
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

DOCUMENT INFORMATION EXTRACTION
EXTRAKCE INFORMACÍ Z DOKUMENTŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. ROMAN JANÍK
AUTOR PRÁCE

SUPERVISOR Ing. MICHAL HRADIŠ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Ústav: Ústav počítačové grafiky a multimédií (UPGM)

Student: Janík Roman, Bc.

Program: Informační technologie a umělá inteligence

Specializace: Počítačové vidění

Kategorie: Umělá inteligence

Akademický rok: 2022/23

Zadání:

1. Prostudujte základy zpracování přirozeného jazyka a neuronových sítí.
2. Vytvořte si přehled o současných metodách pro extrakci sémantické informace z textu se

zaměřením na metody, které dokáží pracovat s 2D strukturou stránek (např. pojmenované entity,
témata, sentiment).

3. Vyberte nebo navrhněte metodu aplikovatelnou pro extrakci informací z českých historických
dokumentů jako jsou kroniky, staré noviny, matriční knihy, formuláře nebo rejstříkové lístky.

4. Obstarejte si databázi vhodnou pro experimenty.
5. Implementujte navrženou metodu a proveďte experimenty nad datovou sadou.
6. Porovnejte dosažené výsledky a diskutujte možnosti budoucího vývoje.
7. Vytvořte stručné video prezentující vaši práci, její cíle a výsledky.

Literatura:
Sido et al.: Czert - Czech BERT-like Model for Language Representation. arXiv:2103.13031v3,
2021.
Hubková et al.: Czech Historical Named Entity Corpus v 1.0. Proceedings of The 12th Language
Resources and Evaluation Conference, 2020.
Garncarek et al.: LAMBERT: Layout-Aware (Language) Modeling for information extraction,
ICDAR, 2020.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/

Vedoucí práce: Hradiš Michal, Ing., Ph.D.

Vedoucí ústavu: Černocký Jan, prof. Dr. Ing.

Datum zadání: 1.11.2022

Termín pro odevzdání: 31.7.2023

Datum schválení: 3.11.2022

Zadání diplomové práce
148996

Extrakce informací z dokumentůNázev:

Fakulta informačních technologií, Vysoké učení technické v Brně / Božetěchova 1/2 / 612 66 / Brno

Abstract
With development of digitization comes the need for historical document analysis. Named
Entity Recognition is an important task for Information extraction and Data mining. The
goal of this thesis is to develop a system for extraction of information from Czech historical
documents, such as newspapers, chronicles and registry books. An information extraction
system was designed, the input of which is scanned historical documents processed by the
OCR algorithm. The system is based on a modified RoBERTa model. The extraction of
information from Czech historical documents brings challenges in the form of the need for a
suitable corpus for historical Czech. The corpora Czech Named Entity Corpus (CNEC) and
Czech Historical Named Entity Corpus (CHNEC) were used to train the system, together
with my own created corpus. The system achieves 88.85 F1 score on CNEC and 87.19 F1
score on CHNEC, obtaining new state-of-the-art results.

Abstrakt
S rozvojem digitalizace přichází potřeba analýzy historických dokumentů. Důležitou úlohou
pro extrakci informací a dolování dat je rozpoznávání pojmenovaných entit. Cílem této
práce je vyvinout systém pro extrakci informací z českých historických dokumentů, jako
jsou noviny, kroniky a matriční knihy. Byl navržen systém pro extrakci informací, jehož
vstupem jsou naskenované historické dokumenty zpracované OCR algoritmem. Systém je
založen na modifikovaném modelu RoBERTa. Extrakce informací z českých historických
dokumentů přináší výzvy v podobě nutnosti vhodného korpusu pro historickou Češtinu.
Pro trénování systému byly použity korpusy Czech Named Entity Corpus (CNEC) a Czech
Historical Named Entity Corpus (CHNEC), spolu s mým vlastním vytvořeným korpusem.
Systém dosahuje úspěšnosti 88,85 F1 skóre na CNEC a 87,19 F1 skóre na CHNEC. Toto je
zlepšení o 1,36 F1 u CNEC a 5,19 F1 u CHNEC a tedy nejlepší známé výsledky.

Keywords
Artificial intelligence, Deep neural networks, Natural Language Processing, Named Entity
Recognition, Transformers, Information extraction, historical documents, BERT, RoBERTa,
RobeCzech, Czech language processing, Masked language modeling, NER dataset

Klíčová slova
umělá inteligence, hluboké neuronové sítě, zpracování přirozeného jazyka, rozpoznávání poj-
menovaných entit, tranformers, extrakce informací, historické dokumenty, BERT, RoBERTa,
RobeCzech, zpracování českého jazyka, masked language modeling, NER dataset

Reference
JANÍK, Roman. Document Information Extraction. Brno, 2023. Master’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Michal Hradiš, Ph.D.

Document Information Extraction

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Mr. Ing. Michal Hradiš, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Roman Janík
July 31, 2023

Acknowledgements
I would like to thank my supervisor Ing. Michal Hradiš, Ph.D., who provided professional
help.

Computational resources were provided by the e-INFRA CZ project (ID:90254), sup-
ported by the Ministry of Education, Youth and Sports of the Czech Republic.

Contents

1 Introduction 2

2 Information extraction 4
2.1 Distributed word representations . 4
2.2 Language modeling . 6
2.3 Named entity recognition . 9
2.4 Metrics and evaluation . 14

3 Datasets 16
3.1 Historical content . 17
3.2 CoNLL-2003 . 17
3.3 Czech NER datasets . 17

4 Named entity recognition system design 21
4.1 Challenges . 21
4.2 Current state . 22
4.3 Input data . 22
4.4 Used datasets . 23
4.5 Model architecture and training . 26

5 Implementation 27
5.1 Named Entity Recognition models . 27
5.2 Datasets . 29
5.3 Masked language models . 37

6 Experiments 39
6.1 Masked Language Modeling . 39
6.2 Named Entity Recognition . 42

7 Conclusion 50

Bibliography 51

1

Chapter 1

Introduction

The process of digitization in librarianship is progressing since the beginning of the digital
era. Digitization is the process of converting documents from analog to digital form. Con-
verting documents from textual form such as books, newspapers, magazines, papers; from
audio form such as phonograph records, phonograph cylinders and from graphical form
such as photos, photographic films to digital form subsequently brings all the advantages of
digital media. Main advantages are easier access, evidence, storage, searching and editing.
The next step is the analysis of the document content.

While the process of digitization is satisfactorily resolved for textual data by optical
character recognition nowadays, the analysis of document content is still an open problem.
Text analysis, also referred to as text mining, is the process of deriving information from
text. This includes tasks such as classification (language, format, category, etc.), Sentiment
Analysis, Text Summarization, Tagging, Relationship extraction, Question Answering and
Named Entity Recognition. The latter is a main interest of this thesis. The ability to
understand text and extract information from text by computers has many useful appli-
cations. For example Semantic Search – searching with meaning to obtain more relevant
answers, targeted advertising – showing relevant advertisement to increase profits and Ma-
chine Translation – translation from one natural language to another.

Today’s state-of-the-art methods usually solve text analysis tasks by machine learning.
For this, a suitable text datasets are needed. These datasets are also referred to as text
corpora. This thesis deals with historical Czech documents, such as newspapers, chronicles
and registry books. As Czech is language with relatively small number of speakers, the
amount of available data is smaller than for world languages, e.g. English. Also historical
Czech documents are written in historical Czech, which is different from contemporary
Czech, so the corpus needs to be adjusted. There is also a problem with data scarcity
of historical documents due to lesser amount of data created, preserved until today and
digitized.

