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Rozpoznávání Alzheimerovy demence ze 
spontánní řeči pomocí hlubokých 
neuronových sítí 

Abstrakt 

Tato práce je zaměřena na výzvu ADReSS (Alzheimer's Dementia 
Recognition through Spontaneous Speech) z konference INTER-
S P E E C H 2020. K řešení této výzvy byly použity různé přístupy k 
dosažení základních výsledků pro klasifikační a regresní úlohy. 

V rámci předzpracování dat bylo nutné provést extrakci příznaků 
pro akustická a lingvistická data. Byly použity předtrénované 
modely: příznaky ze zvukového záznamu byly extrahovány mod­
elem SpeechBrain pro verifikaci mluvčích založeným na Time-Delay 
Neural Network (TDNN) a příznaky z přepisů byly extrahovány 
modelem Bidirectional Encoder Representations from Transform­
ers (BERT). 

První část této práce se zaměřuje na vývoj klasifikačního modelu 
pro rozpoznávání Alzheimerovy choroby (AD). Výsledky ukazují, 
že model neuronové sítě dosahuje nejvyšší klasifikační přesnosti 85 
% na dané testovací množině s použitím transkripcí a překonává 
základní model o 10 % pro lingvistická data. Model K-Nearest 
Neighbour (KNN) dosáhl přesnosti 71 % pro akustická data, což je 
o 14 % více než základní výsledek. 

Druhá část studie se zaměřuje na vývoj regresního modelu pro 
odhad skóre Mini-Mental State Examination (MMSE). Modely 
jsou hodnoceny pomocí statistických ukazatelů, jako je střední 
kvadratická chyba (RMSE) a hodnoty R-squared (r2). Výsledky 
ukazují, že model ElasticNet dosahuje nejnižší hodnoty R M S E 4,35 
a překonává základní model o 0,85 bodu. 

U obou úloh dosažené výsledky překonaly nej lepší známé výsledky 
pro úlohu ADReSS. 

Závěrem lze říci, že tato práce prokazuje účinnost modelů stro­
jového učení pro klasifikaci A D a predikci skóre M M S E . Výsledky 
ukazují potenciál těchto modelů pomáhat při včasné detekci a sle­
dování A D a poskytují poznatky o kvalitě datového setu. 

Klíčová slova: Alzheimerova choroba, Umělá inteligence, Strojové 
učení, Zpracování přirozeného jazyka, Zpracování řeči 
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Alzheimer's dementia recognition from 
spontaneous speech using deep neural 
networks 

Abstract 

This thesis is focused on ADReSS (Alzheimer's Dementia Recog­
nition through Spontaneous Speech) challenge at I N T E R S P E E C H 
2020. To solve this challenge different approaches were used to 
achieve baseline results for classification and regression tasks. 

As a part of data preprocessing, feature extraction was needed for 
acoustic and linguistic data. Pretrained models were used: fea­
tures from audio recording were extracted by SpeechBrain speaker 
verification model based on Time-Delay Neural Network (TDNN) 
and features from transcriptions were extracted by Bidirectional 
Encoder Representations from Transformers (BERT) model. 

The first part of this work focuses on developing a classification 
model to recognise Alzheimer's disease (AD). The results show that 
the Neural Network model achieves the highest classification accu­
racy of 85% on the given testing set using transcriptions, outper­
forming the baseline model by 10% for transcriptions. For speech 
recording, K-Nearest Neighbour (KNN) has achieved test accuracy 
of 71%, which is higher than the baseline result by 14%. 

The second part of the study focuses on developing a regres­
sion model for predicting Mini-Mental State Examination (MMSE) 
scores. The models are evaluated using performance metrics, such 
as root mean squared error (RMSE) and R-squared (r2) values. The 
results show that the ElasticNet model achieves the lowest R M S E 
of 4.35, outperforming the baseline model by 0.85. 

For both tasks, achieved results have outperformed the best-known 
results for the ADReSS challenge. 

In conclusion, this thesis demonstrates the effectiveness of machine 
learning models for the classification of A D and the prediction of 
M M S E scores. The results highlight the potential for these models 
to assist in the early detection and monitoring of A D , and provide 
insights about dataset quality. 

Keywords: Alzheimer's disease, Artificial Intelligence, Machine 
Learning, Natural Language Processing, Speech Processing 
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1 Introduction 

Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of 
people worldwide. It is characterized by progressive memory loss, cognitive impair­
ment, and behaviour changes. There is no cure for A D , but the current state of 
medicine can slow the progression and improve everyday life for patients and their 
families. Early detection of A D is critical for early intervention, which can help to 
have a comfortable life for as long as possible. Current methods for diagnosing A D 
usually are costly, time-consuming, and often only accurate when the disease has 
already progressed. 

Artificial intelligence (AI) and natural language processing (NLP) show promis­
ing results in identifying A D signs from spontaneous speech, including early stages. 
Spontaneous speech changes with every A D stage, which can be used to indicate 
some cognitive impairment. Spontaneous speech analysis with AI is a non-invasive 
and cheap tool to detect A D . 

This thesis is focused on Alzheimer's Dementia Recognition through Spontaneous 
Speech (ADReSS) challenge: the main purpose is to develop a machine learning 
(ML) model to classify A D and non-AD individuals from spontaneous speech. 

The results of this challenge can significantly change current approaches to the 
detection and management of A D . A n accurate speech-based diagnostic tool could 
help identify individuals at risk of developing A D before symptoms become severe, 
enabling better management of the disease, reducing healthcare costs and improving 
patient outcomes. 

1.1 Main goals of this thesis 

The main goals of this thesis are to gain a comprehensive understanding of the 
application of neural networks in speech processing, to explore the ADReSS 2020 
Challenge, to develop a model that can identify Alzheimer's dementia utilising the 
ADReSS dataset, to experiment with different methods for classification and regres­
sion tasks, and to compare achieved results against the existing published techniques 
for the ADReSS 2020 Challenge. 

11 



1.2 Speech processing in Machine Learning 

Speech processing is one of the most important directions in the Machine Learning 
(ML) field thanks to the wide scope of usage and great possibilities it provides. 
Speech processing is a process, when computers can analyse a speech and get needed 
information from it. 

Currently, Artificial intelligence in this field is capable to detect and recognise 
specific humans, emotions of speech, the main meaning of a given sentence or the 
whole long speech, to make a summary and to translate in real time. State of the 
art models usually are extremely robust to any noise. 

The main purpose of speech processing is to achieve and overcome the human 
level of performance on speech tasks. 

