

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

Diploma Thesis

Development of Android mobile application using Java

programming language

Gleb Dmitrievsky

© 2021 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT
Gleb Dmitrievsky

Systems Engineering and Informa cs
Informa cs

Thesis tle

Development of Android mobile applica on using Java programming language

Objec ves of thesis
The main objec ve of the thesis is to explore the process of the mobile applica on development using
recent Android pla orm and to compare different approaches and alterna ves in all stages of the
development process.

Methodology

In the theore cal part of the thesis, inves ga on of the steps of crea ng a mobile applica on using profes-
sional literature will be done. Then the different technical aspects of programming will be analyzed with
a further choice of the right structure, defining principles, and a suitable workflow. Moreover, the em-
ployment of theore cal knowledge will be done in realisa on of applica on. An applica on will be created
using the selected best prac ces of development and also maintenance. The final applica on will be able
to track expiry dates of the products that a user has bought, no fy a user about the oncoming expira on
date, and even help a user to u lize those products.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
80 – 120 pages

Keywords
Java programming; OOP; Android; mobile applica on development; database

Recommended informa on sources
GRIFFITHS, Dawn and David GRIFFITHS. Head First Android Development. 2nd Edi on. Newton: O’Reilly

Media, 2017. ISBN 9781491974056.
SCHILDT, Herbert. Java: The Complete Reference. 11th Edi on. New York: McGraw-Hill, 2018. ISBN

9781260440249.
WEISFELD, Ma . The object-oriented thought process. 5th Edi on. Boston: Addison-Wesley, 2019. ISBN

9780135182130.

Expected date of thesis defence
2020/21 SS – FEM

The Diploma Thesis Supervisor
doc. Ing. Vojtěch Merunka, Ph.D.

Supervising department
Department of Informa on Engineering

Electronic approval: 19. 11. 2020

Ing. Mar n Pelikán, Ph.D.
Head of department

Electronic approval: 19. 11. 2020

Ing. Mar n Pelikán, Ph.D.
Dean

Prague on 31. 03. 2021

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

Declaration

I declare that I have worked on my diploma thesis titled "Development of Android mobile

application using Java programming language" by myself and I have used only the sources

mentioned at the end of the thesis. As the author of the diploma thesis, I declare that the

thesis does not break copyrights.

In Prague on 31.03.2021 ___________________________

Acknowledgement

I would like to thank my supervisor doc. Ing. Vojtěch Merunka, Ph.D. for his guidance and

support during my work on this thesis. Additionally, I would like to thank my family for all

their support and belief in me.

7

Development of Android mobile application using Java

programming language

Abstract

The food wasting problem is unlikely to be one of the most discussed problems. But the fact

is that about one third of the food produced globally for human consumption is wasted or

lost. It has a huge negative economic impact on the income of food producers and customers.

The population is rapidly growing and the demand of natural resources does not decrease.

People can consume nature's resources in different ways, for example, by producing

electronics. As to now, there are about 3 billion smartphones today. The Android operating

system is installed on almost 2.5 billion mobile devices. Why not try to use smartphones to

help us reduce the food wasting problem? This thesis is focused on the development of the

FoodNoWaster Android application which should help to solve the food wasting problem.

The application was written using the Java programming language for core logic. The core

of the application was written with the OOP approach. The User Interface of the

FoodNoWaster application was built with XML layout files. The FoodNoWaster application

stores the user’s data in the SQLite database. When the food item is approaching its

expiration date, the user will be notified about that. The result of this thesis is ready to use

the FoodNoWaster application, which is being used by the author and his relatives.

Keywords: Java programming, OOP, Android, mobile application development, SQLite

database, food waste problem.

8

 Vývoj Android aplikací v programovacím jazyku Java

Abstrakt

Pravděpodobně problém plýtvání potravinami není jedním z nejdiskutovanějších problémů.

Faktem však je, že třetina potravin vyrobených globálně pro lidskou spotřebu je zbytečná

nebo ztracená. Tento problém má obrovský negativní ekonomický dopad na příjmy výrobců

potravin a na zákazníky. Populace rychle roste a spotřeba přírodních zdrojů vůbec neklesá.

Lidé využívají přírodní zdroje pro různé účely, jako je například výroba elektroniky. Lidé

dnes používají přibližně 3 miliardy miliardy chytrých telefonů. Operační systém Android je

nainstalován na téměř 2,5 miliardy mobilních zařízení. Proč nezkusit použít chytré telefony

k tomu, abychom pomohli snížit plýtvání potravinami? Tato práce je zaměřena na vývoj

Android aplikace FoodNoWaster, která by mohla pomoci s problémem plýtvání

potravinami. Základní logika aplikace byla vyvinutá v programovacím jazyku Java. Při

vyvinutí jádra aplikace byl použit OOP přístup. Uživatelské rozhraní aplikace

FoodNoWaster bylo vyvinuto pomocí XML souborů. Aplikace FoodNoWaster ukládá

uživatelská data do SQLite databáze. Pokud se bude blížit datum expirace, uživatel o této

skutečnosti bude informován pomocí notifikací. Výsledkem této práce je připravena k

použití aplikace FoodNoWaster, kterou používá autor a jeho příbuzní.

Klíčová slova: Programování v Javě, OOP, Android, vývoj mobilních aplikací, SQLite

databáze, plýtvání potravinami.

9

Table of content

1 Introduction .. 13

2 Objectives and Methodology .. 15

2.1 Objectives ... 15

2.2 Methodology ... 15

3 Literature Review ... 16

3.1 Food Waste Problem ... 16

3.2 Market Development ... 17

3.2.1 Android vs iOS .. 18

3.2.1.1 Market positions.. 18

3.2.1.2 Key differences ... 19

3.3 Android Architecture ... 21

3.3.1 Linux Kernel .. 21

3.3.1.1 Portability ... 22

3.3.1.2 Features .. 22

3.3.1.3 Security ... 22

3.3.2 Hardware Abstraction Level (HAL) ... 23

3.3.3 Native Libraries ... 23

3.3.4 Framework ... 24

3.3.5 System Applications ... 24

3.4 Android Application Fundamentals ... 24

3.4.1 Application Components .. 25

3.4.1.1 Activities... 25

3.4.1.2 Services .. 29

3.4.1.3 Broadcast receivers ... 31

3.4.1.4 Content providers .. 31

3.4.1.5 Intents ... 32

3.4.2 The manifest file .. 32

3.4.3 Application Resources .. 33

3.4.4 Application features ... 33

3.4.4.1 Notifications ... 34

3.4.4.2 Repeated alarms .. 34

3.4.4.3 Toasts ... 35

3.4.5 Debugging, testing, and publishing ... 35

10

3.4.5.1 Debugging .. 35

3.4.5.2 Android Debug Bridge .. 36

3.4.5.3 Publishing ... 36

3.5 Analysis .. 37

3.5.1 UML .. 37

3.5.1.1 Use Case ... 37

3.5.2 SWOT ... 37

3.5.3 Gantt chart ... 37

3.6 Development Environment.. 38

3.6.1 Integrated Development Environment .. 38

3.6.1.1 Android Studio ... 39

3.6.1.2 Eclipse .. 39

3.6.1.3 Visual Studio .. 39

3.6.1.4 IntelliJ IDEA .. 40

3.6.2 IDEs Comparison... 40

3.6.3 Android Studio System Requirements .. 41

3.6.4 Android application development workflow ... 42

4 Practical Part .. 44

4.1 Application idea .. 44

4.1.1 Target audience analysis .. 44

4.1.2 Alternative solutions .. 44

4.1.3 Requirements analysis.. 45

4.1.3.1 SWOT .. 45

4.1.3.2 Use Case ... 45

4.2 Implementation ... 46

4.2.1 Android Studio installation .. 46

4.2.2 Android Studio configuration ... 47

4.2.3 Creating a new Android Studio project... 49

4.2.4 Splash screen ... 51

4.2.5 SQLite database ... 55

4.2.6 Custom ListView class... 59

4.2.7 Date picker layout .. 60

4.2.8 AddModifyDeleteFoodItem class ... 61

4.2.9 MainActivity class ... 63

4.2.10 ListFoodItemAdapter ... 65

4.2.11 Notifications .. 68

4.2.12 Application icon .. 71

11

4.2.13 Debugging the application .. 73

4.2.14 Application publishing ... 74

5 Results and Discussion .. 76

5.1 FoodNoWaster application .. 76

5.2 Further enhancements.. 76

6 Conclusion ... 77

7 References ... 78

List of pictures

Figure 1 Android Stack ... 21
Figure 2 Android activity lifecycle .. 28

Figure 3 Android service lifecycle ... 30
Figure 4 Relationship between content provider and other components 32

Figure 5 Android development workflow .. 43
Figure 6 FoodNoWaster application Use Case model .. 46

Figure 7 Proxy settings in Android Studio ... 48
Figure 8 Proxy settings in gradle.properties file ... 49

Figure 9 Android platform versions: API level and distribution 49
Figure 10 Google Pixel 3a and 3 XL emulation in Android Studio................................... 50

Figure 11 SplashActivity configuration ... 51
Figure 12 Splash activity loading screen .. 52

Figure 13 Colours definitions .. 52
Figure 14 Icon selection in Android Studio .. 53

Figure 15 Design and Blueprint view of Splash activity layout .. 53
Figure 16 Splash activity definition in manifest file ... 54

Figure 17 FoodNoWaster splash screen in Android Studio Emulator 54
Figure 18 XML attribute example.. 54

Figure 19 Layout XML attribute support alert ... 55
Figure 20 Adding a new XML attribute marginRight to support older API versions 55

Figure 21 New XML attribute marginBottom added .. 55
Figure 22 onCreate(), onUpgrade() methods automatic construction in Android Studio ... 56

Figure 23 Database name and table name specification .. 56
Figure 24 DBHelper class initialization ... 57

Figure 25 onCreate() method creation .. 57
Figure 26 onUgrade() method creation .. 57

Figure 27 insertFoodItem() method creation .. 58
Figure 28 updateFoodItem() method creation .. 58

Figure 29 updateFoodItemStatus() method creation ... 58
Figure 30 Methods for retrieving the food items from database.. 59

Figure 31 NoScrollListView class implementation .. 60
Figure 32 Date picker XML layout .. 60

Figure 33 Design and Blueprint view of date picker layout .. 61
Figure 34 Design and Blueprint view of activity_add_modify_delete_food_item layout .. 62

Figure 35 Adding an empty and filled food item toast popups.. 63
Figure 36 Design and Blueprint view of main_activity layout with no items 64

12

Figure 37 Design and Blueprint view of activity_main layout ..64

Figure 38 Design and Blueprint view of food_item_list_row layout65
Figure 39 Automatic class implementation in Android Studio ..66

Figure 40 Methods implementation in Android Studio ...66
Figure 41 getCount(), getItem(), and getItemId() methods implementation67

Figure 42 FoodNoWaster main screen ListView with sections ...67
Figure 43 Food items order and status checkboxes ...68

Figure 44 Food items number calculation with expiration date within next 2 days68
Figure 45 NotificationCompat object creation ..69

Figure 46 resultIntent creation ..69
Figure 47 resultPendingIntent passing to the NotificationCompat69

Figure 48 NotificationChannel support for different API versions69
Figure 49 Alarm setting in the MainActivity class ..70

Figure 50 Receive boot permission in the manifest file ...70
Figure 51 Intent filter after reboot ..71

Figure 52 FoodNoWaster notification about expiring food items71
Figure 53 Configuring an Image Asset in Android Stuudio ..72

Figure 54 FoodNoWaster application icon ...73
Figure 55 Build Output - cannot find symbol ...73

Figure 56 Build Output - changes were not applied ..74
Figure 57 ADB alarms output ..74

Figure 58 APK building in Android Studio ..75
Figure 59 Signing an application with Google Play signing ..75

List of tables

Table 1 Comparison of application development for Android and iOS operating systems .20

Table 2 Permission Types in Linux ..23
Table 3 Android Studio, Eclipse, Visual Studio, and IntelliJ IDEA IDEs comparison41

Table 4 System requirements for Android Studio IDE ..42

13

1 Introduction

Since my early childhood, I was in love with technology. The very first smartphone was an

incredible gift for me. Back in the days, it was hard to find a proper Wi-Fi connection to

download an application. In this thesis, I will try to apply knowledge gained at this university

to develop an Android application using the Java programming language. The application

code will be written with object-oriented programming approach and under Google

guidelines.

Almost 50 years have passed since the day when Motorola company demonstrated the

first handheld mobile phone. This phone weighed about 2 kilograms. Nowadays 12 new

iPhones weigh less. Comparing the weight and price, one can imagine how popular these

devices are now.