The main goal of this thesis is to develop a system for extraction of information from
Czech historical documents. The system takes scanned historical documents processed
by the OCR algorithm as input and outputs named entities. To achieve this goal, con-
temporary methods of natural language processing, and neural networks for information
extraction needs to be studied. Another goal is to gather a suitable corpus, part of the cor-
pus needs to be created manually and automatically. Further goals are designing, training
and experimenting with the system. Final goal is to evaluate achieved results and discuss
possible development.

2

This thesis is a part of project PERO, which aims to create technology and tools which
would improve accessibility of digitized historic documents. The tools created during this
project will enable existing digital archives and libraries to provide full-text search and
content extraction for low quality historic printed and all hand written documents.

This thesis is organized as follows: chapter 2 contains an introduction to natural lan-
guage processing, contemporary algorithms for information extraction, training of models
and metrics used for evaluation. Chapter 3 discusses datasets for Named Entity Recogni-
tion. System is designed in chapter 4, including description of input data and proposed
datasets. Chapter 5 describes the implementation of the system. Experiments and their
results are described in chapter 6. Chapter 7 discusses results and possible development.

3

Chapter 2

Information extraction

Information extraction is the task of extracting structured information from unstructured
data. In context of this thesis, the unstructured data are Czech historical documents, such
as newspapers, chronicles and registry books. The goal will be achieved by Named Entity
Recognition, which is a task that detects occurrences of named entities and classifies them
into predefined types. The outputs then can be used for other natural language processing
tasks, e.g. Semantic Search, Text Summarization and Question Answering.

This chapter explains necessary background needed to solve the task. Starting with
distributed word representations, description of language models follows. Named entity
recognition is elaborated further, and last is metrics and evaluation.

2.1 Distributed word representations
In human languages, words are the smallest units that have a meaning. Important part of
language understanding is the understanding of meanings of words [32]. Naturally, the same
applies for natural language processing (NLP) models, as they need to represent words in
order to work.

Neural network models use representation learning to learn word representations, also
referred to as embeddings. These word representations are learned from vast amounts of text
in an unsupervised manner. Usual way to represent words is as distributed representations,
which are low dimensional real-valued dense vectors [30]. The meaning of dense vectors is
that one vector dimension represents multiple concepts and one concept is represented by
multiple dimensions. Distributed word representations encode both syntactic and semantic
word relationships [36].

Representation learning can be viewed as learning a mapping from words to distributed
word representations. Words are placed (embedded) into a multi-dimensional vector space.
The number of dimensions varies from 50 into earliest works (e.g. [20]) to usual maximum
1 024 in recent works (e.g. [58]). Words with similar meaning should be placed close to
each other.

Distributed word representations are produced by language models described in sub-
section 2.2. Once learned they can be used as input to task-specific model or used it the
original language model modified to down-stream task. In both cases, distributed word
representations can be either frozen (fixed) or fine-tuned. Most significant advantage of
using pre-trained word representations is that they model the language much better than
randomly initialized word representations. As most NLP tasks require manually annotated

4

data, task-specific supervised datasets are far smaller in size than unsupervised datasets for
language modeling. Because of that, most models in last decade use pre-trained distributed
word representations. Another advantage of language model approach is that word repre-
sentations can be trained once and then used in many different NLP task. It also saves
a computational time, as the training of language model is expensive, but done only once
and task-specific models are far cheaper to train. I.e. many experiments can be run on top
of pre-trained word representations.

2.1.1 Context-free word representations

Context-free word representations, also called traditional pre-trained word representations
(embeddings), represent a word by single vector. Most notable examples are Word2vec [36],
GloVe [38] and fastText [19]. In Word2vec, word representations are learned by training
Skip-gram and Continuous bag-of-words models. Skip-gram learns word representations
that can predict the nearby words. Contrary to Skip-gram, Continuous bag-of-words model
predict the center word representation in a context window. When was Word2vec published,
it was a groundbreaking work and since then context-free pre-trained word representations
are used as integral part of NLP systems. An interesting fact is that Skip-gram word vectors
can be added and subtracted; and resulting vectors have corresponding meaning. This can
be illustrated in Figure 2.1: vec(“Italy”) + vec(“capital”) is close to vec(“Rome”).

Figure 2.1: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors
of countries and their capital cities. This illustrates that learned word vectors capture
concepts and the relationships between them [36].

The main limit of context-free word representations is that a word has only one vec-
tor. However, some words have multiple meanings based on linguistic context (polysemy).
This problem is addressed by contextualized word representations (CWRs). Nevertheless,

5

context-free representations are still used in NLP models, either as input for CWRs lan-
guage models or as one of multiple embedding types.

2.1.2 Contextualized word representations

Contextualized word representations (CWRs) are able to distinguish between multiple
meanings of word based on entire word context. One of the first works, which introduced
CWRs, is ELMo (Embeddings from Language Models) [39]. Unlike traditional context-free
word representations that assign one static vector to a word, in ELMo words are assigned a
representation that is a function of the entire input sentence. To get a word representation,
word and its sentence is fed into the ELMo deep neural network [32]. Table 2.1 shows the
comparison of results of nearest neighbors search in GloVe and ELMo word representations.

In recent years, the use of CWRs significantly improved the results on all NLP tasks.
Therefore, state-of-the-art models use CWRs either as features or for fine-tuning.

Source Nearest Neighbors

GloVe play playing, game, games, played, players, plays, player,
Play, football, multiplayer

ELMo

Chico Ruiz made a spec-
tacular play on Alusik’s
grounder {. . . }

Kieffer, the only junior in the group, was commended
for his ability to hit in the clutch, as well as his all-round
excellent play.

Olivia De Havilland
signed to do a Broadway
play for Garson {. . . }

{. . . } they were actors who had been handed fat roles in
a successful play, and had talent enough to fill the roles
competently, with nice understatement.

Table 2.1: Demonstration of nearest neighbors search in GloVe and ELMo word represen-
tations for a word “play” [39].

2.2 Language modeling
Language models learn distributed word representations by training on vast amounts of text
data in an unsupervised manner. They do so by predicting a probability of given sequence of
words. Recent neural network models are based on either long short-term memory (LSTM)
or Transformer [56] units. This section describes recent important language models.

2.2.1 ELMo

ELMo (Embeddings from Language Models) [39] is an important language model that
produces CWRs. It is based on two language models (LM): forward and backward language
model. In forward LM, probability of given sequence (𝑡1, 𝑡2, . . . , 𝑡𝑁) of 𝑁 tokens (words) is
computed as:

𝑝(𝑡1, 𝑡2, ..., 𝑡𝑁) =

𝑁∏︁
𝑘=1

𝑝(𝑡𝑘 | 𝑡1, 𝑡2, ..., 𝑡𝑘−1) (2.1)

where 𝑡𝑘 is one of the sequence tokens and (𝑡1, 𝑡2, ..., 𝑡𝑘−1) are previous tokens. In this
manner, LM learns to predict next token 𝑡𝑘+1 of given context.

6

The backward LM is similar to the forward LM. As can be expected, it differs from
forward LM in that the input sequence is reversed and tokens are predicted given the
future context:

𝑝(𝑡1, 𝑡2, ..., 𝑡𝑁) =
𝑁∏︁
𝑘=1

𝑝(𝑡𝑘 | 𝑡𝑘+1, 𝑡𝑘+2, ..., 𝑡𝑁) (2.2)

The contextual representation of each token is the concatenation of forward LM and
backward LM representations. The architecture is shown in Figure 2.2, each ELMo lan-
guage model consists of two bidirectional LSTM (Bi-LSTM) layers, the input word rep-
resentations are computed by convolutional neural network (CNN). Word representations
are computed from representations of each character. This approach enables the model to
infer representations for word that are not in the training set [39]. The top layer of both
LMs is a softmax. Bi-LSTM layers have 4 096 LSTM units and compute 512 dimension
representations. ELMo adopts feature-based approach for solving specific-tasks.

