
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INFORMATION S Y S T E M S

A TOOL FOR CHECKING C O R R E C T N E S S OF DESIGN
DIAGRAMS IN UML

DIPLOMOVÁ P R A C E
MASTER'S THESIS

AUTOR PRÁCE Be. IVO DLOUHÝ
AUTHOR

BRNO 2014

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INFORMATION S Y S T E M S

NÁSTROJ PRO KONTROLU SPRÁVNOSTI NÁVRHOVÝCH
DIAGRAMŮ V UML
A TOOL FOR CHECKING CORRECTNESS OF DESIGN DIAGRAMS IN UML

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Be. IVO DLOUHÝ
AUTHOR

VEDOUCÍ PRÁCE RNDr. RYCHLÝ MAREK, Ph.D.
SUPERVISOR

BRNO 2014

Zadáni diplomo vě práůe/14&22/2013r'x diouh05

Vysoké učení techn ické v Brně - Faku l ta i n fo rmačn ích techno log i í

Ústav informačních systémů Akademický rok 2013/2014

Zadání diplomové práce
Ř e š i t e l : D l ouhý I v o , Bc .
Obor: Informační systémy
Téma: N á s t r o j p ro k o n t r o l u s p r á v n o s t i n á v r h o v ý c h d i a g r a m ů v U M L

A Too l f o r C h e c k i n g C o r r e c t n e s s of D e s i g n D i a g r a m s in U M L
Kategor ie: Softwarové inženýrství

Pokyny:
1. Seznamte se podrobně s možnostmi použití UML diagramů pri návrhu software,

možnostmi OCL, jej ich podporou v dostupných nástrojích a přenositelnými formáty
ukíádání d iagramů v UML,

2. Analyzujte a popište vyžadované či doporučené vlastnosti jednot l ivých diagramů při
správném návrhu software, možnosti detekce chybně navržených diagramů (vč.
možností OCL) a způsobů jejich opravy.

3. Navrhněte nástroj , který umožní automatickou detekci chybně navržených diagramů v
UML, uložených ve vhodném formátu, a navrhne uživatel i -návrháři možnosti korekce
nalezených chyb.

4. Po konzultaci s vedoucím navržený nástroj implementujte a otestujte na vhodných
vstupech. Porovnejte automatické kontroly nástrojem s manuálním posouzením
správnosti návrhových diagramů.

5. Výsledky zveřejněte jako open-source, zhodnoťte a navrhněte případná rozšíření.

Li teratura:
• Russ Mi les, Kim Hami l ton. Learning UML 2.0. O'Reil ly Media, 2006. ISBN

978-0-596-00982-3 f http : / /my.safa r ibooksonl ine.com/059600982Sl
• Mira Balaban, Maraee Azzam, Sturm Arnon, Management of Correctness Problems in

UML Class Diagrams Towards a Pattern-Based Approach. International Journal of
Information System Modeling and Design, 1(4), 2010. rh t tpV/www.cs .bgu.ac , i l /~mira
/ incorrect ness-patterns.pdf]

Při obhajobě semestrální části diplomového projektu je požadováno:
• Bez požadavků,

Podrobné závazné pokyny pro vypracování diplomové práce naleznete na adrese
http: / / w w w. f i t. vutb r. cz / i nfo/ s z z /

Technická zpráva d ip lomové práce musí obsahovat Formulaci cíle, charakter ist iku současného stavu,
teoret ická a odborná východiska řešených problémů a specif ikaci etap, které byly vyřešeny v rámci
ročníkového a semestrálního projektu (30 až 4 0 % celkového rozsahu technické zprávy) ,

Student odevzdá v jednom výt isku technickou zprávu a v elektronické podobě zdrojový text technické
zprávy, úplnou programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě
budou uloženy na standardním neprepisovatelném paměťovém médiu (C D - R , D V D - R , apod,) , které bude
vloženo do písemné zprávy tak, aby nemohlo dojít k jeho ztrátě při běžné manipu lac i ,

Vedoucí: Rych lý M a r e k , R N D r . , P h . D . , UIFS FIT VUT
Datum zadání: 1. l istopadu 2013
Datum odevzdání: 28. května 2014

ĚCHHICKÉ V BI
L,S,

J k ^ informačních systémů

doc. Dr. Ing. Dušan Kolář
vedoucí ústavu

http://ribooksonline.com/059600982Sl
http://www.cs.bgu.ac

Abstrakt
Cílem d ip lomové p r á c e je vy tvo ř i t n á s t r o j pro kontrolu sp r ávnos t i n á v r h o v ý c h d i a g r a m ů v

U M L zv láš tě diagramu t ř íd . P r á c e popisuje jazyk U M L a souvisejících standardy, definuje
p r o b l é m sp rávnos t i U M L a vysvět lu je p ř í s t u p kontroly sp r ávnos t i U M L pomoci d a t a b á z e
vzorů ne sp rávnos t i . Dá le navrhuje technologii Q V T vhodnou pro implementaci vzorů pro
kontrolu s p r á v n o s t i . P r o b l é m je rozdě len na více čás t í , mezi k t e r é p a t ř í sd í lená d a t a b á z e
vzorů chyb v U M L sp ravova t e lná p řes webové rozh ran í , s a m o s t a t n ý n á s t r o j pro použ i t í z
př íkazové ř á d k y a z á s u v n ý modu l pro U M L n á v r h o v ý software V i s u a l Paradigm. Všechny
nav ržené čás t i jsou navrženy, imp lemen továny , o t e s továny a vyhodnoceny. D ů r a z je kladen
na o t ev řenos t a rozš i ř i te lnos t n á s t r o j e .

Abstract
A i m of this master's thesis is to create a tool for checking correctness of design diagrams

in U M L . The work describes the U M L language and connected standards, defines the prob­
lem of U M L correctness and explains the approach of using incorrectness pattern database
to check the U M L correctness. Furthermore it suggests the Q V T language as a suitable
for implementing the incorrectness patterns. The problem is decomposed into shared in­
correctness pattern database manageable v ia web interface, standalone tool for use from
the command line and a plugin for the U M L design software V i s u a l Paradigm. A l l of the
components are designed, implemented, tested and evaluated. The important aspect is the
openness and extensibil i ty of the tool .

Klíčová slova
sp rávnos t uml , n á v r h o v é diagramy, vzory nesp rávnos t i , visual paradigm, x m i , uml , ocl , qvtr

Keywords
u m l correctness, design diagrams, incorrectness patterns, visual paradigm, x m i , uml , ocl ,
qvtr

Citace
Ivo Dlouhý : A Too l for Checking Correctness of Design Diagrams i n U M L , d ip lomová p ráce ,
Brno , F I T V U T v B r n ě , 2014

A Tool for Checking Correctness of Design Diagrams
in U M L

Prohlášení
Proh lašu j i , že jsem tuto diplomovou prác i vypracoval s a m o s t a t n ě pod v e d e n í m R N D r .
M a r k a Rych lého P h . D . a uvedl jsem všechny l i t e rá rn í prameny a publikace, ze k t e rých
jsem čerpal .

I hereby declare that I developed this master's thesis indiv idual ly under the supervision of
R N D r . Marek R y c h l ý P h . D . and I stated a l l the literature and publications I used i n this
project.

Ivo D l o u h ý
M a y 28, 2014

© Ivo Dlouhý, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 5

2 Analysis 7
2.1 Extensible M a r k u p Language 7

2.1.1 X M L Schema 8
2.2 Unified Mode l ing Language 8

2.2.1 X M L Metada ta Interchange 9
2.3 Va l id i ty of U M L 9
2.4 Incorrectness Patterns 10

2.4.1 Pat tern Sources 10
2.5 Object Constraint Language 12
2.6 Query /View/Trans fo rma t ion 13
2.7 Eclipse Mode l ing Framework 14

2.7.1 Ecore 14
2.7.2 Eclipse M o d e l Development Tools 15

2.8 M e d i n i Q V T 15
2.9 V i s u a l Parad igm 16

2.9.1 V i s u a l Parad igm M o d e l Qua l i ty Checker 16
2.9.2 P lug- in Development 16

2.10 Technologies for Implementation 18
2.10.1 Database 18
2.10.2 The Server 18

2.11 Testing 19
2.11.1 Un i t Testing 19
2.11.2 Funct ional Testing 20

2.12 Goals 20

3 Design 21
3.1 Use Cases 21
3.2 Decomposi t ion 26
3.3 C o m m a n d Line Too l 26

3.3.1 Input and Output 26
3.3.2 Too l Modes 27

3.4 V i s u a l Parad igm P lug in 28
3.4.1 Input and Output 28
3.4.2 User Interface 28

3.5 Core of the Too l 30
3.5.1 Models 30

1

3.5.2 Q V T Transformation 31
3.5.3 Q V T Engine 32

4 Implementation 34
4.1 Pat tern Database 34

4.1.1 Sharing and Col labora t ion 36
4.1.2 Pa t te rn Set Interchangeability 36

4.2 Server 37
4.3 Client Too l 39

4.3.1 C o m m a n d Line Interface Too l 40
4.3.2 V i s u a l Parad igm P l u g i n 40

4.4 Core of the Too l 40
4.4.1 Pa t te rn and Q V T Rela t ion 41
4.4.2 Q V T Transformation 41
4.4.3 L i b r a r y 42

4.5 Development Process 43
4.5.1 Dis t r ibu t ion and Documentat ion 43
4.5.2 B u i l d System 43
4.5.3 L a T e X Documents 43
4.5.4 Libraries 45
4.5.5 Libraries and License 45

5 Testing 47
5.1 U n i t Testing 47
5.2 Funct ional Testing 48
5.3 System Testing 48
5.4 App l i ca t ion Versions 48

5.5 Test result evaluation 49

6 Evaluat ion 50

7 Conclusion 52

Bibl iography 53

A Contents of the C D 57

B Glossary 58

C Screenshots 59

2

List of Figures

2.1 Table: Overview of Pa t te rn Categories 12
2.2 O C L Example 13
2.3 Diagram: Q V T Language [27] 14
2.4 Diagram: Eclipse E M F Ecore [22] 15
2.5 Lis t ing : V i s u a l Parad igm M o d e l Qual i ty Checker problems [36] 16
2.6 Diagram: V i s u a l Parad igm O p e n A P I 17
2.7 Diagram: V i s u a l Parad igm p lug in .xml 17
2.8 Lis t ing : The V i s u a l Parad igm P l u g i n Directory Structure 18
2.9 Diagram: M o d e l / V i e w / C o n t r o l l e r Archi tec tura l Pa t te rn 19

3.1 Diagram: Use Case diagram - Too l User Roles 22
3.2 Use Case diagram - Too l Power User Role 22
3.3 Use Case Deta i l : Expor t the Patterns 23
3.4 Use Case Deta i l : Manage the Pat tern Database 24
3.5 Use Case Deta i l : Manage the Pat tern Database 24
3.6 Use Case Deta i l : Highl ight Errors 24
3.7 Use Case Deta i l : R u n Correctness Analys is 25
3.8 Use Case Deta i l : V i e w Pat te rn De ta i l 25
3.9 Use Case Deta i l : Update the Pa t te rn Database 25
3.10 Diagram: Tool Decomposi t ion 26
3.11 Diagram: C o m m a n d L ine Too l Overview 27
3.12 M a p p i n g the Use Cases to C o m m a n d Line App l i ca t ion Arguments 28
3.13 A c t i v i t y Diagram 29
3.14 Diagram: V i s u a l Parad igm P l u g i n Overview 30
3.15 Diagram: Logic of the Too l 30
3.16 Diagram: Pat tern M o d e l 31
3.17 Diagram: Result U M L L i n t M o d e l 31
3.18 Table: Q V T Transformation Requirements 33
3.19 Diagram: Result M o d e l M a p p i n g 33

4.1 En t i ty Relat ionship diagram: Database schema 35
4.2 Severities 36
4.3 Patterns X S D Schema 37
4.4 Diagram: M V C Architecture 38
4.5 Diagram: Servlets and Views 38
4.6 Diagram: Templates 39
4.7 Diagram: P l u g i n Implementation 44
4.8 Table: Lis t of G I T repositories 44
4.9 Table: App l i ca t i on bu i ld systems and artifacts 45

3

5.1 Table: U n i t Test Coverage 48
5.2 Table: Reference Enviroment Versions 49

C . l Screenshot: V i s u a l Pa rad igm P l u g i n - Analys is Results 59
C.2 Screenshot: V i s u a l Pa rad igm P l u g i n - Lis t Patterns 60
C.3 Screenshot: V i s u a l Pa rad igm 61

4

Chapter 1

Introduction

Software design and modeling plays a key role i n every software life cycle because every
error made in design has a deep impact on the final quali ty of the software. The later the
design error is found, the more expensive is to fix i t . Therefore it is desirable that design
is as correct as possible.

Recent modeling standards and languages are well defined, but they s t i l l need to be gen­
eral and flexible enough to allow user to model every imaginable scenario. Th is ambiguity
can cause incorrect usage of the modeling language when the designer is not experienced
enough or project is s imply too complex to design.

Unified Mode l ing Language diagrams are essential part of the software design since they
are more clearer and easier to understand than the problem specification and description
in the pla in text. This thesis investigates the correctness of the U M L diagrams, namely
the class diagram that denotes classes and their associations. There are several types of
association wi th different semantics and different rules to use. Mos t of these rules are
defined by the Unified Mode l ing Language standard. However there is s t i l l a chance for
incorrect usage wi th in the standard. Therefore this work is aimed at creating a tool to
support software designers and prevent them from using U M L incorrectly.

The analysis chapter covers most of the topics that need to understood before the
problem becomes clear. However the reader is expected to have basic knowledge about
Object Oriented Software Model ing , Unif ied Mode l ing Language, U M L Class Diagrams
and X M L .

The usual software lifecycle consists of following phases: analysis, design, implemen­
tat ion and evaluation. This thesis follows the same pattern in its chapter organization.
Chapter 1 of this thesis is the Introduction. It explains the project background, motiva­
t ion and contr ibution the project w i l l make to the modeling community. The Introduction
brings the reader to further chapters and help h i m understand the problem this thesis
solves. Analysis in chapter 2 describes the U M L language and connected standards, defines
the problem of U M L correctness and explains the approach of using incorrectness patterns
that w i l l solve the problem. The chapter ends w i t h setting goals for this project. The
chapter 3 deals w i th the design of the tool . It forms the use cases according to the project
goals and analysis. The problem is decomposed into shared incorrectness pattern database
manageable v ia web interface, standalone tool for use from the command line and a plugin
for the U M L design software V i s u a l Paradigm. A l l of the components are designed using
U M L diagrams. The implementation covered i n chapter 4 focuses on implementing a l l of
the components designed i n the previous chapter. It also discusses the documentation and
the deployment of the tool . Chapter 5 proposes testing methods and approaches that w i l l

5

ensure, that the tool was implemented correctly. M i x of functional and system tests w i l l
be needed so that the too l is tested from different points of view and good quali ty can be
achieved. Chapter 6 evaluates the tool from several important aspects of quality. These
aspects need to be evaluated and the quali ty of the tool is examined on the reference dia­
gram. Based on the results the chapter points out the possible use of the tool and suggests
the extensions that would be good to implement in the future. Conclusion in chapter 7 is
the final chapter of the thesis. It sums up the whole thesis based on the solution of the
goals defined i n Analys is . The future development of the tool and this project is outlined.
A d d i t i o n a l information that are benefitial to the main part of the thesis are positioned in
the Appendices.

