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1
INTRODUCTION

Finding the optimal state of reality is one of the basic principles of the world.

Atoms are forming in shapes with minimal energy between electrons, molecules

are creating optimal crystal structures in terms of energy [114]. One of the

biological principle is the survival of the fittest, which together with the evolution

leads to better adaptation of organisms to their environment [129]. The well-

adapted species dominate other organisms in the vicinity, and they become the

optimum of the locality [143].

Optimization is a process in which the best variant from many possibilities is

chosen. It is very important for increasing effectiveness, or decreasing demands

of the computational system.

The optimization process could be very complicated. The main challenges,

which can make the process of finding the optimal value of a given objective

function more difficult, are [144]:

• premature convergence to a local optimum,

• noisy function with no useful information about the gradient of the function,

• unexpected shape of the function with sudden change of the course,

• function with long slight declining or increasing section, which resembles

a constant function.

Therefore, it is necessary to wisely choose a suitable optimization method, and

devote some time to its modification according to the given problem.

This doctoral thesis is focused on optimization used in hydrological modelling.

The optimization methods are widely applied for calibration of model parameters,

1



CHAPTER 1. INTRODUCTION

for predictions of water quality, surface and groundwater runoff, or for meteoro-

logical forecasts [36, 116, 137].

The applied and analysed technique chosen within this thesis is method called

particle swarm optimization (PSO). It is inspired by behaviour of social organisms

in the nature. The main advantages are low number of parameters, which need

to be adjusted, and no requirement of knowledge about gradient of the optimized

function [73].

Particle swarm optimization algorithm was used in terms of hydrology for

detection of relationship between precipitation and runoff from the catchment [23],

for estimation of model parameters [50, 70], during calibration of groundwater

model [48], or for training the artificial neural networks (ANN) [20, 21, 74].

1.1 Main goals

Particle swarm optimization was analysed within this doctoral thesis due to its

advantages. The PSO was successfully used in many real life case studies, and

its applicability and efficiency were proved. It is relatively recent optimization

technique, and thus, new modifications can be made to improve the optimization

ability.

Main goals of the doctoral thesis are following:

• provide a literature review about the particle swarm optimization method

with emphasis to its utilization in hydrological modelling,

• create algorithms of different modified versions of PSO with the implemen-

tation in C++ programming language,

• propose new algorithm of PSO, and implement it in C++ programming

language,

• test the existing PSO modifications with the new proposed variant on chosen

benchmark objective functions,

• applied the best PSO algorithms on case studies regarding rainfall-runoff

simulations and training artificial neural networks.

This doctoral thesis will extend the range of global optimization techniques.

The results will contribute to utilization of PSO method in real-life optimization

problems. New algorithms will have high application potential not only in the field

of hydrological modelling. Completed algorithms become basis for other research

projects, and they will be available for later use.

2



1.2. OUTLINE OF THE THESIS

1.2 Outline of the thesis

Chapter 2 gives an introduction to the optimization process, and provides a com-

prehensive review about particle swarm optimization method. It describes funda-

mental equations of PSO, and explains different types of topology. Modifications

of the original algorithm are also listed. Next part of this chapter summarizes

chosen objective functions, i.e. benchmark problems for testing optimization algo-

rithms, and frequently used objective functions in hydrological modelling. The

optimization process is very important in hydrological modelling for estimating

the best set of parameters, for meteorological forecasts, or runoff predictions.

Therefore, the last part of the chapter mentions several recent hydrological case

studies with utilizing the PSO.

Chapter 3 is based on a published research paper, which focuses on comparison

of chosen PSO modifications on single objective benchmark problems. In total, 27

PSO variants were tested on 11 uni-modal and multi-modal benchmark functions.

The chapter summarizes the main information about PSO technique, lists selected

modifications and benchmarks functions, analyses results, and concludes the main

findings.

Chapter 4 is based on a published research paper, which focuses on parameter

estimation in rainfall-runoff model Bilan using different versions of PSO. A new

PSO modification was proposed, which was first tested on 11 benchmark problems.

Then, the new proposed variant was applied together with other 3 PSO variants

in Bilan model for streamflow simulations on 30 US catchments.

Chapter 5 is based on a submitted research paper, which focuses on combina-

tion of artificial neural networks with particle swarm optimization. Integrated

hybrid ANN models were developed, where PSO algorithm was used for training

the model weights. In total, 150 different ANN models were applied for simulating

the standardized precipitation evapotranspiration drought index (SPEI) on 8 US

catchments. The main factors influencing the results are discussed in this paper,

and recommendations for later use are given.

Chapter 6 summarizes the most important findings presented in detail in

Chapters 2-5, and the overall results of the thesis are put into a broader perspec-

tive. Chapter 7 contains summary of this doctoral thesis in Czech language.
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2
PARTICLE SWARM OPTIMIZATION IN

HYDROLOGICAL MODELLING

2.1 Introduction to optimization

Optimization is a process which serves to find the optimal values of mathematical

function. In many cases, the problem is searching for extremes of the function.

Thus, the optimal value is the minimum or maximum. The procedure of finding

the minimal and maximal value is equivalent. Therefore, the terms optimization,

minimization and maximization have the same meaning (i.e. searching for the

optimal solution) [10].

The optimization problem is defined by function f , and by n-dimensional

search space Rn. The function f is called an objective, error, or fitness function.

The problem can be defined as

f :Rn →R. (2.1)

If the optimization problem is a minimization of the objective function, the algo-

rithm searches for the minimum Xmin ∈Rn, for which [143]

∀X ∈Rn : f (Xmin)≤ f (X). (2.2)

The main aim of optimization is to find the best set of parameters of the objec-

tive function in an acceptable amount of time. This process is very important in

many professions, for example for designing chemical plants to obtain maximum

production, to approximate data and minimize differences between measured and

5



CHAPTER 2. PSO IN HYDROLOGICAL MODELLING

calculated values, for allocating resources in an industrial and social environment,

for planning the time schedule, etc. [10, 93].

The solution of optimization problem can be found through many optimiza-

tion methods. The distribution of optimization methods by various authors is

summarized in the next subsection. Later in the text, the focus is mainly on the

particle swarm optimization technique, which is the procedure used in practical

applications within this doctoral thesis.

2.1.1 Optimization methods

Optimization techniques can be split into gradient-based methods, single state

methods, and population-based methods according to Luke [85]. To the gradient-

based methods belong gradient ascent, or Newton’s method. The single state

methods are for example hill climbing technique, simulated annealing, or tabu

search. The population-based methods contain evolution strategies, genetic algo-

rithm, or differential evolution.

Weise [143] divides optimization methods based on speed of optimization to

online, and offline techniques. The online method requires high speed, where

the computational time for finding the solution is from milliseconds to several

minutes. In offline optimization, the computational time is not essential for the

user, and thus, it can take several days to find the optimal value.

Wolpert and Macready [146] proposed an optimization theory called no free

lunch theorem. They defined it on a finite search space. The main idea of the no

free lunch theorem is that all algorithms are equivalent when their performances

are averaged across all problems. Therefore, no one can create an algorithm,

which will be better than any other existing algorithm.

The optimization methods can be divided into exact methods, heuristics, and

meta-heuristics [93]. The exact methods solve optimization problems by searching

the entire solution space completely. They include linear programming, dynamic

programming, or divide and conquer technique.

The heuristics are used when the way to find the optimal solution is not known.

The solution is approximate, often based on estimation, or experience. Fixed point

method, Nelder-Mead algorithm, or gradient methods belong to this technique

[93].

The meta-heuristics is applied for solving of general problems. It combines

objective functions, or heuristics without a deeper insight into their structures.

They can be divided into deterministic, and probabilistic methods [93].

6



2.1. INTRODUCTION TO OPTIMIZATION

Figure 2.1: Simplified system of evolutionary computation technique (adapted
from [143])

Deterministic algorithms are used in cases, where exists a clear relationship

between characteristics of possible solutions and their applicability to a given

problem. Probabilistic algorithms are used when the relationships are not defined,

they are complicated, or the dimension of the search space is too high [93].

Probabilistic methods are based on populations. In this approach, many indi-

viduals, which represent possible solutions of the objective function, are stored

in the memory. Evolutionary computation (EC) is one of the largely explored

probabilistic method, and the simplified system of this technique is depicted on

Figure 2.1.

The EC is inspired by biology, and therefore, technical terms from biology,

genetics, and evolution are used [85]. It simulates mechanisms from evolution,

where processes affecting the optimization are reproduction, mutation, compe-

tition, and selection. The reproduction is important for transfer of the genetic

information from parents to their offspring. The transfer is influenced by defects,

i.e. mutations, which can improve, or worsen the new generation. The competition

is important in a constrained space, where each organism from the population

competes with others to survive in the environment. Due to the competition, the

selection is applied before new reproduction. The fittest organisms will survive

and reproduce the offspring, whereas the less successful will perish [10].

2.1.2 Swarm intelligence

The swarm intelligence (SI) belongs to the group of evolutionary computation

technique. Part of the SI method is particle swarm optimization (PSO) along with

ant colony optimization [13], glowworm swarm optimization [77], or artificial bee

colony algorithm [71].

7



CHAPTER 2. PSO IN HYDROLOGICAL MODELLING

The SI follows five basic principles [95]:

• principle of proximity - the population should be able to make elementary

computations in time and space,

• principle of quality - the population should be able to respond to a quality

factors of the environment,

• principle of diverse response - the population should not delimit its activa-

tions along narrow lines,

• principle of stability - the population should not change its behaviour every

time, when the environment has changed,

• principle of adaptability - the population should be able to change its be-

haviour, if it has a computational value.

In the SI, each individual of a social community (e.g. ant, termite, bee, fish,

bird, etc.) is ordinary, but as a unit they are able to accomplish a complicated task

due to mutual cooperation [14]. The behaviour of organisms follows three simple

rules [119]:

• separation - to avoid an overcrowding and collision (Fig. 2.2a),

• cohesion - to stay close to the neighbours (Fig. 2.2b),

• alignment - to match the direction and magnitude of velocity vector with

the neighbours (Fig. 2.2c).

a b c

Figure 2.2: Rules of behaviour in SI, a) separation, b) cohesion, c) alignment [90]

2.2 Original equations

Particle swarm optimization is a meta-heuristic, stochastic computational tech-

nique, which is inspired by successive and unpredictable fly of birds [73]. The

method has only a few parameters to adjust, and it is relatively easy to implement

8



2.2. ORIGINAL EQUATIONS

and use. The main advantage is also the fact, that PSO does not need gradient

information of the objective function during the iterative search [49, 93, 94].

Particle swarm optimization contains a population of particles i = 1, ...,S,

where S is total number of individuals. Particles represent a potential solution of

the optimization problem, and every new generation of individuals is closer to the

searched optimum. The problem space has dimension d = 1, ...,Dim, where Dim
is total number of parameters.

Each particle i has its own position Xi = (xi
1,xi

2, ...,xi
Dim) in the space, and

velocity Vi = (vi
1,vi

2, ...,vi
Dim), which are stored in the memory. Each particle i also

maintains its previous best position Pi = (pi
1,pi

2, ...,pi
Dim), and the best position

among all particles G= (g1,g2, ...,gDim) [27, 41, 73].

Before the optimization process starts, the population needs to be initialize in

the search space. The initialization of particle’s position is randomly distributed

in the range of [xmin, xmax], and it is calculated as

X= xmin + (xmax − xmin) ·R, (2.3)

where xmin and xmax are boundaries of the search space, R is vector of random

numbers uniformly distributed in the range of [0,1] with length equal to Dim.

Positions can be also initialized through Latin hypercube sampling (LHS),

type of stratified Monte Carlo sampling [91]. The search space is partitioned into

n intervals of equal probability of 1/n, where n is equal to the population size

S. LHS then randomly selects one value from each interval [150]. Due to this

selection, particles are uniformly distributed in the problem space without any

clusters.

The particle’s velocity can be initialized to 0 since the starting positions are

already randomized [10]. Alternatively, the initialization of particle’s velocity can

be randomly distributed in the range of [vmin,vmax]. In the first experiment, the

vmax was set to 100 000, but better approach is to limit the maximum velocity

to the xmax [40]. Some authors [28, 44] set the value of maximum velocity as

vmax = k · xmax, where 0.1 < k < 1. Larger value of maximum velocity facilitates

global exploration, whereas smaller value encourages local exploitation [42, 134].

The original PSO algorithm consists of two main equations. One equation is

for computing particle’s velocity

vi
d(t+1)= vi

d(t)+ c1 ·r1d(t) · (pi
d(t)−xi

d(t))+ c2 ·r2d(t) · (gd(t)−xi
d(t)), (2.4)

and the second equation calculates particle’s position

xi
d(t+1)= xi

d(t)+vi
d(t+1), (2.5)
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where t is time step, r1d and r2d are members of vectors R1 and R2 of random

numbers uniformly distributed in the range of [0,1], respectively, c1 and c2 are

acceleration constants predefined by the user.

The component with Pi in Eq. 2.4 is referred as cognition part, and it repre-

sents the individual experience. The component with G is called social part, and it

tells us about the cooperation among particles within the population [11, 43, 109].

The update of particle’s position according to the original equations is depicted

on Figure 2.3. The pseudo code of PSO algorithm is in Chapters 3 and 4.

Figure 2.3: Updating of particle’s position in PSO algorithm [57]

To improve the optimization ability of the original PSO algorithm, the method

was variously modified. One approach for improving the PSO performance is

adaptation of the topology of particles (Section 2.3). Another approaches are listed

in Section 2.4.

2.3 Topology

Particles in the population interact and create connections due to transfer in-

formation about the best position achieved so far. These connections are called

topology of the swarm. The set of individuals in connection is called the neighbour-

hood [25]. There are many types of topology [75, 76, 117], and the most commonly

used are models called gbest and lbest.

The gbest model represents the method of global search of the problem space.

Each particle is connected with all other particles (Fig. 2.4a). Hence, the informa-

tion is transferred through the whole population [10]. The model has higher speed

of convergence. It gives only one solution from the whole swarm called the best

10
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global particle. This individual acts as an attractant, it pulls other particles until

the whole population converge to this location. The disadvantage of the gbest

model is a possibility of premature convergence to the wrong particle [93].

The lbest model represents the method of local search. Each particle is connec-

ted with k individuals. The k is usually equal to 2, and the topology is a closed

circle. This arrangement is called ring topology (Fig. 2.4b). The model tries to

prevent the premature convergence by more attractants, one in every region of

neighbourhood [81].

Kennedy and Mendes [75] discovered significant improvement using von

Neumann topology. This structure is more densely connected than ring model,

but less densely than gbest model. Each particle shares information with 4 other

individuals (Fig. 2.4c).

Clerc [25] suggested random topology, where each particle is connected with k
particles from the swarm, which are selected randomly. The k number is usually

equal to 3 [26] (Fig. 2.4d).

a b c d

Figure 2.4: Graphical representation of different topologies, a) gbest, b) lbest, c)
von Neumann, d) random

2.4 Modifications of PSO

In the optimization process, the premature convergence could appear, where

the model could converge to the local optimum instead of the global one. Many

researches were devoted avoiding this phenomenon [1, 111, 112].

The PSO method can be modified by different initialization of particles. The

initialization can be made through low discrepancy sequences [135], quasi random

sequence [110], or via opposite population, where the population with better

fitness is selected for the PSO run [66].

11
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Another approach is PSO algorithm with mutation operator. Wang et al. [140]

proposed Cauchy mutation of the global best particle, Pant et al. [108] used

adaptive mutation, or the power mutation operator was applied [65, 149].

The original PSO equation for calculating particle’s velocity (Eq. 2.4) was

modified to improve the optimization performance of the algorithm. Modifications

summarized in this section are related to updating of the velocity from the

previous time step, which is affected by a given parameter. The parameter is

inertia weight (Section 2.4.1), or constriction factor (Section 2.4.2).

Other possibility for increasing the optimization ability is to use distributed

version of the algorithm (Section 2.4.3). In this approach, the population is di-

vided into several complexes, where the PSO algorithm runs at each complex

individually.

All selected modifications, which are described in detail in the following text,

were applied in experimental studies within this thesis. Chapter 3 compared

chosen PSO variants on benchmark optimization problems, Chapter 4 and 5

applied them on real hydrological case studies.

2.4.1 Inertia weight

Inertia weight model was proposed for better control of the exploration and

exploitation. The main goal was to create a modification of PSO, where is no need

to choose vmax, but still ensure good convergence to the searched optimum. The

first integration of the inertia weight into the PSO algorithm appeared in 1998

[43, 125, 126].