Figure 2.2: Comparison of architectures of BERT, OpenAI GPT 1 and ELMo models (Trm
denotes transformer) [22].

2.2.2 BERT

BERT (Bidirectional Encoder Representations from Transformers) [22] is the first deep
bidirectional language model. Major importance of this LM is this ability to learn from
left and right context at the same time. Contrary to ELMo, which uses concatenation of
left-to-right (forward) and right-to-left (backward) LMs, BERT learns deep bidirectional
representations in all layers. To achieve this, BERT is trained by newly introduced pre-
training task, called “Masked Language Model”. BERT advanced the state-of-the-art results
for eleven NLP tasks. Since publishing, many works on improving BERT were proposed.

Model architecture

Architecture of BERT is a multi-layer bidirectional Transformer, respectively the encoder
part of Transformer. There are two model sizes: BERTBASE and BERTLARGE. The number
of Transformer layers is 12, the number of word representations dimensions is 768 and there
12 attention heads for BERTBASE. BERTLARGE has 24 layers, 1 024 dimensions and 16
attention heads. The architecture is shown in Figure 2.3. The input word representations
are calculated as a sum of token (word), position and segment representations. Position
representations encodes position of token in the input sequence, segment representations
denote if token belongs to sentence A or B in a pair sentence input scenario. Here, sentence

7

refers to word sequence, not a linguistic sentence. Sentence pair is at the input for pair-
sentence tasks, such as BERT’s next sentence prediction and Question Answering.

Figure 2.3: Architecture of BERT model [22].

Pre-training

BERT is pre-trained with two unsupervised tasks. First is Masked Language Model (MLM),
second is next sentence prediction (NSP). Unlike standard language models, which are either
left-to-right (forward) or right-to-left (backward), bidirectional language model cannot be
trained both ways because a word would indirectly “see itself” [22]. In MLM task, given
an input sequence, some tokens are randomly masked and the model predicts the masked
tokens. In BERT, 15% of tokens in a sequence are randomly masked. When a token is
chosen to be masked, in 80% of the time the token is replaced by special [MASK] token, in
10% of the time the token is replaced by random token and in 10% of the time the token
is unchanged. This distribution helps the model learning. Similarly to standard LM, last
hidden vectors of the masked tokens are fed into a softmax layer. Model is pre-trained with
a cross-entropy loss.

Next sentence prediction task is important for sentence-level downstream tasks, such
as Question Answering and natural language inference (textual entailment). With NSP,
model learns to understand a relationship between two sentences. Given two sentences A
and B sampled from a text corpus, the model is trained to predict if sentence B follows
sentence A. A pre-training example consist of two sentences A and B, where in 50% of the
time B is an actual next sentence of A and in 50% of the time B is a random sentence from
the corpus. The sentence information is encoded in segment embeddings.

The model is pre-trained on BooksCorpus and English Wikipedia datasets, with total
3.3 billion words. The pre-training example has ≤ 512 tokens and both pre-training tasks
are used at the same time. Adam optimizer is employed.

Named entity recognition experiments

Results for NER are reported on CoNLL-2003 [53] dataset. BERT paper presents fine-
tuning and feature based approach for NER task. In the case of fine-tuning, a linear
classification layer is added on top of the pre-trained model and all parameters are fine-

8

tuned. A multi-class cross entropy loss is used. BERT achieves 92.4% F-score with BASE
model and 92.8% F-score with LARGE model on test ConLL-2003 dataset.

In the case of feature-based approach, model parameters are extracted without fine-
tuning. Many different methods were explored with BERTBASE model and concatenation
of last four hidden layers yields best result 96.1% F-score on development CoNLL-2003
dataset [22]. These contextual word representations are then fed into a randomly initialized
two-layer BiLSTM model. Token entity types are produced by a linear classification layer
on top of BiLSTM model. Test dataset results are not reported in the case of feature-
based approach; however with fine-tuning approach, BERTBASE achieved 96.4% F-score on
development dataset, which is only 0.3% better.

2.3 Named entity recognition
Named entity recognition (NER) is the task of detecting and classifying named entities in
text into predefined entity categories [30]. “A named entity is defined as word or phrase
that clearly identifies one item from a set of other items that have similar attributes” [48].
In general domain, such named entities are names of persons, locations, organizations and
artifacts. Some works also include time, currency and percentage expressions. In [30], NER
is formally defined as function that takes a sequence of tokens 𝑠 = ⟨𝑤1, 𝑤2, . . . , 𝑤𝑁 ⟩ as
input, and outputs list of tuples ⟨𝐼𝑠, 𝐼𝑒, 𝑡⟩. Tuple represents a named entity mention, where
𝐼𝑠 ∈ [1, 𝑁] is start index and 𝐼𝑒 ∈ [1, 𝑁] is end index and 𝑡 is an entity type (category).
Example of a NER system is shown in Figure 2.4. The definition of a named entity types
depends on the problem domain and the task goal. Classification of named entities into a
small set of types (typically < 10) is called as coarse–grained classification. When more
entity types are needed, classification is called fine-grained. The evaluation of NER is
described in section 2.4.

Named entity recognition is an important task of natural language processing (NLP).
NER is by itself an information extraction tool and also serves as pre-processing step for
many NLP applications, such as Semantic Search, Text Understanding, Question Answer-
ing, Machine Translation, Text Summarization, etc. [30]. Real-world applications examples
include search engines, content recommendation, customer support and digital libraries [23].

Figure 2.4: An illustration of the Named Entity Recognition task [30].

9

2.3.1 Methods

The evolution of NER methods is no different to other NLP tasks. Starting with rule-
based methods, research then moved to unsupervised learning methods and subsequently to
supervised learning methods based on handcrafted features. In recent years, state-of-the-art
NER methods are based on deep learning with neural networks [30]. First influential work
using neural networks for NER is the work of Collobert et. al. [20]. The authors proposed a
neural model, where its architecture is based on temporal convolutional networks [30]. The
model uses representation learning and can be also applied to other NLP task such as part-
of-speech Tagging, chunking and semantic role labeling. Research then moved to recurrent
neural networks, as they yield better results on sequential data. Since the groundbreaking
work of Vaswani et al. [56], that introduced transformers, state-of-the-art NER models are
based on transformer architecture. For detailed description of word representations and
model architectures, see sections 2.1 and 2.2, respectively.

Neural NER models consist of three parts: distributed word representations for in-
put, context encoder and tag decoder [30]. First two parts are usually common for many
other NLP task as well. There are two possible approaches to utilize pre-trained language
models: feature-based and fine-tuning [22]. In the case of the feature-based approach (e.g.
ELMo [39]), pre-trained distributed word representations are used as input in task-specific
architectures. In the fine-tuning approach, pre-trained language model and its word repre-
sentations are fine-tuned to each specific task with minimal changes to model architecture
(mostly adding classification layer on top of model), for example OpenAI GPT [16]. Con-
text encoder architectures mostly use bidirectional LSTM or transformers.

The final stage of NER model is the tag decoder. Its input is context-dependent rep-
resentations and output is a sequence of named entity tags [30]. There are two prevalent
tag decoder architectures: multi-layer perceptron + softmax layer, and conditional random
fields (CRF). NER can be considered as sequence labeling problem. With a multi-layer
perceptron + softmax layer, the problem is simply a multi-class classification, where each
word tag is independently computed from context-dependent representations. Neighbor
representations are not taken into account [30]. An example work that uses a multi-layer
perceptron + softmax layer as tag decoder is BERT [22]. “A conditional random field (CRF)
is a random field globally conditioned on the observation sequence” [30]. Often used to-
gether with LSTM and Bi-LSTM, CRFs are mostly used for models following feature-based
approach. Both architectures are shown in Figure 2.5.