There are about 3 billion smartphone users today. Moreover, a smartphone user spends

around 3 hours per day using the device. Without a doubt, smartphones have become an

important part of our lives. They did not change us but also helped us to adapt to new life

conditions where people need to store and process much more information as ever before.

Almost 30 years ago the World Wide Web became publicly available. However, the

first internet connection was available at the speed of 56000 bits per second. Today one can

download a 1 GB file in about 32 seconds, while 30 years ago it would take about 3.5 days.

Nowadays it is almost impossible to find a person who has never heard or used the internet.

With its popularization, people started to use it not only for entertainment and work but also

to gain attention to certain problems such as food wasting.

The modern food waste problem began during the late 1800s and early 1900’s when

industrialization and manufactured products changed the way people consume food. Food

became commercialized and went from farms and factories to tables. Families started to

waste food as it became less expensive and more accessible. Today, about 1/3 of all the food

produced for human consumption is wasted or lost.

The main goal of this thesis was to analyse and then develop an Android application

that could help people to prevent their food wasting. Another goal of this thesis was to

develop an application using the latest technologies and best practices available on the

market. In this thesis, all stages of application development were completed. Starting with

the environment set up and creating a project, the code was written, debugged, and built.

14

The theoretical background of the food wasting problem and the main aspects of

Android application development were examined in the theoretical part. The analysis of the

target audience, as well as the determination of the key functionalities of the application,

were also done. The potential of the FoodNoWaster application was also explored from the

market perspective. In the practical part, the theoretical background was applied during the

application development process.

The main logic of the application was written in the Java programming language. The

application uses the SQLite database for data storing. Data is stored only in the device’

memory. The user interface is defined using the XML layout files. The application

development was processed in the Android Studio integrated development environment.

15

2 Objectives and Methodology

2.1 Objectives

The main objective of the thesis is to explore the process of Android mobile application

development, including the analysis, debugging, and testing stages. Different approaches,

techniques, and alternatives will be examined during the creation of the Android mobile

application.

2.2 Methodology

In the theoretical part of the thesis, an investigation of the steps of creating a mobile

application using professional literature will be done. The theoretical background and

analysis will be covered in the theoretical part. Then the different technical aspects of

programming will be analysed with a further choice of the right structure, defining

principles, and a suitable workflow. Moreover, the employment of theoretical knowledge

will be done in the realisation of application. The application will be created using the

selected best practices of development and also maintenance. The final application will allow

the user to input the food items’ data, store it in the database, display the sorted data in the

lists, notify the user about the food items approaching their expiration date, and even help a

user to utilize those products.

16

3 Literature Review

3.1 Food Waste Problem

Food waste is an issue directly linked with environmental (energy, water, climate change,

resources availability), economic (price volatility, resource efficiency, consumption,

increasing costs, commodity markets, waste management), and social (equality, health)

impacts [1].

One third of the food produced globally for human consumption is wasted or lost,

according to the Food and Agriculture Organization of the United Nations (FAO). This

represents a threat to food security and shows how many resources are lost along the food

supply chain (FSC). It also has a huge negative economic impact on the income of food

producers and customers. In 2007, the cost of food waste at global level was estimated to be

around 750 billion $. The demand for food, feed, and energy is expected to pose an

unprecedented pressure on natural resources, due to a rapidly growing population. For

closing the gap between the supply and demand of food, the reduction of food waste can be

a potential strategy [2].

Several initiatives have been launched globally to address this issue. A specific target,

aiming at halving per capita global food waste at retail and consumer levels by 2030 was

adopted by the United Nations in the Sustainable Development Goals (SDGs). The Circular

Economy Action Plan by the European Commission, which defines food waste as a priority

area, is committed to achieving such a target [2].

Food waste prevention will bring some economic benefits related to not wasting food

that has an economic value and not having to cover disposal costs. Such reduction will also

bring an environmental benefit by avoiding the impacts embedded in the food items saved.

With the lower number of waste management operations, some energy and material

resources will be also reduced [2].

The household is the sector that contributes the most to food waste. In 2007, it

produced around 47 million tonnes of food waste. This is equivalent to 92 kilograms per

person per year. Households are followed by processing with its 17 million tonnes, this

corresponds to 33 kilograms per person per year. These two sectors combined are 72 percent

of European Union food waste. The costs associated with food waste for 28 European Union

member countries are estimated at around 143 billion euros [1].

17

3.2 Market Development

Once upon a time, the only thing someone could do with a telephone was a phone call. That

was an incredibly big technological step back in the days. In 1973 Motorola became the first

company in the World who presented a wireless call from the handheld phone. Since then,

we were able to get rid of the wires and call from wherever we wanted to. 19 years later, in

1992, the first Short Message Service was sent from a computer to a mobile phone. Now it

is a very uncomfortable situation for a huge amount of people when they do not have a

mobile phone in their hands or pocket.

The market of mobile applications has its roots both in technologies and services.

People do not need to look for a postman to get your important mail anymore. In most cases,

a person will get it electronically on a smartphone and will be notified about that. The

technologies bring services right into your hands.

Nowadays it is hard to imagine our day without using a mobile application. Need to

wake up? Use the clock application to enter the time so the application wakes you up. Need

to go to work? Check your city’s transport application to know the best route and schedule.

Need to pay for something? Open your Bank application and do the payment in terms of

seconds. Mobile applications made our lives so much easier that people do not even want to

hear about paper checks, lines in banks and rude personnel. They want to open the

application by one touch and be able to manage everything by themselves in the shortest

time possible.

Companies like Uber or Revolut built their entire business model based on the

simplicity and effectiveness of using mobile applications. Just one click and your taxi driver

is on his way to you. He knows exactly where you will wait for him, you know where he is

and what exact price you will pay for your ride. Revolut allowed their client to get rid of the

most traditional bank charges: you can save your money when you withdraw your money in

a foreign bank ATM, convert money into a different currency or when you need to issue a

new plastic bank card.

In 2008 the iOS App Store opened its virtual doors with an initial 500 applications

available. In the 3rd quarter of 2020, it had 1.96 million applications creating over $72 billion

in consumer spending. Google’s Google Play Store had about 2.87 million applications in

the same period with $38.6 billion in consumer spending [3].

The first applications are dated back to the end of the 20th century, such as simple

arcade games, calculators, and ringtone editors. Mobile users always demanded some sort

18

of customization of their devices, so applications were used for such a purpose. The first

applications for mobile phones were developed by handset manufacturers to improve user

experience. The legendary video game called “Snake” was firstly published by Nokia for the

company’s monochrome phones in 1997. The rapid evolution of mobile applications started

with the expansion of operating systems for smartphones. Windows Mobile, Symbian, RIM,

and iOS brings an opportunity for third-party developers to implement their own programs.

According to Moore’s law, during the last decade of the 20th century, MOS transistors

went down to sub-micron level. The mobile phones industry was able to get smaller

processors with greater computational power. As computer progress was developed,

elements such as memory and processors became cheaper and cheaper. With more powerful

and cheaper components industry needed an operating system to fulfil its requirements. In

the late 1990s, personal digital assistant devices were very popular and used among mobile

phones.

In January 2007, the first iPhone was introduced by Apple Computer. The smartphone

was running on Apple’s own operating system – iPhone OS 1. This operating system made

a revolution in the smartphones market, it allowed users to use “desktop-class applications”

on their smartphones. One year later, Android OS was presented by Google. The Android

operating system was built as an open-source free OS. Every producer was able to get the

core for free and it led to the extreme popularity of the OS. In 2019, there were about 2.5

billion active Android devices users [4].

There are so many applications, that even the biggest technology companies are trying

to integrate their functionalities right into the operating system, so you can do most of your

routine tasks from your notification centre.

3.2.1 Android vs iOS

3.2.1.1 Market positions

The main two mobile operating systems nowadays are Google’s Android and Apple’s iOS.

Those two systems share over 99% of the whole market, Apple has approximately 15%,

while Google about 85%, being the best-selling mobile operating system since 2011. Each

company’ mobile operating system has its own benefits as well as disadvantages. Apple’s

iOS from the beginning was developed as a proprietary mobile operating system, which can

be used only on Apple devices. Modified versions of iOS powers many Apple devices, for

example, iPadOS running iPad, tvOS runs Apple TV and watchOS runs Apple Watch. The

19

history of the Android operating system started in 2003 when Andy Rubin, Rich Miner, Nick

Sears, and Chris White founded Android Inc. in Palo Alto, California, USA. They were

creating a rival operating system to existing Symbian and Microsoft Windows Mobile. Their

early intention was to create an operating system for digital cameras, this idea was presented

to the investors in 2004. One year later, Android Inc. was acquired by Google. The price of

the deal has never been released. In the next two years, a consortium of technology

companies called Open Handset Alliance was established by device manufactures, wireless

carriers, and chipset makers. Later in 2007, Google released to developers the first Android

SDK Beta. The Android is an open-source mobile platform based on the Linux kernel, which

allows the creation of a flexible and upgradeable operating system [5].

Since Android is an open-source platform, many companies have allocated significant

engineering resources to improve the Android system. The Open Handset Alliance has also

developed open standards for mobile devices. Together that means that carriers, Original

Equipment Manufacturers, and developers can implement their innovative ideas in real

products.

However this brings a certain possibility that when an end-user sees the name of the

leading company such as Google, he expects some level of user experience. But in most

cases, Google is just a platform provider, the final implementation and user satisfaction is

on the software developers. Apple, on the contrary, does not provide their operating system

to third companies, so a higher level of integrity can be reached inside of one company. They

also have much more control over their ecosystem, providing developers with stricter

guidelines and rules than Google does. That can lead to both improvement of the user

experience and the limitation of the user on the other hand. Google’s Android is much more

customizable, but that also brings possible threats.

3.2.1.2 Key differences

Android and iOS platforms have many core differences. For example, the development

process of the Android application can be far more time consuming and more complex than

for iOS. Android has a larger variety of devices that uses that operating system, so the

development process will be longer due to the need to adjust the application to different

screen sizes, aspect ratios, and hardware features. Android also has a bigger number of

currently supported Android versions than Apple’s iOS does. Apple provides developers

with incredibly specific guidelines. When Android came into existence, Java was the most

20

used language for development. It is still an official language of Android development and

is supported by Android Studio. Kotlin is another official language for Android

developments but is not as widely used outside of Android Studio. The first official language

for iOS development was Objective-C and it still can be used. In 2014, the new language,

called Swift, was announced as a replacement for Objective-C language [6,7].

Apple has its own integrated development environment – Xcode, which is available

only for the Mac operating system. An iOS application can be developed in this program.

There are a variety of IDEs that can be used to develop an Android application. Google’s

Android Studio is the official IDE for Android, which is available for Windows, Mac, Linux,

and Chrome operating systems. When it comes to application testing, Apple’s iOS simulator

is often called a faster one, but Android’s provides a more realistic application simulation.

Both platforms require application approval before publishing the application in the stores.

However, Google’s Play Store has a faster approval process than Apple’s App Store. On the

other hand, Apple’s App Store review team provides the developers with feedback, which

can be very useful. Apple has few promotion channels, such as the Popular App category,

App of the Week, and more. Once the application successfully passes the approval process,

it can be promoted through these channels, which increases the visibility of the application.

There is also a different fee for enrolling as a developer. Apple offers a one-year subscription

plan for 99$, while Google requires 25$ one-time fee [6,8].

Table 1 Comparison of application development for Android and iOS operating systems

Operating

System

Official

development

language

Official

Development

environment

Complexity Approval

process

Promotions Fee

Android Java, Kotlin Android Higher

defragmentation

Faster Lower

chance

One-

time 25$

iOS Objective C,

Swift

Xcode (Mac

OS only)

Lower

defragmentation

Slower,

with

feedback

Higher

chance

One

year 99$

Source: Table created according to [6,8]

21

3.3 Android Architecture

Various numbers of components are contained in the Android operating system architecture.

These components serve to provide all needs of the Android. Android system is composed

of 5 layers: Linux Kernel, HAL, Native Libraries, Framework, and Applications [9].

Figure 1 Android Stack

Source: [9]

3.3.1 Linux Kernel

Android was created on the top of Linux Kernel - an extremely important part of the most

Android devices. The Linux kernel is the largest ever collaborative software project. In 2006,

over 4000 developers from over 450 companies contributed to the project. There were 6

releases with about 12 to 16 thousand changes. Android integrates the Linux kernel at the

bottom of its software stack. The kernel is the first layer of software interacting with the

device hardware, it is responsible for providing a basic architectural model for power

management, drivers, process scheduling, and memory management. The Linux kernel

contains code for all different chip architectures and hardware drivers it supports, but an

individual system runs only on a part of the codebase [10].

Android uses a version of the Linux kernel with a few special additions for system

functionality like Low Memory Killer and wake locks. There are numbers of reasons why

Linux Kernel was selected. The main three are portability, features, and security [10].