The particle’s velocity is calculated as

vi
d = w ·vi

d+ c1 ·r1d · (pi
d−xi

d)+ c2 ·r2d · (gd−xi
d), (2.6)

where w is inertia weight, and the other variables are the same as in Equation

2.4. The equation for calculating particle’s position remains unchanged.

The acceleration constants are usually set to c1 = c2 = 2 [73]. The value of w
can be different. In general, larger value encourages global search of the space

(i.e. exploration), whereas smaller value encourages local search (i.e. exploitation)

[127]. For w > 1, the velocity increases in time, and the particle can reach the

border of the search space. For w < 0, the velocity decreases in time [14].

12
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Modifications of PSO based on inertia weight can be divided into three classes

[102]:

• constant and random inertia weight,

• time varying inertia weight,

• adaptive inertia weight,

and the following text is concerned with each of the group.

2.4.1.1 Constant and random inertia weight

In this class, the inertia weight is constant during the optimization, or it is

determined randomly. This approach does not need any input data for setting the

w value [102].

The constant inertia weight is shown in Equation 2.7. Bansal et al. [5] in their

work set the constant c = 0.7. Consider

w = c. (2.7)

Random inertia weight is calculated as

w = 0.5+ r
2

, (2.8)

where r is random number from the range [0,1], and thus, w is a number from the

interval [0.5,1] [102]. Random inertia weight enables tracking optima in dynamic

environment during the PSO algorithm run [42].

2.4.1.2 Time varying inertia weight

Time varying inertia weight belongs to the group of PSO modifications, which

are defined as a function of time, or a function of a number of iterations. These

methods are linear, or non-linear, the w value can be increasing, or decreasing.

Commonly used linear decline of inertia weight was proposed by Shi and

Eberhart [127]. The w value linearly declines from the initial value wmax to the

final value wmin as

w(iter)= itermax − iter
itermax

· (wmax −wmin)+wmin, (2.9)

where iter is current number of iteration, itermax is maximum number of itera-

tions, wmax = 0.9, and wmin = 0.4.

Following equations describe chaotic models of calculating inertia weight.

Equation 2.10 is called chaotic model, and Equation 2.11 is called chaotic random
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model. The variable z is computed as z = 4 · z · (1 − z), where the initial value

of z is chosen randomly from the range [0,1]. Variable r is random number from

the interval [0,1] [45]. Consider

w(iter)= (wmax −wmin) · itermax − iter
itermax

+wmin · z, (2.10)

w(iter)= 0.5 · r(iter)+0.5 · z. (2.11)

Two different non-linear time varying inertia weights are shown in follow-

ing equations, where iter is current number of iteration, wini is initial inertia

weight randomly selected from the interval [0,1], and u is constant from interval

[1.0001,1.005], often equal to 1.0002 [102]. The equations are

w(iter)= wini ·uiter, (2.12)

w(iter)=
(

2
iter

) 0.3
. (2.13)

2.4.1.3 Adaptive inertia weight

In the adaptive strategy of inertia weight, there is one or more parameters, which

updates the w value through feedback information.

Panigrahi et al. [107] proposed adaptive inertia weight, where each particle

has different w value according to the rank of that particle. Arumugam et al. [3]

used a ratio of gd and average value of pi
d for determining the inertia weight at

each iteration.

Nickabadi et al. [102] proposed adaptive inertia weight with one feedback

parameter. The S parameter determines the success of each ith particle at each

number of iteration iter. The P parameter determines success of the swarm at

each number of iteration based on the success of each particle, where n is size of

the swarm. The corresponding equations are

S i(iter)=
{

1 if f (pi
d(iter))< f (pi

d(iter−1))

0 if f (pi
d(iter))= f (pi

d(iter−1))
, (2.14)

P(iter)=

n∑
i=1

S i(iter)

n
. (2.15)

The inertia weight is then w(iter)= f (P(iter)). When using linear function in this

relationship, w is calculated as

w(iter)= (wmax −wmin) ·P(iter)+wmin, (2.16)

where the range of [wmin,wmax] is [0,1].
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2.4.2 Constriction factor

Constriction factor is a parameter, which was first implemented into PSO algo-

rithm by Clerc in 1999 [24]. It is sometimes called Clerc factor, or Clerc constric-

tion factor. Its incorporation into the velocity equation increases the convergence

of the algorithm [40]. The updated equation is

vi
d = K · (vi

d+ c1 · r1d · (pi
d−xi

d)+ c2 · r2d · (gd−xi
d)), (2.17)

where K is constriction factor and the other variables are the same as in Equation

2.4. The equation for calculation particle’s position remains the same.

The value of constriction factor is calculated by

K = 2

|2−ϕ−
√
ϕ2 −4 ·ϕ |

, (2.18)

where ϕ is positive constant, for which ϕ= c1 + c2, and ϕ> 4 [24, 27].

Acceleration constants are usually c1 = c2 = 2.05, and thus, ϕ = 4.1, and

K = 0.7298 [24, 40]. Putting these values into Equation 2.17 leads to

vi
d = 0.7298 · (vi

d+2.05 ·r1d · (pi
d−xi

d)+2.05 ·r2d · (gd−xi
d)). (2.19)

After adjustment of Equation 2.19, we get Equation 2.20, which is equivalent to

PSO equation using parameter of inertia weight (Eq. 2.6) with parameters equal

to w = 0.7298, and c1 = c2 = 1.4962 [40]. Therefore,

vi
d = 0.7298 ·vi

d+1.4962 ·r1d · (pi
d−xi

d)+1.4962 ·r2d · (gd−xi
d). (2.20)

Eberhart and Shi [40] compared in their work optimization PSO with iner-

tia weight and with constriction factor. In all tested benchmark functions, the

modification with constriction factor gave better results, and the speed of conver-

gence was higher. Further improvement was achieved with the condition when

vmax = xmax.

2.4.3 Distributed version

Distributed version of optimization algorithm is an important strategy for improv-

ing the optimization performance. This approach does not influence the velocity

equation, it influences the swarm of particles itself.

Duan el al. [34] suggested the method called Shuffled complex evolution (SCE),

where the population is divided into several complexes, and the optimization

algorithm runs at each complex individually. After the termination criteria is
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met, particles return to the swarm, and the shuffling and redistributing to sub-

swarms take place. The SCE method is robust, effective and efficient for many

optimization problems. It was also included to the PSO algorithm as a method

SCE-PSO [152], or DMS-PSO (Dynamic multi-swarm PSO) [80].

In the SCE-PSO method, the population S is divided into p complexes, where

each complex contains m particles. From each complex is chosen q particles

according to the best achieved fitness values. The selected particles create a sub-

swarm. At each sub-swarm runs the PSO algorithm until the maximum number

of iteration T is achieved. After that, all particles return to the swarm, the

population is shuffled, particles are sorted based on their fitness values, and the

swarm is again divided into p complexes. The whole procedure is repeated until

the termination criteria is met. Each step of the SCE-PSO algorithm is displayed

on Figure 2.5, and is more explained in the original paper of Yan et al. [152].

Figure 2.5: Scheme of algorithm SCE-PSO [152]

The difference in DMS-PSO method is that the swarm is dynamic, and the

size of population is small. The whole population is divided into many small

complexes, which are often shuffled based on various procedures [80]. Compared

to the SCE-PSO algorithm, in the DMS-PSO is the PSO optimization used for all

particles from the swarm, not only for particles with the best fitness value.
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2.5 Objective functions

During optimization, the main aim is to find an optimal value of an objective

function f . In this thesis, the optimization is a minimization. The process of

searching the minimal value depends on the used optimization method, but the

goal remains the same.

This section describes benchmark problems and hydrological indexes, which

are all objective functions used in this doctoral thesis. For testing and comparison

purposes, the benchmark problems are solved. Chapter 3 contains details on

comparison of chosen PSO modifications on 11 benchmark problems. Part of the

research in Chapter 4 also deals with benchmark functions due to testing new

proposed PSO variant.

Optimization based on hydrological indexes is commonly used in practical

experiments within the field of hydrological modelling. Second part of Chapter 4

summarizes results of optimization of hydrological model Bilan, and Chapter 5

displays training of artificial neural network with PSO algorithm. For both studies,

chosen hydrological indexes were optimized.

2.5.1 Benchmark problems

Benchmark problems serve for comparing different optimization techniques, or

for testing new proposed optimization method. Benchmark functions are precisely

defined, the user knows their formula, range of the search space, and the position

of the optimal value. Results of finding the optimal value are comparable across

different research for all scientists.

The benchmark objective functions used in this doctoral thesis were prepared

for the special session on real-parameter single objective optimization of Congress

on Evolutionary Computation 2005 [131]. The analysed uni-modal functions,

which have only one local optimum, are Sphere, Schwefel 1.2, Elliptic rotated,

Schwefel 1.2 with noise, and Schwefel 2.6 function (Fig. 2.6, f1 − f5). From multi-

modal problems, which have more local optima, I analysed Rosenbrock, Griewank

rotated, Ackley rotated, Rastrigin, Rastrigin rotated, and Weierstrass rotated

function (Fig. 2.6, f6 − f11). All functions have shifted global optimum.

The summary of selected benchmark problems is in Table 2.1. The range

defines the range of the searched space with the dimension Dim, and f (Xopt)

shows the functional value of the shifted global optimum. For formulas of the

benchmark problems, see Table 3.2 in the next chapter, or Suganthan et al. [131].
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Figure 2.6: Selected uni-modal ( f1 − f5), and multi-modal ( f6 − f11) benchmark
functions [131]

2.5.2 Hydrological indexes

Optimization methods in hydrological modelling are used for calibration of models,

estimation of rainfall-runoff relationships, meteorological forecasts, or runoff

predictions [83, 148, 158]. Hydrological index serves as an objective function, and

it also determines the quality of hydrological model.

Dawson et al. [29] divided objective criteria widely used in hydrology into

three classes:

• statistical parameters of observed and modelled time series,

• statistical parameters of the residual error,

• dimensionless coefficients.
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Table 2.1: Selected benchmark functions

Function Range f (Xopt)

f1 Sphere [−100,100]Dim −450
f2 Schwefel 1.2 [−100,100]Dim −450
f3 Elliptic rotated [−100,100]Dim −450
f4 Schwefel 1.2 noise [−100,100]Dim −450
f5 Schwefel 2.6 [−100,100]Dim −310
f6 Rosenbrock [−100,100]Dim 390
f7 Griewank rotated [0,600]Dim −180
f8 Ackley rotated [−32,32]Dim −140
f9 Rastrigin [−5,5]Dim −330
f10 Rastrigin rotated [−5,5]Dim −330
f11 Weierstrass rotated [−0.5,0.5]Dim 90

The group of statistical parameters of observed and modelled time series is

characterized using standard descriptive statistics. The main magnitudes are

minimum, maximum, mean, variance, standard deviation, or lag-one autocorrela-

tion coefficient [22, 29]. This group will not be used for optimization within this

thesis, because the relationship between observed and modelled values needs to

be taking into account.

In the class of statistical parameters of the residual error, the residuals present

difference between observed and simulated value. The group is divided into two

types of error. If the criteria provide quantitative assessment of the model in

the same units as the variables of interest, they are called absolute errors. To

this category belong absolute maximum error (AME), mean error (ME), mean

absolute error (MAE), mean squared error (MSE), root mean squared error

(RMSE), etc. If the statistical parameters of the residual error are not dependent

on the units, they are called relative errors, which are expressed in percentage or

ratios. The category of relative errors includes mean relative error (MRE), mean

squared relative error (MSRE), relative volume error (RV E), etc.

The dimensionless coefficients determine model performance, and they are

often used for optimization in hydrological modelling. Within this group belong

Nash-Sutcliffe coefficient (R2), coefficient of persistence (PI), etc.

The summary of selected objective functions frequently used in hydrologi-

cal modelling is listed in Table 2.2, where OBS is observed variable, MOD is

modelled value, OBS is average of observed values, and n is total number of

observations. The summation in the equations is in terms of temporal coordi-

nates. The spatial coordinates are not used within this thesis, because the outflow
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Table 2.2: Summary of selected objective functions frequently used in hydrological
modelling

Criterion Equation Range The best

AME max(|OBSi −MOD i|) [0;+∞] 0

ME
1
n

n∑
i=1

(OBSi −MOD i) [−∞;+∞] 0

MAE
1
n

n∑
i=1

(|OBSi −MOD i|) [0;+∞] 0

MSE
1
n

n∑
i=1

(OBSi −MOD i)2 [0;+∞] 0

RMSE

√
1
n

n∑
i=1

(OBSi −MOD i)2 [0;+∞] 0

MRE
1
n

n∑
i=1

(
OBSi−MOD i

OBSi

)
[−∞;+∞] 0

MSRE
1
n

n∑
i=1

(
OBSi−MOD i

OBSi

) 2
[0;+∞] 0

RV E

n∑
i=1

(OBSi−MOD i)

n∑
i=1

(OBSi)
[−∞;+∞] 0

R2 1−
n∑

i=1
(OBSi−MOD i)2

n∑
i=1

(OBSi−OBS)2
[−∞;1] 1

PI 1−
n∑

i=1
(OBSi−MOD i)2

n∑
i=1

(OBSi−OBSi−1)2
[−∞;1] 1

from the catchment at specific location is analysed (Chapter 4), or drought index

characteristic for the whole catchment is simulated (Chapter 5).

2.6 Hydrological case studies

The main topic of this doctoral thesis is application of particle swarm optimiza-

tion in hydrological modelling. Therefore, this section provides several recent

hydrological case studies with utilization of PSO.

Jiang et al. [70] applied PSO for calibration of the rainfall-runoff model HIMS.

They compared classical PSO algorithm with PSO methods using complexes and

shuffling, and they found out that PSO with sub-swarms are significantly better

than the original one.

Zambrano-Bigiarini and Rojas [154] proposed R package called hydroPSO,

which serves to calibrate hydrological models. They compared six PSO algo-

rithms on ten objective functions, and concluded that hydroPSO is better for nine
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functions. The hydroPSO was afterwards applied for calibration of hydrological

model SWAT and groundwater flow model MODFLOW. The package showed

good optimization ability, and it was effective and efficient for both surface and

groundwater flow.

Calibration of groundwater flow was also solved by Gaur et al. [48]. They

applied PSO in the catchment of the river Dore in France for estimating two

hydraulic problems: 1) maximum amount of water pumping from a groundwater

body, and 2) minimum costs of a new pumping system. They found out that

the PSO is suitable for determining the optimal placing of wells, and also for

determining the optimal volume of pumped water.

Lü et al. [84] applied PSO algorithm for estimation of soil water content in

root zone. Their results show that PSO was suitable for this type of research, if

the data from the topsoil were available. The model was also effective when there

is no information about hydraulic conductivity of the soil.

PSO has also important use in training of the artificial neural networks. The

optimization method was used to determine the value of the weights, which

minimalized the error of the model. This approach was very simple, therefore, the

PSO algorithm replaced the algorithm of the back-propagation [20, 74, 93].

Chau [21] proposed a model with multilayer perceptron trained by parti-

cle swarm optimization. He applied the model in the catchment of the Shing

Mun River for estimation of water level. The results of his study show that

the model achieved higher accuracy in shorter time compared to the method of

back-propagation.

Good results were also obtained by Senthil Babu and Vinayagam [124], who

combined PSO with ANN for prediction of the roughness of the surface. The

forecast of precipitation with ANN trained by PSO was also sufficient and accurate

[59, 147]. Combination of ANN models with PSO was also an effective tool for

forecasting of drought indices, and thus, it was suitable for prevention of the

drought event [8, 32, 63].
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3
A COMPARISON OF SELECTED MODIFICATIONS OF

THE PARTICLE SWARM OPTIMIZATION ALGORITHM

Abstract

In this chapter, 27 modifications of the original particle swarm optimization

(PSO) algorithm are compared. The analysis evaluated nine basic PSO types,

which differ according to the swarm evolution as controlled by various inertia

weights and constriction factor. Each of the basic PSO modifications was analysed

using three different distributed strategies. In the first strategy, the entire swarm

population is considered as one unit (OC-PSO), the second strategy periodically

partitions the population into equally large complexes according to the particle’s

functional value (SCE-PSO), and the final strategy periodically splits the swarm

population into complexes using random permutation (SCERand-PSO).