M a i n information source for this thesis is the published research concerning U M L cor­
rectness evaluation wi th the use of patterns. The most notable research is the catalog of
metamodeling anti-patterns by a group of researchers from Car le ton Univers i ty [11]. Other
great source is the research of B G U Mode l ing Group at B e n G u r i o n Univers i ty of the
Negev [3]. Th is project finds a way to br ing this research i n software modeling field and
U M L correctness evaluation using patterns into practice so that it assist software designers
in their every day tasks.

The work on topic of software design w i l l inevi tably face some issues. The most ap­
parent of the is the number of standards, languages and their revisions and applications
that exist in the world of software design. The standards were created so that they intro­
duce interoperability, however some U M L design tool vendors often do not support them
completely or just support specific versions. This thesis tries to address these issues wi th
extensible design and allows developers to create their own user interface and integrate the
tool into existing system. Another step towards knowledge unification is to allow users to
share the val idat ion data. Th is thesis also tries to be useful as a reference and addit ional
research therefore it is wri t ten i n Engl ish .

The finished project w i l l be able to assist software engineers during their modeling
work w i l l benefit to the result software quali ty and improve the overall software modeling
experience.

6

Chapter 2

Analysis

The analysis is important to correctly grasp the problem so that the best available tools
are used to achieve quali ty results. The information found out i n this chapter serve as a
foundation for design that directly influences the whole project.

Fi rs t of a l l , the chapter introduces the foundation standards and languages that serve
as a base for the rest of the analysis - X M L that w i l l carry the data w i th X M L Schema for
X M L val idat ion, U M L language wi th focus on U M L Class Diagram and interchangeability
v i a X M L Based on this knowledge the chapter introduces the terms U M L correctness and
incorrectness patterns that are key for this project. These terms are the main contr ibution
of the analysis step since the rest of the work is formed on top of them. The chapter
continues wi th more standards and languages that are more specific for the task that lays
ahead - first of a l l the O C L , followed w i t h Q V T that is a part of the final solution. Analys is
follows wi th overview of the tools that w i l l help along the way and continues wi th description
of technologies and testing methods that are used in the later chapters of this work, namely
Implementation i n chapter 4 and Testing i n chapter 5. The analysis chapter finally wraps
up w i t h the definition of the goals of this thesis.

2.1 Extensible Markup Language

Extensible M a r k u p Language or X M L is a flexible markup language that defines a set of
rules for encoding data to interchangeable format. The X M L language is standardized 1 by
the W o r l d W i d e Web Consor t ium W 3 C .

The principle is that the data are wrapped i n specialized X M L markup that describes
their data structure. Thanks to the markup, the X M L becomes readable for machines,
however it s t i l l remain readable for humans as well . The basic expression element of the
markup is tag. E a c h tag can have a set of unique attributes. Tags are organized into a tree
structure wi th one root element. The va l id X M L document consists of the X M L header
and one root element.

A X M L document val idat ion has two steps: a well formed and va l id document. A X M L
document is considered well formed it it complies w i th the X M L standard, tags are well
nested and it has one root element. A well formedness is usually checked dur ing parse of
the document - i f the document is not well formed, it can not be parsed at a l l . A valid
X M L document needs to conform to a specific schema type definition that describes order
and types of tags that can be present so that the document follows the correct structure.

^ t t p : / / w w w . w 3 . o r g / X M L /

7

http://www.w3.org/XML/

The val idi ty can be enforced by setting document type definition that should be checked
during parsing as well.

Work ing wi th X M L documents is mostly done using premade X M L parsers. In most
programming languages, X M L parsers are part of the basic standard l ibrary or they can
be easily included. Mos t well known approach to manipulate w i th X M L is the Document
Object M o d e l or D O M . After val idat ion, a X M L parser w i th D O M interface parses the
input file and constructs the X M L document tree. Developer can use a D O M l ibrary to
explore and manipulate w i th the document contents. M a i n advantages of this approach are
that manipulat ion w i t h the X M L document is simplified but most of a l l the document is
validated before the model is constructed. The D O M can be also buil t inside the program
and than rendered into X M L document. Th is ensures the X M L document correctness and
well formedness. Al ternat ive to D O M is Simple A P I for X M L or S A X . The S A X interface
enables the access to X M L elements in the process of parsing. It does not construct any
D O M automatical ly so users have to process the X M L i n the parsing process. Because it
does not construct the X M L structure i n memory, the S A X methods is more effective and
essential when manipula t ing wi th sizeable X M L documents w i th thousands of elements.
Howerver for simple documents the D O M method is more straightforward to use.

2.1.1 X M L S c h e m a

X M L Schema or X S D (X M L Schema Definition) is widely used language for X M L type
defintion. Similar to X M L , it is also standardized by the W 3 C . It defines the set of rules
X M L Document needs to follow to be considered val id . It extends the native Document
Typer Defini t ion D T D concept and introduces bu i ld i n or custom data types and element
inheritance. A l so one of the advantages is, that X S D is formally described also i n X M L . The
X M L schema defines non-atomic types that express the structure of the X M L document.
A s stated in the previous section, i f the X S D is defined i n the X M L document header, the
document is validated during the parsing process - parser knows the structure of the X M L
document. N o further val idat ion is needed and user can directly work wi th the D O M ,
because val idat ion is enforced. In this project, the X S D schema notat ion is modeled using
U M L class diagrams. App l i ca t i on of X S D schema and real examples from this project are
listed i n the chapter 4.

2.2 Unified Modeling Language

Unified Mode l ing Language or U M L is the standard modeling language for software and
systems development standardized by the O M G . A model is an abstraction of the real sys­
tem. The abstraction removes details that may be irrelevant or confusing so the model
becomes simplification image of the real system [13]. This makes the design more under­
standable. Another cr i ter ium of model l ing language is that it can not be too detailed like
using source code or too verbose and ambiguous like natural language - it needs to be a
formal modeling language. [23]

The Object Management Group (generally referred to as O M G) is a international, non
profit computer industry standards consort ium [31]. Standards created by O M G allow v i ­
sual design, execution and maintenance of software and other processes. Relevant standards
are U M L , X M I and Q V T are covered i n following sections.

U M L Class Diagram falls into the category of Logica l V i e w diagrams, it models the
system parts including classes from static point of view [33]. M a i n modeling elements are

8

the classes. Each class can have attributes or operations - methods i n the U M L terminology.
Classes are connected wi th relations of several different types wi th diferent semantics.

2.2.1 X M L M e t a d a t a Interchange

X M L Metada ta Interchange or X M I is a standard by O M G [30] for metadata information
exchange using X M L capable of carrying any data expressed as M O F . Since U M L meta-
model is considered to be a M O F meta-model, because it is defined as M O F standard, X M I
can be used as a model interchange format for U M L . The X M I standard is very complex so
this chapter analyzes information about what sections of X M I are essential for this project.

The U M L data expressed by X M I fall into two model categories: the abstract model and
the concrete model. The abstract model is more important for this project - it holds the
U M L semantics and instances of U M L expressed in M O F . O n the other hand, the concrete
model contains information about the U M L diagrams and their visual [14]. There is also
a dedicated part of the X M I standard called diagram interchange. This project checks for
correctness of the U M L diagrams. The correctness is evaluated only in the model itself, the
visual representation is not important .

The X M I standard is very general and complex so as a result, there is several vendor
implemented versions and X M I extension attributes that are not specified by the standard
are heavily used. A s a result some of the X M I are not compatible and tools often allow
export i n Development of U M L model l ing software is not an easy task, so most of the tools
are created and sold by specific companies. The most well known and open tool is a part
of the Ecl ipse Mode l l ing platform - the M o d e l Development Tools M D T 2.7.

X M I allows exchange of models on two forms: complete and as a transformation. The
complete model holds the definition of the U M L model - bo th ways in fragments or complete.
O n the other hand transformation form expresses just a differences of the model, changes
that are to be done i n a form of create, edit, delete records. The transformation model can
be ut i l ized i n situations, where a tool loads a model, makes changes, extends the model - the
changes and the source model can be exported separatelly. A l though this type of X M I form
can be used i n cases like. Th is type of X M I notat ion is suitable for some software design use
cases like using X S L T to transform U M L models i n a form of X M I [18] as an interchange
between tools and as a temporary model representation i n M o d e l Dr iven Architectures
M D A , but it is not suitable for checking. However every tool that supports export ing just
X M I transformations should also be able to export the whole model.

The latest version of the X M I standard is 2.4.1 released in 2011, w i th expected up­
coming version 2.4.2. However the most widely supported is X M I version 2.1. that is also
compatible w i th the M e d i n i Q V T library. The reason for that is, that X M I 2 is largely
different from X M I version 1.

2.3 Validity of U M L

This section elaborates on the term val idi ty of U M L diagrams. Understanding the term
correctly is important for next steps in the problem analysis.

The syntax of U M L is defined by the O M G standard and it is scrictly set. The input
representation for this project is the X M I format that is validated by the X S D . The syntax
of the input U M L w i l l be always correct.

The introduct ion suggested that the main problem for val idat ing U M L is the semantics.
The basic semantics is defined by the O M G standard. However just the recent U M L version

9

do have the basic semantic rules specified i n the form of O C L because of the merge wi th
M O F . However these rules are not enforced automatically, the enviroment has to support
them. Some of the software modeling tools can s t i l l produce inval id U M L diagrams and
export them using X M L

The other type of U M L val idi ty comes from the research on various topic of U M L
modeling. These sources often represent the inval id U M L constructions i n the form of
patterns. A l though some of the semantic errors are yet not a direct part of the U M L
standard, the U M L is s t i l l not considered val id .

A s w i th any other development there are some bad practices when using U M L . These
are not set by any rule or standard, but they follow a recommended way of design. The
bad practices certainly do not have the severity to match the true semantic errors, but they
s t i l l can be relevant to the user.

A n d finally, the last type of U M L val idi ty is the val idi ty against custom set of semantic
rules. Some companies or universities can enforce a set of rules, either the U M L diagrams
or the source code generated from them needs to obey. The other source of custom semantic
or syntactic rules may also be a personal preference of the developer or designer.

This project tries to be as open as possible so it needs to take into consideration following
sources of U M L invalidi ty:

1. The U M L Standard by O M G

2. Pat tern databases from research

3. B a d practices, recommendations

4. Cus tom company or personal requirements

2.4 Incorrectness Patterns

The problems i n U M L model and class diagram are caused by undesirable interactions or
constraints. The constraints i n U M L language are very diverse and that makes analysis of
problematic interactions very dificult. However typ ica l interactions can be identified and
sorted into groups by structure. A n d this is where patterns come in . E a c h group can be
expressed by a incorrectness pattern.

A Pa t te rn can be also viewed as a set of properties. The first one would be the name
of the pattern, that characterizes the pattern i n a few words. T h a n there should certainly
be a description of the problem on hand in pla in informal text. The description should be
accompanied by an example i n a form of simple demonstrative U M L diagram that serves
also as identification structure for the user. Very important component is also a repair
advice, notes on how to refactor the diagram so that the diagram is correct.

2.4.1 P a t t e r n Sources

Last section described patterns as a base unit for checking the correctness and defined
the pattern metadata and ways to express i t . This section continues wi th the overview of
sources, that may contain patterns both direct ly - patterns can be adapted and expressed to
be used wi th in the too l or indirect ly - patterns need to be formalized. Some of the pattern
sources are online incorrectness pattern catalogues that are results of years of research and
experience i n software modeling. They are developed mostly for educational purposes or
as a reference of design problems, their explanations and repair advice.

10

One of the aims of this analysis is also to extract pattern categories. Summary of the
pattern categories identified in the catalogues is listed i n the table 2.4.1.

Patterns, Ant i -Patterns and Inference Rules

Firs t of presented pattern sources is an online catalog by B G U Mode l ing Group from Ben-
Gur ion Univers i ty of the Negev that was created as a result of years of research and several
articles [5]. It is mainly focused on correctness and quali ty of class diagram design.

This research defines the class-diagram as a backbone of U M L and sees it as a collection
of classes, associations, attributes and operations, and constraints that are imposed on
them [21, 20]. Instance of the class-diagram is placed into the context of a domain and
the symbols are mapped to the elements i n the domain. Classes are mapped onto objects,
properties are mapped to mult i-valued functions over the sets and associations are mapped
to relationships between sets of objects.

The work also defines a pattern class diagram [2] for easier pattern notat ion. This nota­
t ion is also more suitable for pattern justufication and correctness proof using the catalogue
system. However the main and most important source for the tool is text description of
the problem and the pattern.

In the pattern catalogue, patterns are categorized into 2 ma in categories: correctness
and quality. Correctness category afterwards splits into incosistency that represents pat­
terns indicat ing class diagram can not have an existing instance and finite satisfiability
patterns that match classes that do not satisfy the mul t ip l ic i ty requirements of the model.
Quality category patterns indicate errors w i th lower pr ior i ty that may be considered more
like a warning. Patterns are split into redundancy problems describing imprecise specifica­
t ion such as syntactic error, missing information or mul t ip l ic i ty constraints are not specified
clearly enough and comprehension patterns that lower the clari ty of the design [4]. However
patterns from the last group are not yet available and usable for the needs of the tool .

Metamodel ing Anti -Patterns

Another one of the pattern catalogues is the Metamodel ing Ant i -Pat terns catalogue [10].
One of the authors Maged Elaasar is also a member of O M G and some information and
approaches from this catalogue were used by the O M G and U M L Revis ion Task force
or U M L R T F to validate the U M L standard itself, see the work of the U M L R T F at [28].
Please note that the terminology anti-pattern or pattern depends on the context and author.
Throughout this text there w i l l be expl ict ly used only the term pattern that w i l l cover a l l
errors i n U M L representable by a pattern.

