
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

APPLICATION FOROPENSHIFT PLAFORM FORTEST-
ING OF STUDENTS PROJECTS
APLIKACE PLATFORMY OPENSHIFT PRO T E S T O V A N Í Š T U D E N T S K Ý C H PROJEKTU

MASTER'S THESIS
D I P L O M O V Á PRÁCE

AUTHOR Be. MARIÁN ORSZÁGH
AUTOR PRÁCE

SUPERVISOR ALEŠ SMRČKA, Ing., Ph.D.
V E D O U C Í PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

Master's Thesis Specification |||||||||||||||||||||||||
22634

Student: Országh Marián, Be.
Programme: Information Technology Field of study: Information Technology Security
Title: Application for OpenShift Plaform for Testing of Students Projects
Category: Software analysis and testing
Assignment:

1. Study Openshift container platfrom. Study the methods of requirement-based testing. Get
familiar with system test automation.

2. Design a framework for testing of student projects. Focus on scalability of the system when
running multiple tasks of the same type. The designed framework should allow debugging
and reporting of test results.

3. Implement the framework as a web service. Implement the text user interface (e.g. by
utilising ncurses library).

4. Desing and implement automated test suite for verification of basic functionality.
Demonstrate the framework on testing selected student projects.

Recommended literature:
• L.H. Tahat; B. Vaysburg ; B. Korel; A.J. Bader. Requirement-based automated black-box

test generation. 2001. In Proceeding COMPSAC '01 Proceedings of the 25th International
Computer Software and Applications Conference on Invigorating Software Development.
Pages 489-495

• Homepage of OpenShift. https://www.openshift.com/
Requirements for the semestral defence:

• The first two items.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Smrčka Aleš, Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: June 3, 2020
Approval date: May 19, 2020

Master's Thesis Specification/22634/2019/xorsza00 Page 1/1

https://www.openshift.com/
https://www.fit.vut.cz/study/theses/

Abstract
The a im of this thesis is to design a service for automated requirements-based testing of stu
dent programming assignments, and thereafter implement this service using the OpenShift ,
P y thon and G i t technologies. B y creating such a service, a foundation is set for a unified
testing process, which includes executing the test suites i n separate L inux containers. Such
a process is intended for simpli f ication of the grading by teachers and teacher assistants,
and at the same time improvement of student's performance in such tasks.

This Master 's thesis explains the basics of software testing, while focusing
on requirements-based testing specifically. Furthermore, it provides insight into the con
tainer technology, as well as how these themes are applied i n the project's design, and how
they are reflected i n the service's requirements. Afterwards, the implementat ion details
of the service are put under examination in order to provide a reference mater ia l for any fu
ture extensions of the project.

The implemented service allows for basic operations, inc luding testing of mult iple stu
dent projects in separate containers concurrently, creating a containerized debugging ses
sion, or automatical ly bui ld ing a testing container image for a given assignment.

Abstrakt
Cieľom tejto práce je navrhnúť službu pre automatizované testovanie študentských pro
gramovacích projektov na základe požiadaviek a následne implementovať túto službu
za použitia technológií OpenShift , P y thon a G i t . Vytvorenie takejto služby stavia zák
lad pre zjednotený proces testovania študentských projektov, ktorý zahŕňa spúšťanie testo
vacích sád v oddelených Linuxových kontajneroch. Vylepšený testovací proces má viesť
ku zjednodušeniu známkovania vyučujúcimi a taktiež zlepšeniu výsledkov študentov
pr i týchto úlohách.

Táto diplomová práca vysvetľuje základy testovania softvéru, pričom sa sústredí na testo
vanie založené na požiadavkách, poskytuje náhľad do technológie kontajnerov a objasňuje,
ako bol i tieto témy zahrnuté pr i návrhu služby a taktiež, ako sa ich použitie odrazilo na poži
adavkách na ňu. Okrem toho je implementácia tejto služby podrobená detailnej analýze,
ktorá má slúžiť ako referenčný materiál pre jej akékoľvek budúce rozšírenia.

Implementovaná služba je schopná vykonávať základné operácie, zahŕňajúce paralelné
testovanie študentských projektov v oddelených kontajneroch, vytvorenie kontajnerizo-
vaného ladiaceho prostredia, alebo automatické zostavenie kontajnerového obrazu
pre konkrétne zadanie.

Keywords
testing, requirements-based testing, containers, openshift, kubernetes, fitest, git, python

Kľúčové slová
testovanie, testovanie založené na požiadavkách, kontajnery, openshift, kubernetes, fitest,
git, python

Reference
ORSZÁGH, Marián. Application for OpenShift Plaform for Testing of Students Projects.
Brno , 2020. Master 's thesis. Brno University of Technology, Faculty of Information Tech
nology. Supervisor Aleš Smrčka, Ing., P h . D .

Rozšírený abstrakt
Zámerom tejto práce je navrhnúť a implementovat službu slúžiacu na automatizované testo

vanie študentských projektov v prostredí platformy OpenShift . Cieľom takejto služby je
modernizácia procesu testovania a známkovania projektov, z pohľadu opravujúcich a v budúc
nosti aj zlepšenia prístupnosti testov študentom.

Vo svojom úvode táto práca popisuje princípy testovania založenom na požiadavkách,
do ktorého spadá aj väčšina testovania študentských projektov. Znamená to, že pre jed
notlivé projekty je na začiatku definovaný súbor požiadaviek (zadanie), ktoré musí dané
riešenie splniť a následne je odovzdané riešenie, v rámci hodnotenia a známkovania porov
nané s pôvodnými požiadavkami. Práca sa zaoberá základmi testovania softvéru a termínmi
dôležitými pre pochopenie metodík, ktoré tvor ia teoretický základ pre túto službu. Ďalej
objasňuje využitie automatizovaného testovania založeného na požiadavkoch v kontexte
opravovania študentských projektov a vysvetľuje dôležité termíny ako testovacie prostredia
a test reporting.

Po objasnení základov terminológie testovania softvéru sa práca venuje existujúcim rieše
n iam na problém automatizovaného testovania študentských projektov. Popisuje platformy
ako The Marmoset Project, Mimir Classroom, alebo Codeboard a vysvetľuje ich výhody,
ale zároveň aj nedostatky, pre ktoré by nemohli byť použité ako alternatívy pre službu,
ktorú táto práca navrhuje. Okrem špecifických nedostatkov bola najväčším problémom
týchto platforiem ich limitovanosť v kontexte konfigurácie testovacích prostredí.

Ďalej sa práca zaoberá rôznymi spôsobmi, ako vytvárať testovacie prostredia a vysvetľuje,
prečo bo l i pre túto aplikáciu zvolené kontajnery. Nakoniec sa čitateľ dočíta o kontajneriza-
čných platformách Kubernetes a OpenShift, technológiách Git a Python, ako spolu súvisia
a prečo bol i zvolené na implemetáciu tejto služby. Obsahuje tiež podrobnejší opis dôležitých
termínov z dokumentácií platforiem Kuberentes a Openshift, ako Build alebo Job, ktoré
bol i aplikované pr i návrhu a implementácii testovacej služby. Tento opis má nad rámec
dokumentácie slúžiť aj ako referenčný materiál pre možné budúce rozšírenia navrhovanej
testovacej služby.

Po vysvetlení teórie testovania a technickej terminógie sa práca sústredí na návrh služby
pre automatizované testovanie študentských projektov, pomenovanej FITest. Obsahuje
cieľové požiadavky na túto službu, popisuje, aké akt iv i ty je možné pomocou nej vykonávať
a tiež, čo služba neautomatizuje a dáva za úlohou jej používateľovi. Ďalej opisuje architek
túru služby FITest, rozdelenie úloh medzi kl ienta, server, OpenShift a G i t a približuje,
ako sú tieto prvky spojené a vzájomne využívané. N a základe popísanej architektúry ďalej
vysvetľuje návrh jednotlivých procesov, ako napríklad spustenie testov alebo vytvorenie
prostredia pre daný projekt.

Tento návrh sa premieta do realizácie samotnej služby, na základe čoho sú dokumento
vané jednotlivé prvky a procesy, implementované jazykom Py thon . V rámci implementácie
serveru služby sú opísané aj súčasti konfigurácie objektov pre platformu OpenShift , ako dané
objekty fungujú a ako serverová aplikácia využíva funkcional i tu tejto platformy na spúšťanie
automatizovaných testov v izolovaných kontajneroch. Dôležitou súčasťou serveru je tiež jej
webové API, pomocou ktorého je možné ovládať službu vzdialene, cez sieť. Taktiež stručne
opisuje implementáciu klientskej terminálovej aplikácie, ktorá slúži na ovládanie funkcional
ity pomocou spomenutého A P I . Spôsob návrhu a implementácie služby dovoľuje, aby bola
v budúcnosti jednoducho, modulárně rozšířitelná.

Vo svojom závere práca sumarizuje a hodnotí, ako bola služba testovaná a do akej miery
bol i splnené definované požiadavky. Taktiež pripúšťa, že vzhľadom na použité technológie

a postupy môžu nastať komplikácie vo fungovaní tejto služby. N a tieto problémy tiež
ponúka riešenia a vysvetľuje ako i m predísť.

Služba samotná je vo stave, v ktorom dokáže vykonávať úkony potrebné na automatizo
vané testovanie študentských projektov jednotlivými opravujúcimi. Vzhľadom na rozsah hy
potetickej univerzálnej testovacej služby táto práca nerieši všetky možné problémy a neim-
plementuje rôzne špeciálne prípady jej využitia. N a druhej strane vytvára solídny základ
pre širokú var iabi l i tu budúcich rozšírení, ktoré by z nej vytvor i l i univerzálnu testovaciu
službu využiteľnú ako opravujúcimi, tak aj študentmi.

Appl icat ion for OpenShift P laform for Testing of
Students Projects

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of Ales Smrcka. I have l isted a l l the l iterary sources, publications
and other sources, which were used dur ing the preparation of this thesis.

Marián Országh
June 3, 2020

Acknowledgements
I would like to express my gratitude to Aleš Smrčka, for supervising this work, as well
as providing valuable insights and offering professional guidance throughout its creation.
Furthermore, I want to thank my family and friends for standing beside me and offering
their support and motivat ion throughout my work. Thank you al l .

Contents

1 Introduction 3

2 Requirements-based Testing 4
2.1 Software Testing 4

2.1.1 Software Testing Li fe-Cycle 4
2.1.2 Models of Software Testing 5

2.2 Requirements-based Testing Methodology 6
2.2.1 The Advantages of App l y ing Requirements-based Testing 7

2.3 Test Report ing 7
2.4 Test F ixtures 8

2.4.1 Standard F ix ture 8
2.5 Automated Testing of Student Projects 9

2.5.1 Requirements-based Testing of Course Assignments 10
2.5.2 Report ing of Students' Results 10
2.5.3 Test F ixtures in Re lat ion w i th Students' Solutions 11

3 Exist ing Solutions and App l ied Technologies 13
3.1 Ex i s t ing Appl icat ions for Automat i c Eva luat ion

and Grad ing of Programming Assignments 13
3.1.1 The Marmoset Project 13
3.1.2 M i m i r Classroom 14
3.1.3 Codeboard 14

3.2 Various Technologies Support ing Test F ixtures 15
3.2.1 F i l e System Environments 15
3.2.2 V i r tua l i za t i on 15
3.2.3 Containers 16

3.3 OpenShift Container P la t form 20
3.3.1 O K D - The Communi t y Way 20
3.3.2 Kubernetes ' Concepts 21
3.3.3 OpenShift 's Concepts 24
3.3.4 Version Contro l : G i t 26
3.3.5 P y t h o n 26

4 Design of the FITest Service's Architecture and Processes 27
4.1 Requirements 27

4.1.1 Features 27
4.1.2 Act iv i t ies 28
4.1.3 User's Responsibil it ies 28

1

4.2 Architecture Design 29
4.2.1 Architecture of the Server App l i ca t i on 30
4.2.2 Architecture of the Cl ient App l i ca t i on 31
4.2.3 Assignment 31

4.3 Process Design 32
4.3.1 Bu i ld ing an Image 32
4.3.2 Creat ing an Assignment 33
4.3.3 Configuring a Testing Environment 34
4.3.4 Upda t ing an Assignment 34
4.3.5 Runn ing the Tests Against Student Implementations 35

5 Implementation Details of FITest 's Code and Configuration 37
5.1 Development Environment 37
5.2 Ini t ia l configuration 37

5.2.1 Creat ing an example S U T and corresponding test suite 37
5.2.2 Basic Job Template 38

5.3 Implementation of FITest 's Server 39
5.3.1 Test Executors 39
5.3.2 Server's Configuration Management 40
5.3.3 OpenShift Operations 41
5.3.4 Parent Server Class 47
5.3.5 A P I Endpoints and F lask 48
5.3.6 Server's OpenShift Configuration 51
5.3.7 Creat ing the OpenShift Namespace 55
5.3.8 Creat ing a Secret Resource for the G i t L a b Access Token 55
5.3.9 Elevat ing the Project 's Service Account 's Privileges 56
5.3.10 Deploying the Testing Service 56
5.3.11 Automated Deployment to Min iSh i f t 56

5.4 Cl ient App l i ca t ion 57

6 Evaluation of FITest 59
6.1 Compliance w i th the Requirements 59

6.1.1 Features 59
6.1.2 Permi t ted Act iv i t ies 60

6.2 Testing and Val idat ion 61

6.3 K n o w n Issues and Possible Bugs 62

7 Conclusion 63

Bibliography 65

A Contents of the Attached Storage Device 70

2

Chapter 1

Introduct ion

Testing of students' programming assignments at the Faculty of Information Technology
has often been a target of cr i t ic ism by many students attending various courses, where of
ten the majority of points, obtainable throughout the semester comes from these projects.
P lenty of students complain about the fact that the tests are frequently executed against
their solutions completely automatical ly, without regard for the nature of the encountered
errors, which in the end leads to a smal l amount of points acquired for the projects. U n
fortunately, the quantity of student submissions is usual ly quite high and the resources
necessary to manual ly test every failed submission are s imply too demanding for the teach
ers, or assistants, who are tasked w i th the grading of the assignments.

The a im of this thesis is to create a service, that provides an environment for remote,
automated execution of such tests and gives the means to distr ibute the same system
configuration to the students, who can test their implementations this way.

This Master 's thesis provides a detailed insight into the development and functionality of
the FITest service, a service implemented to automate the testing of students' programming
assignments. In the beginning, the basic concepts surrounding requirements-based testing
are explained, due to the fact, that the current process of testing of student's projects
is based on this methodology. Afterwards, the existing solutions, w i th similar goals as
the proposed service were presented, along w i th their shortcomings in the context of the
problem. Next, the technologies proposed to be used in implementat ion were described,
including important terms related to them. In Chapter 4, the requirements for the service
are defined, together w i th the design of the service, which would fulfill these requirements.
In the following chapter, a detailed explanation of how this design was used i n the imple
mentation of the service is provided. Lastly, the implementat ion of the service is evaluated,
and compared to the orig inal requirements, inc luding any possible issues that may come up
during usage of the service.

3

Chapter 2

Requirements-based Testing

This chapter shortly summarizes a l l the necessary concepts behind requirements-based
software testing, v i ta l for understanding the subsequent chapters of this documentation.
It describes underly ing concepts behind requirements-based testing, followed by terms such
as test fixtures, or test reporting. F ina l l y it gives an insight into the appl icat ion of these
approaches in testing of students' programming assignments.

2.1 Software Test ing

The role of software testing grows hand-in-hand w i th the fashion of computerization, as
the products we use are expected to be performing perfectly dur ing their entire lifespan.
To cite the best-seller of software testing, Art Of Software Testing [24], a book which has
been first published in 1979 and is kept up-to-date w i th current trends of development, soft
ware testing is ,p, process, or a series of processes, designed to make sure computer code does
what it was designed to do and, conversely, that it does not do anything unintended". Th is
definition conveys the idea, that a software product needs to perform, as it was designed,
while avoiding any ambiguous, or unaccounted si tuat ion, i n which it might fail.

2.1.1 Software Tes t ing L i f e -Cyc l e

As opposed to common misconception, software testing is not a single activity, but a se
quence of interconnected steps, which are (or should be) executed alongside the development
of the actual software they are designed to test. In general, these steps are described as
Software Testing Life-Cycle (S T L C) [13] [15][50], for which the exact definition is not
completely decided upon, but for the scope of this thesis can be summarized as the following
steps

1. requirements specification,

2. test planning/design,

3. test development,

4. test execution,

5. test result and test coverage analysis

6. conclusion and closure.

4

The method applied in this thesis focuses mainly on steps 1, 2 and 5, i n the method
known as Requirements-based testing, which is looked upon more thoroughly in Sec
t ion 2.2.

2.1.2 M o d e l s of Software Tes t ing

The approaches to software testing are very closely t ied to the model of software devel
opment, be it the software life-cycle model, or the software behaviour model [16]. This
section is going to focus pr imar i ly on creating tests based on the Software development
life-cycle (or shortly S D L C) models.

S D L C can be considered a framework, which defines ind iv idua l steps carried out
by a development team, from a product 's in i t ia l design, through implementat ion and test
ing to maintenance of the f inal product, presented to its customers [16] [19][53]. There are
mult iple methods, varying in ways to execute and evaluate each step, among the most
widely-known being

• the waterfall model, being the foundation for the rest of the methodologies,

• the V-mode l (see Figure 2.1),

• the incremental model,

• the spiral model and lastly,

• the agile models.

Figure 2.1: D iagram of the V-model .
Source: Software Testing: A Craftsman's Approach [16]

The V -mode l can be used to present the basic not ion of the S D L C models
to the reader, as it is quite straightforward and simple to understand. As seen in F i g
ure 2.1, the entire process starts w i th the specification of requirements (most important
phase for requirements-based testing). Fol lowing a top-down 1 approach the system is de
signed and implemented. Once a functioning S U T is created, bo t tom-up 2 testing is carried

g r a d u a l d e c o m p o s i t i o n of the whole s y s t em in to sma l l e r f u n c t i o n a l components
2 j o i n i n g e lementary , sma l l e r c omponen t s to create larger ones

5

out, verifying that a l l components are performing correctly (Unit testing) and if their incor
porat ion into bigger system segments does not introduce any bugs to the system (Integration
testing). In the concluding stage, the System testing phase, the product 's behaviour as a
whole is tested and la id against the original specification of requirements from the first step.
The dashed lines in the diagram represent relation between the design and testing (Unit
testing tests the Detai led design of the components, etc.).

2.2 Requirements-based Test ing Methodo logy

As already mentioned in the S T L C ' s list of steps in Section 2.1, the pr imary focus
of Requirements-based testing (R B T , not to be confused w i th Risk-based testing), or, alter
natively, Black-box testing (as it is the outside behaviour being tested, instead of evaluating
the code modules), comes from having a clear set of definite specifications for the tested
software product before ever laying a finger on the actual code of the project. This procedure
helps to shape the scope of the project early on and to avoid complications and unnecessary
alterations in later stages, while focusing on val idity of the specifications throughout the
entire process [3], [52].

