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Abstrakt
Tato práce se zabývá generování testovacích sub-pixelově posunutých obrazů se známým
posuvem. Ty umožní najít vhodné parametry váhové funkce, díky nimž se zpřesní hledání
posuvu dvou obrazů. Dále je využito konvoluce s proměnným jádrem ke generování
obrazů se změněným měřítkem. K definici konvoluce pro obraz využíváme Fourierovu
transformaci. Práce zahrnuje všechnu potřebnou teorii a je přiložen program, který slouží
ke generování posunutých obrazů a obrazů se změněným měřítkem.

Abstract
This thesis is devoted to the creation of testing images with known sub-pixel shifts. Their
purpose is to find suitable parameters of the weight function in order to refine the finding
of the two image shift. Furthermore the variable convolution kernel is used to generate
scale-changed images. We use the Fourier transform to define convolution on image.
All the necessary theory is summarized in this thesis and the program, which was used
to create shifted and scale-changed images, is also attached.
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konvoluční jádro
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Chapter 1

Introduction

The image registration is widely used process for example in the observation of cell struc-
tures and other medical specimens. It is also used for observing space objects such as
the Sun, for example to predict the movement of sunspots. This movement is predictable
however very hard to observe in details because we are not able to register images with
a satisfactory precision.

Image registration is generally considered to be a process of finding mutual geometrical
transformation between two images. The methods available for image registration depend
on whether the images are only shifted or distorted in more complicated way. A rotated
or scaled image is also considered as shifted because both of them can be transformed
into a shift. For the registration of shifted images, we can reach even sub-pixel precision.
However the precision of the sub-pixel shifts computing still needs to be improved as it
is not sufficient enough nowadays.

For this improvement we need to create adequately large set of images with defined
sub-pixel shifts and defined scale-changes, which is the task of this thesis.

In order to generate shifted images we use weighted average in the program, because
its speed is equal to the usage of convolution kernel method but the code is more simple.

The variable convolution kernel is used to create scale-changed images. This method
can make the program to be slower when generating images larger than 256×256 pixels
because it needs to be computed for each of the pixels separately. However that is not
our case as images of this size are sufficient enough for our purpose.

A primary source for definitions of basic terms in Chapters 2-4 is [1].
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Chapter 2

Digital image

First of all we need to define the term “digital image” in order to work with them. Dig-
ital image is a two dimensional discrete representation of real-world scene. It pictures
a momentary event from the three-dimensional spatial world which is created by a digital
camera. The digital image like this contains additive noise which changes an image we
wanted to capture. Aim of the digital image processing is to get rid of it among others.
The noise is usually caused by increased temperature of the camera sensor or some dust
on the lens. For the purpose of further image processing done in this thesis, we assume
that the image does not contain additive noise.

Definition 2.1. (Digital gray-scale image) Let R = {0, 1, ..., N − 1}2, N ∈ N and let
W = {0, 1, ..., w − 1}, w ∈ N. Function

f(x, y) : R −→ W

is called a digital gray-scale image where N is called the image width and the image height.
Elements of R are called pixels and value of f in pixel (x, y) is called the pixel value. The
value of w determines the image dynamic range. The dynamic range is n bits per pixel
(it is an n-bit image) if w = 2n.

An image is usually defined to be rectangular, but for the purpose of this thesis
a square image is sufficient enough. We use only cropped part of the image which needs
to be square so the phase correlation can work properly.

We usually use an object called image matrix to represent the image. However there
is no need to use operation defined to matrices for image matrix, because it is just a table
of pixel values in coordinates (x, y). Every operation applied to image matrix is meant
to be applied on each pixel separately.

Definition 2.2. (Digital color image [1]) A digital color image is a triple of digital
gray-scale images (r, g, b) which are called the red, green and blue color channels.