22

3.3.1.1 Portability

Portability is one of the biggest advantages – Linux is an extremely portable platform. It is

relatively easy to compile Linux on various hardware. Linux supports a wide range of

computer architectures. Unix-like operation system is the most used operating system for

public servers on the Internet. Most of the todays’ supercomputers are also using Linux as

an operating system. That makes it possible to run Android on almost all types of devices:

from smartwatches to media players, from tablets to coffee machines, from smartphones to

refrigerators.

3.3.1.2 Features

Linux Kernel includes features like process management – it is responsible for the allocation

of resources to different processes that need them. For example, it can execute or stop the

program.

Driver Model – here Linux ensures the ability of the application to run on Android,

the manufactures can develop drivers in a familiar Linux environment. It gives the vendors

plenty of space for operating system optimization.

File System Management – Linux Kernel is also responsible for file system managing.

Android uses a Linux-esque file system structure with 6 partitions: boot, system, recovery,

data, cache, and misc.

Network Stack – Linux Kernel is responsible for network communication, routing

devices, and network adapters. The network stack works in two ways. The first is when the

user makes a network request, for example for a file from a network server. The second is

when the request is fulfilled when the file is returned for the user.

3.3.1.3 Security

Android completely relies on the Linux Kernel for security. All Android applications run as

Linux processes under permissions set by the Linux system. Linux takes control of the

authentications of the users and is responsible for user management. Users in Linux also

have lower automatic access rights, which make it harder for them to spread the malware by

accessing different files of the system.

23

Table 2 Permission Types in Linux

Number Permission Type Symbol

0 No Permission ---

1 Execute --x

2 Write -w-

3 Execute + Write -wx

4 Read r--

5 Read + Execute r-x

6 Read +Write rw-

7 Read + Write +Execute rwx

Source: Table created according to [11]

3.3.2 Hardware Abstraction Level (HAL)

HAL defines a standard interface for hardware manufacturers to implement. It allows for

implementing functionality without modifying or affecting the higher-level system. The

modules with packed HAL implementations are loaded by the Android system at the

appropriate time. Starting with Android 8.0, the new Android OS framework architecture

allows its users to replace the framework without HAL rebuilding. It allows the

manufacturers to update devices to a new Android version in an easier, faster, and cheaper

way. The vendor simply provides access to the hardware-specific parts of Android, so

manufacturers can provide new Android releases by updating the Android OS framework

without additional input from the silicon manufacturers [10].

3.3.3 Native Libraries

Many of the Android system core components and services, for example, HAL, are built

from native code that requires native C and C++ libraries. The Java framework APIs are

provided by Android to applications to expose some functionality of native libraries. Since

Android 5.0, each application runs with its own instance of the Android Runtime (ART) and

runs in its own process. ART runs multiple virtual machines on low-memory devices by

executing bytecode files in the DEX format designed specifically for Android to minimize

memory footprint [10].

24

3.3.4 Framework

The application framework is mostly used by application developers. All Android OS

features are available to developers through Application Programming Interfaces (APIs)

written in the Java programming language [12]. These APIs are building blocks which allow

the developers to reuse the core, modular system components, and services to create Android

application. Developers have the same full access to framework APIs as Android system

applications [10].

3.3.5 System Applications

Android comes with core applications for SMS messaging, internet browsing, contacts,

calendars, email, and more. Those included applications have no special status through the

system, so a third-party application can be chosen as the user’s default for example for web

browsing. The system applications also provide key capabilities that developers can access

from their own application without the need to implement that functionality on their own.

Developers can just invoke the needed functionality from the system application [10].

3.4 Android Application Fundamentals

Android applications can be written using three programming languages: Kotlin, Java, and

C++. The Android SDK tools compile code with resource and data files into an Android

package (APK), which is an archive file with .apk extension. All the contents of an Android

application are contained in one APK file. Android-powered devices use the APK file to

install the application [13, 14].

All Android applications live in their own sandboxes, which are protected by Android

security features. Since the Android operating system is a multi-user Linux-based system,

every application acts as a different user. By default, a unique Linux user ID is assigned to

each application by the system. This ID is unknown to the application and is used only by

the Android operating system. With the ID, the system also sets the permissions for all the

files, so only the user with the assigned ID to the application can access them. Each

application code runs isolated from other applications as a separate process in its own virtual

machine (VM). Every process is started by the Android system when any of the application’s

components need it to be executed. The process shuts down by the Android when the system

must recover free memory for other applications or when it is no longer needed in that

process [13, 14].

25

The principle of least privilege is implemented in the Android system. That means that

by default every application has access only to the components that it requires to run its

processes and no more. The application cannot access parts of the system for which

permissions are not given, which creates a very secure environment. However, the

application can still share data with other applications and access system services. The same

Linux user ID can be shared by two applications to make them possible to access each other

files. The application can run in the same Linux process. If the applications are signed with

the same certificate, they can also share the same virtual machine. To access device data like

user’s contacts, SMS messages, Bluetooth connection or the device’s location, these

permissions must be explicitly granted to the application by the user [13, 14].

3.4.1 Application Components

Every Android application is built from essential blocks - application components. Each

component serves as an entry point through which the user or the system can enter the

application. Some components are dependent on others. A unique aspect of the Android

system design allows any application to start another application’s component. For example,

if there is a need to take a picture in a bank application, the bank application developers do

not need to develop the functionality of making pictures by themselves. They can simply

start the activity in the camera application that captures a photo. For the user, it seems like

the camera application is a part of the bank application. Android applications do not have a

single entry point, so when the system starts a component, it starts the process for that

application. Since the system runs each application as a separate process with file

permissions that restrict access to other applications, the applications cannot directly activate

a component of other applications. However, the Android operating system can activate a

component if the application will deliver a message with an intent to start a particular

component. There are four types of application components: Activities, Services, Broadcast

receivers, and Content providers. Each type has its own purpose and lifecycle that define

how the component is created and destroyed [14].

3.4.1.1 Activities

The entry point for interacting with the user is an activity. It represents a user interface on a

single screen. For example, in the phone application, there is one activity that enables you to

make a phone call, another activity is to check recent calls history, and another activity is to

26

watch your favourites contacts. Although activities are working together from the user point

of view, each one is independent of the other. As a result, a different application can start

any activity that a phone application allows. For example, your taxi application can use the

phone call activity of a phone application to make a call. The Android operating system

keeps track of what is on the user’s screen to keep running the process that is hosting the

activity. The Android also knows what the previously used processes were and keeps those

processes around, so the user can return to them faster. Also, the system helps applications

with process kill, which allows the user to restore the previous state. Finally, Android

provides a way for applications to implement the user flows between them and coordinates

those flows [15].

While the user navigates through, exits, or goes back to the application, the Activity

class instances in the application transition through different states in their lifecycle. States

changes, such as that the system is creating, resuming, or stopping an activity, or destroying

the process where the activity resides, are caught by callbacks provided by the Activity

class. The developer can declare behavior of the activity when the user leaves and goes back

to the activity thanks to the lifecycle callback methods. For example, when the user watches

the video online and decides to switch to another app, video playback and network

connection can be terminated. When the user returns to the video player, the network

connection and video playback can be resumed. Each callback allows the developer to do a

specific work that is suitable for a given state change. The right implementation of the

lifecycle callbacks ensures that the application avoids crashing while the user switches to

another application, unnecessary consummation of valuable system resources while the user

is not actively using the application, losing the user’s progress while closing and returning

to the application [15].

The Activity class provides a core set of six callbacks to navigate transitions between

stages of the activity lifecycle: onCreate(), onStart(), onResume(), onPause(),

onStop(), and onDestroy(). Each of these callbacks is invoked by the system as an activity

enters a new state [15].

• onCreate() – the callback is called when the activity is first created. The activity

enters the Created state on activity creation. A basic application startup that happens

only once during the entire life of the activity is performed in this method. After

27

finishing the execution of the onCreate() method, the Started state is entered by the

activity. Then the system calls the onStart() and onResume() methods [15].

• onStart() – this callback is invoked when the activity enters the Started state. It

makes the activity visible to the user. For example, the onStart() method is called

where the application initializes the code that maintains the user interface. The

method is followed by onResume() if the activity comes to the foreground, or

onStop() if it comes to background [15].

• onResume() – the system invokes this callback when the activity enters the Resume

state and it comes to the foreground. The application interacts with the user in this

state. The resume state is not left till something happens away from the application.

For example, the music stops playing in the application when users receive a phone

call. The Paused state is entered when an interruptive event occurs, and onPause()

callback is invoked by the system. If the activity moves from the Paused state to the

Resumed state, the system calls the onResume() method once again. This method is

always followed by an onPause() callback [15].

• onPause() – the method is called the first indication that the user is leaving the

activity, it indicates that the activity is no more in the foreground. This callback is

used to pause the operations that should not continue during the Paused state, but that

are expected to resume shortly. For example, when some events interrupt the

application execution or when the system pauses the application due to multiple

applications running in multi-window mode. System resources can also be released

by invoking the onPause() callback. The activity is visible to the user, so it should

be visually active, and the UI should also be updated. The onPause() callback is

followed by onResume() method if the activity returns back to foreground, or

onStop() method if it becomes invisible to the user [15].

• onStop() – when this callback is invoked, the Stopped state is entered, and activity

is no longer visible to the user. For example, this occurs when a newly started activity

covers the entire screen. The onStop() method can also be called by the system

when the activity finishes running and is going to be terminated. In this method, the

application releases the resources that are not needed while the application is not

28

visible to the user. The callback should be used for performing CPU-intensive shut

down operations. From the Stopped state, the activity can come back by invoking the

onRestart() method or it can finish the run by invoking the onDestroy() method

[15].

• onDestroy() – this callback is called before the activity is destroyed. This method

is called by the system when the activity is finishing, or when the system is

temporarily destroying the activity due to a configuration change. Callback

onDestroy() is the final lifecycle callback that the activity receives when the activity

is finishing. If a configuration change occurred and the onDestroy() method was

called as a result, a new activity instance is immediately created by the system. After

that, the system calls onCreate() callback on that new instance in the new

configuration. All resources that have not been released by earlier callbacks, should

be released in the onDestroy() method [15].

Figure 2 Android activity lifecycle

Source: [15]

29

3.4.1.2 Services

A service is a component that helps to run the application in the background. It runs in the

background to perform long-running operations or to perform work for remote processes. A

user interface is not provided by a service. For example, a service can run the music

application in the background, while the user surfs the internet in a web browser. A service

can be started by another component, such as an activity, and let it run or bind to it to interact

with it. These components run at the backend, updating the data sources and activities,

broadcast intents, and triggering notifications. There are three different types of services:

foreground, background, and bound [16].

• Foreground services perform operations that are visible for users. For example, a web

browser application would use a foreground service to display web pages.

Foreground services must display notifications. Even when the user is not interacting

with the application, the foreground services continue to run. When a foreground

service is used, the application must display a notification for the user, notifying him

that the service is running. The notification is active till the service is stopped or

removed from the foreground [16].

• Background services perform operations that are not directly noticeable for users.

For example, a background service can be used in an application for compacting its

storage [16].

• Bound services offer client-server interfaces that allow components to interact with

the services, send requests and receive results. These services run only till another

application component is bound to them [16].

A service is created by creating a subclass of Service class or using one of its existing

subclasses. Some callback methods that handle key aspects of the service lifecycle and

provide a mechanism that allows the components to bind the service must be overridden

during the implementation:

• onStartCommand() – is invoked by the system by calling the startService()

method when another component requests that the service be started. Within the

execution of this method, the service is starting and can run indefinitely in the

30

background. When the work is complete, the service should be stopped by calling

the stopSelf() or the stopService() methods. There is no need for implementing

this method if only binding providing is needed [16].

• onBind() – the system invokes this method by calling the bindService() method

when another component wants to bind with the service. In the implementation of

this method, an interface that clients use to communicate with the service by

returning an IBinder object must be provided. This method must be always

implemented, however, if no binding is needed, null can be returned [16].

• onCreate() – this method is invoked by the system to carry out one-time setup

procedures when the service is initially created before it calls the onStartCommand()

or the onBind() services. This method is not called if the service is already running

[16].

• onDestroy() – when the service is no longer used and is being destroyed, the

Android system invokes this method. This is the last call the service receives, so this

method should clean up threads, registered listeners, and receivers [16].

Figure 3 Android service lifecycle

Source: [16]

31

Service is stopped by the Android system only if memory is low and it must recover

system resources for the activity that the user is focused on. If the service is declared to run

in the foreground, it is rarely killed. If the service is bound to an activity that the user is

focused on, it is likely to be killed. If the service is in a long run, its position in the list of

background tasks lowers by a system over time, and the chance to be killed increases. Due

to that, the services should be designed to handle the restarts by the system. If the system

kills the service, it restarts it as resources become available [16].