The catalogue is targeted mainly on the U M L language from version 2, but also on
M O F [8]. S imi lar ly to the previous catalogue, it represents errors that can occur during the
modeling by patterns that are grouped into categories based on the problem they cover.
The quali ty of the patterns are supported by the renowned authors and a fact, that they
are used by a group directly i n O M G and w i l l have a big influence on the quali ty of future
U M L revisions. E a c h pattern is identified by a informal full text specification, a pattern
example and a formal specification using the Q V T language [12, 11].

This paragraph elaborates on the relation between U M L and M O F . The U M L meta-
model is t ight ly bound wi th the M O F since recent revision 2.4. A s [10] describes, the
separate M O F w i l l be considered deprecated and it is instead replaced wi th U M L 2.4 meta-
model w i t h addi t ional constraints on top. This method w i l l be the future way to define
the abstract syntax of modeling languages start ing wi th U M L 2.4 itself. Th is t ransi t ion is

11

caused by the lesser usage of M O F (mostly used just for import and export of models) and
a wide spread of U M L that is ut i l ized for model definition. O C L sample [32].

This catalogue differs patterns into following categories [9]: U M L , M O F , Sematic, C o n ­
vention and Notat ional .

The UML category contains patterns that affect the integrity of the model based on the
semantics of U M L 2.4. It contains some patterns documented in the recent U M L standards,
but some of them are unique and most definitelly w i l l be a great addit ion to the project
pattern database.

The MOF pat tern category is similar to U M L , but covers pattern that are unique wi th
M O F .

The next category, Semantic patterns contain patterns, that are syntactically according
to specification, but they may cause confusion or problems when used i n the model . These
patterns have lower severity and should be assigned appropriately.

Category wi th even lower severity called Convention contains patterns that violate the
naming or documentation conventions. Th is category should be also considered only as
warning severity.

A n d finally the last category, the Notational patterns. These patterns cover errors in
the diagram itself. A l though occurence of these patterns may lower the clar i ty of the model,
they do not have any direct influence on the U M L model validity. Moreover the notat ion to
visual ly represent the diagram in X M I is not unified. There is a Diagram Defini t ion standard
by O M G , see [26], but it is not unified throughout the software modeling community and
as a result, most tools use their own notat ion to interchange the visuals of the diagram.
Most tools use the capabilities XMI .ex tens ion and their own set of elements to denote the
placement and formating of diagram elements.

Pattern Category Severity
Correctness - Inconsistency Er ror
Correctness - Fin i te Satisfiability Er ro r
Qual i ty - Redundancy Er ror
Qual i ty - Comprehency Not Supported
U M L Er ror
M O F Er ro r
Semantics Warn ing
Convention Info
Notat ional Not Supported

Figure 2.1: Table: Overview of Pa t te rn Categories

2.5 Object Constraint Language

Object Constraint Language (referred to as O C L) is another one of O M G standards. O C L
is a declarative language that can describe rules that w i l l be applied on U M L models so
it is a part of the U M L standard. It was generalized so that it can be used on the M O F
based models. M a i n purpose of this language is to provide a constraint and object query
expressions that can not be expressed wi th diagram notation.

12

O C L Constraint

The O C L consists of a set of O C L Constraints. O C L Constraint is basically an O C L
expression that results in true or false. The expressions use U M L Class Diagram naming
- classes in constraint can be addressed by their names, navigation through the diagram is
possible by using attributes or roles.

M a i n parts of each O C L Expression is Context and Invariant. Context specifies the
element O C L Expression should be evaluated for. Another important part of O C L are
collections, because they allow to work wi th elements i n general.

Here you can find a simple O C L Expression that checks, that for U M L Class Diagram
at 2.2 Ancestor and Descendant cannot be the same person as the Person O C L is evaluated
for (variable self)

context Person
inv: ancestors->excludes(self) and descendants->excludes(self)

ancestors

parents

Person

0..2

children

descendants

Figure 2.2: O C L Example

A s shown i n example, O C L is most generally applied to enforce rules for the U M L
models. However O C L is applied to objects, not the U M L Diag ram itself. Next step of
O C L evolution is the Q V T described i n 2.6.

2.6 Query/View/Transformation

Q V T is an abbreviation for Query /View/Trans fo rma t ion and as a ti t le indicates, it is a
set of languages used for model transformation. A s other similar software design standards
it is also defined by O M G [27]. Together the languages are capable of M o d e l transforma­
tion, important part of Mode l -Dr iven Architectures. A l l languages operate on M O F 2.0
compliant metamodels, such as U M L 2.0. The Q V T standard also includes O C L 2.0 2.5
and extends it w i t h imperative features. Tha t makes Q V T more suitable of checking U M L
correctness.

The connection languages from the Q V T set have is depicted i n the diagram 2.3.
Q V T Operat ional is first of the Q V T languages and covers imperative features capable of

unidirectional transformations. Q V T Relations is a declarative language that implements
model transformations. The transformations can be also run i n check only mode, that
validates, i f the model is consistent according to the transformation. Final ly , Q V T Core is
declarative language that is a target of Q V T Relations language.

A l l of the U M L correctness patterns can be specified i n this language so it can be
efficiently applied to check the U M L model correctness similar to approach i n articles [12,

13

10]. However the Q V T standards are very universal and complex and as such, it is not
supported by many tools or libraries. However Q V T Relations is implemented by a few
tools or libraries that can be used.

Relations

1

Operational
Mapping

Relations to Core
Transformation

Black Box
Implementation

I
Core

Figure 2.3: Diagram: Q V T Language [27]

2.7 Eclipse Modeling Framework
The Ecl ipse Mode l ing Framework or E M F is a modeling framework and code generation
platform for bui ld ing tools and application based on a structured data model [34]. It is
an optional part of the Eclipse I D E . The tool can descibe the domain model. This meta-
model describes the structure of the result model, the result model is its instance. The
E M F provides a framework to store the meta-model so that it can be created and defined
wi th various technologies [1]. The advantage of this approach is that the domain model is
explicitely defined and clearly visible. W h e n the meta-model is defined, the result model
can be automatical ly generated including interfaces and factories or even the complete Java
code. The Ecl ipse E M F also has a runtime support for the models, persistence v i a X M I
serialization and generic reflective A P I for manipula t ing the objects.

2.7.1 E c o r e

Ecore is the meta-model for Ecl ipse E M F . The purpose of meta-model is to describe other
models. The meta-model is buil t from basic elements: object classifications EClass, object
attributes EAttribute, associations between the objects ERef erence, operations and simple
constraints [22]. The relationship of Ecore to other models is shown i n the figure 2.4. A l l
models are equivalent: the U M L Class is transferable to the Ecore EClass , X M L Schema
Complex type or the implementat ion of the Class in Java. Because of this, the meta-model
can be implemented by any of these languages.

14

^ Java

Figure 2.4: Diagram: Ecl ipse E M F Ecore [22]

2.7.2 E c l i p s e M o d e l D e v e l o p m e n t Too l s

Eclipse M o d e l Development Tools or M D T is a project that focuses on implementat ion of
industry standard metamodels in the Ecl ise Mode l ing Framework. The project also provides
tools for developing models based on these meta models. The most important part for this
thesis is the U M L 2 implementat ion Eclipse M o d e l Development Tools offer. The U M L 2
implements the Unified Mode l ing Language meta-model. Par t of the U M L 2 project is also
a support for common X M I schema interchange. Since the M e d i n i Q V T engine (see 2.8)
this thesis uses the same E M F platform, the output X M I from M o d e l Development Tool
should be the most compatible.

2.8 Medini QVT

M e d i n i Q V T is an I D E for model to model transformations [16]. The main feature is the
engine to parse and execute the Q V T Relations. The I D E includes graphical Q V T debugger
that also allows developer to step through the relations. The Q V T sources are edited in the
Q V T editor w i th syntax highlighting and code assistance. The result Q V T transformations
are be executed and debugged directly in the I D E . A l l of these features extremely help
during the development of Q V T transformations. The M e d i n i Q V T I D E offers one of the
best support for Q V T development so it is highly recommended for implementat ion of Q V T
patterns.

The Q V T engine is bu i ld on top of the Eclipse framework and it uses the same l ibrary
system. The development plan was to release the functionality directly as an eclipse plu-
gin, but the work has not been finished. However it is s t i l l possible to use the libraries
together w i th essential Ecl ipse framework libraries in custom developed applications [17].
The libraries can be integrated to the core of the tool l ibrary so that the Q V T engine is
available to perform the transformations from the U M L model to the U M L Result model.
The M e d i n i Q V T engine components are free to use for non-commmercial use and they
are relase under the E P L license. The latest version released is M e d i n i Q V T 1.7.0 Release
Candidate that dates to 2011. It is targeted on the Ecl ipse 3.6 Helios and uses E M F version
2.6.1.

Bundled wi th the I D E there is also an example project w i th a set of Q V T relations
language that helps dur ing the devlopment as well . Other source of the documentation
are also tutorials on the M e d i n i Q V T homepage [15]. The tool works generally w i th any
models represented in Ecore.

15

2.9 Visual Paradigm

V i s u a l Pa rad igm is a well known, cross-platform and easy to use visual UML modeling and
CASE tool. Its interoperabili ty w i th other tools and I D E also contributes to streamline the
model driven development process. The tool is capable of using not only a l l kinds of U M L
2 diagrams, but also other notations for the database and business process modeling [38].
Th is section is focused on the description of V i s u a l Pa rad igm and U M L class diagrams.
It also points out a way to extend V i s u a l Parad igm functionality so that it can become a
platform for this project.

The default user interface of V i s u a l Pa rad igm is shown i n the figure C .3 . O n the top
side, there is main menu. The toolbar w i th icons is placed under the menu. O n the left
side there are various panels for browsing models, diagrams and changing attributes. A n d
finally the most place on the screen takes up the diagram designer window.

2.9.1 V i s u a l P a r a d i g m M o d e l Q u a l i t y C h e c k e r

M o d e l Qua l i ty Checker is a diagnostic tool that identifies potential design problems in the
V i s u a l Parad igm project [36]. User is presented wi th the errors in the diagram elements.
The error severity is based on the point system. Each problem is assigned a point value and
when the sum for an element exceeds the threshold it is considered as a problem element.
A problem can be fixed based on a suggestion or ignored. The problems are listed in the
figure 2.9.1.

M o d e l element at root
Name does not contain glossary terms
Non-blackbox pool w i th no lane nor contained shapes
Task has more than one outgoing flow
M o d e l element without any relationship

Figure 2.5: L i s t ing : V i s u a l Parad igm M o d e l Qua l i ty Checker problems [36]

Outside the M o d e l Qua l i ty Checker, V i s u a l Pa rad igm also checks for constraints that are
set by the U M L standard. However the plugin implemented by this project can introduce
other types of rules and constraints including a lower severity recommendations. There is
also a possibil i ty to define entirely custom rules or share them v ia the database.

A d d i t i o n of the plugin would greatly enhance the functionality of M o d e l Qua l i ty Checker
in V i s u a l Paradigm. Next section describes the basic rules of developing a plugin for the
V i s u a l Paradigm.

2.9.2 P l u g - i n D e v e l o p m e n t

V i s u a l Parad igm has an open architecture that results in the possibil i ty of extending the
framework through its O p e n A P I [35] v ia plugins implemented in Java. The A P I allows
modification of V i s u a l Pa rad igm model data, invocation of bui ld- in functions and also
implementing a set of custom functions to add features or services to V i s u a l Paradigm.
Also the plugin can extend the V i s u a l Pa rad igm user interface by adding custom menus and
tools for triggering the newly added functionality. Since the new functions are implemented
in Java, they can implement their own user interface using the standard Java graphical user
interface libraries and packages.

16

Extending V i s u a l Parad igm wi th plugins is not complicated. The plugins based on the
O p e n A P I can be developed using the l ibrary openapi. jar provided by V i s u a l Parad igm
as a part of a standard instalat ion in the l ib subdirectory. This l ibrary defines the interface
between the plugin and V i s u a l Paradigm. The documentat ion is available i n a form of
Javadoc that is downloadable from the V i s u a l Parad igm website 2 .

com.vp.plugin

« I n t e r f a c e »
VPPIugin

« I n t e r f a c e »
VPActionController

+loaded(pluginlnfo : VPPIuginlnfo)
+unloaded()

+performAction(action : VPAction)
+update(action : VPAction)
+operation()

Figure 2.6: Diagram: V i s u a l Parad igm O p e n A P I

A s explained in the diagram 2.6, the O p e n A P I defines two basic interfaces, VPPIugin
and VPActionController. Each plugin must have a class implementing the interface
VPPIugin that has a possibil i ty to attach the functionality on load and unload of the
plugin and at least one class implementing VPActionController that handles the actions
invoked from the menu, popup menu or toolbar. These classes along wi th the other classes
implementing the plugin logic are stored wi th in a package. The plugin registers itself w i th in
V i s u a l Parad igm using a X M L file w i th metadata named plugin.xml. The structure of
the P l u g i n X M L file is displayed in the diagram 2.7. The top element is plugin that holds
basic metadata, i d and name of the plugin, class attribute is a name of the class that im­
plements interface VPPIugin. P l u g i n is a set of actionSets. Each of the actionSets can
contain its own menu, toolbar and a set of actions. E a c h of the actions require at least one
actionController that w i l l be executed [37].

plugin

id
name
description
c lass : VPPIugin

actionSet

menu
id
label
mnemonic
menuPath

Z 3
toolbar

id
orientation
index

action

id
actionType
label
tooltip
style
menuPath
icon
actionController: VPActionController[]

Figure 2.7: Diagram: V i s u a l Parad igm plugin .xml

The p lugin is installed just by copying the files in predefined folder structure to the
V i s u a l Parad igm instalat ion directory. The implemented plugin needs to have the correct
file and folder structure so that it can be successfully deployed. The file and folder structure

2 <http://www.visual-paradigm.com/support/documents/pluginapi.jsp>

17

http://www.visual-paradigm.com/support/documents/pluginapi.jsp

is displayed i n the figure 2.8. The root directory is named after the plugin i d defined in the
plugin.xml file. It contains a directory classes w i th a l l compiled Java classes and also the
plugin.xml file that tells V i s u a l Parad igm how to integrate the plugin into the interface.

<plugin>
classes

<plugin package>
<action packages>
implemented VPPlugin.class>
implemented VPActionController.class>

plugin.xml

Figure 2.8: L is t ing : The V i s u a l Parad igm P l u g i n Directory Structure

There are several available licences for V i s u a l Pa rad igm 3 . The V i s u a l Pa rad igm Stan­
dard license is available for B U T F I T students. There is also a Communi ty version free for
non-commercial use 4 . A l l of the available versions have a plugin capability.

