VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

DIPLOMOVÁ PRÁCE

Brno, 2016

Bc. Martin Janáček

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY

DEPARTMENT OF POWER ELECTRICAL AND ELECTRONIC ENGINEERING

ENERGETICKÉ PARAMETRY JEDNOFÁZOVÝCH ASYNCHRONNÍCH MOTORŮ

ENERGY PARAMETERS OF SINGLE-PHASE INDUCTION MACHINES

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Martin Janáček

VEDOUCÍ PRÁCE SUPERVISOR

prof. Ing. Vítězslav Hájek, CSc.

BRNO 2016

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

Ústav výkonové elektrotechniky a elektroniky

Diplomová práce

magisterský navazující studijní obor Silnoproudá elektrotechnika a výkonová elektronika

Student: Bc. Martin Janáček *Ročník:* 2

ID: 146843 *Akademický rok:* 2015/16

NÁZEV TÉMATU:

Energetické parametry jednofázových asynchronních motorů

POKYNY PRO VYPRACOVÁNÍ:

Definujte energetické parametry, charakteristiky a provedení jednofázových asynchronních motorů.
 Vyhodnoťte možnosti zlepšení parametrů (snížení ztrát).

3. Pro vybraný asynchronní motor navrhněte a zdůvodněte úpravy pro zvýšení účinnosti. Doložte výpočtem a podle možností měřením na funkčním vzorku.

DOPORUČENÁ LITERATURA:

[1] PETROV, G. N. Elektrické stroje 2: Asynchronní stroje - synchronní stroje. 1. vyd. Praha: Academia Praha, 1982. ISBN 509-21-857.

[3] CIGÁNEK, Ladislav. Stavba elektrických strojů. 1. vyd. Praha: Státní nakladatelství technické literatury, 1958. ISBN 36 174-57.

[3] ŠTĚPINA Jaroslav Jednofázové indukční motory. Praha: Státní nakladatelství technické literatury, 1957. ISBN 36 174-57.

Termín zadání: 21. 9. 2015

Termín odevzdání: 24. 5. 2016

Vedoucí práce: prof. Ing. Vítězslav Hájek, CSc. Konzultanti diplomové práce:

Ing. Ondřej Vítek, Ph.D. předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

Abstrakt

Diplomová práce pojednává a seznamuje s jednofázovými asynchronními motory, principem činnosti, typy provedení a provozními stavy. Práce obsahuje rozbor jednotlivých ztrát v motoru a možnost jejich snížení různými způsoby. Po teoretickém návrhu snížení ztrát je změřen sériově vyráběný jednofázový asynchronní motor. Dále motor s navrženou úpravou pro snížení ztrát ve vinutí statoru a navržený prototyp motoru s úpravou magnetického obvodu pro snížení ztrát v železe vyrobený společností ATAS Elektromotory Náchod a.s.. Dosažené výsledky jsou doplněny o simulace pomocí software Maxwell RMxprt a pomocí metody konečných prvků (MKP). Závěrem jsou porovnány jednotlivé úpravy motorů převážně z hlediska energetické náročnosti.

Abstract

The master's thesis deals and introduces a single-phase inductions machines, the principle of operation, types of design and operating conditions. This thesis includes analysis of individual losses in the machine and reduce the possibility of different ways. After a theoretical proposal for reducing losses are measured by mass-produced single-phase induction machine. Further machine modifications proposed for reducing losses in the stator windings and designed a prototype machine with the adjustment of the magnetic circuit to reduce iron losses made by ATAS elektromotory Nachod a.s. The results are supplemented by a simulation using software Maxwell RMxprt and finite element method (FEM). Finally, they are compared to each machines modifications mainly in terms of energy consumption.

Klíčová slova

Jednofázový asynchronní motor; ztráty ve vinutí statoru; účinnost; ztráty v železe; ztráty v rotoru; mechanické ztráty; celkové ztráty.

Keywords

Single-phase induction motor; loss of stator winding; efficiency; Iron-core loss; loss of rotor winding; mechanical loss; total loss.

Bibliografická citace

JANÁČEK, M. *Energetické parametry jednofázových asynchronních motorů*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2016. 68 s. Vedoucí diplomové práce prof. Ing. Vítězslav Hájek, CSc.

Prohlášení

Prohlašuji, že svou diplomovou práci na téma Energetické parametry jednofázových asynchronních motorů jsem vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.

V Brně dne Podpis autora

Poděkování

Děkuji vedoucímu diplomové práce prof. Ing. Vítězslavu Hájkovi, CSc. za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování mé diplomové práce. Dále děkuji Ing. Martinu Machovi Ph.D. za odbornou pomoc při laboratorním měření a odbornou pomoc při řešení simulací a společnosti ATAS Elektromotory Náchod a.s. za zhotovení prototypu motoru.

V Brně dne

Podpis autora

Obsah

SEZNAM OBRÁZKŮ	
SEZNAM TABULEK	12
SEZNAM SYMBOLŮ A ZKRATEK	13
ÚVOD	16
1 TROJFÁZOVÝ ASYNCHRONNÍ MOTOR	17
1.1 Konstrukce	17
1.1.1 Stator	17
1.1.2 Rotor	17
1.2 PRINCIP ČINNOSTI A VZNIK TOČIVÉHO MAGNETICKÉHO POLE	
1.3 ZAPOJENÍ TROJFÁZOVÉHO ASYNCHRONNÍHO MOTORU	19
1.4 ZAPOJENÍ TROJFÁZOVÉHO ASYNCHRONNÍHO MOTORU NA JEDNOFÁZOVOU SÍŤ	
2 JEDNOFÁZOVÝ ASYNCHRONNÍ MOTOR	21
2.1 Provedení jednofázového asynchronního motoru	21
2.1.1 Stator	21
2.1.2 Rotor	21
2.2 VZNIK PULZUJÍCÍHO MAGNETICKÉHO POLE	21
2.3 MOMENTOVÁ CHARAKTERISTIKA	
2.4 Rozběh a získání záběrného momentu	
2.4.1 Odporový rozběh	
2.4.2 KAPACITNÍ ROZBĚH	
2.4.3 INDUKTIVNI ROZBEH	
2.5 DILCI ZAVER	
2.6 JEDNOFAZOVY ASYNCHRONNI MOTOR SE STINENYM POLEM	
2.6.1 KONSTRUKCE A PRINCIP CINNOSTI	
3 ENERGETICKA BILANCE ASYNCHRONNIHO MOTORU	
3.1 ZTRATY V MAGNETICKEM OBVODU	
3.1.1 ZTRATY VIRIVYMI PROUDY	
3 2 Mechanické 7td átv	
3.2 MECHANICKE ZIKATI	33
3.4 Πορατεζνέ 7τράτυ	33
4 NÁVRH SNÍŽENÍ ZTRÁT	
4.1 Omezení ztrát ve vinutí	
4.1.1 ZPŮSOB OMEZENÍ ZTRÁT V ROTORU	
4.1.2 ZPUSOB OMEZENI ZIKAT VE STATORU 4.1.3 Dílčí závěr	

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

4.2 Omezení ztrát v magnetickém obvodu	
4.2.1 Kvalita materiálu plechů	
4.2.2 Snížení magnetické indukce ve vzduchové mezeře	
4.2.3 DÍLČÍ ZÁVĚR	
4.3 Omezení mechanických ztrát	
4.3.1 MECHANICKÉ ZTRÁTY V LOŽISKÁCH	
4.3.2 VENTILAČNÍ ZTRÁTY	
4.3.3 DÍLČÍ ZÁVĚR	
5 JEDNOFÁZOVÝ ASYNCHRONNÍ MOTOR J22VV	
5.1 SIMULACE	
5.1.1 MAXWELL RMXPRT	
5.1.2 Maxwell 2D a metoda konečných prvků	40
5.2 MĚŘENÍ MOTORU J22VV499 S PRŮMĚREM VODIČE D $_0$ = 0,6 mm	41
5.2.1 Měření jmenovitého bodu	41
5.2.2 MĚŘENÍ ZATĚŽOVACÍ CHARAKTERISTIKY	42
5.2.3 MĚŘENÍ NAKRÁTKO	44
5.2.4 MĚŘENÍ NAPRÁZDNO	44
5.3 Výpočet ztrát motoru J22VV499 s průměrem vodiče $D_0 = 0,6$ mm	45
5.3.1 Ztráty ve vinutí statoru ΔP_{Cus}	45
5.3.2 ZTRÁTY V MAGNETICKÉM OBVODU $\varDelta P_{FE}$ a mechanické ztráty $\varDelta P_{MECH}$	<i>ч</i> 45
5.3.3 ZTRÁTY VE VINUTÍ ROTORU ΔP_{AL}	47
5.3.4 Celkové ztráty ΔP	47
5.4 SIMULACE POMOCÍ MKP	47
5.5 ROZBOR MOTORU J22VV506 S PRŮMĚREM VODIČE D1 = 0,63 MM	48
5.5.1 Měření jmenovitého bodu	49
5.5.2 MĚŘENÍ ZATĚŽOVACÍ CHARAKTERISTIKY	49
5.5.3 MĚŘENÍ NAKRÁTKO	
5.5.4 MÉRENI NAPRAZDNO	50
5.6 VÝPOČET ZTRÁT MOTORU S PRŮMĚREM VODIČE $D_1 = 0,63$ MM	50
5.6.1 Ztráty ve vinutí statoru $\varDelta P_{Cus}$	
5.6.2 ZTRÁTY V MAGNETICKÉM OBVODU ΔP_{FE} a mechanické ztráty ΔP_{MECH}	<i>⁴</i>
5.6.3 ZTRATY VE VINUTI ROTORU ΔP_{AL}	
5.6.4 CELKOVE ZIRATY ΔP	
5.7 SIMULACE POMOCI MKP	52
6 APLIKACE ZMĚNY DÉLKY MAGNETICKÉHO OBVODU PŘI ZMĚNĚ PO	OČTU ZÁVITŮ53
6.1 ROZBOR MOTORU J21VX	54
6.1.1 SIMULACE POMOCÍ MKP	55
6.1.2 MĚŘENÍ JMENOVITÉHO BODU	55
6.1.3 MĚŘENÍ ZATĚŽOVACÍ CHARAKTERISTIKY	
6.1.4 MĚŘENÍ NAKRÁTKO	
6.1.5 MERENI NAPRAZDNO	
6.2 VYPOČET ZTRÁT MOTORU S PRODLOUŽENÝM MAGNETICKÝM OBVODEM A	ZMĖNOU POČTU
	56
6.2.1 ZTRATY VE VINUTI STATORU ΔP_{CUS}	

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

$6.2.2~{ m Ztr}$ áty v magnetickém obvodu $arDelta P_{Fe}$ a mechanické ztráty $arDelta P_{{ m Mech}}$	
6.2.3 Ztráty ve vinutí rotoru $\varDelta P_{AL}$	58
6.2.4 Celkové ztráty ΔP	
6.3 POROVNÁNÍ DOSAŽENÝCH VÝSLEDKŮ	59
7 ZÁVĚR	64
LITERATURA	66
PŘÍLOHY	68

SEZNAM OBRÁZKŮ

Obrázek 1 Svazek statorových plechů s ukázkou uložení vinutí	17
Obrázek 2 Rotor asynchronního motoru s kotvou nakrátko	18
Obrázek 3 Zapojení svorkovnice trojfázového asynchronního motoru	19
Obrázek 4 Napěťové a proudové poměry v zapojení "Y" a "D"	19
Obrázek 5 Steinmetzovo zapojení trojfázového asynchronního motoru na jednofázovou síť;	20
Obrázek 6 Superpozice magnetických polí ve vzduchové mezeře	22
Obrázek 7 Momentová charakteristika 1f asynchronního motoru	23
Obrázek 8 Zapojení 1f asynchronního motoru s pomocným vinutím	24
Obrázek 9 Fázorový diagram 1f ASM bez vytvořeného fázového posuvu v pomocné fázi	24
Obrázek 10 Fázorový diagram 1f ASM s odporovou pomocnou fází	25
Obrázek 11 Fázorový diagram 1f ASM s kapacitním charakterem pomocné fáze	25
Obrázek 12 Fázorový diagram 1f ASM s tlumivkou v pomocné fázi	27
Obrázek 13 Poloviční řez jednofázovým asynchronním motorem se stíněným pólem	28
Obrázek 14 Momentová charakteristika 1f ASM se stíněným pólem	29
Obrázek 15 Tok výkonu v asynchronním motoru	31
Obrázek 16 Štítek motoru J22VV499	37
Obrázek 17 BH charakteristika plechu M700-50A	38
Obrázek 18 Závislost měrných ztrát na velikosti magnetické indukce	38
Obrázek 19 3D model analyzovaného motoru	39
Obrázek 20 Zobrazení vinutí v RMxprt	40
Obrázek 21 Vytvoření 2D modelu z RMxprt do Maxwell	40
Obrázek 22 Mesh a) model b) detail vzduchové mezery	41
Obrázek 23 Zatěžovací charakteristika J22VV499	43
Obrázek 24 Závislost ztrát v železe a mechanických ztrát na druhé mocnině poměru U/Un	46
Obrázek 25 Rozložení magnetické indukce B, J22VV499	48
Obrázek 26 Závislost ztrát v železe a mechanických ztrát na druhé mocnině U/Un, J22VV506.	51
Obrázek 27 Rozložení magnetické indukce B v motoru J22VV506	52
Obrázek 28 Snímek prototypu motoru J21VX	53
Obrázek 29 Snímek motoru J21VX	54
Obrázek 30 Rozložení magnetické indukce B, J21VX	55
Obrázek 31 Závislost ztrát v železe a mechanických ztrát na druhé mocnině U/Un J21VX	58

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

Obrázek 32 Porovnání účinností motorů	59
Obrázek 33 Rozložení ztrát ve jmenovitém bodě	60
$Obrázek 34$ Porovnání celkového odebíraného proudu I_1	61
Obrázek 35 Porovnání odebíraného proudu hlavním vinutím I_h	
Obrázek 36 Porovnání odebíraného proudu pomocným vinutím I _{pom}	
Obrázek 37 Porovnání účinností motorů J22VV499, J22VV506 a J21VX - simulace	63
Obrázek 38 Simulace několika dalších řešení z hlediska účinnosti	63
Obrázek 39 Snímek pracoviště z měření naprázdno J22VV506	68
Obrázek 40 Snímek použité techniky s měřícím software	68

SEZNAM TABULEK

Tabulka 1 Empiricky získané kapacity pro rozběh a chod motoru	26
Tabulka 2 Odpory vinutí 1f ASM motoru J22VV499 v různých okamžicích měření	41
Tabulka 3 Měření jmenovitého bodu 1f ASM motoru J22VV499	42
Tabulka 4 Měření zatěžovací charakteristiky 1f ASM J22VV499	43
Tabulka 5 Měření 1f ASM J22VV499 nakrátko	44
Tabulka 6 Měření naprázdno 1f ASM J22VV499	44
Tabulka 7 Vypočtené hodnoty ztrát ve vinutí statoru z měření zatěžovací charakteristiky	45
Tabulka 8 Vypočtené ztráty v železe a mechanické ztráty	46
Tabulka 9 Odpory vinutí J22VV506, $d_1 = 0,63 \text{ mm}$	48
Tabulka 10 Měření jmenovitého bodu J22VV506, $d_1 = 0,63$ mm	49
Tabulka 11 Měření zatěžovací charakteristiky J22VV506, $d_1 = 0,63$ mm	49
Tabulka 12 Měření nakrátko J22VV506, $d_1 = 0,63$ mm	49
Tabulka 13 Měření naprázdno J22VV506, $d_1 = 0,63$ mm	50
Tabulka 14 Vypočtené hodnoty ztrát ve vinutí statoru ΔP_{Cus}	50
Tabulka 15 Vypočtené ztráty v železe a mechanické ztráty	51
Tabulka 16 Odpory vinutí motoru prodlouženého motoru J21VX	54
Tabulka 17 Měření jmenovitého bodu J21VX	55
Tabulka 18 Měření zatěžovací charakteristiky J21VX	56
Tabulka 19 Měření nakrátko J21VX	56
Tabulka 20 Měření naprázdno J21VX	56
Tabulka 21 Vypočtené hodnoty ztrát ve vinutí statoru J21VX	57
Tabulka 22 Vypočtené ztráty v železe a mechanické J21VX	57
Tabulka 23 Základní porovnání naměřených výsledků ve jmenovitém bodě	59
Tabulka 24 Výsledky simulace zatěžovací charakteristiky pro motor J22VV499, d_0 =0,6 mm	60
Tabulka 25 Výsledky simulace zatěžovací charakteristiky pro motor J22VV506, d_1 =0,63 m	m61
Tabulka 26 Výsledky simulace zatěžovací charakteristiky pro motor J21VX	61