A digital color image is converted into the gray scale for purposes of image registration.
To do that we need to compute a convex combination of the red, green and blue color
channels

f(x, y) = Round(crr(x, y) + cgg(x, y) + cbb(x, y)),

where cr, cg, cb ∈ 〈0, 1〉 and cr + cg + cb = 1. The constants cr, cg, cb should be chosen
appropriately so they can minimize the standard deviation of additive noise in image f .
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There is no prescription for choosing constants which could be applied on all images
universally. For general images (taken without any color filters) we use assessment around

cr =
1

9
, cg =

6

9
, cb =

2

9
.

Definition 2.3. (Additive noise) Let f be a digital gray-scale image representing
an ideal image (containing no additive noise), let n be a digital gray-scale image of the same
size as f , whose pixel values are rounded independent realization of random variable X,
which usually has normal distribution. Let

h(x, y) =

{
f(x, y) + n(x, y) if 0 ≤ f(x, y) + n(x, y) < w

w − 1 if f(x, y) + n(x, y) ≥ w,

then we say that image h contains additive noise. Image n is called noise image.

11



Chapter 3

The Fourier transform

The aim of this thesis is to create a program for the generation of testing images with de-
fined sub-pixel shift and resize precision. To do that we use convolution kernel (invariable
and variable) which is based on discrete convolution. Convolution on digital images
is grounded the Fourier transform, so if the digital image is discrete and convolution
on it too, the discrete Fourier transform is also needed. However let us first define all
these terms as continuous, because the discrete variants were derived from the continuous
ones.

3.1 Basic notions

Definition 3.1. (L(R)) Let us denote L(R) as the space of all functions R → C such
that

∞∫
−∞

|f (x)|dx

exists and is finite.

Definition 3.2. (L(R2)) Let us denote L(R2) as the space of all functions R2 → C such
that ∫∫

R2

|f (x, y)|dxdy

exists and is finite.

More about these spaces can be found in [2].

Definition 3.3. (Finite function [1]) A function f(x, y) : R2 → R is called finite if it
is equal to zero outside of the Cartesian rectangle 〈a, b〉× 〈c, d〉, where a, b, c, d ∈ R, a < b
and c < d.
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3.2 Continuous Fourier transform
Definition 3.4. (Fourier transform of functions in L(R) [1]) Let f(x) ∈ L(R).
The Fourier transform of function f is function F{f}(ξ) = F (ξ) : R −→ C defined as

F (ξ) =

∞∫
−∞

f(x)e−ixξdx.

Function F is also called the Fourier spectrum of function f .

Definition 3.5. (Inverse Fourier transform of functions in L(R) [1]) Let G(ξ) ∈ L(R).
The inverse Fourier transform of function G is function F−1{G}(x) = g(x) : R −→ C
defined

g(x) =
1

2π

∞∫
−∞

G(ξ)eixξdξ.

Theorem 3.6. (Fourier inversion theorem for functions in L(R) [1]) If f(x) ∈ L(R)
and f is piecewise C1, then

1

2π
(P.V.)

∞∫
−∞

f(ξ)eixξdξ = lim
r→∞

1

2π

r∫
−r

f(ξ)eixξdξ =
limt→x+ f(x) + limt→x− f(x)

2
,

in particular, if f is continuous, then

1

2π
(P.V.)

∞∫
−∞

f(ξ)eixξdξ = f(x).

Moreover, if also F (ξ, η) ∈ L(R),

F−1{F{f(x)}} = limt→x+ f(x) + limt→x− f(x)

2
.

and for continuous function f with F ∈ L(R) we have

F−1{F{f(x)}} = f(x).

Proof. Proof can be found in [1].

Definition 3.7. (Fourier transform of functions in L(R2) [1]) Let f (x, y) ∈ L(R2).
The Fourier transform of function f is function F{f}(ξ, η) = F (ξ, η) : R2 → C defined
as

F (ξ, η) =

∫∫
R2

f(x, y)e−i(xξ+yη)dxdy.

Function F is also called the Fourier spectrum of function f .