3.4.1.3 Broadcast receivers

A broadcast receiver is a component that allows the application to respond to system-wide

broadcasted messages from other applications or the system. The system can deliver

broadcast events even to applications that are not currently running. For example, the

application can send a broadcast message that some file was downloaded to let other

applications know that they can use it. Many of the broadcasts are generated by the system,

for example, the broadcast announcement about the low battery or the turned off screen.

After receiving the message, the broadcast receiver intercepts the communication and

initiates predefined action. Even though broadcast receivers cannot display a user interface,

they can create a status bar notification to notify the user about a broadcast event. In most

cases, they are used as a gateway to other components [17].

3.4.1.4 Content providers

A content provider manages a shared set of application data that you can store on any storage

location that the application can access. For example, the application can store data in the

file system, on the web server, or in an SQLite database. Other applications if they are

allowed can query or modify the data through the content provider. For example, any

application with proper permissions can query the user’s contact information provided by

the Android system, and then read and write information about a particular contact. By using

content providers, it is also possible to read and write data that is private to the particular

application and not shared [18].

32

Figure 4 Relationship between content provider and other components

Source: [19]

3.4.1.5 Intents

The intent in the Android operating system is an abstract description of an operation to be

performed. It is a framework that passes the messages between the applications. Three

component types can be activated by an intent: activities, services, and broadcast receivers.

An intent can activate a specific component or a specific type of component. For activity and

services, the intent can define the action to perform, like to view or send something. For

example, an intent can transfer a request for a web page opening. For broadcast receivers,

the intent simply defines the broadcasted message. For example, for low battery indication,

the action string that indicates the battery is low will be broadcasted. Unlike activities,

services, and broadcast receivers, content providers cannot be activated by intents. They are

activated by a targeted request from a ContentResolver. All direct transactions with the

content provider are handled by the content resolver [20].

3.4.2 The manifest file

To start an application component the Android operating system must know that the

component exists. The AndroidManifest.xml file is the application manifest file, where the

application must declare all its components. Activities, services, and content providers that

are not declared in the manifest file are not visible to Android, so they can’t be run. This file

must be placed at the root directory of the application project hierarchy. The manifest file

33

also identifies all user permissions the application requires, declares the minimum API level

required by the application, declares software and hardware features required or used by the

application, and declares API libraries the application needs to be linked against. This file

includes nodes that make the application, for activities, services, content providers, and

broadcast receivers. It also uses intent filters and permission for determining how they

coordinate with each other and other applications [14].

3.4.3 Application Resources

An Android application is not composed just of the code, but also it requires resources that

are separate from the code. For example, images, audio files, and everything related to the

visual appearance of the application. Animations, colours, styles, menus, and layouts of user

interfaces can be defined in an XML file. Application resources make it easy to update

specific characteristics of the application without the need of modifying a source code.

Application resources also give a possibility to optimize the application for different devices’

configurations. For example, screen sizes and different languages. The SDK build tools

define a unique integer ID for every resource included in the Android project. This ID can

be used for referencing the resource from the application code or the other resources defined

in an XML file. For example, by defining UI strings in an XML file, the developer can

translate the strings into different languages and store the translations in separate files. The

appropriate language strings will be automatically applied by Android, based on the

language qualifier in the resource directory’s name and the user’s language setting [14].

A lot of qualifiers for alternative resources are supported by Android. To define the

resources used for specific device configuration, a short string, called qualifier, is included

in the name of resource directories. For example, the developer can create and define two

different UI layouts for both portrait and landscape screen orientations. Those layouts can

be changed based on the orientation by applying the appropriate qualifier to each layout’s

directory name [14].

3.4.4 Application features

Mobile phones are not expected to be only phones today, but also cameras, personal

assistants, instant-messenger clients and to do almost everything else a computer could do.

With all these applications running on smartphones, applications need a way to notify users

34

about actions and to get users’ attention. To do that, Android provides the developers’ with

several options on how to notify the users: notifications, alarms, and toasts.

3.4.4.1 Notifications

A notification is a message that Android displays outside the application’s UI to provide the

user with reminders, communication from other people, or other timely information from

the application. Users can take an action directly from the notification or tap the notification

to open the application. Notifications appear to users in different locations and formats, such

as an icon in the status bar, a detailed entry in the notification drawer, and a badge on the

application’s icon. Beginning with Android 5.0, notifications can also appear on the lock

screen. If the user has a paired Wear OS device, all notifications will also be displayed there

automatically [21].

Starting in Android 8.0 (Oreo, API level 26), all notifications must be assigned to a

channel. Users can disable specific notification channels for the application by categorizing

notifications into channels. On devices running Android 7.1 (Nougat, API level 25) and

lower, users can manage notifications only on a per-application basis. Android uses the

importance of notification to determine how much the notification can interrupt the user. On

Android 7.1. and below, the importance of each notification is determined by the

notification’s priority parameter. On Android 8.0 and above, importance is determined by

the importance parameter of the channel the notification was posted to [21].

3.4.4.2 Repeated alarms

Alarms in Android are based on AlarmManager class. They provide a developer with a way

to perform time-based operations outside the lifetime of the application. For example, the

alarm can be used to initiate a long-running operation, such as starting a service once a day

to download a weather forecast. Alarms let the developer to fire Intents at set times or

intervals. They can be used in conjunction with broadcast receivers to start services and

perform other operations. Alarms can trigger events or actions when the application is not

running, and even the device itself is asleep. Alarms can also help the developer to minimize

the application’s resource requirements by not relying on timers or continuously running

background services [22].

35

3.4.4.3 Toasts

A toast provides simple feedback about an operation in a small popup. It only fills the

amount of space required for the message. The current activity remains visible and

interactive. Toasts automatically disappear after a timeout. Toasts are not clickable. To

create a toast, an instance of a Toast object with one of the makeText() methods should be

created. A toast can be positioned differently within the screen layout. A customized toast

View layout can be created if a simple text message is not enough [23].

3.4.5 Debugging, testing, and publishing

Debugging is the process of detecting and correcting errors in a program. There are several

types of errors the developer could face. Some of them, like syntax errors, are easy to track

and fix, another, like subtle logic errors, might be a real challenge to sort. A debugger is a

powerful tool that helps the developer to find bugs a lot faster by providing insight into the

internal operations of a program.

3.4.5.1 Debugging

Android Studio provides a debugger that allows the developer to select a device to debug the

application on, set breakpoints in code written in several programming languages, examine

variables and evaluate expressions at runtime. To start debugging, debugging should be

enabled on the device. In Android Studio Emulator, it is enabled by default. For a connected

device, debugging should be enabled in the device developer options [24].

The Android Studio supports several types of breakpoints that trigger different

debugging actions. The most common type is a line breakpoint that pauses the execution of

the application at a specified line of code. While the application is paused, the developer can

examine variables, evaluate expressions, then continue execution line by line to determine

the causes of runtime errors. When code execution reaches the breakpoint, the execution of

the program is paused by the Android Studio. Then the tools in the Debugger tab can be used

to identify the state of the application. When Android Studio deploys the application to the

target device, the Debug window opens with a tab or debug session view for each debugger

process. The Variable pane in the Debugger view allows the developer to inspect variables

when the system stops the application on a breakpoint and a frame from the Frames pane is

selected. The Watches pane provides similar functionality except that expressions added to

the Watches pane persist between debugging sessions [24].

36

The system log shows system messages while the developer debugs the application.

These messages include information from applications running on the device. To use the

system log to debug the application, the code should write log messages and print the stack

trace for exceptions while the application is in the development phase. The Log class should

be used to write log messages in the code [24].

3.4.5.2 Android Debug Bridge

While building an Android application, it is important to test the application before releasing

it to users in an emulator and even more important, on a real device. The Android Studio

development environment and Android device can be set for testing and debugging over an

Android Debug Bridge (ADB) connection. The Android device can be connected using a

USB cable or over a Wi-Fi network. First, an appropriate OEM driver should be installed on

a computer to detect a device. After a driver is set and the device is connected to the

computer, the developer can communicate with a device. The ADB command facilitates a

variety of device actions, such as installing and debugging applications and provides access

to a Unix shell that can be used to run a variety of commands on a device [25].

3.4.5.3 Publishing

Publishing is a general process that makes the Android application available to users. There

are two steps in the publishing process: preparation and release. During the preparation step,

the developer builds a release version of the application, which users will be able to

download and install on their Android-powered devices. During the release step, the

developer publicizes and distributes the release version of the application to the users. When

the application’ preparation for release is finished, the developer will have a signed .apk file

that can be distributed to users [26].

The application can be released in several ways. Usually, the application is released

through an application marketplace, such as Google Play or Huawei App Store, the

developer can also release the application on own website or by sending the application

directly to a user [26].

37

3.5 Analysis

3.5.1 UML

The Unified Modeling Language (UML) is an industry standard for object-oriented design

notation. It is a language for visualizing, specifying, constructing, and documenting the

artefacts of a software system. UML provides a pictorial and graphical notation for

documenting classes, objects, and packages that object-oriented systems are built of.

Interactions can be modelled at different abstraction levels [27, 028].

3.5.1.1 Use Case

Use Case diagrams are often used in the early stage of the development process. It is a top-

level view of interactions. Use Case modelling is developed for specifying the context of the

system, capturing the system requirements, validating a system architecture, driving

implementation and generating test cases. A standard form of a Use Case is defined in the

UML. An actor is someone who interacts with the Use Case, it is an external system-user

who directly communicates with a system, but is not a part of the system. Use Case is a

process, it represents a system function. It is a functionality which the system provides

during the communication with the actor. Use Cases deal not only with users, but they can

also deal with the system itself. The participation of an actor in a Use Case is presented by

connecting the actor with a Use Case by a communication link. Use cases divide system

functionalities in a whole model and they should have a comparable level of abstraction [28].

3.5.2 SWOT

SWOT is an analysis technique frequently used in strategic planning. SWOT is an acronym

for Strengths, Weaknesses, Opportunities, and Threats. This is a structured planning method

that evaluates four elements of an organisation or a project. SWOT analysis is a process

where the internal and external factors that will affect the future company’s or project

performance are identified. This analysis can be performed for each product or service

separately, as well as a part of a project [29].

3.5.3 Gantt chart

The Gantt chart is one of the most used planning and controlling tools in projects today. It

has been developed nearly a hundred years ago and is being used even today despite

38

numerous innovations in the area. Gantt chart remains an important tool for planning and

controlling the project schedule.

The Gantt chart is a simple, intuitive, practical, and useful visual representation of the

project activities and their durations. It is useful to communicate the project schedule and

create a shared understanding of the progress of tasks. In the projects, the Gantt chart can be

used by project managers to point the potential schedule delays and focus the project team’s

attention on the critical tasks to the delivery of project time. Within small projects, it can be

useful for defining the schedule for critical tasks and a project as a whole [30].

3.6 Development Environment

3.6.1 Integrated Development Environment

An Integrated Development Environment (IDE) is software that combines common

developer tools into a single graphical interface. An IDE usually consists of a source code

editor, local build automation tools, and a debugger. A source code editor is a text editor that

can assist the developer in writing software code with features like syntax highlighting with

visual cues, autocomplete, and bugs check while code is being written. This helps the

developer to save time and makes the code easier to read. The compilation process is

necessary for every program, and IDEs provide the developers with automated build

processes for languages. They can compile the source code into binary code, pack binary

code, and run automated tests. A debugger is a program for testing other programs that can

visually display the location of a bug in the original code. It also allows the developer to

examine different variables and deliberately inspect the code. Debuggers can also provide

hints to prevent errors even before compiling. Some IDEs can contain compiler or

interpreter, or both, while some do not contain any .

An IDE allows developers to start programming new applications quickly without the

need for manual configuration and integration of multiple utilities. In IDEs, utilities are

represented by a single Graphic User Interface (GUI), so that helps the developers to

organize their workflow and solve problems, as they do not need to switch between

applications. Some IDEs additionally provide the developers with class and object browsers,

and even class hierarchy diagrams for certain languages.

There are a lot of options on the market for developers to choose from. Almost every

Integrated Development Environment can offer some unique features that can be very useful

for the developers.

39

3.6.1.1 Android Studio

The Android Studio is Google’s official IDE for Android mobile application development.