SEZNAM SYMBOLŮ A ZKRATEK

ASM	Asynchronní motor	[-]
В	Magnetická indukce ve vzduchové mezeře	[T]
B_m	Amplituda magnetické indukce ve vzduchové mezeře	[T]
B_s	Sousledná složka magnetické indukce	[T]
B_z	Zpětná složka magnetické indukce	[T]
С	Kapacita kondenzátoru	[F]
$\cos \vartheta$	Cosinus úhlu natočení	[-]
$\cos \varphi$	Účiník	[-]
d	Průměr vodiče	[m]
f_l	Frekvence sítě	[Hz]
I_{l}	Celkový odebíraný proud ze sítě při měření	[A]
I_{10}	Proud při měření naprázdno	[A]
I_{lk}	Proud při měření nakrátko	[A]
I_{f}	Fázový proud	[A]
$I_h = I_A$	Proud hlavním vinutím	[A]
I_{h0}	Proud hlavním vinutím při měření naprázdno	[A]
I_{hk}	Proud hlavním vnutím při měření nakrátko	[A]
I _{pom,k}	Proud pomocným vinutím při měření nakrátko	[A]
$I_{pom} = I_B$	Proud pomocným vinutím	[A]
Ipom0	Proud pomocným vinutím při měření naprázdno	[A]
I_s	Sdružený proud	[A]
I_{ν}	Vířivý proud	[A]
k	Konstanta závislá na napětí sítě	[-]
k_h	Koeficient závisející na materiálu a tloušťce plechů	[-]
k_{pCu}	Koeficient plnění drážky	[-]
k_{v}	Koeficient závisející na materiálu a tloušťce plechů	[-]
l	Aktivní délka stroje	[m]
т	Počet fází	[-]
M700-50A	Typ použitého plechu pro magnetický obvod	[-]
M_n	Jmenovitý moment	[Nm]
M_s	Sousledná složka momentu	[Nm]

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

	5	
M_{v}	Výsledný moment	[Nm]
M_z	Zpětná složka momentu	[Nm]
п	Otáčky rotoru	[min ⁻¹]
N	Počet závitů	[-]
n_s	Synchronní otáčky	[min ⁻¹]
р	Počet pólových dvojic	[-]
P_{I}	Příkon	[W]
P_2	Mechanický výkon na hřídeli	[W]
P_{mech}	Přeměňovaný elektromechanický výkon	[W]
P_n	Jmenovitý výkon	[W]
P_{δ}	Výkon přenášený vzduchovou mezerou	[W]
Q	Jalový výkon	[Var]
R	Poloměr vodiče	[mm]
$R_A = R_h$	Odpor hlavního vinutí	$[\Omega]$
$R_B = R_{pom}$	Odpor pomocného vinutí	$[\Omega]$
S	Skluz motoru	[-]
S	Zdánlivý výkon	[VA]
S_{Cu}	Průřez vodiče v drážce	[mm ²]
S_{dr}	Průřez drážky	[mm ²]
Sm	Skluz při maximálním momentu	[-]
S_S	Skluz sousledné složky	[-]
S_Z	Skluz zpětné složky	[-]
t	Čas	[s]
T_o	Teplota okolí	[°C]
U_{10}	Napětí při měření naprázdno	[V]
U_{lk}	Napětí při měření nakrátko	[V]
u_i	Indukované napětí	[V]
U_{pom}	Napětí pomocného vinutí	[V]
U_s	Sdružené napětí	[V]
V_{Cu}	Objem mědi	[m ³]
X_A	Reaktance hlavního vinutí	$[\Omega]$
X_B	Reaktance pomocného vinutí	$[\Omega]$
X_c	Kapacitní reaktance	$[\Omega]$

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

X_L	Induktivní reaktance	[Ω]
Ζ	Impedance fáze motoru	$[\Omega]$
ΔP	Celkové ztráty	[W]
ΔP_{Al}	Ztráty ve vinutí rotoru	[W]
ΔP_{Cus}	Ztráty ve vinutí statoru	[W]
ΔP_d	Dodatečné ztráty	[W]
$\varDelta P_{Fe}$	Ztráty v magnetickém obvodu statoru	[W]
$\varDelta P_h$	Hysterezní ztráty	[W]
$\varDelta P_{mech}$	Vlastní mechanické ztráty stroje	[W]
ΔP_{v}	Vířivé ztráty	[W]
η	Účinnost	[-]
$ heta_t$	Teplota tavení	[°C]
$ ho_{20}$	Měrný odpor při 20°C	$[\Omega mm^2/m]$
$ ho_{Al}$	Měrný odpor hliníku	$[\Omega mm^2/m]$
$ ho_{Cu}$	Měrný odpor mědi	$[\Omega mm^2/m]$
σ	Proudová hustota	[A/mm2]
φ_1	Magnetický tok statoru	[Wb]
φ_2	Magnetický tok rotoru	[Wb]
$\varphi_A{=}\varphi_h$	Fáze proudu hlavního vinutí	[°]
$\varphi_B = \varphi_{pom}$	Fáze proudu pomocného vinutí	[°]
φ_{max}	Maximální hodnota magnetického toku	[Wb]
$arphi_{min}$	Minimální hodnota magnetického toku	[Wb]
ψ_C	Výsledný fázový posun	[°]
ω	Úhlová rychlost	$[rad \cdot s^{-1}]$
ω_n	Jmenovitá úhlová rychlost	$[rad \cdot s^{-1}]$

Úvod

Využitím elektrické energie a účinností asynchronních motorů se zabývá směrnice EuP (angl. Energy unig Product) - část 11. respektive EU2009/125/ES vydaná Evropskou unií. Směrnice byly vydány s cílem snížit spotřebu energie a tím i množství produkovaných emisí CO₂. V ČR jsou třídy účinnosti stanovovány normou ČSN (IE) EN 60034-30. Norma udává, na které motory je norma vztažena a které jsou z ní vyjmuty. Dále jsou touto normou stanovovány nové třídy účinnosti s označením IE (*International Efficiency*) IE 1 až IE4.

IE1-statndardní účinnost	(Statndard)
IE2-zvýšená účinnost	(High)
IE3-vysoká účinnost	(Premium)
IE4-velmi vysoká účinnost	(Super-Premium)

Motory třídy účinnosti IE1 (dříve označované jako EFF2) nesmí být od 16. června 2011 dodávány na evropský trh. Všechny dodávané asynchronní motory musí splňovat minimálně požadavky na třídu účinnosti IE2 (dříve EFF 1) pro použití v režimu S1.

Zásadní změna nastává u asynchronních motorů s výkony 7,5 ÷ 375 kW, k 1. lednu 2015. Kdy musí být zákonem dodržena minimální třída účinnosti IE3 pro motory připojené přímo k napájecí síti. Pro motory napájené a řízené z frekvenčních měničů pak minimálně třída účinnosti IE2. Dále od 1. ledna 2017 bude muset být u motorů s výkony 0,75 ÷375 kW dodržena minimální účinnost IE3 pro přímo napájené ze sítě a u motorů řízených měniči IE2. Největší výrobci asynchronních motorů již běžně nabízejí motory s třídou účinnosti IE2 a IE3. Zahájena byla i příprava výroby motorů s třídou IE4.[19]

1 TROJFÁZOVÝ ASYNCHRONNÍ MOTOR

Asynchronní motor patří mezi nejrozšířenější elektrické točivé stroje. Pracuje na principu elektromagnetické indukce a přeměňuje elektrickou energii na energii mechanickou.

1.1 Konstrukce

Asynchronní motor se skládá z pevné části nazývané stator a pohyblivé části, která se nazývá rotor. Dále předního a zadního ložiskového štítu s ložisky, vymezujících polohu rotoru ve vzduchové mezeře, svorkovnicí pro připojení k napájecí síti a patky pro upevnění na místo montáže. [3]

1.1.1 Stator

Stator je složen z pevné, většinou litinové části nazývané kostra stroje. Uvnitř kostry jsou nalisovány a vzájemně izolovány plechy, tvořící část magnetického obvodu. Dále je v drážkách statorových plechů uloženo statorové vinutí. To může být nejčastěji trojfázové, ale také dvoj nebo jednofázové. Začátky a konce těchto vinutí jsou vyvedeny na svorkovnici. [3]

Obrázek 1 Svazek statorových plechů s ukázkou uložení vinutí [18]

1.1.2 Rotor

Rotor je tvořen plechy nalisovanými na hřídeli a rotorovým vinutím, nazývaném též kotva. Nejčastěji používané asynchronní motory jsou s kotvou nakrátko. Kotva tzv. nakrátko znamená, že vinutí rotoru je tvořeno neizolovanými měděnými, mosaznými nebo nejčastěji hliníkovými tyčemi. Tyto tyče jsou po obou koncích spojené spojovacími (zkratovacími) kruhy nakrátko. U motorů menších výkonů bývají po obvodu spojovacích kruhů odlévány větrací lopatky pro lepší odvod tepelných ztrát. [3]

Obrázek 2 Rotor asynchronního motoru s kotvou nakrátko [10]

1.2 Princip činnosti a vznik točivého magnetického pole

Princip činnosti asynchronního motoru spočívá v připojení stroje na trojfázovou síť a vytvoření točivého magnetického pole ve vzduchové mezeře. Točivé magnetické pole ve vzduchové mezeře lze vytvořit třemi vzájemně posunutými fázovými vinutími natočenými o 120° a napájenými třífázovým harmonickým napětím, kde fázová napětí jsou časově posunuta o $2/3 \pi$. Toto vytvořené točivé magnetické pole protíná skrze vzduchovou mezeru vodiče rotoru. Ve vodičích rotoru se indukuje napětí a v případě, je-li vinutí uzavřeno, prochází jím proud. Proud procházející rotorovým vinutí vytváří své vlastní magnetické pole. Vzájemným působením obou těchto polí vzniká mezi vinutím statoru a vinutím rotou síla, která působí na vodiče rotoru ve směru pohybu magnetického pole statoru.

Z uvedených poznatků je zřejmé, že napětí a proud se bude ve vodičích rotoru indukovat pouze v případě pohybu magnetického pole statoru vůči pohybu pole rotoru. Z toho plyne závěr, že otáčky točivého pole statoru n_s (synchronní) nemohou být stejné, jako otáčky pole rotoru n. Zavádíme tedy závislost rozdílu synchronních otáček a otáček rotoru, vztažené k synchronním otáčkám. Tato závislost je nazývána tzv. skluz a její matematické vyjádření je následující: [2] [3]

$$s = \frac{n_s - n}{n_s} \quad [\cdot 100 \ (\%)]$$
 (1.1)

$$n_s = \frac{60 \cdot f_1}{p} \tag{1.2}$$

 f_l napájecí frekvence sítě[Hz]p počet pólových dvojic stroje[-] n_s otáčky pole statoru[min⁻¹]

Otáčky rotoru jsou pak

$$n = n_s \cdot (1 - s) \tag{1.3}$$

1.3 Zapojení trojfázového asynchronního motoru

Trojfázový asynchronní motor je nejčastěji provozován buď v zapojení svorkovnice do hvězdy "Y" nebo do trojúhelníku "D". Symbolika U_1, V_1 a W_1 značí začátky vinutí a U_2, V_2 a W_2 značí konce vinutí U, V a W.

Obrázek 3 Zapojení svorkovnice trojfázového asynchronního motoru

Y:
$$I_f = I_s = \frac{U_s}{\sqrt{3} \cdot Z} \quad [A]$$
(1.4)

D:
$$I_s = \sqrt{3} \cdot I_f = \sqrt{3} \cdot \frac{\sqrt{3} \cdot U_f}{Z}$$
 [A] (1.5)

Y/D:
$$\frac{I_{Y}}{I_{D}} = \frac{I_{f} = I_{S}}{\sqrt{3} \cdot I_{f}} = \frac{\frac{U_{S}}{\sqrt{3} \cdot Z}}{\frac{U_{S}}{Z}} = \frac{1}{3}$$
 [-] (1.6)

Záběrný proud v síti a záběrný moment motoru je při zapojení do hvězdy třetinový oproti zapojení do trojúhelníku viz. (1.6). Tohoto se nejčastěji využívá při přepínači hvězda-trojúhelník.

Obrázek 4 Napěťové a proudové poměry v zapojení "Y" a "D" [12]

1.4 Zapojení trojfázového asynchronního motoru na jednofázovou síť

Přepojíme-li trojfázový asynchronní motor po roztočení na jmenovité otáčky n_n z trojfázové sítě k jednofázové síti, klesne výkon motoru přibližně na 0,7-0,8· P_n a motor se bude otáčet s nižšími otáčkami při konstantním momentu. Nevýhodou je to, že se motor sám z klidu neroztočí. Rozběh na jednofázovou síť je proveden pomocí tzv. Steinmetzova zapojení. Svorkovnice motoru je pro připojení kondenzátoru přepojena do trojúhelníku. Pomocný kondenzátor je připojen mezi nezapojenou fázi motoru a pracovní vodič. Proud přivedený do motoru přes kondenzátor je oproti síťovému fázově posunut a jsou v jednotlivých vinutích různě veliké, čímž je vytvořeno eliptické magnetické pole (indukční tok se mění periodicky s periodou napájecí sítě). Při potřebě zvýšení záběrného momentu je možné k pomocnému kondenzátoru připojit další kapacitu paralelně, která se po rozběhu odpojí odstředivým vypínačem nebo časovým relé.

V praxi se toto zapojení často využívá u motorů do 2 kW například pro zapojení čerpadel, ventilátorů apod.

Výhodou tohoto zapojení jsou nízké pořizovací náklady pomocného kondenzátoru. Zásadní nevýhodou je snížení výkonu na $0,5-0,7 \cdot P_n$, snížení záběrného momentu až o polovinu a nemožnost regulace otáček motoru. [7]

Obrázek 5 Steinmetzovo zapojení trojfázového asynchronního motoru na jednofázovou síť; a) Schéma b) Svorkovnice

2 JEDNOFÁZOVÝ ASYNCHRONNÍ MOTOR

Jednofázový asynchronní motor se liší od trojfázového zejména rozložením vinutí v magnetickém obvodu statoru. Tyto typy motorů se používají pro elektrické neregulované pohony malých výkonů, řádově do 2 kW. Příkladem může být pohon kompresoru v chladničkách a dříve pohon bubnu automatické pračky apod.

2.1 Provedení jednofázového asynchronního motoru

2.1.1 Stator

Jako u trojfázového ASM je stator tvořen litinovou kostrou a patkami pro upevnění, předním a zadním ložiskovým štítem a v nich umístěných ložiskách a svorkovnicí. U tzv. přírubových motorů je zadní ložiskový štít tvořen přírubou s guferem. Plastový ventilátor umístěný v drážce na hřídeli za předním ložiskovým štítem slouží k vhánění proudu chladícího vzduchu mezi žebra kostry. Paket statorových plechů je nalisován uvnitř kostry. Drážky pro statorové vinutí jsou rozděleny na 3 části. Hlavní neboli pracovní vinutí vyplňuje 2/3 drážek a zbylá 1/3 obsahuje pomocné tzv. rozběhové vinutí. Rozběhové vinutí nejjednoduššího motoru je připojeno paralelně k hlavnímu vinutí a pootočeno o 90° mechanických. [11]

2.1.2 Rotor

Provedení rotoru je prakticky stejné jako u trojfázového ASM s kotvou nakrátko. Svazek elektrotechnických plechů je nalisován na hřídeli. V drážkách plechů je metodou tlakového lití uloženo vinutí tvořené hliníkovými nebo měděnými tyčemi. Po obou stranách spojené vodivými kroužky. V hřídeli je vyfrézována drážka pro pero.