Speech processing is able to improve a lot in our daily life. It can speed up 
medical analysis, it can help us to communicate better in any language in real 
time, and it can help us to improve our speech itself (for example by detecting filler 
words or non-native accents). It can be used as a transcription or assistance tool in 
healthcare to help doctors and nurses with their job. 

1.3 What is Alzheimer's disease? 

Alzheimer's disease (AD) is a brain disorder that with time dangerously affects 
everyday life. The main known risk is age. A D usually occurs in individuals above 
age 65 [1]. 

There few ways to diagnose A D : 

• Brain scans such as magnetic resonance imaging (MRI), computerised to­
mography (CT), and positron emission tomography (PET). Brain imagining 
can help, however, sometimes it's difficult to know what is normal age-related 
brain changes and what are abnormal changes. 

• Laboratory tests: blood, urine, measure the levels of proteins associated 
with A D by collecting cerebrospinal fluid. 

• Memory and cognitive tests. There are several screening tests to detect 
cognitive impairment. The most popular is Mini-Mental State Examination 
(MMSE); the maximum score is 30. The score is considered normal if it's 
higher than 25. A score of 24 or below can indicate possible memory and 
cognitive problems. 

One of MMSE's disadvantages is that scores can be affected by years of edu­
cation, age and personal background [2]. 
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1.3.1 Alzheimer's disease stages 
There are 5 A D stages: 

• Asymptomatic stage: an individual has biological changes in the brain 
before any cognitive symptoms. 

— This stage can take up to 20 years [1]. 

— M M S E is normal (25-30 points). 

• Mild Cognitive Impairment (MCI) stage: people in this stage can have 
some memory or cognitive function problems but those changes usually don't 
affect daily activities. Not every individual with M C I will develop Alzheimer's. 
MCI can be an early stage of A D if hallmark brain changes are present [3]. 

— This stage can take up to 7 years. 

— M M S E score at this stage can be 24-30 points. 

• Mild (Early stage of AD): Common first signs are: difficulty remember­
ing newly learned information (e.g. new language), word-finding, and taking 
longer to finish usual everyday tasks. 

— Lasts about 2 years. 

— M M S E at this stage is 21-26 points. 

• Moderate (Middle stage of AD): In this stage, individuals have problems 
with reasoning, conscious thoughts and correct detecting and recognising (e.g. 
sounds, words, time or place). It's almost impossible to learn new information 
and express thoughts correctly with brain damage caused by A D in this stage 
[!]• 

— Lasts about 2-4 years [4]. 

— M M S E at this stage is 15-20 points. 

• Severe (late stage of AD): In this stage, A D makes everyday life almost 
impossible: usually there is no body control (bladder control, eating and swal­
lowing food independently, mouth breathing when needed). Speech is totally 
lost or limited up to 10 words, which makes communication impossible. 

— Lasts about 1.5 - 2.5 years. 

— M M S E at this stage is lower than 15 points. 
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1.4 ADReSS 2020 Challenge 

AI is capable to help diagnosing A D in different ways: 

• Help in studying and detalisation biomarkers (biological signs of disease, which 
can be found on brain scans or in blood tests). 

• Detect new and old disease signs in the behaviour of individuals, which are 
not always easy to notice. 

AI is not only capable to diagnose A D by the already known rules, but it can analyse 
a lot of information and find heretofore unknown patterns and signs to detect A D 
much earlier than it's possible now, which can help preventing some complications 
and maybe to find a breakthrough cure. 

One of the ways to detect A D by AI is a speech analysis. There are changes 
in a speech in every stage of Alzheimer's disease (except for the asymptotic stage), 
as it was described in subsection 1.3.1 on page 13. It is possible to detect A D not 
only by word analysis but also emotions and voice level. As the disease progresses 
an individual has not only problems with words but with stable voice level and 
emotions as well (e.g. unexpected shouting). 

Figure 1.1: The Cookie Theft Image from the Boston Diagnostic Aphasia Exami­
nation [5]. 

The ADReSS challenge [6] is focused on the detection of any cognitive impair­
ment and Alzheimer's dementia by using spontaneous speech samples and their 
transcriptions. 
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Spontaneous speech samples were carefully collected and selected for this chal­
lenge to reduce common problems: unbalanced feature distributions and variations 
in audio quality. 

One of the purposes of this challenge is to provide a new standardised dataset 
to make it easier to compare and test different approaches to detect A D . 

Every audio recording contains a dialogue between a healthy or control subject 
and a doctor. The subject needs to describe what is happening in the Cookie Theft 
picture (see figure 1.1). 

The challenge contains two tasks: 

• Classification task, where it's required to create a model to predict label for 
each subject (AD or non-AD). The baseline is 62.5% for acoustic features and 
75% for linguistic features. 

• Regression task for M M S E score prediction (integer from 0 to 30). The baseline 
is an R M S E of 6.14 for acoustic features and 5.20 for linguistic features. 

In each task, it's allowed to use speech and language data. 

1.5 Thesis structure 

This work is further structured as follows: 

• The next chapter 2 describes how few other studies tried to solve ADReSS 
challenge tasks. 

• It follows with methods and dataset descriptions (chapters 3 and 4) and eval­
uations of the chosen methods (chapter 5). 

• Then in chapter 6 there is a comparison between achieved results in this work 
and results found on the internet. 

• Finally, the last chapter 7 is the conclusion of this work. 
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2 Related works 

The ADReSS challenge was introduced in the paper [6]. In this study, researchers 
used different feature extractors for audio recordings (e.g. Multi-resolution Cochlea-
gram features (MRCG), and Minimal (basic statistics features: mean, standard de­
viation, median, minimum and maximum)). These feature sets contained a variety 
of features such as mel-frequency cepstral coefficients (MFCC) , voice quality, fun­
damental frequency (FO), line spectral pairs (LSP), intensity features, and low-level 
descriptors (LLDs). A basic set of different language measures (e.g. duration, total 
utterances and others) was computed from transcriptions. 

The study used five different methods for the classification task: Linear Dis­
criminant Analysis (LDA), Decision Tree (DT), Nearest Neighbour (INN), Random 
Forest (RF), and Support Vector Machine (SVM). The study also implemented a 
two-step classification process, segment-level (SL) classification and majority vote 
(MV) classification. The results show that the I N N method had the best accuracy 
(57%) for acoustic features using the ComParE feature set for A D detection. L D A 
and R F on linguistic features provided the best accuracy for the classification task 
(75%) [6]. 