Requirements Quality

"
Validate against

Business Objectives
Map against
Use Cases

Ambiguity Analysis Domain Expert
Reviews

Validated
I Requirements

Logical Test Case Design

Structure / Formalize
Requirements

Def ne / Optimize
Test Cases

Fix
Requirements

Validated
Test Cases

Test Case Quality

r ^
Review Test Cases

by Requirements
Authors

Review Test Cases
by Domain Experts

Logical
Test Cases

' Design and Code Quality

Review Test Cases
by Developers

Review Test Cases
by Test Experts

Review Design with
Test Cases

Code

[Test Execution

Complete Test
Cases

Execute Tests

Figure 2.2: Requirements-based testing methodology diagram.
Source: Requirements-based Testing Process in Practice [50]

(i

Mul t ip l e guidelines and sources [3], [17] define the Requirement-based testing methodol
ogy as a 12-step process (see Figure 2.2), which initiates w i th defining, examining
and tai lor ing the project's requirements, avoiding any possible ambiguities. Fol lowing these
steps, the specifications are reviewed by domain experts and users, and a structured, formal
definition of requirements is formed and inspected for logical inconsistencies.

Hav ing a consistent formal set of requirements gives way to actual design of the test
cases, that are reviewed by the requirements' authors, users and/or domain experts and
finally, the developers. The test cases are thereafter used in design review 3 , followed by
code review . F inal ly , the implementat ion of the test cases' code is put into progress along
w i th execution against the code and comparing results to expectations.

In practice, to reduce the required resources, the test cases are usually designed to
cover mult iple requirements. To put this into an example, let's consider an excerpt from a
hypothet ical command-l ine application's requirements:

- The output value i s an integer value, greater than zero

- The output value i s enclosed i n matching brackets

A n example test case covering both of these requirements could at first check, i f the output
value is a str ing w i th a left bracket as its first and a right bracket as its last character.
Afterwards, ignoring the bracket characters it would check i f the value is a str ing convertible
to a positive integer (i.e. exclusively containing numerical characters). If a l l these conditions
are met, the test case passes, otherwise it is marked a failure.

2.2.1 T h e Advantages of A p p l y i n g Requ i rements -based Tes t ing

Skokovic and Rakic-Skokovic showed in their research [50], where they compared the devel
opment process of two different web-portals (connected to the same databases,
w i th the same available technology and domain knowledge), each of which applied R B T
methodology i n different stages of the project.

The team working on the first por ta l employed parts of R B T dur ing the implementat ion
phase, after it was clear they are l ikely going to exceed the project's planned deadline and
possibly the budget too. Compared to the second portal 's development, which finished
even before the planned deadline and which applied these methodologies early on, the first
team encountered more severe issues and was forced to spend more t ime on re-specifying
the requirements 5 .

2.3 Test Repor t ing

Test report ing is the most important phase of the testing process as it provides the devel
oper, or the tester team w i th valuable information if the tested product is either working
as it is supposed to or alternatively, that a bug has occurred and a test or mult iple tests
are failing, meaning there's a fragment of code that needs to be fixed.

c o n f i r m i n g tha t the i n i t i a l r equ i rements are sat is f ied b y the final des ign
4 t h e process of inves t i ga t ing i f a l l pa r t s of the code are w o r k i n g as expec ted
5 T h e presented d a t a showed t h a t erroneous requ i rements caused c i r c a 3 0 % of a l l issues (the rest be ing

h u m a n factor a n d techno logy obstacles) for P o r t a l 1 as opposed to the 2nd one 's 10%.

7

A good report should contain information, that makes the bug removal as easy
as possible. Th is data includes, but is not l imi ted to:

• Success status of each test, conventionally stated as Pass (the test has finished
its execution successfully), Fail (the test's success conditions were not met), or Error
(an unexpected error, unrelated to the testing scope occurred). If the test has not
passed correctly, addi t ional information is often included, such as a description of the
error, stack trace , the posit ion of the error cal l i n the code, etc.

• Percentage and count of Passed / Fai led / Er ro r tests.

• The amount of t ime spent on the execution of the tests.

• The scope of the executed tests.

• Testing environment (system configuration, package versions, etc.).

2.4 Test F ix tures

The last concept i n this chapter regarding software testing theory are test fixtures (some
times also referred to as test context [65]). Accord ing to x U n i t Patterns, [66] a test fixture
is ,p,ll the things we need to have in place in order to run a test and expect a particular
outcome". The same source provides a definition of test context as everything a sys
tem under test needs to have in place in order to exercise it for the purpose of verifying
its behavior" [65].

In other words, they are environments used for performing a test, or a test suite ' that
are usually set up w i th identical configuration each t ime to avoid test failures that do not
originate from the S U T , but from the varying environment (e.g. two systems w i th different
versions of packages), or any other fault that is not associated w i th the testing process.

2.4.1 S t a n d a r d F i x t u r e

A Standard Fixture is a pattern most related to Requirements-based testing, as it involves
designing an environment, that is reusable by multiple (or a l l , i n the best instance) test
cases, as opposed to a Minimal Fixture, which aims at creating a separate, smallest possible
test fixture suited for a single test case. The a im is to form such an environment upfront,
before the actual implementat ion of the tests, instead of at tempting to fit one to the tests,
after they have been constructed. [21]

Shared Fixture

A Shared Fixture (a.k.a. Shared Context, Reused Fixture) is a Standard F ix ture , that is
reused for mult iple tests (possibly entire test suite). Th is approach is applicable in cases,
when it can be very t ime consuming to bu i ld a Fresh Fixture . [21]

6 sequence of ca l l ed funct ions t h a t r esu l t ed i n the error , or fa i lure
7 a set of c o m m o n , re la ted test cases used to test a s ingle S U T
8 F r e s h F i x t u r e is r ebu i l t for every test case, for i ts o w n use a n d is t o r n d o w n after the test case has

finished execu t ing

8

This pattern is especially useful i n the design of this thesis, as restarting a container
for every single test case (even though they are quite fast, compared to V M s , explained
more in Section 3.2) would s t i l l result in a hefty amount of t ime spent just on Set-Up9

and Tear-Down10 phases of the testing process, for each test case.

Prebuilt Fixture

Prebuilt Fixtures are, i n their essence, Shared Fixtures w i th the addit ional characteristic
of being prepared and built before the execution of a test suite. This is appropriate i n cases,
where assembling a fixture is a very resource (time, finances, etc.) demanding process.

The pr imary idea is for the Prebui l t F i x ture to exclude the Set-Up phase from ev
ery instance of the testing process (see Figure 2.3), which results in the conservation
of the aforementioned resources. [21]

Figure 2.3: D iagram i l lustrat ing the approach of a Prebui l t F ix ture
Source: xUnit Test Patterns [21]

2.5 Au toma ted Test ing of Student Projects

A l l of the aforementioned principles are commonly used in the of testing programming
assignments developed by students and are generally used to verify the student's technical
skills acquired from attending different courses, however, the role of test fixtures is often
very vague. Fol lowing sections explain the appl icat ion of the principles in the testing process
of the students' projects and most importantly, how a more advanced appl icat ion of test
fixtures can improve the practice of automated testing of such assignments.

9 c r e a t i o n o f a t e s t ing env i ronment
1 0 d e l e t i o n a n d c l ean u p of a t e s t ing env i ronment

9

2.5.1 Requ i rements -based Tes t ing of Cou r s e Ass i gnments

The programming assignments this thesis targets usual ly test a smal l area of the stu
dent's knowledge, whether it is the abi l i ty to write a relatively short P y thon script ut i l i z ing
a certain module, or a C program that expects the student to be famil iar wi th , let's say,
D H C P (Dynamic Host Conf igurat ion Protocol) . Such assignments have predefined require
ments for the final product concerning the output, modules/libraries the students can use
and the way the appl icat ion should be compiled and executed.

The major difference from the t radi t ional requirements-based testing lies i n the ex
ecution of the tests. In the majority of the t ime, students are provided w i th no tests
and are left to implement a l l tests themselves in accordance w i th their understanding
of the requirements (i.e. the assignment). In some cases, this approach leads to poorly
graded assignments, where a low score originates not from the student's lack of sk i l l , but
instead from minor issues such as wrongly formatted output (a single extra white-space char
acter), wrong file-path for compiler target, etc. The points a solution acquires are frequently
calculated by comparing the expected and actual tests output character by character, u t i
l iz ing an automated script. Th is approach is commonly used s imply because the quantity
of student's projects is too large compared to the number of teachers, or assistants who are
tasked to grade the assignments.

In the scope of requirement-based testing, this thesis aims to reduce the occurrence of
similar cases by giving the teachers a way to easily distr ibute preliminary, or complete test
suites, that are constructed from the requirements, al lowing students to shift their focus
from testing their projects' output formatt ing to improving their overall solution's quality
(be it the quality of the code, or the implemented algorithm). In the case a test suite
cannot be distr ibuted for various reasons, students can be also provided w i th a test fixture
lacking the actual tests, but encompassing the environment, where the tests are going to be
executed.

It's very important to mention that executing tests for these student projects is not
a common practice in terms of software engineering. The main difference comes from
the fact, that the R B T methodology involves running tests against a solution implemented
by a development team. In the case of student projects, the main a im is to test multiple
and different implementations of the same project, described by identical requirements,
and then testing and evaluating these implementations separately (as i l lustrated by F i g
ure 2.4).

2.5.2 R e p o r t i n g of S tudents ' Resu l t s

In this thesis, the value of the reported information varies depending on the receiving
party. The instructor tasked w i th the process of grading a l l the submissions is much more
interested in general information, such as how many tests have failed for each student, or the
average fail count for the whole set of students (generic Pass / Fa i l / Er ro r statistics). A t
the same time, a student is l ikely going to be interested more in the information regarding
their specific implementation, such as what caused a test to fail (usually found in stack trace
information), or why their program or script couldn't be launched at a l l (e.g. a compiler
error).

However, this task is dependant on the person, or people responsible for the implemen
tat ion of the specific test suites. The verbosity of the tests depends solely on their con
sideration and is not being solved completely by the service proposed by this thesis, aside
from a basic level of reporting. The service itself aims at merely delivering the f inal test

10

Teacher

Requirements
specification

Test Case design

System testing for
each project

Evaluation based on
test reports

Student A
f,

Student B

Delivery of requirements n the form of assignment

System design A System design B

Implementation A

-Project hand i n -

Implementation B

-Project hand i n -

Figure 2.4: D iagram i l lustrat ing current process of a programming assignment implemen
tat ion and evaluation.

results, from the test fixtures to the teacher, or the assistant tasked w i th the testing, or the
evaluation of given assignments.

2.5.3 Test F i x tu re s i n R e l a t i o n w i th Students ' So lut ions

The appl icat ion of fixtures in this thesis consists of creating an isolated environment
w i th a l l the necessary and specific dependencies i n order to test (and possibly grade) every
student's project in the exact same manner automatical ly while saving resources for both
the students and the teachers. Besides, students can use these fixtures locally, on their
systems at any time, to develop their projects while avoiding issues w i th different versions
of various packages and having to modify their own systems.

To summarize the intent to use the xUnit-defmed patterns (Section 2.4) in designing
service for testing student assignments automatically, the fixtures can be applied as follows:

• A l l tests for a given assignment are executed inside the same Standard Fixture.

• Every test suite execution (testing of a single implementation) is wrapped inside
a Shared Fixture.

• To save resources, a Prebuilt Fixture is created in advance and re-set for every test
suite.

The specific technical parallels applied in this project, associated w i th these relations,
are explained more thoroughly in Subsection 3.3.2.

F ixtures also pose as a security feature, i n the sense of protection from unintentional ly
(or worse, intentionally) malicious code, by isolating the SUTs to their own environment,

11

Host System

Testing environments

(\
Student: John Doe

Environment: D H C P server
Attempt 3

Status: Running

V J

r a
Student: Jane Doe

Environment: Semaphore project
Attempt 2

Status: Failed - Thread limit reached

V J

Figure 2.5: Simple i l lustrat ion of test fixtures appl icat ion to course assignments.

meaning that if, for example, the S U T doesn't handle its memory al location well, instead
of using up a l l allocable memory on the host system while executing the test suite, a
fixture runs out of its allocated resources and is restarted, or terminated. Figure 2.5 i l lus
trates this design by showing two testing environments, running tests while being isolated
from each other and from the host system.

Students often uti l ize shared servers for the testing of programs, which are frequently
unstable i n this way, w i th no regards to other students. This behaviour sometimes leads
to unavai labi l i ty of the servers, making it impossible for other students to use them for
other activities. In such regard, the proposed service might help w i th offloading the servers
and at the same time, for the students to not be forced to test their projects on them.

12

Chapter 3

Exis t ing Solutions and App l i ed
Technologies

In the beginning of this chapter the reader is provided information about existing submission
and evaluation systems for student programming assignments, along w i th their advantages
and disadvantages. Afterwards, i n a similar fashion, various ways to create and manage
testing environments (fixtures) are depicted, along w i th their contr ibut ion to this thesis.
The last part of the chapter explains the crucia l terms related to OpenShift Container
P lat form.

3.1 Ex i s t i ng App l i ca t ions for Au toma t i c Eva luat ion
and Grad ing of P r og ramming Assignments

This section covers mult iple services that focus on automatic evaluation of programming
assignments, using requirements-based testing and explains why these services are not ap
plicable to the issue this thesis is addressing.

3.1.1 T h e M a r m o s e t Pro ject

The Marmoset Project, developed at the Universi ty of Mary l and (originally as a P h D .
thesis in 2006) is „a system for handling student programming project submission, testing
and code review" [64]. The plat form gives the students a chance to test their solutions
before submit t ing it for grading. A student is assigned a fixed number (usually 2, or 3)
of „submission tokens", that refresh in periods of 24 hours. Th is approach of so-called
„release tests" is supposed to increase the students' act iv i ty earlier before the deadline
and also improve their software and test development skills while giving the instructors
an insight on what the students are struggling w i th the most [51].

The main issue w i th the project is the fact that even though it 's released under
an open-source licence, its official git repository 1 is at the moment in an archived state
and the G i t H u b repository 2 shows no act iv i ty since 2015. In addit ion, the documentation
for the code-base is barely existent, mostly addressing issues of compi l ing and running
the already existing codebase (e.g. configuring a bu i ld server) w i th no mentions on how

1 A r c h i v e d r epos i t o r y ava i lab le at h t tp : //code . goog l e . e om/p/marmose t .
2 R e p o s i t o r y ava i lab le at h t t p s : / / g i t h u b . c o m / p a u l p r o t e u s / m a r m o s e t .

13

http://code.google.eom/p/marmoset
https://github.com/paulproteus/marmoset

to alter and use the code. Lastly, a lot of references on the project's landing page are
unavailable, and/or provide no informational value.

3.1.2 M i m i r C l a s s r o o m

Another service a iming to automate and improve the grading of programming assignments
is M i m i r Classroom [23]. M i m i r Classroom is an online web-based appl icat ion providing
environment for developing (within its own I D E 3) and evaluating programming assignments
while incorporat ing a wide range of useful instruments, such as online code review, or group
project support i n a clean and intuit ive user interface.

Its usefulness is however l imited by the extent of possible customizat ion applicable
to a project. W h e n creating a course the instructor is able to choose the target program
ming language or framework, but no other options to configure the system are accessible,
narrowing the possible spectrum of testable projects to simpler instances, that don't require
any addit ional , or custom modules. Another issue w i th M i m i r Classroom is the pric ing
of the service, 25 U S D per semester for each student . To consider an example, the In
troduct ion to Programming Systems is an entry-level course taken by freshmen students
in their first semester. In the winter semester of the 2019/2020 academic year, 744 students
enrolled in the course (including inactive, and/or dropped off students). This means that
w i th no discounts, the first semester would cost the department over 18,000 U S D , which
isn't a suitable long-term option.

3.1.3 C o d e b o a r d

Init ia l ly a research project at E T H Zur ich , Codeboard's goal is to provide tool for Com
puter Science teachers that allows them to create and distr ibute programming assignments
in class easily [6]. The application's functionality is very s imi lar to the one of M i m i r Class
room (3.1.2), w i th the addi t ional support for different Learning Management Systems,
such as Moodle , or Coursera and, unlike M i m i r Classroom, is free to use. In addit ion, the
appl icat ion is distr ibuted as an open-source project, w i th a l l of its source code available
on G i t H u b 6 .

Unfortunately its abilities are again narrowed down by the lack of options to configure
the system, inside which the test are executed. As stated in the configurations i n the
G i t H u b repository, each of the programming languages has a fixed container environment.
Another issue is the publ ic repository, which reports the last act iv i ty to have occurred
in 2016. Th is might mean that even though the appl icat ion is st i l l up and running, it 's
development and maintenance have stopped for the moment.

i n t e g r a t e d Deve l opmen t E n v i r o n m e n t , a n a p p l i c a t i o n p r o v i d i n g a n in t eg ra t ed set of too ls used for soft
ware deve lopment

4 a c c o r d i n g to the of f ic ial p r i c i n g , ava i lab le at h t t p s : / / w w w . m i m i r h q . c o m / c l a s s r o o m / p r i c i n g
5Eidgenössische Techn ische Hochschu l e (E T H) Zürich - Swiss F ede ra l Ins t i tu t e of Techno logy i n Z u r i c h
6 R e p o s i t o r y ava i lab le at h t t p s : / / g i t h u b . c o m / c o d e b o a r d i o .

14

https://www.mimirhq.com/classroom/pricing
https://github.com/codeboardio

3.2 Var ious Technologies Suppor t ing Test F ix tures

Currently, there are mult iple approaches a test fixture can be implemented, ranging from
creating local copies of the S U T ' s files to v i r tual iz ing entire operating systems dur ing a test
suite's run . The following sections explain in more detai l different ways of creating test
fixtures, which are applicable to this thesis, along w i th their advantages and disadvantages.

3.2.1 F i l e Sy s t em E n v i r o n m e n t s

The first category to be mentioned are environments based solely on containing run-time
libraries, or modules in a specific locat ion in the file system.

The first notable examples are V i r tua l Environments. A v i r tua l environment is
a tool often used w i th the Py thon programming language. Accord ing to the official doc
umentat ion [30], a v i r tua l environment is ,p, self-contained directory tree that contains
a Python installation for a particular version of Python, plus a number of additional
packages". This approach is often ut i l i zed dur ing development, or testing of P y t h o n appl i
cations, or scripts. A v i r tua l environment is easily created and using it is quite intuit ive,
and allows the user to create a special setting for an appl icat ion that might, for instance,
require a specific version of a certain module.

Another example is the Node Package Manager [25], available w i th the popular
JavaScript run-t ime environment Node.js. W h e n instal l ing a package for a Node appl i
cation, the impl ic i t instal lat ion path is the working directory containing the appl icat ion
files. Th is way every application's module l ibrary is contained inside its own workspace,
avoiding issues w i th conflicting module versions. The biggest disadvantage of the Node
Package Manager comes from the fact, that it does not have an impl ic i t , global package
l ibrary and relies on instal l ing a l l packages locally, for every project. Th is often leads
to unnecessary redundancy from the point of the development work, as many Node.js ap
plications uti l ize the majority of common basic libraries, which can be quite heavy on the
side of disk space.

