Analysis of product adoption and prediction of customer churn – Bc. Ľudmila Lenková
Bc. Ľudmila Lenková
Master's thesis
Analysis of product adoption and prediction of customer churn
Analysis of product adoption and prediction of customer churn
Abstract:
Hlavným cieľom diplomovej práce je vytvoriť komplexný reportovací systém určený na monitorovanie prijatia Safetica ONE produktu zákazníkmi v spolupráci so spoločnosťou Safetica a.s. Diplomová práca kladie osobitný dôraz na predikciu odchodu zákazníkov pomocou metrík zavedených v novo-navrhnutom reportovacom systéme s využitím metód dolovania dát. Zároveň, stručné porovnanie navrhnutého systému so stávajúcim …moreAbstract:
The central objective of the thesis is to develop a comprehensive reporting system dedicated to monitoring customer adoption of the Safetica ONE product in collaboration with Safetica a.s. The thesis places particular emphasis on customer churn prediction using the metrics introduced in the newly proposed reporting system through the use of data mining methods. In addition, a brief comparison is made …more
Language used: English
Date on which the thesis was submitted / produced: 15. 12. 2023
Identifier:
https://is.muni.cz/th/p4kmz/
Thesis defence
- Date of defence: 13. 2. 2024
- Supervisor: doc. Ing. RNDr. Barbora Bühnová, Ph.D.
- Reader: RNDr. Jiří Kůr, Ph.D.
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Software Engineering / Design and development of software systems
Theses on a related topic
-
Analýza aktivit skladu pomocí Process Miningu a využití Machine Learning technologií na jejich podporu
Vladislav Poverin -
A Machine Learning Approach to Startup Success Prediction in the Context of Venture Capital Industry
Tereza Kalendová -
Delivery bottlenecks as a justification for customer churn
Stephan Klaus Hoose -
Predikce výsledků hokejových utkání pomocí data mining modelu
Martin Matuš -
Enhancing Credit Rating Precision for Financial institution Through Data Mining and Analytics
Badhan Saha