Figure 2.5: Multi-layer perceptron + softmax and conditional random fields tag decoder
architectures [30].

10

Models using pre-trained contextualized word representations (CWRs) achieve excellent
results, for example original BERT model [22] achieves 92.8% F-score on CoNLL-2003
dataset [53]. However, there are some issues: many named entities span multiple tokens in
the model, and CWRs models provide representations only for each word (token), therefore
making reasoning about relationships between entities difficult. Relationship reasoning is
a vital part of tasks such as Question Answering and Relation Classification. Additionally,
CWRs pre-training is word-based, and the task of predicting a single masked word in a
multi-word entity is easier than predicting the entire entity [58]. Because of that, CWRs
model does not learn multi-word entity representations. To solve these problems, entity
representations models were introduced. Such models can be split into two categories:
static entity representations and contextualized word representations enhanced by knowledge
injection. In static entity representations scheme, each entity in the knowledge base is
assigned a fixed embedding vector [58]. There are two main disadvantages of this approach,
entities, that do not exist in the knowledge base, cannot be represented; and they require
entity linking to represent entities in a text [58]. CWRs enhanced by knowledge injection
do not have such disadvantages. An example of this category is LUKE [58], described in
next subsection.

2.3.2 LUKE

LUKE (Language Understanding with Knowledge-based Embeddings) is a recent neural
language model that learns not only contextualized word representations, but also contex-
tualized entity representations [58]. At the time of publishing, LUKE was a state-of-the-art
model for NER, with 94.3% F-score reported on CoNLL-2003 [53] dataset. LUKE results
on NER were surpassed by only one work, as stated on NLP-progress website [42]. The
ability of learning entity representations helps the model to solve entity-related tasks, such
as Named Entity Recognition, Relation Classification, Entity Typing and Question An-
swering. The model is based on transformer architecture [56] and is trained using a new
pre-training task, where entities are taken into account.

Figure 2.6: Architecture of LUKE using the input sentence “Beyoncé lives in Los Angeles.”
LUKE outputs contextualized representation for each word and entity in the text. The
model is trained to predict randomly masked words (e.g., lives and Angeles in the figure)
and entities (e.g., Los_Angeles in the figure). Downstream tasks are solved using its output
representations with linear classifiers. [58].

11

Model architecture

Architecture of LUKE is based on RoBERTaLARGE model [31], which is a variant of
BERT [22]. The architecture is shown in Figure 2.6. Words and entities in the input
sequence are treated as input tokens, and a representation for each token is computed.
Input representations of a word consist of a token embedding and position embedding.
Token embedding is decomposed into two matrices B and U, for computational efficiency.
Token position is represented by position embedding. In the case of multi-word entity, an
average of the corresponding positions is taken. Entity tokens are represented by an entity
embedding. For word token, the input representation is calculated as sum of token and
position embeddings, whereas for entity token, it is as sum of token, position and entity
embeddings. Masked tokens are represented by [MASK]. First and last words in the word
sequence are marked by special tokens [CLS] and [SEP]. There is also a special entity to-
ken [UNK] for entities that do not exist in the model vocabulary. The configuration of the
model is following: transformer has 𝐷 = 1024 hidden dimensions, 24 hidden layers, 𝐿 = 64
attention heads, and 16 self-attention heads. Entity embeddings dimensions are 𝐻 = 256.
The model uses RoBERTa’s tokenizer. Size of vocabulary is set to 50𝐾 words, while the
entity vocabulary size is set to 500𝐾.

Entity-aware self-attention

The authors proposed an entity-aware self-attention mechanism. It is a modification of the
original transformer self-attention. As can be seen in model architecture in Figure 2.6, both
words and entities are inputs to transformer model. This means that both word and entity
tokens attend to word and entity tokens in the previous layer. In the original self-attention
mechanism, the 𝑖-th output vector y𝑖 is computed as:

y𝑖 =
𝑘∑︁

𝑗=1

𝛼𝑖𝑗Vx𝑗 (2.3)

𝑒𝑖𝑗 =
Kx⊤

𝑗 Qx𝑖√
𝐿

(2.4)

𝛼𝑖𝑗 = softmax(𝑒𝑖𝑗) (2.5)

where x𝑖 ∈ R𝐷 are input vectors, y𝑖 ∈ R𝐷 are output vectors, 𝑘 denotes the length
of input and output sequences, 𝐿 denotes attention head dimensions, Q ∈ R𝐿×𝐷 is query,
K ∈ R𝐿×𝐷 is key, and V ∈ R𝐿×𝐷 is value matrix. The idea of the entity-aware self-
attention mechanism is to differentiate the attention between word and entity tokens.
Therefore four query matrices are introduced for each combination of word and entity
tokens: Q,Q𝑤2𝑒,Q𝑒2𝑤,Q𝑒2𝑒 ∈ R𝐿×𝐷. This mechanism helps model to better capture rela-
tionships between entities [58]. Note that in LUKE the entity-aware self-attention is used
only for fine-tuning training tasks.

Pre-training

The model pre-training follows BERT Masked Language Model (MLM) task and adds a
new pre-training task that leverages entities. The authors downloaded a Wikipedia dump
from December 2018 and created the pre-training dataset by splitting the content of each
page into sequences of ≤ 512 words. Entities annotations are generated from Wikipedia

12

hyperlinks. Similarly to the original MLM task, entities (respectively their word span for
multi-word entities) are masked by special [MASK] token in the new pre-training task. This
way the model learns representations of whole entity word span. As in BERT, 15% of all
words and entities are randomly masked. The pre-training loss is a sum of MLM loss and
cross-entropy loss for the new entity pre-training task. Model is optimized by the AdamW
optimizer. Both model parameters and word embeddings from RoBERTa were used for
initialization of LUKE model to reduce overall training time.

Named entity recognition experiments

LUKE NER experiments are conducted on CoNLL-2003 dataset [53]. The model is trained
as follows: First, for each sentence, all possible spans are enumerated as named entity can-
didates. These spans are then classified as one of entity types or non-entity type. Second,
sentence is input into model. The sentence has [MASK] entity tokens in the places corre-
sponding to all enumerated spans. Lastly, the word representations of first and last words
in each span, and the entity representation corresponding to the span are concatenated to
form span representation. This span representation is used to classification of the span,
by feeding it into a linear classifier. Cross-entropy loss is used for model training. Spans
consisting of ≥ 16 words were excluded in the training to save computing power. Also, such
long entity names should be very rare. At inference time, firstly all non-entity type spans
are ignored. Greedily selection of spans from the remaining spans is employed. To prevent
overlapping spans selection, a span is selected based on probability of its predicted entity
type, only if it does not overlap with already selected spans.

2.3.3 RobeCzech

RobeCzech – Czech RoBERTa [51] is the current Czech state-of-the-art NER model. Re-
sults (see table 2.2) are reported on CNEC 1.1 and CNEC 2.0 [47] datasets, as well as on
their CoNLL versions [29]. While CNEC 1.1 and CNEC 2.0 contain nested (embedded,
overlapping) entities, their CoNLL versions contain only flat (non-nested) entities. Note
that results are evaluated on fine-grained classification, where 42 named entity types are
predicted [52][51].The paper also presents results for morphological analysis and lemmati-
zation, dependency parsing, semantic parsing and Sentiment Analysis tasks, where for the
first two tasks a feature-based approach is adopted, and for the latter two a fine-tuning
approach is adopted.