2.2 Vznik pulzujícího magnetického pole

Oproti trojfázovému asynchronnímu motoru, kde se vytvoří na statorovém vinutí po připojení k trojfázové síti točivé magnetické pole, u jednofázového motoru je vytvořen pulzující magnetický tok ϕ_1 . Vzniklé pulzující magnetické pole indukuje do rotorového vinutí, které je v klidu, transformační napětí. Stroj se potom chová jako transformátor, se zkratovanými sekundárními svorkami.

Jsou-li uzavřeny vodiče klece, začne jimi vlivem indukovaného napětí protékat proud, jenž vybudí magnetický tok ϕ_2 . Tento vybuzený tok ϕ_2 má opačný směr, než tok ϕ_1 . Jelikož ϕ_1 a ϕ_2 mezi sebou svírají úhel 180°, nemůže se motor sám roztočit. Pulzující pole si lze pro představu rozložit na dvě pole točivá, jež se točí proti sobě stejnou úhlovou rychlostí ω a jejichž amplituda je poloviční než amplituda pole pulzujícího. Matematické vyjádření situace je následovné:

Platí-li pro okamžitou hodnotu 1. harmonické magnetické indukce ve vzduchové mezeře:

$$B = B_m \cdot \cos \vartheta \cdot \cos \omega t \quad [T] \tag{2.1}$$

Po rozkladu součinu dvou kosinových funkcí získáme výraz

$$B = B_{S} \cdot \cos(\vartheta - \omega t) + B_{Z} \cdot \cos(\vartheta + \omega t) \quad [T]$$
(2.2)

 B_m představuje amplitudu pulzujícího magnetického pole. B_s souslednou složku pole a B_z zpětnou složku pole. Tato vzniklá pole indukují ve vinutí rotoru proudy. [2] [5] [6] [8]

$$B_s = \frac{1}{2} B_m \quad [T] \tag{2.3}$$

$$B_Z = \frac{1}{2} B_m \quad [T] \tag{2.4}$$

Obrázek 6 Superpozice magnetických polí ve vzduchové mezeře [3]

2.3 Momentová charakteristika

Výsledná momentová charakteristika jednofázového asynchronního motoru M_v je dána součtem dvou složek momentu, M_s a Mz. M_s symbolizuje souslednou složku momentu, M_z zpětnou složku. Tyto složky vznikají vlivem pulzujícího magnetického pole statoru, které indukuje proud v rotoru.

Působení jednofázového asynchronního motoru si lze také představit jako současné působení dvou totožných trojfázových motorů spojených společnou hřídelí působících proti sobě. Součet momentů těchto motorů je pak roven M_v jednofázového motoru. Z momentové charakteristiky je tedy patrné, že záběrný moment motoru je nulový a motor se sám neroztočí. Pro vznik záběrného momentu je potřeba jej roztočit alespoň na $0,2 \cdot n_s$. Roztočíme-li motor v jednom či druhém směru, budou momenty od zpětné složky menší než od sousledné. Z charakteristiky (Obrázek 7) je patrné, že rotor nikdy nemůže dosáhnout synchronních otáček, neboť by byl jeho moment záporný, vlivem opačné složky momentu.

Synchronní otáčky jednofázového ASM jsou dány stejně jako u trojfázového frekvencí napájecí sítě a počtem pólů stroje. [3] [12]

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

Obrázek 7 Momentová charakteristika 1f asynchronního motoru [14]

2.4 Rozběh a získání záběrného momentu

Pro rozběh jednofázového asynchronního motoru je zapotřebí vytvořit fázový posun mezi proudem hlavní a pomocné fáze uložené ve třetině statoru. Pomocné vinutí je oproti hlavnímu prostorově natočeno o 90°. Fázového posuvu lze docílit tak, že se do série s pomocnou fází připojí odpor, indukčnost nebo kapacita. Pomocná fáze se po roztočení motoru většinou, nemusí tomu být vždy, odpojí z důvodu snížení ztrát. Odpojení probíhá odstředivým vypínačem "V" nebo tepelným relé. V případě jednofázového asynchronního motoru s trvale připojeným kondenzátorem jsou občas použity 2 kondenzátory, z nichž jeden se po rozběhu odpojí. [3]

Obrázek 8 Zapojení 1 f asynchronního motoru s pomocným vinutím

Obrázek 9 Fázorový diagram 1f ASM bez vytvořeného fázového posuvu v pomocné fázi [7]

2.4.1 Odporový rozběh

Odporovým rozběhem je chápána snaha zvýšit odpor pomocného vinutí. To se dosahuje připojením činného odporu R do série s pomocným vinutím nebo použitím vodiče s vyšším měrným odporem. Odpor bývá tedy realizován přímo pomocným vinutím, které je navinuto z odporového drátu. Tím je vytvořeno točivé magnetické pole, které je eliptické, silně sploštělé. Při záběru je veškerá energie v pomocném vinutí přeměňována na teplo a proto je nutné ho po rozběhu odpojit. Pomocné vinutí je odpojeno přibližně při dosažení 2/3 jmenovitých otáček. Záběrný moment bývá přibližně 1,0 až 1,5· M_n a záběrný proud 7 až 8· I_n . Nevýhodou je zhoršení účiníku a účinnosti. [13]

 \bar{I}_A - proud v hlavním vinutí

 \bar{I}_B - proud v pomocném vinutí

Obrázek 10 Fázorový diagram 1f ASM s odporovou pomocnou fází [7]

2.4.2 Kapacitní rozběh

Kapacitní rozběh se využívá pro rozběh jednofázového asynchronního motoru zejména z důvodu vysokého záběrného momentu a potlačení hluku. Ten vzniká při fázovém posuvu mezi hlavním a pomocným vinutím menším než 90° el. z důvodu rozdílných vlastností obou větví. Tím vznikne eliptické magnetické pole, které je doprovázeno právě hlukem. [13]

Obrázek 11 Fázorový diagram 1f ASM s kapacitním charakterem pomocné fáze [7] Proud \bar{I}_B pomocného vinutí předbíhá proud \bar{I}_A vinutí hlavního.

Kondenzátor zapojený pouze při rozběhu – kondenzátor je připojen do série s pomocným vinutím a po rozběhu odpojen odstředivým vypínačem V. Výhodou tohoto zapojení je vysoký záběrný moment, až $4 \cdot M_n$ a nízký záběrný proud, cca $4 \cdot I_n$. Při kapacitním rozběhu se docílí posunu 90° mezi proudy v jednotlivých vinutích, čímž vzniká točivé kruhové magnetické pole a je potlačován hluk. Používá se silnoproudý elektrolytický kondenzátor pro krátkodobé zatížení s definovanou hustotou spouštění.

Využití je například u kompresorové chladničky nebo čerpadel, kde je požadován vysoký záběrný moment. Změna smyslu točivého magnetického pole se provede záměnou přívodů k pomocné fázi.

Kondenzátor zapojený při chodu - motory s trvale připojenou pomocnou fázi musí mít kondenzátor s papírovým dielektrikem. Ten má nižší kapacitu. Tyto motory mají lepší účinnost a účiník ale nižší záběrný moment.

Velikost pomocného kondenzátoru se v praxi volí zpravidla asi 68µF na 1 kW výkonu motoru. Přesnější určení velikosti kondenzátoru plyne z několika empirických vztahů: [9][13]

	$C = \frac{P}{f \cdot U^2} [F]$	(2.12)
C je kapacita kondenzátoru	[µF]	
P výkon motoru	[kW]	
Unapětí sítě	[V]	
f kmitočet napájecí sítě	[Hz]	

nebo

$$C = k \cdot P \quad [F]$$

Pro k platí:

k = 25 pro napětí 400Vk = 68 pro 230Vk = 200 pro 110VC je kapacita kondenzátoruK konstanta závislá na napětí sítěP výkon motoru[W]

Výkon motoru	Trvale připojený kondenzátor	Rozběhový kondenzátor
[W]	[μF]	[μF]
100 - 200	5 - 8	8 - 10
200 - 300	8 - 12	10 - 16
300 - 500	10 - 16	16 - 24
500 - 750	16 - 25	25 - 40
750 - 1000	25 -35	40 - 51

Tabulka 1 Empiricky získané kapacity pro rozběh a chod motoru [23]

(2.13)

Kondenzátor je nutno navrhnout na vyšší napětí, než je špičkové napětí sítě, neboť pomocná fáze s kondenzátorem v sérii tvoří sériový LC obvod. [9][13]

2.4.3 Induktivní rozběh

Obrázek 12 Fázorový diagram 1f ASM s tlumivkou v pomocné fázi

Induktivní rozběh opožďuje proud \overline{I}_B v pomocném vinutí oproti proudu \overline{I}_A v hlavním vinutí. Použití tlumivky zhoršuje účiník. [6]

2.5 Dílčí závěr

Pro porovnání trojfázového asynchronního motoru připojeného na jednofázovou síť s jednofázovým asynchronním motorem vyjdeme z jejich momentových charakteristik. Trojfázový asynchronní motor připojený na jednofázovou síť se chová jako jednofázový. Sám se neroztočí, a proto je použit dle *1.4 Zapojení trojfázového asynchronního motoru na jednofázovou síť* rozběhový kondenzátor. Výkon motoru je pak přibližně $0,5-0,7 \cdot P_n$, záběrný moment poloviční, otáčky se vzhledem k poklesu výkonu sníží a skluz motoru se zvýší.

Z fázorových diagramů pro rozběh jednofázového asynchronního motoru (Obrázek 10 až Obrázek 12) je patrné, že maximálního momentu lze dosáhnout při spouštění kondenzátorem, menšího pomocí přidaného odporu a nejmenší momentu za použití tlumivky. Dále si lze všimnout, že odporový a induktivní rozběh způsobují proudové nárazy do sítě. Z hlediska tvaru točivého magnetického pole je nejvýhodnější kapacitní charakter pomocného vinutí se svým téměř kruhovým točivým magnetickým polem oproti eliptickému u odporového nebo induktivního charakteru. [7][13]

2.6 Jednofázový asynchronní motor se stíněným pólem

Jednofázové motory se stíněným pólem se používají u malých spotřebičů, kde není důležité dosahovat vysoké účinnosti a účiníku. Například pro pohon ventilátorů v horkovzdušných troubách nebo jako pohon čerpadla v automatické pračce. Vyznačují se velmi nízkým záběrným

momentem. Ten dosahuje přibližně 0,25 M_n . Tyto motory dosahují účinnosti $\eta = 0,1$ až 0,25 při účiníku *cos* $\varphi = 0,6$. [15]

2.6.1 Konstrukce a princip činnosti

Statorové plechy mají vyniklé póly, na kterých je navinuto hlavní vinutí. Do vyniklého pólu je vyfrézován nesouměrný zářez, do něhož je poté umístěn měděný pásek spojený nakrátko. Tím je docíleno stínění části pólu. Průchodem střídavého proudu vinutím statoru se vytváří pulzující magnetické pole ϕ_1 . Působením tohoto pole se indukuje v závitu nakrátko napětí a protéká proud vytvářející pulzující magnetické pole ϕ_2 . Tok ϕ_2 působí v každém okamžiku proti toku ϕ_1 , který ho vyvolal. Tím vzniká v odstíněné části pólu časové zpoždění magnetického toku. Důsledkem je pak posun amplitudy magnetického toku na povrchu pólu ve směru od nestíněné části ke stíněné a vzniku točivého magnetického pole. Směr otáčení motoru je tedy pevně dán umístěním stínění pólu. [15]

Obrázek 13 Poloviční řez jednofázovým asynchronním motorem se stíněným pólem [12] 1-Cívky hlavního vinutí, 2-Vyniklé póly, 3-Rozštěpený pól, 4-Závit nakrátko, 5-Rotor

2.6.2 Momentová charakteristika

Z momentové charakteristiky je patrný malý záběrný moment díky použití závitu nakrátko. Charakteristika má ve 2/3 skluzu sedlo, které je způsobeno tím, že vinutí není v drážkách, ale je umístěno na pólech. Pod póly není tvar magnetického pole sinusový, nýbrž má tvar deformovaného obdélníku a na něj působí vyšší harmonické. Nejvýše však 3. harmonická.

Obrázek 14 Momentová charakteristika 1f ASM se stíněným pólem [15]

3 ENERGETICKÁ BILANCE ASYNCHRONNÍHO MOTORU

Základní vlastností asynchronního motoru je přeměna elektrické energie na energii mechanickou. Princip přeměny je popsán v textu výše. Tato přeměna se ovšem neobejde beze ztrát, které se přeměňují ve stroji na teplo a zahřívají ho. Celkové ztráty vyjádříme jako ΔP .

$$\Delta P = P_1 - P_2 \tag{3.1}$$

Příkon P_l odebíraný ze sítě, z něhož se část spotřebuje ve vinutí statoru na Jouleovy ztráty ΔP_{Cus} a část na ztráty v železe ΔP_{Fe} . Zbývající část příkonu je rovna přenášenému výkonu ve vzduchové mezeře P_{δ} . Ten se dále dělí na elektrický výkon ve vinutí rotoru P_{Al} , přeměňovaný elektromechanický výkon P_{mech} , mechanické a dodatečné ztráty.

Výkon odebíraný strojem ze sítě P_1 a P_2 mechanický výkon na hřídeli.

P1 vypočteme jako

$$P_1 = m \cdot U_1 \cdot I_1 \cdot \cos \varphi \quad [W] \tag{3.2}$$

Kde *m* je počet fází, U_l napětí jedné fáze, I_l proud fází a $cos \varphi$ je účiník.

Činné ztráty ve vinutí statoru ΔP_{Cus} (tzv. Jouleovy ztráty)

$$\Delta P_{Cus} = m \cdot R \cdot I_1^2 \quad [W] \tag{3.3}$$

Ztráty závisí na odporu vinutí R, druhé mocnině proudu I_I a počtu fází m.

Pro jednofázový asynchronní motor jsou Jouleovy ztráty ve vinutí statoru:

$$\Delta P_{Cus} = R_h \cdot I_h^2 + R_p \cdot I_{pom}^2 [W]$$
(3.4)

kde R_h je odpor hlavního vinutí, I_h proud hlavním vinutím, R_p odpor pomocného vinutí a I_{pom} proud pomocným vinutím.

 $P_{el} = \Delta P_{N2} = \Delta P_{Al}$ (dále používáno ΔP_{Al}) jsou ztráty spotřebované na činném odporu rotoru. Jsou určeny jako součin skluzu a výkonu přes vzduchovou mezeru. Jejich velikost je tedy závislá na velikosti skluzu *s*. [2]

$$\Delta P_{Al} = s \cdot P_{\delta} \quad [W] \tag{3.5}$$

Výkon P_{δ} přenášený vzduchovou mezerou (točivým polem) je dán jako:

$$P_{\delta} = P_1 - \Delta P_{Cus} - \Delta P_{Fe} \quad [W] \tag{3.6}$$

Odečtením činných ztrát v rotoru ΔP_{Al} od P_{δ} dostaneme přeměňovaný elektromechanický výkon stroje P_{mech} .

$$P_{mech} = P_{\delta} - P_{Al} \quad [W] \tag{3.7}$$

Po úpravě pak

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

$$P_{\delta} = P_{mech} + P_{Al} = (1 - s) \cdot P_{\delta} + s \cdot P_{\delta} \quad [W]$$
(3.8)

Odtud plyne, že výkon, který je přenášený vzduchovou mezerou se dělí na dvě části a to v závislosti na velikosti skluzu na přeměňovaný elektromechanický výkon a elektrický výkon v sekundárním obvodu stroje. Ten je roven u asynchronního motoru s kotvou nakrátko Jouleovým ztrátám. [9]

Na hřídeli motoru dostaneme mechanický výkon P2.

$$P_2 = P_{mech} - \Delta P_{mech} - \Delta P_d \quad [W]$$
(3.9)

 ΔP_{mech} jsou vlastní mechanické ztráty stroje a ΔP_d ztráty dodatečné.