It is based on IntelliJ IDEA with features custom-designed for Android. On top of IntelliJ's

powerful code editor and developer tools, Android Studio offers even more features that

enhance productivity when building Android applications, such as а flexible Gradle-based

build system, а fast and feature-rich emulator, a unified environment, code templates and

GitHub integration, extensive testing tools and frameworks, C++ and Native Development

Kit (NDK) support, built-in support for Google Cloud Platform. It also allows the developer

to push code and resource changes to the running application without the need to restart the

application. Lint tools to catch performance, usability, version compatibility, and other

problems are also offered by Android Studio. The Android Studio supports Java and Kotlin

programming languages. C++ and C support is provided with the NDK toolset. This IDE

also provides real-time statistics for memory usage, network activity, and application

performance. Android Studio IDE is available for Windows, Mac, Linux, and Chrome OS

platforms [31].

3.6.1.2 Eclipse

Eclipse Android Development Tools (ADT) was the preferred IDE for native Android

application development before Android Studio was released. It is free and open-source

software released under the Eclipse Public License. The Eclipse began as a Java IDE but

since grown to support many different programming languages, like Java, C, C++, C#,

JavaScript, PHP, Python, Ruby, and many others. It offers features such as extensive

customization abilities, large plug-ins marketplace, integration with Git, Maven and other

popular development tools, large community, and user base. It is available for Windows,

Linux, and Mac operating systems [32].

3.6.1.3 Visual Studio

Microsoft’s flagship IDE, Visual Studio, can be used for Android development with the

inclusion of Xamarin. C# programming language is mostly used in Xamarin. Using Xamarin,

the developers can create native applications for both main mobile platforms – Android and

iOS, and even for Windows. Visual Studio provides tools for application building, managing

teams, version control managing, and services building. It also supports multiple languages

and platforms, provides the developers features like CodeLens, Peek Definition, refactoring,

40

integrated testing, dependency graphs and code maps. Visual Studio IDE supports dozens of

programming languages, such as C#, C++, Visual Basic, Python, HTML, JavaScript, PHP,

and others. It comes in multiple versions: Enterprise for large teams, Professional for small

teams, Visual Studio for Mac, and free Visual Studio Community edition. It also has a

separate open-source code editor – Visual Studio Code. Visual Studio IDE is available for

Window, Mac, and Linux operating systems [33].

3.6.1.4 IntelliJ IDEA

The IntelliJ IDEA is an IDE written in Java programming language developed by JetBrains.

It was created for importing, developing, modelling, and deploying computer software. It is

designed for ultimate programmer productivity. The IntelliJ IDEA provides the developers

with features like Smart code completion (gives a developer list of the most relevant symbols

applicable in the current content), Chain completion (even deeper list accessible via methods

or getters), Static members completion, Data flow analysis, Language injection, cross-

language refactoring, detecting duplicates, inspections, and quick fixes. It offers its users an

editor-centric environment, dedicated keyboard shortcuts for nearly everything, an

ergonomic interface, and an inline debugger. Developer tools like version control (it supports

Git, SVN, Mercurial and others), build tools (Maven, Gradle, Ant and others are supported),

decompiler, terminal, database tools, application servers, and docker are built-in and offered

to the users of this IDE. While IntelliJ IDEA is an IDE for Java, it also understands many

other languages, including Kotlin, Groovy, Scala, JavaScript, SQL, and others The IntelliJ

IDEA comes as a free open-source Community version, and a paid Ultimate edition version.

It can be run on Windows, Mac, and Linux platforms [34].

3.6.2 IDEs Comparison

The IDE selection might be a relatively hard process. Even though Android Studio IDE is

Google’s recommended option for Android development, due to different reasons it might

not always be the best choice. For example, if the developer plans to write a cross-platform

application that can run on Android and iOS, the cross-platform IDEs such as Visual Studio

or Eclipse should be considered as the right choice. If the developer is used to some IDE, it

could be easier and faster to stay with the known tool instead of learning a new one. The

determination of which IDE should the developer use must be done based on individual

needs and project requirements.

41

Table 3 Android Studio, Eclipse, Visual Studio, and IntelliJ IDEA IDEs comparison

IDE Languages Target OS Runs On Unique

features

License Price

Android

Studio

Java, Kotlin,

C, C++

Android Windows,

Mac, Linux,

Chrome OS

Code and

resource

changes push

without restart

free

Eclipse Java, C, C++,

C#, JavaScript,

and more

Android,

iOS, Linux,

Mac,

Windows,

and more

Windows,

Mac, Linux

Marketplace

with lots of

plugins

free

Visual

Studio

C++, C, C#,

Visual Basic,

PHP,

JavaScript, and

more

Windows,

Android,

iOS, and

more

Windows,

Mac, Linux

Cross-platform Community –

free, Professional

– 45$ per month,

Enterprise – 250$

per month

IntelliJ

IDEA

Java, Kotlin,

Groovy, Scala,

JavaScript,

SQL,

TypeScript

Any Java

supporting

OS

Windows,

Mac, Linux

Deep code

insight

Community –

free, Ultimate –

from 149$ per

year

Source: Table created according to [31,032,033,034]

3.6.3 Android Studio System Requirements

The system requirements for Android Studio, Eclipse, Visual Studio, and IntelliJ IDEA are

almost identical for supported platforms. For example, system requirements for the Android

Studio among the supported operating systems are listed [31].

42

Table 4 System requirements for Android Studio IDE

Operating

System

OS Version RAM Disk space Screen

resolution

Windows Microsoft®

Windows® 7/8/10

(64-bit)

4 GB RAM

minimum,

8 GB RAM

recommended

2 GB of available disk

space minimum,

4 GB Recommended

(500 MB for IDE + 1.5

GB for Android SDK

and emulator system

image)

1280 x 800

minimum

screen

resolution

Mac Mac® OS X®

10.10 (Yosemite) or

higher, up to 10.14

(macOS Mojave)

Linux GNOME or KDE

desktop.

64-bit distribution

capable of running

32-bit applications.

GNU C Library

(glibc) 2.19 or later

Chrome Chrome OS 77 or

later

8 GB RAM or

more

recommended

4 GB of available disk

space minimum

Source: Table created according to [31]

3.6.4 Android application development workflow

The workflow to develop an application for the Android system is conceptually the same as

other application platforms. Some special tools are needed to efficiently build a well-

designed application for Android. The first phase of the workflow is setting up the

environment. In this phase, the Integrated Development Environment should be installed,

and a new project must be created. In the second phase, the application code should be

written. The variety of tools and intelligence provided by the IDE can be used in this phase

to write high quality code, design a UI, and create resources for different device types.

During the third phase, the project is built into a debuggable APK package that can be

installed on the emulator or an Android-powered device. The customization of the build can

43

begin in this phase. The fifth phase is iterative. In this phase the developers continue to write

the application code, but with a focus on bugs elimination and application performance

optimization. Various performance metrics such as network traffic, memory usage, CPU

performance, and others should be reviewed and analysed during this phase. In the fifth

phase, the application should also be tested. The sixth phase is publishing. Publishing is the

process that makes Android applications available to users. The versioning of the application

and signing it with a key should also be considered in this phase [35].

Figure 5 Android development workflow

Source: [35]

44

4 Practical Part

4.1 Application idea

The main idea of the FoodNoWaste application is to provide a service to the users that will

track the preferred consumption date for a product. The user will be notified by the

application about approaching the expiration date of the product. For example, the user will

buy a lump of chicken meat with a one-week expiration date. The user will put the product

name and the expiration date into the application. A few days later, if the product is still in

the database and marked as active, the application will notify the user about the approaching

expiration date of that product to help the user to consume it, and to prevent food wasting.

4.1.1 Target audience analysis

Firstly, there is a need to specify the target audience of the application. A target audience is

a group of people that the product or the service is intended for. A well-defined target

audience can benefit both the technical and business factors. For example, the application

cannot be meant for everyone, it is simply impossible to please everyone. Different groups

of people have different needs and interests. Moreover, they have different expectations and

requirements. It also does not make sense to build an application just to satisfy one user and

his or her needs.

The target audience of the FoodNoWaste application is a group of people that cares

about nature and natural resources saving, people who are concerned about the impact of

farming, food-production processes, and how much food is being thrown away without

consumption. The second group could be students and lower to middle-class households and

individuals. That group might want to use the opportunity to reduce their expenses by the

elimination of food wasting.

4.1.2 Alternative solutions

There are already a lot of applications on the market that have a goal of reducing the food

waste problem. The food production and supply chain consist of a lot of steps: production,

processing, distribution, and finally consumption. The different solutions are oriented to the

different parts of that chain. The Karma app allows users to reserve and pick up surplus food

from restaurants, grocery stores, farms, and wholesalers. In the beginning, the Karma start-

up was an application that worked as a platform with deals for all kinds of products. Later,

45

when co-founders realized that some restaurants were uploading deals with surplus food,

they decided to focus on that segment. The Karma application allows retailers to sell their

surplus food to customers at a lower price instead of food wasting [36]. There is also another

type of applications, for example OLIO. That application allows you to list and post a picture

of unwanted food items that the user wants to be shared with the neighbourhood. The OLIO

application helps to share the food in the neighbourhood, that otherwise might be thrown

away. The application is used by local individual users as well as by the organisation such

as retailers or corporate events providers. The OLIO helps them to become zero food waste

organisations [37]. The FoodKeeper is the official United States Department of Agriculture

(USDA) application developed with Cornell University and the Food Marketing Institute.

This application is intended to help the user with maximizing the freshness and quality of

items. The FoodKeeper application guides the safe preparation, handling, and storage of food

items. The user can access cooking tips and methods through this application. It can also

send a notification to the user about the food item nearing the end of their recommended

storage date [38].

4.1.3 Requirements analysis

4.1.3.1 SWOT

FoodNoWaste application will have the following strengths: user-oriented service with a

good idea behind it, free of charge for the users. Weaknesses are the following: the

FoodNoWaste application does not have a strong brand and no investment capital is

available. The growing interest in ecological inventions, saving resources, and reducing

household expenses can be taken as Opportunities for FoodNoWaste application. Threats

are the following: increasing competition from the biggest companies in the market, built-in

functionality in alternative solution, Internet of Things (IoT).

4.1.3.2 Use Case

The Use Case diagram for the FoodNoWaster application will have 7 Use Cases. After

launching the FoodNoWaster application, the user will be able to see a list of food items, if

there are no food items in the database, the user will be asked to add a new food item. The

user will always be able to add a new food item. It will be possible to modify an existing

food item by changing the name or expiration date of a food item. The user can remove a

46

selected food item, delete a food item, mark a food item, and receive a notification about

food items in the database.

Figure 6 FoodNoWaster application Use Case model

4.2 Implementation

4.2.1 Android Studio installation

For the development process of the FoodNoWaste application, I decided to use Android

Studio integrated development environment. To start the installation process, I downloaded

the Android Studio package from the official Android website for developers [31]. The

installation package for Windows OS can be downloaded in two options: as a .exe installer

or as a .zip archive. The .exe version downloads SDK during the installation process, while

the .zip version does not include it. The .exe version is preferable for fresh install when

SDK is also needed to be downloaded and installed. After the download is completed, and

47

.exe executed, the Android Studio Setup will be opened. It guides the developer through the

installation process. In the next step of the setup, the developer can choose if he wants to

install an Android Virtual Device – it is recommended configuration that defines the Android

device characteristics to make the application testing on the emulator easier. After choosing

the standard Windows path and name for the file, the installation process is completed, and

the developer can open the Android Studio IDE. With the IDE opening, the Android Studio

Setup Wizard will be started. This helps the developer with setting up the development

environment. Additionally, it is also possible to port existing Android applications or create

a new Android application project. In the next steps of the Wizard, the developer can choose

a type of setup (Standard or Custom), developer interface theme (dark or light), and what

SDK components to update or install. Then the Wizard will download, execute, and install

needed components, such as the Emulator, SDK, SDK tools, and sources.

4.2.2 Android Studio configuration

Wizards and templates, that verify the system requirements such as Java Development Kit

(JDK) and available RAM and configure default settings such as an optimized Android

Virtual Device (AVD) emulation and updated system images are provided by Android

Studio. Java Virtual Machine customization options such as heap size and cache size are

accessible through the Help menu in the studio.vmoptions configuration file. The plugin

folder path or maximum supported file size customization is accessible in the

idea.properties configuration file.

Adjusting the maximum heap size is the most common option to improve the Android

Studio performance. However, other default settings such as initial heap size, cache size, and

Java garbage collection switches can be overridden using the studio.vmoptions

configuration file. The file is accessible through the Help > Edit Custom VM Options

menu. If the VM options for Android Studio were never edited before, the IDE prompts the

developer to create a new configuration file. The new file will be added to the bin/ directory

inside the Android Studio installation folder. The studio.vmoptions should never be

directly edited inside the Android Studio program folder to make sure the important Android

Studio default settings are not overwritten.