The baseline experiments for the regression task used five different methods: DT, 
linear regression, Gaussian process regression, least-squares boosting, and S V M . The 
results showed that DT provided the best R M S E scores: R M S E of 6.14 for M M S E 
prediction with M R C G features for acoustic data, and R M S E of 5.20 for linguistic 
data [6]. 

In another paper, the work of Haulcy and Glass tested several models, comparing 
their performance on the ADReSS dataset. The top-performing classification models 
were the S V M and R F classifiers trained on B E R T embeddings - both achieved 
an accuracy of 85% on the test set. The best-performing regression model was 
the gradient boosting regression model trained on B E R T embeddings and C L A N 
features, which had an R M S E of 4.56 on the test set [7]. 

A different study (done by Martinec and Senja) presented an accuracy of 77% 
for the classification task, using a Logistic regression model with different features. 
For regression, the best R M S E score of 4.44 on the test set was achieved by the 
S V M model [8]. 

The related works for the classification task of the ADReSS challenge report ac­
curacies up to 85% for linguistic features only. The accuracy in most cases decreases 
to below 70% when only audio features are used. For the regression task, R M S E is 
around 4.5 for linguistic features only. 
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3 Methodology 

This chapter contains the theory that is needed to solve the ADReSS challenge: 
speech and text processing, data preprocessing, transfer learning for feature extrac­
tion and algorithms for classification and regression tasks. 

3.1 Audio and text data for speech processing 

In machine learning, audio and text data are two of the most used data types in 
speech processing. 

Usually, audio data are preprocessed by trained feature extractors or spectro­
grams, which represent the sound signal in a suitable way for M L algorithms. Then 
these features can be used to train a model that can detect voice activity, and 
recognise words or emotions. 

Sometimes it's good to transcript audio data to text format (e.g. to isolate 
speech meaning from voice level or noise). Text data can be preprocessed by a 
tokeniser to extract words and punctuation signs (tokens). Then those tokens can 
be encoded into numerical vectors (e.g. word embeddings). Numeric data can be 
used more effectively than raw text in M L algorithms. Then it can be used for 
natural language processing (NLP) tasks such as sentiment analysis, classification 
and translation. 

3.1.1 Data preprocessing 
Data preprocessing is the first step for speech processing in machine learning al­
gorithms. The main goal is to prepare original data in a way to maximise the 
performance of the M L model and to minimise any errors. Speech preprocessing can 
vary depending on a specific task and dataset, but usually, speech preprocessing 
contains a few steps: 

• Noise removing. 

• Feature extraction. 

• Normalisation. 

• Augmentation to increase wanted variations on the dataset and improve M L 
model robustness and performance. 

17 



• Split data into training, validation and testing sets with the same label pro­
portions to minimise imbalance between sets. 

Principal Component Analysis 

P C A can decrease the number of correlated features in a given dataset. The princi­
pal components (uncorrelated features) capture the maximum variance in the data. 
Choosing the appropriate number of principal components that retain enough in­
formation from features is important to minimise information loss [9]. 

By reducing the number of dimensions in the data, P C A can simplify the anal­
ysis, and improve the speed of M L algorithms. 

P C A can be used for different tasks: 

• Data compression. 

• Feature extraction. 

• Data visualisation. 

P C A works by finding the eigenvectors and eigenvalues of the covariance matrix of 
the input data. The eigenvectors represent the directions of maximum variance in 
the data, and the eigenvalues represent the amount of variance explained by each 
eigenvector [9]. 

3.2 Transfer learning 

Transfer learning is a process when a pre-trained model from another task can be 
reused to solve a different but related problem [10]. 

It is relatively rare to have a dataset of sufficient size. It is common to pre-train 
a model on a very large dataset and then to use it either as an initialisation or as a 
fixed feature extractor for the task. 

In the case of the small dataset with data similar to the original dataset, transfer 
learning can be used, but it will be training only the last layers because the first 
layers will be used for general feature identification. 

Transfer learning doesn't always work: for example, in the case of a dataset that 
is too small and very different to the original dataset, so there is a requirement to 
select more data. 

There are method descriptions, which are used for feature extraction from speech 
recordings and transcriptions in the following sections: in section 3.2.1 is a descrip­
tion of the model which works with text inputs and in section 3.2.2 is the description 
of models which works with audio recordings. 

3.2.1 Bidirectional Encoder Representations from Transformers 
Bidirectional Encoder Representations from Transformers (BERT) is a pre-trained 
N L P model developed by Google [11]. It is based on the Transformer architecture 
and the output is word embeddings. 
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BERT uses a bidirectional self-attention approach to generate word embeddings 
where every token attends to context on both sides (left and right). This allows 
BERT to capture complex relationships between words and their context, leading 
to significant improvements in N L P tasks [11]. 

Since the release of B E R T , several variations and extensions of the model have 
been developed, such as RoBERTa [12], A L B E R T [13], and E L E C T R A [14], which 
have achieved state-of-the-art performance on various N L P tasks. 

BERT can handle different text inputs named "sentence" where the maximum 
number of tokens is 512 (This limitation is made against low-quality output). It's 
important to remember that the B E R T sentence is not referring to a usual linguistic 
sentence, but to the input token sequence [11]. 

If the input sentence is too long for BERT, there are two techniques to use: 

• Trimming the input text. 

• Dividing the input text into segments of equal length and running each seg­
ment through B E R T , then averaging the B E R T embeddings. 

It's required in every input to use defined tokens: [SEP] (separator) and [CLS] 
(classification token). 

How to use BERT: 

• Prepare input sentences for tokenisation: correct linguistic errors, standardise 
the format along all input data and add special tokens, as required. The 
output of this step must be a normalised text with special tokens and up to 
512 tokens long. 

• Tokenise the input data. Tokenisation is the process of breaking down the 
input text into individual tokens or subwords and characters. In the case of 
subwords and characters, the token starts with The output is an array 
of strings (words, subwords, characters) [11]. 

• Convert an array of strings into an array of B E R T vocabulary indices. B E R T 
vocabulary is not case-sensitive and has a size of around 30,000 tokens. Words 
that are not part of the vocabulary are represented as subwords and characters. 

• Evaluate B E R T on text to extract embeddings: the output contains the fol­
lowing hidden states: number of hidden layers (always 13 layers: the first layer 
is the input data and 12 BERT's layers), how many words (tokens) in a given 
B E R T sentence, feature array (length of 768). 