All variants are tested using 11 benchmark functions that were prepared for

the special session on real-parameter optimization of CEC 2005. It was found

that the best modification of the PSO algorithm is a variant with adaptive inertia

weight. The best distribution strategy is SCE-PSO, which gives better results

than do OC-PSO and SCERand-PSO for seven functions. The Sphere function

This chapter is based on the publication: JAKUBCOVÁ M., MÁCA P., AND PECH P., 2014:
A comparison of selected modifications of the particle swarm optimization algorithm. Journal of
Applied Mathematics, vol. 2014, Article ID 293087, 10 pp, doi: 10.1155/2014/293087.
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showed no significant difference between SCE-PSO and SCERand-PSO. It follows

that a shuffling mechanism improves the optimization process.

3.1 Introduction

Particle swarm optimization (PSO) is a stochastic, meta-heuristic computational

technique for searching the optimal regions from multidimensional space. It is an

optimization method inspired by social behaviour of organisms, and was estab-

lished by Kennedy and Eberhart in 1995 [73]. The technique is based on iterative

work with a population. PSO is an evolutionary computation (EC) method within

the group of techniques known as swarm intelligence (SI) [31, 143]. PSO mimics

the movement of flock of birds or school of fish using simple rules for adjusting

the particle location, which is adjusted by means of its velocity information.

PSO’s main benefits are that there are few parameters to adjust, and the

method is easy to implement. Another advantage of PSO over derivative based

local search methods is that there is no need for the gradient information during

the iterative search when solving complicated optimization problems [49, 93, 94].

While it has been successfully applied to solve many test and real-life opti-

mization problems [4, 50, 100], the PSO method often suffers from premature

convergence, and, as a result, from the optimization process’s finding a merely

local optimum. In order to achieve better algorithm performance, the original

PSO algorithm has been modified by adding the parameter inertia weight or

constriction factor [18, 102, 125, 127].

Another important strategy for improving EC algorithms relies on division

of the original population into sub-swarms or complexes which simultaneously

search across the parametric space and exchange information according to some

prescribed rule. Periodic shuffling is a typical example [34, 100, 138].

In order to explore the interaction of modifications in particle velocities to-

gether with the different types of distributed PSO versions, this chapter analyzes

27 different PSO variants. Nine modifications of the PSO algorithm, in which the

original particle velocities are altered using different approaches for setting the

inertia weights and constriction factor [102], are combined with three strategies

for swarm distribution. The population is either considered as one unit (OC-PSO),

or the swarm is divided into several complexes, either according to the functional

value (SCE-PSO) [34], or randomly (SCERand-PSO).

The remainder of this chapter is organized as follows. Section 3.2 describes the

particle swarm optimization method. The original equations and modifications
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of PSO algorithm are included. Section 3.3 describes different strategies for

distribution of PSO. The experiment and obtained results are compared in Section

3.4. Conclusions are discussed in Section 3.5.

3.2 Particle swarm optimization

Particle swarm optimization is a global optimization method applied to find

the optimal solution Xopt of objective function f . The sought optimum is most

generally a minimum value. There exists a population of particles i = 1, ..,S,

where S is the total number of individuals. All particles search through the

problem space of dimension d = 1, ..,Dim, where Dim is the total number of

dimensions. Each particle stores information about its position and velocity. The

vector of the ith particle’s position is Xi = (xi
1,xi

2, ...,xi
Dim), the vector of the ith

particle’s velocity is Vi = (vi
1,vi

2, ...,vi
Dim). Each particle maintains a memory of

its previous best position which is represented as Pi = (pi
1,pi

2, ...,pi
Dim). The best

position among all particles from the swarm is represented as G= (g1,g1, ...,gDim).

Equations (3.1) and (3.2) are the original PSO equations for computing a new

velocity and new position. Consider

vi
d(t+1)= vi

d(t)+ c1 · r1 · (pi
d(t)−xi

d(t))+ c2 · r2 · (gd(t)−xi
d(t)), (3.1)

xi
d(t+1)= xi

d(t)+vi
d(t+1), (3.2)

for all i ∈ 1..S, d ∈ 1..Dim, where t is a time step, c1 and c2 are acceleration

constants predefined by the user, r1 and r2 are random numbers uniformly

distributed in [0,1]. The component with Pi in Eq. (3.1) is known as the cognition

part, and it tells us about the individual experience of the particle. The component

with G is called the social part, and it represents the cooperation among particles

within the swarm [109].

The simplified original PSO algorithm is shown in Algorithm 1. Initialization

of a particle’s position is randomly distributed in the range of [xmin, xmax] as

shown in

X= xmin + (xmax − xmin) · rand(), (3.3)

where rand() is a random number uniformly distributed in [0,1], while xmin

and xmax are boundaries of the search space, and their values depend on the

benchmark function [57]. In this chapter, initialization of particles is through

Latin hypercube sampling (LHS).
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CHAPTER 3. A COMPARISON OF SELECTED MODIFICATIONS

Algorithm 1 Original PSO algorithm

1: initialize the position and velocity of all particles
2: repeat
3: for each particle i = 1 to S do
4: if ( f (Xi)< f (Pi)) then
5: Pi =Xi
6: end if
7: G= min{P0, P1, ..., PS}
8: for each dimension d = 1 to Dim do
9: vi

d = vi
d+ c1 · r1 · (pi

d−xi
d)+ c2 · r2 · (gd−xi

d)
10: xi

d = xi
d+vi

d
11: end for
12: end for
13: until termination criteria is met

Particle’s initial velocity could be randomly distributed in the range of [−vmax,

vmax], or alternatively, the velocities could be initialized to 0, since the starting

positions are already randomized [10]. In initial experiments, the value of vmax

was set to 100 000, in subsequent experiments and applications it was found, that

a better approach is to limit vmax to xmax [40]. Other authors [28, 44] have set the

value of maximum velocity as vmax = k · xmax, where 0.1< k < 1. A larger value of

vmax facilitates global exploration, whereas a smaller value of vmax encourages

local exploitation [41]. In this chapter, vmax = xmax was applied for initial particle

velocity.

3.2.1 Modifications of the PSO algorithm

The original PSO equation was modified to improve the ability for optimization.

The first group of modifications consists in incorporating the parameter of inertia
weight w, the second in using the parameter of constriction factor K . In the

present study, nine variants of PSO algorithm were used and tested (Tab. 3.1),

including eight modifications using w and one modification with K .

The use of the inertia weight parameter (Eq. (3.4)) was developed by Shi and

Eberhart [127], and it has provided for improved performance.

vi
d = w ·vi

d+ c1 · r1 · (pi
d−xi

d)+ c2 · r2 · (gd−xi
d). (3.4)

There are many methods of computing the inertia weight value. Nickabadi

et al. [102] divided those techniques into three classes which are applied in

this chapter: 1) constant and random inertia weight, 2) time varying inertia

weight strategies, and 3) adaptive inertia weight. They compared all modifications
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Table 3.1: Summary of PSO modifications

Label Equation

AdaptW w = (wmax −wmin) ·Ps +wmin
ChaoticRandW w(iter)= 0.5 · rand()+0.5 · z
ChaoticW w(iter)= (wmax −wmin) · itermax−iter

itermax
+wmin · z

ConstantW w = c
ConstrFactor K = 2

|2−ϕ−
p
ϕ2−4·ϕ |

LinTimeVaryingW w(iter)= itermax−iter
itermax

· (wmax −wmin)+wmin

NonlinTimeConstW w(iter)= wini ·uiter

NonlinTimeW w(iter)= ( 2
iter

) 0.3

RandomW w = 0.5+ rand()
2

employing benchmark functions, and proposed a PSO algorithm using adaptive

inertia weight.

The constant (“ConstantW”) and random (“RandomW”) inertia weights are

used, where no input information is required. Bansal et al. [5] discussed their

work with Shi and Eberhart [125], and set the constant inertia weight equal to

0.7. Gimmler et al. [51] proposed using constant inertia weight for hybrid particle

swarm optimization. The best constant w was 0.2. The constant inertia weight for

the “ConstantW” modification was set to 0.7 for this study, because the experiment

is more similar to that of Bansal et al. [5]. Eberhart and Shi [42] had proposed

random inertia weight, where w is a variable with uniform distribution within

[0.5,1].

Time varying inertia weight is defined as a function of time or number of

iterations, and this method may be linear or nonlinear. In linear decreasing

w (“LinTimeVaryingW”) developed by Shi and Kennedy [127], inertia weight

decreases linearly from wmax = 0.9 to wmin = 0.4. This method of determining the

inertia weight value is very common [151, 153]. Eberhart and Shi [40] compared

linearly decreasing w with constriction factor, and found that better performance

was achieved when constriction factor was used. The chaotic model (“ChaoticW”)

and chaotic random model (“ChaoticRandW”) of inertia weight were proposed

by Feng et al. [45], where z = 4 · z · (1− z), and the initial value of z is uniformly

distributed in [0,1]. Two modifications of nonlinear time varying inertia weight

are used. The “NonlinTimeW” and the “NonlinTimeConstW”, where parameter u
is set to 1.0002, wini is the initial value for inertia weight uniformly distributed

in [0,1] and iter is the actual number of functional evaluations [102].
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CHAPTER 3. A COMPARISON OF SELECTED MODIFICATIONS

One modification of adaptive inertia weight proposed by Nickabadi et al. [102]

is used (“AdaptW”), because it had demonstrated the best performance in the

original paper. The w value is adapted based on one feedback parameter. The

value S shows the success of particles, and is defined as in Eq. (3.5), Ps is the

success percentage of the swarm, and it is computed as in Eq. (3.6), where n is the

size of the population. The range of inertia weights [wmin,wmax] is [0,1]. Consider

S(i, t)=


1 if f it(pi

d(t))< f it(pi
d(t−1))

0 if f it(pi
d(t))= f it(pi

d(t−1))
, (3.5)

Ps(t)=

n∑
i=1

S(i, t)

n
. (3.6)

Beyond variants using inertia weight, the next modification of the original

PSO algorithm consists in incorporating the parameter of constriction factor

(Eq. (3.7) and (3.8)). This strategy was first used by Clerc [24], and it increases

convergence of the algorithm. The method is called “ConstrFactor”. Another

approach to constriction factor is that of Bui et al. [18]. They proposed a time-

dependent strategy, where they used nonlinear decay rules to adapt K . Their

results are not better than those obtained when using the setting in accordance

with Clerc [24], and therefore, the K value was calculated using

vi
d = K · (vi

d+ c1 · r1 · (pi
d−xi

d)+ c2 · r2 · (gd−xi
d)), (3.7)

K = 2

|2−ϕ−
√
ϕ2 −4 ·ϕ |

, (3.8)

where ϕ= c1 + c2, and ϕ> 4.

3.3 Distribution of PSO

All nine modifications are used with three strategies of swarm distribution (SD).

Changes in behaviour of the population for each modification and strategy were

observed. The first distributed strategy considered the whole population as one

unit called it OC-PSO. In the next SD, the population was divided into several

complexes according to the particle’s functional value (SCE-PSO), or through

random permutation (SCERand-PSO).
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3.3. DISTRIBUTION OF PSO

3.3.1 One complex strategy (OC-PSO)

In the OC-PSO method, the entire population is considered as a single unit. All

particles participate in the PSO algorithm and share information about the best

position achieved so far.

3.3.2 Shuffled complex evolution (SCE-PSO)

During the optimization process a premature convergence to a local optimum

could appear instead of the global optimum. Many researchers in this field are

devoted avoiding this premature convergence [1, 111, 112]. To address this, Duan

et al. [34] proposed shuffled complex evolution (SCE). Yan et al. [152] combined

SCE with the particle swarm optimization algorithm (SCE-PSO).

The SCE-PSO method is described simply below, and is shown in Algorithm 2.

After the first initialization, the entire population is divided into sub-swarms

according to the functional values of the individuals. All particles are sorted

in increasing order, and than each ith complex receives the parent individuals

Xi,Xi+NC,Xi+2NC, ..., where NC is the number of complexes [34, 89]. The PSO

algorithm is applied at each complex. After running a predefined number of

iterations in all complexes, all particles return to the swarm, and the shuffling

and redistribution to complexes according to the functional value are again made.

This is repeated until the termination criteria are satisfied.

The shuffling mechanism preserves the population diversity and helps to

prevent premature convergence. For this study, the shuffling was performed after

the running of a predefined number of generations in each complex [89]. Another

approach allows the shuffling to occur randomly with some associated probability

[142].

In the original SCE-PSO method [152], only a predefined number of particles

from each complex is chosen to participate in the PSO algorithm. In this chapter,

the number of participating individuals is equal to the number of particles in the

complex. This means, that all particles from the complex are inputs to the PSO

algorithm.

3.3.3 Random shuffled complex evolution (SCERand-PSO)

Random shuffled complex evolution differs from SCE-PSO in that the entire

population is divided into complexes according to random permutation. There is
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CHAPTER 3. A COMPARISON OF SELECTED MODIFICATIONS

Algorithm 2 Algorithm SCE-PSO

Require: S, NC, N_comp , max_eval , fitness_lim
1: initialize population X
2: while (number_eval ≤ max_eval) || (fitness_best ≥ fitness_lim) do
3: E← sorted X in increasing order according to the functional value
4: for i = 1 to NC do
5: Ai ← divided E into NC complexes
6: run PSO
7: for j = 1 to N_comp do
8: if ( f (Xj)< f (Pj)) then
9: Pj =Xj

10: end if
11: if ( f (Xj)< f (G)) then
12: G=Xj
13: end if
14: end for
15: end for
16: end while

no sorting by functional value. The algorithm for computing random permutation

is according to Durstenfeld [38].

Algorithm 2 is applied for the SCERand-PSO, except that at line 3 the follow-

ing substitution is made: E← sorted X according to random permutation.

3.4 Experiment and results

3.4.1 Experimental setup

After running several tests with different parameter settings, the following setup

was found to be the best.

The position of individuals is initialized randomly between lower and upper

bounds of the search space through Latin hypercube sampling (LHS). The range

of the problem space depends on the benchmark function (Tab. 3.2). LHS is a

type of stratified Monte Carlo sampling first described by McKay, Beckman and

Conover in 1979 for the analysis of output from a computer code [91]. The range,

which is in PSO optimization defined by lower and upper bounds of the search

space, is portioned into n intervals of equal probability 1/n. The n value is in

PSO equal to the population size. LHS then randomly selects one value from each

interval [150]. Due to this selection, particles are uniformly distributed in the

search space.
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CHAPTER 3. A COMPARISON OF SELECTED MODIFICATIONS

In accordance with Eberhart and Shi [40], the maximum value of velocity is

set to xmax. The value of acceleration constants c1 and c2 in variants with inertia

weight is set to 2. In modifications with constriction factor, the K value is set to

0.729 and c1 = c2 = 1.49445 [40].

According to Eberhart and Shi [43], the population size is set to 25. In the

OC-PSO method, all particles are solved together. In the SCE-PSO and SCERand-

PSO methods, individuals are uniformly divided into 6 complexes, where each

complex contains 25 particles. The number of shuffling is set to 5. The maximum

number of function evaluations is 10 000 ·Dim, and the dimension of the solution

is set to 30. For analyzing the results, the total number of optimization runs is

set to 25. Each run stops when the maximum number of evaluations is achieved.

3.4.2 Benchmark problems

For comparison purposes, 11 benchmark functions prepared for the special session

on real-parameter optimization of CEC 2005 [131] were used. All functions have

shifted global optima, some of them is rotated or with noise. The benchmark

functions are summarized in Table 3.2. The aim is to find the minimum of all

functions.

The optimization problem is constrained except for function f7. Particles

move only in restricted space and cannot cross the boundaries. This means, that

each position of particle i is bounded by lower and upper limits [19]. In the

PSO algorithm, it is reflected such that the particles must lie within the range

[xmin, xmax]. If a new particle position is outside the boundaries, that particle

retains the position of its parent. In function f7, the global optimum is situated

outside the range [131], and therefore, the optimization problem is unconstrained,

and particles can cross the boundaries.

There exist two versions of the PSO algorithm: global and local. In the global

variant, the neighborhood consists of all particles of the swarm. In the local

variant, each particle is assigned to a neighborhood consisting of a predefined

number of particles [19, 113]. For the OC-PSO method, the global variant is used.