Definition 3.8. (Inverse Fourier transform of functions in L(R2) [1]) Let func-
tion G(ξ, η) ∈ L(R2). The inverse Fourier transform of the function G is function
F−1{G}(x, y) = g(x, y) : R2 → C defined as

g(x, y) =
1

4π2

∫∫
R2

G(ξ, η)ei(xξ+yη)dξdη.
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Theorem 3.9. (Fourier inversion theorem for functions in L(R2)) If f(x, y) ∈ L(R2)
and is continuous on R2, then for every (x, y) ∈ R2

f(x, y) = lim
ε→0

1

4π2

∫∫
R2

F (ξ, η)ei(xξ+yη)e−ε
2 ξ

2+η2

2 dξdη.

If also F (ξ, η) ∈ L(R2), then

F−1{F{f(x, y)}} = 1

4π2

∫∫
R2

F (ξ, η)ei(xξ+yη)dξdη = f(x, y).

Proof. Proof can be made by generalization of Fourier inverse theorem for functions
in L(R). Even more general proof can be found in [3].

3.3 Discrete Fourier transform
Definition 3.10. (Discrete Fourier transform [1]) Let f (x, y) : {0, 1, ..., N − 1} ×
{0, 1, ..., N − 1} = {0, 1, ..., N − 1}2 −→ C, N ∈ N. The discrete Fourier transform
of function f(x, y) is function D{f}(ξ, η) = F (ξ, η) : {0, 1, ..., N − 1}2 → C defined as

D{f}(ξ, η) = F (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N

(xξ+yη).

Function F is also called the Fourier spectrum of function f .

Definition 3.11. (Inverse discrete Fourier transform [1]) Let function f(x, y) be a func-
tion {0, 1, ..., N − 1}2 → C, N ∈ N and let F (ξ, η) be its discrete Fourier transform.
The inverse discrete Fourier transform of function F (ξ, η) is function D−1{F}(x, y) =
g(x, y) : {0, 1, ..., N − 1}2 → C defined as

D−1{F}(x, y) = 1

N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N

(xξ+yη).

Theorem 3.12. (Fourier inversion theorem [1]) Let f(x, y) be a function {0, 1, ..., N−
1}2 → C, N ∈ N and let F (ξ, η) be its discrete Fourier transform. Then the inverse dis-
crete Fourier transform of function F (ξ, η) is function f(x, y), i.e.

D−1{D{f(x, y)}} = f(x, y).

Proof. Proof can be found in [1].

14



Chapter 4

Convolution

Discrete convolution is the most used tool in image processing and it is also used in image
registration. Most of the graphic programs use discrete convolution in form of the convolu-
tion kernel, e.g. for the edge detection, noise removal, blur or sharpening, etc. The convo-
lution kernel is invariable and can also be used to create sub-pixel shifted images. In order
to create resized image using the convolution kernel, it needs to be variable at each step
(this method is not used in commercial graphic programs). The kernel can be compared
to window moving on the digital image (see Figures 5.2 and 6.1 for illustration). The val-
ues of convolution kernel then determine the way of computing the values of a new image
pixels which are computed separately.

To define discrete convolution and convolution kernel, we at first define continuous
convolution which it is derived from.

4.1 Continuous convolution

Definition 4.1. (Convolution [1]) Let functions f1(x, y), f2(x, y) ∈ L(R2). The con-
volution f1 ∗ f2 of functions f1, f2 is a function

f(x, y) =

∫∫
R2

f1(s, t)f2(x− s, y − t)dsdt.

Theorem 4.2. [1] Let functions f1(x, y), f2(x, y) ∈ L(R2) with Fourier spectra F1(ξ, η),
F2(ξ, η). Then

F{f1(x, y) ∗ f2(x, y)} = F1(ξ, η) · F2(ξ, η).

Proof. Proof can be found in [1].

Theorem 4.3. [1] Let functions f1(x, y), f2(x, y) ∈ L(R2) with Fourier spectra F1(ξ, η),
F2(ξ, η) ∈ L(R)2. Let f1, f2 be continuous. Then

F{f1(x, y) · f2(x, y)} =
1

4π2
F1(ξ, η) ∗ F2(ξ, η).