• Create sentence embeddings from hidden states. There are a few ways to 
work with outputs, in this thesis two approaches were used to produce a single 
embedding of 768 length for each sentence: 

— Average the second to last hidden layer of each token. 

— Sum the second to last hidden layer of each token. 

19 



3.2.2 SpeechBrain models 
SpeechBrain is an open-source toolkit built on PyTorch for speech processing that 
provides a wide range of pre-trained models, tools for data preprocessing, feature 
extraction and building custom models [15]. 

SpeechBrain provides some of the commonly used pre-trained models, which 
include: 

• Automatic Speech Recognition (ASR) models to convert speech audio into 
text. 

• Text-to-Speech (TTS models) to convert text into speech audio. 

• Speaker Identification (SID) models to identify the speaker of an audio record­
ing. 

• Voice Activity Detection (VAD) models to detect whether an audio recording 
contains speech or silence. 

In this work, two SpeechBrain models were tested: T D N N (Time delay neural 
network) and E C A P A - T D N N (Emphasized Channel Attention, Propagation and 
Aggregation in TDNN) to extract features from audio recordings. 

T D N N 

A Time Delay Neural Network (TDNN) is a type of feedforward N N that can process 
sequential data, such as speech signals or time series data [16]. 

The main difference between usual feedforward N N and T D N N is that T D N N 
processes each input independently with delay elements. Thanks to added delay 
elements to the input layer, T D N N model is capable to predict output for current 
input based on previous and future inputs. The output of the delay elements is fed 
to the series of hidden layers. 

The SpeechBrain speaker verification (SP) model based on T D N N is designed 
to work with audio recordings of different lengths and provide a fixed-length output 
for each input recording. The model is trained on Voxcelebl [17] and Voxceleb2 [18] 
training data. It can be used to extract speaker embeddings [15]. 

This SP system is made up of two components: a T D N N model and a statistical 
pooling method. During training, the system uses a loss function called Categorical 
Cross-Entropy Loss. 

The SpeechBrain SP is trained with recordings sampled at 16kHz. SpeechBrain 
framework can automatically normalise input audio (resampling and single channel 
selection) if needed. 

The SpeechBrain SP system uses a combination of input processing, time-delayed 
features, pooling, and normalisation techniques to handle audio recordings with 
different lengths and output fixed-length representations. 
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E C A P A - T D N N 

The E C A P A - T D N N model is an extension of the T D N N model [19]. 
The main difference between T D N N and E C A P A - T D N N is that E C A P A - T D N N 

has a few modifications added to the original T D N N architecture to improve its 
performance. Specifically, these modifications include: 

• Using emphasised channel attention to weight the input features based on their 
importance. This enables the model to focus on the most relevant features 
while ignoring noise or irrelevant information. 

• Using propagation and aggregation to enhance the representation of the in­
put features across different time frames. This is achieved by propagating 
and aggregating the feature maps across multiple T D N N layers, which allows 
capturing more dependencies in the input data. 

• Adding a convolutional layer at the beginning of the network, which helps to 
extract high-level features from the input data before passing it through the 
T D N N layers. 

The SpeechBrain SP system based on E C A P A - T D N N is trained on Voxcelebl 
[17] and Voxceleb2 [18] training data. 

The system can extract speaker embeddings thanks to attentive statistical pool­
ing [15]. During training, the system uses a loss function called Additive Margin 
Softmax Loss [20]. To perform speaker verification, the system uses the cosine dis­
tance metric to compare the speaker embeddings. 

The training process and usage of this system are similar to the system based on 
the T D N N . Therefore, it can be used in the same manner as a TDNN-based system. 

Difference between T D N N and E C A P A - T D N N 

T D N N and E C A P A - T D N N are both N N architectures used in speech recognition 
tasks. Usually, E C A P A - T D N N can outperform T D N N models in speech recognition 
tasks. 

However, there are few cases where E C A P A - T D N N performs worse than T D N N 
(e.g. specific task problems, implementation, hyperparameters). 

3.3 Classification 

Classification is a supervised learning method in M L that can work with any type of 
input data and any number of classes. Classification outputs are assigned as discrete 
class labels (for example, male or female). 

The classification algorithm is trained on labelled data (each data point has a 
class label). The algorithm learns to identify relationships between features and 
each class to predict the class labels for new data points. 
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3.3.1 Neural Network 
A Neural Network (NN) for classification tasks usually includes multiple layers of 
interconnected nodes, where each node receives an output from the previous layer 
as an input and performs a calculation by using an activation function (e.g. sigmoid 
or softmax) to transform given input and produce an output, that is passed on to 
the next layer nodes. The first layer receives the input features and the output layer 
produces the final predicted labels for each class [21]. 

There are different types of neural networks used for classification tasks, the 
most popular are: 

• Feedforward N N . 

. Convolutional N N (CNN). 

• Recurrent N N (RNN). 

An example of simple N N can be seen on figure 3.1. 

Input layer Hidden layer Output layer 

Figure 3.1: Example of N N structure [22]. 

Between the first and the last layers can be a different number of hidden layers, 
which allow the N N to capture complex patterns in the given data. 

During the training phase, the N N weights and biases are adjusted using a back-
propagation process, which tries to minimise the error between the predicted output 
and the actual label. There are different types of optimisation algorithms such as 
stochastic gradient descent, Adam and others [21]. 

3.3.2 Gaussian Process 
The Gaussian process (GP) is a probabilistic non-parametric method, which can 
be used for binary classification tasks. It's based on Gaussian (normal) probability 
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distribution. The normal distribution describes a symmetrical plot of data around 
its mean value [23]. 

3.3.3 Support Vector Machine 
The Support Vector Machine (SVM) classifier is trained to identify the optimal 
hyperplane, which effectively divides the data into distinct classes. 

If the data is not linearly separable, S V M can utilise a kernel function to map 
the input data to a higher-dimensional feature space where linear separability may 
be achieved. In this higher-dimensional space, S V M can still identify the best hy­
perplane and provide predictions in the original input space [24]. 

One of the key advantages of S V M is its ability to effectively handle high-
dimensional data and its robustness to overfitting. 

3.3.4 K-nearest neighbour 
K-nearest neighbour (KNN) is a non-parametric method based on measuring dis­
tances used for different M L tasks. In the case of classification, outputs are assigned 
as discrete class labels (for example, male or female) [25]. 

The K N N method doesn't have a training phase in its usual meaning. In this 
method, the training phase consists only of storing the training elements and the 
class labels. The classification phase of K N N method is searching distances between 
the unlabeled element and the training element in every class within the feature 
space. The unlabeled element is classified by assigning the label which is most 
frequent among the k training samples nearest to the query point. 

