
Palacký University Olomouc

Faculty of Science

Department of Optics

BACHELOR THESIS

Gaussian Intrinsic Entanglement

Author: Klára Baksová
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Rok obhajoby práce 2019
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provázanosti nazvanou gaussovská vnitřńı
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tanglement of formation a t́ım pośılili hypotézu
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stavy, mı́ra provázanosti
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Introduction

’Not only does God play dice but...he sometimes throws them where they cannot be
seen.’ - Stephen Hawking

Even though, Stephen Hawking used this comparison talking about black holes, it
sufficiently describes how helpless a brain of man can be when it comes to quantum
physics. On the quantum level, objects act differently. We have no experience with
this character from classical world, and so most of our intuition, that we are used
to rely on, fails. Surely, it was necessary to find the best mathematical description of
phenomena in quantum world and the linear vector and matrix algebra hit the jackpot.

As a consequence of the vector characteristics of quantum states, the principle of su-
perposition occurs, which is the cause of a correlation between quantum objects, that
has no analogy in classical world. For instance, let us imagine two photons that are
prepared in a state where both of them have horizontal or vertical polarization. If the
two states with well defined local polarization are superimposed, the individual prop-
erties become uncertain, yet the global properties are still well defined. This results in
correlation between the quantum systems which is called quantum entanglement and
there is no doubt that it is one of the most interesting things in quantum physics.

With the development of quantum theory and experiment, entanglement transformed
from a theoretical phenomenon to the valuable physical concept that can be observed
and used in protocols. Further, with the onset of quantum information theory, it began
to play a key role in quantum communication and enabled for example to implement
quantum teleportation, which still sounds rather as a science fiction than a serious
physical experiment.

It is known about physicists, that we like to work with idealized objects and it is
not different when it comes to quantum physics. Speech is about so-called pure states,
which are states that contain the maximum attainable information about the state.
However, just like in classical physics we never really work with the material points
and ideal homogeneous spheres, we cannot investigate only pure states. In practice, we
always have less information about the state. Then we talk about mixed states. Un-
fortunately, the definition of quantum entanglement via the principle of superposition
applies only to pure states, so naturally some other more generic definition is needed.
To get it, we use the fact, that entangled states can be, or cannot be created using
some specifics types of operations. In the case of pure states, we say that the pure-state
entanglement is a correlation between quantum systems that cannot be created from
pure product states using local unitary operations. For the mixed states we generalize
the operations and we define mixed-state entanglement as a correlation that cannot be
created by local operations and classical communication (LOCC).
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When the entanglement and its presence is clearly defined, we need to determine qual-
ity of prepared entangled states, in other words, we need to quantify entanglement.
This is the reason, why we need entanglement measures. There are several ways that
lead to entanglement quantification but each of them has its pitfalls. The first issue is
the fact that we can talk about entanglement measure only if it satisfies several axioms.
As we expect, entanglement measure should be non-negative and it should be zero if
and only if the state is not entangled or in other words, if the state is separable. Fur-
ther, the entanglement measure should not increase under LOCC. These three axioms
are very intuitive main axioms of entanglement measure and above that they define
so-called entanglement monotone [4]. However, entanglement measure should satisfy
four other axioms. These are reduction to marginal von Neumann entropy on pure
states, convexity, additivity on tensor product and asymptotic continuity. Beyond the
condition of satisfying these seven axioms, there is another snag we meet in theory of
entanglement measures. The proposed entanglement measures are either computable,
or they are usable in protocols, but not both. Clearly, the quantum information theory
needs a measure, that will satisfy all seven mentioned axioms and moreover it offers a
compromise between these two extremes.

There is a candidate, which could solve the situation, that is called intrinsic entan-
glement (IE). It is proposed entanglement measure, which was born from an idea of
changing the order of optimization in the definition of classical measure of entanglement
proposed by Gisin and Wolf [5]. They came up with an idea of entanglement quanti-
fication based on classical secret key agreement [6]. If we consider two communicating
parties, Alice and Bob, and an adversary Eve, in the protocol of classical secret key
agreement, Alice and Bob try to generate a common string of bits called secret key,
about which Eve has no information. The generation of secret key is possible only if
there are the so-called secret correlations between Alice’s and Bob’s variables. Further,
we can quantify the secret correlations using the quantity called intrinsic conditional
information [7]. It is interesting that the condition to establish secret correlations is
very similar to definition of quantum entanglement. Namely, secret correlations cannot
be established by local operations and public communications. It is obvious, that re-
placing the word ’public’ by ’classical’, we get the definition of quantum entanglement.
Naturally, if there is an analogy in some way between secret correlations and quantum
entanglement, one wonders if they can be quantified using the same principle. Finally,
this is what lead Gisin and Wolf to define above mentioned classical measure of en-
tanglement. Unfortunately, same as the most of proposed entanglement measures, it
has several drawbacks. Primarily, it has not been proved, that the classical measure
of entanglement does not increase under LOCC, so we do not even know, if one of the
most important conditional axioms is fulfilled. Besides, it is among the measures of
entanglement that are hard to compute.

For the time being, IE have been studied for the Gaussian scenario. There all the
states, channels and measurements are Gaussian. In quantum physics, Gaussian states
are defined as states with Gaussian Wigner function. This is very significant class of
states and it is convenient to work with it. Firstly, Gaussian states are fully character-
ized by vector of first moments and covariance matrix. Secondly, Gaussian scenario is
also experimentally feasible. If we apply the theory of intrinsic entanglement to Gaus-
sian scenario, then we talk about Gaussian IE (GIE). Here we overcome the obstacle
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given by Gisin and Wolf’s classical measure of entanglement, because not only it has
been proven that GIE is monotonic under LOCC but also it is easier to be computed.
Moreover, it is faithful, i.e., it is zero if and only if the state is separable. GIE has been
already calculated for the following classes of two-mode Gaussian states, namely, all
pure states and symmetric states with a three-mode purification, weakly mixed asym-
metric squeezed thermal states with a three-mode purification and symmetric squeezed
thermal states. In this thesis, we will investigate GIE for the class of Gaussian states
with minimum negativity for fixed global and local purities (GLEMS) [2].

Another interesting fact, which comes to the surface is that there is possible equi-
valence between GIE and another proposed entanglement measure known as Gaussian
Rényi-2 entanglement of formation (GR2EoF) [3]. The existing calculated results are
equal for GIE and GR2EoF, which leads to the assumption that these two proposed
entanglement measures are equal on all bipartite Gaussian states. This idea is very
significant because GR2EoF has many relevant properties. Namely, it does not in-
crease under Gaussian LOCC, it is additive on two-mode symmetric states and it can
be interpreted in the context of the sampling entropy for the Wigner quasiprobabilty
distribution, it satisfies [8] monogamy inequality [9] and also the Gaussian Rényi-2
version of the Koashi-Winter monogamy relation [10]. Finally, it can be analytically
calculated for all two-mode Gaussian states with a three-mode purification, all sym-
metric states, and two-mode squeezed thermal states and numerically for all two-mode
Gaussian states. All these properties would transfer to GIE and vice versa, if the equi-
valence was proven in general.
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Chapter 1

Methods

In this section we will introduce the basic principles of quantum theory. We will
explain, how quantum mechanics differs from classical mechanics and we will show the
mathematical tools used to the description of quantum entanglement.

1.1 Introduction to Quantum Mechanics

Firstly, let us introduce three postulates of quantum mechanics.
The first postulate says, that to each physical system, there is assigned a complex sep-
arable Hilbert space H , so-called state space of the system. In mathematical terms,
Hilbert space is a complete vector space with a scalar product. Separable Hilbert space
is a Hilbert space with orthonormal base formed by countable set of vectors.
According to the second postulate, each state of the considered system corresponds to
a vector ray from the given Hilbert space, i.e one-dimensional subspace of the Hilbert
space. In this Thesis, as it is usual in quantum mechanics, we will use Dirac’s bra-ket
symbolic, where a column vector is denoted by |ψ〉.
The last postulate says that each measurable physical quantity, i.e observable of the
given system with state space H , corresponds to a self-joining operator A on H , for
which A = A† occurs, where A† is so-called Hermitian transposed operator, which is a
transposed and complex conjectured operator A† =

(
AT
)∗

.
In addition, results of measurement of given physical quantity are eigenvalues of the
operator, which describes the quantity. After measurement the state of the system
collapses into an eigenstate of the quantity corresponding to the measured eigenvalue.