Proof. Proof can be found in [1].
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4.2 Discrete convolution
Definition 4.4. (Periodization of function and its Fourier spectrum [1]) Let
f(x, y) be a function {0, 1, ..., N − 1}2 −→ C, N ∈ N and let F (ξ, η) be its Fourier
spectrum. The periodization of the Fourier spectrum F is function F̃ (ξ, η) : Z2 −→ C
defined as

F̃ (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f(ξ, η)e−
2πi
N

(xξ+yη).

The periodization of function f is function f̃(x, y) : Z2 −→ C defined as

f̃(x, y) =
1

N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N

(xξ+yη).

Definition 4.5. (Discrete periodic convolution [1]) Let f1(x, y), f2(x, y) be functions
{0, 1, ..., N − 1}2 −→ C, N ∈ N. Function f(x, y) : {0, 1, ..., N − 1}2 −→ C is called
the discrete periodic convolution of functions f1, f2, denoted by f(x, y) = f1(x, y)∗f2(x, y)
if

f(x, y) =
N−1∑
s=0

N−1∑
t=0

f1(s, t)f̃2(x− s, y − t).

Theorem 4.6. [1] Let functions f1(x, y), f2(x, y) : {0, 1, ..., N − 1}2 −→ C, N ∈ N have
Fourier spectra F1(ξ, η), F2(ξ, η). Then

D{f1(x, y) ∗ f2(x, y)} = F1(ξ, η) · F2(ξ, η).

Proof. Proof can be found in [1].

4.3 Application of two-dimensional discrete convolu-
tion to digital image

Definition 4.7. (Convolution kernel) Let f(x, y) be a gray-scale image defined in Def-
inition 2.1 and k(s, t) : {0, 1, ..., 2n + 1}2 −→ R, n ∈ N being called convolution kernel
or convolution mask if

f ′(x, y) = f(x, y) ∗ k(s, t) =
2n+1∑
s=0

2n+1∑
t=0

f(x− s, y − t)k(s, t)

where f ′(x, y) is a new image created by transforming image f(x, y) using convolution
kernel. The number 2n+ 1 is called the kernel size.

A size of the convolution kernel is always an odd number. Due to this a certain middle
element always exists and is then applied to the pixel which value we want to change.
Usually, the kernel of the size of 3 is used in graphic programs and sometimes even
a kernel which size is 5. The kernel size indicates which pixel values we want to incor-
porate in the creation of a new pixel, i.e. whether we want only the closest neighbours
of the changed pixel to be significant (a kernel size of 3) or whether we want also pixels
from the neighborhood of the previous mentioned to be significant (a kernel size of 5).

The usage of the convolution kernel in graphic programs is well described in [5].
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Chapter 5

Shifted images

To create shifted and scale-changed images we used the source file hmi.ic_45s.2014.10.-
23_15_00_45_TAI.continuum.fits which was obtained from the NASA webpage, see [4].
In the program, we cropped out image segment of the size of 256×256 pixels, which was
shifted by the known shift or scale-changed by the known scale-change factor. The pro-
gram is based on procedures programmed by prof. Miloslav Druckmüller who supervised
further development of the program. From pre-made procedures we use only the procedure
for loading images. The innovations of this program can be found in Unit2.

First of all we need to define shifted image. According to the assignment of this thesis,
we consider only sub-pixel shifts together with the assumption of sub-pixel shift range
in one pixel (i.e 0 - 100% shift of single pixel). Shifts larger than one pixel or shifts
in opposite direction (in definition we define shift to the right, see Definition 5.1) can
be created by the choice of another reference image, cropped with whole-number shift.

Definition 5.1. (Shifted digital image) Let f1(x, y) be a digital gray-scale image
defined in Definition 2.1. Let px, py ∈ 〈0, 1) and M ∈ N be given numbers such that

M < N,

M + px ≤ N − 1,

M + py ≤ N − 1,

and let f2(x, y) be also a digital gray-scale image such that

f2(x, y) =


f1(x+ px, y + py) if px ≤ x ≤M − 1 + px,

py ≤ y ≤M − 1 + py,

0 else.