2.10 Technologies for Implementation

This section introduces the technologies, that w i l l be used i n the implementation phase.
This project is a set i f tools including command line application, plugin for V i s u a l Parad igm
and a database managed over the web interface. The database stores a l l the patterns that
are used for val idat ing the U M L diagram so this component w i l l be described first. B o t h
command line application and plugin for V i s u a l Parad igm work wi th the database of the
patterns and w i l l share some of the functionality.

2.10.1 D a t a b a s e

Patterns should be stored on the server part inside the relational database. This method of
storage is commonly used i n combination wi th web interfaces. It also provides a possibil i ty
to uniformly store the data so that they can be easily manipulated wi th . Rela t ional S Q L
based database also provides enough space for possible extension i n the future.

For the implementat ion of the database the Pos tg reSQL server was chosen, because it
is open source, however it provides business class features [25]. A s an open source software
it can be easily installed on any system so that the pattern web management system can be
also deployed privately [6]. The schema of the database that stores the patterns however
does use only standard S Q L features and dialect and can be easily ported to any other
database system.

2.10.2 T h e Server

The server part is direct ly connected to the database and hosts web interface for users to
manage the pattern database. The whole set of tools w i l l share a common l ibrary that w i l l
contain a model (see chapter 3) so it is convenient to implement the server part i n Java.
The technologies chosen for the implementat ion of the server part are J S P in combination

3 <http://www.visual-parad.igrn. com/editions/>
<http://www.visual-paradigm.com/editions/community.jsp>

18

http://www.visual-parad.igrn.%20com/editions/
http://www.visual-paradigm.com/editions/community.jsp

wi th Java Servlets and Freemarker templates. Java Servlet is s imply put a t radi t ional
Java class put i n the enviroment of the server. Its m a i n task is to handle the request
and return the appropriate response. The output web page is rendered using the M V C
architectural pattern and Freemarker templat ing engine. M o d e l V i e w Controller or M V C
is a software architectural pattern for implementing user interfaces. A s the tit le suggetsts,
its ma in components are the model that is the interface for accesing the data, controller
manipulates w i th the model and sets the view and finaly V i e w requests information from
the model and outputs them for the user. The M V C architectural pattern is displayed in
the simple diagram 2.9.

User

Figure 2.9: Diagram: M o d e l / V i e w / C o n t r o l l e r Archi tec tura l Pa t te rn

2.11 Testing

Section briefly explains basic terms and testing approaches that apply to this project. The
term testing can be defined according to [24] as the process of executing a program wi th
the intent of finding errors. The testing process tries to add a value by raising the quali ty
or rel iabil i ty of the final product.

The most well know testing strategies are B l a c k - B o x and W h i t e - B o x testing. The Black-
Box testing strategy percieves the program as a black box, the test does not have any
knowledge or assumptions about the inner structure of the program. The test data are
created direct ly from the in i t i a l specifications and requirements. The workflow usually is
to prepare the input test data, execute the program and compare results w i t h expected
output.

The second complementary testing strategy is the White-Box testing. This approach
tests the inner structure and the logic of the applicat ion as opposed to B l a c k - B o x testing.
The test data are derived from the logic of the program or directly from the source code so
that possibly every statement i n the source code is tested.

None of these testing strategies are perfect. A s a result they are mostly executed
together i n synergy so that m a x i m u m coverage and quali ty enhancement is achieved.

2.11.1 U n i t T e s t i n g

Uni t testing is the process of testing the ind iv idua l subprograms, subroutines, classes or
procedures in a program. The unit testing work wi th decomposed program and it heavily
relies on knowing the inner structure and thus it falls into the W h i t e - B o x testing category.
However tests on the inner logic are often complemented by a set of B l a c k - B o x tests so

19

that the unit specification is covered. This project makes use of the unit testing to test
the inner logic of several key components. The components w i th a big influence on result
product were chosen so that the benefit of the testing is the largest. Since the unit testing
is executed on the lower level of the decomposition and is closely t ied wi th the source code,
it can be easily automated.

2.11.2 F u n c t i o n a l T e s t i n g

Funct ional testing tries to find discrepancies between the program and external specifica­
t ion [24]. The first task of functional testing is to identify the test cases by analysis of the
specification. The function testing usually is a black-box act ivi ty so the important part of
the test is to prepare the test input and expected result. The test follows what the system
does wi th the input and than compares the real output w i th the expected one. Funct ional
test are executed according to the test plan. In some cases, it is possible to automate them
but manual test execution is not an exception.

2.12 Goals

G o a l of this thesis is to implement a tool to check correctness of an U M L Diagram, specif­
ical ly Class Diagram. The standalone tool for use from the command line w i l l work on
top of the interchangeable representation of UML diagrams and produce text based correct­
ness analysis results. Another interface of the too l w i l l be also implemented as the Visual
Paradigm modeling software plugin that w i l l analyze the currently opened diagram and
present the results i n the graphical user interface. B o t h of the tools use the same plat­
form wrapped in the library and a shared database of incorrectness patterns manageable
v i a a web interface. The openess and extensibili ty of the tool should be emphasized in
the implementat ion process. The result tool w i l l be tested, evaluated and finally published
online.

20

Chapter 3

Design

The design phase deals w i th modeling the system so that there is a clear overview and of
what needs to be done i n the next step - the implementation.

Design phase usually starts w i th requirements for the system. The source of require­
ments for this project is the thesis assignment and goals identified i n the section 2.12. These
requirements are represented i n informal p la in text, so the most suitable next step is to
represent them i n a more formal way so that the requirements can be used as a foundation
for the rest of the design process. The requirements w i l l be modeled using U M L use case
diagrams. After defining the use cases, user roles and tasks become more clearer so that
the system can be decomposed into functionally separated components in the section 3.2.
A t this point, more U M L modeling techniques can be applied and the decomposed system
can be modeled, at first the input, followed by the pattern data and the logic of the tool
and finaly an output.

3.1 Use Cases

The use cases are a way of expressing the functional requirements of a system and are a
good start ing point fo problem decomposition and further software design [13]. They are
created on top of the in i t i a l requirements that are set by the assignment and goals identified
in the section 2.12.

The use case diagram implementat ion begins wi th the role identification. The require­
ments describe two interfaces for the applicat ion targeted on different types of user. The
different user interfaces are express by two roles: Command Line Tool User and Visual
Paradigm Plugin User. Since the most of the functionality in both interfaces is similar the
general Tool User role is also identified. The use cases common for both interfaces are
assigned to the Tool User role. The roles C o m m a n d Line Tool User and V i s u a l Parad igm
P lug in User both share the use cases of the Too l User role and add a few use cases specific
for the interface and type of use. The complete use case diagram is shown in the figure 3.1.

The pattern database web interface as stated i n the requirements is shared and allows
management of the patterns. The sharing of the database is modeled by the Update the
pattern database use case. The management of the pattern database is aimed at more
advanced users or developers. This requirement is represented by the role Tool Power User
that has the use cases of Managing the pattern database and also to Export the patterns.
The use case diagram for Too l Power User role is shown in the figure 3.2.

The use case diagram is a more structured representation of the requirements. However

21

Figure 3.1: Diagram: Use Case diagram - Too l User Roles

Figure 3.2: Use Case diagram - Too l Power User Role

22

the use cases need to be described i n more detail .

View pattern detail: display a l l information about a specific incorrectness pattern.

List patterns: list a l l patterns in the database.

R u n correctness analysis: run the correctness analysis and display results.

Update pattern database: download updated database from the server.

Display help: display a short tu tor ia l (plugin) or display arguments (cli).

Ignore patterns: disable specific pattern from the correctness analysis.

Ignore U M L elements: disable checking of specific U M L element.

Set pattern database file: set file containing the pattern database.

Set input file: set input file w i th the diagram.

Set property file: set property file w i th configuration.

Install the plugin: ins ta l l the plugin using the native method.

Set input model: choose a model to be analyzed.

Highlight errors: highlight an U M L element from the correctness analysis results.

Manage the pattern database: create, edit or delete patterns from the pattern
database.

Expor t the patterns: export the whole pattern database.

Use Case: Expo r t the Patterns
ID: 01
Actors: Too l Power User (User)
Preconditions:
1. The pattern database web interface is opened.
Event Flow:
1. User clicks on the export menu.
2. System returns a file for the download.
Post conditions:

Figure 3.3: Use Case Deta i l : Expo r t the Patterns

23

Use Case: Manage the Pa t te rn Database (Create)
ID: 02
Actors: Too l Power User (User)
Preconditions:
1. The pattern database web interface is opened.
Event Flow:
1. User clicks on the patterns menu.
2. System displays a list of all patterns.
3. User chooses to create a new pattern.
4. System opens the create a new pattern form.
5. User inputs the pattern metadata and submits the form by cl icking submit.
6. System opens the create a new pattern form.
Post conditions:
1. Pa t te rn is persistently saved.
2. Pa t te rn is available for update and export.

Figure 3.4: Use Case Deta i l : Manage the Pa t te rn Database

Use Case: Manage the Pa t te rn Database (Delete)
ID: 03
Actors: Too l Power User (User)
Preconditions:
1. The pattern database web interface is opened.
Event Flow:
1. User clicks on the patterns menu.
2. System displays a list of all patterns.
3. User clicks the delete l ink on the pattern line.
6. System opens the list of all patterns.
Post conditions:

1. Pa t te rn is deleted and no longer available for update and export.

Figure 3.5: Use Case Deta i l : Manage the Pa t te rn Database

Use Case: Highlight Errors
ID: 04
Actors: V i s u a l Pa rad igm P l u g i n User (User)
Preconditions:
1. The V i s u a l Pa rad igm wi th installed plugin is opened.
2. The U M L class diagram is currently open.
3. The correctness analysis has completed.
4. The correctness analysis results dialog is opened.
Event Flow:
1. User clicks on the U M L Element i n the B i n d i n g column
2. P l u g i n highlights the U M L Element in the diagram.
Post conditions:

Figure 3.6: Use Case Deta i l : Highl ight Errors

24

Use Case: R u n Correctness Analys is
ID: 05
Actors: V i s u a l Pa rad igm P l u g i n User (User)
Preconditions:
1. The V i s u a l Pa rad igm wi th installed plugin is opened.
2. The U M L class diagram is currently open.
Event Flow:
1. User clicks on Analyze i n the plugin ma in menu.
2. P l u g i n runs the correctness analysis and opens a new dialog w i t h the analysis results.
Post conditions:

Figure 3.7: Use Case Deta i l : R u n Correctness Analys is

Use Case: V i e w Pat tern Deta i l
ID: 06
Actors: V i s u a l Pa rad igm P l u g i n User (User)
Preconditions:
1. The V i s u a l Pa rad igm wi th installed plugin is opened.
2. The tool web interface is accessible v i a network.
Event Flow:
1. User clicks on Patterns in the plugin main menu.
2. P l u g i n opens a new dialog wi th the list of patterns.
3. User clicks on the Details l ink in the pattern list row.
4. P l u g i n opens a new dialog wi th the pattern detail .
Post conditions:

Figure 3.8: Use Case Deta i l : V i e w Pat te rn Deta i l

Use Case: Upda te the Pa t te rn Database
ID: 07
Actors: V i s u a l Pa rad igm P l u g i n User (User)
Preconditions:
1. The V i s u a l Parad igm wi th installed plugin is opened.
2. The tool web interface is accessible v i a network.
Event Flow:
1. User clicks on Update i n the plugin main menu.
2. P l u g i n updates the local pattern database.
Post conditions:
1. L o c a l pattern database is updated.
2. Next correctness analysis and pattern list w i l l load the updated database.

Figure 3.9: Use Case Deta i l : Update the Pa t te rn Database

25

3.2 Decomposition

W h e n the specifications are clear enough, decomposition process can start. The tool de­
composit ion is shown i n the diagram 3.10.

Pattern Database

A

Core

Pattern Model

Web

Plugin API

XMI

QVTr Transformation

UML Model
QVT Engine

V A
Result Model

Plugin API

Text

Figure 3.10: Diagram: Too l Decomposi t ion

The input of the tool is the U M L class diagram. In case of the command line interface,
the diagram is stored i n X M I . The V i s u a l Parad igm plugin reads the diagram v i a the plugin
A P I from currently open class diagram. The output of the tool are the correctness analysis
results. The analysis result consist of the identified pattern, severity and an U M L element
the pattern was matched on. The command line interface outputs p la in text, the V i s u a l
Parad igm plugin shows a dialog wi th the analysis result. O n the server, patterns are stored
inside the pattern database. O n the client, the database is stored i n the local file. Also it is
updateable from the server. The database is manageable v i a the web interface. The client
tool functionality is placed inside the library. Input of the engine is the U M L M o d e l and
Q V T Script . The UML Model is created by client directly from the P l u g i n A P I or X M I .
The QVT Script is generated from the pattern database. The U M L M o d e l is transformed
by the QVT Transformation to the result model. The result model is taken by the client
application and presented to the user v ia plugin API or text.

3.3 Command Line Tool

The command line tool is a standalone application for use from the command line capable
of checking correctness of U M L diagrams. This section describes the functionality that is
unique to this interface and they are not covered by the common library.

3.3.1 Input a n d O u t p u t

The command line tool performs the analysis on the U M L model so it w i l l be the main input
of the tool .The other input the applicat ion needs are the applicat ion settings. The settings
are be specified i n the config file or can be overriden direct ly by some of the command line
application arguments. The model is represented by input XMI file described i n the section

26

Core

Pattern
Database

Pattern Model
Pattern

Database
Pattern Model

XMI UML Model XMI UML Model Result Model Text Result Model ^* Text

Figure 3.11: Diagram: C o m m a n d Line Tool Overview

2.2.1. The X M I file is standardized by the X M L schema, so it can be validated. Th is file
is parsed into the UML Model and passed to the core of the tool that w i l l use it for the
analysis.

The ma in data that the tool works on top of are the patterns. The patterns are loaded
from the pattern database into the local X M L file. The file can be updated anytime. Every
t ime the application starts, the pattern model is loaded from the file and passed to the core
of the application as well.

The ouput of the command line tool is the results of the correctness analysis. The
results come from the core of the application in a form of the result model. The model is
formated into a table using whitespaces and printed to the standard output as text. The
ouput contains the pattern id , pattern name, severity, and the identification of the elements.
It is simple enought so that it can be processed automatical ly by a wrapper appl icat ion or
just redirected to the log file and read later. If a more detailed report is needed, the user
can indiv idual ly use the pattern identifiers i n combination wi th the view pattern detail use
case to view pattern details including a l ink to the web that contains more information.