A normalized state vector |ψ〉 contains the maximal attainable information about
the state. This kind of states we call pure states. Due to the probability charac-
ter of quantum mechanics, we perform the measurement on the sufficiently large set
of particles. The state vector |ψ〉 describes so-called pure statistical set, in which each
particle is prepared in the same state |ψ〉.
As a consequence of various imperfections of the real equipment preparing the particles,
we always have less information about the state of prepared particles. In general, we
know that the particle of the set is in the state |ψj〉 with probability pj. This kind
of states we call mixed states and they cannot be described with a single ket vector.
Instead, it is described with a density matrix ρ. In general, it can be written as

ρ =
∑
j

pj |ψj〉 〈ψj| , (1.1)
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where 0 ≤ pj ≤ 1, ∀j and
∑

j pj = 1 occurs.

The density matrix is a Hermitian operator ρ = ρ†, it is positively semi-definitive
〈ψ| ρ |ψ〉 ≥ 0, ∀ |ψ〉 of trace one Tr ρ = 1.

1.2 Quantum Entanglement

In quantum mechanics we can generate composite quantum systems consisting of
a pair subsystems labeled as A and B. Let HA and HB be the Hilbert spaces of the
systems. If a state |Ψ〉AB cannot be written as a product state, i.e.

|Ψ〉AB 6= |ψ〉A |φ〉B , (1.2)

where |ψ〉A and |φ〉B are local states of subsystems A and B, then the state |Ψ〉AB is
called entangled. Otherwise, non-entangled states we call separable states.
Now, we will take a look at some examples of separable and entangled pure states.
Let us take two systems A and B with Hiblert spaces HA and HB and the states are
given by kets |0〉A and |0〉B, which are the basis kets of the relevant Hilbert spaces.
Then to the composite system we will assign the Hiblert space HAB = HA ⊗HB and
the state of the composite system will be given by ket |Ψ〉AB = |0〉A ⊗ |0〉B.
On the other hand, the example of entangled pure states can be written as |Ψ−〉 =

1√
2

(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B), where {|0〉A , |1〉A} ({|0〉B , |1〉B}) are basis kets of the

Hiblert space HA (HB).
Here the ket |Ψ−〉 is one of four Bell states, which are maximally entangled pure states.

In the context of mixed states, a state ρAB is called entangled if it cannot be writ-
ten as the following mixture of product states

ρ(AB) 6=
∑
i

piρ
(A)
i ⊗ ρ

(B)
i . (1.3)

In physical terms, quantum entanglement is a synonym for a sort of correlations in
quantum mechanics. The difference between classical and quantum correlation is based
on their resources. Let us imagine two parties communicating via a quantum channel.
In practice, every quantum channel is lossy which leads to the depreciation of trans-
mitted information. To increase the amount of the reached information, the parties
can use two options. Firstly, the quality of the communication can increase by im-
proving the quality of local operations performed by individual parties. Secondly, they
can use classical communication to coordinate the quantum operations of the opposite
party. Local operations and classical communication (LOCC) are operations that can
create classical but not quantum correlations. Hence, the quantum entanglement can
be defined as a sort of correlations that cannot be created by LOCC [31].
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Chapter 2

Entanglement measures

Having defined the concept of entanglement we now move to quantification of the
amount of entanglement in a given quantum state. To do so, we use entanglement
measures.

2.1 Examples of entanglement measures

Establishment and investigation of entanglement measures is highly motivated,
since they play an important role in many cases. Namely, in the sphere of theoret-
ical physics they provide bounds on several hardly computable quantities [32] or they
are essential tool in proofs of impossibility [33] or limitation [34] in some quantum-
information protocols. Utilization of entanglement measures does not end with theor-
etical quantum physics. In experiment, they are used to estimate quality of prepared
entangled states [35] and entangling gates [36] and they are indispensable in verification
of successful demonstration of some protocols in quantum communication, for instance
entanglement distillation [37].

In general, entanglement measure is a mathematical quantity that should possess fea-
tures associated with properties of entanglement. These are summarized in seven
axioms that any good entanglement measure should satisfy. Firstly, entanglement
measure should be non-negative function. Secondly, it should be zero on all separable
states. Thirdly, it should not increase under LOCC. A function satisfying these three
axioms is so-called entanglement monotone [4]. The other four axioms say that it
should reduce to von Neumann entropy on pure states, it should be convex, additive
on tensor product and asymptotically continuous function [31].

For now, most existing entanglement quantifiers either do not satisfy some of the
mentioned axioms, or it has not been proven, yet. Another issue is that known entan-
glement measures are either physically meaningful or computable, but not both.
Let us introduce some of the measures, which quantify the entanglement in different
ways.

We will begin with logarithmic negativity [11], which is defined as

EN(ρ) = log ‖ρTA‖1, (2.1)
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where ρTA denotes the partial transpose of ρ with respect to party A and the trace
norm ‖ρTA‖1 is defined as ‖ρTA‖1 = tr|ρTA|. It has been proven that logarithmic neg-
ativity is a monotonic function under LOCC and it satisfies two other axioms to belong
to the class of entanglement monotones. Further, it has an operation interpretation as
a cost of entanglement under positive partial transpose preserving operations (PPT-
operations) [12]. In other words, it quantifies entanglement pursuant to how much
a partial transpose of the given state deviates from a physical state. Moreover, one
can see that it is easily computable. However, logarithmic negativity is not a convex
function, so we cannot talk about a full-value entanglement measure.

On the other hand, there exist entanglement measures with very good operation mean-
ing. These are distillable entanglement [13] and entanglement of formation [14].
Entanglement distillation is a process of using LOCC operations to transform a certain
number of non-maximally entangled states into a smaller number of approximately
maximally entangled states. Hereupon, distillable entanglement is a maximal number
of maximally entangled states per copy that can be distilled from many copies of a
given state (,i.e. in the asymptotic limit n → ∞ of n identically prepared systems in
the considered state), using LOCC. Unfortunately, even though this measure offers very
good operational meaning, when it comes to its evaluation for general mixed states, it
is extraordinarily difficult and for now, it has not been done, yet.
Entanglement of formation is closely related to distillable entanglement. Actually, it is
its dual measure. It defines a number of maximally entangled states needed in order to
prepare copies of a particular state [38]. What is more, it is a upper bound of distillable
entanglement. Entanglement of formation provides a compromise between computab-
ility and physical meaning, however it is still in question whether it is additive or not.

Another option, how to quantify the entanglement are geometric measures [15]. This
class of measures quantifies entanglement via distance of the investigated state from
the set of separable states. However, the sophistication of their computation increases
with increasing the number of included subsystems and also their physical meaning
has yet to be unveiled.

On top of what have been said, none of the previously mentioned entanglement meas-
ures satisfies all seven axioms that a good entanglement measure should. Finally, there
exists a measure that does and for the time being it is the only one known. The
measure in question is the so-called squashed entanglement [16]. It is defined as an
infimum of quantum conditional mutual information I (A;B|E) of an extension of the
investigated quantum state ρAB with respect to all the extensions ρABE, i. e.

Esq (ρAB) = inf

{
1

2
I (A;B|E) : ρAB = TrEρABE

}
. (2.2)

Even though this way of entanglement quantification is most promising, its evaluation
is extremely hard.
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2.2 Entanglement quantification based on secret key

agreement

The invention of the squashed entanglement the most promising measure discovered
to date, has been in fact inspired by the so-called intrinsic information, being a quantity
quantifying the amount of secret correlations in a given classical probability distribu-
tion. In fact, the intrinsic information [6] inspired invention of another measure called
classical mutual information.