Usually, k is chosen as a square root of N , where N is the number of training 
elements. 

The K N N classifier requires a setting for k and distance function. The most pop­
ular distances used in K N N are Hamming distance(Ll) and Euclidean distance(L2). 

3.3.5 Metrics 
For the classification task, the prediction can be either right or wrong. Analysing the 
number of true positives, false positives, true negatives, and false negatives predicted 
by the model helps to understand how well a model is trained [26], where: 

• True positives (TP): the number of cases where the model correctly predicts 
a subject as true (e.g. an A D subject is identified as an A D subject). 

• False positives (FP): the number of cases where the model incorrectly iden­
tified a subject as true (e.g. a non-AD subject is identified as an A D subject). 

• True negatives (TN): the number of cases where the model correctly iden­
tified a subject as false (e.g. a non-AD subject is identified as a non-AD 
subject). 
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• False negatives (FN): the number of cases where the model incorrectly 
identified a subject as false (e.g. an A D subject is identified as a non-AD 
subject). 

To have clear classification reports following calculations are needed: 

• Precision is the proportion of T P among the total number of predicted pos­
itives (TP and FP) , which shows how many of the predicted positive cases 
were actually positive. 

• Recall is the proportion of T P among the total number of actual positives (TP 
and FN), which shows how many of the actual positive cases were correctly 
predicted as positive. 

• F l Score is the mean of precision and recall to have more balanced summari­
sation of model performance. The formula is: 

2 x Precision x Recall 
b 1 = 

Precision + Recall 

• Accuracy is the proportion of correctly classified subjects among the total 
number of subjects. The formula is: 

TP + TN 
A c C U r a C y = TP + TN + FP + FN 

3.4 Regression 

Regression is a supervised learning method in M L . Regression outputs are assigned 
as feature numerical values (for example, house price predictions). Same as for 
classification, regression algorithms are trained on labelled data. 

3.4.1 Least Absolute Shrinkage and Selection Operator 
The Least Absolute Shrinkage and Selection Operator (Lasso) regression is a linear 
regression model extension that has a penalty term to the cost function in order to 
prevent overfitting. The penalty term is proportional to the absolute value of model 
weights, which causes some of the weights to become zero. It means that Lasso 
regression can perform feature selection by identifying and discarding irrelevant or 
redundant input features [27]. 

3.4.2 Elastic net 
Elastic Net regression is a linear regression model that combines L I (Lasso) and L2 
(Ridge) regularisation techniques. Like Lasso regression, Elastic Net adds a penalty 
term (LI) to the cost function that is proportional to the absolute value of the 
weights of the model, which can help with feature selection. Additionally, Elastic 
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Net also adds a second penalty term (L2) to the cost function that is proportional 
to the square of the weights of the model, like in Ridge regression. This additional 
term helps to address some of the limitations of Lasso regression, which selects only 
one feature among a group of highly correlated features [28]. 

3.4.3 KNN Regressor 
Same as for classification tasks, in K N N regressor, the value of k represents the 
number of nearest neighbours to consider when making a prediction. The output 
value for the new data point is computed as the mean (or median) of the output 
values of its k nearest neighbours [25]. 

K N N regression can work well when the relationships between variables are com­
plex and not easily captured by a simple mathematical model. It is also a computa­
tionally inexpensive algorithm for a low number of neighbours and small datasets. 

3.4.4 Metrics 

Root Mean Square Error 

R M S E stands for Root Mean Square Error, which is a commonly used metric to 
evaluate the accuracy of a regression model's predictions. R M S E measures the 
difference between the predicted values and the actual values, expressed in the same 
units as the response variable [29]. 

A lower R M S E value indicates better performance, as it means that the model's 
predictions are closer to the actual values. However, the interpretation of the R M S E 
value also depends on the scale of the response variable. For example, a R M S E of 
10 for a response variable with a range of 0-100 may be acceptable, but a R M S E of 
10 for a response variable with a range of 0-1 would be considered very bad. 

One important consideration when using R M S E is that it gives equal weight to 
all errors, regardless of their direction (i.e., overestimation or underestimation). 

R2-score 

R2-score is a metric used to evaluate the performance of a model. It measures the 
proportion of the variance in the dependent variable that is predictable from the 
independent variables used in the model [30]. 

The R2-score usually ranges from 0 to 1, with a higher value indicating a better 
fit of the model to the data: an R2-score of 1 indicates that the model perfectly 
predicts the dependent variable, while an R2-score of 0 indicates that the model is 
no better than predicting the mean of the dependent variable. 

A high R2-score sometimes can mean overfitting to the training data and not 
generalising well to new data. 

When R2-score is a negative number [31], it means that the model is performing 
very poorly and is actually worse than just predicting the mean value of the depen­
dent variable. This could be due to several reasons, such as overfitting, incorrect 
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model specification (e.g. linear regression model for nonlinear relationship between 
values in the dataset), outliers or missing data, dataset quality issues. 

2-D scatter plots 

2-D Scatter plots of actual and predicted values ( ) with the regressed diagonal 
line (x=y) were used to visualise regression results. If a model has a low R M S E , all 
the points would be close to this diagonal line. The higher the R M S E , the weaker 
model is, and the more dispersed points are (away from this diagonal line). 

From this plot type it's possible to see model-related issues: for example, if 
the residuals are heteroscedastic or autocorrelated, or what class has more wrong 
predicted outputs and how much wrong they are. 
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4 Dataset 

The original dataset version, which was used, has 2 classes (AD and non-AD) and 
156 subjects. The dataset is divided into a 48-subject test set and a 108-subject 
train set. Sets are balanced by classes (AD or non-AD), age interval and gender as 
shown in table 4.1. 

Table 4.1: Number of subjects for each age interval in train and test sets 

Age 
interval 

Train set Test set Age 
interval AD-subject 

non-AD 
subject AD-subject 

non-AD 
subject 

[50, 55] 1 2 2 2 
(55, 60] 10 9 4 3 
(60, 65] 13 13 5 6 
(65, 70] 15 13 6 5 
(70, 75] 11 12 5 7 
(75, 80] 4 5 2 1 
Total 54 54 24 24 

Each subject has the following data: 

• Label (AD or non-AD). 

• Gender (female or male). 

• Age (the youngest subject is 50 years old and the oldest is 80 years old), 

• Audio recording: 

— .wav format file. 

— Contains a one-on-one interview between a subject and a doctor. 