Pre-training

RobeCzech represents a Czech version of RoBERTa [31] model. The results on all tasks
demonstrates the superiority of RoBERTa model, where RobeCzech has better results than
the other Czech BERT-based [22] models, such as Czert [49] and Slavic BERT [17]. The
model is trained on a large corpus of various sources with total size 4 917M tokens. The
training batch size is set to 8 192. Each batch consists of contiguously sampled sentences.
Maximum length of each sample is 512 tokens. Adam optimizer is used, the number of
optimization steps is 91 075 and the resulting training time is approximately 3 months on
8 QUADRO P5000 GPUs [51]. The total number of model parameters is 125M.

13

Figure 2.7: A Bi-LSTM-CRF model architecture [25].

Named entity recognition experiments

The authors adopted their previous work NameTag 2 [52], where two models are presented:
LSTM-CRF and seq2seq. LSTM-CRF is used for flat NER, seq2seq for nested NER. Both
are feature-based approaches. Architecture of the LSTM-CRF consists of bidirectional long
short-term memory network (Bi-LSTM, see 2.7) as context encoder and conditional random
fields (CRF) layer as tag decoder. The sequence-to-sequence (seq2seq) model uses Bi-LSTM
as context encoder and LSTM as tag decoder. The models are trained on FastText [19]
word embeddings, end-to-end word embeddings, which include lemmas, input forms and
part-of-speech tags; and bidirectional gated recurrent unit made character-level word em-
beddings [52]. In RobeCzech, NER models use mentioned embeddings and RobeCzech con-
textualized word embeddings as additional inputs. RobeCzech CWRs are not fine-tuned
during training [51]. Adam optimizer is used for training; batch size is set to 8. The au-
thors apply 0.5 dropout and for word dropout they replace 20% of words by the unknown
token. The word dropout should force the model to more rely on context [52]. At the
time of releasing, NameTag 2 reported state-of-the-art results for English on CoNLL-2003
dataset [52].

CNEC 1.1 CNEC 2.0 CoNLL
CNEC 1.1

CoNLL
CNEC 2.0

87.82 85.51 87.47 87.49

Table 2.2: RobeCzech reported F-score for Czech NER. Nested entities use seq2seq model,
Flat (CoNLL) entities use LSTM-CRF model [51].

2.4 Metrics and evaluation
NER systems are evaluated by three metrics: Precision, Recall and F-score. The ground-
truth data are created by human annotator [30]. There is an exact match and a relaxed
match.

14

2.4.1 Exact match

Named entity is considered as correctly recognized, when NER system both detects its span
and classifies its true type [30]. Common classification terms are specified as follows:

• True Positive (TP) - entity is returned by the NER system and is in the ground
truth.

• True Negative (TN) - entity is not returned by the NER system and is not in the
ground truth.

• False Positive (FP) - entity is returned by the NER system and is not in the ground
truth.

• False Negative (FN) - entity is not returned by the NER system and is in the
ground truth.

Precision is defined as the ratio of correctly recognized entities in the NER system
results.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.6)

Recall is defined as the ratio of correctly recognized entities out of all correct entities.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.7)

F-score or F-measure is the harmonic mean of precision and recall.

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(2.8)

F-score is sometimes denoted as F1. Some works also states the micro-averaged and
macro-averaged F-score. Micro-averaged F-score is calculated from all individual true pos-
itives, false positives and false negatives. Macro-averaged F-score is calculated as average
of each entity type F-score [30].

2.4.2 Relaxed match

Some works report relaxed match results. The definition of this term varies among works.
For example in BSNLP-2019 [40], work that deals with NER on documents, an entity
is considered as correctly recognized if at least one annotation of named mention of this
entity is returned by the NER system. In CNEC [46], relaxed match is defined as correct
detection of a named entity span, or as correct detection of a named entity span and correct
classification of super-type (first level type).

15

Chapter 3

Datasets

This chapter contains description of datasets for Named Entity Recognition (NER), their
comparison and discusses problems with historical texts and datasets properties. For better
understanding of this chapter, please refer to section 2.3 describing Named Entity Recog-
nition. A suitable datasets are essential for Named Entity Recognition (NER). They are
needed for model training as well as evaluation. NER dataset or corpus is a collection of
real-world documents annotated by entity types. Words in a dataset are tagged by en-
tity type or by special tag coding no-entity, in some datasets words that are not a part of
named entity are not tagged. Some datasets also contain additional information for other
tasks, e.g. part-of-speech (POS). An important aspect is that entities are contained within
real-world text, so NER algorithms can learn from their contexts.

Entity types and their number are defined by the objective of the dataset and differ
from dataset to dataset. Most common entity types are: person, location, organization
and object. There may be two-level hierarchy of entity types to achieve fine-grained re-
sults, for example a subtype of person is a surname. Some datasets, e.g. CoNLL-2003 [53],
also differentiate between the word at the beginning of and the rest of words of a multi-
word named entity. NER datasets are created either by collecting documents and manually
annotating them or by generating from sources like Wikipedia. First way representative
work is [46], second is [58]. The objective of the dataset also defines the text source from
which dataset was created. According to list in [30], there are datasets created from news
articles, Wikipedia articles, social media user comments such as tweets and YouTube com-
ments. Medical text datasets are also listed as representative of domain specific datasets.
Naturally, most datasets are in English language as it is most used language today, fewer
datasets are in other world languages like German and Spanish. For Czech language a
limited number of dataset exist, as fewer authors are interested in Czech NER, most of
them are from Czechia or Central European countries.

In general, a suitable NER dataset for given task has these properties: text source
should as close as possible to target domain in terms of language, style, field and vocabulary;
dataset should contain minimal number of miss-annotated named entities and should be
large; so a various forms of named entities placed in a various context can be recognized.
Therefore larger dataset contributes to better results.

16

3.1 Historical content
As this thesis deals with historical newspapers, chronicles and registry books, the dataset
to solve this task needs to be adjusted to their content. Historical newspapers can be
just considered as news with historical content. The style of chronicles and registry books
is presumed to be more formal with fewer phrases and more time and location expres-
sions. Historical Czech texts differ from contemporary Czech, especially in vocabulary,
word forms, spelling and word order [27]. Regarding vocabulary, there are archaic words,
or words of things that does not exist at present time, e.g. “telegraf” – telegraph. Some
names, that existed in past, changed, notable location names, and refer to its present day
equivalent. Another issue is archaic personal names. In the case of spelling, there are differ-
ences that today would be considered a spelling mistake (e.g. “výtězně”, in contemporary
Czech “vítězně” – triumphantly) [27]. In the case of word forms, different verb and noun
forms can be found, for example “zástupcové” – nowadays “zástupci”, in English represen-
tatives [27]. Also different phrases are used. Different word order is also a problem. While
the contemporary news uses adjectives as premodifiers, in historical news adjectives are
used as postmodifiers. Notable example is “německá říše” and “říše německá” (German
Empire) in historical news [27]. Given the historical realities, a less literary language can
be expected. Dialects were more used than in contemporary Czech. Slang may also appear,
for example in company chronicles.

3.2 CoNLL-2003
CoNLL-2003 [53] is considered as standard English dataset for comparing results of NER
systems. The dataset consist of English and German news articles, the English part are an
annotated Reuters news, the German part are an annotated news from German newspaper
Frankfurter Rundshau. Both news collections are from 1990s. Each language data is divided
in standard training, development and test parts; plus there is a large file of unannotated
data [53]. As stated above, CoNLL-2003 introduced tags for first word and the rest of words
of multi-words named entity. Named entities are non-overlapping and non-recursive, the
latter means that multi-word named entities do not contain another named entities, e.g.
in named entity “United states of America”, “America” is not tagged as a named entity.
Example of annotations is shown in Figure 3.1. There are four types of named entity
types: persons, locations, organizations and miscellaneous. The dataset contains total 10
059 persons, 10 645 locations, 9 323 organizations and 5 062 miscellaneous entities in 301
418 tokens for English and 5 369 persons, 6 579 locations, 4 441 organizations and 3 968
miscellaneous entities in 301 418 tokens for German [53]. The dataset is highly influential
and many NER datasets follows its structure.