These tools st i l l provide a very versatile and easy-to-use way to create isolated envi
ronments for development work. However, the fact that both are very different in their
implementation and control and that they are aimed directly at their respective pro
gramming languages make them inval id candidates for a system proposed by this thesis,
that allows running and isolating projects wri t ten in any programming language. The ir sec
ond disadvantage is that they only isolate the code modules, without restricting
the application's access to the host system in any way.

3.2.2 V i r t u a l i z a t i o n

Vir tua l i za t i on (sometimes also referred to as full virtualization) is an approach that allows
creating full-featured instances of guest operating systems inside a host system, which
have access to the underly ing hardware w i th the help of a hypervisor. A hypervisor is a
process that serves the purpose of control l ing the act iv i ty of guest systems, their access
to the physical hardware (by which it also removes the necessity of modif ication of the
guest system) and isolating them from the host system and from each other (see Figure
3.1) [2].

The biggest advantage of v i r tual izat ion is its independence on the host system, hence
a v i r tua l machine can be migrated between different systems, or servers very easily. Another

15

App

Binaries/
Libraries

Guest OS

App

Binaries/
Libraries

Guest OS

Virtual Machine | Virtual Machine

Hardwan

Hypervisor-based

Figure 3.1: D iagram i l lustrat ing the Hypervisor-based system v ir tual izat ion.
Source: A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors [49]

benefit is the complete isolation, meaning that a process cannot access any data outside
the guest system (e.g. in case of a system error or malicious code).

Unfortunately, this complete isolation comes at a cost - v i r tual iz ing a full-featured op
erating system requires a lot of system resources and setting up a new instance of the
system takes a considerable amount of t ime. In the scope of this thesis this approach is
quite impract ical , and even though the programming assignments often require a relatively
smal l port ion of system resources for their execution, running a v i r tua l machine for their
testing would result i n a very inconvenient trade-off between the degree of isolation and
the necessary performance of the host system. In addit ion, as a test fixture requires to be
identical for a l l test executions, the resulting amount of t ime spent on setting up a new
v i r tua l machine for every assignment would be too great to be overshadowed by possible
advantages. [2] [48]

3.2.3 Conta ine r s

The basic concept L i n u x containers builds upon what is known as Linux Control Groups
(shortly cgroups) and namespaces. Cgroups and namespaces provide mechanisms for aggre
gating, or isolating system processes w i th different behaviour into separate groups. Their
pr imary task in a L inux system is resource tracking (task of cgroups), and the abi l i ty to d i
vide processes and their chi ldren into the hierarchical trees, creating isolated environments
for each of them (taken care of by namespaces).

Each cgroup can be assigned to a specified subsystem, which represents a system re
source. A process, along w i th its children can be expl ic i t ly assigned to that group (or left
in the impl ic i t root cgroup, which stands at the top of the cgroup hierarchy). Cgroups can
be furthermore used for pr ior i t izat ion (priorit iz ing the access of different groups to subsys
tems) and even accounting, which allows its users to monitor the act iv i ty of each group
and how much of the assigned resources are being used by them. [20] [31]

16

App

Binar ies /
Libraries

Conta iner

App

Binar ies/
Libraries

Conta iner

Host OS

Hardware

Container-based

Figure 3.2: D iagram i l lustrat ing the Container-based system v ir tual izat ion.
Source: A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors [49]

The abi l i ty to isolate process groups in this manner allowed for the creation of L inux
Containers. A L inux container can be defined as a group of processes running on the host
system, isolated from the rest of the system's processes, inc luding its own P I D (process ID)
namespace, b inary files, and libraries, its own file-system, user namespace, network inter
face, etc. Wh i l e containers seem like a separate operating system functioning completely
on their own (to a process running inside a container there is almost no way of tel l ing it is
in reality containerized), i n fact, they use the host system's kernel's services and, i f neces
sary, l ibraries, and/or binaries to function and communicate w i th the hardware (see F i g
ure 3.2). [44] [47] [27]

Containers give their users, who can range anywhere from software developers to secu
rity engineers, a way to quickly pack their applications and deploy them elsewhere while
retaining a l l the v i ta l dependencies without the need to instal l more packages on the host
system (with the exception for a container management service). Containers fit the a im
of this thesis the best, as they are the right compromise between the level of provided
isolation and their performance - they are much faster in the means of setting up clean
environments than v i r tua l machines while at the same time provide a greater degree of iso
lat ion than file system environments.

There are many different approaches to bui ld ing and managing containers and the rest
of this section describes the most popular ones, along w i th their advantages, disadvantages
and their possible assets to this thesis.

Docker Community Edi t ion

Docker (or Docker Community Edition (CE) , since a rebranding in 2017 [11]) is an open-
source plat form used to develop, bu i ld , share and manage containerized applications. Docker
C E is a tool leveraging the functionality of the Docker Engine, a client-server appl icat ion
that controls the container bui ld ing and running operations [10]) to create stable L inux
containers.

The central component of its architecture is the Docker Daemon, which has the task
of interconnecting the Image Registry ' , the Docker Engine, and the Docker Client,

T s to rage service c o n t a i n i n g conta iner images

17

Image
Registry

Containers

Images

Kernel

registry

1 i

container

(a) D o c k e r (b) P o d m a n

Figure 3.3: Compar ison of Docker's and Podman's components' connection.
Source: Podman and Buildah for Docker users [14]

a command-l ine interface appl icat ion used to administrate Docker. The Communi t y Ed i t i on
is aimed at developers and smal l teams experimenting w i th the container technology [7].

Docker also provides a service called Docker Swarm, which is a plat form built on Docker,
used for container orchestrat ion 8 , and gives a bu i l t - in functionality for cluster manage
ment. Nevertheless, they present Kubernetes (see the following Section) as their pr imary
orchestration instrument [9], meaning that the focus of this thesis can be shifted towards
Kubernetes.

For the sake of the proposed service, using Docker, or Docker Compose (a tool for
creating multi-container applications using a single configuration file) would require more
convoluted design, as they don't provide functionality for simple scaling of applications.

O n the other hand, Docker poses as a good option for a student, who wants to test
a single-container appl icat ion on their machine in order to avoid any system-wise, or
package-wise issues that may occur in the final evaluation of the project.

Podman

Podman takes a somewhat different approach to the same issue as Docker. Similarly, it is
a tool used for managing containers and container images, which has the same range
of capabilities as Docker (except for Swarm mode; Podman doesn't natively possess in
struments for orchestration) and even uses the same set of commands for the command-line
interface. The difference, however, is their architecture, as Podman doesn't implement
any k ind of Daemon service and interacts w i th the components using the command-line
interface directly (see Figure 3.3), avoiding various single point of failure problems. [54] [14]

In the scope of this thesis, the advantages and the disadvantages of Podman are the same
as in the case of Docker and its bare functionality would not be sufficient for implementing

8 m a n a g i n g con ta ine r i z ed app l i c a t i ons a n d service i n one, or m u l t i p l e c lusters

18

the plat form as a whole. However, Podman's functionality can be be used for bui ld ing
container images and pushing them to a registry, dur ing the development of the service.

Kubernetes

Kubernetes 9 (K8s) is, according to it 's documentation, an „open-source system for automat
ing deployment, scaling and management of containerized applications" [62], developed
by Google. Kubernetes provides uti l it ies for managing containerized applications in a pro
duct ion environment, including, but not l imi ted to tasks such as load balancing, storage
management, automated rollouts and rollbacks and secret management. [63]

W i t h these aspects i n mind , Kubernetes comes off as a strong candidate for the imple
mentation of the proposed testing service, as it gives ways for managing test fixtures (image,
or containers) and more important ly easy scalabil i ty of the environments, i.e. easily cre
ating a testing container for a single student's implementat ion of the given assignment.
Furthermore, in the long run, it also provides a way of having the testing service spread
across mult iple servers as a cluster, to enhance its performance.

OpenShift

OpenShift is a container orchestration platform, which builds upon Kubernetes ' functional
ity to provide mechanisms for Continuous Integration, Del ivery and Dep loyment 1 0 . Tomasz
Cholewa, a cloud-native architect, summarizes the main differences between Kubernetes
and OpenShift i n his article [5], out of which two give OpenShift an upper hand in terms
of assets to the implementat ion of this thesis:

• The first advantage is a result of the way OpenShift manages images - w i th something
called Image Stream, its user can easily change the image used in a project s imply
by setting its identifying tag in the configuration file. This removes the necessity
of changing the configuration of the project every t ime the requirements for the as
signment's environment changes (e.g. a new, more stable version of a certain l ibrary
is available, or a fix related to a testing script is necessary).

• The second major asset of OpenShift is its web-based user interface, which makes
it very easy to manage a l l the projects and configurations, and even gives its user
an easy way to browse through containers' log files and consoles, which is very useful
in terms of test execution and reporting.

The following section gives a more in-depth description of what OpenShift is, and more
importantly, how it works, what are the operational concepts, and how they relate
to the task this thesis aims to achieve.

o r i g i n a t i n g f r om Greek , m e a n i n g governor , h e l m s m a n or p i l o t [62]
1 0 c o n v e n t i o n a l prac t i ces used i n agi le software deve lopment , a u t o m a t i n g the steps f r om the i n t e g ra t i on of

the code to de l i v e r ing the p r o d u c t to i ts cus tomers

19

3.3 OpenShi f t Conta iner P l a t f o rm

OpenShift Container P la t form is a PaaS , developed as the flagship business product
of the Amer ican mult inat ional open-source software company Red Hat , w i th its latest re
lease being OpenShift 4.

The popular i ty of the OpenShift Container P la t form emanates from its abi l i ty to scale
the clients' applications s imply and effectively. The instal lat ion and deployment size of the plat
form can range from a smal l instal lat ion on a user's own system (using a deployment called
Min iSh i f t , explained in detai l i n Subsection 3.3.1) to a large publ ic computat ional cluster
provided paid service.

The following subsections offer a more detailed insight into how OpenShift works, para
phrasing the most important information from its official documentation [42].

3.3.1 O K D - T h e C o m m u n i t y W a y

O K D (The Or ig in Communi t y Distr ibut ion) is a community-driven alternative of Open-
Shift. The implementat ion of this project aims at creating a service deployable into O K D
for two major reasons:

1. O K D doesn't require a paid subscription, and even though it is str ipped of the official
technical support and relies on the community 's help, the scope of implementat ion
required by the design of this thesis, it doesn't pose an issue, as the documentation
is sufficient.

2. O K D can be run in CentOS, unlike OpenShift , which requires to be instal led on Red
Hat Enterprise L inux (and once again, needs an active paid subscription).

Aside from the lack of official support, O K D is by no means l imi ted in its functionality
and offers the same features as its monetized counterpart. [40]

A s of wr i t ing of this thesis, the current version of O K D (3.11) is behind OpenShift 's
(4.2), which, however, is not a drawback for the design of this project, and might be even ad
vantageous dur ing the implementat ion of Pod 's resources l imitat ions (see Subsection 3.3.3).

MiniShift

MiniShi f t is a containerized version of O K D , which allows for testing the cluster envi
ronment on a single computer, no matter its operating system [41]. Its asset to this project
is its usefulness for testing and developing the containers and configurations that are to be
deployed in the O K D cluster, used to test the student's projects.

This provides a very easy way to start, restart and even shut down the cluster whenever
necessary for any k ind of administrat ive, or debugging processes. Furthermore, it allows
for a much larger amount of control over the system, as opposed to running it on a remote
system, or having the cluster provisioned by a th i rd party.

1 1 P l a t f o r m as a Serv ice (t yp i ca l l y p r o v i d e d b y a c e r t a i n prov ider) a l lows i t s cus tomers t o create specif ic
env i r onments for the app l i c a t i ons conven i en t l y a n d easi ly

20

3.3.2 K u b e r n e t e s ' Concep t s

Subsection 3.2.3 gives an introduct ion into what Kubernetes is and what purpose it serves
and establishes why it became a standard for container orchestration. Here, its operational
concepts are explained more deeply, w i th the a im of clarifying the underly ing architecture
and operational concepts of OpenShift .

The following text is a paraphrase of the official Kubernetes documentation [56], refer
encing each corresponding chapter directly, for the sake of the reader's convenience in case
a further explanation to the concepts is necessary.

Nodes

The first t e rm to understand in relation to Kubernetes ' architecture is node. A node is
an instance of Kubernetes running on a I a a S 1 2 platform, or on a physical, or a v i r tua l server,
providing a l l the necessary services. There are two major types of nodes in the Kubernetes
architecture, namely

• Worker nodes, running and administrat ing the containers and

• Master nodes, which control and manage the Worker nodes and their workload.

Usually, there are mult iple Worker nodes controlled by a single Master node, which also
requires much more resources to supervise the function of the Worker nodes. [43]

Pods

Pods are the basic dep loyment 1 3 units used in Kubernetes. Their purpose is to encapsulate
one, or mult iple L i n u x containers inside their own environment, creating a basic execution
unit in a Kubernetes cluster. Th is unit , which can be thought of as a computer system
running container(s) implementing a single appl icat ion, has its own IP address, storage,
resource management, etc. [43] [61]

Using Kubernetes, these Pods can be scaled up easily (i.e. increasing the number
of instances of the same Pod) w i th the goal of enhancing the overall performance of the ap
pl icat ion.

Images

To create containers, their underly ing system needs to be prepared in advance. Kubernetes
takes advantage of Docker's format of container images. A Docker image is composed
of mult iple layers, each of them adding content to the previous (install ing packages, creating
files, or users, etc.), creating a final, desired system, on top of which, the uppermost,
Container Layer carries out a l l the functionality (see F igure 3.4). [8]

As i l lustrated by Figure 3.4, an image is composed of a Base Image (in this specific case
it 's Ubun tu 15.04), supplementary Image Layers created dur ing an image bu i ld process
(explained in the following section) and finally a Container Layer, which is the only one
denoted as an R/W-capable layer.

^ I n f r a s t r u c t u r e as a Serv ice p l a t f o rms p rov ide v i r t u a l servers/machines w i t h speci f ic s y s t em a t t r i b u t e ,
e.g. A m a z o n W e b Services[l] or M i c r o so f t A z u r e [22]

1 3 „A Deployment runs multiple replicas of an application and automatically replaces any instances that
fail or become unresponsive" - K u b e r n e t e s d o c u m e n t a t i o n [12]

21

Thin R/W layer • Container layer

t I I I 1

91e54dfbll79

d 7 4 5 0 8 f b 6 6 3 2

c 2 2 0 1 3 c 8 4 7 2 9

d3a l f33e8a5a

ubuntu:15.04

188.1 MB

Image layers (R/0)

Container
(based on ubuntu:15.04 image}

Figure 3.4: Layer ing of a Docker image.
Source: About images, containers, and storage drivers [8]

Dockerfile

A Dockerfile is a set of instructions for Docker meant for bui ld ing Docker images. These
instructions wrap command-l ine calls that set up the image, layer by layer (each Dockerfile
instruct ion creates a separate image layer), producing the desired final setting.

FROM ubuntu
RUN useradd testuser
USER testuser

CMD echo "This i s an example."

L is t ing 1: A n example of Dockerfile syntax.

A Dockerfile uses its own specific syntax for the commands. For example, by using
Dockerfile defined in L i s t ing 1 the following image is created:

1. The FROM ubuntu command specifies the base image for the bui ld (the image which
is at the bot tom of the image layers), which is pul led from an image registry during
the bui ld .

2. RUN useradd testuser invokes the system's ut i l i ty useradd, to create a user
w i th the name testuser.

3. USER test instruct ion changes the image's default user to testuser, who was cre
ated in the previous step, meaning every command thereafter is executed under the
specified user.

4. F inal ly , CMD echo „This i s an example." runs the echo command, pr int ing „This
is an example." into the command line.

22

"https" 443

Q Frontend Service

app=webapp role=frontend

x } Automatic Load Balancing

Q Frontend vl Pod

app=webapp role=frontend

version=1.0.0

Q Frontend vl Pod

app=webapp role=frontend

version=1.0.0

Q Frontend v2 Pod

app=webapp role=frontend

version=2.0.0

Figure 3.5: I l lustrat ion of a service's load balancing features.
Source: Overview of a Service [39]

Services

Services enable their users to expose their Pods as network services, leading to them being
able to be accessed inside the scope of an appl icat ion i n the same manner, throughout
the application's lifetime. Even though a l l Pods have assigned IP addresses, these are
assigned randomly whenever a P o d is created and released on a Pod 's deletion, meaning
no static IP address is assigned to the containers by default.

To i l lustrate on an example, consider a web-based appl icat ion w i th two Pods, out of which
the first one is a back-end service, and the other is a front-end user interface, both commu
nicating w i th the other v ia their assigned IP addresses. In the case of a failure on the back-
end's side, the P o d is easily restarted and functioning again in a few moments, but the com
municat ion channel is broken as the newly created P o d has a different IP address than
the original, which results i n non-functionality of the appl icat ion.

Services serve the purpose of assigning a way to defined P o d (or a set of Pods, see
Figure 3.5) i n the same way in the scope of the appl icat ion, e l iminat ing the aforementioned
problems and providing automatic load balancing between the Pods. [59] [39]

Persistent Volumes

Another important functionality of Kubernetes the proposed service takes the advantage of
are Persistent volumes. F i rs t of a l l , Kubernetes Volumes are disk storages (directories)
assigned to a Pod . B y default, a l l data in a Container Layer is lost, whenever this container
exits. B y using Volumes it is possible to share data across a P o d (between containers)
and more importantly, preserve the data containers use throughout the entire lifespan
of a Pod . [60]

Persistent volumes are Volumes that are not assigned to any specific Pod , and their
life-cycle is completely independent, as they are managed as a resource such as a Node
and are further set up by the administrator(s) of the system instead of the user. The user's
Pods afterwards request a port ion of this storage space by creating a Persistent Volume
Claim, stat ing how much disk capacity they demand, what k ind of storage format they
wish to use, what should happen to the storage after the Pod 's exit and so on. [58]

23

Jobs

Jobs ' ma in purpose is to run a set of a Pod 's replicas to completion (and the Pods ' exit).
It provides information about the task's progress, and detailed statistics about the replicas
(which failed, which succeeded, etc.). Once a certain number of successful tasks has finished,
the Job exits and is marked as complete.

To explain on an example, consider a service that is designed to execute mult iple in
stances of a complex computat ional task, w i th varying parameters and which runs on a weekly
basis. A Job can be used to implement such a service, where the Pods are replicated based
on the number of varying parameter sets, each of them executing their part (inside a sepa
rate, isolated environment, side by side w i th each other) and once they have finished their
task, the results are collected and the Job is stopped. [55]

For the purpose of this project, Jobs are especially useful for running test suites on mul
tiple implementations, w i th each of them running in different replica and ending once the
test suite has finished its execution. After the Job is completed, the tests' results can be
collected and further processed.