Obrázek 15 Tok výkonu v asynchronním motoru [2]

Účinnost asynchronního motoru se určí jako podíl mechanického výkonu na hřídeli P_2 ku příkonu odebíranému ze sítě P_1 . [2] [9]

$$\eta = \frac{P_2}{P_1}$$
 nebo $\eta = \frac{P_2}{P_2 + \Delta P}$ [-] (3.10)

V následujícím textu jsou rozebrány jednotlivé typy nejvýznamnějších ztrát v asynchronním motoru.

3.1 Ztráty v magnetickém obvodu

Magnetický obvod statoru a rotoru je tvořen navzájem izolovanými elektrotechnickými plechy. Plechy jsou složeny do svazků, slisovanými a poté svařenými nebo sešroubovanými do konečné podoby. Průchodem střídavého proudu statorovým vinutím vznikají v magnetickém obvodu ztráty vířivé a hysterezní. Značí se ΔP_{Fe} . Ztráty v magnetickém obvodu nazývané též ztráty v železe jsou velice dominantní.

$$\Delta P_{Fe} = \Delta P_{\nu} + \Delta P_{h} \quad [W] \tag{3.11}$$

3.1.1 Ztráty vířivými proudy

Časové proměnný magnetický tok ϕ_1 by v plném materiálu způsobil značné ztráty vířivými proudy. V prostoru plného elektricky vodivého materiálu si lze představit závit nakrátko s odporem *R*. Změnou toku ϕ_1 je v závitu indukováno napětí podle Faradayova indukčního zákona. Toto napětí je pak příčinou vzniku vířivého proudu i_v .

$$i_v = \frac{u_i}{R} \quad [A] \tag{3.12}$$

Podle Jouleova zákona tento proud i_v ohřívá závit nakrátko a vytváří reakční magnetické pole. To působí proti původnímu poli, které ho vyvolalo. Z tohoto důvodu se omezuje velikost i_v zvýšením odporu magnetického materiálu. Plný materiál se proto dělí na zmíněné vzájemně izolované plechy tloušťky 0,35 mm(transformátorové) až 0,5 mm(dynamové). Průřez magnetického obvodu v rovině kolmé ke směru magnetické indukce se tím rozdělí na malé plošky. Závity nakrátko pak zabírají s menšími magnetickými toky a tím se snižují ztráty vířivými proudy.

Ztráty jsou určeny

$$\Delta P_{v} = k_{v} \cdot \left(\frac{f}{50}\right)^{2} \cdot B^{2} \quad [W/kg]$$
(3.13)

Kde

k_v je koeficient závisející na materiálu a tloušť ce plechů	[-]
f je kmitočet napájecí sítě	[Hz]
<i>B</i> je magnetické indukce	[T]
[2][7][16]	

3.1.2 Ztráty hysterezní

Hysterezní ztráty v magnetickém obvodu lze charakterizovat jako energii, přeměněnou na neužitečné teplo oběhem pracovního bodu hysterezní smyčky použitého materiálu. Přemagnetováním magnetického materiálu jsou domény nuceny s pracovním kmitočtem *f* měnit svůj směr natočení za vnějším polem. Při tomto natáčení dochází k jejich vzájemnému tření, čímž vzniká energie, která je přeměňována na teplo a je právě úměrná ploše magnetizační křivky. Při požadavku nižších hysterezních ztrát je použito magneticky měkkého materiálu, jenž má užší BH křivku. Přidáním vyššího podílu křemíku (asi 4%) lze dosáhnout zvýšení měrného odporu železa, vyšší tvrdosti, ale také křehkosti plechů. Na hysterezní ztráty má také značný podíl válcování plechů za studena. Ve směru válcování je magnetický odpor menší a naopak elektrický odpor větší. U točivých strojů orientované plechy příliš vysoký význam nemají, díky točivému magnetickému poli a proměnnému toku. [2] [4] [7]

Hysterezní ztráty jsou závislé na frekvenci sítě f, magnetické indukci B, a koeficientu k_h , závisejícím na materiálu a tloušť ce plechů.

$$\Delta P_h = k_h \cdot \frac{f}{50} \cdot B^2 \quad [W/kg] \tag{3.14}$$

3.2 Mechanické ztráty

Vlastní mechanické ztráty stroje se dělí na ztráty ventilační a ztráty způsobené třením.

Ventilační ztráty vznikají třením ventilátoru o vzduch. Další způsob vzniku ztrát je díky ventilačním lopatkám odlévaných na spojovacích kruzích klecového vinutí rotoru.

Ztráty třením jsou způsobeny odvalováním kuliček v ložiscích stroje. Při použití vinuté kotvy kroužkového stroje vytváří kluzný styk kartáč-kroužek další zdroj ztrát. [10]

3.3 Ztráty ve vinutí

Velikost ztrát je dána především odporem vinutí *R*. Protékající střídavý proud vinutím vytváří tepelné ztráty. Jejich velikost určíme podle (3.3). Tepelné ztráty ohřívají vodiče kotvy, čím se dále zvyšuje jejich odpor a ztráty narůstají asi o 0,4%/1 K. [1]

3.4 Dodatečné ztráty

Tento druh ztrát je u asynchronních strojů odhadován přibližně na 0,5-2% z celkových ztrát. Vyskytují se zejména z důvodu pulzace magnetického pole ve vzduchové mezeře. Pulzace vznikají drážkováním statoru a rotoru. [1]

- 1. Povrchové ztráty naprázdno vznikají na povrchu rotoru vlivem vířivých proudů
- 2. **Pulzační ztráty naprázdno** při relativním pohybu rotoru vůči statoru se mění periodicky magnetická vodivost a magnetický tok drážkovou roztečí. Tok statorovým zubem pulzuje mezi ϕ_{max} a ϕ_{min} , čímž vznikají opět vířivé proudy- v tomto případě nazývané pulzačními ztrátami.
- 3. **Přídavné ztráty klecové kotvy naprázdno** vznikají následkem rychlé změny proudu při komutaci a přesycením zubů, čímž indukční čáry vnikají periodicky do prostoru drážek.
- 4. **Přídavné ztráty klecové kotvy naprázdno při zešikmení** provádí se zešikmení o jednu drážku. Zešikmení je prováděno z důvodu lepší dynamiky stroje
- 5. Přídavné ztráty při zatížení vyšší harmonické magnetomotorické síly, které vyvolávají pulzační a povrchové ztráty. U kotev nakrátko u rovných tyčí se vyskytují přídavné ztráty v kleci, u zešikmených neizolovaných tyčí vlivem proudů, které tečou napříč rotorem mezi tyčemi.[3][5] [17]

4 NÁVRH SNÍŽENÍ ZTRÁT

Snížení ztrát nebo také zvýšení účinnosti elektrických strojů se provádí zejména z důvodu úspory elektrické energie. Teoreticky nejvyšší ztráty během chodu asynchronního motoru vznikají ve vinutí statoru $\Delta P_{Cus} \sim 34$ %. Ve vinutí rotoru jsou tvořeny $\Delta P_{Al} \sim$ více jak 20 %. Další značnou část zabírají ztráty v magnetickém obvodu $\Delta P_{Fe} \sim 20-30$ %. Ztráty mechanické zaujímají přibližně $\Delta P_m \sim 5-10$ %. Dodatečné ztráty jsou pak odhadovány na $\Delta P_d \sim 0,5 - 2$ % (přibližné velikosti jednotlivých ztrát v procentech jsou získány z měřeného motoru).

4.1 Omezení ztrát ve vinutí

Pro omezení ztrát ve vinutí je kladen důraz na snížení odporu materiálu vinutí.

4.1.1 Způsob omezení ztrát v rotoru

Lepšího využití stroje lze dosáhnout použitím materiálu s nižším měrným odporem. Hliníková klec (měrný odpor - $\rho_{Al} = 0,0267 \ \Omega \cdot \text{mm}^2 \cdot \text{m}^{-1}$) lze nahradit měděnou ($\rho_{Cu} = 0,0169 \ \Omega \cdot \text{mm}^2 \cdot \text{m}^{-1}$). Technologie výroby je nákladnější a energeticky náročnější, zejména z důvodu teploty tavení mědi, která je $\vartheta_t = 1083 \ ^\circ\text{C}$. Vyšší teplota může také vést ke změně vlastností použitých rotorových plechů. Pro vyřazení tohoto problému by bylo možné rotorové vinutí nahradit měděnými tyčemi, které by byly po obou koncích svařené a zkratované měděnými kruhy. Měděná klec se ale projeví na průběhu zatěžovací charakteristiky motoru, zejména sníženým záběrným momentem, což je nežádoucí. [20]

4.1.2 Způsob omezení ztrát ve statoru

Omezení ztrát ve vinutí statoru lze provést několika způsoby. Opět jako u rotorové klece je zde snaha o snížení měrného odporu použitého materiálu vodiče.

4.1.2.1 Průřez vodiče

Zvýšením průřezu vodiče S nebo celého vinutí, kdy ze vztahu

$$R = \rho \cdot \frac{l}{S} \quad [\Omega] \tag{4.1}$$

je patrné, že při nárůstu průřezu Szískáme nižší odpor R.

4.1.2.2 Koeficient plnění drážky a průřez drážky

Se zvýšením průřezu je ale spjat počet závitů N v drážce a tím také koeficient plnění drážky $k_{p,Cu}$. Ten je definován jako podíl plochy, kterou zabírá vinutí S_{Cu} k celkové ploše drážky S_{dr} .

$$k_{p,Cu} = \frac{S_{Cu}}{S_{dr}} \ [-] \tag{4.2}$$

$$S_{Cu} = N \cdot S = N \cdot \pi \cdot r^2 \ [\text{m}^2] \tag{4.3}$$

Kde S je průřez vodiče [mm²]. (Vztahy převzaty z [10]).

Při návrhu vyššího průřezu vodiče, zvýšení koeficientu plnění drážky a zachování počtu závitů v drážce je nutné dbát na realizaci, zejména navíjení stroje. Z toho plyne, že při zvýšení zmíněných parametrů je většinou snižován počet závitů *N*.

Při uvažování proudové hustoty σ lze vycházet pro určení ztrát ve vinutí statoru z:

$$\Delta P_{Cus} = V_{Cu} \cdot k_{p,Cu} \cdot \rho \cdot \sigma^2 \quad [W]$$
(4.4)

Vinutí pomocné fáze je dimenzováno na stejný průřez jako vinutí hlavní a to z důvodu přehřívání při rozběhu.

4.1.3 Dílčí závěr

Z textu tedy plyne, že možností snížení ztrát ve vinutí statoru, snížením jeho odporu, je volba většího průřezu statorové drážky S_{dr} . Větší průřez drážky umožňuje použití většího průřezu vodiče S_0 a tím snížení proudové hustoty σ . Koeficient plnění drážky dosahuje běžně velikosti 0,3-0,4. Tím je umožněno zvětšení průřezu vodiče. Z hlediska izolace vodiče lze použít izolaci z tenčího materiálu ovšem za podmínky zachování stejných izolačních parametrů. Při dostatečném nevyužití $k_{p,Cu}$ je možné zvětšit průřez vodiče vinutí, aniž by byl měněn průřez drážky statoru (více v kap. 5.5).

4.2 Omezení ztrát v magnetickém obvodu

4.2.1 Kvalita materiálu plechů

Pro snížení ztrát v magnetickém obvodu - vířivých ztrát jak již bylo uvedeno v kap. 3.1 Ztráty v magnetickém obvodu je použito kvalitnějších elektrotechnických plechů s vyšším podílem křemíku, menším ztrátovým číslem. Tím je dosaženo zvýšení odporu materiálu a indukování menších vířivých proudů i_v , jež způsobují ztráty. Koleno magnetizační křivky je výše v BH charakteristice a materiál není tolik přesycován. [4]

4.2.2 Snížení magnetické indukce ve vzduchové mezeře

Hysterezní ztráty závisí na ploše hysterezní smyčky použitého magnetického materiálu a úhrnné ztráty na druhé mocnině magnetické indukce *B viz.*(3.14). Z toho plyne, že při snížení magnetické indukce *B* ve vzduchové mezeře klesnou kvadraticky ztráty v železe.

Prodloužením osové délky stroje l je možné získat nižší magnetickou indukci B ve vzduchové mezeře.

$$B_{\max} = \frac{l}{N \cdot S} \int u(t) dt \quad [T]$$
(4.5)

S - plocha vzduchové mezery závislá na osové délce stroje l

Pro zachování parametrů stroje je důležité dbát na zachování poměru mezi změněnými a původními veličinami. Neboť elektromagnetický moment a indukované napětí jsou závislé právě na velikosti magnetické indukce *B* a délce *l*.

$$u_i = \frac{d\phi}{dt} \quad [V] \tag{4.6}$$

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

$$U_i = 4,44 \cdot \phi \cdot f \cdot N_1 \cdot k_v \approx l \cdot N_1 \cdot B \tag{4.7}$$

$$M = \frac{3}{2} \cdot p \cdot \operatorname{Im}\{i_r * \psi_r\} \approx l \cdot B \cdot \sigma$$
(4.8)

Pro zachování zmíněného poměru je pak tedy nutné uvažovat, že:

$$l_0 \cdot N_{10} \cdot B_0 = l \cdot N_1 \cdot B \tag{4.9}$$

Původní veličiny jsou značeny indexem 0. (Vztahy převzaty z [10]).

4.2.3 Dílčí závěr

Ztráty v magnetickém obvodu lze snížit použitím plechu s vyšším podílem křemíku. Nevýhodou je křehkost a tvrdost plechu a veliké opotřebení razících nástrojů při výrobě. Další možností je snížení magnetické indukce *B* ve vzduchové mezeře při zachování parametrů stroje, což se provede prodloužením aktivní délky stroje *l* za současného snížení počtu závitů vinutí.

4.3 Omezení mechanických ztrát

4.3.1 Mechanické ztráty v ložiskách

Mechanické ztráty způsobené třením v ložiskách je možné omezit použitím speciálních ložisek. Životnost ložisek ovlivňuje pravidelná údržba a také tzv. ložiskové proudy. Proto je důležité si uvědomit, že mechanické ztráty nezáleží na velikosti zatížení stroje, ale na samotných mechanických vlastnostech stroje a jeho částí.

4.3.2 Ventilační ztráty

Při použití motoru s možnou změnou směru otáčení jsou použity rovné lopatky ventilátoru. Pro jeden směr točení pak lopatky vhodně zakřivené.

Pohybem rotoru ve vzduchové mezeře vznikají ztráty třením o vzduch. Zamezit jejich vzniku by bylo možné uzavřením motoru do vakua. Toho se využívá u gyroskopů nebo u vysokootáčkových motorů s vnějším rotorem. Velikost ventilačních ztrát je úměrná třetí mocnině rychlosti otáčení hřídele. [7]

4.3.3 Dílčí závěr

Použitím kvalitních ložisek lze docílit snížení mechanických ztrát. Snížení ventilačních ztrát se zajistí správným navržením natočení lopatek ventilátoru.

5 JEDNOFÁZOVÝ ASYNCHRONNÍ MOTOR J22VV

Předmětem analýzy byl zvolen dvoupólový jednofázový asynchronní motor J22VV499 s trvale připojeným kondenzátorem v pomocném vinutí. Výrobcem je společnost ATAS Elektromotory Náchod a.s. Štítek motoru udává základní informace o jmenovitých parametrech. Motor má za předním ložiskovým štítem nasazen na hřídeli ventilátor s rovnými lopatkami, což značí použitelnost pro oba směry otáčení. Z tohoto důvodu snižování ventilačních ztrát nebude řešeno. Vinutí statoru je měděné a vinuto drátem o průměru $d_0 = 0,6$ mm. V další části práce je pak proměřen stejný motor, ovšem s aplikací snížení ztrát ve vinutí statoru a to průměrem vodiče $d_1 = 0,63$ mm. Rotorové vinutí je tvořeno slitinou hliníku, křemíku a manganu. Tato slitina vytváří vyšší měrný odpor ($\rho_{20} = 0,05 \cdot 10^{-6} \Omega \cdot \text{mm}^2/\text{m}$), což je vhodné z důvodu vyššího záběrného momentu. Na magnetický obvod jsou použity elektrotechnické plechy typu M700-50A. Aktivní délka stroje činní l = 70 mm. Motor nemá instalované gufero.