3.3 Czech NER datasets

3.3.1 Czech named entity corpus

Czech named entity corpus (CNEC) from 2007 is the first known Czech dataset for NER [46].
The dataset was extended, the last version CNEC 2.0 is from 2014 [47]. CNEC 1.0 dataset
contains total 2 000 sentences randomly selected from the Czech National Corpus [15].
Czech National Corpus is significant source of Czech corpuses for development of natural
language processing applications. In CNEC 2.0, there is total 8 993 sentences, 35 220

17

U.N. NNP I-NP I-ORG
official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-NP I-LOC
. . O O

Table 3.1: Example of CoNLL annotations in sentence “U.N. official Ekeus heads for Bagh-
dad.”. [53]

CNEC 2.0 CHNEC BSNLP-2019 SumeCzech-NER
Size 8 993 sentences 8 251 words - 1 000 000 articles
Named entities 35 220 4 017 9 877 30M
Named entity types 46 5 5 7
Annotations manual manual manual automatic
Year 2014 2020 2019 2021

Table 3.2: Overview of Czech NER datasets.

named entities classified into 46 entity types. In comparison with previous version, the
named entity hierarchy was modified [47]. The named entity hierarchy classifies the entity
types in two-levels, first level for a coarse-grained classification of total 8 entity types,
which then expands into total 46 entity types, as can be seen in Figure 3.1. The dataset
contains recursive named entities. CNEC represents a large Czech NER dataset of general
style, suitable as basis for further work. This dataset was transformed to CoNLL format
to enable comparison with other languages [29].

3.3.2 Czech historical named entity corpus

Czech named entity corpus (CHNEC) from 2020 is the first known historical Czech dataset
for NER [27]. Its so far first version CHNEC 1.0 is made of annotated historical newspaper
Posel od Čerchova from the second half of 19th century. The original newspaper were
scanned and digitized by optical character recognition. The importance of this dataset is
that the source is historical texts, close to the input data in this work in a fashion described
in the subsection 3.1. As the name of the CHNEC dataset suggests, the words in dataset are
in Czech, but there are also some limited number of words from German, French and Latin.
In the CHNEC 1.0, there are 8 251 words, 4 017 named entities and 5 named entity types:
personal names, institutions, geographical names, time expressions and artifact names /
objects.

3.3.3 BSNLP 2019

BSNLP 2019 dataset was published a part of shared task at the 7th workshop on Balto-
Slavic Natural Language Processing (BSNLP) [40]. The dataset consist of converted Web
pages, mainly news articles, divided into 4 sets of documents, each centered around one
topic: Asia Bibi, Brexit, Ryanair and Nord stream 2. As the task was multilingual, it
covers four languages: Bulgarian, Czech, Polish and Russian. There are 5 named entity
types: person, location, organization, product, and event. Total number of named entities

18

Types of NE

a - Numbers in addresses

g - Geographical names

i - Institutions

m - Media names

n - Number expressions

o - Artifact names

p - Personal names

t - Time expressions

ah - street numbers
at - phone/fax numbers

az - zip codes
gc - states

gh - hydronyms
gl - nature areas / objects

gq - urban parts
gr - territorial names

gs - streets, squares
gt - continents

gu - castles/chateaus
g_ - underspecified

ia - conferences/contests
ic - cult./educ./scient. inst.

if - companies, concerns...
io - government/political inst.

i_ - underspecified
me - email address

mi - internet links
mn - periodical

ms - radio and TV stations
na - age

nb - vol./page/chap./sec./fig. numbers
nc - cardinal numbers

ni - itemizer
no - ordinal numbers

ns - sport score
n_ - underspecified

oa - cultural artifacts (books, movies)
oe - measure units

om - currency units
op - products

or - directives, norms
o_ - underspecified

pc - inhabitant names
pd - (academic) titles

pf - first names
pm - second names

pp - relig./myth persons
ps - surnames

p_ - underspecified td - days

tf - feasts th - hours

tm - months
ty - years

Figure 3.1: CNEC 2.0 classification hierarchy [47].

for Czech is 9 877. This dataset represents contemporary Czech news texts, so the benefit
is the news style. However, the topics covered are far from historical news content, so
usability of this dataset for this thesis is a question for implementation.

3.3.4 SumeCzech-NER

SumeCzech-NER is a recent (2021) large Czech NER dataset [34], constructed automat-
ically from SumeCzech 1.0 [50]. SumeCzech 1.0 is a collection of 1 000 000 Czech news
articles gathered from 5 Czech news websites: novinky.cz, lidovky.cz, denik.cz, idnes.cz and
ceskenoviny.cz. SumeCzech-NER has total 7 named entity types: numbers in addresses,
geographical names, institutions, media names, artifact names, personal names, and time
expressions [34]. The dataset consists of NER annotations in IOB format for SumeCzech

19

1.0 dataset. This is a very large dataset a contemporary Czech news articles, and could be
very beneficial for NER system.

20

Chapter 4

Named entity recognition system
design

This chapter presents a proposed NER system for Czech historical documents. Based on
the information in the previous chapters, a NER system for information extraction and
necessary data to train such system is discussed.

First, challenges related to NER system are discussed. Second, a current state of systems
for historical Czech information extraction is elaborated. Next, an input data for the NER
system are described. Next, used datasets are discussed and new datasets are proposed.
Last, the NER system architecture and training procedure are proposed.

4.1 Challenges
A suitable datasets are essential for many NLP tasks including Named Entity Recognition.
While some datasets can be annotated automatically, many NLP tasks require manually
annotated datasets in order to perform well. This also applies for NER. Manual creation of
NER dataset is very time-consuming work and therefore limits the results of NER systems.
In case of automatically annotated datasets, usually external annotations (e.g. Wikipedia)
are used. Otherwise another NER system for named entity annotation is required, but
this approach brings in annotation errors of used NER system. Example of such dataset is
SumeCzech-NER [34]. However, there is still a benefit from a greater amount of data.

The digitization process of historical documents is not perfect and OCR errors appear.
OCR errors include wrongly recognized character and not detected words. These errors
will negatively affect the NER system; nevertheless OCR is not a part of this thesis.

Recent language models are relatively large, with the number of parameters usually
exceeding 100M. To get the best possible results, state-of-the-art models are trained on
very large datasets, e.g. BERT was trained on datasets that totaled 3 300M words and
16 GB of uncompressed text data; RoBERTa was trained on datasets with size of 160
GB [22][31]. These results are not reproducible for this thesis, as such the training would
require many weeks or a high number state-of-the-art deep learning GPUs to reduce the
training time. Therefore, a pre-trained models and distributed representations are needed.
The training time though will still be a challenge; the only way to reduce the training time
is to employ a powerful GPU training setup. In particular, original LUKE pre-training
took 30 days on a server with 16 NVIDIA Tesla V100 GPUs [58]. The pre-training dataset
consisted of whole English Wikipedia dump, which has approximately 3.5 billion words.

21

However, the Czech Wikipedia is much smaller [14] and only small subset will be necessary,
so the training should not that tedious.