3.3.3 OpenSh i f t ' s Concep t s

In addi t ion to terms explained i n Section 3.3.2, OpenShift further expands on Kuber -
netes' functionality to provide a better service for container management. Aga in , s imi lar ly
to the previous sections, the following information is taken directly from OpenShift 's official
documentation [42] and is only a fraction of the original, necessary for understanding this
project's design and implementation.

Image Registry

A n image registry is a service that allows users to store, manage and distr ibute Docker Im
ages, along w i th their me tada ta 1 1 . Implicit ly, Kubernetes supports using external registries
(in addi t ion to the default Docker H u b publ ic image registry) [57] out of the box, but Open-
Shift expands on this and provides a bu i l t - in image registry, that comes w i th the platform,
named OpenShift Container Registry (O C R) .

This feature allows the users to store their images privately and use them to bui ld
their P o d environments. Furthermore, it removes a necessity (but not possibil ity) for extra
authentication that would be required w i th other external private image registries. O C R
also informs OpenShift about new images being pushed, which is especially convenient when
updat ing containerized applications. [38]

Projects

Projects in OpenShift are in their essence namespaces meant to wrap an appl icat ion, or mul
tiple applications, along w i th their own configurations, resources and most importantly,
Pods and isolate it from other applications running in the cluster. These projects are
by default created according to a configurable template, which is set-up by the platform's
administrator. [36]

1 4 f u r t h e r i n f o r m a t i o n abou t the image , s u c h as i ts ma in t a in e r , da te o f c r ea t i on , n e t w o r k i n g i n f o rma t i on ,
etc.

24

Deployments

Deployments, in relation to Projects, are OpenShift A P I objects that provide methods
for fine-grained management over common user applications. They are composed of the fol
lowing attributes:

• A Deployment Configuration object, defining what state a P o d is supposed to be in ,

• Replication Controllers which define how many replicas (instances) of a P o d are meant
to be running and what are the conditions for their execution, and possible restart,
or shutdown,

• definition of one, or mult iple Pods that the appl icat ion consists of.

In addit ion, they also allow the users to deploy a new version of their appl icat ion, whenever
a Pod 's image changes, which is very convenient for the scope of this thesis, as it would
allow for updat ing of the assignments' test environments s imply by uploading a new image.
These objects, along w i th their technical details are explained more thoroughly i n Chapter 5
of this documentation. [35]

Bui ld Configurations and Builds

A Bu i l d Configuration (i.e. a BuildConf i g object) is a template for a Bu i l d operation,
which includes the definition of how a container image should be bui l t , and also a set
of triggers, which determine when the image should be bui l t . Another important term
to understand is Bu i ld Input, which is a resource used to create a new container image
(for instance a Dockerfile, explained in Subsection 3.3.2). For the scope of this project,
the G i t source was chosen, as it allows for bui ld ing the image from source code and files
contained in a G i t repository (see Section 3.3.4). [33] [45] [34]

Quotas and L imit Ranges

Quotas are objects al lowing the administrators to l imit the number of objects created
inside an OpenShift Project and also l imi t computing resources, such as C P U , or storage
space.

Limit Ranges, s imi lar to Quotas, allow resources to be l imited, on the level of Pod ,
Container, Image, or a Persistent Volume C l a i m . They are more fine-grained than Quotas
and are very useful i n the scope of this project as they draw a sharp border around resources
a student's project inside a P o d can use and avoid getting stuck, because of a memory
al location bug in the code, a deadlock, etc. [37]

Above-mentioned Concepts in Parallels with xUnit Patterns

The relation of the x U n i t Patterns 2.4 to the above-mentioned concepts, i n order to imple
ment the proposed testing service is quite simple:

• Standard F ix ture - implemented as a P o d (possibly a single-container Pod) w i th a spe
cific Dockerfile configuration, designed by the tester.

• Shared F ix ture - a l l tests for a given assignment are executed inside a container
w i th identical configuration, i.e. based on the same image.

25

• Prebui l t F i x ture - an image, on which the executive containers are based, is bui l t i n ad
vance and stored i n the bui l t - in Container Registry, removing the necessity of bui ld ing
a new image for every run of the tests.

These associations give a clearer idea on how the service is going to be designed (ex
panded more upon in chapter 4), which operational concepts fulfil l ing what purposes
and how the service as a whole can look like.

3.3.4 Ve r s i on C o n t r o l : G i t

A Version Contro l System (VCS) allows for managing and tracking changes to informa
t ion (e.g. source code, documentation, etc.) in order to simplify browsing through past
edits and improve efficiency dur ing collaborative work inc luding mult iple people working
on the same task. [4]

G i t is a V C S , which instead of tracking the changes of its files creates miniature snap
shots of the repository's files and saves a reference to this snapshot, effectively storing
the state of each file v ia its reference. If a file has not changed, this reference is efficiently
passed to the next snapshot, instead of creating a new one. [4]

For the scope of this project, G i t was chosen for two main reasons - its overall popular i ty
and specific functionality in OpenShift , al lowing for the bui ld ing of images from a G i t
repository (see L i s t ing 3).

3.3.5 P y t h o n

P y t h o n is an interpreted programming language, nowadays ut i l ized for a wide range of pur
poses, anywhere from system script ing to web development. [46] [29]

Its usefulness (and therefore selection) towards this thesis lays i n the following points:

• P y t h o n is a widely-recognized programming language w i th a large user base and high-
quality community support.

• Object-oriented programming capabilities allow for an efficient design along w i th
a greater deal of abstraction, resulting in more readable and maintainable code.

• A n official P y thon module for the OpenShift client, openshift, is available
from the P y t h o n Package Index (PyPI) [28].

• Python 's wide support on various operating systems.

For the actual implementation, version 3 is used, since as of the making of this the
sis, P y thon 2.7 has reached it 's end-of-life deadline and is no longer officially supported,
and the support for various packages is more prevalent w i th P y t h o n 3.

26

Chapter 4

Design of the FITest Service's
Archi tecture and Processes

This chapter takes a look at the architecture and process design of the proposed service
for testing students' programming assignments, w i th FITest having been chosen as the work
ing name for it .

4.1 Requirements

The following section contains the requirements for the proposed testing service, along w i th
possible activities which the service should provide and also the activities that the service
does not cover and are left upon the service's user.

4.1.1 Features

The final service should support the following features:

1. Testing student submissions automatically, according to the user's requirements.

2. Execut ion of tests i n an identical manner (environment, test suite) for mult iple solu
tions.

3. Eva luat ing the tests i n a standard Pass/Fai l/Error manner.

4. Report ing the test results through a command-l ine interface.

5. Report ing the test results through log files, stored on the server and a corresponding
G i t repository.

6. Contro l l ing the service v ia a client command-l ine interface, from the user's system.

7. Launching tests inside an isolated environment (such as a container running in an Open-
Shi f tPod) .

8. Customizat ion of the testing environment by the user, including, but not l imi ted to

(a) base image,

(b) system packages,

27

(c) configuration by own means (commands, scripts).

9. Push ing locally user-made text fixtures to the service.

10. The container's resources (memory, C P U , etc.) can be l imi ted by the user.

11. Runn ing prel iminary tests to detect possibly malicious code.

12. Isolating the S U T from the test code and reports.

13. Contro l v ia an A P I 1 (by which the service w i l l be controlled from a command-line
interface) supported by the server appl icat ion.

The satisfaction of the requirements is later referenced in the documentation, when
describing a fraction of the design relating to each one of them.

4.1.2 Ac t i v i t i e s

The service should allow for the following activities, carried out by the user:

1. Runn ing entire test suite on mult iple implementations at once.

2. Runn ing entire test suite against a single implementat ion (repeatedly).

3. Debugging, by connecting to the container and/or start ing the container without
running the tests.

4. Downloading the testing data.

4.1.3 User ' s Respons ib i l i t ies

The responsibilities of a user relate to the activit ies which are not covered by the service.
Namely, they are:

1. Implementation of a test suite.

2. The inspection and val idation of the test suite (e.g. by running it against a template
implementation).

3. The valuat ion of the test results.

4. The design of the tests' output format.

5. The design of the container image used for the testing.

a p p l i c a t i o n P r o g r a m m i n g Interface, denned as a set of func t i ons a n d procedures a l l o w i n g the c r ea t i on
of app l i c a t i ons t h a t access the features or d a t a of a n ope ra t i ng s ys t em, a p p l i c a t i o n , or ano ther service. [18]

28

4.2 Arch i t ec ture Des ign

Basic architecture outline, i l lustrated by Figure 4.1, consists of three main components:

• an O K D cluster, running the service's server and the testing Pods,

• client appl icat ion, ut i l ized by the user, to issue commands to the server, manage
the assignments and retrieve the test results,

• a G i t service (e.g. Gi t lab) used for storing the test suites' and the student assignments'
code, along w i th any other resources necessary to bu i ld a testing container image.

Git Service
stores all data
version control

easy management

_cloning/pulling of test data
pushing test resluts/logs -

using a service account

Git
Interf.

OKD

FITest Server
Manages test execution

Communicates with the user and git
Passes the result logs via REST

Passes the execution status
Management role for OKD

REST Interface

Repository
Contains Dockerfile for the

environment, tests with their
executors, student

implementations and test
results Project

Wraps testing
environments

Manages repository
Creates tests, Dockerfile

Uploads student implementation

command issuing.
— reporting, etc.

CLI

FITest Client
Communicates with controller and user

Downloads results
Shows status, etc.

User

Figure 4.1: The service's architecture.

In the proposed design, a user's task is to store the testing resources i n a G i t repository.
Th is approach eliminates unnecessary points of failure, and furthermore, G i t ' s functionality
allows for many advantages, such as version control and col laboration.

29

4.2.1 A r c h i t e c t u r e of the Server A p p l i c a t i o n

The proposed architecture for the server (Figure 4.2) is as follows:

1. FITest Server - a separate appl icat ion that listens on its A P I endpoint for Client
issued commands (Feature 13). It communicates w i th :

(a) The OpenShift (O K D) cluster, to control Jobs and Bui lds , and scaling of the test
environments, and the tests' further execution.

(b) Persistent Volume C l a i m (2) (C O N F I G S) used for backing up the test resources,
used by the server and test executors.

(c) Persistent Volume C L a i m (3) (T E S T S) used for d is tr ibut ion of students' imple
mentations to the Jobs ' pods and temporary storage of test results.

(d) G i t service, to retrieve test resources and manage test reports.

2. C O N F I G S Volume, storing a l l the data related to the testing service. This includes
the test's results, various possible log files and other test artifacts that can be involved
in the testing process.

3. T E S T S Volume, storing test files, results and logs for the durat ion of the tests' exe
cution. A separate file system is especially useful for isolating the tested applications
from from each other and also, possibly, from accessing the tests' results. (Feature/12)

4. OpenShift Jobs wrapping the testing environments.

OKD

Persistent Volume Claim
CONFIGS (2)

1 \
R / W

> >

 1

FITest Server (1)

API

Exposed
Route

Assignment A
Debug Job (4)

Debug Container

Persistent Volume Claim
T E S T S (3)

T

Assignment B
Test Job (4)

f \ Test Test
Executor Executor

Container Container
V > v. *

Figure 4.2: D iagram i l lustrat ing the server deployed in OpenShift .

30

4.2.2 A r c h i t e c t u r e of the C l i ent A p p l i c a t i o n

Proposed architecture for the client-side controller appl icat ion, implemented in Py thon
(Figure 4.3) is, as follows:

1. Client Controller - a central class control l ing which endpoint to choose based
on the user's commands, also responsible for passing server's responses back to the
user (4).

2. FITest A P I Endpoint - a class watching over communicat ion w i th the server (e.g.
launching tests, receiving test results) (2). (Feature 13)

3. Command-L ine Interface - the user endpoint, verifying and passing user input
to the Control ler and also passing the information from the server back to the user
(1). (Features 4 and 6)

.— —.

f

FITest
API Endpoint (2)

< J

Command to API mapping
i

f
Client Controller (1)

Command Line interface (4)

Figure 4.3: Cl ient side appl icat ion used for interaction w i th the service.

This fairly simple design should provide for a good level of abstraction and isolation
of the aforementioned classes, while also creating a module-friendly environment, which can
be expanded w i th any custom libraries, or scripts to implement addi t ional functionality.

4.2.3 As s i gnment

A n assignment, or a project object represents a single programming assignment. Its at
tributes in the scope of this thesis include:

• Project name,

• a Dockerfile, or a Container Image defining the testing environment (feature 8),

• script, or scripts defining how the test suites are supposed to be executed
(feature 1, 2),

• and the students' solutions, which are to be tested.

31

project-name/

solutions/

L xloginOO/ Directory with a student's solution.
L program.c

tests/

run.sh

test_suite.py

1 check_user_access.py

User-defined script that launches tests

Dockerfile

setup_environment.py Example script used during image build

L is t ing 2: Example of a project directory tree.

Project Environment Folder Structure

The configuration for each assignment testing environment is stored in a G i t repository w i th
a specific folder structure. L i s t ing 2 shows an example folder structure for a project-testing
environment configuration. The structure is composed as follows:

• The tests/ folder contains the test suite meant to be executed to test the stu
dents' implementations. It contains a script named run, which executes the test
suite. The run script inside the tests is a required folder structure element, as the
service's test executor expects it to be present dur ing the testing. A n y addit ional
scripts, or custom libraries not instal led using the system package managers, neces
sary for the testing (in for example the test_suite.py script) should be included
inside this folder and the commands used to launch them must be present i n the run
script.

• The solutions directory contains the students' solutions, each of them stored in their
separate subdirectory.

• Dockerf i l e contains instructions on how to bu i ld the testing container image (see
Section 3.3.2). In this example, the setup_environment .py script is supposed to
be included in the bui ld phase of the image. A n y artefacts necessary for the image
bui ld need to be included in the bu i ld context (i.e. the root folder of the repository,
or whichever folder specified i n the bu i ld configuration).

Furthermore, after the first test execution is carried out, a folder named results is
added to the project, which contains the test reports from the executed tests.

4.3 Process Des ign

Dur ing the design phase, after the architecture of the service was defined, the necessity to
specify how each action (e.g. running tests, creating a project, etc.) i n detai l came up. The
following sections explain on a higher level how each of these actions works.

4.3.1 B u i l d i n g an Image

The process of bui ld ing a Project 's container image consists of creating a Dockerfile (see
Subsection 3.3.2), and ut i l i z ing OpenShift 's capabilit ies to bu i ld a Docker image online.

32

This approach removes the necessity of bui ld ing images local ly and pushing them to the
Image Registry, which can be often a very t ime-consuming, or just an unnecessary task.

source:

g i t :

u r i : "https://github.com/openshift/ruby-hello-world"

ref: "master"

contextDir: "app/dir"

dockerfile: "FROM openshift/ruby-22-centos7\nUSER example"

L is t ing 3: Example setting of bu i ld source to a G i t repository. Th is setting allows for bui ld
ing of container image directly from this repository.

L is t ing 3 shows an example excerpt from a B u i l d Conf igurat ion 2 definition. Th is con
figuration allows for the creation of a container image by using a G i t repository, specified
by its U R L (uri option), along w i th a branch (ref option). The contextDir opt ion speci
fies the directory, inside which the bui ld resources are located (which, by default, is the root
directory of the repository). Addi t ional ly , an opt ional dockerfile opt ion is set, contain
ing a str ing w i th a Dockerfile-formatted code, which overrides any existing Dockerfile that
might be present i n the G i t repository. The override possibi l i ty is especially useful in cases,
where an image already exists and has been pushed into the OpenShift Container Registry
beforehand, or i f there is a necessity to test certain functionality related to the image itself.

4.3.2 C r e a t i n g a n Ass i gnment

Assignment creation consists of two phases, one on the Cl ient 's side, the other in the Server
(as i l lustrated by Figure 4.4):

1. The user runs a Cl ient application's command to create a project.

2. The Cl ient sends a request to the server.

3. The Server creates a G i t repository, based on the project's name and configuration.

4. F rom the newly created G i t repository, an in i t i a l image is bui l t .

5. The User can now clone the empty (only containing the necessary folder structure
and pre-generated files) G i t repository and update the files.

F rom the user's viewpoint, this creates an empty template that needs to be filled
w i th the necessary data (SUTs, test suites, Dockerfile, bu i ld artefacts, etc.) and does not
serve the purpose of creating any tests, or specific configurations deviat ing from the defaults.
Th is is mainly due to the service's a im to create simple workflows, without the necessity
to learn OpenShift Project configuration. However, this design does not prevent the user
from designing any advanced configuration, to create a more complex testing environment
or functional expansions to the service itself.

2 a n object de f in ing how t o b u i l d a conta iner image i n OpenSh i f t

33

https://github.com/openshift/ruby-hello-world

User

i

Local system

(5) clone repository -

(1) fitest create

FITest Client • (2) send request -

Server

f

OpenShift

)

f

FITest Server

)

(3) create repository

Figure 4.4: Steps in the creation of an assignment, from the point of view of the user.

Pushing the Student Implementations

The students' implementations are meant to be maintained and stored inside the project's
G i t repository (the same repository containing the testing setup). Dur ing the testing
phase, the implementations are s imply pul led from the repository by the Server and passed
to the executing Pods v ia the T E S T S Persistent Volume. Th is way, backing up and main
ta ining student's code is made easy and results i n a more fail-proof design of the server
appl icat ion.

4.3.3 Con f i gu r ing a Tes t ing E n v i r o n m e n t

The pr imary way to set up the environment, inside which the tests are executed is to provide
a Dockerfile (see Subsection 3.3.2). Us ing this approach the user is able to generate an image
configured w i th its operating system prepared for the tests' execution, along w i th a l l system
preferences and packages prepared for the task, (feature 8)

OpenShift 's Image Creation Guidelines [32] contain very useful advice on how to prop
erly write a Dockerfile (reusing images as much as possible, clearing temporary bui ld
files, configuring environment variables inside Dockerfile, etc.). Furthermore, they present
OpenShift-specific information which is necessary to be taken into account by the user
when creating an image which is meant to be used w i th the testing service. The most im
portant of these features is OpenShift 's usage of Arb i t ra ry User IDs, which, according
to the documentation [32] prevents any process from escaping the container and gaining ac
cess to administrator privileges on the host machine. Th is means that the user has to bear
in their mind , that the processes ran inside a container w i l l be executed under a random
user ID, meaning that certain elevated privilege functionality may not be available.

4.3.4 U p d a t i n g a n Ass i gnment

Changing of the testing environment for a given assignment is handled by OpenShift im
age bu i ld s o u r c e functionality, as it allows for the rebui ld of a source image triggered
by a change in the G i t repository [45]. The user merely needs to update the repository
w i th any necessary changes and push these changes to a configured branch. For example,

34

User

Local system

(1) fitest test project

FITest Client • (2) test project

OpenShift Git T E S T S Volume

(6) project job finished ; (3) g i t d o n e p r o j e c t

(5) start project job

FITest Server

(8) push results

< (7) gather results
(4) pass SUTs-- -

Figure 4.5: System-wide interaction dur ing test execution, inc luding the user's role.

the bu i ld pol icy can be set up in a way, that rebuilds the container image whenever a push
to the master branch is carried out. This rids the user of the necessity to trigger the image
bui ld manual ly for each smal l change of the testing environment.