Catas ATAS elektromotory Nichod a.s.		1~MOT
Typ : J22VV499		
IP 54		4,1 A
P ₁ : 880 W	220-240 V	50/60 Hz
C: 16 µF/400 V	2650/	3270 min ⁻¹
P ₂ : 550 W		

Obrázek 16 Štítek motoru J22VV499

Pro určení velikosti koeficientu plnění drážky vyjdeme ze vztahu (4.2) a (4.3).

Plocha drážky statoru je $S_{dr} = 67,7 \text{ mm}^2$.

Plocha, kterou zaujímá vinutí: S_{Cu}

Cívka vinutí má N = 40 z, z čehož každý závit je tvořen dvěma vodiči o $d_0 = 0,6$ mm

$$S_{Cu} = N \cdot 2 \cdot S_0 = 40 \cdot 2 \cdot \pi \cdot 0.3^2 = 22.619 \, mm^2 \tag{5.1}$$

Koeficient plnění drážky pak:

$$k_{p,Cu} = \frac{S_{Cu}}{S_{dr}} = \frac{22,619}{67,7} = 0,3341[-]$$
(5.2)

Vlastnosti magnetického obvodu

Pro magnetický obvod jednofázového asynchronního motoru J22VV499 jsou použity elektrotechnické plechy M700-50A od výrobce SURA. Z datasheetových údajů je sestrojena BH křivka a závislost měrných ztrát na magnetické indukci.

 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X

Obrázek 17 BH charakteristika plechu M700-50A [22]

0

Obrázek 18 Závislost měrných ztrát na velikosti magnetické indukce [22]

5.1 Simulace

Při návrhu a ověřování způsobů inovace bude použito simulačního programu ANSYS Maxwell a modul RMxprt od společnosti Ansoft. Tento software umožňuje řešení elektrických a magnetických polí pomocí metody konečných prvků (MKP).

Obrázek 19 3D model analyzovaného motoru

5.1.1 Maxwell RMxprt

Modul využívá k analytickému výpočtu Maxwellovy rovnice a základní zákony elektrotechniky. Pro práci je nejprve vytvořen reálný 2D model stroje podle výkresové dokumentace výrobce a nastaveny patřičné parametry jako:

- materiály jednotlivých částí stroje
- tvar drážek statorového a rotorového vinutí
- průměr vodiče statorového vinutí
- počet závitů hlavního a pomocného vinutí
- BH a PB charakteristika materiálu elektrotechnických plechů

Pro výpočet bylo nutné nastavit také jmenovité napětí, jmenovité otáčky, kapacita použitého kondenzátoru a provozní teplota. Dosažené výsledky pomocí RMxprt jsou poté zaneseny do grafů (Obrázek 34Obrázek 35, Obrázek 36, Obrázek 37, Obrázek 37).

Modul RMxprt je schopen řešit nejenom jednofázové asynchronní motory ale také trojfázové asynchronní, trojfázové synchronní, stejnosměrné, univerzální, stroje s PM, reluktanční aj.

Obrázek 20 Zobrazení vinutí v RMxprt

5.1.2 Maxwell 2D a metoda konečných prvků

Z 2D modelu vytvořeného pomocí analytického modulu RMxprt je možné vytvořit 2D nebo 3D model (Obrázek 19) v Maxwellu, jenž využívá k výpočtům metodu konečných prvků (MKP).

Obrázek 21 Vytvoření 2D modelu z RMxprt do Maxwell

Metoda spočívá v diskretizaci geometrie objektu do souboru malých prvků (např. trojúhelníků ve 2D - každý tento prvek je dělen na 6 bodů, 3 hrany a 3 středy) vytvářejících síť s konečným počtem prvků (tzv. mesh). Pomocí toho Maxwell získá soubor algebraických rovnic, které řeší, čímž značně usnadňuje práci.

Po vytvoření 2D modelu v Maxwellu je nutné upravit vzduchovou mezeru stroje a to tak, že je doplněna novou oblastí, které je přiřazena velmi jemná mesh (patrné na Obrázek 22-b). Platí pravidlo – čím jemnější je nastavena mesh, tím je dosažen přesnější výsledek, ale tím delší čas výpočtu. Ve vzduchové mezeře jsou voleny minimálně 3 - 4 elementy na výšku mezery. Výpočet byl nastaven v časovém intervalu 0 - 0.2s s krokem po 2ms.

Obrázek 22 Mesh a) model b) detail vzduchové mezery

5.2 Měření motoru J22VV499 s průměrem vodiče d₀ = 0,6 mm

Před samotným měřením běžel motor 2h na jmenovité zatížení z důvodu zahřátí na provozní teplotu. Mezi měřeními jednotlivých charakteristik byl vždy změřen odpor hlavního vinutí R_h a pomocného vinutí R_p . Hodnoty odporů v jednotlivých krocích měření jsou uvedeny v následující tabulce.

Okamžik měření	R _h	Rp
Okamzik mereni	[Ω]	[Ω]
Před měřením zatěžovací charakteristiky	4,620	9,559
Po měření zatěžovací charakteristiky	4,606	9,538
Po měření nakrátko	4,529	9,279
Před měřením naprázdno	4,291	
Po měření naprázdno	4,169	

Tabulka 2 Odpory vinutí 1f ASM motoru J22VV499 v různých okamžicích měření

5.2.1 Měření jmenovitého bodu

Měření jmenovitého bodu jednofázového asynchronního motoru J22VV499 probíhalo při jmenovitém momentu motoru. Je provedeno 11 měření v těsné blízkosti jmenovitého momentu.

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

$$P_{2} = M_{n} \cdot \omega_{n} \to M_{n} = \frac{P_{2}}{\omega_{n}} = \frac{P_{2}}{\frac{2\pi \cdot n_{n}}{60}} = \frac{550}{\frac{2\pi \cdot 2650}{60}} = 1,982 \text{ Nm}$$
(5.3)

М	n	U_1	I ₁	φ1	P1	Q	S	cos φ	Upom	I _{pom}	ϕ_{pom}	lh	φh
[Nm]	[min ⁻¹]	[V]	[A]	[°]	[W]	[Var]	[VA]	[-]	[V]	[A]	[°]	[A]	[°]
1,990	2644	230,39	3,885	24,92	811,61	377,14	894,96	0,907	230,42	1,748	44,05	3,643	51,52
1,989	2644	230,39	3,885	24,91	811,79	376,92	895,03	0,907	230,41	1,747	44,05	3,643	51,49
1,990	2644	230,39	3,884	24,89	811,69	376,64	894,81	0,907	230,42	1,747	44,06	3,641	51,48
1,985	2643	230,39	3,884	24,88	811,89	376,46	894,93	0,907	230,42	1,748	44,07	3,642	51,49
1,991	2644	230,39	3,885	24,87	811,98	376,36	894,96	0,907	230,41	1,748	44,06	3,642	51,47
1,987	2643	230,39	3,883	24,86	811,79	376,12	894,69	0,907	230,42	1,747	44,05	3,639	51,46
1,988	2643	230,39	3,883	24,86	811,7	376,15	894,62	0,907	230,41	1,747	44,04	3,639	51,46
1,986	2643	230,38	3,883	24,86	811,72	376,04	894,59	0,907	230,41	1,747	44,05	3,639	51,46
1,985	2643	230,38	3,884	24,85	811,88	375,96	894,7	0,907	230,41	1,747	44,06	3,641	51,45
1,990	2643	230,39	3,884	24,84	811,98	375,92	894,78	0,908	230,42	1,748	44,06	3,640	51,45
1,987	2643	230,39	3,883	24,84	811,86	375,89	894,66	0,908	230,42	1,748	44,06	3,639	51,46

Tabulka 3 Měření jmenovitého bodu 1f ASM motoru J22VV499

5.2.2 Měření zatěžovací charakteristiky

Měření zatěžovací charakteristiky probíhalo zatížením motoru momentem M = 2,505 Nm a postupným odlehčováním až na hodnotu M = 0,024 Nm. Pro určení velikosti proudu a velikosti úhlu hlavního vinutí je nutné znát charakter proudu odebíraný ze sítě - induktivní a v pomocném vinutí - kapacitní. (Vztah převzat z [24])

$$I_h \angle \varphi_h = I_1 \angle (-\varphi_1) - I_{pom} \angle (\varphi_{pom})$$
(5.4)

$$I_h \angle \varphi_h = 4,518 \angle (-21,19^\circ) - 1,686 \angle (44,52^\circ) = 4,127 \angle (-43,08^\circ)$$
(5.5)

kde:

I_h - proud hlavním vinutím

I1 – celkový odebíraný proud

Ipom – proud pomocným vinutím

 φ_h – fáze proudu hlavního vinutí

 φ_I – fáze celkového proudu

 φ_{pom} – fáze proudu pomocného vinutí

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

М	n	U_1	I ₁	φ1	P1	Q	S	cos φ	Upom	Ipom	ϕ_{pom}	lh	φh	η
[Nm]	[min ⁻¹]	[V]	[A]	[°]	[W]	[Var]	[VA]	[-]	[V]	[A]	[°]	[A]	[°]	[-]
2,505	2499	230,36	4,518	21,19	970,31	376,17	1040,68	0,932	230,38	1,686	44,52	4,122	43,08	0,676
2,269	2566	230,37	4,299	22,02	918,02	371,3	990,27	0,927	230,39	1,707	44,31	3,937	45,41	0,664
1,988	2637	230,39	3,874	24,61	811,47	371,66	892,53	0,909	230,41	1,747	44,04	3,624	51,29	0,677
1,505	2741	230,42	3,265	31,03	644,7	387,76	752,33	0,857	230,45	1,808	44,08	3,301	62,99	0,670
1,020	2827	230,45	2,819	40,04	497,3	417,95	649,61	0,766	230,47	1,859	44,62	3,229	75,01	0,607
0,508	2907	230,48	2,576	52,95	357,72	473,92	593,77	0,603	230,50	1,914	45,48	3,427	86,49	0,432
0,024	2973	230,5	2,588	66,09	241,77	545,37	596,56	0,405	230,53	1,965	46,38	3,801	94,63	0,031

Tabulka 4 Měření zatěžovací charakteristiky 1f ASM J22VV499

Účinnost η je určena jako podíl mechanického výkonu na hřídeli P_2 k odebíranému elektrickému příkonu ze sítě P_1 . Výpočet pro jmenovitý bod je:

$$\eta = \frac{P_2}{P_1} = \frac{M \cdot \omega}{P_1} = \frac{M \cdot 2\pi \cdot \frac{n}{60}}{P_1} = \frac{1,988 \cdot 2\pi \cdot \frac{2637}{60}}{811,47} = 0,6765[-]$$
(5.6)

Z naměřených hodnot lze konstatovat, že účinnost motoru se ve jmenovitém bodě pohybuje okolo $\eta = 0,6765$ [-].

Obrázek 23 Zatěžovací charakteristika J22VV499

5.2.3 Měření nakrátko

Měření nakrátko probíhá při mechanicky zablokovaném rotoru. Zabržděný motor simuluje stav kdy je skluz s = 1, tedy okamžik zapnutí. Tím lze získat záběrný proud a záběrný moment motoru. Motor není dobré připojovat na plné provozní napětí, protože vzniká vysoké riziko poškození a to z důvodu minimálního odvodu ztrátového tepla. Vysoká teplota degraduje použitou izolaci vinutí a snižuje životnost motoru. V nejhorším případě hrozí vyhřátí izolace a zkrat na magnetický obvod. Poté je nutné motor nově převinout. Měření bylo provedeno pro napětí od $U_{1k} = 140 \div 20$ V s krokem 20 V.

М	U_{1k}	I_{1k}	φ _{1k}	P _{1k}	Q _{1k}	S_{1k}	$\cos\phi_k$	U _{pom,k}	I _{pom,k}	$\phi_{\text{pom,k}}$	I _{hk}	φhk
[Nm]	[V]	[A]	[°]	[W]	[Var]	[VA]	[-]	[V]	[A]	[°]	[A]	[°]
0,470	140,08	5,837	25,47	738,11	351,64	817,59	0,903	140,10	0,812	79,16	6,093	32,88
0,356	120,08	4,873	25,82	526,75	254,88	585,18	0,990	120,09	0,702	78,96	5,097	33,47
0,251	100,07	3,920	26,44	355,90	176,98	397,47	0,895	100,08	0,592	78,82	4,116	34,42
0,166	80,06	3,107	27,37	220,91	114,38	248,76	0,888	80,07	0,481	78,68	3,273	35,49
0,100	60,50	2,266	28,92	119,09	65,81	136,07	0,875	60,05	0,371	78,49	2,403	37,39
0,053	40,04	1,441	31,95	48,95	30,53	57,69	0,849	40,04	0,259	78,05	1,549	40,99
0,026	20,02	0,620	39,86	9,53	7,95	12,41	0,768	20,02	0,235	76,39	0,754	56,09

Tabulka 5 Měření 1f ASM J22VV499 nakrátko

5.2.4 Měření naprázdno

Při měření naprázdno bylo nastavováno napětí zdroje v rozsahu $1,1 \cdot U_n$ až $0,3 \cdot U_n$. Dále je důležité, aby bylo rozpojeno pomocné vinutí, neboť by byly negativně ovlivňovány a zkreslovány výsledky měření a velikosti ztrát v železe vlivem pole pomocného vinutí.

U ₁₀	I ₁₀	Po	Q ₀	S ₀	cos φ ₀
[V]	[A]	[W]	[Var]	[VA]	[-]
244,04	4,744	298,08	1126,60	1165,38	0,256
247,82	4,980	320,17	1198,63	1240,67	0,258
222,10	3,484	193,43	754,23	778,64	0,248
191,71	2,464	118,71	459,82	474,90	0,250
170,72	2,019	88,50	335,45	346,93	0,255
147,10	1,627	64,39	232,47	241,23	0,267
120,03	1,259	45,53	145,04	152,04	0,299
98,99	1,023	35,38	95,96	102,32	0,346
76,26	0,815	27,25	56,65	62,97	0,433

Tabulka 6 Měření naprázdno 1f ASM J22VV499

Výpočtem z naměřených parametrů jsou dále určeny velikosti jednotlivých ztrát motoru

5.3 Výpočet ztrát motoru J22VV499 s průměrem vodiče d₀ = 0,6 mm

5.3.1 Ztráty ve vinutí statoru ΔP_{Cus}

Pro určení velikosti ztrát ve vinutí statoru ve jmenovitém bodě dosadíme do vzorce (3.4). Jejich velikost je určena z měření zatěžovací charakteristiky a výsledek zanesen do tabulky.

$$\Delta P_{Cus} = R_h \cdot I_h^2 + R_p \cdot I_{pom}^2 = 4,620 \cdot 3,624^2 + 9,559 \cdot 1,747^2 = 89,85 W$$
(5.7)

М	U ₁	I ₁	P ₁	I _{pom}	I _h	ΔP_{Cus}
[Nm]	[V]	[A]	[W]	[A]	[A]	[W]
2,505	230,36	4,518	970,31	1,686	4,122	105,67
2,269	230,37	4,299	918,02	1,707	3,937	99,46
1,988	230,39	3,874	811,47	1,747	3,624	89,85
1,505	230,42	3,265	644,70	1,808	3,301	81,59
1,020	230,45	2,819	497,30	1,859	3,229	81,20
0,508	230,48	2,576	357,72	1,914	3,427	89,28
0,024	230,50	2,588	241,77	1,965	3,801	103,66

Tabulka 7 Vypočtené hodnoty ztrát ve vinutí statoru z měření zatěžovací charakteristiky

5.3.2 Ztráty v magnetickém obvodu ΔP_{Fe} a mechanické ztráty ΔP_{mech}

Při výpočtu vycházíme z naměřených hodnot při chodu motoru naprázdno a nakrátko. Nejprve se určí, z měření nakrátko, velikost odporu rotoru přepočítaná na stator. [21]

$$R_{rh} = \frac{P_{1k}}{I_{hk}^{2}} - R_{h} = \frac{355.9}{4.116^{2}} - 4.529 = 16,478\,\Omega$$
(5.8)

kde: *R_{rh}* - velikost odporu rotoru přepočítaná na stator

P_{1k} - příkon při měření nakrátko

*I*_{hk} - proud hlavním vinutím nakrátko

 R_h – odpor hlavního vinutí

Potom součet ztrát v železe a mechanických ztrát (výpočet proveden pro 1. řádek tabulky 7) [21]

$$\Delta P_{Fe} + \Delta P_{mech} = P_0 - \left(R_h + \frac{R_{rh}}{4}\right) \cdot I_{10}^2$$

$$\Delta P_{Fe} + \Delta P_{mech} = 298,08 - \left(4,169 + \frac{16,478}{4}\right) \cdot 4,744^2 = 111,53 W$$
(5.9)

Velikost mechanických ztrát lze určit dvěma způsoby.