4.2 Current state
With the digitization of historical documents comes the need to analyze the document’s
content. To the best of my knowledge, no complex system or tool for Czech historical
document information extraction exists. The task is relatively new and attracts attention
of researchers in recent years, as previous research was focused on contemporary Czech
documents. With the advancement of information extraction thanks to deep learning,
solving the problem should become more achievable. There are only minor efforts to tackle
this problem yet, notably CHNEC [27] and [26]. Both works present models for Named
Entity Recognition. In CHNEC [27], the best Bi-LSTM model using static fastText achieved
73% F-score on CHNEC dataset. The best model in [26], a Slavic BERT [17] fine-tuned on
mix of CHNEC and CNEC achieved 82% macro-averaged F-score. However, these results
are not sufficient for real-world applications. The main drawback in historical Czech NER
is the lack of datasets, respectively the small size of the only Czech historical dataset –
CHNEC.

Situation for contemporary Czech information extraction is better. There are vast
amounts of contemporary Czech texts available [15], and datasets for NER, such as CNEC [47],
BSNLP 2019 [40] and SumeCzech-NER [34]. Several works for NER were published,
e.g. [51], [52], [17], [49]. During research, two relevant Czech NLP research groups were
found: Institute of Formal and Applied Linguistics [5] at Charles University and NLP
group [9] at University of West Bohemia. The two research groups produced most Czech
related works.

The goal of this thesis is to push the results forward and develop a NER system for
Czech historical documents. The input data of this system are described in next section.

4.3 Input data
This thesis aims to apply Named Entity Recognition to Czech historical documents of
three types: newspapers 4.1, chronicles 4.2 and registry books 4.3. The text style can be
classified as journalistic (newspapers, chronicles), communication (newspapers, chronicles),
and administrative (registry books). The style of chronicles and registry books is presumed
to be more formal with fewer phrases and more time and location expressions. Chronicles
contain data about events. Sources of chronicles may be municipalities, parishes, companies,
schools, associations, and others. Registry books state data about birth, death, marriage
such as involved people, relatives, locations; and people profession. Newspapers are printed
texts, while chronicles and registry books are mostly handwritten. Handwritten text is
problematic due to lower quality of OCR conversion. The handwriting quality differs a lot;
some texts are easily readable, while others may be unreadable even for human.

Input data will be downloaded from public sources, such as archives and libraries. For
example: Státní oblastní archiv v Třeboni [2], Státní oblastní archiv v Plzni [11] and Zemský
archiv v Opavě [3]. A representative dataset of Czech historical documents will be created.
Documents will be digitized by PERO-OCR [28] application, a part of PERO project.
Figure 4.4 shows a screenshot of PERO-OCR application with chronicle example and its
converted text.

22

Figure 4.1: Example of newspaper – printed text [2].

4.4 Used datasets
The baseline dataset for NER system training and evaluation will be the combination of
CNEC 2.0 and CHNEC 1.0, as was used in [26]. However, it is clear that the amount
of data in these datasets will not be sufficient, as state-of-the-art systems require a large
NER dataset. Therefore used dataset needs to be extended and adjusted data domain in
further steps. BSNLP 2019 and SumeCzech-NER datasets could be leveraged after some
processing into a common format. As datasets described in chapter 3 are in different
formats, have different named entity types and their size varies significantly; a suitable
approach for mixing the datasets needs to be taken. The coarse-grained classification of
entities is sufficient for this task goal, same as in the case of [27]. In the present Czech
datasets, there is different naming of entity types and some entity types are irrelevant.
New dataset will follow CHNEC entity type definition. CHNEC entity types are: personal
names, institutions, geographical names, time expressions and artifact names / objects. The
annotations format will be CoNLL, same as in CHNEC [27]. In this manner, compatibility
comparability with CHNEC will be ensured. In the case of CNEC 2.0 [47], its CoNLL
version [29] will be utilized.

23

Figure 4.2: Example of chronicle – good readability [11].

Figure 4.3: Example of registry book – worse readability [2].

Data will be annotated by suitable tools, such as Inforex [33] or Label Studio [54].
Figure 4.5 shows Inforex annotation tool. Annotation of data will probably be very time
consuming. Manually annotated dataset will be important for system testing. With a
dataset created by steps described above, good results could be achieved.

24

Figure 4.4: Screenshot of PERO-OCR application with a chronicle example [?][11].

Figure 4.5: Screenshot of Inforex Web annotation tool [33] (image taken from [40]).

25

4.5 Model architecture and training
A neural language model will be used as the basis of the NER system. RobeCzech [51]
model will be adopted together with Slavic-BERT [17] and Czert [49]. For detailed descrip-
tion, see 2.3.3 and 2.2.2, respectively. LUKE represents a new approach for entity-related
tasks. RobeCzech, a Czech variant of RoBERTa [31], is a state-of-the-art Czech general-
purpose language model. Fine-tuning approach will be primarily used for NER training.

The baseline model will be RobeCzech language model 1 fine-tuned on CNEC 2.0 and
CHNEC datasets (more in previous section). Own language models based on RoBERTa
architecture will be trained. To meet the performance demands and to be able to actually
train the model in a reasonable time, smaller model variants will be proposed and trained.
Reruns and hyper-parameter tuning will most likely not be possible. Pre-trained own
models will then be fine-tuned on CNEC 2.0 and CHNEC datasets, as well as on own NER
dataset. SumeCzech-NER can be added for further experiments. The model performance
will be evaluated and analyzed.

Python is selected as implementation language, as it is most suitable language for ma-
chine learning. PyTorch [37], a Python machine learning framework, will be used for model
training and evaluation. For data handling, tokenizers, parallelization and more Hugging
Face [4] libraries will be used. Data handling will probably require scripts written in Python.

1Note that RobeCzech paper RobeCzech present both language model and a special LSTM-CRF model
for flat NER, where RoBERTa embeddings are used as inputs.

26

Chapter 5

Implementation

This chapter presents details of Named Entity Recognition system implementation, which
was proposed in previous chapter. An emphasis was put on possibility to experiment and
further improvement of the system, along with development of PERO OCR [28]. The goal
is to provide a system with best results possible, which can be improved using new datasets.
Eventually, such system can be tuned for performance with techniques such as knowledge
distillation [24] [44] and neural network pruning and then used en masse on large historical
document databases.

Python, which is regarded as most suitable language for machine learning, was selected
as an implementation language. The models are themselves trained with PyTorch [37] deep
learning library, which is used by Hugging Face [4] Transformers library. Other libraries
from Hugging Face platform, such as Accelerate, Datasets, Evaluate and Tokenizers are
also employed. Hugging Face platform was chosen as the best tool for Natural Language
Processing (NLP) currently available. It facilitates most common functions in NLP. Im-
plemented system is in the form of Python scripts using above mentioned libraries. These
scripts produce new neural network models. Results of these models are described in the
next chapter.

Beside scripts, datasets are needed in order to train new models. Several datasets were
used and created. New language models were also trained. First, Named Entity Recognition
scripts are discussed, and then datasets and their creation are described, followed by Masked
Language Model training.

5.1 Named Entity Recognition models
Experimenting with Named Entity Recognition models involves data management, training
and evaluation of models. In this section, most important aspects of implementation are
discussed.

5.1.1 Model training script

Following a design in previous chapter, a Named Entity Recognition model needs to be
trained. For this purpose train_ner_model.py was created. This script fine-tunes a Hug-
ging Face language model on NER datasets, evaluates the model on NER datasets test
splits and reports the results.

Script takes 2 required arguments: --results_csv for a CSV file for logging the test
results and -–config for a YAML file training configuration. All training settings are

27

configurable, this way the training script can be used to fine-tune any Hugging Face language
model on any NER dataset in the Hugging Face dataset format. Training hyperparameters
are set in this configuration too. The configuration file represents one training experiment,
therefore an experiment can be easily reproduced and repeated on any machine with Python,
PyTorch and Hugging Face libraries installed. Experiments can be evaluated and modified
with minimal effort.