Of course, the option to use a custom image is s t i l l available w i th OpenShift . The user
builds the image locally, i n their system, using Docker, or Podman, and pushes it
into the OpenShift Container Registry (feature 9). In this case, the user has to keep
up w i th the naming convention (explained in Section 5.3.3) when tagging the image.

4.3.5 R u n n i n g the Tests Aga ins t S tudent Implementat ions

Test execution (i l lustrated by F igure 4.5) is performed on the server's side, and invoked
by the user, v ia the A P I . W i t h a single command, the user starts the Job execution and de
pending on its settings, two different outcomes are possible:

1. A l l student implementations are pul led from their G i t repository. The tests
are executed against the SUTs , start ing a new P o d for each of them. (Feature 2,
Activity 1)

2. On ly a subset of students' implementation is passed to the Job. (Activity 2)

In both cases, independent on the quantity of the SUTs , the following steps are car
ried out for each container, as i l lustrated by Figure 4.6:

1. The container's test executor (explained in Subsection 5.3.1) picks a student im
plementation. Th is pick is based on the condit ion that a log file corresponding
w i th the implementat ion has not yet been created.

2. To mark the project as occupied, the executor creates an empty log file. To satisfy
Feature 12, the executed script has write permission to the log file but isn't able to
read the file. Th is way the implementation itself is not able to access the logs of the
tests.

35

< • (1) load SUT with no log file

Test Executor
Container

(2) create empty log file
T E S T S - V o l u m e /

project-xyz (3) execute test suite, write the output to the log file >
J

Figure 4.6: Interaction between a P o d and the T E S T S Persistent Volume C l a i m dur ing test
execution.

3. The executor then copies the student's solution's directory into the tests folder,
where it is expected to be present, executes the tests and redirects the output of the test
suite to the created log file.

After a l l Pods have exited, the testing Job is marked as complete, and the results are
retrievable. The Server appl icat ion then collects the testing logs, along w i th any created
test artifacts which are thereafter pushed into their corresponding G i t repository, into
a subfolder specific for the given test execution.

Debugging M o d e

Aside from the aforementioned process of automatic test execution, the service offers
a „Debugging mode" (Activity 3), which allows the user to manual ly inspect the tests, stu
dent's code, and the testing environment. The described functionality is achieved by the fol
lowing steps:

1. A testing Job is started without the executor script, but instead w i th an infinitely
looping terminal process, preventing it from exit ing and/or restarting.

2. The user then connects to the Pod 's terminal v ia OpenShift 's bu i l t - in console interface,
allowing for a live, interactive terminal session.

After they have connected to the Pod 's console, the user can investigate on a specific
implementation's details (e.g. why the tests are failing, inspecting a part of code, changing
a part of code, etc.) without the necessity of bui ld ing and start ing a container on their
local system, and injecting the test files manually.

W h e n the user is done w i th the debugging process, they can s imply issue a command
which w i l l erase the debugging session, which means that the debugging Job and its Pod
are deleted from OpenShift .

36

Chapter 5

Implementation Detai ls of FITest 's
Code and Configuration

This chapter goes into detai l on how the service was implemented, what specific steps were
taken, which aforementioned technologies were used and how the final service as a whole
works in order to automate the testing of student programming assignments.

5.1 Development Env i ronment

Dur ing the implementat ion of the service following addi t ional tools/technologies were ut i
l ized for the purpose of testing and development:

• Containerized version of G i t L a b 1 , to test the Git lab-re lated features, such as source
image bui lding,

• Min iShi f t (see Subsection 3.3.1), and

• Postman, an A P I development p la t fo rm 2 , used for the testing of FITest 's A P I config
uration.

5.2 In i t ia l configuration

Dur ing the in i t ia l phases of the implementation, several model configurations were necessary
to test out the newly developed features.

5.2.1 C r e a t i n g a n example S U T a n d co r respond ing test suite

The first step to implement the service was to create an example program posing as a stu
dent solution, and a simple test suite that would test this program and produce expected,
consistent output.

The example S U T was a simple Py thon script f ind_max.py, which accepts a set of num
bers as command-l ine arguments and returns the largest of them. The respective test suite
was implemented as a straightforward shell script, which compared the output
of the find_max.py script, given specific input, w i th the expected output. The output
of the test suite is demonstrated in L is t ing 4.

1 S o u r c e code a n d d o c u m e n t a t i o n ava i lab le at h t t p s : / / g i t h u b . c o m / s a m e e r s b n / d o c k e r - g i t l a b .
2 0 f f i c i a l l a n d i n g page o f the pro ject ava i lab le at h t tps ://www.postman.com/.

37

https://github.com/sameersbn/docker-gitlab
https://www.postman.com/

$./run.sh

Test 1 - OK

Test 2 - OK

Test 3 - OK

Lis t ing 4: Example output of the model test suite.

apiVersion: v l

kind: Template

metadata:

name: example-project

objects:

- apiVersion: batch/vl

kind: Job

metadata:

name: example-job

spec:

template:

metadata:

labels:

name: example

spec:

containers:

- name: test-container

image: 172.30.1.1:5000/myproject/example-image

restartPolicy: Never

replicas: 1

L is t ing 5: A simple Template Configuration for a testing Job, used for early development.

This simple output was for checking if the testing Job (see next section) was executed
and ended correctly.

5.2.2 Bas i c J o b Temp la t e

The next step was to define the above-mentioned testing Job Configuration. The a im
of the template was to give the foundation for implementat ion of more complicated template
which would be used later, w i th m in ima l necessary changes.

Figure 5 shows the in i t i a l configuration. In this example, the highlighted lines specify
the following configuration of the Job, based on Kubernetes ' documentation [55]:

• L ine 7 specifies the kind: Job setting, which means that this appl icat ion w i l l be
started and after its execution exited, as opposed to a service deployment, which
is meant to run constantly, and possibly restart on an exit due to whatever reason.
W h e n using a Job the user must bear i n m ind that in order to execute a Job to its end,

38

the container must exit with a 0 return code, otherwise, it 's restarted, unt i l it
succeeds (or unt i l a certain number of containers fails; by default, OpenShift sets this
value to 6 retries).

• Lines 16 through 19 define, what container (or containers) should the executing
Pod create. The name of the container is specified by the name property, but more
importantly, the image, which the given container should be based on is referenced
by its U R L in the image attr ibute. In this part icular case
172.30.1.1:5000/myproject/example-image was used, as the local Min iShi f t in
stance assigns its Container Registry a fixed IP address 172.30.1.1:5000, v ia which
it is accessible from its Projects.

• F ina l l y the restartPolicy: Never setting on line 19 specifies what should happen
the moment when a P o d execution fails. The Never value causes the P o d to exit
and restart in the case where the execution fails, incrementing the failure counter.
As counterintuitive as this sounds, it is actual ly based on the difference between the
restart being carried out by the Job scheduler and the Kubelet (Pod) itself. The ac
tua l difference this makes for the scope of this project is, that setting the value to
Never makes sure that the failed containers and their logs w i l l stay present i n Open-
Shift, as opposed to OnFailure, which would delete them. Further information about
this setting can be found in Kubernetes ' documentation [55].

5.3 Implementat ion of FITest 's Server

After the testing configurations were prepared and tested, gradual implementat ion
of the Server's functionality was init iated.

The Server is a containerized appl icat ion running in an OpenShift cluster, w i th in its own
OpenShift Project (namespace). Th is appl icat ion can interact w i th an allocated G i t L a b
namespace (along w i th a dedicated service account) and furthermore possesses the abi l i ty
to control Jobs and B u i l d operations inside this namespace. W i t h these functions, it is
able to retrieve the data necessary for testing, execute the tests and then i f the testing has
succeeded, push the test results along w i th any other essential test artefacts back to the
G i t L a b repository, which the data was in i t ia l ly pul led from.

The details of these processes are described i n the following subsections, along
w i th the documentation of important functions, which can be expanded upon in the future.

5.3.1 Test Execu to r s

Test Executor is a containerized Py thon script responsible solely for test execution, as i l
lustrated by Figure 4.6. The Executor class is implemented as a singleton class 3 , which
operates as follows:

1. F i rs t , the setting and val idity of environment variables point ing to the tests' and solu
t ions' folders is verified, and i f any defect is detected, the executions exits w i th an ex
ception. The setting of these variables is explained i n more detai l i n a later part
of this section and also in Subsection 5.3.3.

3 A class, w h i c h is meant to have o n l y a single ins tance

39

2. If a l l the checks pass, the respective directories are copied, side by side, into a th i rd ,
testing environment directory (in case that there are no solutions left to be
tested, the script ends w i th a 0 exit code). Th i s testing directory, unlike the original
two, is located inside the Executor container, which means that the testing is not
directly affecting the volume, which is being shared w i th the Server. A t the same
time, a log file for the solution is created in the directory, where a l l the solutions are
located. To simplify the setup, an environment variable, $FITEST_STUDENT_LOGIN

is created, and contains the name of the solution, which is being tested by the spe
cific executor (i.e. the S U T ' s folder can by accessed, from the context of run.sh
as ../$FITEST_STUDENT_L0GIN/

4

).

3. Once the files are a l l set up, the class checks for the run. sh script, and i f it 's present,
the main method of the class launches it as a command. In this part, the setup
of the test-solut ion dependencies (e.g. copying files between the two directories prior
to the testing), is managed by the user, and is expected to be done i n the run.sh
script. The output of the testing is redirected to the aforementioned log file. For the
sake of concealing the log file's contents dur ing the testing, this file can be wri t ten
into only by the user running the execution script.

Executors are ut i l ized by execution Jobs, which are started by the Server (explained
in more detai l i n Subsection 5.3.3), after receiving a corresponding command from the user
(see Subsections 5.3.4 and 5.3.5). The containers which are started by these Jobs are
injected w i th an environment variable containing the path to a pseudo-randomly generated
temporary folder path (point 1 i n the previous l ist) . After the execution of the Job has
finished (or failed, in case the tests d id not perform correctly), the log file's access rights are
set to read-only, and the Pods and their respective logs are kept i n the OpenShift project
(namespace), but only unt i l the next batch of tests is started. Th is means that before
start ing a testing Job for a specific assignment, the previous Job's data is erased from
the project. Th is is done for two major reasons:

• F i rs t of a l l , to keep the project's resources orderly. H a d the Jobs not been cleaned
like this, a long history of Pods could be generated and could prove to be quite
hard to navigate, or manage, especially w i th assignments tested for large numbers
of students.

• Secondly, the control l ing of the Job objects in using OpenShift 's A P I , w i th this re
strict ion is much more definite and fail-proof.

It is important to note, that due to the fact that the execution logic was implemented using
Py thon 3, any container images designed for testing need to contain the Python 3
package i n order to run the tests.

5.3.2 Server 's Con f i gu ra t i on M a n a g e m e n t

The server's configuration is handled by a class named Conf igLoader. The main purposes
of this class are

1. loading the server's configuration related to G i t L a b and the file system environment
(paths to configurations files), and

4 E v e n t h o u g h th i s a p p r o a c h is a b i t c omp l i c a t ed , i t was chosen due to the poss ib le errors w h i c h c o u l d
come f r om merg ing the d i rector ies .

40

2. loading and storing the configuration of each project into a designated Y A M L file,
which contains information such as G i t repository's U R I , status of the bui ld , status
of the test execution, etc.

The configuration of the Server is done dur ing the in i t ia l i zat ion of the main Server class,
by reading the terminal 's environment variables. The variable list is as follows:

• FITEST_SERVER_PRO JECTS_RECORD: The path to the configuration file containing the in
formation about the projects.

• FITEST_TEST_DIR_ENV: Specifies the path to the mount point of the persistent volume
dedicated to passing the test data between the server and the executors.

• FITEST_REPO_STORE: The path to a directory, which temporari ly stores the data re
trieved from G i t L a b , for the durat ion of the tests.

• FITEST_GIT_HOST: Contains the U R L to the G i t L a b instance, the dedicated FITest
namespace is located. Th is value is used for generating the URIs to the projects'
repositories, which are then used to access the test files.

• FITEST_GIT_TOKEN: Th is value is a str ing containing the G i t L a b O A u t h Access Token,
associated w i th the G i t L a b service account, used for authorizat ion against the service,
during various G i t operations. The account, to which the token is bound needs
to have proper access rights (e.g. owner, or developer), to be able to delete
and create repositories and to push and pu l l data from them.

• FITEST_OPENSHIFT_NAMESPACE: The name of the OpenShift project, where the server
Pod is deployed. Defaults to f i t e s t .

5.3.3 OpenSh i f t Ope ra t i ons

A more extensive class, Openshif tControl, contained i n the f i t e s t . openshift_control
module, is in charge of communicat ing w i th the cluster, where the service is running. It ut i
lizes the official kubernetes and openshif t modules, available from the P y t h o n Package
Manager, to carry out a set of tasks related to image bui ld ing, and Job execution. Dur ing
its in i t ia l izat ion, an instance of this class

1. checks if the in i t ia l izat ion is being executed out inside a Kubernetes (i.e. OpenShift)
cluster, (if it 's not the case, it raises an Except ion, exit ing the script and shutt ing
down the Server operation),

2. the in-cluster settings of the executing Pod 's service account are loaded, for the pur
pose of authenticat ing against the OpenShift A P I (see Subsection 5.3.9),

3. based on these settings, a Kubernetes client is created, and further passed to an Open-
Shift DynamicClient object, used for the OpenShift A P I operations.

Hereafter follows the documentation of the methods and resources implemented
by the Openshif tControl class, that are used by the Server appl icat ion.

41

apiVersion: batch/vl

kind: Job

metadata:

name: {job_name]-

spec:

successfulJobsHistoryLimit: 1

failedJobsHistoryLimit: 1

parallelism: {solution_count}

completion: {solution_count}

template:

spec:

containers:

- name: executor-container

image: {registry]-/{namespace}/{project_name}-image

volumeMounts:

- mountPath: /tests-volume/

name: tests

env:

- name: FITEST_SOLUTION_PATH

value: "{solution_pathJ"

- name: FITEST_TEST_PATH

value: "{test_path]-"

c ommand: { c ommand]-

{limits}

restartPolicy: Never

volumes:

- name: tests

persistentVolumeClaim:

claimName: tests-claim

replicas: 1

Lis t ing 6: Parametr ic Job configuration used by the Server to create Executor Jobs.

42

Job Configuration

In order to execute various testing, or debugging Jobs (see Subsection 3.3.2), the class uses
an adjustable Y A M L str ing (this str ing is updated by the Openshif tControl class for every
Job execution), which contains the definition of the aforementioned Jobs.

The configuration of the Job shown in L i s t ing 6 shows the definition of the object.
Values contained in braces represent parametric values, which are dynamical ly filled in
on a Job creation. The description of the configuration is as follows:

• The configuration starts w i th the definition of the apiVersion attr ibute, whose value,
batch/vl i n this case, refers to the A P I namespace containing the methods for Job
handling. The kind: Job attr ibute specifies the type of OpenShift object this con
figuration is describing.

• The metadata.name field contains the name of the Job to be created, by which it
is referenced when using the OpenShift A P I . The {job_name]- value is a parametric
field, which is filled in dur ing a specific Job's definition and corresponds w i th the name
of the FITest project, for which it is being executed.

• The spec dict ionary contains the specification of the Job 's technical parameters:

— B o t h successfulJobsHistoryLimit and fai ledJobsHistoryLimit attributes
set the l imi t for history of successful and failed Job Pods, respectively. Based on
this value a certain amount of log data is kept around in OpenShift , after the Jobs
have ended. Due to the fact that the Jobs re-created on each run, this value is
set to 1, as there is no necessity to store more data, and acts more as a fail-safe
mechanism, in case a Job delete operation fails.

— The para l le l i sm field sets how many of the Job pods should attempt to be
executed at the same time (attempted, as i n using as many resources as assigned
and then queuing the rest). The {solution_countJ- value's input is referring
to the number of SUTs chosen for testing. Th is means, that in an ideal s i tuat ion,
a l l student solutions are tested i n parallel , and the durat ion of the execution
depends on the durat ion of the slowest test Pod . In the case, where a debugging
session is to be created, this value is set to 1.

— Using the same parametric value, as the previous field, the completion prop
erty defines how many Job Pods must exit the testing successfully, i n order
for the Job to be marked as „Finished". This way, the testing Job is successful
only if the test execution of a l l the chosen solutions is successful (as described
in Section 5.3.1). Whi le a test may fail, the test suite itself has to be able
to recover from possible errors and exit with a success return code,
otherwise the Job w i l l be restarted, and fail, un t i l a P o d failure l imit , by default
set to 6 attempts, is reached. In such case, the entire test execution would result
in a failure.

• The spec.template.spec describes what the Job's Pod should look like:

— The containers field is used to define one, or more containers, inside the Pod ,
which are supposed to carry out the Job. Inside, the executor-container is set
up. Th is container contains the code which carries out the testing, as described
in Subsection 5.3.1. This container is bu i ld upon container image pul led during

43

the Job's creation, from U R L contained in the image field. The parametric value
{registry}/{namespace}/{project_name}-image consists from:

* The U R L to a container image registry, where the image is stored.
In the scope of this implementation, this value is defaulted to the bui l t-
in OpenShift container registry.

* namespace refers to the sub-path of the registry, which in the case of the in
ternal registry points to the name of the OpenShift project, i n which
the image is supposed to be used. The value must correspond to the name
of the project, where FITest is deployed.

* Last ly project_name is the name of the FITest project object, meaning
that every project has a separate image dedicated to it (further explained
in Subsection 5.3.4).

The volumeMounts defines which volume object (name) should be mounted
to the container, and specifies the path (mountPath), accessible from the con
tainer, where this volume should be mounted. In this C c t S 6 , ctS defined
in the Server's Architecture (see Section 4.2) the value is set to /tests-volume/.
The env attr ibute is used to inject environment variables in the container —
as described in Subsection 5.3.1, the paths to solutions and test suites are injected
this way, and their values are generated by the Server prior to the testing (see
Subsection 5.3.4). Lastly, the command field is used to invoke a shell command
in the container (furthermore, it overrides any CMD setting which could have been
defined in the image's Dockerf i l e) .

— If any C P U , or memory l imits were requested by the user, the l i m i t s object is
added in place of the {limits} parameter. If no l imits were requested, an empty
string is added instead.

— restartPolicy is set to Never, as described in Section 5.2.2.

— The volumes is a list of references to Persistent Volume Cla ims. Each i tem de
fines how the volume should be referred to by the containers (name) and which Per
sistent Volume C l a i m should be used (persistentVolumeClaim.claimName).

— Lastly, replicas: 1 l imits the Job's P o d to a single instance, as it is not nec
essary to scale an execution P o d this way. The replication is instead assured
by the parallelism and completion.