3.3.2 T o o l M o d e s

The the A c t i v i t y diagrams model the workflow and processes in the software. The act ivi ty
diagram is in the figure 3.13. The diagram describes the different modes and flow of actions
for the command line standalone tool . The typica l use of command line appl icat ion is
to set the arguments, application runs, parses the arguments, does the task defined by the
arguments and exits. If the user wants to do something else, the applicat ion needs to be run
again. This paradigm forces the application to behave i n several different modes according
to the argument set.

After being executed, the command line application loads the pattern database every
time. After that it analyses the arguments and sets its mode acordingly. The mode defines
other act ivi ty that the application needs to do and it does reflect the modeled use cases.
Another view on the application mode is the command line arguments. The mapping of
use cases to command line arguments is shown in the table.

27

Argument Use Case
-a,-analyze
-c,-config F I L E
-d-database F I L E
-e-enable I D B O O L
-h,-help
- i - i n p u t F I L E
-1,—list
- p - p a t t e r n ID
-u -update

R u n correctness analysis
Set property file
Set pattern database file
Ignore patterns
Display help
Set input file
Lis t patterns
V i e w pattern detail
Update the pattern database

Figure 3.12: M a p p i n g the Use Cases to C o m m a n d Line App l i ca t ion Arguments

3.4 Visual Paradigm Plugin

The tool w i th standard desktop user interface is be implemented in a form of a plugin to the
V i s u a l Pa rad igm modeling software. The plugin is directly connected to the user interface.
The plugin version of the too l is more targeted on users and it is more intutive and easier
to use. The components of the plugin are shown in the figure 3.14.

3.4.1 Input a n d O u t p u t

The input and output of the V i s u a l Parad igm plugin utilizes the O p e n A P I that allows
plugins to communicate directly wi th the interface of the V i s u a l Parad igm software.

The input is the U M L M o d e l . The core of the tool provides the data structures for
representing and managing the U M L M o d e l so the plugin just needs to load the model
into the structures and pass down to the core of the application where it w i l l be processed.
Thanks to the O p e n A P I , the model is loaded direct ly from the V i s u a l Pa rad igm and its
active diagram. The diagram elements are matched on the model and saved into the data
structures. The other input data needed is the patterns from the pattern database. The
patterns are stored in the local X M L file and loaded into the pattern model data structures
when needed.

The output of the V i s u a l Parad igm plugin is presented to the user v i a the standard
desktop user interface. The V i s u a l Parad igm plugin A P I allows plugin to use the tabbed
text output. W h e n the text output is not sufficient, p lugin can invoke a dialog w i th custom
content. The plugin uses two basic types of dialog window wi th s imilar visual design
but different functionality. One of the use cases the plugin supports is to list the pattern
database. The patterns are displayed i n an organized table that is clear and effective for
the user to use.The table contains typica l pattern metadata defined by other sections. The
last column of the table contains a clickable element. This w i l l open a new dialog window
wi th the pattern details loaded direct ly from the server part.

3.4.2 U s e r Interface

The user interface of the plugin is merged wi th the user interface of the V i s u a l Parad igm
client application. The whole functionality of the plugin is controlled from the main menu of
the application. W h e n the plugin is installed a new menu section UMLLint appears direct ly
in the main menu. The menu contains these actions: Analyze , Database, Homepage and
Setup. The action Analyze runs the correctness analysis and displays a window wi th analysis

28

V
Load pattern
database

[Mode=Update] [Mode=FilterPatterns] [Mode=FilterElements]

to
so

V
Update the
database

V
Reload
pattern
database

V
List
Patterns

V V
Enable
pattern

Enable
element

V V
Print the
confirmation

Print the
confirmation

• o -

[Mode=DetailPattern] [Mode=ListPatterns]

Mode? V

Display pattern
detail

V

List
patterns

[Mode=Analyse]

Validlnput? \ /

Figure 3.13: A c t i v i t y Diagram

Pattern
Database

Pattern Model

Core

Active Class
Diagram

UML Model
Active Class

Diagram
UML Model Result Model

Dialog
Window

Figure 3.14: Diagram: V i s u a l Parad igm P l u g i n Overview

results. The Database allows user to browse the database. The patters are displayed in a
table so that user has an overview about what the plugin uses. The pattern details can be
opened by a l ink i n the database pattern list table. The Homepage menu action opens the
project homepage. The homepage contains more information about the project, but more
important ly a user can access the web interface of the pattern database. The user interface
of the plugin is shown on the screenshots in appendices.

3.5 Core of the Tool

The core of the tool wraps up the most of logic: the libraries providing the Q V T engine,
Q V T r transformations, the models and a model transformation interface. The component
overview of the core is shown i n the figure 3.15.

Pattern Model

Code

QVTr Transformation

A
UML Model QVT Engine

V

Result Model

Figure 3.15: Diagram: Logic of the Tool

3.5.1 M o d e l s

The interface of the core component w i th the command line and V i s u a l Pa rad igm plugin
user interface are the models. The user interfaces transfer the input data into the core
component and the component also forwards the output data in the form of models.

This project utilizes three models. The pattern model does represent the patterns. The
pattern defines an incorrectness in the U M L . It has a simple structure that characterizes
the basic metadata, its severity and category. There is also a place for references. Since
most of the patterns comes from a research, the source should be properly atributed. If the

30

user is interested, he can find the origin and read more information about the pattern. The
pattern model is defined i n the figure 3.16.

Reference

1

Pattern

id : String
name : String
description : String
ur l : String
citation : String

1

id : String
title : String
enabled : Boolean
code: String
description : String

id : String
name : String
description : String
ur l : String
citation : String reference

id : String
title : String
enabled : Boolean
code: String
description : String

id : String
name : String
description : String
ur l : String
citation : String

Severity

id : String
severity name : String

1 title : String

Category

category 1

Category

category 1 id : String
name : String
title : String

Figure 3.16: Diagram: Pa t te rn M o d e l

The second is the result model also known as umllint model. This model is a target
model of the Q V T transformation and represents pattern matching occurence on the U M L
model. The pattern model is shown in the figure 3.17. It holds the basic metadata about
the matched pattern. The B i n d i n g represents a relation to the the U M L element, where
id is the X M I i d of the element, name is available for the developer of the Q V T relation
to store the element identification and type is a type of the element. The B i n d i n g is also
specified recursivelly. W h e n binding on an association, we may want to b ind on the class
as well .

UML::Element

element

umllintPattern

id : String
name: String

V
umllint:Binding

binding

0

id : String
name: String
type : String

0..*

binding

Figure 3.17: Diagram: Result U M L L i n t M o d e l

The UML model is already well known and described by sources [33] or [19]. It is defined
by the O M G standard [29].

3.5.2 Q V T T r a n s f o r m a t i o n

A s the analysis suggested, the correctness check w i l l use the model transformation wi th
the addit ion of patterns. The input U M L model the tool w i l l be transformed to the U M ­
L L i n t result model w i th the help of the Q V T transformation. The Q V T transformation is
composed from the set of the relations. The relations are provided by the patterns. The
Q V T transformation applies the pattern matching process and the result U M L L i n t model

31

contains the pattern occurences. If the result model contains a pattern than the pattern
was found i n the source model and source model contains an error.

The Q V T transformation itself is a complex process and does require several inputs.
The overview of the Q V T transformation requirements is listed i n the figure 3.19. The
whole correctness check using the pattern matching process and the Q V T transformation
can be described as a series of steps:

1. B u i l d a Q V T transformation from the Q V T relations specified by patterns.

2. Supply the source U M L and target U M L L i n t meta models to the Q V T Engine.

3. Supply the source U M L model.

4. Supply the Q V T transformation.

5. Supply the source model.

6. Set the target model.

7. Set up Q V T transformation name and direction.

8. Execute the transformation.

9. Ana lyze the target U M L L i n t model.

The transformation provides a pattern matching functionality. If the pattern matches
sucessfully, the transformation matches the elements from the U M L model to the U M L L i n t
result model structure thus creating and occurence record. The process is displayed i n the
figure 3.19.

3.5.3 Q V T E n g i n e

The Q V T Transformation needs a Q V T Engine to run. The Q V T Engine is a complex
component that executes the entire Q V T transformation and converts the input model to
the output model . Th is project uses the M e d i n i Q V T engine as described in the analysis.

32

Requirement
Source model U M L (uml)
Source meta-model U M L 2.1.0 (uml.ecore)
Target model Results (U M L L i n t)
Target meta-model U M L L i n t 1.0 (umllint .ecore)
Q V T script umllint.qvt
Transformation umllint
Direct ion target

Figure 3.18: Table: Q V T Transformation Requirements

UML::Class

name = Window

umllint::Pattern

id = 12
name = PropertylsDerivedWithDefaultValue

UML::Property

name = quantity
isDerived = true

> umllint::Binding

UML::ValueSpecifi
cation

UML::Element

Figure 3.19: Diagram: Result M o d e l M a p p i n g

33

Chapter 4

Implementation

The implementat ion phase deals w i th the development of the command line tool , plugin
for V i s u a l Parad igm and the server part w i th the pattern database accessible v ia the web
interface. The process of implementat ion follows the same decomposition process as de­
signed and described in the section 3.2. The description of the implementat ion starts w i th
the pattern database and server, moves towards the core and finally wraps up wi th the user
interfaces.

4.1 Pattern Database

Persistent storage and management user interface is represented by the server part of the ap­
plicat ion described i n appropriate section of Implementation chapter. Patterns are stored
in the database implemented according to schema in E n t i t y Relat ionship diagram. For
database Pos tgreSQL was chosen because of business class features, scalabil i ty and avail­
ability. In combination wi th other technologies it allows users to deploy their own server
instance thus customizing pattern database.

Patterns can be managed through the server web interface. The web interface offers
al l s tandard operations namely create, edit, delete and view. This approach presents an
easy way for user to manage the pattern database. Descript ion field can contain arbitrary
H T M L markup including links and images. Patterns shipped wi th the application util ize
this to show example pattern diagram. Screenshot shows the pattern profile viewed i n the
web interface.

There are several pattern categories, like incorrectness and recommendations. Similar
to category, each pattern is assigned a severity. Th is represents the impact of finding a
pattern. Debug severity is reserved for users defining their own patterns. It can contain
notes or status reports. Other degrees are ut i l ized by the tool as well as the users. Info
severity degree notes recommendations for design correctnes that have no effect on overall
U M L diagram val idi ty and correctness. Warn ing level is basically an error that is however
not severe enough to render the U M L diagram incorrect. Highest degree is Er ror . F i n d i n g a
pattern wi th Er ro r severity w i l l render the diagram incorrect and inval id . The tool database
and l ibrary can be easily modified to add more severity degrees, but it must s t i l l be clear
which severity is applied in which case.

34

public.category

•> category_id integer(10)

t] name varchar(128) u

| [
V

] title varchar(256) ISO
J

0

1
r public.pattern

^ pattem_id integer(10)

4fc severity_id integer(10) m K >
category_id integer(10) Kl
reference_id integer(10) Kl

^ t a g j d integer(10) GO
^ name varchar(128) U

[] title varchar(255) Gfl
^ code blob G3
^ description blob Gfl

I
o

public.tag >>

tag-id integer(10)

1 name
varchar(128) u

title varchar(255) m
V j

public.pattern_user

^•fy pattern_id

user_id

score

integer(10)

integer(10)

integer(10) G3
j o — h

public.pattern_comment

Of

patternpattern_id integer(10)

^ j^commentcomment jd integer(10)

public.severity

severity_id integer(10)

n name varchar(128)

Q title varchar(255) (J{)

>

- - Of

public.reference

\y referencejd integer(10)

^ name varchar(128) u
j title varchar(256) Gfl
^ description blob G3
^ citation varchar(512) G3

varchar(256) K)

public.user

ft user_id integer(10)

0 email varchar(128) u
^ password varchar(64)

] hash varchar(128) u

public.comment

ft comment jd

^ message

integer(10)

varchar(512) (JJ]

/ public.model

L I model_id integer(10) ca
L] name integer(10) ca
E] title integer(10) G3 :] code integer(10) G9

V

Figure 4.1: En t i t y Relat ionship diagram: Database schema

Severity Consequence
Debug
Info
Warning
E r r o r

No Consequence. Dis t inguish debugging notes.
Important information for the user. Recommendations.
Er ror that is not severe enough to render diagram incorrect.
Er ro r causing diagram incorrectness.

Figure 4.2: Severities

Cruc ia l role i n the success of this project is the pattern database. Patterns are added
to the database from several sources ranging from published articles, U M L standard and
websites created by renowned authors. Or ig ina l source most of the t ime contains addit ional
information often including more examples, theoretical proof and more tips on how to deal
w i th the error. Some of this information is compiled into the pattern database however
mostly in simplified form due to usability. Par t of the pattern metadata is also a reference
to the original source of information. Reference contains a ti t le, description, c i ta t ion and
an u r l . T i t l e is displayed i n the application, description holds more information about the
source like what is the source focused on. The ci tat ion string (like i n the publicat ion section
in this thesis) is stored i n the ci tat ion field and displayed every t ime the patterns is used
because the pattern description can contain copyrighted information.

4.1.1 S h a r i n g a n d C o l l a b o r a t i o n

There are two possible setups of the server and database part of the applicat ion. For the
purposes of this project, the application is hosted and publ ic ly available. However users
can easily deploy their own server instance on local network or even local computer. Tool
can be also easily setup in offline mode to just use pattern X M L file and do not connect to
server part at a l l .

F rom the web nature of the server part of the tool it is apparent that pattern database
can be managed by more users that can collaborate on bui ld ing sizeable pattern database
and knowledge base. If the pattern database would be used publ ic ly and extensively, further
extensions enabling user management, authorization and user involvment and comments
should be considered. The database is already designed to handle the data.

4.1.2 P a t t e r n Set Interchangeabi l i ty

B o t h command line tool and V i s u a l Parad igm plugin update the database from the server
v i a X M L interchangable document. If using offline mode, this document can be also easily
implemented or managed manual ly direct ly by the user. It can also be distr ibuted sep­
arately/ or the static X M L file can be uploaded on the network or web server. Another
posibil i ty is to use other system to generate the file.

The content of X M L document is specified by X S D schema. The schema is also applied
when loading the X M L to validate the document. The structure is pretty straightforward
- root element patterns contains a set of pattern elements. Each pattern element than
contains metadata id , name, ti t le, description (also present at pattern model) and also
reference, category and severity. The schema does not directly follow database schema, but
it is much more simplified so that it is better acccessible for users that may want to extend
the application.