1. Měřením, kdy dynamometrem roztáčíme motor na požadované otáčky, zpravidla jmenovité a z měřícího přístroje odečteme velikost působícího momentu M. Součinem úhlové rychlosti ω a odečteného momentu M získáme mechanické ztráty.

2. Výpočtem, kdy z charakteristiky závislosti mechanických ztrát a ztrát v železe na druhé mocnině poměru napětí k jmenovitému napětí získáme lineárním proložením s osou y velikost ztrát mechanických. Velikost je uvedena v zobrazené rovnici regrese po lineárním proložení bodů (Obrázek 24).

U ₁₀	I ₁₀	Po	(U/Un) ²	$\Delta P_{Fe} \text{+} \Delta P_{mech}$	ΔP_{Fe}
[V]	[A]	[W]	[V]	[W]	[W]
244,04	4,744	298,08	1,13	111,53	97,60
247,82	4,980	320,17	1,16	114,62	100,69
222,10	3,484	193,43	0,93	92,84	78,91
191,71	2,464	118,71	0,69	68,39	54,46
170,72	2,019	88,50	0,55	54,70	40,77
147,10	1,627	64,39	0,41	42,45	28,51
120,03	1,259	45,53	0,27	32,39	18,46
98,99	1,023	35,38	0,19	26,70	12,77
76,26	0,815	27,25	0,11	21,74	7,81

Tabulka 8 Vypočtené ztráty v železe a mechanické ztráty

Obrázek 24 Závislost ztrát v železe a mechanických ztrát na druhé mocnině poměru U/Un

5.3.3 Ztráty ve vinutí rotoru ΔP_{Al}

K určení ztrát ve vinutí rotoru ΔP_{Al} je nutné určit skluz stroje *s* při jmenovitém zatížení a velikost výkonu P_{δ} přenášeného přes vzduchovou mezeru. Výpočty jsou prováděny pro hodnoty z měření zatěžovací charakteristiky.

Skluz motoru se vypočte podle vztahu (1.1) kde:

$$s = \frac{n_s - n}{n_s} = \frac{3000 - 2637}{3000} = 0,121 \quad [-] \tag{5.10}$$

Výkon přenášený přes vzduchovou mezeru je podle (3.6):

$$P_{\delta} = P_1 - \Delta P_{Cus} - \Delta P_{Fe} = 811,47 - 89,85 - 78,91 = 642,71 \quad W$$
(5.11)

Ztráty ve vinutí rotou pak podle rovnice (3.5):

$$\Delta P_{Al} = s \cdot P_{\delta} = 0,121 \cdot 642,71 = 77,77 \, W \tag{5.12}$$

5.3.4 Celkové ztráty *△P*

Celkové ztráty jsou dány součtem dílčích ztrát:

$$\Delta P = \Delta P_{Cus} + \Delta P_{Fe} + \Delta P_{mech} + \Delta P_{Al} = 89,85 + 78,91 + 13,932 + 77,77 = 260,46 \, W \tag{5.13}$$

Dodatečné ztráty:

$$\Delta P_d = \left(P_1 - M_n \cdot \frac{2 \cdot \pi \cdot n_n}{60}\right) - \Delta P = \left(811,47 - 1,988 \cdot \frac{2 \cdot \pi \cdot 2637}{60}\right) - 260,46 = 2,03 W$$
(5.14)

5.4 Simulace pomocí MKP

Pomocí metody konečných prvků je zde vyobrazeno rozložení magnetické indukce v magnetickém obvodu stroje při jmenovitém zatížení. Z obrázku je patrné značné přesycení, obzvláště v zubech magnetického obvodu. Velikost sycení také závisí na aktuálním úhlu natočení rotoru.

Obrázek 25 Rozložení magnetické indukce B, J22VV499

5.5 Rozbor motoru J22VV506 s průměrem vodiče d₁ = 0,63 mm

Druhým měřeným motorem je typ J22VV506 s totožnými štítkovými parametry jako typ JV22VV499. Změna pro snížení energetické náročnosti nastává v průměru použitého vodiče statorového vinutí, kdy je použito vodiče o průměru $d_1 = 0,63$ mm. Z poznatků uvedených v kapitole 4.1.2 Způsob omezení ztrát ve statoru je tedy zřejmé že dojde k omezení ztrát ΔP_{Cus} . Při použití vodiče o větším průměru narůstá koeficient plnění drážky $k_{p,Cu}$. Jeho velikost určíme: Plocha drážky motoru je $S_{dr} = 67,7$ mm².

Koeficient plnění drážky pak:

$$S_{Cu1} = N \cdot 2 \cdot S_1 = 40 \cdot 2 \cdot \pi \cdot 0,315^2 = 24,938 \ mm^2 \tag{5.15}$$

$$k_{p,Cu} = \frac{S_{Cu}}{S_{dr}} = \frac{24,938}{67,7} = 0,3684[-]$$
(5.16)

Okamžik měření	R _h	R_{pom}
	[Ω]	[Ω]
Za studena	3,562	7,463
Po měření zatěžovací charakteristiky	4,198	8,774
Po měření jmenovitého bodu	4,248	8,844
Po měření nakrátko	4,141	8,550
Před měřením naprázdno	4,057	
Po měření naprázdno	4,065	

Tabulka 9 Odpory vinutí J22VV506, $d_1 = 0,63 \text{ mm}$

5.5.1 Měření jmenovitého bodu

Měření je provedeno na motoru, který byl 2h v chodu pro zahřátí na ustálené oteplení. Teplota okolí pří měření $T_0 = 23,2$ °C.

М	n	U ₁	I ₁	φ 1	P ₁	Q	S	cos φ	Upom	Ipom	ϕ pom	lh	φh
[Nm]	[min ⁻¹]	[V]	[A]	[°]	[W]	[Var]	[VA]	[-]	[V]	[A]	[°]	[A]	[°]
1,992	2691	230,44	3,9040	24,95	815,73	379,43	899,65	0,9067	230,47	1,7579	44,01	3,6611	51,57
1,994	2691	230,44	3,9069	24,94	816,40	379,57	900,32	0,9068	230,47	1,7575	44,01	3,6637	51,55
1,989	2691	230,44	3,9095	24,92	817,05	379,56	900,91	0,9069	230,47	1,7572	44,01	3,6650	51,49
1,989	2690	230,44	3,9064	24,93	816,33	379,41	900,19	0,9068	230,47	1,7575	44,02	3,6629	51,53
1,990	2690	230,44	3,9050	24,93	816,01	379,34	899,88	0,9068	230,48	1,7576	44,02	3,6617	51,54
1,992	2691	230,44	3,9109	24,89	817,56	379,26	901,24	0,9071	230,47	1,7572	44,03	3,6659	51,46
1,987	2690	230,44	3,9100	24,90	817,28	379,38	901,04	0,9070	230,47	1,7573	44,02	3,6652	51,48
1,987	2691	230,44	3,9084	24,92	816,79	379,51	900,65	0,9069	230,47	1,7574	44,01	3,6640	51,50
1,990	2691	230,45	3,9055	24,95	816,01	379,64	900,00	0,9067	230,48	1,7576	44,01	3,6624	51,56
1,990	2690	230,44	3,9025	24,96	815,32	379,47	899,31	0,9066	230,47	1,7578	44,02	3,6604	51,59

Tabulka 10 Měření jmenovitého bodu J22VV506, $d_1 = 0,63 \text{ mm}$

5.5.2 Měření zatěžovací charakteristiky

М	n	U_1	I ₁	φ1	P1	Q	S	cos φ	Upom	Ipom	ϕ_{pom}	Ih	φh	η
[Nm]	[min ⁻¹]	[V]	[A]	[°]	[W]	[Var]	[VA]	[-]	[V]	[A]	[°]	[A]	[°]	[-]
2,500	2578	230,41	4,7306	21,22	1016,08	394,58	1090,01	0,932	230,45	1,6883	44,64	4,3243	42,08	0,664
2,250	2637	230,42	4,3143	22,84	916,18	385,84	994,12	0,922	230,46	1,7233	44,25	3,9739	46,38	0,678
1,998	2693	230,44	3,9093	25,14	815,50	382,73	900,85	0,905	230,47	1,7578	44,04	3,6725	51,72	0,691
1,500	2777	230,46	3,2798	30,78	649,40	386,78	755,86	0,859	230,49	1,8122	43,98	3,3040	62,73	0,672
1,000	2853	230,68	2,7912	39,69	495,06	410,82	643,32	0,770	230,51	1,8626	44,39	3,1918	75,17	0,603
0,500	2920	230,50	2,5174	52,04	356,91	457,51	580,26	0,615	230,53	1,9124	45,03	3,3436	86,62	0,428
0,005	2980	230,52	2,4889	66,15	231,96	524,74	573,73	0,404	230,55	1,9609	45,80	3,6998	95,59	0,007

Tabulka 11 Měření zatěžovací charakteristiky J22VV506, $d_1 = 0,63 \text{ mm}$

5.5.3 Měření nakrátko

U_{1k}	I _{1k}	φ _{1k}	P _{1k}	Q _{1k}	S _{1k}	cos φ _k	U _{pom,k}	I _{pom,k}	φ _{pom,k}	I _{hk}	φhk
[V]	[A]	[°]	[W]	[Var]	[VA]	[-]	[V]	[A]	[°]	[A]	[°]
134,63	6,2430	26,01	758,78	370,19	844,27	0,8987	134,65	0,7723	80,25	6,5016	32,56
112,13	5,0767	26,44	513,62	255,44	573,64	0,8954	112,14	0,6489	80,08	5,2978	33,18
94,61	4,2091	26,98	357,95	182,24	401,68	0,8911	94,62	0,5530	79,94	4,4019	33,88
72,58	3,1575	28,03	206,20	109,76	233,61	0,8827	72,59	0,4322	79,76	3,3152	35,16
54,70	2,3209	29,48	113,46	64,12	130,34	0,8705	54,71	0,3339	79,55	2,4502	36,88
36,44	1,4770	32,21	47,36	29,81	55,97	0,8461	36,44	0,2319	79,10	1,5762	40,09

Tabulka 12 Měření nakrátko J22VV506, $d_1 = 0,63 \text{ mm}$

		•			
U ₁₀	I ₁₀	Po	Q ₀	S ₀	cos φ ₀
[V]	[A]	[W]	[Var]	[VA]	[-]
253,54	5,244	355,35	1281,27	1329,63	0,267
236,38	4,158	258,35	954,76	989,11	0,261
218,38	3,304	186,80	701,89	726,32	0,257
185,99	2,324	111,52	418,09	432,70	0,258
162,64	1,867	79,72	293,23	303,87	0,262
141,57	1,539	60,82	210,06	218,69	0,278
120,99	1,272	47,65	147,66	155,19	0,307
99,18	1,028	36,83	96,13	103,00	0,358
70,18	0,777	27,11	47,36	54,59	0,497

5.5.4 Měření naprázdno

Tabulka 13 Měření naprázdno J22VV506, $d_1 = 0,63$ mm

5.6 Výpočet ztrát motoru s průměrem vodiče d₁ = 0,63 mm

Výpočty jsou prováděny z naměřených hodnot.

5.6.1 Ztráty ve vinutí statoru ΔP_{Cus}

Příklad výpočtu je proveden pro jmenovité zatížení motoru.

$$\Delta P_{Cus} = R_h \cdot I_h^2 + R_p \cdot I_{pom}^2 = 4,198 \cdot 3,673^2 + 8,774 \cdot 1,758^2 = 83,73 W$$
(5.17)

М	U1	I1	P ₁	Ipom	Ih	ΔP_{Cus}
[Nm]	[V]	[A]	[W]	[A]	[A]	[W]
2,500	230,41	4,731	1016,08	1,688	4,324	103,51
2,250	230,42	4,314	916,18	1,723	3,974	92,35
1,998	230,44	3,909	815,50	1,758	3,673	83,73
1,500	230,46	3,280	649,40	1,812	3,304	74,64
1,000	230,68	2,791	495,06	1,863	3,192	73,21
0,500	230,50	2,517	356,91	1,912	3,344	79,02
0,005	230,52	2,489	231,96	1,961	3,700	91,20

Tabulka 14 Vypočtené hodnoty ztrát ve vinutí statoru ΔP_{Cus}

5.6.2 Ztráty v magnetickém obvodu ΔP_{Fe} a mechanické ztráty ΔP_{mech}

Nyní je nutné opět přepočítat velikost odporu rotoru na stator podle vztahu (5.8). Dosazovány jsou hodnoty opět změření naprázdno a nakrátko pro motor J22VV506.

$$R_{rh} = \frac{P_{1k}}{I_{hk}^{2}} - R_{h} = \frac{357,95}{4,4019^{2}} - 4,141 = 14,332\,\Omega$$
(5.18)

Ztráty pak (5.9):

$$\Delta P_{Fe} + \Delta P_{mech} = P_0 - \left(R_h + \frac{R_{rh}}{4}\right) \cdot I_{10}^{2}$$
(5.19)

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

	$\Delta P_{Fe} + \Delta$	$P_{mech} = 35$	5,35-(4,0	$065 + \frac{14,332}{4}$	$(2) \cdot 5,244^2$
U ₁₀	I ₁₀	Po	(U/Un)²	$\Delta P_{Fe} + \Delta P_{mech}$	ΔP_{Fe}
[V]	[A]	[W]	[V]	[W]	[W]
253,54	5,244	355,35	1,22	145,02	129,28
236,38	4,158	258,35	1,06	126,12	110,39
218,38	3,304	186,80	0,90	103,33	87,59
185,99	2,324	111,52	0,65	70,21	54,47
162,64	1,867	79,72	0,50	53,06	37,32
141,57	1,539	60,82	0,38	42,71	26,97
120,99	1,272	47,65	0,28	35,27	19,53
99,18	1,028	36,83	0,19	28,74	13,00
70,18	0,777	27,11	0,09	22,49	6,75

Tabulka 15 Vypočtené ztráty v železe a mechanické ztráty

Obrázek 26 Závislost ztrát v železe a mechanických ztrát na druhé mocnině U/Un, J22VV506

5.6.3 Ztráty ve vinutí rotoru ΔP_{Al}

Skluz motoru:

$$s = \frac{n_s - n}{n_s} = \frac{3000 - 2693}{3000} = 0,1023 \quad [-] \tag{5.20}$$

Výkon přenášený přes vzduchovou mezeru:

$$P_{\delta} = P_1 - \Delta P_{Cus} - \Delta P_{Fe} = 815, 5 - 83, 73 - 87, 59 = 644, 18 W$$
(5.21)

Ztráty ve vinutí rotou:

$$\Delta P_{4l} = s \cdot P_{\delta} = 0,1023 \cdot 644,18 = 65,92 \, W \tag{5.22}$$

5.6.4 Celkové ztráty ΔP

Celkové ztráty jsou dány součtem dílčích ztrát:

$$\Delta P = \Delta P_{Cus} + \Delta P_{Fe} + \Delta P_{mech} + \Delta P_{Al} = 83,73 + 87,59 + 15,739 + 65,92 = 252,98 W$$
(5.23)

Dodatečné ztráty

$$\Delta P_d = \left(P_1 - M_n \cdot \frac{2 \cdot \pi \cdot n_n}{60}\right) - \Delta P = \left(815, 5 - 1,998 \cdot \frac{2 \cdot \pi \cdot 2693}{60}\right) - 252,98 = -0,94 \, W \qquad (5.24)$$

5.7 Simulace pomocí MKP

Rozložení magnetické indukce v řezu motoru je provedeno v ustáleném stavu v čase t = 0,2s. I v tomto případě je patrné značné sycení obvodu, tzn. změna průměru použitého vodiče pro statorové vinutí nijak nesníží sycení.