Bui ld Configuration

Simi lar ly to a Job Configuration, a B u i l d Configuration (see Subsection 3.3.3) is created
from a pre-defined Y A M L str ing w i th parametric attributes, some of which are the same
as in the above explained Job Configuration:

• Aga in , the object's definition begins w i th apiVersion, which is, i n this case,
build.openshift.io/vl, and contains A P I operations for Bui lds and B u i l d Con
figurations.

• The object's kind is BuildConf ig, and even though this might come across as a con
fusing naming (Bu i ld and B u i l d Configuration), this object is merely a configuration
for any number of future Builds, which are supposed to bui ld a given image.

44

apiVersion: build.openshift.io/vl

kind: BuildConfig

metadata:

name: {project_nameJ-

spec:

runPolicy: S e r i a l

triggers:

- type: ConfigChange

source:

g i t :

u r i : {project_git_uri}

ref: master

sourceSecret:

name: gitlab-token

strategy:

dockerStrategy:

forcePull: true

dockerfilePath: Dockerfile

type: Docker

output:

to:

kind: Dockerlmage

name: {registry]-/{namespace}/{project_name}-image:latest

L is t ing 7: A parametric B u i l d Conf igurat ion used for bui ld ing of container Images
by the Server.

• Aga in , the object is named after the project (inside a different namespace, e.g. jobs/
and buildConfigs/).

• A Bui ldConf ig 's spec, however, contains a different set of attributes:

— runPolicy: S e r i a l forces any Bui lds triggered (i.e. started) dur ing a previ
ous bui ld to wait unt i l a l l previous Bui lds have finished. Th is way, the output
of the bui ld is always predictable and consistent. Due to the way the bui ld
mechanism is carried out i n the specific case of FITest (see Bu i l d operations
in Subsection 5.3.3), there should be always only a single B u i l d instance for every
given project, meaning this setting serves as a fail-safe purpose.

— The triggers field contains a list of events, which trigger a B u i l d based
on this B u i l d Configuration. In this specific case, a single trigger, w i th the type
Conf igChange is set up, which starts a B u i l d , whenever this Bu i ldConf ig is cre
ated in OpenShift (as confusing, as it seems, the official documentation section
regarding B u i l d triggers states, that the functionality triggering the Bui lds on ev
ery configuration update w i l l be added i n a future release, and is not supported
in the version 3.11). Furthermore, once the service is running inside a cluster ac
cessible from the internet, a trigger based on GitLab Webhooks can be added,
meaning that a B u i l d can be started, whenever any associated data i n a G i t L a b

45

repository is updated (at the time of implementat ion it was not possible to add
this feature, as the l imi ted resources of Minishi f t would not allow for the testing
of webhook triggers). [34]

— The way of retrieval of data necessary for an image 's bu i ld (Dockerfile, local
packages, etc.) is defined by the source field. Since the service is designed
to use G i t to store these files, a g i t object is defined as the source, along
w i th u r i to the repository and ref : master opt ion specifying which branch to use
(in this case, the master branch). Furthermore, for the purpose of authoriz ing
against the G i t service, the sourceSecret field is added, to reflect this fact.
The gitlab-token value is an identification, of a secret object stored i n Open-
Shift i n advance (see Subsection 5.3.8).

— The strategy property defines what mechanisms are supposed to be used when
bui ld ing the image, type: Docker setting specifies that the image w i l l be bui l t us
ing Docker (i.e. bui ld ing according to a Dockerfile) and dockerStrategy further
expands on the possible options, dockerf ilePath contains a file path, inside
the bu i ld context, where the Dockerfile for the image is located. In combination
w i th the git source, the Dockerfile value i n the field translates to bui ld ing
the image from the provided repository, where the Dockerfile for the bu i ld is
located i n the root folder of the G i t repository.

— Lastly, the output. to field specifies, where the image created by the B u i l d should
be stored. A s mentioned i n the previous section, every project has a dedicated
image, which is stored i n the internal OpenShift registry. Based on this informa
t ion, the output of the bui ld is set to kind: Docker Image, meaning a Docker-
formatted image file w i l l be pushed to the U R L
{registry]-/{namespace}/{project_name]--image, as described i n the previ
ous Section. This image is also at tr ibuted the latest tag, meaning that the Job
configuration w i l l always point to the latest bui l t image.

Job Operations

The Openshif tControl class provides mult iple methods for interaction w i th the OpenShift
Job A P I , which are used by the Server class to execute the tests:

• OpenshiftControl.start_job() : The objective of this method is to start a testing
Job using the aforementioned Job Configuration. A t first, the method deletes any
existing testing jobs associated w i th the project. Afterwards it creates a Job using the
Job A P I and passes a l l necessary parameters from its input to the Job Configuration
string's parameters. The command the Job uses is [

M
python3",

 M
executor_path"],

which means that the executor script is launched on the container's start. If an error
occurs dur ing this process, an error message is returned by the method.

• Openshif tControl. get_job_status(): This method returns the current status of
a Job and returns this status as a dictionary. If a Job w i th the specified name is not
found, an error message is returned instead.

• OpenshiftControl .wait_for_job_f i n i s h () : Dur ing the tests' execution the Server
class needs to wait for the testing Job to finish, so it can finalize the testing process.
wait_f or_job_f inish() polls OpenShift 's A P I for the Job's status and returns a sta
tus message, once the Job has succeeded, or failed.

46

• OpenshiftControl.delete_job() is used to delete a Job, and, i f any Pods belonging
to the Job are left, it deletes them as well.

• OpenshiftControl.create_debug_session() works very s imi lar ly to start_job(),
wi th 2 differences: There is always only a single Pod active, no matter the number
of the solutions, and the command the P o d executes is [„sh", ,,-c" , „tail -f

/dev/null"], which is meant to keep the Pod alive, un t i l the user decides to
delete the session.

• OpenshiftControl. end_debug_session() s imply deletes the debugging Job, if one
exists.

• OpenshiftControl.get_job_pod_name() returns the name of the first P o d belong
ing to a specific Job. Th is method is used for control l ing the debug session.

Further usage of these methods is explained i n Subsection 5.3.4.

Build Operations

A long w i th Job operations, the class also provides functionality for basic B u i l d operations:

• OpenshiftControl .update_build_config() has two main tasks: F i rs t , it removes
any previously existing B u i l d Configurations associated w i th the specified FITest
project, after which it creates a new B u i l d Configuration, based on the aforementioned
B u i l d Y A M L configuration str ing — this, as explained previously, triggers a new image
B u i l d .

• OpenshiftControl.get_build_status() returns the state i n which the latest bui ld
for the FITest project is, according to the OpenShift B u i l d A P I .

5.3.4 Pa rent Server C lass

The Server acts as a mediator between the A P I endpoints, and the executive features.
Its purpose is to wrap the OpenshiftControl class' functionality w i th file management,
and reporting features, related to G i t and A P I clients. The class' publ ic methods include
the following:

• Server. add_project () creates a new project record, along w i th a new, fresh G i t -
Lab repository i n the designated namespace, and pushes the basic structure of the
repository, along w i th a dummy Dockerfile, as the in i t ia l commit . If a project w i th
the provided name already exists, or the repository w i th the same path exists, re
turns an error message. If a l l G i t L a b operations carry out correctly, a bui ld , using
the dummy Dockerfile is started. Th is feature guarantees that there w i l l always be
an image present for the project, available as a fallback option i n case a future bui ld
fails.

• Server. delete_project () deletes a projects record in the Server's configuration
and removes the associated G i t repository, by accessing the G i t L a b A P I .

• Server .build_project_image() wraps theupdate_build_config() method, adding
the check for an existing bu i ld in progress. If such a bui ld exists, a message, inform
ing the user of an active bu i ld is returned. If no B u i l d is active, it starts one.

47

• Server .get_build_status() s imply wraps get_build_status() , without any ad
dit ional features and passes its output to the A P I .

• Server.get_project_info() returns a l l stored information about a project.
If a project's name does not exist i n the records, an empty dict ionary is returned.

• Server .run_project_tests() contains the functionality for the test execution:

1. In the beginning, it sets up the testing environment by cloning the corresponding
repository, creating a temporary folder inside the volume, which is being shared
w i th executor pods, w i th a randomly generated file path and moving the tests
and solutions from the repository to this directory. If the repository cloning
fails, the repository's directory structure differs from the defined structure (see
Figure 2), or no student solution's names matched the opt ional list of solutions
to be tested, a respective error message is set. In such a case, the method skips
the execution and goes straight to finalization (3).

2. After the environment is set up, the method starts the Job, w i t h the data pro
vided by the setup method. Thereafter, the method waits for the execution
to be finished.

3. W h e n the execution has finished, in case there are any test results available,
they are uploaded to a respective G i t repository, and the temporary local files
are erased from the storage.

This process is i l lustrated i n more detai l by Figure 5.1.

• Server.stop_project_tests() is used to stop a project's test execution prema
turely, without pushing any results. This functionality is achieved by removing the
testing Job, which is registered by the wait function, meaning the testing process is
finalized (file cleanup), but no results are pushed into the corresponding G i t reposi
tory.

• Server. start_project_debug() sets up the environment i n a similar way
to Server.run_project_tests(), but creates a persistent single-Pod Job, using
OpenShift control 's create_debug_session(). After this Job has been set up, the
method retrieves the name of the Job's single Pod , and stores it i n the project's
information, along w i th the path to the temporary testing environment.

• Server.end_project_debug() is used to remove the debugging Job, along w i th
its Pod , ut i l i z ing OpenshiftControl.end_debug_session(), and clearing any de
bug related data from the project's stored information. The method returns any
error message that OpenshiftControl passed to it dur ing Job removal.

5.3.5 A P I E n d p o i n t s and F l a sk

The Server's A P I functionality was implemented using a P y t h o n framework called Flask [26].
The framework was used to map specific H T T P requests , made to pre-defined U R L s ,
to methods of the Server class. Th is way, a service's user is able to invoke the Server's
functionality by using these H T T P requests (explained i n more detai l i n the Cl ient section).

5 F I T e s t uses o n l y a subset of ex i s t i ng H T T P requests ' types. M o r e i n f o r m a t i o n abou t different types of
H T T P requests ava i lab le at https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

18

https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

Start

Set up the testing environment

Update Project's
Status with the error

Update Project's
Status

Solution
-Yes count equals

0

No

Start the Testing Job

Error occurred
during the Job's

No

Update Project's
status

Clean up local
temporary files

Update Project's
status

Figure 5.1: F low chart describing how the test execution works on the Server's side.

19

The base of the U R L is set to [prefix]/api/, where the prefix part of the U R L
is the address, where the service is exposed and available on the network. The following
routes, parametrized by the project-name (if a project w i th given name is not present
on the Server, a 404 response is returned), w i th specified H T T P methods, have been
defined for the Server's functions:

• GET /api/project/project-name runs the Server.get_project_info() method
and wraps the project information i n the response w i th status 200.

• POST /api/project/ is used to create a new project. This method expects
a 'project-name' field in the request's body. The value of this field is then compared
w i th existing projects, and if such a project does not exist, the Server .add_project ()
method is called, to create a new project. Its output, whether a success, or an error
message, is returned i n the response. A project's name can consist only of alphanu
meric characters, along w i th the „ - " and „_" symbols.

• DELETE /api/project/project-name executes Server. delete_project () to remove
the project from the Server and G i t .

• GET /api/project/project-name/build invokes the Server.get_build_status(),
and returns the latest build's status in the response.

• POST /api/project/project-name/build starts the project's image's bu i ld w i th
Server .build_project_image () and returns the in i t i a l bu i ld status, or error, w i th in
the response.

• POST /api/project/project-name/execute initiates the test execution for the given
project by cal l ing Server .run_project_tests() and either returns an error message
in the response, or waits for the execution to finish and returns a status message.
The timeout mechanics of the response are explained i n Section 5.4. Furthermore,
in the body of the request, this endpoint accepts information about how the con
tainer's resources should be l imited.

• DELETE /api/project/project-name/execute stops a test execution prematurely
by cal l ing Server.stop_project_testing().

• POST /api/project/project-name/debug creates a debugging session by running
Server.start_project_debug() and returns the links to the created debugging re
sources, or an error message i n the response. In a case, when a debugging session
is already active, the method returns the references to the existing session i n the re
sponse.

• DELETE /api/project/project-name/debug uses the Server.end_project_debug()
to delete an active debugging Job for the project and returns a message i n the re
sponse. If no active session is present, a message, informing the user of this fact, is
returned.

50

5.3.6 Server 's OpenSh i f t Con f i gu ra t i on

A n important part of the development was to create an OpenShift Template 6 for the server.
Th is Template contains everything necessary for the server appl icat ion to be deployed
in an OpenShift environment. The following listings contain the Template objects (due to
the length of the single file, it has been split into mult iple smaller listings).

Server's Deployment Configuration

L is t ing 8 shows the DeploymentConf i g object, which defines how the server itself should be
ran. The spec .template defines the Pod Template, i.e. what Pods are supposed to be
run i n the Server's appl icat ion. Since the Server itself requires only a single P o d for its
functionality, the container setting looks as following, start ing on line 12:

• The server's container is named server-container and uses image located
at 172.30.1.1:5000/f i t e s t / f itest-server. The IP address, as explained in Sub
section 5.2.2, is assigned to the internal Container Registry by default, by OpenShift .
This value refers to the container image named f i t e s t / f itest - se rver , which is
stored i n the internal Container Registry. Furthermore, the Deployment configura
t ion is set up in such way, that it is deployed i n OpenShift project named f i t e s t ,
hence the image's path's prefix f i t e s t .

• The container's environment variables are defined i n the env attr ibute and contain
values explained in Subsection 5.3.2. A l l variables contain hard-coded strings, except
for FITEST_GIT_TOKEN, which is using a reference to the project's Secret Storage.
This secret referencing is explained more thoroughly i n Subsection 5.3.8.

• The volumeMounts array works as explained i n the Job part of Subsection 5.3.3,
but also contains a second volume c la im conf igs, which is used to store the project
information (the usage of this volume is explained i n Section 4.2.1).

• Lastly, the container's port 8080 has to be exposed for the container to be able
to receive T C P communicat ion. Th is is done by specifying the port inside the port
array on line 33.

The replicas: 1 setting specifies how many copies of the P o d defined i n the Tem
plate should be active when deployed. Repl icat ion is used for scaling of the appl icat ion
in case, where more resources are necessary (e.g. a webserver receiving too many requests).
As in this prototype form of the project the server is not expected to receive heavy loads
of traffic, one replica of the P o d is sufficient. If a need to scale the Server's appl icat ion
comes up i n the future, only a smal l change, consisting of adding an automatic scaler,
would be necessary.

Last ly the strategy .type is set to Rolling, which means that whenever a new ver
sion of the Deployment should be used (updates of the configuration, image change, etc.),
the transit ion between the old and the new instance of the service w i l l be without any
actual outage. Th is is achieved by first spinning up the new version, redirecting a l l traffic
from the old one to the new one, and finally terminat ing the o ld instance.

6 t e m p l a t e , w h i c h descr ibes m u l t i p l e var ious O p e n S h i f t objects , s u c h as B u i l d s , or Dep l o ymen t s

51

apiVersion: vl

kind: DeploymentConfig

metadata:

name: fitest

spec:

template:

metadata:

labels:

name: fitest

spec:

containers:

- name: server-container

image: 172.30.1.1:5000/fitest/fitest-server

env:

- name: FITEST_SERVER_PROJECTS_RECORD

value: "/config/projects.yaml"

- name: FITEST_TEST_DIR_ENV

value: "/tests-volume/"

- name: FITEST_REP0_ST0RE

value: "/tmp/fitest-repo-store/"

- name: "FITEST_GIT_TOKEN"

valueFrom:

secretKeyRef:

name: gitlab-token

key: password

- name: "FITEST_GIT_HOST"

value: "https://pajda.fit.vutbr.cz/"

volumeMounts:

- mountPath: /tests-volume/

name: tests

- mountPath: /config/

name: config

ports:

- containerPort: 8080

protocol: TCP

command: [python3, /fitest/app.py]

restartPolicy: Always

volumes:

- name: tests

persistentVolumeClaim:

claimName: tests-claim

- name: config

persistentVolumeClaim:

claimName: config-claim

replicas: 1

strategy:

type: Rolling

L is t ing 8: The Server's OpenShift Deployment Configuration.

52

https://pajda.fit.vutbr.cz/

- kind: PersistentVolumeClaim

apiVersion: vl

metadata:

name: tests-claim

spec:

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 500Mi

volumeName: pvOOOl

- kind: PersistentVolumeClaim

apiVersion: vl

metadata:

name: config-claim

spec:

accessModes:

- ReadWriteOnce

resources:

requests:

storage: lOOMi

volumeName: pv0002

Lis t ing 9: The Server's Persistent Volume C l a i m Configuration.

Access to Persistent Volumes

Next, L i s t ing 9 shows, how the Persistent Volume Cla ims referred to in the Deployment
Configuration (L ist ing 8, line 28). Before a Persistent Volume can be used by a Pod ,
a C l a i m to the Volume must be made by the appl icat ion. A s shown in the spec attr ibute
of the object, i n L is t ing 9, a Persistent Volume C la im 's settings are:

• The accessModes array, in this case, contains only a single value, ReadWriteOnce,
which means that only a single Node is able to access the volume i n a Read/Write
fashion at any given t ime . This mode was chosen as it provides best support for dif
ferent file systems, but may change once the service has been deployed in a multi-node
cluster.

• resources. requests specifies what resources are being requested for the given C l a im .
In this specific case, storage: 500Mi value is set, which means that this C l a i m is
requiring 5 0 0 M B of storage space to be allocated on the Persistent Volume for it .

• F ina l l y volumeName is the name of the Persistent Volume object (see Section 3.3.2),
for which the C l a i m is making a request. For the two aforementioned Cla ims, de
fined for the FITest service, pvOOOl and pv0002 were chosen, main ly for development
purposes, since these objects are default Persistent Volumes, provided by MiniShi f t .

7 T h e rest of the modes are l i s t ed at https://kubernetes.io/docs/concepts/storage/persistent-
volumes/#access-modes

53

https://kubernetes.io/docs/concepts/storage/persistent-

- apiVersion: vl

kind: Service

metadata:

name: fitest

spec:

selector:

name: fitest

ports:

- name: http

port: 8080

protocol: TCP

targetPort: 8080

- apiVersion: vl

kind: Route

metadata:

name: fitest

spec:

to:

kind: Service

name: fitest

port:

targetPort: http

L is t ing 10: Service and Route objects' configuration.

Networking Configuration

Lastly, L i s t ing 10 shows the configuration of the Server's Service and Route objects.
These objects are used for enabling access to the Server v ia network, both from inside
and outside of the cluster:

• The Service object is used to assign a in-cluster static IP address to a P o d (as ex
plained i n Subsection 3.3.2). The selector property is used to find a l l contain
ers w i th name matching f i t e s t (i.e. the Server Pod(s)), and associate the Service
to them. The main part of the object is the ports attr ibute, which is used to specify
which port(s) of the associated Pods should be exposed using this service. In this
case, the 8080 port gets exposed (the targetPort field specifies through which port
the communicat ion w i l l arrive from outside of the Pod) to TCP communicat ion. The se
lected port is also given a name, so it can be used i n the following object.