B o t h the command line tool and V i s u a l Pa rad igm plugin use the pattern X M L file. The
file is generated on the server. D a t a are loaded from the S Q L database into the shared

36

patterns

X

reference

-id : String ^ -
-name : String

category 1 /
-id : String IS /
-name : String ,/

severity r
1

-id : String
-name : String

pattern

code

1 . id
- X — —->

name

title

description

Figure 4.3: Patterns X S D Schema

pattern data model . F r o m the shared pattern data model result X M L is bu i ld using W 3 C
packages. Result X M L is returned to the user. Example X M L can be seen on the attached
C D .

Pat tern X M L document is transfered and saved on the client v i a command line tool or
V i s u a l Parad igm plugin. Every t ime the tool or p lugin starts, it is parsed and loaded into
the pattern model . The pattern model is further ut i l ized i n the process.

4.2 Server

This section describes the implementat ion of the server part of the tool i n more detail .
M a i n task of the server part is to communicate w i th the database to load the patterns, host
web interface to allow users manage the patterns and export patterns v i a the A P I .

The server is implemented i n Java and is using Java Servlets as a backbone technology.
It follows the M o d e l / V i e w / C o n t r o l l e r M V C architectural pattern that sets basic rules for
user interface implementat ion. The overall implementat ion architecture is shown in the
figure 4.4. The model part of the server is represented by the •pattern model designed in
3.5.1. D a t a from the database are loaded into the pattern model through SQL persistence.
The pattern model data are passed to the view.

View prepares and organizes the data that are presented to the user using both manip­
ulat ion wi th the model and the Freemarker templating engine. Us ing the templat ing engine
allows to clearly separate H T M L and C S S formatt ing from the data model . D a t a are passed
to the template as a list of objects and template contains references to the objects. Tem­
plates can be also referenced or included amongst each other. This allows to share the
common page implementat ion such as menu and header. They are stored separatelly and
the formatt ing code does not repeat at any point. The rendered page is transfered to the

37

Freemarker
templates

Tool Power User

Figure 4.4: Diagram: M V C Architecture

client and displayed i n his browser.
This section describes the method of routing pages that is implemented in the tool

server. The overview of the routing process is shown in the figure 4.5.

TemplateServlet

ViewFactory 5> Route rServlet

views

IView - B> Base View

IndexView AboutView APIView

PatternListView PatternEditView Patte rnViewView

Figure 4.5: Diagram: Servlets and Views

The request to view a page from the user is routed directly to the RouterServlet.
The servlet parses the request U R L and chooses appropripate view using the ViewFactory.
The views are stored i n the separate package. Every view implements the interface IView.
The core functionality is i n the BaseView. The views are organized to several layers. The
first one is more general and handles the basic pages like Index, About and the API. The
PatternViews handle the pattern management and offer a l l standard functions - create,
view, edit, delete.

38

The server part uses templates to separate the H T M L and C S S visual attributes from
the information. Overview of the template structure is displayed i n the figure 4.6. The
templat ing method allows having the same information displayed on more pages wi th other
formating just by changing the template. There are two types of template page-html
and page-embedded. They both share the common page so they have the same title and
metadata. However page-html does contain formating information fo the experience in
the web browser. O n the other hand page-embedded is more minimal is t ic and displays the
content without the menu. This allows to embed the pattern detai l page direct ly i n the
user interface of V i s u a l Pa rad igm plugin. The rest of the templates follow similar mul t i
layer approach as views.

page

page-html

index pattern

pattern-list

page-embedded

about error pattern-view-plugin

pattern-create

pattern-view pattern-edit

Figure 4.6: Diagram: Templates

The server component is designed and implemented to be easily extensible since it may
require some degree of customization when the tool should be used in specific situations
like hosting on a local network. The server part of the application is buil t into and can be
distr ibuted i n W A R archive. This archive is a package that contains a l l classes, servlets,
templates and other static files. Packages can be easily distr ibuted and uploaded to be
hosted on a server.

4.3 Client Tool

The functionality same for both command line and V i s u a l Parad igm plugin is the updateable
pattern database. The database distr ibuted wi th the application is stored i n the X M L
specified i n section . Every t ime the pattern model is needed, the tool parses X M L and
loads patterns into the model . W h e n the user requests the pattern database update, the
tool connects to the server and downloads the up to date X M L from the server A P I U R L .
The localy stored pattern database is overriden and next t ime pattern model is loaded it is
up to date.

B o t h command line tool and V i s u a l Parad igm plugin have two main parts - the user
interface and the core. The user interface communicates w i th the user, parses and handles

39

the input and presents the output to the user. The main functionality is wrapped i n the
core of the tool . The user interface communicates w i th the core v i a a set of models or data
structures that carry the data. The core than does the correctness check using the Q V T
transformation and returns the result model back to the user interface that can present it
to the user.

4.3.1 C o m m a n d L i n e Interface T o o l

C o m m a n d line tool is designed to process input X M I and return correctness analysis results,
see the command line tool design at section 3.3.

The input is the X M I file that need to be parsed before it can be used i n the tool .
The X M I file is X M L so it can be easily parsed using standard libraries. After parsed, the
data are stored i n the U M L model . The U M L model can be passed further and processed.
The output of the command line tool is the result model that returns from the Q V T
transformation. It is presented i n the form of a table that is formated by whitespace. A n
example application output is shown i n the appendices.

4.3.2 V i s u a l P a r a d i g m P l u g i n

V i s u a l Parad igm plugin utilizes the V i s u a l Parad igm plugin O p e n A P I . The A P I is wrapped
inside of the l ibrary openapi.jar, that is required to implement and compile the Java
classes. The plugin A P I allows the tool to create its own application menu inside the main
V i s u a l Pa rad igm menu. The menu is defined in specially formated X M L readeable by V i s u a l
Paradigm. The workflow of the plugin is very similar to command line tool workflow.

P lug in A P I allows display of custom implemented Java U I objects. Results are presented
in a form of table that contains a b inding column. B i n d g i n columns contains references
to real model elements, including an icon. After user clicks on the reference, target model
element is highlighted. The plugin needs to implement at least the V P P l u g i n and one
V P A c t i o n C o n t r o l l e r interface declared by the O p e n A P I as show i n the figure 4.7.

The V i s u a l Pa rad igm plugin is not bu i ld as an usual Java application into a J A R . Result
of the bu i ld process is instead an directory, that contains the files i n the correct structure
required by the V i s u a l Paradigm. The directory structure is described i n the section 2.9.2.
The classes directory contains a l l compiled Java classes. The l ib directory contains the
M e d i n i Q V T engine libraries needed for the tool to work. The plugin configuration is
stored in the plugin.xml file. The whole directory can be easily packed and distr ibuted as
a package. W h e n using locally, the instal lat ion is just a simple file copy to the application
folder and plugin subfolder.

4.4 Core of the Tool

The core of the client application is wrapped inside the library.
Patterns are stored in the local ly available X M L . W h e n the pattern database is needed,

the X M L is parsed and pattern model is created. W h e n the correctness analysis is run , the
pattern model is passed to the tool core, because it is required by the Q V T engine. The
core than further processes the pattern model and creates a QVT transformation.

40

4.4.1 P a t t e r n a n d Q V T R e l a t i o n

Each pattern i n the database is defined wi th a Q V T relation stored i n the code attribute.
The default pattern matching Q V T relation can be defined as:

top r e l a t i o n Pattern {

/* UML pattern */
checkonly domain source _element:Element {
name = _name:String {}

} ;

/* Occurence */
enforce domain target _pattern : umllint::Pattern {

id = 'ID',
name = 'Pattern',
binding = _binding : umllint::Binding {
name = _name,
element = _element

}

>;

when {
CONDITION

}

}

The whole pattern Q V T relation is wrapped inside the relation statement. The relation
also contains a name of the relation - Pattern in the example. The pattern matching Q V T
relation has three basic sections - the source domain, the target domain and the optional
when part.

The domain source usualy defines the pr imary U M L element the pattern matches on
and binds it onto a variable - element of type Element and variable element i n the example.
It is checkonly, because the presence of the U M L pattern in the source model does not need
to be enforced.

O n the other hand, the domain target defines the pattern occurence using the result
model. The root element is allways a umllint: :Pattern. It contains the basic metadata
like pattern ID and name. These are important to define correctly, since they w i l l ensure
the correct results. The umllint: Binding element specifies the occurence i n results. It
presents a relation to the element from the U M L model . The name is available to be specified
by the pattern developer and the element needs to contain a reference on the U M L element
the pattern matched on - so i n the example, there is element. The binding elements can
be recursivelly nested when defining more advanced patterns.

The th i rd opt ional part of the Q V T relation is when. It is usually present, if the pattern
should be matched only if a condit ion specified inside is val id.

4.4.2 Q V T T r a n s f o r m a t i o n

Before the Q V T transformation is run i n the Q V T engine, the single Q V T relations provided
by the patterns are merged into the Q V T transformation.

41

transformation umllint(source:uml, target:umllint) {

top r e l a t i o n Patternl {
checkonly domain source _ c l a s s i f i e r : C l a s s i f i e r {
} ;
enforce domain target _pattern : umllint::Pattern {
} ;

}

top r e l a t i o n Pattern2 {
checkonly domain source _ c l a s s i f i e r : C l a s s i f i e r {
} ;
enforce domain target _pattern : umllint::Pattern {
} ;

}

}

The Q V T transformation is identified by a name umllint and specifies both source
and target model . The source model is uml and the target is umllint. W h e n the Q V T
transformation is passed to the Q V T engine, the name of the transformation and the
direction needs to be specified. Name of the transformation is umllint and the direction
is always target - the Q V T transformation needs to take U M L , match the patterns and
produce the result model.

The Q V T engine that executes the Q V T transformation is provided by the M e d i n i Q V T
libraries. The authors also documented how to use their Q V T engine from custom Java
applications [7].

4.4.3 L i b r a r y

This section describes the contents of project l ibrary covers the core functionality of the
applicat ion. A l l parts of the applicat ion including command line tool and V i s u a l Parad igm
plugin wrap the functionality of the l ibrary and add a simple logic w i th user interface.

C o m m a n d line tool accepts input i n a form of X M I files. Tools to parse and generate
X M I are a part of the library, so if it is required server part of the too l can be easily
converted to accept and process X M I files as well.

Pat tern D B is interchaged amongst server and both tools i n X M L format. Tools to
convert between X M L and model representation of Pa t te rn model are available i n the
l ibrary as well.

L ib ra ry also contains a l l functionality covering the generation of Q V T script from Pat­
tern model and wraps model transformation core. Th is fact allows existence of more user
interfaces and also makes possibil i ty to easily create a new interface u t i l iz ing the same
user interface. New functionality can be also added to server part of the tool so that it
can perform the analysis as well . Core of the l ibrary is the Q V T processing and model
transformation engine. For this task, M e d i n i Q V T libraries are used.

42

4.5 Development Process

The project uses source code versioning system G I T . The code of the project is split to
mult iple repositories, so that it can be managed easily. A l so it is clear, what parts the
application consists of. Since this report is wri t ten i n L a T e X , there is also a repository
wi th source codes of this document. Also there is a repository reserved for article and
presentation for E E I C T student competi t ion that this project took a part i n . A l l repositories
are listed i n described in the table 4.8. Content of a l l repositories is available online at
umllint.net.

4.5.1 D i s t r i b u t i o n a n d D o c u m e n t a t i o n

The ma in source of documentation is this report. It w i l l cover both theory behind the
applicat ion as well as information about implementat ion and design. E a c h of the tools
w i l l also have a readme file and instal lat ion manual . Instructions on how to download and
instal l the files w i l l be available online.

Important part of application nowadays is a dis t r ibut ion. The implemented tool should
be downloadable online including instal lat ion instructions so that users can easily download
and use i t . C o m m a n d line application wi th a l l support content w i l l be dis tr ibuted in archive
file and available to download. B o t h V i s u a l Parad igm and Ecl ipse have specific requirements
for plugins. V i s u a l Pa rad igm plugin is installed by unarchiving to specific folder and needs
to have strict file structure and naming. Plugins for Eclipse are distr ibuted through update
sites or Eclipse Marketplace. Pa t te rn database may be distr ibuted separately and w i l l
be also downloadable directly from the applicat ion. Th is also enables the database to be
updated during application lifetime.

4.5.2 B u i l d S y s t e m

Most common bu i ld systems for a l l kinds of Java project is A n t . Gradle is a bu i ld tool that
takes advantage of scripting language Groovy over A n t that uses static X M L files. Tha t
allows the developer to create customizable and extensible bu i ld configurations very easily.
Groovy language is based on Java so it is quite familiar already and a l l libraries can s t i l l
be downloaded from standard Maven repositories.

Each of the project modules w i l l use its own bui ld script, since they can be distr ibuted
and deployed separatelly. Some of the bu i ld w i l l have different output artifacts, but that
is easily achieved v i a Gradle plugins so server application is buil t direct ly into the W A R
archive and l ibrary into the standard J A R . Overview of the project builds and result art i­
facts is listed in the table. More detailed manual on how to run the bu i ld is available in
appendices or on attached medium.

4.5.3 L a T e X D o c u m e n t s

This document is the exception when using Gradle , since it uses the make tool and Makefile
bu i ld configuration as suggested by the thesis template. It has been slightly modified so it
can handle other tasks as well . A s w i t h other projects, the complete reference is available
in apendices or on attached medium.

43

http://umllint.net

com.vp.plugin

« I n t e r f a c e »
VPPIugin

•+loaded(pluginlnfo : VPPIuginlnfo)
+unloaded()

« I n t e r f a c e »
VPActionController

+performAction(action : VPAction)
+update(action : VPAction)
+operation()

Figure 4.7: Diagram: P l u g i n Implementation

Repository ID Detai l
umllint-eeict Ar t i c l e and presentation for Student E E I C T 2014.
umll in t - l ib Project l ibrary containing core functionality and models.
umllint-server Server part of the tool .
umllint-thesis L a T e X project of this document.
umll in t - tool The command line tool .
umll in t -vp V i s u a l Parad igm plugin.
umllint-web Static web page containing basic information abouit this project.

Figure 4.8: Table: L i s t of G I T repositories

UMLLintPlugin

>

UMLLintActionController

>

44

Project B u i l d B u i l d artifacts
umllint-eeict
umll int - l ib
umllint-server
umllint-thesis
umll in t - tool
umll in t -vp

Make - Makefile
A N T - bu i ld .xml
A N T - bu i ld .xml
Make - Makefile
A N D - bu i ld .xml
A N T - bu i ld .xml

eeict-dlouhy.pdf
umll int- l .O.jar
umllint-server-1.0. war
dp-dlouhy.pdf
umllint-tool-1.0 .j ar
umllint-vp-1.0. zip

Figure 4.9: Table: App l i ca t ion bu i ld systems and artifacts

4.5.4 L i b r a r i e s

Server part makes use of standard Java web applicat ion Servlet libraries. For connection
to Pos tgreSQL database l ibrary postgresql 0.3 J D B C 4 is used. Templates are handled by
Freemarker l ibrary. The most important component is the project l ibrary that contains the
Pat tern model and X M L persistence util i t ies.