For the SCE-PSO and SCERand-PSO, the local variant is used, and particles

share the information about their best positions only with other particles from

a given complex.
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3.4.3 Results and discussion

The non-parametric Wilcoxon test was used for statistical comparison. Inputs to

those calculations were the best fitness values achieved for all modifications. The

null hypothesis H0 of the Wilcoxon test is that differences between algorithms

have a median of zero. The H0 is rejected if the p-value is less than 0.05 [39, 47].

Algorithms were written in C++, and computations of p-value and graphs were

made in the program R.

Table 3.3 reflects the best modification and distributed strategy for each func-

tion. In the table, the minimum, 25% quartile, median, 75% quartile, maximum,

mean and standard deviation are indicated. All 25 program runs of each modi-

fication and strategy were compared in each numbered evaluation. The values

in Table 3.3 reflect the best fitness achieved, and report other statistical indices

belonging to the same numbered evaluation. As can be seen, strategy SCE-PSO

produced the best solution in seven functions. Strategy SCERand-PSO produced

the best solution in two functions ( f9, f10), and in one function ( f5), the best

solution was from strategy OC-PSO. For function f1, there was no significant

difference between strategy SCE-PSO and SCERand-PSO.

Upon closer examination and as seen in Table 3.4, “AdaptW” and “Nonlin-

TimeConstW” are the best modifications for unimodal functions ( f1 - f5). The

poorest variants are “ConstantW” and “ConstrFactor”. The best PSO modification

for multimodal functions ( f6 - f11) is “AdaptW”, and the poorest is “ConstantW”.

For rotated functions ( f3, f7, f8, f10, f11), the best modification of the PSO algo-

rithm appears to be “AdaptW”, and the poorest is “CostantW”. For functions where

there is no transformation matrix to rotate them is the best variant “AdaptW”,

and the poorest are “ConstantW” and “ConstrFactor”.

It is clear that the best modification of the particle swarm optimization al-

gorithm for the selected benchmark functions is “AdaptW”, i.e. adaptive inertia

weight. The variant called “NonlinTimeConstW” also produced good results. On

the other hand, the poorest modifications appear to be “ConstantW” and “Constr-

Factor”.

The convergence to the global optimum using particle swarm optimization

is good, but only in three of the eleven benchmark functions is the obtained

error value less than 10−8. In spite of this, the shuffling mechanism improves the

optimization. Strategies SCE-PSO and SCERand-PSO are better than OC-PSO

in ten functions.

The global minimum was achieved in three benchmark functions - f1, f2 and f7,
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Table 3.4: Estimation of the best and poorest modifications

f1 Best Poorest
OC-PSO AdaptW, ChaoticRandW, ConstantW

ChaoticW, NonlinTimeConstW
SCE-PSO AdaptW ConstantW
SCERand-PSO AdaptW, NonlinTimeConstW ConstantW

f2 Best Poorest
OC-PSO AdaptW, LinTimeVaryingW ConstrFactor
SCE-PSO AdaptW ConstrFactor
SCERand-PSO AdaptW ConstrFactor

f3 Best Poorest
OC-PSO LinTimeVaryingW ConstantW
SCE-PSO AdaptW, NonlinTimeW ConstantW
SCERand-PSO AdaptW, NonlinTimeW ConstantW, RandomW

f4 Best Poorest
OC-PSO ChaoticRandW, LinTimeVaryingW ConstrFactor
SCE-PSO NonlinTimeConstW ConstrFactor
SCERand-PSO NonlinTimeConstW ConstrFactor

f5 Best Poorest
OC-PSO ChaoticRandW, NonlinTimeConstW ConstantW
SCE-PSO ChaoticRandW, ChaoticW, ConstantW

NonlinTimeConstW
SCERand-PSO ChaoticRandW, ChaoticW, ConstantW

LinTimeVaryingW, NonlinTimeConstW
f6 Best Poorest

OC-PSO ChaoticRandW, NonlinTimeConstW ConstantW
SCE-PSO AdaptW ConstantW
SCERand-PSO AdaptW ConstantW

f7 Best Poorest
OC-PSO NonlinTimeConstW ConstantW, RandomW
SCE-PSO NonlinTimeConstW ConstantW, ConstrFactor
SCERand-PSO AdaptW, NonlinTimeW ConstantW, ConstrFactor,

LinTimeVarying
f8 Best Poorest

OC-PSO AdaptW ConstrFactor
SCE-PSO AdaptW LinTimeVarying
SCERand-PSO AdaptW ConstantW, ConstrFactor,

LinTimeVaryingW,
NonlinTimeConstW
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Table 3.4: Continued

f9 Best Poorest
OC-PSO ChaoticW ConstantW, ConstrFactor,

RandomW
SCE-PSO ChaoticW ConstantW, ConstrFactor
SCERand-PSO ChaoticW ConstantW

f10 Best Poorest
OC-PSO ChaoticRandW ConstantW
SCE-PSO ChaoticW ConstantW
SCERand-PSO ChaoticRandW, ChaoticW, ConstantW

LinTimeVaryingW
f11 Best Poorest

OC-PSO AdaptW, LinTimevaryingW, ConstantW, ConstrFactor
NonlinTimeConstW, NonlinTimeW

SCE-PSO LinTimevaryingW ConstantW, ConstrFactor,
RandomW

SCERand-PSO AdaptW ConstantW, ConstrFactor,
RandomW

and the results are comparable with those of Hansen [55], who compares eleven

optimization algorithms on twelve functions. The particle swarm optimization

algorithm achieved the global minimum in functions f1, f2, f3, f6 and f7. Obtained

results using SCE-PSO are better than those of the optimization algorithms BLX-

MA and DE, and are as good as those from CoEVO as reported by Hansen [55].

Bui et al. [18] achieved the global optimum in two unimodal functions f1 and

f2 using the PSO method APSO1, and in three unimodal functions f1, f2 and

f4 using the DPSO method. APSO is PSO algorithm with adaptive constriction

factor, and in DPSO, the bound of the velocity is adapted. None of their algorithms

converge to the global minimum in multimodal functions [18]. In this regard,

results obtained in this chapter are better.

Nickabadi et al. [102] compared six inertia weight adjusting methods on 15

test problems with dimension set to 30. If looking only at functions solved for

this study, Nickabadi et al. [102] achieved the global optimum in functions f1, f2

and f8. They obtained the best results using the adaptive inertia weight, which

they had proposed (modification “AdaptW” in this chapter). Their results are

comparable with those achieved in the present study. The difference being that

all functions analysed in this chapter have shifted global optimum, whereas in

Nickabadi et al. [102] did not.

Figure 3.1 presents the convergence graphs for each function while utilizing

36



3.5. CONCLUSIONS

the best modification of the PSO algorithm. The x-axis indicates the number of

function evaluations, and the y-axis the logarithmic value of the best fitness,

which is the difference between the searched and the best achieved functional

value. A decline with the number of evaluations is clearly visible for all functions,

thus indicating the approach to the global optimum.

3.5 Conclusions

This chapter compared 27 variants of particle swarm optimization algorithm.

Eight modifications were performed using the parameter inertia weight and one

modification using constriction factor. Both parameters improved the optimization.

All modifications were tested with three strategies of swarm distribution, which

were in terms of population. The population was either considered as a single unit

(OC-PSO), or it was divided into several complexes. Division into complexes was

made according to the functional value of each particle (SCE-PSO), or through

random permutation (SCERand-PSO).

The main aim of this study was to find the global minima of eleven benchmark

functions prepared for the special session on real-parameter optimization of CEC

2005. The achievement of the minimum is when the obtained error value is

less than 10−8. The global minimum was obtained in two unimodal functions

( f1 and f2), and in one multimodal function ( f7). The original particle swarm

optimization has slow convergence to the global optimum, but the shuffling

mechanism improves the optimization.

The best modification of the PSO algorithm is the variant called “AdaptW”.

The best choice for selected benchmark functions is to use the parameter of inertia

weight, where the w value is adapted based on a feedback parameter. The best

strategy for swarm distribution is SCE-PSO. Shuffled complex evolution particle

swarm optimization with allocation of particles into complexes according to their

functional values is better than OC-PSO and SCERand-PSO.
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Figure 3.1: Convergence graphs for best fitness of the best modifications and
strategy of PSO for functions f1- f11 according to Table 3.3
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Figure 3.1: Continued
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PARAMETER ESTIMATION IN RAINFALL-RUNOFF

MODELLING USING DISTRIBUTED VERSIONS OF

PARTICLE SWARM OPTIMIZATION ALGORITHM

Abstract

The presented chapter provides the analysis of selected versions of the parti-

cle swarm optimization (PSO) algorithm. The tested versions of the PSO were

combined with the shuffling mechanism, which splits the model population into

complexes, and performs distributed PSO optimization. One of them is a new

proposed PSO modification - APartW, which enhances the global exploration

and local exploitation in the parametric space during the optimization process

through the new updating mechanism applied on the PSO inertia weight. The

performances of four selected PSO methods were tested on 11 benchmark opti-

mization problems, which were prepared for the special session on single-objective

real-parameter optimization CEC 2005. The results confirm, that the tested new

APartW PSO variant is comparable with other existing distributed PSO versions

- AdaptW and LinTimeVarW. The distributed PSO versions were developed for

This chapter is based on the publication: JAKUBCOVÁ M., MÁCA P., AND PECH P., 2015:
Parameter estimation in rainfall-runoff modelling using distributed versions of particle swarm
optimization algorithm. Mathematical Problems in Engineering, vol. 2015, Article ID 968067, 13
pp, doi: 10.1155/2015/968067.
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CHAPTER 4. PARAMETER ESTIMATION IN RAINFALL-RUNOFF MODEL

finding the solution of inverse problems related to the estimation of parameters of

hydrological model Bilan. The results of the case study, made on the selected set

of 30 catchments obtained from MOPEX database, show, that tested distributed

PSO versions provide suitable estimates of Bilan model parameters, and thus

can be used for solving related inverse problems during the calibration process of

studied water balance hydrological model.

4.1 Introduction

Particle swarm optimization (PSO) was established in 1995 by Kennedy and

Eberhart [73]. It is an evolutionary optimization technique inspired by a behaviour

of population of individuals, which form groups or swarms like flock of birds, or

school of fishes. It works with population of particles, which are finding the

optimal solution during their search within the search space by collaboration

between individuals, and by exchanging information about their best position in

the space.

The PSO belongs between the stochastic, meta-heuristic evolutionary compu-

tational techniques, which are based on the swarm intelligence [31]. The main

benefits of this optimization are small number of parameters, which need to be

adjusted, and an easy implementation. When comparing with standard local

search methods, the PSO does not require a knowledge about the gradient of the

optimized function [49, 94].

Its optimization process often suffers from premature convergence, or from

trapping in the local optimum. Therefore, the recent PSO research focuses on

the development of new adaptation strategies. The most important adaptations

improve the particle’s velocity estimates by the adaptation of PSO inertia weight

[5, 45].

Special attention is also put on the development of distributed version of

PSO [12, 103]. The original population is divided into sub-swarms, or complexes.

The complexes are simultaneously evolving over the parametric space, and they

periodically exchange information according to some prescribed migration rules

[34, 138].

The PSO has been successfully applied into many real-life optimization prob-

lems in engineering. In recent years, the PSO optimization significantly enhances

the estimation of parameters of hydrological models [4, 48, 50, 84].

For example, Jiang et al. [70] applied PSO for calibration of the rainfall-runoff

model HIMS. They compared classical PSO algorithm with distributed PSO
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4.2. PARTICLE SWARM OPTIMIZATION

versions, which are using the complexes and shuffling mechanism. They found

out that the distributed PSO variants are significantly better than the original

one.

Zambrano-Bigiarini and Rojas [154] developed the stand alone global optimiza-

tion for calibrating the hydrological models based on the PSO (called hydroPSO

and available for R interpreter). The methods enable to test different PSO versions

on calibration of analysed hydrological model. The group of tested PSO versions

showed good optimization performance, and it was an effective and efficient tool

for calibration of both surface and groundwater hydrological models.

The main aim of this chapter is to test the selected PSO distributed versions

on single-objective benchmark optimization problems, and to apply them on

calibration of hydrological model Bilan. The case study is conducted on 30 US

catchments, for which the data of hydrological and meteorological forcings are

obtained from MOPEX experiment [35].

The rest of the chapter is organized as follows. Section 4.2 provides details of

the standard PSO algorithm and its tested modifications. Section 4.3 explains

methodology used during single-objective benchmark optimization problems and

methodology of the rainfall-runoff model simulations with description of the Bilan

rainfall-runoff model. Results are summarized in Section 4.4 and discussion is

provided in Section 4.5. Finally, the main findings are concluded in Section 4.6.

4.2 Particle swarm optimization

This section provides description of tested versions of distributed PSO. At first,

the original PSO is described, and then the analysed variants of PSO are provided.

The distribution strategy is explained in the last subsection.

4.2.1 The original PSO

The original PSO algorithm estimates a new particle’s location using information

of particle’s velocity. The velocity
−→
V i = (vi1,vi2, ...,viDim) is updated as

−→
V t+1

i =−→
V t

i + c1 ·−→U t
1 ⊗

(−→
P t

i −
−→
X t

i

)
+ c2 ·−→U t

2 ⊗
(−→
G t −−→

X t
i

)
, (4.1)

and the location
−→
X i = (xi1, xi2, ..., xiDim) is simply defined as

−→
X t+1

i =−→
X t

i +
−→
V t+1

i , (4.2)

for all i = 1, ...,S, where S is total number of particles in swarm population,

d = 1, ...,Dim, where Dim is total number of dimensions (i.e. the number of
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CHAPTER 4. PARAMETER ESTIMATION IN RAINFALL-RUNOFF MODEL

parameters of hydrological model), c1 and c2 denotes acceleration constants

predefined by the user,
−→
U 1 and

−→
U 2 are independent random vectors sampled from

a uniform distribution in the range [0,1].

The component with particle’s previous best position
−→
P i = (pi1, pi2, ..., piDim)

in Equation (4.1) represents the cognition knowledge of swarm particles. When

optimization problem is the minimization, the f (
−→
P t

i)≤ f (
−→
X t

i) for all so far known

locations of given particle
−→
X t

i. The component with the best position among all

particles
−→
G = (g1, g2, ..., gDim) in Equation (4.1) controls the social influence of

swarm particles. For all
−→
X i in the population is the f (

−→
G t)≤ f (

−→
X t

i). The f is the

analysed single-objective function [73, 128].

The particle’s locations are in this chapter initialized randomly within the

search space using the initialization based on the Latin hypercube sampling

technique [91, 150]. Particle’s velocity is initialized randomly from the interval

[−−→V max,
−→
V max], where the

−→
V max is equal to

−→
X max [10, 40].

4.2.2 Analysed modifications of PSO

Four versions of the PSO algorithm were analysed. They differ according to

applied particle’s velocity adaptation. All versions were tested as asynchronous

distributed PSO. The modifications are following.

ConstrFactor. In the first modification, the parameter of constriction factor

K is implemented into the PSO algorithm [24]. If the adapted particle’s velocity

with K is as

−→
V t+1

i = K ·
(−→
V t

i + c1 ·−→U t
1 ⊗

(−→
P t

i −
−→
X t

i

)
+ c2 ·−→U t

2 ⊗
(−→
G t −−→

X t
i

))
, (4.3)

then

K = 2

|2−ϕ−
√
ϕ2 −4 ·ϕ |

, (4.4)

where ϕ= c1 + c2, and ϕ> 4.

LinTimeVarW. In the second PSO modification, the linearly decreasing iner-

tia weight w is used [127]. The adapted particle’s velocity equation is shown

in
−→
V t+1

i = w ·−→V t
i + c1 ·−→U t

1 ⊗
(−→
P t

i −
−→
X t

i

)
+ c2 ·−→U t

2 ⊗
(−→
G t −−→

X t
i

)
. (4.5)

The value of inertia weight decreases at each iteration linearly from wmax = 0.9

to wmin = 0.4, and is simply defined as

witer = itermax − iter
itermax

· (wmax −wmin)+wmin. (4.6)
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AdaptW. One of the adaptive inertia weight from [102] was used in this

chapter. The modification of the inertia weight parameter is as

witer = (wmax −wmin) ·−→Pst +wmin, (4.7)

for which

−→
Pst =

n∑
i=1

−→
S t

i

n
, (4.8)

−→
S t

i =
{

1 if f (
−→
P t

i)< f (
−→
P t−1

i )

0 if f (
−→
P t

i)= f (
−→
P t−1

i )
, (4.9)

where
−→
S i shows the success of ith particle,

−→
Ps is the success percentage of the

swarm, n is the size of the population, wmin = 0 and wmax = 1. The adaptive

inertia weight value is updated based on a feedback parameter which is in this

case the variable of percentage of success.