Then we take in consideration that part of image, where there is some information stored,
i.e. the non-zero area. Image f2(x, y) is then called shifted image and vector (px, py)
is called shift vector.

17



5.1 Generation of shifted image using weighted average
For the creation of sub-pixel shifted images, we now have to consider the digital gray-
scale image to be a net consisted of the squares of the same size representing the pix-
els. Each square is valued by a gray-scale digital image function f(x, y) applied to each
of the squares. Resultant values are written into the image matrix. We consider that
squares have an area equal to 1.

Shifted image is then represented as another smaller net (with squares of the same
size) placed over the original net, but shifted by the shift vector (px, py) (see Figure 5.1).

Now we need to compute the values of second image matrix. Each value in matrix
is computed as weighted average of up to four values of the first matrix’s neighbouring
values. The weights are given as areas of the first net square parts which are involved
in the new square.

Figure 5.1: Shifted image creation using weighted average

New image matrix can be computed as

f ′(x, y) = (1− px)(1− py)f(x, y) + px(1− py)f(x+ 1, y) +

+(1− px)py · f(x, y + 1) + px · py · f(x+ 1, y + 1).

Where f(x, y) is the original image matrix.

18



5.2 Generation of shifted image using convolution mask
To apply the convolution mask to the creation of sub-pixel shifted image, we need to es-
tablish the expected size of the mask. As defined, the size of the mask has to be an odd
number and there are no restrictions on its value. In our case, the mask of the size 3
is sufficient enough. Size of convolution mask depends on the amount of pixels which
we consider the new pixel is going to be consisted of. For shifted images we need only 4
pixels, so the least needed size of the mask is 3 (see Figure 5.2).

For values of convolution kernel itself, we use previously computed values of weighted
average and rest of the kernel elements will be zeros, because they represent pixels which
are not included in the new pixel.

Figure 5.2: Shifted image creation using convolution kernel

Then the new pixel value will be computed as

f ′(x, y) = f(x, y) ∗ k(s, t) =
2n+1∑
s=0

2n+1∑
t=0

f(x− s, y − t)k(s, t),

where convolution kernel is

k(s, t) =

0 0 0
0 (1− px)(1− py) px(1− py)
0 px(1− py) px · py

 .
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Chapter 6

Scale-changed images

For the purpose of phase-correlation testing program, only images with decreased sizes will
be created. If the precision testing of images with increased sizes is needed, a referential
and tested image can be switched. Also images smaller than 50 % of the original image
size won’t be generated, because a sufficient precision of the phase-correlation testing can
not be reached for smaller images.

Definition 6.1. (Scaled image) Let f1(x, y) be a digital gray-scale image. Let α ∈ R+

and M ∈ N be given numbers such that

αM < N,

and let f2(x, y) be also a digital gray-scale image such that

f2(x, y) =


f1(αx, αy) if 0 ≤ x ≤ αM,

0 ≤ y ≤ αM,

0 else.

Again we take into consideration only the part of the image, where some information
is stored. Image f2(x, y) is then called scale-changed image and α is called scale-change
factor.

6.1 Generation of scale-changed images using variable
convolution mask

A variable convolution kernel will be used to generate scale-changed images. Unlike
in the case of generating shifted images, the kernel has to be variable, i.e. it has to be com-
puted separately for every pixel. However there is a certain rule for the process of getting
the desired values.

To generate scale-changed images in the range of 50 - 100 %, we will also need a kernel
of the size of 3 because the new pixel will never be composed of more than 9 original
pixels (see Figure 6.1).

The new pixel value can be computed as

f ′(x, y) = f(x, y) ∗ k(s, t) =
2n+1∑
s=0

2n+1∑
t=0

f(x+ b(x+ 1)pc − s, y + b(y + 1)pc − t)k(s, t).