• A Route object is used for exposing a Service outside of the OpenShift cluster, which
means it w i l l be available vie a given hostname (e.g. https://fitest.com). The to
attr ibute specifies that the Route should lead to a Service object w i th the name
f i t e s t . The port field specifies to which port of the Service (in this case the port
named http) the internet traffic should be directed to.

54

https://fitest.com

5.3.7 C r e a t i n g the OpenSh i f t Namespace

To run an appl icat ion i n OpenShift , an OpenShift Project (see Subsection 3.3.3) needs
to be created i n order to wrap the appl icat ion. For this task, the OpenShift Command
Line Interface 8, a command-l ine client tool for interaction w i th the OpenShift A P I , was
used. To create the Project, the following commands were issued:

$ oc login -u developer -p developer

$ oc new-project f i t e s t \

—description="FITest Testing Service" \

—display-name="FITest"

The oc login command was used to log in to the A P I , as the default Min iShi f t non-
admin user called developer and the oc new-project command was executed afterwards,
to create the Project. The f i t e s t argument specifies the name of the Project ob
ject, —description specifies the summary information about the Project, and lastly,
the —display-name argument sets what name should be displayed in the Web Console
appl icat ion. Unl ike the object's name, the display name can contain capi ta l letters and
spaces.

5.3.8 C r e a t i n g a Secret Resource for the G i t L a b Access T o k e n

The next step in the creation of the appl icat ion was storing the above mentioned G i t L a b
Access Token, which would be used for authentication and authorizat ion against G i t L a b
(see Sections 5.3.2 and 5.3.6). Aga in , the C L I appl icat ion was used, executing the following
command:

$ oc create secret generic gitlab-token \

—from-literal=password=[TOKEN_SECRET] \

—type=kubernetes.io/basic-auth

The oc create secret generic secret-name command is used to create a secret
from a local file, directory or l i teral value 9 and store it as an object w i th the name
secret-name. The — f rom-literal=password=token-secret flag specifies that the secret
should use the value from the provided l i teral , and save it as a password (other options,
for instance —from-literal=user=username, could be added, if, for instance, a user-
password basic authentication was des ired 1 0) . The type flag specifies the type of the secret
object. Since the secret is created from a non-specified token value, even though the token is
a G i t L a b O A u t h t o k e n 1 1 , the best opt ion to store and access it is as a basic type of secret.

This value is then retrieved by the Server's Deployment Configurat ion on lines 21
through 25 in L i s t ing 8, by using the secretKeyRef setting, inside which the name of the se
cret is looked up and the value stored i n password attr ibute (hence the =password opt ion
specified i n the l i teral flag) is injected into the specified environment variable.

8 More information about the tools usage available at https://docs.openshi f t .com/container-
p l a t f orm/3.11/cli_ref erence/get _ s t a r t e d _ c l i . h t m l .

9 Further information about types of secrets available at https://docs.openshi f t .com/container-
p l a t f orm/3.5/dev_guide/secrets.html

1 0 M o r e information about the basic authentication model available at https://docs.openshi f t .com/
c o n t a i n e r - p l a t f orm/3.11/dev_guide/bui lds/bui ld_inputs.html#source-secrets-basic-
a u t h e n t i c a t i o n

" in format ion on how the OAuth authentication works is documented at https://docs.gi t lab.com/ee/
api/oauth2 .html#access-g i t lab-api -wi th-access- token

55

https://docs.openshift.com/container-
https://docs.openshift.com/container-
https://docs.openshift.com/
https://docs.gitlab.com/ee/

5.3.9 E l eva t ing the Pro ject ' s Service A c c o u n t ' s Pr iv i leges

For the Project 's Service A c c o u n t 1 2 to be able to start Jobs, a special privilege had to be
added to it . Us ing the following command, a pre-defined role, called job-controller

1 3

was added to the project's default service account:

$ oc policy add-role-to-user system:job-controller \

system:serviceaccount:fitest:default

B y adding the privileges, the Openshif tControl class (Subsection 5.3.3) is able to execute
Jobs, since the Kubernetes configuration loaded dur ing the Class's instance's ini t ia l iza
t ion uses this specific service account. Furthermore, no other roles were necessary to add
to the Service Account, as a l l remaining functions were already contained i n the default
account's privileges.

5.3.10 D e p l o y i n g the Tes t ing Service

The final deployment of the Server appl icat ion consists of

1. bui ld ing and pushing the Server's container image into the internal container registry,
and

2. apply ing the application's Template to the project.

The actual setup of the Template, described in Section 5.3.6, is s imply executed by the fol
lowing command:

$ oc process -f server.yaml | oc apply - f -

The first part of the command pipeline processes a Template configuration, stored
in the server .yaml file and its output, which consists of the definition of the above men
tioned objects, is then redirected to the oc apply command, which creates (or updates)
these objects w i th in the OpenShift Project.

5.3.11 A u t o m a t e d D e p l o y m e n t to M i n i S h i f t

For the purpose of making it easy to deploy the appl icat ion into Min iShi f t for development
and testing purposes, a Bash shell script was created. Th is script automates a l l previously
mentioned steps.

As seen in L is t ing 11, the variable containing the G i t L a b O A u t h token is supposed to be
filled into the $T0KEN_SECRET variable by the script 's user, after which a l l the commands
are carried out automatical ly.

It's also worth mentioning, that the part of the script executing Docker commands ut i
lizes Min iShi f t ' s macros (minishift docker-env and minishift openshift registry)

1 2 A Serv ice A c c o u n t is a n O p e n S h i f t object , used for a u t h o r i z a t i o n for var ious opera t i ons , s u c h as J o b ,
or B u i l d execut i on . U n l i k e a regu lar Use r A c c o u n t , i t is no t necessar i l y b o u n d to a single user (i.e. person) ,
bu t i n s t ead to a n O p e n S h i f t P r o j e c t ' s namespace . M o r e i n f o r m a t i o n abou t different accounts i n OpenSh i f t
ava i lab le at https: //docs.openshif t.com/container-platf orm/3.6/dev_guide/service_accounts.html.

1 3 M o r e i n f o r m a t i o n abou t O p e n S h i f t ' s Ro l e -based Access C o n t r o l ava i lab le i n the of f ic ial d o c u m e n t a t i o n ,
at https : //docs, openshif t.com/container-platf orm/3.11/admin_guide/manage_rbac.html.

56

TOKEN_SECRET='INSERT_TOKEN_HERE
1

Login and create the project in openshift

oc login -u developer -p developer

oc new-project fitest \

—description="FITest Testing Service" \

—display-name="FITest"

Create the secret for gitlab operations

oc create secret generic gitlab-token \

—from-literal=password=$TOKEN_SECRET \

—type=kubernetes.io/basic-auth

Gives the service account of the server access to job operations

oc policy add-role-to-user system:job-controller \

system:serviceaccount:fitest:default

Push the server's image

eval $(minishift docker-env)

docker login -u developer -p $(oc whoami -t) $(minishift openshift registry)

docker build -t $(minishift openshift registry)/fitest/fitest-server .

docker push $(minishift openshift registry)/fitest/fitest-server

Apply the template to the project, deploying the server application

oc process -f server.yaml | oc apply -f -

Lis t ing 11: Script for automated deployment of FITest to MiniShi f t .

to automatical ly direct the Docker daemon to its internal container registry. The $(oc
whoami -t) command is used to return the currently logged in user's password for access
ing the internal registry, which changes on every login.

5.4 Cl ient App l i c a t i on

For easier interaction w i th the FITest A P I , a command-l ine appl icat ion was implemented,
using Py thon 3. The appl icat ion itself is a script, which uses the requests module for is
suing H T T P requests to the A P I , and the argparse. Argparser class for parsing the user's
input. Each input command maps to a different A P I endpoint (see Section 5.3.5) and prints
the parsed response from the Server. The mapping of the commands is as following:

• $ client.py info project-name uses GET /api/project/project-name to retrieve
a project's information and print it in the console.

• $ client.py create project-name sends the POST /api/project/request , inc lud
ing the project-name value i n the body of the request to create a project.

• $ client.py build project-name starts the bu i ld of a project's image w i th the
POST /api/project/project-name/build request. If the —status flag is added
after the build argument, the appl icat ion instead retrieves a bui ld 's status by sending
the GET /api/project/project-name/build request.

• $ client.py test project-name executes a project's bu i ld by invoking the POST
/api/project/execute command. B y default, no solutions are specified, meaning
that a l l of the provided ones are going to be tested. If the - -solutions flag is set,

57

and a comma separated list of values is provided (e.g. —solutions=xampleOO, . . .),

the specified solutions are passed i n the request's body to the Server as well.

If the - -stop switch is added, the testing is stopped by cal l ing DELETE

on the /api/project/project-name/execute endpoint.

Furthermore, the —cpu-limit and —mem-limit switches can be used to l imit
the testing containers' max imum C P U time (in milicores) and memory (in megabytes),
respectively.

• $ client.py debug project-name sends the POST /api/project/debug request
to create a debugging session and prints the l ink to the debugging Pod 's terminal 's
web interface, in the console. If the - -stop flag is supplied, a debugging session is
deleted instead (if one was active).

• $ client.py results project-name uses the GET /api/project/project-name,

in a similar fashion as info, but only prints the U R L to the latest test logs in the con
sole.

• Lastly, the $ client.py delete project-name command can be used to delete
a project, along w i th its G i t repository by invoking the DELETE command
on the /api/project/project-name endpoint.

The way the Cl ient is implemented allows for very easy modifications to the code,
meaning if a change of the A P I occurs, or new features are implemented i n the feature,
the appl icat ion can be updated accordingly w i th m in ima l effort.

58

Chapter 6

Evaluat ion of FITest

Dur ing , and after the implementat ion of FITest, the service was being tested on mult iple
levels and after it has been finished, the final product was compared against the require
ments defined in Chapter 4. Furthermore, this chapter mentions various error, that could
manifest while using the service, caused by either minor design choices, or the OpenShift
platform.

6.1 Compl iance w i t h the Requirements

The a im of the implementat ion was to fulfill the largest possible subset of the defined
requirements defined in Section 4.1.

6.1.1 Features

The following features of the project were met, or not achieved as follows (in order of their def
init ion):

1. User-defined automatic testing is the foundation of the service and was achieved
the earliest. The user's requirements are defined by the run.sh script and allow them
to use any functioning test suite, which runs in a L inux environment.

2. Identical test execution is attained by using the Executor Pods, replicated to the num
ber of different solutions, which are being tested.

3. Based on point 1, the test evaluation depends solely on the user's definition and allows
for any k ind of text-formatted output. However, FITest w i l l s t i l l report a Fai lure
status, if the test suite in execution had failed.

4. Results report ing from the command-l ine appl icat ion was dropped due to complica
tions it would br ing into the scope of the project, as it would require further func
t ional i ty regarding dynamic displaying of output i n the terminal . A s a substitute,
the Cl ient provides the U R L to the results directly, in a project's G i t repository,
where the results can be browsed using G i t Lab ' s native file explorer, i n an orderly
fashion.

5. A s mentioned in the previous point, the results for a project are accessible v ia its G i t
repository. Storage of the projects on the service's server was dropped in the course

59

of implementation, as no serious need for such functionality was found (and was
instead fully replaced by using the G i t storage).

6. A client appl icat ion (see Section 5.4) for interaction w i th the service's A P I was im
plemented, which allows for the usage of a l l available A P I endpoints.

7. Isolation of tests was achieved by using separate Executor Pods for each test suite's
run (see point 2). These Pods are isolated from any other Executor Pods and are
only accessing the shared Persistent Volume to retrieve the necessary testing data.

8. Customizat ion of the test fixture is attained by using Docker images, bui l t by the user,
or by the OpenShift Source to Image capabilities, al lowing for the bui ld ing of con
tainer images directly from a project's G i t repository, containing a Dockerfile, and,
if necessary, any required bu i ld artifacts.

9. A s i l lustrated by Figure 4.1, a user's responsibil ity is to mainta in a repository con
ta ining a project's testing data, meaning they can supply the service w i th any test
fixtures they deem valid, by pushing the test files to a project's G i t repository.

10. Container resource l imi ta t ion was implemented, by using the l i m i t s container at
tribute, as explained in Subsection 5.3.3.

11. Exp l i c i t separation of prel iminary tests was dropped, due to the way the test execution
is defined by the user. If a user desires to run mult iple different test suites, they can
simply define these steps i n the run.sh script. Th is approach furthermore gives
the user more control, i n case they need these steps to be connected in any way.

12. The isolation of the test reports was part ia l ly achieved by changing the access right
to the log file before and after the tests. However, the isolation of the test suites
proved more difficult, due to variabi l i ty of the test suites, and was not implemented
for the sake of customizabi l i ty of the test execution. Changing owner permissions
to a non-specific set of files could result i n the test suites not working as expected,
or not functioning at a l l .

13. A Py thon F lask appl icat ion was defined on top of the Server class (see Subsec
t ion 5.3.5), which implements a standard A P I protocol.

6.1.2 P e r m i t t e d Ac t i v i t i e s

The activities defined in Subsection 4.1.2 were a l l made available thanks to the way the ser
vice was designed. B o t h activities 1 and 2 were achieved by having the option to choose
a subset (even a single one) of solutions to be tested, or omit t ing this option, to test a l l
solutions present i n the repository. Ac t i v i t y 3 is made available by the debugging session
functionality, described i n Section 5.3, which creates a single debugging P o d and returns
a U R L for accessing the container to the user. Lastly, addressing act iv i ty 4, the user can
browse, and download any test results created by the service, v ia a given project's G i t
repository.

60

6.2 Test ing and Va l ida t i on

The service's testing was done using three main approaches:

• Unit testing: The source code's unit tests were implemented using Python 's unittest
module, alongside the development of the code, and are meant to be executed using
the pytest module 1 . Each of the aforementioned classes (see Subsections 5.3.1, 5.3.2,
5.3.3 and 5.3.4) was tested using a dedicated test suite. These unit tests were executed
both dur ing the development of the modules and also, w i th the help of the Continuous
Integration features of G i t L a b , where the source code is stored, automatical ly, when
ever a new change was pushed into the repository. These tests often revealed errors
introduced to the code by minor code changes and communicat ion changes (e.g. how
the classes report their errors and statuses between each other and to the user).

• Integration testing: Integration testing was done manually, i n the progress of the de
velopment of the modules. The first to be verified was the functionality of the Executor
class in the OpenShift environment. In this phase, the aforementioned example tests
and configurations were used (See Subsections 5.2.1 and 5.2.2), as the dynamic gener
ation of the settings was yet to be implemented. Next, when the Conf igLoader class,
and the prototype for the Server were implemented, the correct behaviour of the code
was ensured, along w i th the proper functionality of the G i t operations. After the cor
rect behaviour of the combination of these classes was assured, the Openshif tControl
class was added, and its integration was tested in two phases: first, verifying only
the non-testing functions (i.e. bu i ld , info, project create, etc.), and secondly, inc lud
ing the test execution functionality, where the Executor class was used in Jobs. After
the different functional elements of the Server were combined, the Flask appl icat ion
was implemented to incorporate the Server's functionality into an A P I . The appl i
cation was tested v ia the network, using the aforementioned Postman plat form (see
Section 5.1). After the Cl ient appl icat ion had been created, its functionality was ver
ified by comparing the output of Postman's calls to its output, and also checking the
debugging logs of the Server. Th is phase of testing was able to expose errors caused
by varying t ime spans taken by the Server's and OpenShift 's operations, which often
led to incorrect reporting, or command issuing from the Server's side.

• Acceptance testing: The acceptance phase of testing was carried out, using an
anonymised set of student data and automated tests for the Introduction to Pro
gramming Systems course 2 . The provided SUTs contained simple programs made
in the C programming language. A container image, based on U b u n t u L i n u x was
created, in accordance w i th the test suite's requirements. E a c h tests test suite had
an execution t ime of around 2 minutes and the entire testing, inc luding Job start ing
and G i t operations took only a l i tt le more than 2 minutes (multiple executions varied
on the scale of seconds due to variables such as C P U load and network connection
at the moment of execution).

• Self-testing: A s a final proof-of-concept, a project for FITest 's source code was cre
ated and the unit tests mentioned above were used as the tests for the execution. After
a short configuration of the run. sh the service was able to test its own code, w i th ex
pected results. Dur ing this part of testing, the main part of focus was the preparation

1 F u r t h e r i n f o r m a t i o n a b o u t the m o d u l e ava i lab le a t h t t p s : / / d o c s . p y t e s t . o r g / e n / l a t e s t / .
2 M o r e i n f o r m a t i o n abou t the course ava i lab le at https://www.fit.vut.ez/study/course/13376/.en

61

https://docs.pytest.org/en/latest/
https://www.fit.vut.ez/study/course/13376/.en

of the testing data. Mu l t ip l e changes needed to be issued due to the way Python 's
pytest testing framework handles module import ing, although the overall setup was
st i l l quite straightforward.

6.3 K n o w n Issues and Possible Bugs

Dur ing the implementation, testing, and further research of the OpenShift documentation
a few issues were revealed, that may result i n incorrect, or inconsistent behaviour of the ser
vice.

First ly , issues related to containers' creation and removal may lead to various reporting
and functional issues. O n occasions, mult iple identical commands such as build may result
in the service to attempt to create a new container for a given action, while the old one is st i l l
being removed. Thanks to integration testing, mult iple checks for events like this were added
to improve crash resistance of the service, however, there is s t i l l a possibi l i ty that similar
errors may manifest i n the future (e.g. i f new functionality is added). A s the service is
meant to run i n OpenShift , it provides an easy way to debug, and fix such errors by accessing
OpenShift 's Web Console interface, which allows for real-time container status and log
inspection.

Secondly, errors resulting from the OpenShift configuration may reveal themselves
when deploying the service to an OpenShift cluster (as opposed to Min iSh i f t) . These
issues would be l ikely related to access rights or other l imits issued by the administrator.
For the most part, these faults can be solved by apply ing minor changes to the configura
tions, and/or changing the project's, or cluster's settings from the point of an administrator.

Lastly, in the state that the service is in as of wr i t ing the documentation, the only
G i t service, which FITest supports, is G i t L a b . The reason behind this is that token-
based authentication, and repository management varies between different G i t services,
and the target G i t server, which is used w i th the service i n the future is also G i t L a b . If it
was necessary to support mult iple G i t services later, code changes related to authentication
and project management, which reflect this, would have to be added.

62

Chapter 7

Conclusion

Dur ing the course of this project, the FITest testing service has been designed, implemented,
and tested. The service's desired functionality is working according to the requirements
and is ready to be deployed into an OpenShift (O K D) cluster. It is designed to be used by
a teacher, or a teacher assistant i n order to automatical ly test a set of student's solutions
to programming assignments. For the ease of use of FITest 's A P I a command-l ine interface
appl icat ion was implemented, which allows the user to use a l l available A P I endpoints.
Furthermore, a technical evaluation of the service was done, inc luding a comparison of the
service's features to the orig inal requirements, as well as a description of its testing process.
Testing of the service incorporated acceptance testing done using real, anonymised data
from the Introduction to Programming Systems course.