App l i ca t ion settings such as database connection data are stored i n property file. Several
propety files can be created for different configuration of the appl icat ion - dur ing develop­
ment local.properties represented local development enviroment and production.properties
the final hosted server application w i l l be running on.

4.5.5 L i b r a r i e s a n d License

This project use the M e d i n i Q V T plugin and related required Ecl ipse libraries. A l l of the
libraries are licensed under the license Ecl ipse P u b l i c License and are free for non commercial

de.ikv.medini.metamodel.xsd2ecoreutil.edit_l.0.0.25263.jar

de.ikv.medini.metamodel.xsd2ecoreutil.editor_l.0.0.25263.jar

de.ikv.medini.metamodel.xsd2ecoreutil_l.0.0.25263.jar

de.ikv.medini.qvt.debug.core.j ar

de.ikv.medini.qvt.debug.ui.j ar

de.ikv.medini.qvt.examples_l.0.0.25263.jar

de.ikv.medini.qvt.help_1.2.0.25263.jar

de.ikv.medini.qvt.plugin_1.4.0.25263.jar

de.ikv.medini.qvt.product_l.6.0.25263.jar

de.ikv.medini.qvt.ui_1.2.0.25263.j ar

de.ikv.medini.util.core.plugin_l.2.0.25263.jar

de.ikv.medini.util.eclipse.nls_l.2.0.25263.jar

de.ikv.medini.util.eclipse_l.2.0.25263.jar

use.

45

org.eclipse.core.expressions_3.4.200.v20100505.j ar

org.eclipse.core.runtime_3.6.0.v20100505.j ar

org.eclipse.core.variables_3.2.400.v20100505.j ar

org.eclipse.emf.common_2.4.0.v200808251517.j ar

org.eclipse.emf.ecore.change_2.5.1.v20100907-1643.jar

org.eclipse.emf.ecore.xmi_2.4.1.v200808251517.j ar

org.eclipse.emf.ecore_2.4.1.v200808251517.j ar

org.eclipse.emf.edit_2.6.0.v20100914-1218.j ar

org.eclipse.emf.transaction_1.4.0.v20100331-1738.j ar

org.eclipse.emf.validations.4.0.v20100428-2315.jar

org.eclipse.equinox.common_3.6.0.v20100503.j ar

org.eclipse.equinox.registry_3.5.0.v20100503.j ar

org.eclipse.osgi_3.6.1.R36x_v20100806.j ar

46

Chapter 5

Testing

This chapter covers testing of the tool , specifies the enviroment and l ibrary versions that
the tools was tested on and also establishes a conclusion based on the test results. The
project uses several levels of testing.

1. U n i t testing

2. Funct ional testing

3. System testing

Firs t level covers testing of important inner components and logic using unit testing. Second
level is the functionality testing. F i n a l level of testing uses the complete product and
performs system tests. Important consideration is also the use of automated testing since
the pattern database can be too sizable to test manually.

5.1 Unit Testing

BeforeClass and AfterClass annotation can be appended to classes that do not need to be
static. Annotat ions are more clear in general. Test suite i n T e s t N G can be defined easily
by X M L files that specify which classes are part of the test suite. Test classes can be also
grouped together using group annotations. Test management in T e s t N G is very flexible and
allows detail configuration of test runs. T e s t N G also introduces test dependecy - although
it is generally considered bad practice since it is against on of unit testing principles it
might be usefull i n some situation. A l l these reasons speaks for using T e s t N G over J U n i t
so the choice for this project is clear.

In this project tests implemented i n T e s t N G are located i n dedicated package. They
cover a l l units (classes) that contain cr i t ica l application logic so that it can be ensured that
the core of the applicat ion works correctly. There is no reason to cover data transfer objects
or classes that belong to the model that do not contain any application logic. The whole
unit test package can be executed to make sure, that the application core is correct.

The Gradle bu i ld system allows integration of test to the bu i ld plan. So every t ime the
application is bui ld , a l l the tests are execute as well . Result of the test analysis is not just
a summary printed by the bu i ld system, but also a detailed report including possible error
detection and stack trace.

A l l of this helps not just to verify the final product but also during development to fix
bugs, but also some of the parts or logic is easier to implement using test driven development.

47

Project Section Coverage
Server Persistence and D B L o g i n data property file, connection, running S Q L

Rou t ing Parse the request path, routing to view
Views V i e w Factory returning views based on the rout ing info
X M L Pars ing and rendering from/to X M L

Too l Input X M I Pars ing and rendering
Pa t te rn Database Update and load the pattern database
Output Output rendering
Result model Result model rendering

Figure 5.1: Table: U n i t Test Coverage

5.2 Functional Testing

Funct ional Testing that covers a specific component by the specifications. These tests w i l l
focus just on the U M L pattern search part of the system. A s described in , functional
testing test cases most often specify input and expected output. Th is translates to the
U M L diagram input i n a form of X M I files and pattern matching result output. Each
isolated pattern w i l l be tested by a specific U M L diagram, or part of the diagram specified
in X M I . Expected output of the tool is the matched tested patterns. Th is approach can
be also easily automated by preparing X M I files and match results w i th prepared template
output files.

The similar testing w i l l be also performed on the V i s u a l Pa rad igm plugin, but it needs
to be done manual ly since V i s u a l Pa rad igm does not offer an A P I for tests. However if a l l
tests i n the tool pass, V i s u a l Parad igm plugin uses the same core component that is already
tested by the automated functional testing.

Another functional test w i l l be performed on the X M L database, that is generated on
the server part of the tool . T h e X M L val idi ty can be easily verified by attached X S D file.
X S D can be also ut i l ized to verify the input X M I tests.

5.3 System Testing

System testing ma in purpose is to test, i f the integrated system complies w i th the specified
requirements, see Chapter 2. The requirements are represented by the Use Case diagram.
Based on the requirements, set of test cases were defined. System testing is a black box type
of testing that covers testing of the system from the user point of view, without knowing its
inner structure. System testing is performed by manual ly executing predefined test cases
based on the use case specification.

5.4 Application Versions

This section describes a reference enviroment - list of a l l libraries and utili t ies the application
was tested on. App l i ca t ion versions and minor application versions not specified in the list
default to most up to date version as of 2014-05-20.

48

Version
Java 1.7.0 51
Freemarker 2.3.20
Pos tgreSQL J D B C 4 9.3-1101
Pos tgreSQL Server 9.3
Apache Tomcat 7.0.52
T e s t N G 6.8.8
Hamcrest 1.3
Gradle 1.1.1
X M I 2.1
X M L 2.1
U M L 2
G i t 1.8.3
Je tBrains I D E A 13.1.2
TexLive 2013
M e d i n i Q V T I D E 1.7.0
V i s u a l Pa rad igm Standard E d i t i o n 10.2
V i s u a l Pa rad igm Communi ty E d i t i o n 11.2
Windows 7
Cen tOS 6.5

Figure 5.2: Table: Reference Enviroment Versions

5.5 Test result evaluation

The tests were heavily used dur ing the development of the tool . Un i t tests can be included
into the development process v i a test driven development, as demonstrated on the example
of Route parsing problem. F i rs t of a l l the route parser class and interface was created.
After this, unit test covering a l l possible route formats can be created so that a l l cases are
covered. A s mentioned in the unit tests sections, unit tests were also a part of the bu i ld
so having a successfull bu i ld signifies that a l l tests passed. Before any release of the tool
version, but mainly the delivery a l l test need to pass.

49

Chapter 6

Evaluation

This chapter evaluates the result of this thesis from mult iple points of view. Ini t ia l goal
was to create a tool for checking the correctness of U M L design diagrams. This project
introduces a mul t i component tool that allows users to use command line interface or V i s u a l
Parad igm plugin. B o t h interfaces share the same val idat ion data that can be edited v i a a
web interface.

The pattern matching approach for U M L correctness val idat ion was chosen, because it
is generic enough for using i n different scenarios, yet it can be specific enough to handle
the advanced problems as well . The patterns are also more accessible to the user and this
allows them to define their own.

The assignment suggested the use of O C L for the correctness check. However the
analysis revealed, that the Q V T language is more powerfull especially i n combinat ion wi th
the incorrectness pattern approach and that makes it much more suitable for the task. Since
Q V T works on top of the U M L model, any incorrectness pattern that can be expressed in
the U M L can be defined i n Q V T and used i n the tool . Us ing Q V T as the pattern definition
platform. B u t using Q V T in the tool has a downside as well . There are not many good
Q V T engines that can be integrated i n custom tools.

There are plenty of tools that support the X M I format. However due to the changes,
different revisions and specification versions some of them may not be compatible w i th this
tool . O n the other hand many of the available software modeling tools are based on the
Eclipse platform and use the same components to work wi th X M I as well and that ensures
compatibil i ty, because this tool is tailored mostly on the Eclipse style output.

Because the X M I ambiguity and compat ibi l i ty the V i s u a l Pa rad igm plugin was intro­
duced. The plugin extracts the basic U M L model directly from the active diagram, so it is
not dependent on the X M I syntax.

The results of this project are published publ ic ly as open source and are available to
anyone. For this purpose the home page of the project was created 1 . It contains al l
components of the tool including a manual and this document as a complete reference. The
pattern database is also integrated inside the page, so everyone can test the software without
instal l ing their own server or manual ly editing the X M L pattern database. The instalation
of the software is easy enough. The command line tool can be distr ibuted direct ly in the
binary jar and the instalat ion of the V i s u a l Parad igm plugin means just unpacking it to
the right directory.

This thesis is wri t ten i n Engl ish , because the software design community intrested in the

1 <http://umllint.net>

50

http://umllint.net

U M L correctness val idat ion is not very big. A l l project documentation, homepage, manuals
are wri t ten i n Engl i sh as well . The project was also presented on the Student E E I C T 2014
and the article was published in the conference proceedings.

B o t h user interfaces of the too l are as simple as possible so that the tool is intuit ive
and easy to use. The V i s u a l Parad igm plugin offers one click correctness analysis that is
also reasonably fast so that it can be used during the development without disrupt ing the
workflow. It can assist designers in their everyday task to check i f they d id not miss an
error or as a learning aid to beginners to guide them into the world of U M L . Thanks to the
interface and argument layout, the command line applicat ion can be also used as a part of
the script that w i l l integrate the tool into another system. In the final application, it can
be a part of continuous integration tools or just run on top of X M I to validate the U M L
model or just check that the U M L model applies to custom company policies.

The shared pattern database encourages the development of new patterns and new cases
of U M L incorrectness. It also enables everyone to update and use recent val idat ion data
without any addi t ional manual instal lat ion. W h e n required, the patter database can be also
deployed on a custom server or local network. The database schema and server architecture
enable easy extension. Due to the general design and technology used, the tool is capable
of general pattern detection on M O F based models.

Due to the component composition, extension of the tool is not difficult. Future devel­
opment may br ing yet another user interface, possibly wi th more reliable input . The server
and database component should be extended wi th the user management system, if the tool
is widely deployed. This would also introduce a possibil i ty to true custom patterns, pattern
rating, recommendation and comentary. More research in the future w i l l show, i f there is
also a possibil i ty to use the tool Q V T transformation to direct ly fix the incorrect patterns.

51

Chapter 7

Conclusion

The goal of this thesis was to create a tool for checking correctness of design diagrams in
U M L modeling language. After in i t i a l analysis of U M L and related languages and standards
the approach of incorretnes patterns was chosen to be used for the correctness evaluation.
The incorrectness patterns are stored in the S Q L database. The database is shared and
allows users of the tool to collaborate on creating and extending the quali ty of the corretness
val idat ion. Power users can manage the patterns v i a web interface provided by the server
part of the tool , the changes are reflected to the client tools.

T w o client user interfaces for correctness evaluation were implemented. The first one
is targeted on systems using command line, accepts the U M L model i n interchangeable
format and results of the analysis are published in text. The second client user interface
is implemented as a plugin to widely used V i s u a l Parad igm U M L modeling software. B o t h
of the user interfaces share common functionality in the shared library. The shared l ibrary
also allows users to easily create another user interface or adapt the tool to be used in
existing system. The tool is published on its own website that contains a l l information and
tutorials on how to use it.

The result tool is very flexible so that it can be used i n many different scenarios. A l so the
evaluation shows, that i f the patterns are defined correctly and thoroughly, it does provide
valuable results and feedback. The tool makes also use of existing pattern catalogues that
were created after years of research for mainly educational purposes and provides a way to
util ize them i n every day software modeling. Moreover due to architecture and inner logic
it is very un iverzá l and can be easily extended or customized for different scenarios. The
design is so general, it can handle not only correctness check, but basically any pattern
matching task on U M L diagrams. This project was also presented on the Student E E I C T
2014 and was published i n the conference proceedings.

M a i n problems and obstacles during the development were mostly caused by the am­
biguity of specifications. The U M L language including X M I interchange format and the
Q V T language is specified by the Object Management Group , however most of the vendor
tools do heavily customize the X M I export. The support for exchanging the visual side of
U M L diagrams is freshly standardized and most commercial software modeling products
w i l l take years before it is fully supported. Also the Q V T set of languages that is very
capable and can be used for model transformation is not very widely used and there is no
complete reference implementat ion as l ibrary that allows the integration to user tools. The
best available tool to work wi th Q V T and integrate it i n custom applications is the M e d i n i
Q V T extension, however it is slowly becoming outdated, since the evolution of X M I and
U M L w i l l go forward in the future.

52

Due to the fact, that the tool uses common l ibrary it is not so difficult to customize it
and use another Q V T evaluation engine i n the future. A l so the models and parsers can be
customized so that they support recent versions of X M I and U M L . More ambitious future
extension would be to uti l ize the model transformation not only to detect the incorrectness
patterns i n U M L , but also to fix the errors directly in the model . The tool could be also
extended to evaluate the visual side of the U M L diagram, since the representation standard­
ized recently by O M G also uses the X M I model. The server and database component of
the tool can also be extended wi th the user management al lowing personalized custom pat­
terns, pattern rating, communicat ion and other methods that support collaboration. B u t
the main opportuni ty to contribute to the tool is and always w i l l be the pattern database.
The more patterns are in the database, the more quali ty result the tool produces.