The AdaptW PSO method provided the best performance in the original paper

of Nickabadi et al. [102], and it was also the best modification of inertia weight

out of total 27 distributed variants of PSO (for details see [67]).

APartW. The proposed new adaptive inertia weight modification is based

on the current position of the particle, and it combines the global exploration

and local exploitation in the space. The value of the inertia weight parameter is

updated at each generation according to the development of particle’s location.

If the particle improves its position compared to the best location achieved so

far, it is closer to the searched optimal value. So, if f (
−→
X t

i) < f (
−→
P t−1

i ), the local

exploitation is supported. The inertia weight is calculated as

−→w t
i =

(wmax +wmin

2
−wmin

)
·−→U t +wmin, (4.10)

and thus, for random vector
−→
U sampled from a uniform distribution in the range

[0,1], wmin = 0.1 and wmax = 0.9, the resulted inertia weight is between [0.1,0.5].

On the other hand, if the particle does not achieve better position, the global

exploration is encouraged. So, if f (
−→
X t

i)≥ f (
−→
P t−1

i ), the resulted inertia weight is

computed as

−→w t
i =

(wmax +wmin

2
−wmin

)
·−→U t +

(wmax +wmin

2

)
, (4.11)

where the variables are the same as in Eg. (4.10), and the inertia weight is thus

between [0.5,0.9].
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4.2.3 Distributed version of PSO

During the optimization process, a premature convergence to a local optimum

could appear. Due to this, different distribution strategies of the swarm were

developed [67, 156]. A new distribution strategy of the swarm called shuffled

complex evolution (SCE) was proposed by [34]. In this chapter, the SCE-PSO

method introduced by [152] is used, where the shuffled complex evolution is

combined with the PSO optimization. The only difference in this research is that

all particles from the complex are participating in the PSO algorithm, not only

predefined number of them.

In the SCE strategy, after initialization of particle’s position and velocity, all

population is divided into predefined number of complexes NC. The division

is according to the functional value of each particle. All particles are sorted in

increasing order, and then each jth complex receives
−→
X j,

−→
X j+NC,

−→
X j+2NC, ... parti-

cles [89]. Each complex simultaneously searches through the parametric space,

and after predefined number of iterations in one complex, all particles return to

the swarm. The shuffling of particles and redistribution into the complexes are

made, and the process is repeated until the termination criteria are satisfied.

The shuffling mechanism preserves the population diversity and helps to pre-

vent premature convergence. The SCE-PSO was already applied for comparison

of 27 modifications of PSO [67], and it was found that the SCE strategy gives

significantly better results.

In this chapter, all four PSO variants were extended into a distributed version

using SCE-PSO technique. Since the APartW algorithm is a new proposed version,

the simplified PSO algorithm using APartW adaptation and SCE mechanism is

shown in Algorithm 3, where S_comp is number of particles in one complex. The

other PSO modifications differ only on Lines 9, 11 and 16 in Algorithm 3.

4.3 Methodology of single-objective
optimization problems

Distributed versions of PSO were analysed and tested on two sets of single-

objective optimization problems. All optimization problems were minimizations.

The total number of analysed optimization problems was 15.

The first set is represented by the 11 benchmark problems, which were spe-

cially prepared for CEC 2005 single-objective optimization session [131]. The total
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Algorithm 3 PSO algorithm with APartW adaptation and SCE mechanism

Require: NC, S_comp, termination criteria
1: initialize the position and velocity of all particles
2: repeat
3: E← sorted X in increasing order according to the functional value
4: for each complex j = 1 to NC do
5: Aj ← divided E into NC complexes
6: for each particle i = 1 to S_comp in Aj do
7: if f (

−→
X i)< f (

−→
P i) then

8:
−→
P i =−→

X i
9: −→w i = ( wmax+wmin

2 −wmin) ·−→U +wmin
10: else
11: −→w i = ( wmax+wmin

2 −wmin) ·−→U + ( wmax+wmin
2 )

12: end if
13: end for
14: for each particle i = 1 to S_comp in Aj do
15:

−→
G = min{

−→
P 0,

−→
P 1, ...,

−→
P S_comp}

16:
−→
V i =−→w i ·−→V i + c1 ·−→U 1 ⊗ (

−→
P i −−→

X i)+ c2 ·−→U 2 ⊗ (
−→
G −−→

X i)
17:

−→
X i =−→

X i +−→
V i

18: end for
19: end for
20: until termination criteria is met

number of optimization runs was 1 100 (i.e. 11 benchmark functions × 4 PSO

variants × 25 program runs).

The second set consists of 120 optimization problems. On 30 datasets of

MOPEX catchments, 4 benchmark questions were analysed, which are standard

objective functions used for solving inverse problem related to calibrations of

hydrological models [9, 29]. Each optimization based on one objective function

and one data forcing for one catchment was repeated 25 times. The total number

of optimization runs was 12 000 (i.e. 4 objective functions × 30 catchments × 4

PSO variants × 25 program runs).

All algorithms, benchmark functions and Bilan model were written in C++

programming language, and the code ran under 64-bit Linux operating system.

All graphs and statistical tests were made in R statistical software environment

[133].

4.3.1 The CEC 2005 benchmark optimization problems

In order to compare the optimization algorithms, the single-objective benchmark

optimization problems are analysed. In total, 11 benchmark functions from the
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special session on single optimization problems CEC 2005 [131] were used. This

set of benchmark functions were used by many researches for solving optimization

problems [18, 67, 80].

Following minimization benchmark problems were tested: Sphere ( f1), Schwe-

fel 1.2 ( f2), Elliptic rotated ( f3), Schwefel 1.2 with noise ( f4), Schwefel 2.6 ( f5),

Rosenbrock ( f6), Griewank rotated ( f7), Ackley rotated ( f8), Rastrigin ( f9), Rast-

rigin rotated ( f10) and Weierstrass rotated ( f11). The optimization problems f1

- f5 are uni-modal functions, the remaining f6 - f11 are multi-modal functions.

For formulas of all functions, range of the search space, location of the minimum

value and other description, see [131].

The setting of distributed PSO versions follows [40, 43, 67]. The number of

complexes is set to 6, and there are 25 particles at each complex. The number of

shuffling is 5, and the maximum number of function evaluation is set to 10 000 ·
Dim. The problem space has 30 dimensions due to preservation the setup from

[67]. For results analysis, the total number of optimization runs is set to 25, where

each run stops when the maximum number of function evaluations is achieved.

In terms of the PSO coefficients, the acceleration constants for modifications with

inertia weight are c1 = c2 = 2, and the acceleration constants for adaptation using

constriction factor is c1 = c2 = 1.49445 with constriction coefficient K = 0.729.

4.3.2 Optimization of the hydrological model - case study

After comparison of the analysed optimization algorithms on benchmark functions,

the developed distributed versions of PSO were applied on solving the real-

life optimization related to the estimation of values of parameters of lumped

hydrological model Bilan.

The settings of PSO parameters on Bilan optimization problems were selected

after running several tests with different parameter settings. The number of

complexes is set to 3. Each complex is composed of 40 particles, and the number

of generations in one complex is 20. The number of shuffling is 10. To analyse

the results, the total number of model runs is 25. The acceleration constants and

value for constriction factor are the same as in the single-objective benchmark

optimization problems.

4.3.2.1 The hydrological model Bilan

In the case study, the calibration of Bilan rainfall-runoff model is studied. Bilan is

a lumped physically-based water balance model developed in T. G. Masaryk Water
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Figure 4.1: Scheme of the Bilan rainfall-runoff model [72]

Research Institute in the Czech Republic [78]. It is a standard tool commonly

used for assessment of water balance in the catchment [53, 54, 88].

It is a conceptual hydrological model, which explains the hydrological balance

of a catchment using the system of mathematical relationships, which preserve

mass balance. It describes basic principles of water balance on ground, in the

zone of aeration, including the effect of vegetation cover and groundwater. The

main model forcings are time series of precipitation [mm], air temperature [◦C]

and relative air humidity [%]. Time series of air temperature and relative air

humidity are used to estimate the potential evapotranspiration [54, 132].

The temporal dynamics of reservoirs is described by first order differential

equations, which are numerically solved using the Euler’s method. The calculated

total streamflow is given by two components of the river flow. The fast response is

simulated through direct runoff reservoir, and the second slow runoff component

is explained with baseflow reservoir [61]. The Bilan scheme is shown on Figure 4.1,

and further description of the model could be found in [132].

The total amount of parameters of the daily version of the Bilan model is six,

and they are listed in Table 4.1. The search space was constrained with physically
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Table 4.1: Parameters of the daily version of Bilan model [72]

Name Description PC 1

Spa capacity of the soil moisture storage Spa ∈ 〈0,200〉
Alf parameter of rainfal-runoff equation (direct

runoff)
Alf ∈ 〈0,1〉

Dgm temperature/snow melting factor Dgm ∈ 〈0,200〉
Soc parameter controlling distribution of percola-

tion into interflow and groundwater recharge
under summer conditions

Soc ∈ 〈0,1〉

Mec parameter controlling distribution of percola-
tion into interflow and groundwater recharge
under snow melt conditions

Mec ∈ 〈0,1〉

Grd parameter controlling outflow from groundwa-
ter storage (baseflow)

Grd ∈ 〈0,1〉

1PC = parameter constraints

meaningful ranges of parameters (see column PC in Table 4.1). The parameter

constraints were estimated by an expert knowledge.

4.3.2.2 Objective functions

The Bilan model is calibrated against the observed streamflow data, so the model

time series of observed streamflow are used for calibrating of the model. Therefore,

different calibration indices based on information obtained from model residuals

are used for estimation of Bilan parameters. The solution of related inverse

problem, which minimizes the analysed hydrological index - objective function,

was used. This approach is a standard way of calibration of lumped hydrological

models [2, 15].

The investigated objective functions are in hydrological modelling commonly

used accuracy criteria: mean squared error (MSE), mean absolute error (MAE),

mean absolute percentage error (MAPE) and Nash-Sutcliffe efficiency (NS) [9, 29,

30].

The analysed objective functions are defined as

MSE = 1
N

N∑
i=1

(R[i]−RM[i])2 , (4.12)

MAE = 1
N

N∑
i=1

|R[i]−RM[i]|, (4.13)

MAPE = 1
N

N∑
i=1

|R[i]−RM[i]|
R[i]

, (4.14)
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FRV =

N∑
i=1

(R[i]−RM[i])2

N∑
i=1

(
R[i]−R

)2
, (4.15)

where R is observed streamflow [mm], RM is modelled streamflow [mm], R is

mean of the observed streamflow [mm] and N is total number of observations.

The fraction residual variance (FRV ) was used for the calibration purposes,

however, its extension the Nash-Sutcliffe coefficient is used for standardized

assessment of the results of calibration of hydrological models [101, 121]. The NS
is defined as

NS = 1−FRV . (4.16)

4.3.2.3 Dataset

For evaluation of the optimization ability of the proposed PSO modifications,

Bilan model was calibrated using datasets from 30 US catchments. The meteoro-

logical and hydrological data were obtained from Model Parameter Estimation

Experiment project (MOPEX) [35], which serves for benchmarking of hydrological

models and calibration approaches.

For the analysis, the daily records from 1948 to 2003 were used. The main

meteorological forcings of Bilan model were mean areal precipitation, mean air

temperature calculated as an average of given maximum and minimum daily

temperature, and potential evaporation. Table 4.2 lists the major characteristics

of each catchment including latitude, longitude, drainage area, dominant soil and

vegetation types.

4.4 Results

4.4.1 The CEC 2005 benchmark optimization problems

Figure 4.2 presents the convergence graphs for each benchmark function while

utilizing all four distributed modifications of the PSO algorithm. The x-axis

indicates the number of function evaluations and the y-axis the logarithmic value

of the best fitness, i.e. the difference between the searched and the best achieved

functional value. A decline with the number of evaluation is clearly visible for

LinTimeVarW, AdaptW and APartW modifications in all functions, and it thus

indicates the approach to the global optimum. The ConstrFactor variant has the

worst performance, where the decline towards the global optimum is not evident.
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Table 4.2: Characteristics of the catchments

USGS ID Lat. Long. Area [km2] Soil type Veg. type 1

01127000 41.5980 -71.9850 1147 Sandy loam MF
01197500 42.2320 -73.3550 454 Sandy loam MF
01321000 43.3528 -74.2708 790 Sandy loam MF/CS
01371500 41.6860 -74.1660 1144 Silt loam MF
01372500 41.6531 -73.8731 291 Silt loam MF
01426500 42.0031 -75.3839 957 Silt loam MF
01445500 40.8306 -74.9786 171 Sandy loam MF
01503000 42.0353 -75.8033 3591 Silt loam MF
01512500 42.2181 -75.8486 2386 Silt loam MF
01518000 41.9083 -77.1297 454 Silt loam MF
01531000 42.0022 -76.6350 4032 Silt loam MF
01534000 41.5583 -75.8950 616 Loam MF
01541000 40.8969 -78.6772 507 Loam MF
01541500 40.9717 -78.4061 597 Loam MF
01543500 41.3172 -78.1033 1102 Loam MF
01548500 41.5217 -77.4478 972 Silt loam MF
01556000 40.4631 -78.2000 468 Sandy loam MF
01558000 40.6125 -78.1408 354 Sandy loam MF
01559000 40.4850 -78.0190 1313 Sandy loam MF
01560000 40.0717 -78.4928 277 Silt loam MF
01562000 40.2158 -78.2656 1216 Silt loam MF
01567000 40.4783 -77.1294 5397 Sandy loam MF
01574000 40.0822 -76.7203 821 Silt loam MF
01610000 39.5369 -78.4578 5002 Loam MF
01628500 38.3220 -78.7550 1744 Clay MF/CS
01631000 38.9139 -78.2111 2642 Loam CS
01634000 38.9767 -78.3364 1236 Loam CS
01643000 39.3880 -77.3800 1315 Silt loam MF
01664000 38.5306 -77.8139 998 Clay loam CS
01668000 38.3222 -77.5181 2568 Clay loam CS
1MF = Mixed forest, CS = Closed shrublands

For the statistical comparison, the non-parametric Wilcoxon test was used

according to [33]. Inputs to the testing procedure were the best fitness values

achieved for the PSO modifications. The optimization performance of the new

proposed APartW was statistically compared only with the AdaptW variant,

because the AdaptW was the best modification in research papers of [67, 102],

and thus it serves as a benchmark method.

Table 4.3 summarizes results of the Wilcoxon test, and other statistical indices

are also indicated. The minimum, 25% quartile, median, 75% quartile, maximum,

mean, standard deviation and P value are available. All 25 program runs of each
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Figure 4.2: Convergence graphs for the best fitness of the ConstrFactor, Lin-
TimeVarW, AdaptW and APartW modifications for evaluated benchmark functions
f1 − f11

modification were compared in each numbered evaluation. The values reflect the

best achieved fitness, and report other statistical indices belonging to the same

numbered evaluation.

The results of the analysis in Table 4.3 show that the APartW modification
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Figure 4.2: Continued

gives significantly better results for three benchmark functions ( f4, f7 and f11).

In functions f3, f5 and f9, there is no significant difference between APartW and

AdaptW. Beyond that, in functions f1 and f2, both APartW and AdaptW found the

global minimum. For multi-modal functions f6, f8 and f10, the AdaptW variant

gives significantly better results. The differences in the APartW and AdaptW are

in agreement with the convergence graphs on Figure 4.2.

Based on the findings, it can be concluded that the APartW version of PSO is

comparable with AdaptW modification in optimizing chosen benchmark functions.

The APartW is reliable for single-objective optimization, and thus suitable for

calibration of the Bilan rainfall-runoff model parameters, where only one objective

function at time is minimized.

4.4.2 The calibration of Bilan model

For calibration of the Bilan model, hydrological and meteorological data from 30

US catchments were used. The analysis of the main findings from all catchments

is provided, but for clarity, the detailed results from only one catchment are

displayed. The chosen catchment (USGS ID 01531000) provides the outline of

obtained results, and it serves to perform the overall findings.