— Quality of each speech recording is affected by different recording condi­
tions such as distance between the microphone and each interview par­
ticipant or background noise. 

• Audio-chunks, which were extracted from the audio recording by voice activity 
detection: 
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— Maximum duration of each speech segment is 10 seconds. 

— Not every audio segment contains speech in it. 

— A n average number of speech segments for each subject is 24.86 [32]. 

• Transcripts of audio recording: 

— Codes for the Human Analysis of Transcripts (CHAT) transcription for­
mat was used [33]. C H A T coding system contains a lot of information 
about the speech to analyse it: each speaker is identified with a unique ID 
(e.g. " INV" ID stands for "investigator"); utterance boundaries, which 
helps to distinguish between individual statements; grammatical markers 
to analyse different grammatical structures. 

— When a word is unintelligible or unclear and can't be transcripted, it's 
written as "xxx". 

— The maximum number of words for each subject is 505 and the minimum 
is 27. 

• M M S E (see proportion in table 4.2): 

— Integer from 0 to 30 or NaN if M M S E score wasn't calculated, where a 
higher score means fewer mental and cognitive problems. 

Table 4.2: Dataset proportion for M M S E score 

M M S E 
interval 

Train set Test set M M S E 
interval AD-subject 

non-AD 
subject AD-subject 

non-AD 
subject 

[0, 15] 20 0 6 0 
(15, 20] 22 0 8 0 
(20, 24] 7 0 5 1 
(24, 30] 5 53 5 23 
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5 Experiments 

For each task in this work extracted features by pre-trained models were used. The 
top 3 results were always selected by validation accuracy and evaluated on the 
testing set. Training accuracy was higher than 90% almost for each model. The gap 
between training accuracy and validation accuracy was always more than 12%. 

5.1 Data preprocessing 

A l l input data were pre-processed to improve the models' performance. 
Labels were transformed to numeric representation (0 for non-AD and 1 for A D 

class). 
Numeric vectors were extracted from the speech recordings by SpeechBrain pre-

trained speaker verification models. Two different models were adapted for the 
ADReSS dataset: 

• T D N N model, which was trained on Voxceleb 1+ Voxceleb2 training data to 
extract speaker embeddings. Each extracted speaker embedding has a length 
of 512. 

• E C A P A - T D N N model, which was trained on Voxceleb 1+ Voxceleb2 training 
data as well. Each extracted embedding has a length of 192. 

Before solving classification and regression tasks extracted features from both 
models (TDNN and E C A P A - T D N N ) were compared. The feature extraction by 
T D N N was faster due to the more complex architecture of E C A P A - T D N N . Evalu­
ation on the validation set has shown that features extracted by the T D N N model 
lead to better and more stable results for different models (for classification and 
regression), so for both ADReSS tasks, only features extracted by the T D N N model 
were used. 

A l l transcriptions were transformed by the B E R T model to get a numeric rep­
resentation of each speaker of length 768. The sentence embedding was calculated 
with two different approaches: calculating the average of all token vectors and cal­
culating the sum of all token vectors. 

The original training dataset was split into training and validation sets. The 
validation set size is 1/3 of the original dataset, which means it has 36 subjects. 
Validation and training sets have equal labels proportion: there are 36 subjects for 
each label for training and 18 subjects for each label for validation. 
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P C A was used to visualise embeddings from different extracted models. After 
P C A was applied it's easy to see, that summed B E R T embeddings should be suc­
cessful with linear models (it can be separated by a line on y=0, see figure A . l ) . 
Audio embeddings are too complex to be successful with simple models. 

The ADDReSS challenge provides sex and age information for each subject too, 
but the main purpose is to use audio and text features to predict labels for the test 
set. 

5.2 Classification task 

For the classification task, different algorithms were tested with different hyperpa-
rameter settings for each extracted feature: 

. K N N with different k (from 1 to 10). 

• S V M with different degrees (up to 5) and regularisation parameter (C). 

• Decision Tree with a different maximum depth, criterion and the minimum 
number of samples for each leaf. 

• Random Forest with a different number of estimators (trees), criterion and 
the maximum depth. 

• SGD with different regularisation parameters. 

• Multi-layer Perceptron (NN) with different learning rates, regularisation pa­
rameters, activation functions and weight optimisation. 

• Gaussian Process (GP) without a kernel. 

The random state was always set to 42, which is useful for the reproducibility 
and consistency of results. The random state wasn't needed for data splitting, 
because data was split before the training process and was always the same for each 
experiment, but it was needed to ensure that the same initial weights (and other 
parameters) are used during each code run to achieve a fair comparison of models. 

The mean B E R T embeddings achieved the most accurate and stable outcome 
among all the models that were tested. The best results are shown in table 5.1. 

M L P (settings: maximum number of iterations = 100, the strength of the 12 
regularisation (alpha) = 0.00005, number of hidden layers = 100, optimisation = 
A D A M (Adaptive Moment Estimation), activation function = ReLU (Rectified Lin­
ear Units)) achieved the best results of 83% accuracy for testing and validation sets, 
which was expected as average accuracy with the k-fold method showed an accuracy 
of 82%. 

M L P with the same settings achieved a testing accuracy of 85% for summed 
BERT embeddings, but when this algorithm was tested for different data splitting 
(training and validation splits) in the k-fold method, the average accuracy was 82%, 
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which means that this high accuracy is achieved because of current data splitting, 
not by the model performance. 

Gaussian process algorithm showed unexpectedly high accuracy for prepared 
data split of 81% when average accuracy for this method over 6 folds was only 70%. 
GP algorithm was more stable for mean B E R T embedding than for summed B E R T 
embeddings. 

Table 5.1: Top 3 results for mean B E R T embeddings 

Classifier Label Precision Recall fl-score Test acc. 
[%] 

Valid acc. 
[%] 

M L P non-AD 79 92 85 
83 83 

M L P 
A D 90 75 82 83 83 

G P non-AD 76 92 83 
81 81 

G P 
A D 89 71 79 81 81 

S V M , 
degree=3 

non-AD 76 92 83 
81 78 

S V M , 
degree=3 A D 89 71 79 81 78 

S V M with 3rd degree achieved an accuracy of 81% for testing, which was ex­
pected. Linear S V M achieved lower accuracy for mean B E R T embeddings because 
data is a little bit complex to use linear classifier, as can be seen from P C A compo­
nents graph A.2 in attachments A . 

Linear S V M with regularisation C = l was enough to achieve an accuracy of 77% 
for summed B E R T embeddings, as it was expected. Higher degrees didn't affect 
performance a lot in this case. 