The ma in use of this project is to assist the software engineer during the software
modeling proces. There are several ways to do that. The plugin for V i s u a l Parad igm can
be ut i l ized during the diagram design process so that it continually improves. Together w i th
the command line interface it can also validate complete models as a part of continuous
integration during the iterations or to check the final U M L design. Ex tend ing the tool w i th
the set of custom patterns can also help enforcing the company policies and rules of design.
It can also be integrated to he univerzity learning system to assist junior software designers
during their education. Thanks to the general logic and pattern based approach it can be
customized to any number of different uses.

Mode l ing certainly is an important part of the software development process since it
does heavily influence the following implementat ion and result product quali ty so it should
not be neglected. This tool offers the help dur ing this process and is a good starting
platform for better software design.

53

Bibliography

[1] Rodr igo F . Araujo, Vin ic ius H . S. Dure l l i , and Rafael M . Teixeira. Getting Started
with Eclipse Juno. Packt Publ i sh ing , 2013.

[2] M i r a Ba laban and A z z a m Maraee. The Pat tern-Class-Diagram (P C D) Language.
2013.

[3] M i r a Balaban , A z z a m Maraee, and A r n o n S turm. Management of Correctness
Problems in U M L Class Diagrams - Towards a Pat tern-Based Approach .
International Journal of Information System Modeling and Design, 2010.

[4] M i r a Balaban , A z z a m Maraee, A r n o n Sturm, and Pavel Jelnov. A Pattern-based
Approach for Improving M o d e l Qual i ty . Software & Systems Modeling, pages 1-29,
2014.

[5] B G U Mode l ing Group . Patterns, Ant i -Pat terns and Inference Rules Cata log for
U M L Class Diagrams, <http://www.cs.bgu.ac.il/~cd-patterns/>, 2014.
(accessed October 25, 2013).

[6] K o r r y Douglas and Susan Douglas. PostgreSQL: A Comprehensive Guide to Building,
Programming, and Administering PostgresSQL Databases. S A M S publishing, 2003.

[7] Hajo Eichler . How to run transformation from my Java application?
<http://projects.ikv.de/qvt/wiki/integration>, 2007. (accessed February 12,
2014).

[8] Maged Elaasar. An Approach to Design Pattern and Anti-pattern Detection in MOF
-based Modeling Languages. P h D thesis, Ot tawa, Ont. , Canada, Canada, 2012.
A A I N R 9 3 6 7 8 .

[9] Maged Elaasar, L ione l B r i a n d , and Y v a n Labiche. A Metamodel ing Approach to
Pat tern Specification. In Model Driven Engineering Languages and Systems, volume
4199 of Lecture Notes in Computer Science, pages 484-498. Springer Be r l i n
Heidelberg, 2006.

[10] Maged Elaasar, B r i a n d Lione l , and Y v a n Labiche. Metamodel ing Ant i -Pat terns ,
2010. (accessed October 12, 2013).

[11] Maged Elaasar, B r i a n d Lione l , and Y v a n Labiche. Specification and Detect ion of
Mode l ing Patterns: an Approach based on Q V T . Technical report, 2010.

[12] Maged Elaasar, B r i a n d Lione l , and Y v a n Labiche. Domain-Specific M o d e l
Verification w i th Q V T . In Rober t France, Jochen Kuester, Behzad Bordbar , and

54

http://www.cs.bgu.ac.il/~cd-patterns/
http://projects.ikv.de/qvt/wiki/integration

Richard Paige, editors, Modelling Foundations and Applications, volume 6698 of
Lecture Notes in Computer Science, pages 282-298. Springer, 2011.

[13] M a r t i n Fowler. UML Distilled. Addison-Wesley, th i rd edition, 2004.

[14] T i m o t h y Grose, G a r y Doney, and Stephen Brodsky. Mastering XMI: Java
Programming with XMI, XML, and UML. Wi ley , A p r i l 2002.

[15] L e x Heerink. M e d i n i Q V T Relations Tutor ia l .
<http://projects.ikv.de/qvt/wiki/tutorial>. (accessed February 15, 2014).

[16] I K V + + Technologies. M e d i n i Q V T . <http://projects.ikv.de/qvt>, 2012.
(accessed February 10, 2014).

[17] J ö r g Kiegeland and Hajo Eichler . M e d i n i Q V T Workshop.
<http://projects.ikv.de/qvt>, 2007. (accessed February 12, 2014).

[18] Jernej Kovse and Theo H ä r d e r . Generic X M I - B a s e d U M L M o d e l Transformations. In
Proceedings 8th of International Conference on Object-Oriented Information Systems
OOIS'02, pages 192-198. Springer-Verlag, 2002.

[19] K e v i n Lano . UML 2 Semantics and Applications. Wiley , 2009.

[20] A z z a m Maree and A d i e l Ashrov. Class Diagram - Syntax and Semantics. 2013.

[21] A z z a m Maree and A d i e l Ashrov. Class Diagram - Semantics. 2014.

[22] E d Merks . Introduction to the Eclipse Mode l ing Framework.
<http://mdsd08.techjava.de/emftutorial31.pdf>, 2008. (accessed M a y 1, 2014).

[23] Russel l Mi les and K i m Hami l ton . Learning UML 2.0. O ' R e i l l y Med ia , 2006.

[24] Glenford Myers , Corey Sandler, and T o m Badgett . The Art of Software Testing.
Wiley , th i rd edition, 2012.

[25] Regina Obe and Leonard H s u . PostgreSQL: Up and Running. O ' R e i l l y Med ia , 2012.

[26] Object Management Group . Diagram Defini t ion Standard.
<http://www.omg.Org/spec/DD/l.0/>. (accessed M a r c h 10, 2014).

[27] Object Management Group . M e t a Object Faci l i ty Query /View/Trans fo rmat ion .
<http://www.omg.org/spec/QVT>, August 2011. (accessed M a r c h 21, 2014).

[28] Object Management Group . U M L Revis ion Task Force.
<http://www.omgwiki.org/uml2-rtf/doku.php?id=start>, 2011. (accessed M a y
2, 2014).

[29] Object Management Group . Unified Mode l ing L a n g u a g e ™ Standard.
<http://www.omg.org/spec/UML/>, 2011. (accessed January 5, 2014).

[30] Object Management Group . X M L Metada ta Interchange.
<http://www.omg.org/spec/UML/>, August 2011. (accessed February 5, 2014).

[31] Object Management Group . A b o u t the Object Management Group .
<http: //www. omg. org/gettingstarted/gettingstartedindex .htm>, August 2013.
(accessed M a r c h 15, 2014).

55

http://projects.ikv.de/qvt/wiki/tutorial
http://projects.ikv.de/qvt
http://projects.ikv.de/qvt
http://mdsd08.techjava.de/emftutorial31.pdf
http://www.omg.Org/spec/DD/l.0/
http://www.omg.org/spec/QVT
http://www.omgwiki.org/uml2-rtf/doku.php?id=start
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/

[32] Object Management Group . Meta-Object Faci l i ty Standard.

<http://www.omg.org/mof/>, 2014. (accessed M a r c h 11, 2014).

[33] D a n Pi lone . UML 2.0 in a Nutshell. O 'Re i l ly , 2005.

[34] The Eclipse Foundat ion. Eclipse Mode l ing Framework Project E M F .
<http://www.eclipse.org/modeling/emf/>, 2014. (accessed M a y 2, 2014).

[35] V i s u a l Paradigm. Features.
<http://www.visual-paradigm.com/features/miscellaneous/>. (accessed
December 21, 2013).

[36] V i s u a l Paradigm. M o d e l Qua l i ty Checker. <http:
//www.visual-paradigm.com/product/vpuml/tutorials/modelquality.j sp>.
(accessed December 19, 2013).

[37] V i s u a l Paradigm. P lug- in Development.
<http://www.visual-paradigm.com/product/vpuml/tutorials/plugin.j sp>.
(accessed December 17, 2013).

[38] V i s u a l Paradigm. User's Guide.
<http://www.visual-paradigm.com/support/documents/vpuserguide.j sp>.
(accessed December 15, 2013).

56

http://www.omg.org/mof/
http://www.eclipse.org/modeling/emf/
http://www.visual-paradigm.com/features/miscellaneous/
http://www.visual-paradigm.com/product/vpuml/tutorials/modelquality.j
http://www.visual-paradigm.com/product/vpuml/tutorials/plugin.j%20sp
http://www.visual-paradigm.com/support/documents/vpuserguide.j%20sp

Appendix A

Contents of the CD

umllint-thesis/
umll int-thesis /src/
umll int-thesis /dlouhy-dp.pdf
umll int - l ib /
umllint-server /
umllint-database /
umll int- tool /
uml l in t -vp /
umllint-web /
umllint-eeict / article /
umllint-eeict/leaflet /
umllint-eeict / presentation /
R E A D M E

Documentat ion.
Documentat ion source code.
This document.
L ib ra ry wi th common functionality.
Server pattern management system.
The pattern S Q L database.
C o m m a n d line tool .
V i s u a l Parad igm plugin.
Project home page.
Publ ished article for E E I C T 2014.
Leaflet for E E I C T 2014.
Presentation for E E I C T 2014.
Contents of the C D .

57

Appendix B

Glossary

A s the text of this thesis shows, the software model l ing world use several various languages,
standards, methods and applications. Mos t of them are commonly referenced and known
just by abbreviations of their name. To avoid confusion and provide a reference for the
reader, the ones used i n the text of this thesis are translated below.

A N T Tool bu i ld process automation
C L I C o m m a n d Line Interface
C S S Cascading Style Sheets
D D Diagram Defini t ion
Ecore Metamodel in E M F
E M F Eclipse Mode l ing Framework
E P L Eclipse Pub l i c License
Gradle Project automation tool
H T M L HyperText M a r k u p Language
I D E Integrated Development Environment
J A R Java A R c h i v e
J R E Java Runt ime Enviroment
J S P Java Server Pages
M e d i n i Q V T A tool set for model to model transformations
M O F Meta-Object Faci l i ty
M V C M o d e l / V i e w / C o n t r o l l e r
O C L Object Constraint Language
O M G Object Management Group
Q V T Query /View/Trans fo rma t ion Language
Q V T r Q V T Relations Language
T e s t N G A testing framework
U M L R T F U M L Revis ion Task Force
U M L Unified Mode l ing Language
U M L Unified Mode l ing Language
W A R Web application A R c h i v e
X M I X M L Metada ta Interchange
X M L Extensible M a r k u p Language
X S D X M L Schema

58

Appendix C

Screenshots

This appendix contains screenshots to put the text into a visual context. The screenshot
C.3 describes the V i s u a l Parad igm modeling software.

The screenshot C.2 shows the pattern database contents i n the V i s u a l Parad igm plugin.
In the background, there is a table that lists a l l the patterns i n the database. Each of the
patterns is represented by I D , ti t le, category and severity. The view online l ink opens a new
dialog, that loads the pattern details directly from the server. The pattern details contain
more useful information including possible advices on how to fix it.

A n d finally the screenshot C . l shows the results of the correctness analysis. The output
is similar to pattern database l is t ing, but there is also a binding column that refers directly
to the diagram element. W h e n the column is clicked, the diagram element that contains
an error get highlighted. Similar to the database list ing, user can view the pattern details
online.

Window

+ / quantity : int = 4

<<lnterfaGe>>
Printable

+print(value : string) : void

'jf List Patterns

Pattern List:
ID Title Severity Binding

27 Interface Name Does Not Start With Letter I Custom g j Printable details
12 IProperty Is Derived With Default Value Error -j Window detail*

Close

Figure C . l : Screenshot: V i s u a l Parad igm P l u g i n - Analys is Results

59

Ol

o

Pattern List:

TirJe
AssotiationHasEiothEndsCorinposite

ClassNarnelsErinptv
List Patterns

Category

Incorrectness

Incorrectness

Severity

Error
Error

view online

view online

Pattern Detail:

Property Is Derived With Default Value
name: PrupErtylsDEri V E d With DEf a u ItVa I u E
title: Property Is Derived With Default Value
category: Incorrectness
severity: Error
reference: qvt
ries cri pti Dn:
This anti-pattern detects a property that is specified as derived but also has a default value. Being derived means the
property- val ue is calculated not set, and since a default value is understood to bean initial value that is set to the
property at object creation, there is a contradiction.
Source: Etaasar, Jtf., Briand, L. and Labiche Y., "Metaincideting Anti-Patterns", 2010.

Class
+ /property : Boolean = false

J

cede

chec rc in l y domain aou i c e p r o p e r t y : P r o p e r t y \
i a D e r i T v d = t rn ic ,
d= f l u l t T i l u c — _t lc-£aultValuc : Va lue S p e c i f i c a t i o n {)

Figure C.2 : Screenshot: V i s u a l Parad igm P l u g i n - L is t Patterns

y- umllint.V|i|i-VP-UML5E

: Fie Etft Vien Making Took Teamwork Window Help

H 1% m
Project Sa vs Cut Copy Paste Undo Redo UML SysML Requirement Diagrams Fermat Copier Modeling Doc Team Lode Interoperability QRM

1*1

ĎfagT|[g Mode.fL^ Clas..fp Logi.. [" [^ O R M | ^ implementetion_plug analysis_visual-paradigrn_pluginj<rinl

Diagram Navigatior

• -ft 41 - A - * &

V X

fHumllint

Q - ^ U M L Diagrams

i - j i i l Use Case Diagram [2)

+ Class Diagram [11}

Sequence Diagram

^Communication Diagram

, VState Machine Diagram

EB"L^I Activity Diagram [5}

S"L4g|Component Diagram [1)

Deployment Diagram [1)

Package Diagram [1}

J

S=) Pro.. (2|Diag.. [jf Do.. Q Stencil ^ J T e , .

Property rJ ? X

|analysis_visual-paradignn_pluginxnnl - Class Diagram

Name
Parent model
Zoom ratio
Background

- Grid
Visible
Snap to grid
Width
Height
Color

analysis_visual-paradig... -
<No parent model >
100%

I I White

17
10
10

] Light gray

analy5Í5_vi&ual-par-adigm_p^uginÄml

tt ŕ3 í*íí s A i J <defau.lt package >

'X Tools

f Point Eraser

t Sweeper

f* Magnet

Gesture Pen

belass

H Class

1— Generalization

Usage

— Association

>̂ N-ai y Association

pJ^ Association Class

----> Dependency

flj Abstraction

''JJf Collaboration

[J Model

Ü Note

iriĽiiu
id
label
iľľcn-^ri;
menu Path

aclloriSel

I
toolbar

id
:nc i-LnLi;r

action
id
actbnTypc
label
tooltip
style
n-ci-u PaLI-
icon

i
actlonCcritroller

Figure C .3 : Screenshot: V i s u a l Parad igm

http://defau.lt%20package