20



Figure 6.1: Scale-changed image creation using variable convolution kernel

With variable convolution kernel, the pixel, which we read from, also has to be variable
in case that the (x+ 1)p or (y + 1)p value exceeds the subsequent integer.
Convolution kernel

k(s, t) =

Ca · Cd Cb · Cd Cc · Cd
Ca · Ce Cb · Ce Cc · Ce
Ca · Cf Cb · Cf Cc · Cf


and the values of Ca, Cb, Cc, Cd, Ce and Cf will be

Ca =

{
b(k + 1)pc − k · p ifb(k + 1)pc > bk · pc,
0 else,

Cb =

{
1 ifb(k + 1)pc > bk · pc,
bk · pc+ 1− k · p else,

Cc =

{
(k + 1)p− b(k + 1)pc ifb(k + 1)pc > bk · pc,
(k + 1)p− bk · pc else,

Cd =

{
b(l + 1)pc − l · p ifb(l + 1)pc > bl · pc,
0 else,

Ce =

{
1 ifb(l + 1)pc > bl · pc,
bl · pc+ 1− l · p else,
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Cf =

{
(l + 1)p− b(l + 1)pc ifb(l + 1)pc > bl · pc,
(l + 1)p− bl · pc else,

where k, l ∈ N and p ∈ 〈0, 1〉 can be computed as

p = ((1− α)−1 − 1)−1,

k = x mod a,

l = y mod a,

where a ∈ N is the smallest number given as

ba · pc = a · p.
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Chapter 7

Conclusion

The aim of this thesis was to create a program for generating defined sub-pixel shifted
images and resizing images using variable convolution kernel (see Chapters 5 and 6).
To achieve that we had to draw up the pattern of the kernel.

In Chapter 2, we defined a digital image. The most important part is the definition
of gray-scale image (see Definition 2.1) which is used in description of the image generation
process.

Chapters 3 and 4 summarise the theory of Fourier transform and convolution which are
essential to define the convolution kernel. The definitions are first introduced in general
form on continuous spaces and then we proceed to their discrete version. These are more
suitable for the image processing, especially for the gray-scale image defined in Chapter 2.

Finally Chapters 5 and 6 discuss the image generation itself and analyse two differ-
ent approaches of the process. These two chapters are the major part of this thesis.
The scale-changed images generation uses a rather uncommon way of the resizing, which
had to be drawn up completely.
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Used symbols

N the set of natural numbers
R the set of real numbers
R+ the set of positive real numbers, i.e (0,∞)
C the set of complex numbers
L(R) space of all functions R −→ C with finite integral of |f |,

see Definition 3.1
L(R2) space of all functions R2 −→ C with finite integral of |f |,

see Definition 3.2
C1 class of continuous functions with continuous derivatives
bac the integral part of real number a
F the Fourier transform, see Definitions 3.4, 3.7
F−1 the inverse Fourier transform, see Definitions 3.5, 3.8
D the discrete Fourier transform, see Definition 3.10
D−1 the inverse discrete Fourier transform, see Definition 3.11
f(x, y), f1(x, y), f2(x, y) functions from L(R2) or functions {0, 1, ..., N − 1}2 −→

R,N ∈ N
F (ξ, η), F1(ξ, η), F2(ξ, η) the Fourier spectra of functions f(x, y), f1(x, y), f2(x, y),

see Definition 3.7
f1(x, y) ∗ f2(x, y) the convolution of function f1 and f2, see Definitions 4.1, 4.5
(px, py) the shift vectors between images f1, f2, see Definition 5.1
α the scale-change factor between images f1, f2, see Definition 6.1
f̃ , f̃1, f̃2 the periodization of functions f, f1, f2, see Definition 4.4
k(s, t) convolution kernel/mask, see Definition 4.7
f ′(x, y) new image made by transforming original image f(x, y) using

convolution kernel Definition 4.7
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Appendix

CD with text files and program in RAD Studio 10.1 Berlin.
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