Obrázek 27 Rozložení magnetické indukce B v motoru J22VV506

6 APLIKACE ZMĚNY DÉLKY MAGNETICKÉHO OBVODU PŘI ZMĚNĚ POČTU ZÁVITŮ

V této části je k motoru s vyšším průměrem vodiče dále aplikována změna délky magnetického obvodu se současným snížením počtu závitů vinutí. Prodloužením magnetického obvodu je zvětšena plocha vzduchové mezery, což zapříčiní snížení magnetické indukce B ve vzduchové mezeře a snížení ztrát ΔP_{Fe} . Je nutné si uvědomit, že se zvýšením délky magnetického obvodu je spjato prodloužení vodičů na vinutí statoru, což navýší odpor statorového vinutí. Tím jsou pak navýšeny také ztráty ΔP_{Cus} . Z tohoto důvodu je navrženo snížení počtu závitů hlavního a pomocného vinutí. Hodnota odporu se pak sníží. Navržené úpravy na daném motoru jsou podloženy výsledky ze simulací pomocí RMxprt a pomocí metody konečných prvků v maxwellu. Tyto údaje jsou pro přehlednost uvedeny v kapitole 6.3 - Porovnání dosažených výsledků. Společnost ATAS Elektromotory Náchod a.s. zhotovila podle návrhu prototyp motoru, který je podroben reálnému měření v laboratoři. Měření je provedeno jako v předchozích dvou případech. Motor je tedy měřen ve jmenovitém bodě, jeho zatěžovací charakteristika, naprázdno a nakrátko pro výpočet ztrát a zjištění dosažené účinnosti. V části 6.3 je pak provedeno zhodnocení úprav původního motoru J22VV499, J22VV506 a zhotoveného vzorku se změnou délky magnetického obvodu a změnou počtu závitů vinutí - J21VX.

Obrázek 28 Snímek prototypu motoru J21VX

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

Obrázek 29 Snímek motoru J21VX

6.1 Rozbor motoru J21VX

Upravený motor má na vinutí použit vodič o průměru $d_2 = 0,63$ mm. Průřez drážky zůstal zachován jako u obou předešlých motorů. Při změně počtu závitů *N* je pak koeficient plnění drážky:

$$S_{Cu2} = N \cdot 2 \cdot S_2 = 39 \cdot 2 \cdot \pi \cdot 0,315^2 = 24,315 \, mm^2 \tag{6.1}$$

$$k_{p,Cu} = \frac{S_{Cu\,2}}{S_{dr}} = \frac{24,315}{67,7} = 0,3592\,[-] \tag{6.2}$$

Okamžik měření	R _h	R_{pom}
Okamzik mereni	[Ω] 3,357 7 3,865 8	[Ω]
Za studena	3,357	7,269
Po měření zatěžovací charakteristiky	3,865	8,402
Po měření jmenovitého bodu	3,897	8,429
Po měření nakrátko	3,879	8,293
Před měřením naprázdno	3,790	
Po měření naprázdno	3,786	

Tabulka 16 Odpory vinutí motoru prodlouženého motoru J21VX

6.1.1 Simulace pomocí MKP

Pro podložení teorie byly použity výsledky ze simulací v RMxprt a Maxwell. Obrázek 30 reprezentuje rozložení magnetické indukce v řezu stroje získané časovou analýzou pomocí 2D designu v Maxwell. Z obrázku je patrné výrazné snížení magnetické indukce *B* za současného zachování parametrů motoru, čímž lze teoreticky předpokládat snížení ztrát ΔP_{Fe} .

Obrázek 30 Rozložení magnetické indukce B, J21VX

Výsledek simulace zde potvrzuje teorii popsanou v kap. 4.2. Prodloužením magnetického obvodu dojde ke snížení magnetické indukce ve vzduchové mezeře.

6.1.2 Měření jmenovitého bodu

Jmenovitý bod byl opět proměřován minimálně v deseti bodech pro co nejpřesnější získání jmenovitých parametrů navrženého stroje. Teplota okolí při měření $T_o = 24,3$ °C.

М	n	U ₁	I ₁	φ1	P1	Q	S	cos φ	Upom	Ipom	ϕ_{pom}	lh	φh
[Nm]	[min ⁻¹]	[V]	[A]	[°]	[W]	[Var]	[VA]	[-]	[V]	[A]	[°]	[A]	[°]
1,997	2710	230,32	3,7056	20,64	798,70	300,82	853,48	0,9358	230,33	1,7373	42,58	3,3088	48,59
1,993	2710	230,33	3,7031	20,64	798,16	300,72	852,93	0,9358	230,32	1,7370	42,57	3,3063	48,61
1,989	2710	230,33	3,6984	20,63	797,23	300,16	851,87	0,9359	230,32	1,7369	42,56	3,3015	48,63
1,987	2710	230,33	3,7049	20,65	798,53	300,93	853,35	0,9358	230,32	1,7373	42,57	3,3080	48,61
1,986	2710	230,33	3,7042	20,64	798,40	300,8	853,18	0,9358	230,32	1,7370	42,57	3,3070	48,60
1,984	2710	230,33	3,7058	20,65	798,72	301,03	853,56	0,9357	230,33	1,7372	42,58	3,3090	48,60
1,992	2710	230,33	3,6988	20,62	797,35	300,03	851,93	0,9359	230,33	1,7369	42,56	3,3020	48,62
1,983	2710	230,33	3,7060	20,64	798,82	300,90	853,61	0,9358	230,34	1,7372	42,58	3,3090	48,59
1,985	2710	230,33	3,7001	20,63	797,58	300,31	852,24	0,9359	230,32	1,7368	42,56	3,3030	48,62
1,992	2710	230,32	3,6998	20,62	797,54	300,13	852,15	0,9359	230,32	1,7367	42,56	3,3020	48,61

Tabulka 17 Měření jmenovitého bodu J21VX

6.1.3 Měření zatěžovací charakteristiky

М	n	U1	I ₁	φ 1	P1	Q	S	cos φ	Upom	Ipom	ϕ_{pom}	Ih	φh	η
[Nm]	[min ⁻¹]	[V]	[A]	[°]	[W]	[Var]	[VA]	[-]	[V]	[A]	[°]	[A]	[°]	[-]
2,498	2594	230,27	4,6017	18,95	1002,22	344,05	1059,63	0,9458	230,26	1,6589	43,47	4,1059	39,93	0,677
2,251	2652	230,30	4,1473	19,44	900,64	317,94	955,11	0,9430	230,29	1,6986	42,93	3,6812	43,57	0,694
1,982	2707	230,32	3,7035	20,56	798,66	299,61	853,01	0,9363	230,32	1,7368	42,55	3,3036	48,52	0,704
1,510	2788	230,37	3,0219	23,77	637,09	280,64	696,17	0,9151	230,37	1,7974	42,33	2,8215	59,38	0,692
1,015	2860	230,41	2,3953	29,84	478,74	274,61	551,91	0,8674	230,41	1,8564	42,67	2,5516	73,77	0,635
0,520	2923	230,45	1,9355	40,80	337,63	291,48	446,04	0,7569	230,45	1,9150	43,31	2,5792	88,40	0,471
0,079	2971	230,46	1,7171	55,66	223,24	326,73	395,71	0,5641	230,46	1,9665	43,99	2,8192	99,10	0,110

Tabulka 18 Měření zatěžovací charakteristiky J21VX

Μ U_{1k} **φ** 1k I_{1k} P_{1k} Q_{1k} S_{1k} cos φ_k $U_{\text{pom},k}$ Ipom,k $\phi_{\text{pom,k}}$ Ihk ϕ hk [Nm] [V] [A] [°] [W] [Var] [VA] [-] [V] [A] [°] [A] [°] 139,95 6,5239 27,86 807,16 426,71 913,01 80,25 0,454 0,8841 139,97 0,7990 6,8147 34,26 0,337 119,97 5,4479 28,19 576,05 308,74 653,57 0,8814 119,98 0,6905 80,02 5,7015 34,79 0,236 99,99 4,4387 28,74 389,12 213,43 443,81 0,8768 99,98 0,5819 79,81 4,6566 35,54 0,152 79,99 3,4743 29,64 241,56 137,43 277,92 0,8692 80,00 0,4733 79,58 3,6575 36,66 0,088 60,00 2,5338 31,10 130,19 78,53 152,04 0,8563 60,00 79,27 0,3642 2,6823 38,41 0,047 40,00 33,92 53,44 0,8298 40,00 1,6097 35,93 64,40 0,2536 78,68 1,7231 41,72 0,023 20,01 0,6911 41,38 10,38 0,7504 76,89 0,7668 -9,14 13,83 20,00 0,1390 50,56

6.1.4 Měření nakrátko

Tabulka 19 Měření nakrátko J21VX

6.1.5 Měření naprázdno

U ₁₀	I ₁₀	Po	Q 0	S ₀	cos φ ₀
[V]	[A]	[W]	[Var]	[VA]	[-]
253,48	4,2575	267,72	1045,47	1079,21	0,2481
230,47	3,2921	184,18	736,04	758,73	0,2427
207,44	2,6427	131,87	532,10	548,20	0,2406
184,40	2,1607	97,04	386,43	398,43	0,2435
161,35	1,7468	71,88	272,52	281,85	0,2550
138,29	1,4180	56,31	187,84	196,10	0,2871
115,25	1,1386	43,88	123,67	131,22	0,3344
92,19	0,9131	35,19	76,47	84,18	0,4181
69,14	0,7594	29,21	43,63	52,50	0,5563

Tabulka 20 Měření naprázdno J21VX

6.2 Výpočet ztrát motoru s prodlouženým magnetickým obvodem a změnou počtu závitů

Výpočet ztrát modifikovaného motoru je proveden z naměřených hodnot v laboratoři.

6.2.1 Ztráty ve vinutí statoru ΔP_{Cus}

Příklad výpočtu je uveden při jmenovitém zatížení. Výsledky jsou zaneseny do tabulky.

$$\Delta P_{Cus} = R_h \cdot I_h^2 + R_p \cdot I_{pom}^2 = 3,865 \cdot 3,3036^2 + 8,402 \cdot 1,7368^2 = 67,53 W$$
(6.3)

М	U1	I ₁	P1	Ipom	lh	ΔP_{Cus}
[Nm]	[V]	[A]	[W]	[A]	[A]	[W]
2,498	230,27	4,6017	1002,22	1,6589	4,1059	88,28
2,251	230,30	4,1473	900,64	1,6986	3,6812	76,62
1,982	230,32	3,7035	798,66	1,7368	3,3036	67,53
1,510	230,37	3,0219	637,09	1,7974	2,8215	57,91
1,015	230,41	2,3953	478,74	1,8564	2,5516	54,12
0,520	230,45	1,9355	337,63	1,9150	2,5792	56,52
0,079	230,46	1,7171	223,24	1,9665	2,8192	63,21

Tabulka 21 Vypočtené hodnoty ztrát ve vinutí statoru J21VX

6.2.2 Ztráty v magnetickém obvodu ΔP_{Fe} a mechanické ztráty ΔP_{mech}

Přepočet odporu rotoru na stator podle vztahu (5.8) bude:

$$R_{rh} = \frac{P_{1k}}{I_{hk}^{2}} - R_{h} = \frac{389,12}{4,6566^{2}} - 3,879 = 14,066\,\Omega \tag{6.4}$$

Ztráty pak získáme dosazením do (5.9):

$$\Delta P_{Fe} + \Delta P_{mech} = P_0 - \left(R_h + \frac{R_{rh}}{4}\right) \cdot I_{10}^2 \tag{6.5}$$

$$\Delta P_{Fe} + \Delta P_{mech} = 267,72 - \left(3,786 + \frac{14,066}{4}\right) \cdot 4,2575^2 = 135,35 W$$

U ₁₀	I ₁₀	P ₀	(U/Un)²	$\Delta P_{Fe} + \Delta P_{mech}$	ΔPFe
[V]	[A]	[W]	[V]	[W]	[W]
253,48	4,2575	267,72	1,21	135,35	116,04
230,47	3,2921	184,18	1,00	105,04	85,72
207,44	2,6427	131,87	0,81	80,87	61,55
184,40	2,1607	97,04	0,64	62,95	43,63
161,35	1,7468	71,88	0,49	49,60	30,28
138,29	1,4180	56,31	0,36	41,63	22,31
115,25	1,1386	43,88	0,25	34,41	15,10
92,19	0,9131	35,19	0,16	29,10	9,79
69,14	0,7594	29,21	0,09	25,00	5,68

Tabulka 22 Vypočtené ztráty v železe a mechanické J21VX

Obrázek 31 Závislost ztrát v železe a mechanických ztrát na druhé mocnině U/Un J21VX Z rovnice regrese jsou určeny mechanické ztráty $\Delta P_{mech} = 19,316$ W.

6.2.3 Ztráty ve vinutí rotoru ΔP_{Al}

Skluz je určen ze synchronních otáček a otáček stroje při dosažení jmenovitého momentu.

$$s = \frac{n_s - n}{n_s} = \frac{3000 - 2707}{3000} = 0,0977 \quad [-] \tag{6.6}$$

Výkon přes vzduchovou mezeru:

$$P_{\delta} = P_1 - \Delta P_{Cus} - \Delta P_{Fe} = 798,66 - 67,53 - 85,72 = 645,41 \, W \tag{6.7}$$

Ztráty ve vinutí rotou:

$$\Delta P_{Al} = s \cdot P_{\delta} = 0,0977 \cdot 645,41 = 63,06 \, W \tag{6.8}$$

6.2.4 Celkové ztráty *△P*

Součtem dílčích ztrát jsou určeny celkové ztráty ve jmenovitém bodě:

$$\Delta P = \Delta P_{Cus} + \Delta P_{Fe} + \Delta P_{mech} + \Delta P_{Al} = 67,53 + 85,72 + 19,316 + 63,06 = 235,63 \, W \tag{6.9}$$

Dodatečné ztráty

$$\Delta P_d = \left(P_1 - M_n \cdot \frac{2 \cdot \pi \cdot n_n}{60}\right) - \Delta P = \left(798,66 - 1,982 \cdot \frac{2 \cdot \pi \cdot 2707}{60}\right) - 235,63 = 1,18 \, W \tag{6.10}$$

6.3 Porovnání dosažených výsledků

Následující tabulka reprezentuje souhrn změřených a vypočtených údajů jednotlivých motorů ve jmenovitém bodě.

Pozn.: J22VV499 - standardně vyráběný motor

J22VV506 – aplikace o řád vyššího průměru vodiče d na statorové vinutí

J21VX – aplikace změny délky magnetického obvodu stroje za současného snížení počtu závitů statorového vinutí

Тур	I	N _h	N _{pom}	d	Mn	n _n	l _h	I _{pom}	η
motoru	[mm]	[-]	[-]	[mm]	[Nm]	[min ⁻¹]	[A]	[A]	[%]
J22VV499	70	40	80	0,6	1,988	2637	3,624	1,747	67,65
J22VV506	70	40	80	0,63	1,998	2693	3,6725	1,7578	69,09
J21VX	80	39	78	0,63	1,982	2707	3,3036	1,7368	70,40

Tabulka 23 Základní porovnání naměřených výsledků ve jmenovitém bodě

Při aplikaci návrhu o řád vyššího průměru vodiče pro statorové vinutí bylo ve výsledku dosaženo zvýšení účinnosti motoru. Účinnost se navýšila o 1,44 % pro jmenovitý moment, a to z hodnoty $\eta = 0,6765$ na hodnotu $\eta = 0,6909$. Při změně délky magnetického obvodu, změně počtu závitů statorového vinutí a ponechání průměru použitého vodiče pro vinutí jako v případě J22VV506 došlo k dalšímu nárůstu o 1,31 %.