The secret key agreement protocol is a classical cryptographical protocol in which
there are two honest parties Alice and Bob knowing correlated random variables A
and B, and an eases dropper Eve, who knows a random variable E. These variables
are distributed according to a probability distribution PABE. Alice and Bob can use
noiseless but insecure communication channel to which Eve has a full access. The goal
of the protocol is to generate a secret key and reduce the amount of information that
Eve obtains about generated secret key to be negligible (Fig. 2.1). Generating such a
secret key is conditioned by secret correlations between variables A and B, which are
correlations that cannot be established by local operations and public communication.
These secret correlations can be quantified and the quantity has been called intrinsic
conditional information.

Figure 2.1: Secret key agreement protocol

If we pass to quantum key agreement, the probability distribution PABE is replaced
by a quantum state vector Ψ ∈HA ⊗HB ⊗HE, where HA(HB,HE) is Hilbert space
of Alice’s (Bob’s, Eve’s) system. Additionally, Eve can carry out generalized measure-
ments, which means that the set {|z〉} is not generally an orthonormal basis but any
set generating HE and fulfilling the completeness condition

∑
z |z〉 〈z| = 1HE

. After
all the parties carry out their measurements, they obtain the probability distribution
PABE. Further, Alice and Bob’s marginal distribution PAB is analogical with the par-
tial state ρAB that is obtained by tracing over HE, i.e., ρAB = TrHE

(PΨ).

It should be add, that quantum entanglement and classical intrinsic information are
not only analogies in notions but they can be swapped onto each other by a quantum
measurement P (A;B|E) = Tr (|Ψ〉ABE 〈Ψ|ΠA ⊗ ΠB ⊗ ΠE), i. e, that the probability
distribution PABE can be obtained from Ψ by performing the measurements in certain
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basis and then the probability distribution PABE has strictly positive intrinsic inform-
ation if and only if the state ρAB is entangled. Nevertheless, this does not pay for all
cases. For instance, if Alice and Bob do not choose the measurement basis wisely, the
intrinsic information can be zero, even though ρAB is entangled. Conversely, Eve can
perform such a bad measurements that will make the intrinsic information positive
even if ρAB is separable. This leads to conclusion, that intrinsic conditional informa-
tion cannot generally quantify quantum entanglement and some optimization over all
possible measurements on all sides must be involved. This lead Gisin and Wolf to
propose an entanglement measure called classical measure of entanglement [5]

µ (ρAB) := min
{|z〉}

(
max

{|x〉},{|y〉}
(I (A;B ↓ E))

)
, (2.3)

where I (A;B ↓ E) is intrinsic conditional information between A and B given E, which
is further maximized over all conditional purifications |Ψ〉 Alice’s and Bob’s measure-
ments and then it is minimized over all Eve’s measurements.

Classical measure of entanglement seems to be a good candidate for entanglement
measure, as the max-min optimization guarantees, that the intrinsic information is
strictly positive if and only if ρAB is entangled and so the first condition for good
entanglement measure is fulfilled. Moreover, it reduces to von Neumann entropy on
pure states and it is a convex function. Unfortunately, the monotonicity under LOCC
remains a question. Secondly, it is hard to compute it for most of the mixed states.

By changing the order of optimization in definition of classical measure of entangle-
ment (2.3), we get so-called intrinsic entanglement (IE), which is another proposed
entanglement measure [1]. This measure will be more precisely discussed later.
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Chapter 3

Gaussian states

In this section, we focus on a specific class of quantum states, so-called Gaussian
states. These are quantum states for which the Wigner function is Gaussian. This class
is very significant due to its convenient mathematical properties and moreover, these
states can be easily prepared in experiments. In more detail, Gaussian states can be
fully described by a vector of first moments and by the covariance matrix of second mo-
ments and henceforth they are characterized by a finite number of parameters, despite
living in an infinite-dimensional Hilbert state space. Above that, first moments can be
set to zero by displacement without any loss of generality for studying entanglement.
Further, pure Gaussian states naturally saturate Heisenberg uncertainty relations and
they are extremal on von Neumann entropy, mutual information, conditional entropy,
secret key and some entanglement measures.
In laboratory, they can be realized by systems implying light, atomic ensembles,
trapped ions, or optomechanical systems [17]. What is more, they can be easily trans-
formed by simple linear optical elements such as beam splitters and squeezers as well
as they can be conveniently measured by homodyne detection.

3.1 Characteristics of Gaussian states

In the beginning, let us focus on required mathematical apparatus and its applica-
tion on Gaussian states.
Gaussian states naturally occur in continuous variable (CV) systems. These are sys-
tems with infinite dimensional Hilbert state space dimH = ∞, and they can be
realized, e.g., by light modes. Each mode is characterized by canonically conjugate
operators, most often by the position operator x̂ and the momentum operator p̂, or
equivalently, by the annihilation operator â and the creation operator â†. These oper-
ators are canonically conjugate variables and they satisfy canonical commutation rule,
which in the case of position and momentum operators reads as

[x̂,p̂] = i. (3.1)

The most common example of CV system is quantum linear harmonic oscillator, which
can be realized for instance by a mode of the electromagnetic field or a vibration mode
of a trapped ion.

Previous description occurs for single mode systems. If we want to work with sys-
tems of N modes, the Hilbert space is given by the tensor product of Hilbert spaces of
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particular systems

HN =
N⊗
i=1

H . (3.2)

To desribe these systems we need 2N quadrature operators x̂1,p̂1,x̂2,p̂2, . . . x̂N ,p̂N , which
fulfill canonical commutation rules

[x̂i,p̂j] = iδij, [x̂i,x̂j] = [p̂i,p̂j] = 0, (3.3)

where δij is the Kronecker symbol. For our purposes is convenient to arrange the
operators into a vector

r̂ = (x̂A,p̂A, . . . x̂N ,p̂N)T . (3.4)

Then, the canonical commutation rule given by Eq.(3.3) can be written compactly as

[r̂i,r̂j] = iΩNij, (3.5)

where

ΩN =
N⊕
i=1

(
0 1
−1 0

)
(3.6)

is the so called symplectic matrix.

As it was mentioned above, Gaussian states are defined as quantum states with Gaussian-
shaped Wigner quasiprobability distribution. This function is defined as

W (r) =
1

(2π)N

∫
eix
′T·p
〈

x− x′

2

∣∣∣∣ ρ̂ ∣∣∣∣x +
x′

2

〉
dNx′, (3.7)

and it can be estimated from characteristic function of density matrix by using Fourier
transformation. In the Eq.(3.7) r = (xA,pA, . . . ,xN ,pN)T, x′T · p =

∑N
i=1 x

′
ipi,d

Nx′ =
dx′1dx′2 . . . dx

′
N , and∣∣∣∣x± x′

2

〉
=

∣∣∣∣x1 ±
x′1
2

〉
⊗
∣∣∣∣x2 ±

x′2
2

〉
⊗ . . .⊗

∣∣∣∣xN ± x′N
2

〉
. (3.8)

In the case of Gaussian states it reduces to

W (r) =
e−(r−d)Tγ−1(r−d)

πN
√

detγ
, (3.9)

where d is a vector of first moments with elements di = 〈r̂i〉 = Tr(ρ̂r̂i) and γ is the
so-called covariance matrix (CM) with elements

γij = 〈r̂ir̂j + r̂j r̂i〉 − 2 〈r̂i〉 〈r̂j〉 . (3.10)