SGD testing accuracy is 79% for summed B E R T embeddings, which was ex­
pected. SGD classifier works well for both (summed and mean) B E R T embeddings. 
It's stable and has high accuracy comparing to all tested methods. 

Table 5.2: Top 3 results for summed B E R T embeddings 

Classifier Label Precision Recall fl-score Test acc. 
[%] 

Valid acc. 
[%] 

M L P non-AD 87 83 85 85 86 A D 84 88 86 85 86 

SGD non-AD 73 92 81 79 83 A D 89 67 76 79 83 

Linear S V M , non-AD 76 79 78 77 75 C = l A D 78 75 77 77 75 

For audio embeddings the most successful and stable algorithm was K N N , but 
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even this algorithm wasn't robust enough to deal with low quality of embeddings 
caused by a very high level of noise in audio recordings. K N N with k set to 2 achieved 
testing accuracy of 71% and validation accuracy of 61% when testing accuracy was 
expected to be around 62%. No classifier achieved good enough results for audio 
embeddings. Best-performed classifiers for audio embeddings are shown in table A . l 
on page 41. 

Mixing features (concatenating audio embeddings with B E R T embeddings) has 
always led to lower accuracy. 

For each algorithm, the f-1 score was higher for the non-AD class or equal to the 
A D class, which means that the model is better at identifying and predicting the 
non-AD class. It can be caused that non-AD subjects have more data (e.g. more 
words in speech) and the model has more information to learn from. Check tables 
A . l (page 41), 5.1 and 5.2 to see precision, recall and fl-score for each feature. 

To check that different dataset splitting does not affect test accuracy a lot, the 
K-fold method was adapted for this task, where K is the number of groups the data 
is split into. One group is used for validation while K - l groups are used for training. 

LOSO (leave one subject out), 3-fold and 6-fold were tested. The results weren't 
distinctive among different splits, which shows that dataset splits don't usually affect 
test accuracy. Average cross-validation (CV) and test accuracy for each classifier are 
shown in tables 5.3 and 5.4. 

Table 5.3: Average of C V and test accuracies for B E R T embeddings (K = 6) 

Classifier Test accuracy [%] Valid, accuracy [%] Classifier Mean 
B E R T 

Summed 
B E R T 

Mean 
B E R T 

Summed 
B E R T 

N N 82 82 80 78 
Poly S V M 81 71 80 63 

Linear 
S V M 78 79 80 78 

Gaussian 
Process 70 50 70 50 

SGD 
classifier 80 79 82 78 

Overall, models trained with embeddings from transcriptions perform better 
than with embeddings from speech recordings. The quality of audio recordings is 
too poor to achieve a high level of accuracy. 

5.3 Regression task 

For the ADReSS regression task, various regression algorithms were tested in pre­
dicting the M M S E score for each subject. Accurate predictions can assist doctors in 
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Table 5.4: Average of C V accuracies and test for audio embeddings (K=6) 

Classifier Test accuracy 
[%] 

Validation 
accuracy [%] 

K N N , k=5 62 53 
Gaussian Process 59 49 

Linear S V M 57 56 

making faster and more informed decisions. The performance of Lasso, Elastic Net 
and K N N regression was investigated. Different embeddings were used for this task 
with different approaches, as described in 5.1. 

For the regression task, the training dataset was updated: one non-AD subject 
was removed from the set, as it doesn't have an M M S E score calculated (set to 
NaN), which is considered as invalid input data for M M S E score prediction. 

Different hyperparameters settings were tested and did not affect each algo­
rithm's performance much. The accuracy of each regression algorithm was analysed 
using metrics such as R M S E and R-squared value, as shown in the following tables 
(some of them are placed in chapter A (Attachments)): 

• 5.5 (testing set) and 5.6 (validation set) for mean B E R T embeddings. 

• A.2 (testing set) and A.3 (validation set) for summed B E R T embeddings. 

• A.4 (testing set) and A.5 (validation set) for audio embeddings. 

Experiments have shown that regression algorithms work better with mean 
BERT embeddings than with any others features. ElasticNet has outperformed 
the other algorithms on testing and validation sets, achieving a total R-squared 
value of 0.48 and R M S E of 4.35 on the testing set, while Lasso (with alpha set to 
0.1) and K N N (with k set to 6) perform with R-squared values of 0.46 and 0.23 and 
R M S E of 4.41 and 5.31 respectively. 

Table 5.5: Results for regression algorithms for mean B E R T embeddings on testing 
set 

Regressor R M S E r2 score A D r2 score non-AD Total r2 
Lasso, 

alpha=0.1 
4.41 0.18 -6.56 0.46 

ElasticNet, 
alpha=0.1 

4.35 0.22 -6.63 0.48 

K N N , k=6 5.31 -0.84 -1.43 0.23 
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Table 5.6: Results for regression algorithms for mean B E R T embeddings on valida­
tion set 

Regressor R M S E r2 score A D r2 score non-AD Total r2 
Lasso, 

alpha=0.1 5.77 -0.15 -102.83 0.34 

ElasticNet, 
alpha=0.1 

5.37 -0.20 -73.88 0.42 

K N N , k=6 6.02 -1.65 -11.06 0.28 

As can be seen in tables 5.5 and 5.6 all models fail to indicate non-AD class, which 
can be caused by an imbalance along the M M S E score in the dataset. The fact that 
each class has the same number of elements does not necessarily mean that the data 
is balanced: in this case, the non-AD class has a much narrower range of values for 
the M M S E score than the A D class. This means that the distribution of the M M S E 
scores in non-AD class is much more compact than in A D class. Balancing the 
training set (undersampling A D class) didn't help to solve this problem. Increasing 
the dataset can possibly solve it. 

Same as for classification tasks, regression algorithms worked better with mean 
BERT embeddings. For summed B E R T embeddings results were unstable with 
the same settings and algorithms: K N N performed better, but for the Lasso and 
ElasticNet algorithms, R M S E was much worse (see tables A.2 and A.3). Among all 
3 features, experiments with audio embeddings showed the worse results (see tables 
A.4 and A.5). 

In conclusion, experiments for regression task showed, that dataset for predicting 
M M S E is imbalanced and no tested model can correctly predict M M S E for non-AD 
class. R M S E which is lower than 5 is considered as a good result, as intervals usually 
have a length of 5 (except for the severe stage, where the M M S E score can be from 
0 to 15) for each A D stage. 