Obrázek 32 Porovnání účinností motorů

Rozdělení jednotlivých ztrát v motorech ve jmenovitém bodě je uvedeno na následujícím obrázku. Hodnoty odpovídají dosaženým výsledkům z měření zatěžovací charakteristiky, měření naprázdno a měření nakrátko. V grafu jsou znázorněny nejdůležitější ztráty ve stroji. ΔP představuje celkové ztráty jednotlivých strojů. Dodatečné ztráty nejsou do grafické závislosti zaneseny z důvodu přehlednosti a jejich nepatrné velikosti.

Obrázek 33 Rozložení ztrát ve jmenovitém bodě

Následující tabulky obsahují vypočtené hodnoty proudů odebíraného ze sítě I_l , hlavním vinutím I_h a pomocným vinutím I_{pom} pomocí simulace momentových charakteristik v software Maxwell RMxprt. Vypočtené hodnoty jsou zaneseny do grafických závislostí společně s naměřenými hodnotami. Naměřené údaje jsou vyneseny plnou čarou a hodnoty ze simulací jsou pro lepší přehlednost grafu vyneseny čárkovaně. Zelený přerušovaný průběh reprezentuje dosažené výsledky při návrhu prototypu motoru J21VX. Dle těchto výsledků byl motor zadán do výroby.

М	n	l ₁	I _h	I _{pom}
[Nm]	[min ⁻¹]	[A]	[A]	[A]
2,491	2499	4,521	3,994	1,721
2,251	2566	4,125	3,734	1,760
1,964	2637	3,695	3,531	1,803
1,451	2741	3,177	3,385	1,870
0,966	2827	2,860	3,314	1,929
0,467	2907	2,576	3,506	1,984
0,043	2973	2,576	3,781	2,031

Tabulka 24 Výsledky simulace zatěžovací charakteristiky pro motor J22VV499, d₀=0,6 mm

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

М	n	l ₁	lh	Ipom
[Nm]	[min ⁻¹]	[A]	[A]	[A]
2,5447	2578	4,6318	4,093	1,721
2,2749	2637	4,2008	3,814	1,759
1,9899	2693	3,7846	3,607	1,796
1,4886	2777	3,2613	3,436	1,854
0,9790	2853	2,8928	3,506	1,908
0,4927	2920	2,6111	3,509	1,961
0,0637	2980	2,5555	3,792	2,007

Tabulka 25 Výsledky simulace zatěžovací charakteristiky pro motor J22VV506, d1=0,63 mm

М	n	l ₁	lh	Ipom
[Nm]	[min ⁻¹]	[A]	[A]	[A]
2,6761	2594	4,325	3,479	1,728
2,3874	2652	3,857	3,041	1,771
2,0857	2707	3,395	2,642	1,816
1,5751	2788	2,689	2,176	1,888
1,0572	2860	2,049	1,968	1,959
0,5518	2923	1,516	2,055	2,019
0,1355	2971	1,121	2,209	2,066

Tabulka 26 Výsledky simulace zatěžovací charakteristiky pro motor J21VX

Obrázek 34 Porovnání celkového odebíraného proudu I1

Z grafu (Obrázek 34) je patrné, že při použití vodiče s vyšším průměrem (modrý průběh) vedlo k poklesu odporu vinutí a tím mírnému nárůstu odebíraného proudu. Tento jev způsobil větší

sycení magnetického obvodu stroje a tím vyšší ztráty v železe. Při prodloužení stroje naopak proud odebíraný ze zdroje výrazně poklesl (zelený průběh).

Obrázek 35 Porovnání odebíraného proudu hlavním vinutím I_h

Obrázek 36 Porovnání odebíraného proudu pomocným vinutím Ipom

Porovnání účinností strojů získaných pomocí simulace v Maxwell RMxprt.

Obrázek 37 Porovnání účinností motorů J22VV499, J22VV506 a J21VX - simulace

Velikost účinnosti byla z výsledků simulace výrazně vyšší než reálná, což je zřejmě způsobeno nepřesností výpočtu pomocí RMxprt.

Obrázek 38 Simulace několika dalších řešení z hlediska účinnosti

ZÁVĚR

Diplomová práce zabývající se energetickými parametry jednofázových asynchronních motoru vznikla na popud stále se zpřísňujících směrnic a nařízení na využití elektrické energie a účinnosti asynchronních motorů vydávaných Evropskou unií s cílem snížit spotřebu elektrické energie a produkci emisí, více v úvodu práce.

V první části práce je pojednáno o trojfázovém asynchronním motoru, jeho konstrukci, principu činnosti a zapojení na jednofázovou a trojfázovou síť. Dále je podrobně rozebrán jednofázový asynchronní motor, jeho konstrukce a vznik pulzujícího magnetického pole ve vzduchové mezeře s doplněním o průběh momentové charakteristiky, ze které je patrné, že stroj vytváří nulový záběrný moment z důvodu existence sousledné a zpětné složky momentu. Z tohoto důvodu je dále popsáno získání záběrného momentu pomocí odporového, induktivního nebo kapacitního rozběhu. Jako nejvhodnější způsob je použit kapacitní rozběh a to buď s trvale připojeným kondenzátorem, nebo pouze s kondenzátorem zapojeným při rozběhu. Uveden je také speciální jednofázový asynchronní motor se stíněným pólem, konstrukce a princip jeho činnosti opět s doplněním o momentovou charakteristiku, která se vyznačuje tím, že 2/3 skluzu obsahuje tzv. sedlo způsobené tím, že vinutí není umístěno v drážkách ale na pólech statoru.

V kapitole 3 je proveden rozbor jednotlivých ztrát asynchronního stroje s možností jejich výpočtu a získáním velikosti účinnosti motoru.

Následující část navazuje na kapitolu 3 a nabízí teoretické možnosti omezení jednotlivých ztrát v jednofázovém asynchronním motoru. Pro snížení ztrát ve statoru je důležité dosáhnout snížení hodnoty odporu hlavního vinutí R_h a pomocného vinutí R_{pom} , neboť Jouleovy ztráty jsou úměrné kvadrátu protékaného proudu těmito vinutími. Toho lze dosáhnout změnou průřezu vodiče pro statorové vinutí. Pro snížení ztrát ve vinutí rotoru lze hliníkovou klec nahradit měděnou s nižším měrným odporem. Tato aplikace se ale moc nedoporučuje ze dvou důvodů. Prvním je technologie výroby, kdy teplota tavení mědi je výrazně vyšší než hliníku a tím jsou negativně ovlivňovány plechy rotoru a druhá negativní vlastnost je snížení záběrného momentu stroje. Pro snížení ztrát v magnetickém obvodu lze použít kvalitnější elektrotechnické plechy s nižším ztrátovým číslem nebo snížit velikost magnetické indukce ve vzduchové mezeře prodlužením aktivní délky stroje. K omezení mechanických ztrát třením lze použít kvalitnější, ale dražší ložiska. Snižování ventilačních ztrát lze řešit vhodným zakřivením lopatek přidaného ventilátoru, popř. uzavřením stroje do vakua.

Pro aplikaci možností snížení ztrát je vybrán sériově vyráběný jednofázový asynchronní motor J22VV499 společnosti ATAS Elektromotory Náchod a.s.. Motor je podroben laboratornímu měření jmenovitého bodu, měření zatěžovací charakteristiky, chodu naprázdno a chodu nakrátko. Z naměřených údajů jsou vypočteny velikosti jednotlivých ztrát. Ztráty ve vinutí statoru $\Delta P_{Cus} = 89,85W$, ztráty ve vinutí rotoru $\Delta P_{Al} = 77,77W$, ztráty v magnetickém obvodu $\Delta P_{Fe} = 78,91W$ a mechanické ztráty jsou graficky určeny $\Delta P_{mech} = 13,93W$. Celkové ztráty hromadně vyráběného motoru tedy činí $\Delta P = 260,46W$. Stroj dosahuje ve jmenovitém bodě účinnosti $\eta = 67,65\%$.

Dalším měřeným motorem byl typ J22VV506 s totožnými štítkovými parametry jako J22VV499 (Obrázek 16) ovšem s aplikací snížení ztrát ve vinutí statoru popsanou v kap. 4.1.2. Pro motor je použit o řád vyšší průměr vodiče z $d_0 = 0,6$ mm na $d_1 = 0,63$ mm. Stroj je podroben stejnému měření jako v předešlém případě a výpočtem jsou dosaženy hodnoty ztrát ve

jmenovitém bodě. Dle teoretických předpokladů bylo dosaženo snížení ztrát ve statoru a to na hodnotu $\Delta P_{Cus} = 83,73$ W. Ztráty ve vinutí rotoru také poklesly na hodnotu $\Delta P_{Al} = 65,95$ W, ztráty v magnetickém obvodu vzrostly na $\Delta P_{Fe} = 87,59$ W a mechanické ztráty jsou graficky určeny $\Delta P_{mech} = 15,74$ W. Celkové ztráty motoru činí $\Delta P = 252,98$ W. Stroj dosahuje ve jmenovitém bodě účinnosti $\eta = 69,09$ %, čímž došlo k nárůstu o 1,44% oproti typu J22VV499.

Společnost ATAS Elektromotory Náchod a.s. zhotovila podle zadaných požadavků vzorek motoru, na kterém je aplikována možnost snížení ztrát v magnetickém obvodu z důvodu jejich nárůstu u typu J22VV506. To je provedeno snížením magnetické indukce ve vzduchové mezeře prodloužením aktivní délky stroje *l* za současného snížení počtu závitů statorového vinutí N_h a N_{pom} . Podklady pro výrobu jsou získány z výsledků simulací pomocí ANSYS Maxwell pomocí metody konečných prvků a pomocí výpočtového modulu Maxwell RMxprt. Průměr vodiče na vinutí byl použit zmíněný $d_l = 0,63$ mm. Na zhotoveném prototypu je provedeno měření jmenovitého bodu, zatěžovací charakteristiky, měření nakrátko a měření naprázdno. Výsledné ztráty ve vinutí statoru jsou $\Delta P_{Cus} = 67,53$ W, ztráty ve vinutí rotoru $\Delta P_{Al} = 63,06$ W, ztráty v magnetickém obvodu dle předpokladů klesly $\Delta P_{Fe} = 85,72$ W a mechanické ztráty byly graficky určeny $\Delta P_{mech} = 19,32$ W. Celkové ztráty ve jmenovitém bodě činí $\Delta P = 235,63$ W. Z dosažených výsledků lze konstatovat, že účinnost oproti sériově vyráběnému motoru J22VV499 vzrostla o 2,75% a překročila hranici 70%, přesněji $\eta = 70,4$ %. Výsledků ze simulací kladně promítnuty do konečného nárůstu účinnosti stroje, což splňuje všechny body zadání práce.

Téma zabývající se zvyšováním účinnosti u jednofázových asynchronních motorů je aktuální a velice obsáhlé, proto by bylo možné dále zkoumat, jaké vlastnosti by vykazoval prototyp motoru J21VX např. použitím plechů pro magnetický obvod s nižším ztrátovým číslem, změnou tloušťky nebo při použití oceli třídy 11.

LITERATURA

- [1] Bašta, Jan; Chládek, Jaroslav; Mayer, Imrich. *Teorie elektrických strojů*. 1. vyd. Praha : SNTL, 1968.
- [2] ONDRŮŠEK, Čestmír. 2. Elektrické stroje. Brno, elektronická přednáška.
- [3] CIGÁNEK, Ladislav a Miroslav BAUER. *Elektrické stroje a přístroje*. 2. vyd. Praha: Státní nakladatelství technické literatury, 1956, 639 s.
- [4] SCHNABL, J. Měření ztrát feromagnetických materiálů. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2013. 71 s. Vedoucí diplomové práce doc. Dr. Ing. Miroslav Patočka.
- [5] MRAVEC, Rudolf. Elektrické stroje a prístroje: I. Elektrické stroje. 2. vydání. Bratislava: Státní nakladatelství technické literatury, 1982, 1 sv. Edícia elektrotechnickej literatúry (Alfa).
- [6] VOLF, L. Výpočet jednofázového asynchronního motoru. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2012. 69 s. Vedoucí diplomové práce prof. Ing. Vítězslav Hájek, CSc.
- [7] DOSPĚL, L. Zlepšení energetických parametrů jednofázových asynchronních motorů. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2015. 43 s. Vedoucí bakalářské práce prof. Ing. Vítězslav Hájek, CSc..
- [8] KOSTOV, J. Výpočet jednofázového asynchronního motoru. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2013. 64 s. Vedoucí diplomové práce prof. Ing. Vítězslav Hájek, CSc.
- [9] MĚŘIČKA, Jiří, Petr VOŽENÍLEK a Václav HAMATA. *Elektrické stroje*. 1. vyd. Praha: České vysoké učení technické, 1993, 311 s. ISBN 80-010-1020-1.
- [10] HALFAR, T. Zlepšení energetických parametrů asynchronních strojů malého výkonu. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2013. 81 s. Vedoucí diplomové práce prof. Ing. Vítězslav Hájek, CSc.
- [11] NEKOVÁŘ, M. Výpočet a měření parametrů asynchronních motorů. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2012. 65 s. Vedoucí diplomové práce Ing. Ondřej Vítek, Ph.D.
- [12] PAŘÍZEK, J. Analýza a optimalizace energetických parametrů asynchronních strojů malého výkonu. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2011. 74 s. Vedoucí diplomové práce prof. Ing. Vítězslav Hájek, CSc.
- [13] VÁCHA, P. Jednofázový asynchronní motor s pomocnou fází. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2009. 66 s. Vedoucí bakalářské práce prof. Ing. Vítězslav Hájek, CSc.
- [14]ŠEVČÍK, P. Výpočet jednofázového asynchronního motoru. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2010. 80 s. Vedoucí diplomové práce prof. Ing. Vítězslav Hájek, CSc.

- [15] ŽUŠKA, M. Asynchronní motor se stíněným pólem. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2008. 50 s. Vedoucí diplomové práce prof. Ing. Vítězslav Hájek, CSc.
- [16] UHLÍŘ, Ivan. *Elektrické stroje a pohony*. Vyd. 2., přeprac. Praha: Nakladatelství ČVUT, 2007, 137 s. ISBN 978-80-01-03730-0.
- [17] HELLER, Bedřich a Václav HAMATA. *Přídavná pole, síly a ztráty v asynchronním stroji*. 1. vyd. Praha: Československá akademie věd, 1961, 202 s.
- [18] AC Motors [online]. 2013 [cit. 2015-11-03]. Dostupné z: http://electrobasix.blogspot.cz/2013/08/ac-motors.html
- [19]HOLUB, Gustav. Nové třídy účinnosti asynchronních motorů. ELEKTRO. 2011(6). Dostupné také z: http://www.odbornecasopisy.cz/res/pdf/43677.pdf
- [20]KOŠŤÁL, Josef (ed.). Teplotní závislost odporu kovových vodičů. *ELEKTRO* [online]. Munchen: Huthig a Pflaum Verlag GmbH Munchen, 6/2007n. l., 2015-11-17, 1/2008(z německého časopisu de) [cit. 2015-11-17]. Dostupné z: http://www.odbornecasopisy.cz/res/pdf/36489.pdf
- [21] BOLDEA, I a S NASAR. *The induction machine handbook*. Boca Raton: CRC Press, 2002, 950 p. ISBN 08-493-0004-5.
- [22]Cogent a Tata Steel Enterprise: Electrical Steel. : *Datasheet-M700-50A* [online]. [cit. 2015-12-14]. Dostupné z: http://cogent-power.com/cms-data/downloads/m700-50a.pdf
- [23] TKOTZ, Klaus. *Příručka pro elektrotechnika*. 2., dopl. vyd. Praha: Europa-Sobotáles, 2006. ISBN 80-86706-13-3.
- [24] VÍCHA, A. Analýza jednofázového asynchronního motoru. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2014. 49 s. Vedoucí bakalářské práce Ing. Martin Mach.

Přílohy

Obrázek 39 Snímek pracoviště z měření naprázdno J22VV506

Obrázek 40 Snímek použité techniky s měřícím software