The examples of Wigner function for vacuum state and squeezed state are illustrated in
Fig. 3.1. Due to the Gaussianity of the Wigner function, all N -mode Gaussian states
are fully characterized by 2N × 2N CM (3.10) and by 2N × 1 vector of first moments
r̂. The vector of first moments can be set to zero by local displacements. Since this
operation has no influence on the entanglement of the state, it will be assumed to be
zero in the rest of the Thesis.
Additionally, entanglement does not change under local unitaries and therefore we
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(a) Vacuum state (b) Squeezed state

Figure 3.1: Wigner quasiprobability distribution for vacuum state (left) and state
squeezed in quadrature x (right).

can work without lost of any generality only with the standard form [18] of CM for
two-mode Gaussian states

γAB =


a 0 cx 0
0 a 0 cp
cx 0 b 0
0 cp 0 b

 , (3.11)

where cx ≥ |cp| ≥ 0, to which any two-mode CM can be brought by local Gaussian
unitaries. Further, we will work with CMs satisfying cxcp < 0, since all the other states
are separable [18] and thus any faithful entanglement measure is zero for them.
It is convenient to work with other standard form of CM with new parameters kx and
kp

γAB =


a 0 kx 0
0 a 0 −kp
kx 0 b 0
0 −kp 0 b

 , (3.12)

where kx ≡ cx, kp ≡ |cp| = −cp and kx ≥ kp > 0. Using the parameters of CM (3.12)
we can determine conditions that will ensure, that we work with CM of a physical
state, which is also entangled.
Firstly, the CM (3.12) of a physical quantum state must satisfy the Heisenberg uncer-
tainty principle γAB + iΩ ≥ 0 [18], which in terms of parameters a, b, kx and kp reads
as [19]

(ab− k2
x)(ab− k2

p) + 1 ≥ a2 + b2 − 2kxkp,

ab− k2
x ≥ 1. (3.13)

Secondly, CM (3.12) describes an entangled state if and only if

(ab− k2
x)(ab− k2

p) + 1 < a2 + b2 + 2kxkp. (3.14)

3.2 Symplectic diagonalization

Additionally, we need to introduce unitary operations that preserve Gaussian char-
acter of states. These operations are called Gaussian unitary operations and they are
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represented by a real 2N × 2N symplectic matrix S, which satisfies condition

SΩNS
T = ΩN . (3.15)

On the CM level, the symplectic transformation acts as

γ′ = SγST. (3.16)

The symplectic transformations are related to Williamson’s [40] theorem, which says,
that for any N -mode CM γ there always exists a symplectic transformation S which
transforms it to the Williamson’s normal form

SγST = diag (ν1,ν1, . . . ,νN ,νN) , (3.17)

where ν1 ≥ ν2 ≥ · · · ≥ νN are the so-called symplectic eigenvalues. For our further
calculations it is also convenient to introduce the symplectic rank R of a CM, which is
the number of its symplectic eigenvalues different from one.

Previous mathematical description of symplectic transformation can be interpreted to
physical language as a global Gaussian unitary, which can bring any two-mode Gaus-
sian state into a tensor product of two thermal states with CMs νj1,j = 1,2, where 1
is the 2× 2 identity matrix.
For the derivation of GIE, which will be explained in Chapter 5, we must know not
only the symplectic eigenvalues of CM (3.12) but also the respective symplectic matrix
S, that brings the CM to the Williamson’s normal form [26].
We can derive the symplectic matrix S for any CM (3.12). In particular, for the
two-mode case which is relevant here, the Williamson’s normal form is given by

γ
(0)
AB ≡

(
R⊕
i=1

νi1

)⊕
12(2−R). (3.18)

and the symplectic eigenvalues can be calculated from the eigenvalues of CM γAB
using the method of Ref. [39]. Here, the matrix S is sought in the form of a product
S =

(⊗2
i=1 U

∗)V T, where

U =
1√
2

(
i −i
1 1

)
(3.19)

and V contains in its columns the eigenvectors uν1 = (ix1,x3,ix2,x4)T and wν2 =
(ix5,x7,ix6,x8)T corresponding to the eigenvalues ν1 and ν2 of the matrix iΩγAB. The
eigenvectors uν1 and wν2 are chosen to S be real. Using the aforementioned method,
considering that S must satisfy symplectic condition SΩ2S

T = Ω2 (3.15) and it does not
contain any x-p elements, we will get the set of equations for variables xj, j = 1,2,...,8,
which solution will allow us to express the symplectic matrix S in the form

S =


x1 0 x2 0
0 x3 0 x4

x5 0 x6 0
0 x7 0 x8

 (3.20)

where the parameters x1, . . . ,x8 are some functions of parameters a,b,kx and kp of CM
(3.12) [26].
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Pursuant to the relations between parameters of CM (3.12) a,b,kx and kp we will
sort our investigation into several cases. As it will be showed in Chapter 4, GIE has
been already calculated for some of them. For instance, these are the symmetric states
fulfilling the conditions a = b and kx ≥ kp > 0. In this case, symplectic matrix S
describes a composition of a balanced beam splitter described by symplectic matrix

UBS =
1√
2

(
1 1

−1 1

)
(3.21)

and local squeezing transformations of quadratures xA and pB described by symplectic
matrices

SA =

(
z−1
A 0
0 zA

)
, SB =

(
zB 0
0 z−1

B

)
, (3.22)

with zA = 4

√
a+kx
a−kp > 1 and zB = 4

√
a+kp
a−kx > 1.

Thus, the symplectic matrix S reads as a product

S1 = (SA ⊕ SB)UBS. (3.23)

Our investigation will be focused on states with a symplectic matrix describing a com-
position of local squeezers described by symplectic matrices (3.22) with eigenvalues

zA =
√

a
ν1
> 1 and zB =

√
b
ν2
> 1 and quantum non-demolition interaction (QND)

with symplectic matrix given as

SQND =


1 0 0 0
0 1 0 q
−q 0 1 0
0 0 0 1

 (3.24)

with interaction constant q = kx
a

= kp
b

.
Symplectic matrix SQND itself can be further decomposed to the product of two beam
splitters and local squeezers on modes A and B as

SQND = UBS1(SSqA ⊕ SSqB)UBS2 , (3.25)

where

UBSj =

(
Tj1 Rj1

−Rj1 Tj1

)
, j = 1,2 (3.26)

are symplectic matrices describing the beam splitters, in general not balanced, with
transmission parameters Tj and reflection parameters Rj, and local squeezers with
symplectic matrices

SSqk =

(
e2rk 0
0 e−2rk

)
, k = A,B (3.27)

with corresponding squeezing parameter rk. Then the symplectic matrix of intended
states will read as

S2 = (SA ⊕ SB)SQND (3.28)

and it corresponds to the states with parameters of CM (3.12) fulfilling relations a > b
and bkx = akp. In our work we will investigate also the states with aforementioned rela-
tions fulfilling the opposite inequality that can be achieved again by using the method

15



of Ref. [39] or by using the mode exchange symmetry, which is described in the last
section of Chapter 5.
Above that we will also deal with the more generic asymmetric states, i. e., states for
which a 6= b and bkx 6= akp occurs.