1280MB is a default maximum heap size the Android Studio has. If the developer

works on a large project and has a system with a lot of RAM, the performance can be

improved by increasing the maximum heap size for Android Studio processes, such as the

48

core IDE, Gradle daemon, and Kotlin daemon. Possible heap size optimizations are

automatically checked by Android Studio. If the performance can be approved, the user will

receive a notification.

The Android Studio can also be configured for low-memory machines. There are

several recommendations on how to improve performance on such machines. The maximum

heap size available to Android Studio should be reduced to 512Mb. Gradle and the Android

plugin for Gradle should be updated to the latest available version. Enabling Power Save

Mode turns off several battery-intensive background applications. Debugging on a physical

device will decrease memory consumption, as it uses less memory than debugging on an

emulator. Only necessary Google Play dependencies should be included in the project.

Parallel compilation should also be disabled on low-memory machines.

Android Studio supports HTTP proxy settings, so the developer can run the IDE even

behind a firewall or secure network. Proxy settings can be configured in two ways. First one

is from the menu bar: File > Settings > Appearance & Behaviour > System

Settings > HTTP Proxy. The HTTP proxy page will appear, where the proxy can be set.

Figure 7 Proxy settings in Android Studio

The second option is setting the proxy directly in the gradle.properties file, which is

located in app>Gradle Scripts>gradle.properties.

49

Figure 8 Proxy settings in gradle.properties file

systemProp.http.proxyHost=proxy.vscht.cz
systemProp.http.proxyPort=3128
systemProp.https.proxyHost=proxy.vscht.cz
systemProp.https.proxyPort=3128

4.2.3 Creating a new Android Studio project

To create a new project in Android Studio, the developer should choose the type of device

(Phone and Tablet, Wear OS, Android TV, Automotive, or Android Things) and an activity

(No Activity, Basic, Bottom Navigation, Empty, Login and others). After that, the developer

will be required to configure the project, choose an application, and package names, save

location, language (Java or Kotlin), and minimum SDK version. The Android Studio helps

the developer to choose a minimum SDK version by providing platform version statistics

(cumulative distribution), and information features such as App Components, Multimedia,

Camera, Connectivity, Input Framework, and others.

The decision about the minimum SDK version should be chosen based on features that

needed to be supported and the percentage of cumulative distribution. By choosing the

minimum Android platform version, the developer defines what is the minimum supported

version, which reflects how many people will be able to install the application on their

devices. Currently, version 4.1. is recommended due to its features and because it has the

highest cumulative distribution – 99.8%.

Figure 9 Android platform versions: API level and distribution

50

When all downloads are completed, and the necessary steps have proceeded, the

Android Studio opens the main window. To start the development process, the Project

window should be opened, and the Android view should be selected in the drop-down list at

the top of that window. The following files are available to the developer in the Project

window: app>java>com.example.myapplication>MainActivity – this is the entry point

of the application, when the developer builds and runs the application, the system launches

an instance of the Activity class and loads its layout;

app>res>layout>activity_main.xml is the XML file, which defines the layout for

activity’s user interface (UI); app>manifests>AndroidManifest.xml is the manifest file,

that describes the fundamental characteristics of the application and defines each of its

components; folder Gradle Scriprs>build.gradle consists the files that control how the

Gradle plugin builds the application [39].

Figure 10 Google Pixel 3a and 3 XL emulation in Android Studio

The application can be run on a real device or an emulator. To run on a real device, the

device should be connected to the computer with a USB cable. The appropriate drivers for

the device are also needed. Firstly, there is a need to enable USB debugging in the Developer

options window (Developer options settings). Secondly, the connection should be allowed

by the device. The connected device will appear in the drop-down menu in the toolbar

(run/debug configurations). After the device is selected and the Run button is clicked,

Android Studio installs the application on the connected device and starts it. After the

51

application installation is done, it will be launched on the device. To run the application on

an emulator, Android Virtual Device must be created in the AVD Manager. After creation,

it should be selected from the drop-down menu in the toolbar (run/debug configurations).

By clicking on the Run button, the Android studio installs the application on the AVD and

starts the emulator.

4.2.4 Splash screen

First, the application’ splash screen will be created, which will be shown to the user during

application loading. The splash screen will consist of the application name and food bank

icon from Clip Art set provided by Android Studio. To create a splash screen, the

SplashActivity should be created. SplashActivity can be created by right-clicking on

the java subfolder of the project, then choose New>Activity>Empty Activity. The New

Android Activity configuration window will be opened. In that window, the developer can

define the Activity Name, generate a Layout File for that activity, choose a Package name

and a Source Language. A SplashActivity class with generated XML layout file should

be created.

Figure 11 SplashActivity configuration

After Activity is configured, the Android Studio will automatically create a

SplashActivity class and activity_splash.xml layout. In the SplashActivity class, an

52

activity that will show the loading screen for three seconds to the user before entering the

Main application screen should be created.

Figure 12 Splash activity loading screen

public class SplashActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_splash);

 Handler handler = new Handler();
 handler.postDelayed(new Runnable() {
 @Override
 public void run() {
 startActivity(new Intent(SplashActivity.this,
MainActivity.class));
 finish();
 }
 }, 2500);
 }
}

After the SplashActivity is created, the activity_splash.xml layout file should

be configured. The structure for a user interface is defined in that file. The layout will consist

of the application name FoodNoWaster and an icon on a green background. To specify

colours used through the application, they should be defined in the colors.xml file located

under the values subfolder in the res folder of the project.

Figure 13 Colours definitions

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="colorPrimary">#FFFFFF</color>
 <color name="colorPrimaryDark">#000000</color>
 <color name="colorAccent">#4CAF50</color>
</resources>

To be able to use icons, they should be added to the drawable subfolder of the project.

To add an icon, perform a right-click on the drawable folder, then check New>Vector Asset.

The Asset Studio window will be opened. In that window, the user can choose the Asset

Type (preloaded Clip Art or a Local source file), define the Name, choose a Clip Art, define

a Size of the icon, select a Colour, and define the Opacity. The Select Icon window will be

53

opened by clicking on Clip Art, where the developer will be able to choose an icon using the

keyword and theme. The filling and shape types can be also chosen in that window.

Figure 14 Icon selection in Android Studio

After the icons are chosen and corresponding XML files are created in the drawable

folder, the layout of the SplashActivity can be finished by using the XML attributes. The

design and blueprint views are showing the developer how elements and views interact with

each other. The blueprint can be very useful when View is invisible, it will be seen in the

blueprint view, but it will not be visible in the preview.

Figure 15 Design and Blueprint view of Splash activity layout

54

To run the Splash screen while the application is loading, the AnidroidManifest.xml

file should be changed. To do that, the <intent-filter> attribute with its content should

be moved to the SplashActivity activity. After that change, the Splash screen will be

executed and displayed to the user every time he opens the application.

Figure 16 Splash activity definition in manifest file

<activity android:name=".SplashActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Figure 17 FoodNoWaster splash screen in Android Studio Emulator

Sometimes the scope of supported layout XML attributes can be changed over API

versions. In this case, the Android Studio will display a hint about the steps that are needed

to support the specified version. For example, the XML attribute marginEnd which specifies

extra space on the end side of the view is not supported in the older API versions than 17.

Figure 18 XML attribute example

android:layout_marginEnd="10dp";

55

The Android Studio will alert the developer about this fact and will offer an appropriate

solution.

Figure 19 Layout XML attribute support alert

In this case, the Android Studio will offer to add a new XML attribute called

layout_marginRight, which specifies extra space on the right side of the view.

Figure 20 Adding a new XML attribute marginRight to support older API versions

As a result, a new XML attribute called layout_marginRight will be added to the existing

layout_marginEnd attribute to support API versions older than version API 17.

Figure 21 New XML attribute marginBottom added

android:layout_marginEnd="10dp"
android:layout_marginBottom="10dp"

4.2.5 SQLite database

The food items will be stored in the device memory. A DBHelper class is created for items

storing. This class is inherited from the SQLiteOpenHelper class, which is a helper class to

manage database creation and version management. This class takes care of opening the

database if it exists, creating it if it does not, and updating it, as necessary. This method

always returns very quickly. The database is not actually created or opened until one of

56

getWritableDatabse() or getReadableDatabase() methods is called. Transactions are

used to make sure the database is always in a sensible state. Android Studio offers an

automatic construction for onCreate() and onUpgrade() methods.

Figure 22 onCreate(), onUpgrade() methods automatic construction in Android Studio

Before implementation of the methods, the DATABASE_NAME and the TABLE_NAME

variables should be specified to store the names of the database and table.

Figure 23 Database name and table name specification

public static final String DATABASE_NAME = "FoodNoWasterDBHelper.db";
public static final String TABLE_NAME = "foodItems";

Also, a public constructor SQLiteOpenHelper(Context context, String name,

SQLiteDatabase.CursorFactory factory, int version) should be used to create a

helper object to create, open, and manage a database. Context parameter is used for paths

locating to the database. The parameter name is the name of the database file. Factory

parameter is used for creating Cursor objects. A parameter version is an integer number of

the database. It is used for database upgrade or downgrade. Context, name, and factory

parameters may have a null value.

57

Figure 24 DBHelper class initialization

public DBHelper(Context context) {
 super(context, DATABASE_NAME, null, 1);
}

After the public constructor is defined and variables are set, the onCreate() and

onUpgrade() methods can be implemented. Method onCreate() is called when the

database is created for the first time. The creation of tables and the initial population of the

tables should happen in this method. The database table will have 4 columns: id, foodItem,

expirationDate, and status. Id column will store integer values and will increment

automatically. FoodItem column will contain food item details. The expiration date of the

food item will be stored in the expirationDate column. The Status column will be used

for storing the information on whether the food item is consumed or not. For unconsumed

items, the value will be equal to 0, for consumed to 1.

Figure 25 onCreate() method creation

@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL(
 "CREATE TABLE " + TABLE_NAME + "(id INTEGER PRIMARY KEY,
foodItem TEXT, expirationDate DATETIME, status INTEGER)"
);
}

The onUpgrade() method is called when the database needs to be upgraded. The

implementation should use this method to drop tables, add tables, or do everything that it

needs to upgrade the database to the new schema version. This method is executed within a

transaction. All changes will be automatically rolled back if an exception is thrown.

Figure 26 onUgrade() method creation

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)
{
 db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);
 onCreate(db);
}

The insertFoodItem() method will be used to insert a food item into the database.

It inserts food item name, expiration date and status into the foodItems table.

58

Figure 27 insertFoodItem() method creation

public boolean insertFoodItem(String foodItem, String expirationDate) {
 Date date;
 SQLiteDatabase db = this.getWritableDatabase();
 ContentValues contentValues = new ContentValues();
 contentValues.put("foodItem", foodItem);
 contentValues.put("expirationDate", expirationDate);
 contentValues.put("status", 0);
 db.insert(TABLE_NAME, null, contentValues);
 return true;
}

Similarly, the updateFoodItem() method will be used to update the food item name

and the expiration date in the foodItems table. The deleteFoodItem() method will delete

a food item with the received id.

Figure 28 updateFoodItem() method creation

public boolean updateFoodItem(String id, String foodItem, String
expirationDate) {
 SQLiteDatabase db = this.getWritableDatabase();
 ContentValues contentValues = new ContentValues();
 contentValues.put("foodItem", foodItem);
 contentValues.put("expirationDate", expirationDate);
 db.update(TABLE_NAME, contentValues, "id = ? ", new String[]{id});
 return true;
}

public boolean deleteFoodItem(String id) {
 SQLiteDatabase db = this.getWritableDatabase();
 db.delete(TABLE_NAME, "id = ? ", new String[]{id});
 return true;
}

Also, the method for updating a food item status is needed to be implemented. The

method called updateFoodItemStatus() will handle a status update of the food item. It

updates the status of the provided food item id.

Figure 29 updateFoodItemStatus() method creation

public boolean updateFoodItemStatus(String id, Integer status) {
 SQLiteDatabase db = this.getWritableDatabase();
 ContentValues contentValues = new ContentValues();
 contentValues.put("status", status);
 db.update(TABLE_NAME, contentValues, "id = ? ", new String[]{id});
 return true;
}

59

Later, there will be a need for retrieving the food items from the database for displaying

in the user interface. For that reason, four methods are needed: getSingleFoodItem(),

getTodayFoodItem(), getTomorrowFoodItem(), and getLaterFoodItem(). These

methods implement SQLite database select queries. As a result, it will be possible to get

food items as a single food item, result-sets of food items with today’s, tomorrow’s, and

upcoming expiration dates. Today’s food items will be ordered by the food item name, while

the upcoming by the expiration date

Figure 30 Methods for retrieving the food items from database

public Cursor getSingleFoodItem(String id) {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor res = db.rawQuery("select * from " + TABLE_NAME + " WHERE id
= '" + id + "' order by foodItem desc", null);
 return res;
}

public Cursor getTodayFoodItem() {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor res = db.rawQuery("select * from " + TABLE_NAME + " WHERE
date(expirationDate) = date('now', 'localtime') order by id desc",
null);
 return res;
}

public Cursor getTomorrowFoodItem() {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor res = db.rawQuery("select * from " + TABLE_NAME + " WHERE
date(expirationDate) = date('now', '+1 day', 'localtime') order by id
desc", null);
 return res;
}

public Cursor getLaterFoodItem() {
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor res = db.rawQuery("select * from " + TABLE_NAME + " WHERE
date(expirationDate) > date('now', '+1 day', 'localtime') order by
expirationDate asc", null);
 return res;
}

4.2.6 Custom ListView class

After the database helper class DBHelper is ready, the custom ListView class should be

implemented. A new Java class called NoScrollListView should be created. This class is a

60

subclass of the ListView class that is not scrollable. NoScrollListView class will be used

by the MainActivity class to display all available food items.