It is important to note that this project does not provide a ful l solut ion to the problem,
but instead sets a solid, functioning foundation for various future improvements and ex
pansions. The state, in which the service is presented in this thesis, provides the means
necessary to test student projects automatical ly, w i th in dynamical ly generated test fixtures,
and report the results of these tests. Examples for future enhancements of the service could
include:

• A client web interface, used for interaction w i th the service.

• User-based authentication for the A P I .

• Separate error reporting interface, w i th file explorer capabilities.

• D iv is ion of the service into mult iple micro-services, for an even larger degree of mod
ularity and scalability.

• Increasing the Executor Pods ' degree of isolation by injecting the tests and SUTs
without using a shared Persistent Volume.

Furthermore, the reporting side of the service could be improved by using the Mark-
down1 language, whose rendering is direct ly supported by various G i t services, directly
in their web interfaces. This means, that the tests' output could be formatted dur ing its
creation and shown direct ly i n G i t L a b .

Another extension, which would allow the reports to be viewed by the students could
work by creating a repository for each student, where the test output could be stored. This

X A s imp l e m a r k u p language , deve loped b y J o h n G r u b e r . more i n f o r m a t i o n abou t the pro ject ava i lab le
at h t t p s : / / d a r i n g f i r e b a l l . n e t / p r o j e c t s / m a r k d o w n / .

63

http://ireball.net/projects/markdown/

means, that along w i th updat ing the project's repository w i th the reports of test execu
tions, the server would also push these results (for a given student), into a corresponding
repository, into a subdirectory dedicated for the project. The students would only need
to have read access to their repositories, which would allow them to view detailed test logs
(including their older versions), without the necessity to request these from the teacher.
Th is could be a nice improvement compared to the current situation, where the reports are
either sent out by email or posted in the faculty's information system.

As it is difficult to predict the difficulty of implementing a unified testing process for var
ious courses, which utilizes FITest, my personal hopes as the author are, that the service
w i l l continue to be expanded and improved. The potential of such a service is great,
not only because of the automation but also due to the possibi l i ty of the service being us
able by the students directly, providing immediate results and grading, and w i th mult iple
attempts, s imi lar ly to the Marmoset Project, mentioned in Subsection 3.1.1. In the future,
the service can be published as an open-source project, meaning a wider circle of teachers,
or students could be assisted and also included in the creative process. Th is approach
could also br ing new ideas and experiences, and out-of-the-box solutions and expansions
to FITest.

64

Bibl iography

[1] A M A Z O N W E B S E R V I C E S . Amazon Web Services (AWS) - Cloud Computing Services.
2 0 1 9 . [Online; visited 02 .09 .2019] . Available at: https://aws.amazon.com.

[2] B A B U , A . , H A R E E S H , M . , M A R T I N , J . P . , C H E R I A N , S. and S A S T R I , Y . System

performance evaluation of para v i r tual izat ion, container v ir tual izat ion, and full
v i r tual i zat ion using xen, openvz, and xenserver. In: I E E E . 2014 Fourth International
Conference on Advances in Computing and Communications. 2 0 1 4 , p. 2 4 7 - 2 5 0 .

[3] B E N D E R R B T I N C . . Requirements Based Testing Process Overview. 2 0 0 9 . [Online;
visited 23 .10 .2019] . Available at: h t t p :
//benderrbt. com/Bender-Requirement s7o20Based7o20Testing7o20Process7o200verview.pdf.

[4] C H A C O N , S. and S T R A U B , B . Pro Git. Apress, 2 0 1 4 . I S B N 9 7 8 - 1 4 8 4 2 0 0 7 7 3 .

[5] C H O L E W A , T . 10 most important differences between OpenShift and Kubernetes
[online]. 2 0 1 9 [cit. 2019-11-10] . Available at: h t t p s :
//cloudowski.com/art ic les/ 1 0 - d i f f erences-between-openshif t -and-kubernetes/.

[6] C O D E B O A R D . I O . Codeboard - the IDE for the classroom [online], [cit. 2019-11-04] .

Available at: https://codeboard.io/.

[7] D O C K E R , I N C . About Docker Engine - Community [online]. 2 0 1 9 [cit. 2019-11-07] .
Available at: ht tps://docs.docker .com/insta l l/ .

[8] D O C K E R , I N C . About images, containers, and storage drivers [online]. 2 0 1 9 [cit.
2019-11-11] . Available at: h t t p s :

//docs.docker.com/vl7.09/engine/userguide/storagedriver/imagesandcontainers/.

[9] D O C K E R , I N C . Docker Kubernetes Service (DKS) [online]. 2 0 1 9 [cit. 2019-11-07] .

Available at: https://www.docker.com/products/kubernetes.

[10] D O C K E R , I N C . Docker overview [online]. 2 0 1 9 [cit. 2019-11-07] . Available at:

https://docs.docker.com/engine/docker-overview/.

[11] F R I I S , M . Announcing Docker Enterprise Edition [blog post]. Docker Blog , 2 0 1 7 [cit.
2019-11-07] . Available at: https://www.docker.com/blog/docker-enterprise-edit ion/.

[12] G O O G L E I N C . . Deployment [online]. 2 0 1 9 [cit. 2020-01-12] . Available at:

https://cloud.google.com/kubernetes-engine/docs/concepts/deployment.

[13] H E L P , S. T . What Is Software Testing Life Cycle (STLC)? 2 0 1 9 . [Online; visited
24.10 .2019] . Available at:

h t t p s : //www. so f tware t e s t inghe lp . com/what - i s - so f tware - t e s t ing - l i f e - c yc l e - s t l c/ .

6 5

https://aws.amazon.com
https://codeboard.io/
https://docs.docker.com/install/
http://docker.com/vl7.09/engine/userguide/
https://www.docker.com/products/kubernetes
https://docs.docker.com/engine/docker-overview/
https://www.docker.com/blog/docker-enterprise-edition/
https://cloud.google.com/kubernetes-engine/docs/concepts/deployment
http://softwaretestinghelp.com/

[14] H E N R Y , W . Podman and Buildah for Docker users [blog post]. 2019 [cit. 2019-11-08].
Available at: h t t p s :
//developers.redhat.com/blog/2019/02/21/podmaji -aLnd-bui ldai- for-docker-users/.

[15] H O O D A , I. and C H H I L L A R , R. S. Software test process, testing types and techniques.
International Journal of Computer Applications. Citeseer. 2015, vol. I l l , no. 13.

[16] J O R G E N S E N , P. C . Software testing: a craftsman's approach. 3rd ed. Auerbach
Publ icat ions, 2013. I S B N 9780429184574.

[17] K A T H E R I N E , A . V . and A L A G A R S A M Y , K . Conventional software testing vs. cloud
testing. International Journal Of Scientific & Engineering Research. Citeseer. 2012,
vol . 3, no. 9, p. 1.

[18] L E X I C O . API: Definition of API by Lexico [online]. Lexico Dict ionaries [cit.
2019-10-27]. Available at: https://www.lexico.com/en/def init ion/api .

[19] M A S S E Y , V . and S A T A O , K . J . Compar ing Various S D L C Models A n d The New
Proposed Mode l O n The Basis O f Available Methodology. International Journal.
2012, vol. 2, no. 4.

[20] M E N A G E , P. CGROUPS [online], [cit. 2019-11-06]. Available at:
h t t p s : //www.kernel.org/doc/Documentation/cgroup-vl/cgroups.txt.

[21] M E S Z A R O S , G . XUnit test patterns: Refactoring test code. 1st ed. Pearson
Educat ion , 2007. I S B N 978-0131495050.

[22] M I C R O S O F T . Microsoft Azure Cloud Computing Platform & Services. September
2011. [Online; visited 02.09.2019]. Available at: https://azure.microsoft.com/en-us/.

[23] M I M I R . Mimir Classroom [online], [cit. 2019-11-04]. Available at:
h t t p s : / / www.mimirhq. com/.

[24] M Y E R S , G . The AH of Software Testing. 1st ed. John W i l e y & Sons, Inc., 1979.
I S B N 0471043281.

[25] N P M , I N C . . Npm / build amazing things [online], [cit. 2019-11-05]. Available at:
h t t p s : //www.npm j s.com/.

[26] P A L L E T S . Flask Documentation [online]. 2010 [cit. 2020-4-21]. Available at:
h t t p s : //f lask.pal letsprojects .eom/en/l . l .x/.

[27] P E T A Z Z O N I , J . Anatomy of a Container: Namespaces, cgroups & Some Filesystem
Magic - LinuxCon [online]. 2015 [cit. 2020-4-21]. Available at:
h t t p s : //www. s l ideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-
some- f i lesystem-magic- l inuxcon.

[28] P Y T H O N S O F T W A R E F O U N D A T I O N . Openshift 0.10.1 [online], [cit. 2019-12-31].
Available at: ht tps://pypi .org/pro ject/openshi f t/ .

[29] P Y T H O N S O F T W A R E F O U N D A T I O N . Python 3.7.6 documentation [online], [cit.
2019-12-31]. Available at: https://docs.python.org/3.7/.

66

http://redhat.com/blog/2019/02/21/podmaji-aLnd-buildai-for-docker-users/
https://www.lexico.com/en/definition/api
http://www.kernel.org/doc/Documentation/cgroup-vl/cgroups.txt
https://azure.microsoft.com/en-us/
http://www.mimirhq
http://www.npm
http://lask.palletsprojects.eom/en/l.l.x/
http://slideshare.net/
https://pypi.org/project/openshift/
https://docs.python.org/3.7/

[30] P Y T H O N S O F T W A R E F O U N D A T I O N . Virtual Environments and Packages [online], [cit.
2019-11-05]. Available at: https://docs.python.org/37tutorial/venv.html.

[31] R E D H A T , I N C . . Chapter 1. Introduction to Control Groups (Cgroups) [online], [cit.
2019- 11-06]. Available at: https://access.redhat.com/documentation/en-us/
red_hat_enterprise_l inux/6/html/resource_management_guide/chOl.

[32] R E D H A T , I N C . Creating Images: Guidelines [online]. 2019 [cit. 2019-11-12]. Available
at: h t t p s :
//docs.openshif t .com/conta iner-p lat f orm/3.11/creating_images/guidelines.html.

[33] R E D H A T , I N C . Developer guide: Build Inputs - Builds [online]. 2019 [cit. 2019-11-12].
Available at: h t t p s :
//docs.openshif t .com/conta iner-p lat f orm/3.11/creating_images/guidelines.html.

[34] R E D H A T , I N C . Developer guide: Builds - Triggering Builds [online]. 2019 [cit.
2020- 04-17]. Available at: ht tps ://docs.openshi f t .eom/conta iner-p lat form/3. l l/
dev_gu ide/bui lds/t r i gger ing_bui lds .h tml .

[35] R E D H A T , I N C . Developer guide: How Deployments Work [online]. 2019 [cit.
2019-11-12]. Available at: ht tps ://docs.openshi f t .eom/conta iner-p lat form/3. l l/
dev_guide/deployments/how_deployments_work.html.

[36] R E D H A T , I N C . Developer guide: Projects [online]. 2019 [cit. 2019-11-12]. Available at:
h t t p s : //docs.openshif t. com/container-plat f orm/3.11 /dev_guide/pro jec ts .html .

[37] R E D H A T , I N C . Developer guide: Quotas and Limit Ranges [online]. 2019 [cit.
2019-11-12]. Available at: h t t p s :
//docs.openshif t .com/conta iner-p lat f orm/3.11/dev_guide/compute_resources.html.

[38] R E D H A T , I N C . Image Registry [online]. 2019 [cit. 2019-11-12]. Available at:
h t t p s : //docs.openshif t .com/conta iner-p lat f orm/3.11/architecture/
i n f rastructure_components/image_registry.html#integrated-openshif t - r e g i s t r y .

[39] R E D H A T , I N C . Kubernetes on CoreOS: Overview of a Service [online]. 2019 [cit.
2019-11-11]. Available at:
h t t p s : / / coreos.com/kubernetes/docs/latest/services.html.

[40] R E D H A T , I N C . Okd: The Origin Community Distribution of Kubernetes that powers
Red Hat OpenShift. [online]. 2019 [cit. 2019-11-12]. Available at: https://www.okd.io/.

[41] R E D H A T , I N C . Okd Minishift: Develop Applications Locally in a Containerized OKD
Cluster [online]. 2019 [cit. 2019-11-12]. Available at: https://www.okd.io/minishift/.

[42] R E D H A T , I N C . OpenShift Container Platform 4-2 Documentation [online]. 2019 [cit.
2019-11-11]. Available at: https://docs.openshi f t .com/container-plat form/.

[43] R E D H A T , I N C . OpenShift Container Platform architecture [online]. 2019 [cit.
2019-11-11]. Available at: h t t p s :
//docs.openshif t .com/conta iner-p lat f orm/4.2/architecture/ar ch i tec ture .html .

[44] R E D H A T , I N C . . What's a Linux container? [online]. 2019 [cit. 2019-11-06]. Available
at: https://www.redhat.com/en/topics/containers/whats-a-l inux-container.

67

https://docs.python.org/37tutorial/venv
https://access.redhat.com/documentation/en-us/
https://docs.openshift.eom/container-platform/3.ll/
https://docs.openshift.eom/container-platform/3.ll/
http://coreos.com/kubernetes/docs/latest/
https://www.okd.io/
https://www.okd.io/minishift/
https://docs.openshift.com/container-platform/
https://www.redhat.com/en/topics/containers/whats-a-linux-container

[45] R E D H A T , I N C . Developer guide: Build Inputs [online]. 2020 [cit. 2020-04-26] .
Available at: https://docs.openshift.com/container-platform/3.11/dev_guide/

builds/build_inputs.html#source-code.

[46] R E F S N E S D A T A . Python Introduction [online], [cit. 2019-12-31] . Available at:
https: //www.w3schools.com/python/python_intro.asp.

[47] R O S E N , R. Linux Containers and the Future Cloud [online]. 2014 [cit. 2019-10-10] .
Available at:
https: //www.linuxjournal.com/content/linux-containers-and-future-cloud.

[48] S H A W , K . Wha t is a hypervisor? [online]. Network Wor ld . 2017, [cit. 2019-11-05].
Available at:
https: //www.networkworld.com/article/3243262/what-is-a-hypervisor.html.

[49] S I K E R I D I S , D . , P A P A P A N A G I O T O U , I., R I M A L , B . P. and D E V E T S I K I O T I S , M . A

Comparat ive taxonomy and survey of publ ic c loud infrastructure vendors. ArXiv
preprint arXiv.1110.01476. 2017.

[50] S K O K O V I C , P. and R A K I C S K O K O V I C , M . Requirements-based Testing Process i n

Pract ice. International Journal of Industrial Engineering and Management (IJIEM).
2010, vol. 1, no. 4, p. 155-161.

[51] S P A C C O , J . , P U G H , W. , A Y E W A H , N . and H O V E M E Y E R , D . The Marmoset project:

an automated snapshot, submission, and testing system. In: Citeseer. Companion to
the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications. 2006, p. 669-670.

[52] T A H A T , L . H . , V A Y S B U R G , B . , K O R E L , B . and B A D E R , A . J . Requirement-based

automated black-box test generation. In: I E E E . 25th Annual International Computer
Software and Applications Conference. COMPSAC 2001. 2001, p. 489-495.

[53] T E C H O P E D I A . What is the Software Development Life Cycle (SDLC)? [online]. 2019
[cit. 2019-10-27]. Available at: https:

//www.techopedia.com/def init ion/22193/software-development-life-cycle-sdlc.

[54] T H E C O N T A I N E R S O R G A N I Z A T I O N . Podman [online]. 2019 [cit. 2019-11-08]. Available
at: https://podman.io/.

[55] T H E K U B E R N E T E S A U T H O R S . Jobs - Run to Completion [online], [cit. 2019-12-08] .

Available at: https:

//kubernetes.io/docs/concepts/workloads/controllers/j obs-run-to-completion/.

[56] T H E K U B E R N E T E S A U T H O R S . Concepts [online]. 2019 [cit. 2019-11-12]. Available at:
https: //kubernetes.io/docs/concepts/.

[57] T H E K U B E R N E T E S A U T H O R S . Kubernetes concepts: Images [online]. 2019 [cit.
2019-11-12] . Available at: https://kubernetes.io/docs/concepts/containers/images/.

[58] T H E K U B E R N E T E S A U T H O R S . Kubernetes concepts: Persistent Volumes [online].
2019 [cit. 2019-11-12]. Available at:
https: //kubernetes.io/docs/concepts/storage/persistent-volumes/.

68

https://docs.openshift.com/container-platform/3.11/dev_guide/
http://www.w3schools.com/python/python_intro.asp
http://www.linuxjournal.com/content/linux-containers-and-future-cloud
http://www.networkworld.com/article/3243262/what-is-a-hypervisor.html
http://www.techopedia.com/def
https://podman.io/
https://kubernetes.io/docs/concepts/containers/images/

[59] T H E K U B E R N E T E S A U T H O R S . Kubernetes concepts: Service [online]. 2 0 1 9 [cit.
2019-11-11]. Available at:
h t t p s : //kubernetes. io/docs/concepts/services-networking/ serv ice/.

[60] T H E K U B E R N E T E S A U T H O R S . Kubernetes concepts: Volumes [online]. 2 0 1 9 [cit.
2019-11-12]. Available at: https://kubernetes.io/docs/concepts/storage/volumes/.

[61] T H E K U B E R N E T E S A U T H O R S . Pod Overview [online]. 2 0 1 9 [cit. 2019-11-11]. Available

at: h t tps : //kubernetes.io/docs/concepts/workloads/pods/pod-overview/.

[62] T H E K U B E R N E T E S A U T H O R S . Production-Grade Container Orchestration [online].
2 0 1 9 [cit. 2019-11-08] . Available at: ht tps://kubernetes . io/.

[63] T H E K U B E R N E T E S A U T H O R S . What is Kubernetes [online]. 2 0 1 9 [cit. 2019-11-08] .
Available at: h t t p s : //kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

[64] U N I V E R S I T Y O F M A R Y L A N D . The Marmoset Project [online], [cit. 2019-11-03] .
Available at: http://marmoset.cs.umd.edu/index.shtml.

[65] X U N I T P A T T E R N S . Test context [online], [cit. 2019-12-11]. Available at:
h t tp ://xunitpatterns.com/test7o20context.html.

[66] X U N I T P A T T E R N S . Test fixture (in xlfnit) [online], [cit. 2019-10-29] . Available at:
h t tp ://xunitpatterns.com /test7 020f ixture7o20-7o20xUnit .html .

6 9

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/
http://marmoset.cs.umd.edu/index.shtml

Append i x A

Contents of the At tached Storage
Device

The attached storage device contains the following directory structure:

/

f i t e s t / Directory containing the service's source code and configurations.
report_src/ Directory containing all source files of this technical report.
README. md Formatted information about the contents of the folders.
readme. txt Non-formatted information about the contents of the folders.
report. pdf This technical report, in PDF format.

70