3.3 Construction of CM of purification γπ

We will use Williamson theorem to find a Gaussian purification of state given by
CM (3.12), so we can construct a CM of the purification γπ. The pure Gaussian state
|Ψ〉ABE must satisfy condition TrE |Ψ〉ABE 〈Ψ| = ρAB. The construction of CM γπ
depends on the symplectic rank of the CM (3.12).
In the case of R = 0 and so γ′AB = diag (1,1,1,1) describes a pure state |Ψ〉AB, purifying
subsystem E is independent of modes A and B. Thus, |Ψ〉ABE = |ψ〉AB |ϕ〉E, where
|ϕ〉E is the state of purifying system E, whence γπ = γAB ⊕ γE, where γE is a CM of
|ϕ〉E.
On the other hand, in the case of R > 0, the principle of purification lies in replacing
modes with νi > 1, i = 1, . . . ,R in γ

(0)
AB with modes of the two-mode squeezed vacuum

state. Performing this purification we get (2+R)-mode CM

γ(0)
π =

 γ
(0)
AB γ

(0)
ABE(

γ
(0)
ABE

)T

γ
(0)
E

 , (3.29)

where

γ
(0)
ABE =

(⊕R
i=1

√
ν2
i − 1σz

O2(2−R) × 2R

)
, γ

(0)
E =

R⊕
i=1

νi1, (3.30)

where σz = diag (1,− 1) is the diagonal Pauli-z matrix and OI×J is the I × J zero
matrix.
Applying a symplectic matrix S⊕1E to CM (3.29) gives us the final CM of purification

γπ =

(
γAB γABE
γT
ABE γE

)
, (3.31)

with
γABE = S−1γ

(0)
ABE, γE = γ

(0)
E and γAB = S−1γ

(0)
AB

(
ST
)−1

. (3.32)

3.4 Gaussian states with minimum negativity for

fixed global and local purities (GLEMS)

In this Thesis, we will focus on the specific class of Gaussian states called GLEMS
which are Gaussian states with minimum negativity for fixed global and local purities
[2],[20]. All GLEMS satisfy the condition ν2 = 1 and they are the least entangled
Gaussian states. Further we will work only with the states fulfilling condition a +
+ b − 1 >

√
detγAB since they contain all entangled GLEMS. Besides, this subclass

saturates Heisenberg uncertainty principle expressed by inequality (3.13) and so these
states are states with partial minimum uncertainty.
At last, GLEMS naturally appear in cryptographical settings involving two-mode
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squeezed vacuum with one mode transmitted through a purely lossy channel.

As we already mentioned, for all GLEMS ν2 = 1, whereas the other symplectic ei-
genvalue can be calculated as

ν ≡ ν1 =
√

detγAB. (3.33)

The Thesis is focused on GLEMS with ν > 1. We will further select this set into sub-
sets according to the certain conditions expressed by parameters of symplectic matrix
S (3.20).

We will focus our investigation on the four sets of GLEMS. Each set is character-
ized by the relations between parameters of S (3.20). In the Thesis we will use the
following denotation:

ρ
(4)
AB : a > b, bkx = akp,

ρ
(5)
AB : a < b, akx = bkp,

ρ
(6)
AB : a > b, bkx 6= akp,

ρ
(7)
AB : a < b, akx 6= bkp. (3.34)

In addition, as we will show in Chapter 5, the transition from the state ρ
(4)
AB to the

state ρ
(5)
AB and from the state ρ

(6)
AB to the state ρ

(7)
AB corresponds to the mode exchange

between modes A and B. This fact brings some advantages to the calculations of
Gaussian intrinsic entanglement, an entanglement measure introduced in the following
chapter.
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Chapter 4

Gaussian Intrinsic Entanglement

We already introduced theory of entanglement measures in Chapter 2, we mentioned
some of existing entanglement measures and explained why prospecting new ways of
quantifying entanglement is still an open topic. Once we also defined Gaussian states in
Chapter 3, we have in our hands all tools to handle with a new proposed entanglement
measure called Gaussian intrinsic entanglement (GIE) [1].

4.1 Definition and properties of GIE

Intrinsic entanglement (IE) is a new proposed entanglement measure. It is based
on the idea of changing the order of optimization in the definition of classical measure
of entanglement µ (2.3) and thus it is defined as

E↓(ρAB) = sup
{|A〉,|B〉}

{
inf

{|E〉,|Ψ〉}
[I (A;B ↓ E)]

}
. (4.1)

Because of the cryptographically based origin of IE, its definition results from the defin-
ition of intrinsic information in classical secret key agreement, therefore in the Eq.(4.1)
we use notation as follows. A (Alice) and B (Bob) are two subsystems of entangled
state ρAB and E (Eve) is the purifying subsystem. Further, |Ψ〉 is a purification of
state ρAB, i.e. TrE |Ψ〉 〈Ψ| = ρAB.
We already mentioned, that IE was born from the idea of changing the order of optim-
ization in the definition of classical measure of entanglement (2.3). By comparing its
definition to the definition of IE (4.1), one can see, that relation E↓ ≤ µ, due to the
max-min inequality [21].
If we restrict our investigation to the cases, in which all the states, measurements and
channels are Gaussian, then we talk about Gaussian IE (GIE). In the case of two-mode
state ρAB with purifying subsystem E it is defined as

EG
↓ (ρAB) = sup

ΓA,ΓB

inf
ΓE

[I (A;B|E)] , (4.2)

where

I (A;B|E) =
1

2
ln

(
detσA detσB

detσAB

)
. (4.3)

Further,
σAB = γAB|E + ΓA ⊕ ΓB, (4.4)
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σA,B are local submatrices of σAB and ΓA (ΓB) is a single-mode CM of pure-state
Gaussian measurement on a mode A (B).
Next,

γAB|E = γAB − γABE (γE + ΓE)−1 γT
ABE (4.5)

is a CM of conditional mutual state ρAB|E [22]. This state is obtained by a Gaussian
measurement with CM ΓE on purifying subsystem E of the purification with CM γπ
given by Eq. (3.29). Furthermore, applying symplectic transformation to the CM (4.5),
we get

γ
(0)
AB|E = γ

(0)
AB − γ

(0)
ABE

(
γ

(0)
E + ΓE

)−1 (
γ

(0)
ABE

)T

, (4.6)

where CMs γ
(0)
AB,γ

(0)
ABE and γ

(0)
E are given by Eqs.(3.18) and (3.30).

Now, we have defined general analytical formula of GIE 4.2. Let us mention the
properties, that GIE offers as an entanglement measure. Firstly, due to the reversed
optimization in its definition, it is easier to be computed than the classical measure
of entanglement. In addition, it has been proven [1] that GIE is zero if and only if
the given state ρAB is separable. Likewise, it does not increase under Gaussian local
trace-preserving operations and classical communication (GLTPOCC).
Since it was found that optimum in GIE is always reached by homodyne and hetero-
dyne detection, it is experimentally feasible and thus it is physically meaningful.
Lastly, another questioned property belonging to a good entanglement measure is an
operational meaning. There exists a conjecture, that GIE is an upper bound of speed
of generating a secret key in a cryptographical scenario with so-called public Eve, i.e.
a secret key agreement protocol in which Eve gives up some of the information and
shares it with communicating parties Alice and Bob.

4.2 Existing results of GIE

Before we discuss our results of GIE in Chapter 5, let us show already acquired
analytical formulas of GIE published in [1] for following three sets of Gaussian states.

Firstly, GIE was already calculated for symmetric GLEMS [2]. Surely, since this is
a class of GLEMS, it fulfills all the properties of GLEMS mentioned in Chapter 3.
Additionally, due to the symmetry, the condition a = b occurs. All the states, which
belong to the class of entangled symmetric GLEMS we denote as ρ

(1)
AB and GIE is given

by

EG
↓

(
ρ

(1)
AB

)
= ln

(
a√

a2 − k2
p

)
. (4.7)

If also kx = kp ≡ k is fulfilled, then the state reduces to the pure state
(
≡ ρ

(p)
AB

)
and

also condition a2 − k2 = 1 occurs. Thus, one can see that GIE in this case is given by

EG
↓

(
ρ

(p)
AB

)
= ln (a) . (4.8)

Another class of states are symmetric squeezed thermal states [23]. For all these states
a condition kx = kp ≡ k is fulfilled. Once more, these states are symmetric, hence
the a = b occurs. Additionally, they are entangled if and only if a− k < 1 is satisfied
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[24],[25]. We denote them as ρ
(2)
AB and GIE for all these states which also satisfy in-

equality a ≤ 2.41 reads as

EG
↓

(
ρ

(2)
AB

)
= ln

[
(a− k)2 + 1

2 (a− k)

]
. (4.9)

The third states of the set are asymmetric squeezed thermal GLEMS. We denote them
as ρ

(3)
AB and they fulfill conditions kx = kp ≡ k, ν2 = 1 and a 6= b. For all these states

satisfying
√
ab ≤ 2.41 GIE is equal to

EG
↓

(
ρ

(3)
AB

)
= ln

(
a+ b

|a− b|+ 2

)
. (4.10)

These results were compared to the results of other entanglement measures for the
given states. Their relations will be introduced in the following section.