The ensemble simulations of the total number of model runs equals to 25 were

used. At each ensemble simulation, only one objective function was optimized.
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CHAPTER 4. PARAMETER ESTIMATION IN RAINFALL-RUNOFF MODEL

Table 4.4: Best values of all objective functions achieved in the total set of 30
catchments. The best calculated value for each optimized objective function (OOF)
is highlighted in bold

OOF PSO modif. MSE MAE MAPE NS

MSE ConstrFactor 6.674E-01 3.473E-01 4.186E-01 7.172E-01
LinTimeVarW 5.816E-01 3.598E-01 4.041E-01 7.466E-01
AdaptW 5.816E-01 3.594E-01 4.144E-01 7.466E-01
APartW 6.253E-01 3.547E-01 3.376E-01 7.297E-01

MAE ConstrFactor 7.432E-01 3.564E-01 3.380E-01 7.097E-01
LinTimeVarW 7.776E-01 3.445E-01 3.380E-01 7.339E-01
AdaptW 6.822E-01 3.421E-01 3.420E-01 7.329E-01
APartW 6.854E-01 3.442E-01 3.484E-01 7.259E-01

MAPE ConstrFactor 7.800E-01 3.550E-01 3.290E-01 6.808E-01
LinTimeVarW 8.020E-01 3.477E-01 3.181E-01 6.962E-01
AdaptW 8.020E-01 3.480E-01 3.238E-01 6.894E-01
APartW 6.849E-01 3.485E-01 3.300E-01 7.202E-01

NS ConstrFactor 7.268E-01 3.544E-01 3.380E-01 7.257E-01
LinTimeVarW 5.816E-01 3.605E-01 4.015E-01 7.466E-01
AdaptW 5.816E-01 3.594E-01 4.144E-01 7.466E-01
APartW 6.219E-01 3.504E-01 3.581E-01 7.333E-01

Within all simulations, the remaining three accuracy criteria were also calculated

due to evaluation the overall performance.

The results in Table 4.4 show the best achieved values of objective functions

within all 30 catchments. The optimized objective function is in the first column,

the calculated criteria are in the last four columns. It is evident that the APartW

method provides similar results as the LinTimeVarW version. They both reached

the best values in four cases (highlighted in bold in the table). In addition, the

ConstrFactor gave the worst results (reaches the best values in two cases), and on

the other hand, the AdaptW method achieved the best results (reaches the best

values in six cases). Even though, the APartW method doesn’t provide the best

value of the optimized objective function, it achieves good results for the other

criteria which are not optimized.

In order to determine whether the implementation of the distributed PSO

modifications into Bilan model increases the model performance, the results were

compared with the integrated binary search (BS) optimization technique. The best

achieved objective criteria for all catchments using BS method are following: MSE
= 1.044E+00, MAE = 3.598E-01, MAPE = 3.287E-01 and NS = 7.462E-01. The

results are for optimization based on MSE, MAE, MAPE and NS, respectively.

In comparison with Table 4.4, the optimization with PSO method is always better
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4.4. RESULTS

Table 4.5: The contrast test of the unadjusted medians with ranking. The Rank
is ranking based of contrast test, W .Rank is ranking based of Wilcoxon pair test

MSE ConstrFactor LinTimeVarW AdaptW APartW Rank W.Rank
ConstrFactor - 372.66 373.23 373.22 4 4
LinTimeVarW -372.66 - 0.57 0.55 3 3
AdaptW -373.23 -0.57 - -0.01 1 2
APartW -373.22 -0.55 0.01 - 2 1

MAE ConstrFactor LinTimeVarW AdaptW APartW Rank W.Rank
ConstrFactor - 374.78 374.82 374.82 4 4
LinTimeVarW -374.78 - 0.04 0.04 3 3
AdaptW -374.82 -0.04 - 0.00 2 2
APartW -374.82 -0.04 -0.00 - 1 1

MAPE ConstrFactor LinTimeVarW AdaptW APartW Rank W.Rank
ConstrFactor - 374.96 375.02 375.02 4 4
LinTimeVarW -374.96 - 0.06 0.05 3 3
AdaptW -375.02 -0.06 - -0.00 1 1-2
APartW -375.02 -0.05 0.00 - 2 1-2

NS ConstrFactor LinTimeVarW AdaptW APartW Rank W.Rank
ConstrFactor - 375.01 374.91 374.91 4 4
LinTimeVarW -375.01 - -0.10 -0.10 1 1
AdaptW -374.91 0.10 - -0.00 2 2
APartW -374.91 0.10 0.00 - 3 3

than with the integrated BS method.

Table 4.5 displays results from the contrast test of the unadjusted medians

according to [33]. After pairwise comparison of all PSO modifications, the ranks

of each method were determined. The APartW variant achieved the first rank

once, the second rank two times and the third rank once. The best method seems

to be the AdaptW, which achieved the best results two times and the second

rank also two times. On the other hand, the worst is the ConstrFactor version,

which was always worse than the others. Additionally, differences in medians

between LinTimeVarW, AdaptW and APartW are very small, which indicates

similar performances.

In addition to the contrast test, the Wilcoxon pair test of medians according to

[33] was conducted. The ranks are displayed in the last column in Table 4.5. The

obtained results confirm the results from the contrast test. The differences in the

ranks are in the simulations based on MSE and MAPE objective functions, where

APartW variant is better than the AdaptW, or as good as AdaptW, respectively. In

terms of Wilcoxon test, the APartW is the best modification and ConstrFactor is

again the worst.
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Figure 4.3: Observed streamflow and corresponding simulations from Bilan model
using APartW optimization. The optimized objective function was NS. Catchment
01531000, year 1976

Since the APartW modification is a new proposed PSO variant, on Figure 4.3 is

displayed the time series of observed and modelled runoff using this method. For

clarity, only one chosen year is depicted. The figure gives an example of ensemble

simulations with the Bilan model, where the results from the total 25 model

runs are coloured in grey. It is evident that the envelope curve of the ensemble

simulations would cover most of the observed data points. On the figure, also the

streamflow calculated by the best model is plotted (red line), i.e. the simulation

with the highest value of NS.

From the Figure 4.3 can be seen that the simulation by the best model under-

estimates the runoff. This behaviour is also clear from the scatter plot displayed

on Figure 4.4, where the regression line lies bellow the 1 : 1 line. The correspond-

ing residuals, i.e. differences between observed and simulated streamflow, are

depicted on Figure 4.5. The range of the residuals is approximately [−13.7,18.3]

for ensemble runs and [−7.4,10.7] for the best model.

The values of parameters obtained by the best model of each PSO modification

for the chosen catchment are in Table 4.6. The obtained Nash-Sutcliffe efficiency

values are also indicated in the the table. It is seen that the NS are very similar

for all PSO modifications. The APartW variant achieved the smallest NS value,

but it was not significantly smaller than the others.

The results shown that the PSO versions using adaptive inertia weight for

calibration of the Bilan model give better results than other PSO modifications.
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Figure 4.4: Scatter plot of observed and modelled runoff using APartW opti-
mization. The optimized objective function was NS. Catchment 01531000, year
1976
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Figure 4.5: Calculated residuals using APartW optimization. The optimized objec-
tive function was NS. Catchment 01531000, year 1976
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Table 4.6: Parameters of Bilan model for catchment 01531000 obtained by the
best model of each PSO modification. The optimized objective function was NS,
and the last column indicates the value of that criterion

PSO modif. Spa Alf Dgm Soc Mec Grd NS

ConstrFactor 198.7 0.091 1.55 7.05E-3 10.68E-3 0.352 0.622
LinTimeVarW 199.9 0.559 1.59 2.33E-3 6.00E-3 0.276 0.644
AdaptW 200.0 0.552 1.59 2.38E-3 6.09E-3 0.275 0.644
APartW 178.3 0.186 1.33 5.85E-3 17.33E-3 0.301 0.621

It is in agreement with Nickabadi et al. [102]. It was found out that the linearly

decreasing inertia weight for updating the particle’s velocity is more promising

than the constriction factor, which is in contradiction with Eberhart and Shi [40],

but in this chapter, the distributed versions were used.

4.5 Discussion

4.5.1 The CEC 2005 benchmark optimization problems

Both AdaptW and APartW modifications obtained the global minimum, where

the error value was less than 10−8, in three functions. These functions are f1, f2

(uni-modal), and f7 (multi-modal), and the results are comparable with [67].

Better results were obtained by Liang and Suganthan [80], who applied

distributed PSO algorithm with local search. They achieved the global optimum in

functions f1, f2, f3, f6 and f7. The swarm was dynamic with frequent regrouping

and the swarm’s size was very small.

Bui et al. [18] achieved the global optimum in the uni-modal functions f1, f2

and f4 using different versions of PSO. Their algorithms did not converge to the

global minimum in any multi-modal function, and thus, distributed PSO versions

from this chapter can be considered as better methods.

The results are similar to results obtained by Nickabadi et al. [102]. Their

algorithms achieved the global optimum in functions f1, f2 and f8.

When comparing the results with another optimization techniques within the

CEC 2005 benchmark problems, the distributed PSO versions give comparable

results as CoEVO algorithm [118]. They also obtained the global optimum in

functions f1, f2 and f7. Results obtained in this chapter are better than the

DE algorithm of Rönkkönen et al. [122], which achieved the global optimum in

functions f1 and f7, or better than BLX_MA method of Molina et al. [97], which
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4.6. CONCLUSIONS

converged only in functions f1 and f9.

4.5.2 The calibration of Bilan model

The best obtained NS values (> 0.74, see Table 4.4) are comparable to a work of

Brauer et al. [16, 17], who implemented the hydroPSO package [154] for calibra-

tion of the Wageningen lowland runoff simulator (WALRUS). The WALRUS is a

rainfall-runoff model often used in sloping lowland catchments. The differences

in their work is that during the calibration of the model, they used 1 year of dis-

charge observations and optimized 4 parameters. Their best achieved NS values

for two catchments were 0.87 and 0.83. In this chapter, 30 years of observation

were used, and 6 parameters for 30 catchments were calibrated.

Similar values of NS criteria were also obtained by Jiang et al. [69] in calibra-

tion of the Xin’anjiang hydrological model, by Lawrence et al. [79] in calibration

of the HBV model, or by Zhang et al. [157] in calibration of SWAT hydrological

model. Thus, the optimized parameters of the Bilan model can be considered

as sufficient estimation, and therefore the used PSO distributed versions are

suitable for the calibration.

The Bilan model was extended by a shuffled complex differential evolution

(SCDE) global optimization method and the model was applied on 234 catchments

in the Czech Republic. The best achieved NS values during calibration of the

Bilan model using SCDE was between 0.78 and 0.80, whereas using existing

integrated local optimization technique with expert knowledge was 0.73 [87].

Results obtained in this chapter were comparable with this research, however,

different dataset was used.

To determine if the distributed versions of PSO improve the model perfor-

mance, the results were compared with the binary search method. The binary

search is a default optimization technique integrated in the Bilan model. It was

found out that the objective criteria obtained from the PSO optimization gave

better results. Therefore, the implementation of the PSO into the Bilan model

improves the model simulations.

4.6 Conclusions

The main aim of this chapter was to test 4 selected PSO distributed versions

on single-objective benchmark optimization problems, and to apply them on

calibration of hydrological model Bilan. For all 4 PSO versions, 3 275 optimization
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CHAPTER 4. PARAMETER ESTIMATION IN RAINFALL-RUNOFF MODEL

problems were analysed, in which 275 minimizations for benchmark problems

(i.e. 11 benchmark function × 25 program runs) and 3 000 inverse hydrological

problems (i.e. 4 objective functions × 30 catchments × 25 program runs) were

solved.

The new proposed variant APartW was compared with other existing PSO

modifications - ConstrFactor, LinTimeVarW and AdaptW on 11 benchmark func-

tions prepared for the special session on real-parameter optimization of CEC

2005. The APartW version is comparable with the AdaptW and LinTimeVarW

variants, whereas the ConstrFactor had the worst performance.

The statistical comparison of AdaptW and APartW modifications shown that

both methods obtained the global minimum in three functions ( f1, f2 and f7).

The APartW variant gave significantly better results in functions f4, f7 and f11.

Beyond that, in functions f3, f5 and f9, there was no significant difference between

the APartW and AdaptW method.

All four PSO modifications were implemented into the Bilan rainfall-runoff

model for solving inverse hydrological problems. Based on the contrast test of

the unadjusted medians and Wilcoxon test, it was found out that the APartW

and AdaptW variants provided the best results. The ConstrFactor performed the

worst.

The results highlighted that distributed versions of PSO are promising in

single-objective optimization problems. It was confirmed that adaptive variants of

the inertia weight are better then linearly decreasing weight. It was also found out

that the PSO modifications with parameters of inertia weight give significantly

better results than the variant with constriction factor.

The results of this chapter extended the range of utilization of the PSO global

optimization techniques. The performance of the distributed versions of PSO is

promising, and the algorithms can be implemented into other real optimization

problems.
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COMBINATION OF HYBRID ARTIFICIAL NEURAL

NETWORKS WITH PARTICLE SWARM OPTIMIZATION

ALGORITHM FOR SPEI FORECASTING

Abstract

Prediction of drought is very important for prevention of the potential threat of

the drought event. The recent climatic water balance indicator, the Standardized

precipitation evapotranspiration index (SPEI), was forecasted within this chapter.

A new tool for the SPEI simulations was proposed, which is a combination of

hybrid artificial neural networks (ANN) with particle swarm optimization (PSO).

The PSO algorithm was used for training of the model weights to achieve higher

accuracy in shorter computational time. In this research, the influence of chosen

PSO modifications, number of inputs into the ANN, number of neurons in the

hidden layer, and influence of the type of optimized objective function on modelled

SPEI drought index were evaluated. The case study was conducted on selected

set of 8 US catchments with the data of meteorological observations obtained

from MOPEX database. It was found out that the best optimization technique is

APartPSO, and the Nash-Sutcliffe efficiency as an optimized objective function is

This chapter is based on the manuscript: JAKUBCOVÁ M., MÁCA P., AND PECH P., 2015:
Combination of hybrid artificial neural networks with particle swarm optimization algorithm for
SPEI forecasting. Applied Soft Computing.
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CHAPTER 5. COMBINATION OF ANN WITH PSO FOR SPEI FORECASTING

the most effective. The results show that the combination of ANN with PSO is

suitable for forecasting the SPEI drought index, and thus, tested PSO versions

can be used for solving related inverse problems.

5.1 Introduction

There is no universal definition of drought. In general, drought is a climatic

event, which results in deficit of water supply, and impacts many areas. The most

severe damages can be observed in the field of agriculture, water management,

economics, ecosystems, and wildlife [99, 115, 120].

There exist several types of droughts. The meteorological drought is usually

defined as period with below-average precipitation, and general lack of moisture

in the atmosphere. In agricultural drought, the deficit of precipitation influences

the soil moisture, and thus, mainly crops are affected. The hydrological drought is

associated with deficiency of surface water and groundwater storages. The meteo-

rological and hydrological conditions can affect the drinking water, hydroelectric

power, or food supply, and then it is defined as socioeconomic drought [145].

Drought severity is directly related to the impacts of drought [58]. It can be

described through drought indices. They are usually represented in the form of

time series, and in many cases, they are based on actual measured meteorological

data. One of the first developed comprehensive drought index was Palmer drought

severity index. It is used for analyses of the drought based on water balance

equation, and it classifies the weather conditions from extremely wet to extreme

drought [106]. Less complex drought indicator is Standardized precipitation index

(SPI), which is based on probability of precipitation [92].

More recent variant of the SPI indicator is Standardized precipitation evapo-

transpiration index (SPEI). Many recent studies [56, 60, 98] devoted into deve-

loping new computational tools for simulating the SPEI index, and thus predict

the potential threat of the drought. Therefore, the SPEI was forecasted within

this chapter using combination of artificial neural networks and particle swarm

optimization.

Drought can be forecasted through solving inverse problems using data-driven

black box model. One of the suitable tool for simulations are artificial neural

networks (ANN). They were applied in many case studies. For example Belayneh

and Adamowski [8] forecasted SPI through three different data-driven models

on case study in Ethiopia. Their results show that the coupled wavelet neural

network models were the most effective for SPI predictions.
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Deo and Şahin [32] used ANN models for forecasting SPEI index for catch-

ments in Australia, and they confirmed that artificial neural networks are a useful

tool for prediction of the chosen drought index. In the study of Hosseini-Moghari

and Araghinejad [63], the ANN models were applied for drought forecasting in

Iran, and suitable performance was achieved using statistical neural networks.

Training weights of the model in neural networks is a matter of solving inverse

problems. The weights are standardly trained by back-propagation learning [123].