Figure 31 NoScrollListView class implementation

public class NoScrollListView extends ListView {

 public NoScrollListView(Context context) {
 super(context);
 }
 public NoScrollListView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }
 public NoScrollListView(Context context, AttributeSet attrs, int
defStyle) {
 super(context, attrs, defStyle);
 }
 @Override
 public void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 int heightMeasureSpec_custom = MeasureSpec.makeMeasureSpec(
 Integer.MAX_VALUE >> 2, MeasureSpec.AT_MOST);
 super.onMeasure(widthMeasureSpec, heightMeasureSpec_custom);
 ViewGroup.LayoutParams params = getLayoutParams();
 params.height = getMeasuredHeight();
 }
}

4.2.7 Date picker layout

Android provides controls for the user to pick a date as ready-to-use dialogues. A date picker

will be used as a spinner for selecting a date. A picker ensures that the user can pick a date

that is valid, correctly formatted, and adjusted to the user’s locale. The date will be selected

using day, month, and year spinners. Firstly, a date_picker XML layout file should be

created in the res subfolder of the project folder. The date_picker will be displayed as a

spinning picker in the upper part of the screen with 10 density-independent pixel units (dp)

from each part of the view.

Figure 32 Date picker XML layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:padding="10dp">

61

 <DatePicker
 android:id="@+id/date_picker"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:calendarViewShown="false"
 android:datePickerMode="spinner" />
</LinearLayout>

Figure 33 Design and Blueprint view of date picker layout

4.2.8 AddModifyDeleteFoodItem class

Adding, modifying, and deleting features are the core features of the FoodNoWaster

application. All these functions will be implemented in one activity called

AddModifyDeleteFoodItem. If the food item already exists, the activity will act like Modify

food item and Delete food item, otherwise, it will act like Add new food item. To implement

this class, a new Empty activity called AddModifyDeleteFoodItem should be created. By

adding a new Empty activity, the Android Studio will automatically create a new Java class

AddModifyDeleteFoodItem in the java subfolder and an XML layout file called

activity_add_modify_delete_food_item in the res subfolder under the project folder.

The layout of the AddModifyDeleteFoodItem class will be defined in the XML file

activity_add_modify_delete_food_item. The upper part of the screen layout will

consist of green coloured “Food item details” title, and the grey “Enter your food item…”

hint in the EditText area. The bottom part will have the Vector Asset Clip Art “calendar

62

today” icon with the title “Due date:” and the default date “31/03/2021”, the red coloured

Vector Asset Clip Art “delete” icon with the title “Remove food item”. At the very bottom

of the screen layout, the white “ADD” button will be placed on the green coloured

background.

Figure 34 Design and Blueprint view of activity_add_modify_delete_food_item layout

The AddModifyDeleteFoodItem Java class will call different functions written in

DBHelper class. The modification, creation, and deleting of the food item will be handled in

this class. The init_modify() function will allow the user to change a food item name or

expiration date. The expiration date change will be handled by the chooseDate() method,

which will use a date_picker layout to display a date picker. The user will be able to choose

a new date using this picker. The saveFoodItem() function will handle the saving of the

food item into the database. This function uses two methods of the DBhelper class. The

updateFoodItem() method is called when an existing food was modified and should be

updated in the database. When the item is modified, the user will receive a small toast popup

with the text “Food item is Updated” as feedback. The insertFoodItem() method is used

to insert a new food item into the database when the item is first created. After the new item

is added into the database, the user will receive a small toast popup feedback with the text

“Food item is Added “. If the user will try to save an empty food item, a small toast popup

63

with the text “Food item can't be empty” will be triggered, and the food item will not be

inserted or updated. The deleteFoodItem() function will handle the food item delete

operation. It will call a deleteFoodItem() method of the DBHelper, which will delete the

food item from the database. After the food item is deleted, the user will receive a small toast

popup with the text “Food item is Removed” as feedback.

Figure 35 Adding an empty and filled food item toast popups

4.2.9 MainActivity class

The MainActivity will be launched right after the loading splash screen. It will show the

user the list of food items and divide them into three categories. “Expiring today” – here will

be placed food items with the expiration date equal to the current date. The next category is

“Expiring Tomorrow”, which will consist of food items that will expire tomorrow. The last

category is “Expiring Later”, where food items with an expiration date of more than 2 days

will be placed. If the user has no food items with a close expiration date in the database, the

main screen will consist of a greeting for the user.

The main screen with a greeting will consist of the main title “Hey you have no food”

with a grey hint under the main title telling “Add food item to not waste it…”. Under the

hint, a green coloured button with the text “ADD NEW FOOD ITEM” will be placed. In the

right bottom corner of the view, a green coloured floating action button will be added. This

button will also allow the user to add a new food item.

64

Figure 36 Design and Blueprint view of main_activity layout with no items

If the user has put food items with an active expiration date in the database, the main

screen will consist of three categories with active food items under the categories title. The

checkbox describing the food item status will be placed on the left side of the food item’

name. Also, a floating action button, which lets the user add a new food item, will be placed

in the bottom right corner of the view.

Figure 37 Design and Blueprint view of activity_main layout

65

The MainActivity class will handle the usage of the AddModifyDeleteFoodItem

class which will be done using the openAddModifyDeleteFoodItem() method, onResume

method will be called after resuming the application and re-set the data from the database

using the populateData() function, which will retrieve data from the database using the

fetchDataFromDB() method. This method will populate the ArrayLists with the data from

the database. The fetchDataFromDB() method will also set visibility for today, tomorrow,

and upcoming list containers. The layout will be visible only if the list is not empty.

DataList and ListView will be created using the loadDataList() and the

loadListView() methods accordingly. The loadDataList() method will create a

HashMap table and will populate it with data from the ArrayList. The setAlarm()

method, which is used to set a repeated alarm is also a part of the MainActivity class.

4.2.10 ListFoodItemAdapter

To display food items in ListView, the custom ListView adapter needs to be implemented.

Firstly, the food_item_list_row should be implemented to handle the food item name and

checkbox which defines their status.

Figure 38 Design and Blueprint view of food_item_list_row layout

After the XML layout is ready, the ListFoodItemAdapter Java class should be

created in the java subfolder of the project folder. This class will handle the ListView, which

66

will display a list of food items and a checkbox with their status. The ListFoodItemAdapter

class inherits from the BaseAdapter class.

Figure 39 Automatic class implementation in Android Studio

The Android Studio alerts the developer that the class which is inherited from the

BaseAdapter should implement the abstract method getCount(). It also offers to

implement selected methods.

Figure 40 Methods implementation in Android Studio

After methods are created, the methods should be implemented. The getItem() and

getItemId() methods will return the position, while getCount() method will return the

total number of elements from the array list. The getCount() function returns the total

number of food items to be displayed in a list.

67

Figure 41 getCount(), getItem(), and getItemId() methods implementation

public int getCount() {
 return data.size();
}

public Object getItem(int position) {
 return position;
}

public long getItemId(int position) {
 return position;
}

When the list item view is ready to be displayed or about to be displayed, the getView()

function is automatically called. The layout for displaying food items is set in the getView()

method. When the View is ready, the main screen will be displayed to the user. This screen

will contain lists of food items combined into sections by expiration dates (Expiring Today,

Expiring Tomorrow, Expiring Later).

Figure 42 FoodNoWaster main screen ListView with sections

The food items inside the sections will be ordered in two ways. In the “Expiring Today” and

the “Expiring Tomorrow” lists, they will be ordered by name, while the “Expiring Later” list

will be ordered by food items’ expiration date. There also will be a checkbox that will define

68

the status of the food item. When it is checked, the food item is marked as non-active, and

the food item name will be decorated with a stroke line.

Figure 43 Food items order and status checkboxes

4.2.11 Notifications

To increase the usability of the FoodNoWaster application, the user will be provided with a

daily notification with a total number of the food items with the expiration date within the

next two days. To do that, a new Java class called MyAlarm should be created in the java

subfolder in the project folder. This class will be inherited from the BroadcastReceiver

class and it will make it possible to start an alarm even when the application is not running.

First, the total number of food items with the expiration date within the next two days should

be calculated using the data from the database.

Figure 44 Food items number calculation with expiration date within next 2 days

DBHelper mydb;
mydb = new DBHelper(context);
Cursor today = mydb.getTodayFoodItem();

69

Cursor tomorrow = mydb.getTomorrowFoodItem();
int upcomingItemsInTwoDays = today.getCount() + tomorrow.getCount();

After the total number is calculated, a NotificationCompat object should be defined to

access features in Notifications.

Figure 45 NotificationCompat object creation

String message = "FoodNoWaster notification";

NotificationCompat.Builder builder = new
NotificationCompat.Builder(context, "1")
 .setSmallIcon(R.drawable.food_bank_notification)
 .setContentTitle("Food items expiring within next two days:")
 .setContentInfo(String.valueOf(upcomingItemsInTwoDays))
 .setContentText(String.valueOf(upcomingItemsInTwoDays));

To be able to launch the application when the user will click on the notification, the

resultIntent and resultPendingIntent should be created.

Figure 46 resultIntent creation

Intent resultIntent = new Intent(context.getApplicationContext(),
MainActivity.class);
PendingIntent resultPendingIntent = PendingIntent.getActivity(context,
1, resultIntent, PendingIntent.FLAG_UPDATE_CURRENT);

The resultPendingIntent should be passed to the NotificationCompat builder.

Figure 47 resultPendingIntent passing to the NotificationCompat

.setContentIntent(resultPendingIntent);

When the NotificationCopmat builder is ready, the behaviour of the notification should

be defined. The approach is different for different API versions. For systems with API

version 26 and newer, the NotificationChannel will be created, while for older API versions

a NotificationManagerCompat will be created.

Figure 48 NotificationChannel support for different API versions

if(Build.VERSION.SDK_INT>= Build.VERSION_CODES.O) {
 NotificationChannel channel = new NotificationChannel("1",
"FoodNoWasterNumber", NotificationManager.IMPORTANCE_DEFAULT);
 channel.setDescription("FoodNoWasterNumber");
 NotificationManager manager = (NotificationManager)
context.getSystemService(Context.NOTIFICATION_SERVICE);
 manager.createNotificationChannel(channel);

70

 manager.notify(1, builder.build());
}else {
 NotificationManagerCompat managerCompat =
NotificationManagerCompat.from(context);
 managerCompat.notify(1, builder.build());
};

The notification will be woken by the repeating alarm. A pending intent will fire the alarm

when it is triggered. The notification will be triggered and displayed to the user every day at

9 o’clock in the morning.

Figure 49 Alarm setting in the MainActivity class

private void setAlarm() {
 //getting the alarm manager
 AlarmManager alarmMgr = (AlarmManager)
getSystemService(Context.ALARM_SERVICE);

 //creating a new intent specifying the broadcast receiver
 Intent intent = new Intent(this, MyAlarm.class);

 //creating a pending intent using the intent
 PendingIntent alarmIntent = PendingIntent.getBroadcast(this, 0,
intent, 0);

 // Set the alarm to start at 9:00 a.m.
 Calendar calendar = Calendar.getInstance();
 calendar.setTimeInMillis(System.currentTimeMillis());
 calendar.set(Calendar.HOUR_OF_DAY, 9);
 calendar.set(Calendar.MINUTE, 00);

 //repeat alarm daily
 alarmMgr.setRepeating(AlarmManager.RTC, calendar.getTimeInMillis(),
 60000 * 60 * 24, alarmIntent);
}

After the notification is deployed, the broadcast receiver should be declared in the manifest

file. By default, all alarms in the Android operating system are cancelled when a device shuts

down. To prevent this, the RECEIVE_BOOT_COMPLETED permission should be set in the

manifest file.

Figure 50 Receive boot permission in the manifest file

<uses-permission
android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

71

After permission is set, the intent filter that filters on the ACTION_BOOT_COMPLETED action

should be added to the receiver.