4.3 Relation to other entanglement measures

One of the questioned issues of any entanglement measure is its relation to other
entanglement measures. Firstly, let us investigate a relation between GIE and the most
popular entanglement measure, logarithmic negativity, in general defined by Eq. (2.1).
For a symmetric two-mode Gaussian state ρAB, the logarithmic negativity reads as

EN (ρAB) = max [0,− ln ν̃−] . (4.11)

where ν̃− =
√

(a− kx)(a− kp) is the lower symplectic eigenvalue of the partial trans-

pose ρTAAB of the state ρAB with respect to mode A (where the symbol TA stays for the
partial transposition with respect to mode A). [1].
In the case of symmetric states, for which a = b, we can fuse GIE formulas (4.7) and
(4.9) into

EG
↓ (ρAB) =

{
ln
[
ν̃−+(ν̃−)−1

2

]
, if ν̃− < 1;

0, if ν̃− ≥ 1,
(4.12)

One can see, that for the symmetric states, both, logarithmic negativity and GIE, are
monotonically decreasing functions and by comparing Eqs. (4.12) and (4.11), one finds
a relation EN(ρAB) ≥ EG

↓ (ρAB).
Nevertheless, in the case of the Gaussian states with positive partial transpose, afore-
mentioned relation does not apply anymore, since logarithmic negativity vanishes but
GIE is strictly positive, due to its faithfulness property, and thus we can conclude that
there is no fixed hierarchy between these two measures.

Anyway, during the investigation of GIE, it showed up, that on pure states it is equal
to another Gaussian entanglement measure, so-called Gaussian-Rényi-2 entanglement
of formations (GR2EoF) [3]. Since GR2EoF is computable for symmetric and also
some classes of asymmetric Gaussian states, the results of GIE and GR2EoF were also
compared for the states ρ

(1)
AB, ρ

(2)
AB and ρ

(3)
AB and surprisingly, they were equal. This

lead to a hypothesis that GIE is also equivalent to GR2EoF on all bipartite Gaussian
states.
GR2EoF is equipped with significant properties. Firstly, it is monotonic under all
Gaussian LOCC. Secondly, it satisfies monogamy inequality [9] and Gaussian Rényi-2
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version of Koashi-Winter monogamy relation [10]. Finally, it is additive on two-mode
symmetric states and it offers an operational interpretation as sampling entropy for
Wigner quasiprobability distribution.
If the equivalence between GIE and GR2EoF was proven, then all the properties of
GR2EoF would transfer to GIE and vice versa. Hence, one of our goals in this work
will not be only to calculate GIE for the given states but also to find the formulas of
GR2EoF and compare our results, so we can strengthen or disprove the hypothesis.
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Chapter 5

Results

We investigated GIE for three other types of GLEMS, namely the states ρ
(4)
AB, ρ

(5)
AB

and ρ
(6)
AB which are defined at the end of Chapter 3. We showed that GIE is symmetric

with respect to the exchange of modes A and B, which allows us to derive it also for
an example of a state ρ

(7)
AB. Finally, we computed the results of logarithmic negativity

and GR2EoF for the same states and compared them to GIE.

5.1 Derivation of GIE

Let us begin with brief explanation of the strategy we used to obtain new results
of GIE. The first step is to calculate an upper bound [26] of GIE

U (ρAB) ≡ inf
ΓE

[
IGc
(
ρAB|E

)]
, (5.1)

where
IGc
(
ρAB|E

)
= sup

ΓA,ΓB

[I (A;B|E)] (5.2)

is so-called Gaussian classical mutual information (GCMI) [27] of the conditional state
ρAB|E with CM (4.5) and inequality EG

↓ (ρAB) ≤ U (ρAB) holds due to the max-min
inequality [21]. In general, the GCMI can be calculated only numerically. However, if
the CM parameters a, b and cx satisfy condition√

a

b
+

√
b

a
+

1√
ab
−
√
ab− c2

x ≥ 0, (5.3)

the optimization in Eq. (5.2) can be performed analytically and the GCMI reads as

IGc
(
ρAB|E

)
=

1

2
ln

(
ãb̃

ãb̃− c̃2
x

)
, (5.4)

where ã, b̃ and c̃x are parameters of the standard form of the CM of the conditional
state ρAB|E

γAB|E =


ã 0 c̃x 0
0 ã 0 c̃p
c̃x 0 b̃ 0

0 c̃p 0 b̃

 , (5.5)
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where c̃x ≥ |c̃p| ≥ 0. The GCMI in the form of Eq. (5.4) is reached by double homodyne
detection of quadratures xA and xB on modes A and B.
In terms of the parameters of CM (5.5) condition (5.3) reads as√

ã

b̃
+

√
b̃

ã
+

1√
ãb̃
−
√
ãb̃− c̃2

x ≥ 0. (5.6)

Further, it shows up, that for all the cases, a double homodyne detection of quadratures
xA and xB is the optimal measurement on modes A and B for any CM ΓE. We used
this fact in our calculations and restricted our investigation to the states fulfilling a
condition

√
ν1ν2 ≤ 2 +

1√
ab

, (5.7)

since for the states satisfying (5.7) the condition (5.3) is fulfilled and the double homo-
dyning is an optimal measurement.

It is advantageous to rewrite Eq.(5.1) as

U (ρAB) = − ln
√

1− hmin, (5.8)

with

hmin ≡ inf
ΓE

(
c̃2
x

ãb̃

)
. (5.9)

Hence, minimization of RHS of Eq.(5.1) boils down to minimization of RHS in Eq.(5.9).

The next step is to saturate the upper bound, since the saturated bound is equal to
the requested GIE U (ρAB) = EG

↓ (ρAB). To perform the saturation, we find convenient
expression of conditional mutual information [26], which simplifies its minimization
over all CMs ΓE. Additionally, using the double homodyne detection on quadratures
xA and xB, which is characterized by CMs ΓtA ≡ diag (e−2t,e2t) and ΓtB ≡ diag (e−2t,e2t)
in the limit t → +∞, the minimization of conditional mutual information reduces to
finding the quantity

L (ρAB) ≡ inf
ΓE

[Ih (A;B|E)] =
1

2
ln

(
ab

ab− k2
x

)
+

1

2
ln Kmin, (5.10)

where
Kmin ≡ inf

ΓE
Kh (5.11)

and Kh is obtained from the quantity

K =
det (ΓE +XA) det (ΓE +XB)

det (ΓE +XAB) det (ΓE + γE)
, (5.12)

where
Xj = γE − γT

jE (Γj + γj)
−1 γjE (5.13)

with CMs ΓA and ΓB replaced by the CMs characterizing homodyne detection ΓA = ΓtA
and ΓB = ΓtB and taking the limit t→ +∞.

Finally, if we find some states ρAB, for which the quantity L (ρAB) (5.10) is equal to
the upper bound U (ρAB) (5.1), then we have found at fixed measurements on modes A
and B the minimal conditional mutual information with respect to all CMs ΓE, which
saturates the upper bound (5.1) and thus it coincidents with GIE.
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5.2 GIE for ρ
(4)
AB, ρ

(5)
AB and ρ

(6)
AB

The procedure described in the previous chapter can be used to evaluation of GIE
for four sets of states defined in Eqs.(3.34). We have reached the following results.