In recent studies, the back-propagation technique was compared with particle

swarm optimization (PSO) [20, 44, 74].

Chau [21] proposed a model with multilayer perceptron trained by PSO, and

he applied the model in the catchment of the Shing Mun River for estimation of

water level. The results of his study show that the model achieved higher accuracy

in shorter computational time compared to the method of back-propagation. Good

results were also obtained by Senthil Babu and Vinayagam [124], who combined

PSO with ANN for prediction of the roughness of the surface. The forecast of

precipitation with ANN trained by PSO was also sufficient and accurate [59, 147].

The performance of the ANN model can be improved by integrating more

neural networks into one hybrid ANN. The integration can be in terms, that

outputs from several ANN are used as inputs into one ANN model. The integrated

ANN were used in different hydrological case studies. For example Nourani

and Kalantari [104] applied them for simulating the rainfall-runoff sediment

processes, or Huo et al. [64] and Wang et al. [141] applied this technique for

estimating the river streamflow.

The main aim of this chapter is to combine hybrid artificial neural networks

with particle swarm optimization. The PSO technique serves for training of the

model weights. The integrated ANN models are developed and applied for fore-

casting the SPEI drought index. The case study is conducted on 8 US catchments

with 54 years of observations.

The rest of this chapter is organized as follows. Section 5.2 explains the

methodology with respect to the analysed dataset, SPEI drought index, and

settings of the ANN models. Section 5.3 summarizes the results, which are

discussed in Section 5.4. The main findings are concluded in Section 5.5.

5.2 Methodology

The combination of hybrid artificial neural network models with particle swarm

optimization technique was applied for forecasting the SPEI drought index. The
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Table 5.1: Characteristics of selected catchments

USGS ID Lat. Long. Area (km2) mP (mm) mET (mm)

01127000 41.5980 -71.9850 1 147 99.88 60.20
01197500 42.2320 -73.3550 454 99.92 55.03
01321000 43.3528 -74.2708 790 103.33 57.49
01371500 41.6860 -74.1660 1 144 94.71 63.10
01372500 41.6531 -73.8731 291 86.83 58.40
01426500 42.0031 -75.3839 957 91.28 59.01
01445500 40.8306 -74.9786 171 104.30 65.72
01503000 42.0353 -75.8033 3 591 85.91 59.24

models differ in four variables - in number of inputs, number of neurons in hidden

layer, PSO method used for training, and optimized objective function.

5.2.1 Dataset

For ANN model simulations, datasets from 8 US catchments were used. The

meteorological data were obtained from Model Parameter Estimation Experiment

project (MOPEX), which serves for benchmarking of hydrological models [35].

Table 5.1 lists the major characteristics of each of the 8 catchments including

latitude, longitude, drainage area, month average precipitation (mP) and month

average evapotranspiration (mET) during the observed period.

Dataset from 1948 to 2002 was analysed. The calibration period consists of

the data from 1948 to 1975, whereas the validation period from 1976 to 2002. The

daily records of precipitation and evapotranspiration from the MOPEX database

was modified into monthly time step, from which the SPEI drought index was

calculated.

A non-linear transformation on the original data Do was applied before they

were used in ANN model. The transformed data Dt are calculated as

Dt = 1− exp(−0.15 ·Do). (5.1)

All values of Dt are thus normalized for the input to the ANN model. Before

calculating the accuracy criteria during training of the ANN, the output from the

model has to be transformed back into the original data as

Do =
{

1
0.15 · ln

(
1

1−Dt

)
if (1−Dt) 6= 0

1
0.15 · ln (10E+08) if (1−Dt)= 0

. (5.2)
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5.2.2 SPEI drought index

The artificial neural networks were applied for forecasting the Standardized

precipitation evapotranspiration drought index. The input data for calculating

SPEI index are monthly time series of climatic water balance, where the potential

evapotranspiration is subtracted from precipitation [136].

The SPEI is a variant of the Standardized precipitation drought index, but

it takes the influence of potential evapotranspiration into account [136]. It is

based on the cumulative probability of a given climatic water balance event

occurring at the location. The probabilities are then converted into standard

normal distribution, which creates the final value of the SPEI criterion [92, 130].

In this study, the monthly temporal resolution of the data was used with the

time scale of the accumulation period equal to 12 months, and type of kernel

unshifted rectangular. The applied probability distribution was log-Logistic, and

the parameters were fitting based on unbiased probability weighted moments

according to [7]. For estimation of the SPEI index, the package SPEI [6] in the R

programming language was used.

5.2.3 ANN models

The architecture of the applied artificial neural network models is a multilayer

perceptron (MLP), which is a suitable universal approximator [62]. The MLP

with one input layer, one hidden layer of neurons, and one output layer with one

output neuron has been applied in this study. The topology is fully connected, and

transfer of information is feedforward.

In this chapter, processing elements (i.e. components of ANN where the com-

putations are performed) with external biases [43] were used. The normalized

transformed simulated output MODt from the ANN model at given time interval

is calculated as

MODt = wb +
Nhd∑
j=1

w j · f (a), (5.3)

where wb is weight of the bias neuron entering the output neuron, w j is weight

of jth neuron in the hidden layer entering the output neuron, f () is activation

function, a is activation, and Nhd is number of neurons in the hidden layer.

The activation function of neurons is the RootSig, which was chosen according

to [37, 86]. The activation function is in general

f (a)= a

1+
p

1+a2
, (5.4)
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with the activation defined as

a = wb j +
Nin∑
i=1

wi j ·OBSti, (5.5)

where wb j is weight of the bias neuron entering the jth neuron in the hidden

layer, wi j is weight of the ith input entering the jth neuron in the hidden layer,

OBSti is the ith transformed input into the network, and Nin is number of inputs

in the ANN model.

The weights in ANN models were trained with the PSO optimization technique.

As optimized objective criteria serve 5 different statistics, which are often used

in hydrological modelling. For SPEI simulations, the integrated neural network

models with different settings were used. The PSO methods, objective functions,

and integrated ANN models are explained in the next part of this chapter.

All algorithms of the ANN models trained by PSO technique were written

in C++ programming language, and the code ran under 64-bit Linux operating

system. All post-processing calculations were made in R statistical software

environment [133].

5.2.3.1 PSO variants for ANN training

Particle swarm optimization technique was used for training the artificial neural

network models. The optimization process is based on iterative procedure of popu-

lation of particles. Each particle in the population flies through the parametric

space, and tries to find the optimal solution [73].

The velocity of particles is updated for all i = 1, ...,S, where S is total number

of particles in the swarm population. The velocity equation is

−→
V t+1

i =W ·−→V t
i + c1 ·−→U t

1 ⊗
(−→
P t

i −
−→
X t

i

)
+ c2 ·−→U t

2 ⊗
(−→
G t −−→

X t
i

)
, (5.6)

where W is parameter of inertia weight, c1 and c2 denotes acceleration constants

predefined by the user,
−→
U 1 and

−→
U 2 are independent random vectors sampled

from a uniform distribution in the range [0,1],
−→
P i = (pi1, pi2, ..., piDim) is the best

particle’s position achieved so far representing the cognition knowledge of swarm

particles, and
−→
G = (g1, g2, ..., gDim) is the best location of all particles achieved so

far controlling the social influence of swarm particles [73, 128].

Particle’s position in the space is calculated as

−→
X t+1

i =−→
X t

i +
−→
V t+1

i . (5.7)
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Table 5.2: Applied PSO modifications for training ANN models

PSO Inertia weight

LinPSO
−→
W t

i = tmax−t
tmax

· (Wmax −Wmin)+Wmin

ChaoPSO
−→
W t

i = 0.5 ·−→U t +0.5 · z
NonlinPSO

−→
W t

i =Wini ·ut

AdaptPSO
−→
W t

i = (Wmax −Wmin) ·−→Pst +Wmin

APartPSO
−→
W t

i =
(

Wmax+Wmin
2 −Wmin

)
·−→U t +Wmin

−→
W t

i =
(

Wmax+Wmin
2 −Wmin

)
·−→U t +

(
Wmax+Wmin

2

)

Each position in the population represents a vector of searched parameters. With

respect to neural network model, the parameters are the weights of the ANN

model.

In this chapter, 5 PSO modifications were used for training the ANN models.

All PSO versions update the particle’s velocity via parameter of inertia weight,

and all of them were compared within the previous research in [67] or [68]. All

used PSO methods with the corresponding formulas for calculating the inertia

weight are listed in Table 5.2.

The PSO method with linearly decreasing inertia weight (LinPSO) was first

used by [127]. The parameter of W decreases linearly during iterations from

Wmax = 0.9 to Wmin = 0.4. The random chaotic model (ChaoPSO) was used by

[45]. The inertia weight is changing during iterations based on a random number
−→
U t from the range [0,1], and auxiliary variable z = 4 · z · (1− z), where the initial

value of z is uniformly distributed in [0,1]. The PSO method with non-linearly

decreasing inertia weight (NonlinPSO) uses parameter u, which is set to 1.0002,

and initial value of inertia weight Wini uniformly distributed in [0,1] [102].

Moreover, two adaptive strategies of inertia weight were used. First, the

AdaptPSO proposed by [102] calculates the inertia weight through success per-

centage of the swarm (
−→
Pst). It is calculated as

−→
Pst =

n∑
i=1

−→
S t

i

n
, (5.8)

where n is size of the population, and
−→
Si shows the success of ith particle, which

is equal to 1 if f (
−→
P t

i)< f (
−→
P t−1

i ), or equal to 0 if f (
−→
P t

i)= f (
−→
P t−1

i ). In this approach,

Wmin = 0 and Wmax = 1.

Second adaptive strategy is APartPSO modification proposed by [68]. It com-

bines the global exploration and local exploitation in the space according to the
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development of particle’s location. If the particle improves its position compared

to its previous locations, the first equation from Table 5.2 is used, otherwise, the

second equation is applied. In this variant, Wmin = 0.1 and Wmax = 0.9.

The settings of the PSO optimization is following. The distributed versions

of PSO were used [67, 68, 152], where the number of complexes is set to 3. At

each complex is 40 particles, and the number of generations in one complex is

20. The number of shuffling and redistribution of particles in complexes is 10.

The total number of optimization runs is set to 25, where each run stops when

the maximum number of function evaluations is achieved. In terms of the PSO

coefficients, the acceleration constants are c1 = c2 = 2 according to [40].

5.2.3.2 Objective functions

The optimized objective functions (OOF) are in hydrological modelling commonly

used accuracy criteria [9, 29]. The evaluated criteria are mean squared error

(MSE), Nash-Sutcliffe efficiency (NS), persistence index (PI), and two combined

accuracy indexes (cAI1, cAI2). The cAI1 and cAI2 are composed of two different

objective functions, which both influence the final criterion with a given weight.

The formulas of analysed objective functions are defined bellow, where OBS
is observed SPEI, MOD is modelled SPEI, OBS is mean of the observed SPEI,

and n is total number of observations. Consider

MSE = 1
n

n∑
i=1

(OBS[i]−MOD[i])2 , (5.9)

NS = 1−

n∑
i=1

(OBS[i]−MOD[i])2

n∑
i=1

(
OBS[i]−OBS

)2 , (5.10)

PI = 1− tPI, (5.11)

cAI1= 0.85 · tPI +0.15 ·MSE, (5.12)

cAI2= 0.85 ·MAE+0.15 ·dRMSE, (5.13)

where tPI is transformed persistence index, MAE is mean absolute error, and

dRMSE is root mean squared error in derivatives. The equations are

tPI =

n∑
i=1

(OBS[i]−MOD[i])2

n∑
i=1

(OBS[i]−OBS[i−1])2
, (5.14)
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MAE = 1
n

n∑
i=1

|OBS[i]−MOD[i]|, (5.15)

dRMSE = 4

√√√√ 1
n−1

n−1∑
i=1

((OBS[i]−OBS[i+1])− (MOD[i]−MOD[i+1]))4.

(5.16)

All above mentioned OOF were used for ANN training during calibration of

the model, but also for results analyses. The objective functions serve as accuracy

criteria for evaluation of the models performance.

5.2.3.3 Integrated ANN models

In this study, always 5 artificial neural network models were integrated into one

hybrid ANN model (hANN). The outputs from four models are inputs into the

fifth model as it is displayed on Figure 5.1. The final forecasted SPEI drought

index is the output from the fifth ANN model.

MODt

O
B
S
t

O
B
S
t

O
B
S
t

O
B
S
t

Figure 5.1: Integrated ANN models into hANN. Circles filled with black represent
input layer, circles filled with white represent hidden layer, and circles filled with
grey represent outputs

The hANN models differ in number of inputs, number of neurons in hidden

layer, PSO method used for training, and optimized objective function. The Nin

is equal to 6 or 12 with the input variables according to Table 5.3, where SPI is

Standardized precipitation drought index obtained from precipitation data. The

Nhd is either 3 or 6. The PSO method used for training is the same for the whole

hANN, and it is one of the five variants mentioned above in the text.

The optimized objective criteria is different for each of the ANN model within

the hANN. It is the main advantage of the hANN, because the performance of
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Table 5.3: Input variables into the ANN models for each number of inputs

Nin Input variable

6 SPEI[t− c], for c = 1,2, ...,6
12 SPEI[t− c], for c = 1,2, ...,12
12 SPI[t− c], for c = 1,2, ...,12

each model is combined, and the fifth ANN model works as a correction model

[52, 64].

The general form of the hANN model within this chapter is Nin-Nhd-PSO-

OOF, e.g. 6-3-LinPSO-MSE. The OOF in the notation is the objective function

optimized by the final fifth ANN model. To distinguish between input variable

SPEI and SPI for Nin = 12, Nin = 12 was used for SPEI, and Nin = 12s for SPI in

the notation of the hANN. The PSO and OOF in the notation in validation period

indicate the optimization method and objective function used for obtaining model

weights during calibration.

The total number of hANN models for each catchment is 150 (i.e. 3 sets of

inputs × 2 sets of neurons in hidden layer × 5 PSO variants × 5 optimized

objective functions).

5.3 Results

To obtain a representative set of results for the analysis, each model runs 25

times for calibration and once for validation. The total number of runs was 31 200

(i.e. 3 sets of inputs × 2 sets of neurons in hidden layer × 5 PSO variants × 5

objective functions × 8 catchments × 26 model runs).

5.3.1 Statistical evaluation

The analysed catchment, number of inputs, number of neurons in hidden layer, op-

timized objective function, and PSO variant were considered as factors influencing

the resulted accuracy criteria. Obtained data were analysed based on statistical

tests, and the results are summarized in tables and illustrated on figures.

ANOVA technique was used in order to statistically evaluate obtained results.

Table 5.4 shows the significance level for each factor based on analysis of variance.

If there is a significant difference with a level of α= 0.05 (i.e. at least one star

in the table), it means that at least one level of the given factor gives signifi-
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Table 5.4: Influence of each factor on the accuracy criteria. Results for calibration
are on the left, for validation on the right side of each column. The significance
level *** is for P value ≤ 0.001, ** for 0.001 < P value ≤ 0.01, * for 0.01 < P value
≤ 0.05, · for 0.05 < P value ≤ 0.1, and no sign for P value > 0.1

Factor Accuracy criteria
MSE NS PI cAI1 cAI2

cal. val. cal. val. cal. val. cal. val. cal. val.

Catch. *** *** *** *** *** *** *** *** *** ***
Nin *** * *** *** *** *** · *** ***
Nhd *** *** *** *** *** *** *** *** ***
OOF *** *** *** · *** *** ***
PSO · *** ** *** *** *

cantly different results. For example, all accuracy criteria depend on the choice of

catchment, whereas the lower significance levels were achieved for PSO selection.

Table 5.4 is completed with Figures 5.2 and 5.3, where box plots of chosen

accuracy criteria are displayed. The MSE and NS criteria were selected for

representation, since they are the most commonly used accuracy statistics in

hydrological modelling.

From the figures of box plots can be estimated, which level of each factor gives

significantly different results than the others. For both calibration and validation

seems to be a better choice Nhd = 6, and APartPSO modification, whereas the

OOF = MSE seems to be worse than the others. Choice of Nin depend on the

calibration (Nin = 12 or 12s) and validation (Nin = 6), as is the choice of catchment.

Statistics were applied to support the estimation of the best level of each

factor, and to generalize the conclusion for all accuracy criteria. The applied

statistical technique was post hoc Tukey’s HSD (honest significant difference) test

for multiple comparison of means [105].

