

Table 5.1: The best levels of each factor for each accuracy criteria, and the
final best level based on Tukey’s HSD test. Minus sign indicates no significant
difference in levels

Factor MSE NS PI cAI1 cAI2 Final

Calibration period

Catch. 01371500 01371500 01197500 01197500 01371500 01371500
Nin 12, 12s - 6 12, 12s 12, 12s 12, 12s
Nhd 6 6 6 6 6 6
OOFa 2, 3, 4, 5 - 1, 2, 4, 5 1, 2, 3, 5 1, 2, 3, 4 2
PSOb - 5 5 - - 5

Validation period

Catch. 01445500 01503000 01127000 01372500 01445500 01445500
Nin - 6 6 - 12, 12s 6
Nhd 6 6 6 6 - 6
OOFa 2, 3, 4, 5 - - 1, 2, 3, 5 - 2, 3, 5
PSOb - 4, 5 2, 3, 4, 5 - - 4, 5
a1= MSE, 2= NS, 3= PI, 4= cAI1, 5= cAI2
b1= LinPSO, 2= ChaoPSO, 3= NonlinPSO, 4= AdaptPSO, 5= APartPSO

5.2 Results

The analysed catchment (Catch.), number of inputs (Nin), number of neurons in

hidden layer (Nhd), optimized objective function (OOF), and PSO variant were

considered as factors influencing the resulted accuracy criteria.

The best levels of each factor obtained during calibration and validation

reflects Table 5.1. It is evident, that some levels are significantly better for

simulations, but sometimes there is no difference between two or more levels.

Based on the results, the best hANN models were determined. For calibration,

there are two hANN models with two different Nin with the same simulation

ability. The superior are 12 inputs into the neural networks with 6 neurons

in the hidden layer optimized by Nash-Sutcliffe efficiency (NS) criteria with

APartPSO method. For validation, there exist six hANN models with three

OOF and two PSO factors, whose performances are not different. The best

results were obtained by models with 6 SPEI inputs and 6 neurons in the

hidden layer.

18
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Figure 5.2: Measured and simulated time series of SPEI during calibration
and validation period in the catchment 01371500 for the best hANN model
12-6-APartPSO-NS

Figure 5.2 presents the time series of measured and simulated SPEI drought

index. The simulated SPEI is close to the measured one, and the model provides

sufficient forecasts. Upon closer investigation, the best hANN obtained during

calibration provides good fit also for validation data, and vice versa. The only

problem could be the overestimation of the lower values of SPEI.

5.3 Conclusions

The main aim of this chapter was to combine hybrid neural network models

with particle swarm optimization, which was used as training algorithm for the

ANN weights.

In total, 150 hybrid ANN models were applied for simulating the SPEI

drought index on 8 US catchments. The dataset of 54 years of observations

was divided into calibration and validation period, and the performance was

analysed based on five measures of goodness of fit.

It was found out that the number of neurons in hidden layer of the ANN

models influences results the most. Better performance was achieved with 6
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neurons in the hidden layer instead of 3. The best number of neurons in the

input layer was not determined uniquely. For calibration, better results were

obtained with 12 inputs, compared to 6 input variables for validation.

Even though, the results obtained by different PSO variants were not always

statistically different, the APartPSO is the most effective method for SPEI

forecasting. The choice of PSO variant was not essential in all cases, but the

adaptive variants gave better results in both calibration and validation.

The best objective function optimized by the final ANN model is the NS. In

all cases, more OOF gave similar results, but in final evaluation of the model

performances, the Nash-Sutcliffe efficiency was the most effective.

The results of this study extended the range of utilization of the particle

swarm optimization technique and artificial neural network modelling. The

combination of ANN with PSO is suitable for forecasting the SPEI drought

index, and can be used for prediction of the potential threat of drought event.
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Chapter 6

Principal conclusions and summary

Finding the optimal state of reality is the main purpose of the optimization

process. The best variant from many possibilities is selected, and the effective-

ness of the given system increases. Optimization has been applied in many real

life engineering problems as in hydrological modelling. Within the hydrological

case studies, the optimization process serves to estimate the best set of model

parameters, or to train model weights in artificial neural networks.

Due to difficulties, which may occur during optimization, it is necessary

to wisely choose a suitable method. Based on the optimization problem, it is

recommended to devote some time modifying the selected optimization method.

In this doctoral thesis, I focused on the particle swarm optimization tech-

nique, and its utilization in hydrological modelling. It is relatively recent op-

timization method, which has only a few parameters to adjust, and is easy

to implement to the selected problem. The original algorithm was modified

by many authors. They focused on changing the initialization of particles in

the swarm, updating the population topology, adding new parameters into the

equation, or incorporating shuffling mechanism into the algorithm.

The main goals of the thesis were provision of comprehensive review about

the PSO method, implementation of selected PSO modifications together with

a new proposed variant in C++ programming language, and application of the

best modifications in real-life optimization problems from the field of hydrology.

The comprehensive review about the PSO technique was provided in Chap-

ter 2. Due to the limited space in the thesis, I focused mainly on features, which

were thereafter useful for my research. The original equations with different
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modifications were summarized there together with various topologies and

applicable objective functions.