Firstly, we performed the derivation of GIE for the state ρ
(4)
AB, which is character-

ized by conditions a > b and bkx = akp. Besides, for this state Eq. (3.33) boils down
to

ν ≡ ν1 =
√
a2 − kxkp. (5.14)

In the calculation of upper bound (5.1) we utilized an inequality [26]

c̃2
x

ãb̃
≥ kxkp

a2
. (5.15)

This lower bound is tight, since it is attained for CM ΓE with parameters and conditions
corresponding to the homodyne detection of quadrature xE on mode E. Thus, hmin =
kxkp/a

2 and then applying this result to Eq.(5.1) one gets

U
(
ρ

(4)
AB

)
= ln

(a
ν

)
. (5.16)

Next, to evaluate the quantity (5.10), we need to express the matrix (5.13) in Eq.(5.12)
for the case of homodyne detection in the limit t→ +∞, i.e.

Xk = ν1− αk |0〉 〈0| , (5.17)

k = A,B,AB and

αA =

(
ν2 − 1

a

)
x2

3, αB =

(
ν2 − 1

b

)
x2

4,

αAB =

(
ν2 − 1

ab− k2
x

)(
ax2

4 + bx2
3 − 2kxx3x4

)
(5.18)

and |0〉 = (1,0)T.
Using the formula [28]

det (χ+ |c〉 〈r|) =
(
1 + 〈r|χ−1 |c〉

)
detχ, (5.19)

which holds for any invertible matrix χ, and we can express the Eq.(5.12) as

Kh =
(1− αAQ) (1− αBQ)

1− αABQ
, (5.20)

with the variable

Q ≡ 〈0| (ΓE + ν1)−1 |0〉 =
τ [cosh(2t) cos(2ϕ)] + ν

τ 2 + 2τ cosh(2t)ν + ν2
. (5.21)

Hence, evaluating the quantity corresponds to minimizing the function (5.20) with the
single variable Q (5.21) over ϕ ∈ [0,π), τ ≥ 1 and t ≥ 0. Using the conditions a > b
and bkx = akp, Eqs. (5.18) simplify to

αA = αAB =
ν2 − 1

ν
, αB =

(
ν2 − 1

ν

)
k2
x

ab
(5.22)

24



and thus
Kh = 1− αBQ. (5.23)

Since αB > 0, we get the following chain of equations:

Kmin ≡ inf
ΓE

Kh = inf
Q∈(0, 1

ν )
Kh = 1−

(
ν2 − 1

ν2

)
k2
x

ab
, (5.24)

where the infimum lies at the boundary point 1/ν, which can be reached by homodyne
detection of quadrature xE on the mode E characterized by parameters ϕ = π/2, τ = 1
in the limit t→ +∞.
If we substitute the final expression in Eq.(5.24) to Eq.(5.10), one finds

L
(
ρ

(4)
AB

)
= ln

(a
ν

)
, (5.25)

which is equal to the upper bound (5.16) and thus GIE for the state ρ
(4)
AB is given by

EG
↓

(
ρ

(4)
AB

)
= ln

(a
ν

)
. (5.26)

Now, let us calculate GIE for a particular test state ρ
′(4)
AB. This state will be given by

CM (3.12) with parameters a = 2
√

2, b = kx =
√

2 and kp = 1/
√

2, which satisfies all

the conditions for the class of states ρ
(4)
AB. Also, we have to verify that our test state

satisfies conditions (3.13),(3.14), (5.3) and (5.7), so we know that in our hands we have
physical entangled state for which the homodyne detection is an optimal measurement
and the upper bound can be analytically optimized. One can easily find out that our
state fulfills all the conditions. Now, one can use the simple analytical formula (5.26)
and reach the result

EG
↓

(
ρ
′(4)
AB

)
= ln

(
2

√
2

7

)
.
= 0.068. (5.27)

If we move to the state ρ
(5)
AB with conditions a < b, akx = bkp and

ν̃ ≡ ν1 =
√
b2 − kxkp, (5.28)

the procedure of derivation GIE will be analogous with the case of ρ
(4)
AB and we will get

the result

U
(
ρ

(5)
AB

)
= L

(
ρ

(5)
AB

)
= ln

(
b

ν̃

)
(5.29)

and thus

EG
↓

(
ρ

(5)
AB

)
= ln

(
b

ν̃

)
. (5.30)

According to the symmetry with the respect to the exchange of parameters a and b,
which occurs in all four conditions (3.13),(3.14), (5.3) and (5.7), as our test state ρ

′(5)
AB

we chose CM (3.12) with parameters b = 2
√

2, a = kx =
√

2 and kp = 1/
√

2. Once
more, using the final formula (5.30), we get the result

EG
↓

(
ρ
′(5)
AB

)
= ln

(
2

√
2

7

)
.
= 0.068. (5.31)
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Further, two other type of states can be investigated, namely ρ
(6)
AB and ρ

(7)
AB. In accord-

ance with the conditions (3.34), these are the most generic GLEMS, as the only fulfilled
condition is ν2 = 1 in these cases. For this reason, our derivation will not simplify as it
did in previous cases and we have to perform the general optimization described in the
first section. Since this is very sophisticated process we decided to reach the numerical
result for some test state at first. As the test state for the case of ρ

(6)
AB, we took the CM

(3.12) with parameters a = 2
√

2, b =
√

2 and kx,p = (
√

97± 1)/8. Again, we certified
that all the conditions (3.13),(3.14), (5.3) and (5.7) are fulfilled and the final result of
GIE is

EG
↓

(
ρ
′(6)
AB

)
= ln

(
6

5

)
= 0.182322. (5.32)

In the case of ρ
(6)
AB, the analytical formula of GIE have not been derived so far, however,

the upper bound (5.1) can be expressed as [26]

U
(
ρ

(6)
AB

)
= ln

(
a2 − b2

√
D

)
, (5.33)

where
D =

(
a2 − b2

)2
+ 4MM̃ (5.34)

with
M ≡ akx − bkp, M̃ ≡ bkx − akp. (5.35)

5.3 Symmetry with respect to the mode exchange

Now, we will show that we can transfer from the case a < b to the case a > b by ex-
changing modes A and B. We will perform this via a simple orthogonal transformation
carried out by orthonormal transformation symplectic matrix

T =

(
0 1

1 0

)
(5.36)

Applying this transformation to our CM (3.12) γAB we get a CM in standard form
with exchanged modes

γBA = TγABT
T. (5.37)

One can easily infer, that if we have a CM γAB with a < b, then the transformed CM
γBA will correspond to the case when we have CM γAB but with b < a.

The transformation of the symplectic matrix S (3.20) is performed as follows

S = S ′T , (5.38)

where S ′ is the symplectic matrix that brings γBA to the Williamson normal form. This
transformation will lead to the change of parameters of the symplectic matrix (3.20),
whereas the symplectic eigenvalues will be unchanged.

Finally, we can say that the mode exchange will not change our GIE results, because
GIE is invariant under the transformation S → (OA ⊕OB)S, where OA and OB are
local orthogonal symplectic matrices [26].
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By exchanging the parameter a in the GIE result for the state ρ
(4)
AB (5.26) with the

parameter b, one gets the the analytical formula of GIE for the state ρ
(5)
AB (5.30) and

vice versa. This corresponds to the aforementioned mode exchange between modes A
and B and obviously.
Using the symmetry in the case of the state ρ

(6)
AB (5.33), we get the upper bound for

the state ρ
(7)
AB in the form

U
(
ρ

(7)
AB

)
= ln

(
b2 − a2

√
D

)
. (5.39)

Further, we can calculate the numerical value of the test state ρ
′(7)
AB with parameters

a =
√

2, b = 2
√

2 and kx,p =
(√

97± 1
)
/8, which will be

EG
↓

(
ρ
′(7)
AB

)
= ln

(
6

5

)
= 0.182322. (5.40)

As we expected, we got the same result as for the test state ρ
′(6)
AB.

The symmetry with respect to the mode exchange provides another way of reaching
some of the GIE formulas or it can be used to verify them.