The best levels of each factor obtained during calibration and validation

reflects Table 5.5. It is evident, that some levels are significantly better for

simulations, but sometimes there is no difference between two or more levels.

Based on the results, the best hANN models were determined.

For calibration, there are two hANN models with two different Nin with the

same simulation ability. The superior are 12 inputs into the neural networks with

6 neurons in the hidden layer optimized by NS criteria with APartPSO method.

For validation, there exist six hANN models with three OOF and two PSO

factors, whose performances are not different. The best results were obtained by

models with 6 SPEI inputs and 6 neurons in the hidden layer.
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Figure 5.2: Box plots of all achieved values of MSE (left column) and NS (right
column) during calibration based on different factors

5.3.2 Best hANN models

From the statistical evaluation, 2 overall best hANN for calibration, and 6 over-

all best hANN for validation out of the total 150 possible hANN models were

estimated. For clarity, one best hANN model for calibration and one for valida-

tion were selected. The models are 12-6-APartPSO-NS and 6-6-AdaptPSO-NS,

respectively. These two models are representative for the given time period.

The overall performance of the hANN is explained by statistical indices of

the model accuracy criteria obtained during calibration and validation. Table 5.6

displays the minimum, 25% quartile, median, 75% quartile, maximum, mean, and
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Figure 5.3: Box plots of all achieved values of MSE (left column) and NS (right
column) during validation based on different factors

standard deviation of all achieved values for the best estimated hANN models. The

results show that during calibration, lower MSE, cAI1 and cAI2, and higher NS
were obtained. During validation, the PI criterion was higher, but still smaller

than zero, which indicates that the naive model was better than hANN in many

cases. The median of MSE for both hANN is approximately 1.42E-01, and median

of NS is 8.29E-01, which indicates a good model fit.

Figures 5.4 and 5.5 present the time series of measured and simulated SPEI

drought index. Models used for the visualization are the estimated best hANN for

calibration and validation. The displayed catchments are the final best according

to Table 5.5. It is evident, that the simulated SPEI is close to the measured one,
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Table 5.5: The best levels of each factor for each accuracy criteria, and the fi-
nal best level based on Tukey’s HSD test. Minus sign indicates no significant
difference in levels

Factor MSE NS PI cAI1 cAI2 Final

Calibration period

Catch. 01371500 01371500 01197500 01197500 01371500 01371500
Nin 12, 12s - 6 12, 12s 12, 12s 12, 12s
Nhd 6 6 6 6 6 6
OOFa 2, 3, 4, 5 - 1, 2, 4, 5 1, 2, 3, 5 1, 2, 3, 4 2
PSOb - 5 5 - - 5

Validation period

Catch. 01445500 01503000 01127000 01372500 01445500 01445500
Nin - 6 6 - 12, 12s 6
Nhd 6 6 6 6 - 6
OOFa 2, 3, 4, 5 - - 1, 2, 3, 5 - 2, 3, 5
PSOb - 4, 5 2, 3, 4, 5 - - 4, 5
a1= MSE, 2= NS, 3= PI, 4= cAI1, 5= cAI2
b1= LinPSO, 2= ChaoPSO, 3= NonlinPSO, 4= AdaptPSO, 5= APartPSO

and that the models provide sufficient forecasts. The best hANN obtained during

calibration provides good fit also for validation data, and vice versa. The only

problem could be the overestimation of the lower values of SPEI.

The best hANN models for each catchment are displayed in Tables 5.7 and

5.8. They were estimated based on the performance according to NS objective

function, and thus, this models provided the highest NS values. No statistical

evaluation was performed within this analysis.

From the tables, it is evident that during calibration, only one model for each

catchment gave the best results, except for the catchment with the USGS ID

01127000. On the other hand, more hANN models provided the same NS value

for each catchment during validation, except for the catchment with the USGS

ID 01321000. This is related to the statistical evaluation, based on which was

determined that there is no significant difference between more levels of each

factor during validation than during calibration.

5.4 Discussion

It was found out that the number of neurons in the hidden layer influenced results

the most. In this research, the best choice for number of neurons in hidden layer
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Figure 5.4: Measured and simulated time series of SPEI during calibration and
validation period in the catchment 01371500 for the best hANN model 12-6-
APartPSO-NS
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and validation period in the catchment 01445500 for the best hANN model
6-6-AdaptPSO-NS
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Table 5.6: Statistical indices of the best hANN models

MSE NS PI cAI1 cAI2

Calibration period: 12-6-APartPSO-NS

min 9.33E-02 7.30E-01 -9.83E-01 8.40E-01 3.08E-01
25% 1.08E-01 8.68E-01 -3.58E-01 9.14E-01 5.32E-01
median 1.14E-01 8.83E-01 -3.09E-01 9.99E-01 5.53E-01
75% 1.25E-01 8.91E-01 -2.55E-01 1.05E+00 5.82E-01
max 1.60E-01 9.06E-01 -8.04E-02 1.34E+00 6.50E-01
mean 1.16E-01 8.78E-01 -3.18E-01 9.95E-01 5.56E-01
sd 1.32E-02 1.86E-02 9.35E-02 9.71E-02 3.36E-02

Validation period: 6-6-AdaptPSO-NS

min 1.30E-01 5.88E-01 -6.85E-01 8.83E-01 4.01E-01
25% 1.56E-01 7.50E-01 -2.82E-01 9.30E-01 6.67E-01
median 1.70E-01 7.75E-01 -2.16E-01 9.89E-01 6.95E-01
75% 1.80E-01 7.95E-01 -1.64E-01 1.02E+00 7.16E-01
max 2.19E-01 8.26E-01 -2.81E-02 1.24E+00 7.84E-01
mean 1.69E-01 7.71E-01 -2.29E-01 9.89E-01 6.92E-01
sd 1.82E-02 3.14E-02 8.95E-02 6.86E-02 3.81E-02

is equal to 6 for both calibration and validation period. It is in contrary with

[139], who proposed Nhd = log(T), where T is number of training samples. In

this chapter, T = 324 for each calibration and validation, and thus, Nhd should

be equal to 3. However, it was found out, that Nhd = 3 gave significantly worse

results.

According to [82, 96], Nhd = 2n+1, where n is number of input nodes. In the

presented study, n = 6 or 12, and thus Nhd should be equal to 13 or 25. On the

other hand, fewer neurons in hidden layer than in input layer gave good results

[46, 155] while the number of search parameters is lower.

The best PSO variant for training the integrated hANN is the APartPSO,

which gave significantly better results for both calibration and validation. This

modification also provided good performance in optimization of benchmark func-

tions as well as in parameter estimation during calibration of rainfall-runoff model

[68]. Therefore, the optimization ability of the APartPSO method is suitable for

solving real life engineering problems.

The best OOF in this research is the NS, which gave significantly better

results for calibration and validation period. The Nash-Sutcliffe efficiency to-

gether with mean squared error criterion were used in many hydrological and

meteorological studies, and are considered as suitable indicators of the model
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performance.

In this chapter, the best achieved MSE is equal to 0.093 and 0.130, the

best achieved NS is equal to 0.909 and 0.826, during calibration and validation,

respectively. The obtained results are superior than the research of [63]. In their

study, the best achieved criteria for SPI simulations were MSE = 0.144 and

NS = 0.834 for 12-month time scale computations.

On the other hand, better results were obtained by [8] during forecasting the

SPI drought index through ANN models, where the results were MSE = 0.003

and NS = 0.953. Also [32] obtained better criteria during SPEI simulations, where

MSE = 0.020 and NS = 0.983, but they used much more neurons in the hidden

layer of the ANN, where Nhd = 43, which improved their performance.

As it was mentioned earlier in the text, the achieved PI values were usually

less than zero. It indicates that the naive model was better than the hANN in

many cases. Therefore, the PI was not considered as a suitable indicator, and for

improving its performance, the number of generations within the PSO run should

be increased. The cAI1 and cAI2 are accuracy criteria newly proposed in this

chapter, and thus, their performances can not be compared with other studies.

Overall, in the forecasting of the SPEI drought index, the use of NS criteria as

an optimized objective function is recommended. The choice of the PSO optimiza-

tion method was not always essential for getting better results, but the adaptive

method called APartPSO seems to be the best method out of the analysed variants.

It is also important to note, that utilization of larger amount of neurons in the

hidden layer of the ANN model can improve the performance, but the number of

search parameters increases as does the computation time.

5.5 Conclusions

The main aim of the presented chapter was to combine hybrid neural network

models with particle swarm optimization, which was used as training algorithm

for the ANN weights. In total, 150 hybrid ANN models were applied for simulating

the SPEI drought index on 8 US catchments. The dataset of 54 years of observa-

tions was divided into calibration and validation period, and the performance was

analysed based on five measures of goodness of fit.

It was found out that the number of neurons in hidden layer of the ANN

models influences results the most. Better performance was achieved with 6

neurons in the hidden layer instead of 3. The best number of neurons in the input
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layer was not determined uniquely. For calibration, better results were obtained

with 12 inputs, compared to 6 input variables for validation.

Even though, the results obtained by different PSO variants were not always

statistically different, the APartPSO is the most effective method for SPEI fore-

casting. The choice of PSO variant was not essential in all cases, but the adaptive

variants gave better results in both calibration and validation.

The best objective function optimized by the final ANN model is the NS. In

all cases, more OOF gave similar results, but in final evaluation of the model

performances, the Nash-Sutcliffe efficiency was the most effective.

The results of this chapter extended the range of utilization of the particle

swarm optimization technique and artificial neural network modelling. The com-

bination of ANN with PSO is suitable for forecasting the SPEI drought index, and

can be used for prediction of the potential threat of drought event.

The future studies should attempt to evaluate the sensitivity of each parame-

ter of the hANN, and to explore influence of other network architecture, activation

and output functions, or different optimized objective functions. The integrated

ANN models are also promising for utilization in other real life engineering

studies solving inverse problems.
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PRINCIPAL CONCLUSIONS AND SUMMARY

Finding the optimal state of reality is the main purpose of the optimization

process. The best variant from many possibilities is selected, and the effective-

ness of the given system increases. Optimization has been applied in many real

life engineering problems as in hydrological modelling. Within the hydrological

case studies, the optimization process serves to estimate the best set of model

parameters, or to train model weights in artificial neural networks.

Due to difficulties, which may occur during optimization, it is necessary to

wisely choose a suitable method. Based on the optimization problem, it is recom-

mended to devote some time modifying the selected optimization method.

In this doctoral thesis, I focused on the particle swarm optimization technique,

and its utilization in hydrological modelling. It is relatively recent optimization

method, which has only a few parameters to adjust, and is easy to implement to

the selected problem. The original algorithm was modified by many authors. They

focused on changing the initialization of particles in the swarm, updating the

population topology, adding new parameters into the equation, or incorporating

shuffling mechanism into the algorithm.

The main goals of the thesis were provision of comprehensive review about

the PSO method, implementation of selected PSO modifications together with

a new proposed variant in C++ programming language, and application of the

best modifications in real-life optimization problems from the field of hydrology.

The comprehensive review about the PSO technique was provided in Chap-

ter 2. Due to the limited space in the thesis, I focused mainly on features, which

were thereafter useful for my research. The original equations with different mod-
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ifications were summarized there together with various topologies and applicable

objective functions.

Comparison of selected PSO modifications was provided in Chapter 3. In

total, 27 modifications were tested on 5 uni-modal and 6 multi-modal benchmark

problems. Variants with constriction factor and different types of inertia weight

were analysed. The results showed that the best PSO variant is the method with

adaptive inertia weight parameter. In addition, the shuffled complex evolution

strategy improved the performance, and gave the best results, which confirmed

the usefulness of this approach. Therefore, I decided to later focus the attention

to this direction of possible modifications, i.e. adaptive version of inertia weight,

and sub-swarms with shuffling and redistribution of particles.

In Chapter 4, a new PSO variant was proposed. The method enhances the

global exploration and local exploitation in the parametric space during the

optimization process through new adaptive strategy of inertia weight. The shuffled

complex evolution strategy was incorporated into the algorithm. The optimization

ability of the proposed method was tested on 11 benchmark problems, and the

obtained results were compared with 3 PSO modifications from Chapter 3. It was

found out that the new proposed variant performs well, and has suitable results.

Due to the fact, that the new proposed PSO version achieved good results

in optimizing benchmark functions, it was applied in two real-life optimization

problems. One case study concerned with hydrological model Bilan (Chapter 4),

and second case study dealt with artificial neural networks (Chapter 5).

The new method together with other 3 PSO modifications was used for finding

the solution of inverse problems related to estimation of parameters of rainfall-

runoff model Bilan (Chapter 4). Based on statistical tests, it was concluded that

the best results were obtained by the new proposed method and by the adaptive

variant, which was also the best method in Chapter 3. On the other hand, the PSO

modification with parameter of constriction factor performed the worst, which is

also in agreement with the findings of Chapter 3.

The 4 best PSO modifications from Chapter 3 together with the proposed

method from Chapter 4 were combined with artificial neural networks in Chap-

ter 5. The integrated hybrid models were used for forecasting the standardized

precipitation evapotranspiration drought index. The influence of each PSO method

and other variables on the simulations was analysed. The variable, which influ-

enced the results the most, was number of neurons in hidden layer of the ANN

models. Therefore, it is essential to choose the size of hidden layer appropriately.

In terms of PSO method, the most effective technique for SPEI forecasting was
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the proposed variant from Chapter 4.

Based on the results obtained during my research, I can conclude that adap-

tive version of inertia weight parameter is the most effective approach from all

analysed variants. The shuffled complex evolution also significantly improves the

optimization. The new PSO method proposed in this thesis finds the optimum

value not only in benchmark problems, but also in real-life optimization problems.

Therefore, it can be applied in other engineering studies.

Overall, the contribution of the doctoral thesis for the current stage of sci-

entific knowledge is evident from the individual chapters. The results of this

thesis extended the utilization of PSO methods in real-life engineering optimiza-

tion problems. All analysed PSO algorithms are available for later use, and the

completed algorithms are basis for other research projects.
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SHRNUTÍ

Hlavním cílem optimalizačního procesu je nalezení optimálního stavu dané reality.

Z mnoha možností je vybrána nejlepší varianta, čímž vzroste efektivita celého

systému. Optimalizační technika byla aplikována v mnoha inženýrských prob-

lémech. V rámci hydrologického modelování je využita k odhadu nejlepší sady

parametrů modelu, či k trénování umělých neuronových sítí.

Relativně novou optimalizační metodou je optimalizace rojem částic (PSO),

která se vyznačuje malým množstvím parametrů pro nastavení a jednoduchou

implementací. Původní algoritmus této metody byl mnoha autory modifikován.

Důraz byl kladen na změnu způsobu inicializace částic v hejnu, aktualizaci topolo-

gie populace, přidání nového parametru do rovnice, či začlenění mechanismu

promíchávání do algoritmu.

Modifikace PSO algoritmu zlepší provedení optimalizace, zamezí předčasné

konvergenci a sníží výpočetní čas systému. Z těchto důvodů zahrnují hlavní cíle

předložené doktorské práce navržení nové modifikace PSO metody s její imple-

mentací v programovacím jazyce C++. V práci bylo porovnáno a vyhodnoceno více

PSO variant a nejlepší metody byly použity ve dvou hydrologických případových

studiích.

První případová studie se zabývá použitím PSO algoritmů na inverzních

problémech spojených s odhadem parametrů srážko-odtokového modelu Bilan.

Ve druhé studii byly zkombinovány umělé neuronové sítě s PSO metodou pro

předpověd’ vybraného indexu sucha.

Bylo zjištěno, že optimalizace rojem částic je vhodným nástrojem pro řešení

problémů v rámci hydrologického modelování. Nejefektivnějšími PSO modifikacemi
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jsou varianty s adaptivní verzí váhovacího faktoru, které aktualizují rychlost

částice během prohledávání vícedimenzionální řešené oblasti pomocí zpětné vazby.

Mechanismus promíchávání a přerozdělování částic do komplexů, ve kterých je

samostatně spouštěn PSO algoritmus, také výrazně zlepšil provedení optimaliza-

ce.

Přínos této doktorské práce spočívá ve vytvoření nové PSO modifikace, která

byla otestována na referenčních problémech a úspěšně aplikována ve dvou hy-

drologických případových studiích. Výsledky práce rozšířily využití PSO metody

v reálných inženýrských problémech a všechny analyzované PSO algoritmy jsou

k dispozici pro pozdější využití v rámci dalších výzkumných projektů.
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