Figure 51 Intent filter after reboot

<!-- registering the receiver-->
<receiver
 android:name=".MyAlarm"
 android:enabled="true"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"></action>
 <action android:name="android.intent.action.MAIN"></action>
 </intent-filter>
</receiver>

When the implementation is ready, the user will daily receive a notification reminding how

many food items have an expiration date in the next two days. The notification will be

displayed only if the total number of the food items with the expiration date within the next

two days are greater than zero. The notification will be also displayed after the device reboot.

The notification will have a small, rounded Vector Asset Clip Art “food bank” icon. After

the tap on the notification, the application will be launched. The notification can be removed

by an away swipe.

Figure 52 FoodNoWaster notification about expiring food items

4.2.12 Application icon

When a new project is created in Android Studio, the default application icon in the form of

an android is set automatically. To change the default icon, a new Image Asset should be

72

created in the res subfolder of the project folder. A food bank Clip Art will be chosen as an

icon for the FoodNoWaster application. A food bank launcher icon will be white coloured

on the green background. The icon will be adaptive to different screen resolutions and system

theme styles. It will consist of two layers: a foreground and a background layer. The green

and white grid make the background layer, while the white mask will be applied on top of

the foreground layer to produce a shaped app icon. The foreground layer will be stacked on

top of the background layer.

Figure 53 Configuring an Image Asset in Android Stuudio

When the launcher icon is ready, it will be displayed in the list of applications installed on

the device, it will represent shortcuts into the application, will be used by launcher

applications, and will help users to find an application on Google Play.

73

Figure 54 FoodNoWaster application icon

4.2.13 Debugging the application

The Android Studio provides a developer with a debug output. This output allows the

developer to track possible mistakes in the code, misspelling and more. For example, the

output can provide the information that the variable was not found. It will provide the

information about the location of the error.

Figure 55 Build Output - cannot find symbol

It can also provide some hints on how to eliminate the error. For example, if the developer

has provided some core changes to the code and try to apply them on-the-go in the Android

Studio Emulator. In such a case, the developer will be notified that the changes were not

applied and that the restart is needed. The direct link to reinstall and restart the application

will be also provided.

74

Figure 56 Build Output - changes were not applied

ADB is a very powerful tool that can also help the developer to debug the application. For

example, the developer needs to debug alarm behaviour. To do that, the ADB command adb

shell dumpsys alarm should be executed. As an output, the developer will be provided

with information about running alarms.

Figure 57 ADB alarms output

4.2.14 Application publishing

The FoodNoWaster application will be tested within the narrow range of beta testers. For

this purpose, beta testers will be provided with the .apk application. The Build APK(s)

option is available under the Build option in the Android Studios’ toolbar. After the build is

done, the Android Studio will provide the user with a .apk file ready to install on devices.

The generated APK can only be used for testing. To install this file, the user should allow

the installation of the applications from unknown sources in the system settings of the device.

75

Figure 58 APK building in Android Studio

After the FoodNoWaster application beta testing phase will be ended, the application

can be published to Google Play. Before publishing the application to Google Play, upload

key and keystore should be generated. After an upload key is generated, the application can

be signed with that key. The next step is preparation and rolling out the release. After

choosing a release track, the application signing should be configured. The next step is to

upload the application to Google Play. The Google Play staff will inspect, test, and then

publish the application to the marketplace.

Figure 59 Signing an application with Google Play signing

Source: [40]

76

5 Results and Discussion

5.1 FoodNoWaster application

The developed FoodNoWaster application is the result of this thesis. It is a working

application where the user can put his food items to prevent food wasting. When the food

items will come close to their expiration date, the user will be notified about that. During the

pilot testing within 4 users, the application performed well, users did not report any issues

and were classified the usage as satisfied.

The FoodNoWaster application has a simple user-friendly user interface that does not

require any introduction or guides to work with. The application is also developed following

Google’s guides and using Google’s Material Design. The FoodNoWaster application has

not been released to a wide range of users yet. It is in a beta testing phase and is distributed

within a narrow range of users through sharing .apk file.

The development phase of the FoodNoWaster application took about two months. The

application consists of about 1200 lines of code. According to the basic COCOMO

procedural software cost estimation model, the effort value of the FoodNoWaster application

equals 2.4 (person/month), and the duration value is about 3.5 months.

5.2 Further enhancements

There are several possibilities on how to improve the FoodNoWaster application in future.

One of them is to widen the range of beta users and get feedback on what functionalities

could be better. The other one is the usage of an external database, like firebase. That will

make it possible to create user accounts, so the users will be able to switch their phones or

get a back-up of their data. The third possibility is to add the functionality of adding pictures

of food items. There can also be implemented solutions like Google Lens to get the

expiration date automatically read. One more future enhancement is to distribute the

application within Android application marketplaces, for example, Google Play. It will make

it easier for users to find, download, and install the application. Also, there will be an

opportunity to reach a bigger audience with Google Plays’ promotion activities.

77

6 Conclusion

At the beginning of writing this thesis, I had no experience with application development for

the Android operating system. My goal was to examine how the applications are developed

from the idea to the final product. During writing this thesis I was able to gain and practice

knowledge from the theoretical background. I also had a chance to apply the knowledge

from my study. I had an opportunity to develop an application and go through all stages of

the application development process.

During the writing of this thesis, I examined the problem of food wasting and the

theoretical base for Android application development. After that, I analyzed the user’s

requirements, target audience, and determined the key functions of the application. Based

on this theoretical background and analysis, I have developed a FoodNoWaster application.

The result of this thesis is ready for use application, which I, my friends and my family

are using on a daily basis. The application allows users to input their food items into the

database, see ordered lists, and receive notifications about food items that are approaching

their expiration date. The main idea behind the technical part was to help people to prevent

their food waste. Looking at my own observed statistics, people could prevent up to 90% of

their probable food waste.

The application was developed in Android Studio using the Java programming language

for core logic. The layouts of the application were built with XML layouts.

Even though the application is usable and stable, it is still in a beta testing phase. During

that phase, I want to collect usage reports and ideas about the most needed enhancements.

After collecting this data, fixing possible bugs, and implementing the best idea, the

application can be released to the Google Play market.

78

7 References

1. SCHERHAUFER, Silvia, OBERSTEINER, Gudrun. FOOD WASTE REDUCTION

AND ITS POTENTIAL TO MITIGATE GLOBAL WARMING. Stockholm, 2016. ISBN

978-91-88319-01-2.

2. No time to waste: assessing the performance of food waste prevention actions -

ScienceDirect. ScienceDirect.com | Science, health and medical journals, full text articles

and books [online]. 20 November 2020.

https://www.sciencedirect.com/science/article/pii/S0921344920302640. 06 February 2021.

3. Mobile App Download and Usage Statistics (2021) - BuildFire. App Builder | The Best

App Maker for High End Mobile Apps. https://buildfire.com/app-statistics. Accessed. 23

March 2021.

4. There are now 2.5 billion active Android devices - The Verge. The Verge [online].

https://www.theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-store-

total-number-statistic-keynote. Accessed 25 November 2020.

5. The history of Android: The evolution of the biggest mobile OS in the world. Android

Authority: Tech Reviews, News, Buyer's Guides, Deals, How-To [online].

https://www.androidauthority.com/history-android-os-name-789433. Accessed 25

November 2020.

6. How Google Play works | Android. Android | The platform pushing what’s possible

[online]. https://www.android.com/play/how-google-play-works/.Accessed 25 November

2020.

7. Swift - Apple Developer. Swift is a powerful and intuitive programming language for iOS,

macOS, tvOS, and watchOS [online]. https://developer.apple.com/swift/. Accessed 26

November 2020.

8. App Store - Developing for the App Store - Apple. Apple [online].

https://www.apple.com/app-store/developing-for-the-app-store/. Accessed 26 November

2020.

9. Set up for Android Development | Android Open Source Project. Android Open Source

Project [online]. 01 September 2020. https://www.source.android.com/setup. Accessed 26

November 2020.

10. Platform Architecture | Android Developers. Android Developers [online].

https://developer.android.com/guide/platform. Accessed 22 November 2020.

11. File permissions and attributes - ArchWiki. ArchWiki [online].

https://wiki.archlinux.org/index.php/File_permissions_and_attributes/. Accessed 01

December 2020.

12. SCHILDT, Herbert. Java: The Complete Reference. 11th Edition. New York: McGraw-

Hill, 2018. ISBN 9781260440249.

13. GRIFFITHS, Dawn and David GRIFFITHS. Head First Android Development. 2nd

Edition. Newton: O'Reilly Media, 2017. ISBN 9781491974056.

14. Application Fundamentals | Android Developers. Android Developers [online].

https://developer.android.com/guide/components/fundamentals. Accessed 05 January 2021.

79

15. Understand the Activity Lifecycle | Android Developers. Android Developers [online].

https://developer.android.com/guide/components/activities/activity-lifecycle. Accessed 9

January 2021.

16. Services overview | Android Developers. Android Developers [online].

https://developer.android.com/guide/components/services. Accessed 9 January 2021.

17. Broadcasts overview | Android Developers. Android Developers [online].

https://developer.android.com/guide/components/broadcasts. Accessed 10 January 2021.

18. Content providers | Android Developers. Android Developers [online].

https://developer.android.com/guide/topics/providers/content-providers. Accessed 10

January 2021.

19. Content provider basics | Android Developers. Android Developers [online].

https://developer.android.com/guide/topics/providers/content-provider-basics. Accessed 10

January 2021.

20. Intents and Intent Filters | Android Developers. Android Developers [online].

https://developer.android.com/guide/components/intents-filters. Accessed 6 February 2021.

21. Notifications Overview | Android Developers. Android Developers [online].

https://developer.android.com/guide/topics/ui/notifiers/notifications. Accessed 18 January

2021.

22. Schedule repeating alarms | Android Developers. Android Developers [online].

https://developer.android.com/training/scheduling/alarms. Accessed 21 February 2021.

23. Toasts overview | Android Developers. Android Developers [online].

https://developer.android.com/guide/topics/ui/notifiers/toasts. Accessed 23 February 2021.

24. Debug your app | Android Developers. Android Developers [online].

https://developer.android.com/studio/debug. Accessed 23 February 2021.

25. Android Debug Bridge (adb) | Android Developers. Developers [online].

https://developer.android.com/studio/command-line/adb. Accessed 23 February 2021.

26. Publish your app | Android Developers. Developers [online].

https://developer.android.com/studio/publish. Accessed. 24 February 2021.

27. WEISFELD, Matt. The object-oriented thought process. 5th Edition. Boston: Addison-

Wesley, 2019. ISBN 9780135182130.

28. FOWLER, Martin. UML distilled: a brief guide to the standard object modeling

language. Addison-Wesley Professional, 2004.

29. SETH, Christophe. The SWOT Analysis: A key tool for developing your business

strategy. 50Minutes.com, 2015.

30. MAYLOR, Harvey. Beyond the Gantt chart: Project management moving on. European

management journal 19, no. 1 (2001): 92-100.

031. Download Android Studio and SDK tools | Android Developers. Android Developers

[online]. https://developer.android.com/studio. Accessed 22 January 2021.

32. Eclipse IDE 2020-12 | The Eclipse Foundation. Enabling Open Innovation &

Collaboration | The Eclipse Foundation [online]. https://www.eclipse.org/eclipseide/.

Accessed 22 January 2021.

33. Visual Studio IDE, Code Editor, Azure DevOps, & App Center - Visual Studio. Visual

Studio IDE, Code Editor, Azure DevOps, & App Center - Visual Studio [online].

https://visualstudio.microsoft.com/. Accessed 22 January 2021.

80

34. Features - IntelliJ IDEA. JetBrains: Essential tools for software developers and teams

[online]. https://www.jetbrains.com/idea/features. Accessed 22 January 2021.

35. Developer workflow basics | Android Developers. Android Developers [online].

https://developer.android.com/studio/workflow. Accessed 22 January 2021.

36. Karma App - Save food from being wasted [online]. https://karma.life/about. Accessed

14 February 2020.

37. The problem of food waste - OLIO. OLIO – The #1 Free Sharing App [online].

https://olioex.com/food-waste/the-problem-of-food-waste/. Accessed 14 February 2021.

38. FoodKeeper App | FoodSafety.gov. FoodSafety.gov [online].

https://www.foodsafety.gov/keep-food-safe/foodkeeper-app. Accessed 14 February 2021.

39. Create an Android project | Android Developers. Android Developers [online].

https://developer.android.com/training/basics/firstapp/creating-project. Accessed 18

January 2021.

40. Sign your app | Android Developers. Developers [online].

https://developer.android.com/studio/publish/app-signing. Accessed. 23 March 2021.