5.4 Comparing GIE to logarithmic negativity and

GR2EoF

As it had been done before for the the states ρ
(1)
AB, ρ

(2)
AB and ρ

(3)
AB, we compared our

results with two other entanglement measures, i.e. logarithmic negativity and GR2EoF.

Although, there is not a hierarchy between logarithmic negativity and GIE for Gaus-
sian states in general, it may still hold for two-mode Gaussian states. This is because
there are no two-mode entangled Gaussian states with positive partial transposition
and thus both, logarithmic negativity and GIE vanish on the two-mode PPT states.
To support the conjecture, we therefore calculated also the logarithmic negativity for
our examples.
To calculate the logarithmic negativity, we used Eq. (4.11). Since for our classes of
GLEMS the symmetry a = b does not hold anymore, the symplectic eigenvalue ν̃− is

the lower eigenvalue of the matrix iΩγ
(T)
AB , where

γ
(T)
AB =


a 0 kx 0
0 a 0 kp
kx 0 b 0
0 kp 0 b

 (5.41)

is the CM of the partial transpose with respect to the mode A ρTA
AB.

By inserting the parameters of our test state ρ
′(4)
AB, one gets the result

EN

(
ρ
′(4)
AB

)
= 0.243201. (5.42)

Comparing it to the result of GIE for this state in Eq. (5.27), one can see that the

inequality EN

(
ρ
′(4)
AB

)
= 0.243201 > EG

↓

(
ρ
′(4)
AB

)
= ln

(
2
√

2
7

)
.
= 0.068 holds.
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For the state ρ
′(5)
AB we get the result

EN

(
ρ
′(5)
AB

)
= 0.243201 (5.43)

and by comparing it to the result given by Eq.(5.31) we get the relation EN

(
ρ
′(5)
AB

)
=

0.243201 > EG
↓

(
ρ
′(5)
AB

)
= ln

(
2
√

2
7

)
.
= 0.068.

In the case of state ρ
′(6)
AB, the logarithmic negativity is

EN

(
ρ
′(6)
AB

)
= 0.367816 (5.44)

and once again, in relation to GIE, the inequality EN

(
ρ
′(6)
AB

)
= 0.367816 > EG

↓

(
ρ
′(6)
AB

)
=

ln
(

6
5

)
= 0.182322 holds.

For the state ρ
′(7)
AB, we will get the same numerical values as for the state ρ

′(6)
AB, i.e.,

EN

(
ρ
′(7)
AB

)
= 0.367816 > EG

↓

(
ρ
′(7)
AB

)
= ln

(
6
5

)
= 0.182322.

One can see that for all the cases, we got the relation

EN (ρAB) > EG
↓ (ρAB) , (5.45)

which supports our conjecture, that this hierarchy may hold for two-mode Gaussian
states.

Nevertheless, it showed up that there may be even more interesting relation to an-
other entanglement measure.
After the introduction of GIE, the subsequent investigation led to a remarkable finding.
All calculated formulas were equal to another entanglement measure called Gaussian-
Rényi-2 entanglement of formation. This fact spurred the thought of a possible equival-
ence between these two entanglement measures. We computed GR2EoF for our states
ρ

(4)
AB, ρ

(5)
AB, ρ

′(6)
AB and ρ

′(7)
AB to strengthen or disprove the hypothesis of equivalence.

Firstly, let us consider a two-mode state reduction of a pure state of three modes
A1, A2 and A3 with CM in standard form [29]

γA1,A2,A3 =


a1 0 c+

3 0 c+
2 0

0 a1 0 c−3 0 c−2
c+

3 0 a2 0 c+
1 0

0 c−3 0 a2 0 c−1
c+

2 0 c+
1 0 a3 0

0 c−2 0 c−1 0 a3

 , (5.46)

where

c±i =

√
a−−a+− ±

√
a−+a++

4
√
ajak

(5.47)

with

a∓− = (ai ∓ 1)2 − (aj − ak)2 ,

a∓+ = (ai ∓ 1)2 − (aj + ak)
2 . (5.48)
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Here, |aj − ak|+ 1 ≤ ai ≤ aj + ak − 1, where {i,j,k} run all over all possible permuta-
tions {1,2,3}. Hereupon, the reduction to the state ρAiAj of modes Ai and Aj will be
characterized by CM γAiAj and then the GR2EoF will read as [8]

EG
F ,2

(
ρAiAj

)
=

1

2
ln gk, (5.49)

where [30]

gk =


1, if ak ≥

√
a2
i + a2

j − 1;

ζ
8a2k

, if αk < ak <
√
a2
i + a2

j − 1;(
a2i−a2j
a2k−1

)2

, if ak ≤ αk.

(5.50)

Further,

αk =

{
1 +

(
a2
i − a2

j

)2

2
(
a2
i + a2

j

) +
|a2
i − a2

j |
2
(
a2
i + a2

j

) [(a2
i − a2

j

)2
+ 8

(
a2
i + a2

j

)] 1
2

} 1
2

,

δ =
[
(a1 − a2 − a3)2 − 1

] [
(a1 + a2 − a3)2 − 1

] [
(a1 − a2 + a3)2 − 1

] [
(a1 + a2 + a3)2 − 1

]
,

ζ = 2a2
1 + 2a2

2 + 2a2
3 + 2a2

1a
2
2 + 2a2

1a
2
3 + 2a2

2a
2
3 − a4

1 − a4
2a

4
3 −
√
δ − 1.

(5.51)

Thereafter, if we apply this to our state ρ
(4)
AB, then for the parameters of CM (5.46)

a1 = a, a2 = b and a3 = ν occur for the case and noticeably A1 ≡ A, A2 ≡ B and
A ≡ E are corresponding modes. Examining the Eq. (5.50), one will conclude that
only the second branch in the equation applies and after some algebra, the result of
GR2EoF is

EG
F ,2

(
ρ

(4)
AB

)
= ln

(a
ν

)
(5.52)

just like in the case of GIE in Eq. (5.26).

For the state ρ
(5)
AB in the CM (5.46) we will use equations a1 = a, a2 = b and a3 = ν̃.

Again, in the Eq. (5.50) the second branch occurs and the final result is

EG
F ,2

(
ρ

(5)
AB

)
= ln

(
b

ν̃

)
. (5.53)

Once again, in accordance with Eq.(5.30), the result coincidents with the result of GIE.

Next, we calculated GR2EoF for the same concrete test state of the class ρ
(6)
AB, i.e.

the state ρ
′(6)
AB with parameters a = 2

√
2, b =

√
2 and kx,p = (

√
97± 1)/8. For the CM

(5.46) applies a1 = a, a2 = b and a3 = ν = ν1. One finds out that ak < αk and thus
the third branch of Eq. (5.50) has to be taken. Finally, the GR2EoF is equal to

EG
F ,2

(
ρ
′(6)
AB

)
= ln

(
6

5

)
. (5.54)

Comparing the result with Eq. (5.32), one can see that GIE and GR2EoF are equal.
Finally, using the same process, one finds out that GIE and GR2EoF are equal for the
test state ρ

′(7)
AB as well.

To sum it up, for all the new investigated cases, GIE showed up to be equal to GR2EoF
just like in the previous investigations. This fact strongly supports the conjecture, that
these two entanglement measures are equivalent.
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Conclusion

The aim of the Thesis was investigation of GIE for a specific class of Gaussian
states called GLEMS. After we introduced the general definition of GIE, we explained
the way of derivation GIE for GLEMS and applied it to individual cases. The results
we reached are summarized in Subsection 5.2.
Further, we compared GIE to the other two entanglement measures, namely logar-
ithmic negativity and GR2EoF. Our results of GR2EoF for the investigated classes of
states were equal to the result of GIE, which supported the hypothesis, that GIE and
GR2EoF are equivalent entanglement measures.
There are many toppics following up on our results that are left open for future invest-
igation, such as the proof of equivalence between GIE and GR2EoF, analytical formulas
for the most generic GLEMS or the investigation of GIE for bipartite multimode states.
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