34 



6 Comparative analysis 

A l l found works vary in their approach and methodology, but all of them used 
different feature extractors to prepare origin data for classification and regression 
tasks. A l l results have shown that no model is robust enough to get high accuracy 
for only acoustic data and no feature extractor can solve this problem. 

In this work, classification and regression tasks were conducted using a pretrained 
models to get audio and text embeddings and different algorithms on the ADReSS 
dataset. 

Classification task 

For the classification task, in this work, M L P algorithm trained on summed B E R T 
embeddings (linguistic) has outperformed the baseline model and achieved one of 
the highest accuracies of 85%. 

For acoustic features only K N N (k-2) has achieved an accuracy of 71% on the 
testing set, however, it's important to notice that the average test accuracy in the 
cross-validation test for this algorithm on acoustic features was only 62%. 

Table 6.1: Results for classification task 

Work Features Model Test acc. [%] 
baseline paper, [6] acoustic K N N (k=l) 57 baseline paper, [6] 

linguistic L D A and R F 75 
Haulcy & Glass, [7] acoustic K N N (k=l) 56 Haulcy & Glass, [7] 

linguistic S V M and R F 85 
Martinec & Senja, [8] mix Log. regression 77 

this thesis acoustic K N N (k=2) 71 this thesis 
linguistic M L P 85 

Regression task 

The best result (RMSE of 4.35) in this thesis was achieved by using mean B E R T 
embeddings and Elastic net. R M S E of 4.35 is the lowest value among all investigated 
works. Martinec and Senja have achieved the highest R M S E using the feature set 
of NUW, Bigram, Character 4-grams, Suffixes, POS tag, G R A features and S V M 
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Table 6.2: Results for regression task 

Work Features Model R M S E 
baseline paper, [6] acoustic D T 6.14 baseline paper, [6] 

linguistic D T 5.20 
Haulcy & Glass, [7] acoustic K N N (k=l) 5.69 Haulcy & Glass, [7] 

linguistic GradBoost 4.56 
Martinec & Senja, [8] mix S V M 4.44 

this thesis acoustic K N N (k=6) 6.90 this thesis 
linguistic ElasticNet 4.35 

model, but it performed the worst out of the four best regression models in the 
cross-validation setting in their work [8]. 
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7 Conclusion 

This thesis has demonstrated the potential of using different models in detecting A D 
from spontaneous speech. It has shown the strong and weak sides of the ADReSS 
dataset and different approaches. 

Through the exploration of the ADReSS 2020 Challenge dataset and the appli­
cation of various techniques, baseline results were outperformed for both tasks. 

Pretrained models were used for feature extraction: B E R T to extract features 
from transcriptions and SV model based on T D N N for audio recordings. 

For both tasks, algorithms with different settings were tested, as it's described in 
chapters 3 and 5. For the classification task, the best result (test accuracy of 85%) on 
the testing set was achieved using summed B E R T features and M L P algorithm. For 
the regression task the best result (RMSE of 4.35) on the testing set was achieved 
using mean B E R T features and ElasticNet algorithm. This thesis has demonstrated 
comparable results to investigated works (chapter 2), as it's shown in chapter 6. 

There few ways to improve results for A D recognition: 

• Using pauses length in subject speech feature. 

• Summarising the meaning of the whole speech and analysing how much an 
individual actually has said. 

• Detecting and analysing filler words (individuals with A D have a word-
founding problem, which can increase the number of filler words in the speech). 

• Using emotion classification as a part of speech analysis (AD can lead to 
difficulties in emotion control). 

• Improving the quality of speech recordings and making it consistent for each 
subject. 

It's certain that AI is able to capture subtle changes in speech patterns that 
are indicative of cognitive impairment, which provides a promising start for early 
diagnosis and intervention using AI. 
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A Attachments 

A . l Top 3 results for audio embeddings 
(classification) 

Table A . l : Top 3 results for audio embeddings (classification) 

Classifier Label Precision Recall fl-score Test acc. 
[%] 

Valid acc. 
[%] 

K N N non-AD 64 96 77 71 61 K=2 A D 92 46 61 71 61 

K N N non-AD 62 54 58 60 61 K=5 A D 59 67 63 60 61 

GP non-AD 58 62 60 58 61 A D 59 54 57 58 61 

A.2 Results for summed BERT embeddings 
(regression) 

Table A.2: Results for summed B E R T embeddings on testing set (regression) 

Regressor R M S E r2 score A D r2 score non-AD Total r2 
Lasso, 

alpha=0.1 7.87 -1.51 -24.02 -0.68 

ElasticNet, 
alpha=0.1 7.73 -1.01 -28.44 -0.62 

K N N , k=6 4.98 -0.47 -3.01 0.32 
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Table A.3: Results for summed B E R T embeddings on validation set (regression) 

Regressor R M S E r2 score A D r2 score non-AD Total r2 
Lasso, 

alpha=0.1 6.90 -0.60 -150.35 0.05 

ElasticNet, 
alpha=0.1 6.49 -0.39 -134.18 0.16 

K N N , k=6 6.21 -1.56 -30.81 0.23 

A.3 Results for audio embeddings (regression) 

Table A.4: Results for audio embeddings on testing set (regression) 

Regressor R M S E r2 score A D r2 score non-AD Total r2 
Lasso, 

alpha=0.1 
8.34 -1.59 -30.14 -0.89 

ElasticNet, 
alpha=0.1 7.97 -1.24 -29.02 -0.73 

K N N , k=6 6.90 -0.95 -17.98 -0.29 

Table A.5: Results for audio embeddings on validation set (regression) 

Regressor R M S E r2 score A D r2 score non-AD Total r2 
Lasso, 

alpha=0.1 9.88 -1.72 -349.27 -0.92 

ElasticNet, 
alpha=0.1 9.67 -1.55 -338.60 -0.84 

K N N , k=6 7.50 -1.20 -155.25 -0.11 
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A.4 PCA: train and test sets of different embeddings 
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Figure A . l : P C A : train and test sets of summed B E R T embeddings 
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Figure A.2: P C A : train and test sets of mean B E R T embeddings 
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Figure A.3: P C A : train and test sets of audio embeddings 

2-D scatter plots of actual and predicted val 
for different regression algorithms 
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Figure A.4: K N N regression results for B E R T embeddings 
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Figure A.5: ElasticNet regression results for B E R T embeddings 
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Figure A.6: Lasso regression results for B E R T embeddings 
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Figure A.7: K N N regression results for audio embeddings 
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Figure A.9: Lasso regression results for audio embeddings 
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