Comparison of selected PSO modifications was provided in Chapter 3. In

total, 27 modifications were tested on 5 uni-modal and 6 multi-modal benchmark

problems. Variants with constriction factor and different types of inertia weight

were analysed. The results showed that the best PSO variant is the method with

adaptive inertia weight parameter. In addition, the shuffled complex evolution

strategy improved the performance, and gave the best results, which confirmed

the usefulness of this approach. Therefore, I decided to later focus the attention

to this direction of possible modifications, i.e. adaptive version of inertia weight,

and sub-swarms with shuffling and redistribution of particles.

In Chapter 4, a new PSO variant was proposed. The method enhances the

global exploration and local exploitation in the parametric space during the

optimization process through new adaptive strategy of inertia weight. The

shuffled complex evolution strategy was incorporated into the algorithm. The

optimization ability of the proposed method was tested on 11 benchmark prob-

lems, and the obtained results were compared with 3 PSO modifications from

Chapter 3. It was found out that the new proposed variant performs well, and

has suitable results.

Due to the fact, that the new proposed PSO version achieved good results

in optimizing benchmark functions, it was applied in two real-life optimization

problems. One case study concerned with hydrological model Bilan (Chapter 4),

and second case study dealt with artificial neural networks (Chapter 5).

The new method together with other 3 PSO modifications was used for

finding the solution of inverse problems related to estimation of parameters

of rainfall-runoff model Bilan (Chapter 4). Based on statistical tests, it was

concluded that the best results were obtained by the new proposed method

and by the adaptive variant, which was also the best method in Chapter 3.

On the other hand, the PSO modification with parameter of constriction factor

performed the worst, which is also in agreement with the findings of Chapter 3.

The 4 best PSO modifications from Chapter 3 together with the proposed

method from Chapter 4 were combined with artificial neural networks in Chap-

ter 5. The integrated hybrid models were used for forecasting the standardized
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precipitation evapotranspiration drought index. The influence of each PSO

method and other variables on the simulations was analysed. The variable,

which influenced the results the most, was number of neurons in hidden layer

of the ANN models. Therefore, it is essential to choose the size of hidden layer

appropriately. In terms of PSO method, the most effective technique for SPEI

forecasting was the proposed variant from Chapter 4.

Based on the results obtained during my research, I can conclude that adap-

tive version of inertia weight parameter is the most effective approach from all

analysed variants. The shuffled complex evolution also significantly improves

the optimization. The new PSO method proposed in this thesis finds the opti-

mum value not only in benchmark problems, but also in real-life optimization

problems. Therefore, it can be applied in other engineering studies.

Overall, the contribution of the doctoral thesis for the current stage of

scientific knowledge is evident from the individual chapters. The results of

this thesis extended the utilization of PSO methods in real-life engineering

optimization problems. All analysed PSO algorithms are available for later use,

and the completed algorithms are basis for other research projects.
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Chapter 7

Shrnutí

Hlavním cílem optimalizačního procesu je nalezení optimálního stavu dané

reality. Z mnoha možností je vybrána nejlepší varianta, čímž vzroste efektivita

celého systému. Optimalizační technika byla aplikována v mnoha inženýrských

problémech. V rámci hydrologického modelování je využita k odhadu nejlepší

sady parametrů modelu, či k trénování umělých neuronových sítí.

Relativně novou optimalizační metodou je optimalizace rojem částic (PSO),

která se vyznačuje malým množstvím parametrů pro nastavení a jednoduchou

implementací. Původní algoritmus této metody byl mnoha autory modifikován.

Důraz byl kladen na změnu způsobu inicializace částic v hejnu, aktualizaci

topologie populace, přidání nového parametru do rovnice, či začlenění mecha-

nismu promíchávání do algoritmu.

Modifikace PSO algoritmu zlepší provedení optimalizace, zamezí předčasné

konvergenci a sníží výpočetní čas systému. Z těchto důvodů zahrnují hlavní

cíle předložené doktorské práce navržení nové modifikace PSO metody s její

implementací v programovacím jazyce C++. V práci bylo porovnáno a vyhodno-

ceno více PSO variant a nejlepší metody byly použity ve dvou hydrologických

případových studiích.

První případová studie se zabývá použitím PSO algoritmů na inverzních

problémech spojených s odhadem parametrů srážko-odtokového modelu Bilan.

Ve druhé studii byly zkombinovány umělé neuronové sítě s PSO metodou pro

předpověd’ vybraného indexu sucha.

Bylo zjištěno, že optimalizace rojem částic je vhodným nástrojem pro řešení

problémů v rámci hydrologického modelování. Nejefektivnějšími PSO modi-
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fikacemi jsou varianty s adaptivní verzí váhovacího faktoru, které aktualizují

rychlost částice během prohledávání vícedimenzionální řešené oblasti pomocí

zpětné vazby. Mechanismus promíchávání a přerozdělování částic do komplexů,

ve kterých je samostatně spouštěn PSO algoritmus, také výrazně zlepšil prove-

dení optimalizace.

Přínos této doktorské práce spočívá ve vytvoření nové PSO modifikace,

která byla otestována na referenčních problémech a úspěšně aplikována ve

dvou hydrologických případových studiích. Výsledky práce rozšířily využití

PSO metody v reálných inženýrských problémech a všechny analyzované PSO

algoritmy jsou k dispozici pro pozdější využití v rámci dalších výzkumných

projektů.
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