The YAML configuration file allows to specify: language model, with its name, descrip-
tion and path; multiple NER datasets with their names, descriptions and paths; training
hyperparameters such as type of learning rate scheduler, batch size, number of training
epochs, learning rate, weight decay, warmup rate, etc. The YAML format provides easily
readable and synoptic way to manage model training.

After loading the configuration file, a summary of experiment with basic information is
logged into the experiment_results.txt. This enables to recognize which results belongs
to the experiment, because multiple experiments are run subsequently, as will be described
below. Then all necessary objects like tokenizers, data loaders, optimizer and learning
rate scheduler are initialized according to specification from configuration file. Datasets
in Hugging Face format are loaded. Input dataset has to have the same entity types as
CHNEC 1.0 [27]. The CHNEC entity types are: Personal names, Institutions, Geographical
names, Time expressions and Artifact names / Objects. Each dataset has a train, valida-
tion and test split. Train and validation splits from all specified datasets are tokenized
by model tokenizer and concatenated. In order to fine-tune a language model on NER
task, a classification head is put on top of language model. This head consist of 1 linear
layer with softmax. After that model is trained in a training loop for specified number of
epochs and evaluated on validation split after each epoch. Training can be run on multi-
ple GPUs, thanks to parallel data processing. Hugging Face accelerate library is used for
parallelization.

Evaluation is performed on true labels, e.g. softmax outputs of the last classification
layer are converted into IOB format, where each token in a sequence has a label. A seqeval
metric is employed for evaluation. Seqeval is a common metric for NER task. It calculates
F1, accuracy, precision and recall. During training, loss, learning rate and metric values
are logged into TensorBoard logger. These logs can be viewed in TensorBoard tool. When
training is finished, trained model is evaluated on every specified dataset’s test split. Results
are then logged into text log, as well as CSV log. If multiple experiments are run together,
with --results_csv argument one CSV file can be used repeatedly. In this case, the results
CSV file is created only once and every following experiment only appends its results at
the end of file. Script skeleton was taken over from Hugging Face Course Chapter 7 Token
classification [12].

5.1.2 Cloud computation

Because training of transformers language models requires great computing power, comput-
ing on external server was necessary. The MetaCentrum[7], a virtual organization providing
cloud computing services, was selected for its availability and free access for Czech academia.
The MetaCentrum uses PBS Pro scheduling system. Computational tasks are launched in
a form of the so-called job, an entity consisting of computational resources and a sequence
of commands written in a UNIX shell script. A script for running the MetaCentrum model
training job was implemented. It clones this thesis git repository, downloads datasets and
models and prepares software environment. All required libraries are installed. Then it

28

runs the train_ner_model.py script. One, several or all configurations can be run. Script
runs the Python training script and then saves experiment results to home storage. If more
than one experiment is run, these two steps are repeated in a loop.

5.1.3 Dataset preparation

Training script train_ner_model.py accepts datasets in Hugging Face format. All data
processing is handled by Hugging Face Datasets library, which provides a lot of functionality.
Datasets internally use Apache Arrow library for data storage, which enables fast processing
of large amounts of data, without loading the data into memory due to memory-mapping.
One dataset training example is a dictionary with 3 keys: id, tokens and ner_tags. Tokens
is a list of words and ner_tags is a list of labels. Labels are represented as integers. These
integer labels are mapped to IOB labels during evaluation. A training example is shown in
Figure 5.1.

{’id’: ’4138’,
’tokens’: [’Přednášel’, ’Frant’, ’.’, ’Pruský’, ’z’, ’Olomouce’, ’.’],
’ner_tags’: [0, 1, 2, 2, 0, 5, 0]}

Figure 5.1: One training example from PONER dataset.

The used CNEC, CHNEC, SumeCzech-NER and PERO OCR NER (PONER) NER
datasets, are in different format and need to be prepared. This includes dataset loading
scripts for each dataset, transform data into above mentioned format and saving them into
Hugging Face datasets format, so the datasets are ready for training. CNEC, CHNEC
and PONER datasets are saved in CoNLL format. Annotated texts are split into linguistic
sentences (or just block of text in some cases). Each sentence is split into words. Every word
is on separate line, together with its annotation labels separated by space. For example in
CNEC, the labels are lemmas, morphological tags and ner tags. This way one dataset can
be used for different NLP tasks. Sentences are separated by an empty line. Loading script
read the CoNLL format files into Hugging Face dataset format. Transformation of data
consists of removing unnecessary data columns and changing NER tags entity types to the
same as in CHNEC. Same steps need to be performed for every newly added NER dataset.

5.2 Datasets
Datasets are integral part of any machine learning effort. Here, detailed description of cre-
ated datasets is presented. For each dataset, its purpose, creation process, data description
and other details can be found bellow. Additionally, preparation of SumeCzech-NER is also
described.

5.2.1 PERO OCR NER

New Named Entity Recognition dataset was created. Since the resulting NER system is
intended to operate on historical documents processed by PERO OCR [28] system, a dataset
created from historical and OCR-sourced data is needed. For this reason, the new dataset
is named PERO OCR NER (PONER).

29

Source data

Document pages from chronicles are the source data, because chronicles are rich in named
entities placed in various contexts. PONER consists of 400 document pages, from which
250 are from rural and 150 from urban chronicles. Out of the 250 rural chronicles, 180 are
from central Moravia, especially from Šumperk and Přerov regions. The rest 70 are from
České Budějovice region. The urban chronicles are from Přerov city chronicle. This data
distribution is important in order to include text from various environments, dialects (e.g.
not only central Moravian dialect), places and language styles. Scans of document page were
first processed by PERO OCR, and the resulting text transcriptions were annotated. The
quality of OCR transcriptions is very high, errors occur very rarely. The document pages
are mostly from first half of 20th century, less from post-war period. The oldest document
page is from year 1771 describing last widespread famine in Czech kingdom, the most
recent document page is from year 1993 describing introduction of telephone connection.
Rural chronicles often describes village inhabitants, agricultural works like harvests, prices
of agricultural commodities, weather and cultural events. Unlike rural chronicles, urban
chronicles describe industrial information, city development, local politics and much more
cultural events. Nationwide or even international events (e.g. Munich Agreement) occur in
both types. Pages from post-war period are ideologically affected, collectivization of Czech
countryside is a major theme.

Dataset creation

Figure 5.2: An annotation task in Label Studio application.

Data were annotated in Label Studio [54] tool. Label Studio is a web server applica-
tion, which is run locally. Data are annotated in a provided webpage. The tool is organized
in a project manner, project has its settings defining a labeling interface. Labeling in-
terface sets GUI of annotation webpage, controls and annotation schema (here marking

30

text span by its class). An annotation item is called “Task”, here one task is annota-
tion of one document page. Tasks are defined in a JSON task file containing paths/urls
to annotated files and other task information. Document page text transcription files are
imported together with their respective JPEG images in order to provide a way to check
the original data in case of OCR errors. JSON task file creation is implemented in script
create_label_studio_import_file.py. A task webpage is shown in Figure 5.2.

The manual annotation is a lengthy process. To accelerate the annotation, tasks were
pre-annotated by a trained NER model. The best model from first round of experiments was
used (see Subsection 6.2.1). Pre-annotations can be considered as high-quality. Comparison
of pre-annotations and final manual annotation is shown in Figure 5.3. The model often
marked a phantom named entity in front of real one containing only newline character.
Longer named entities were usually also marked wrongly. Some named entities are not
marked by model at all, notably groups of people as Personal names (e.g. nationalities
“Němci”). Nevertheless the annotation took several weeks of effort.

Figure 5.3: Comparison of pre-annotation by NER model (on the right) and final manual
annotation (on the left).

As mentioned in Section 4.4, PONER dataset uses the same named entity types/classes
as CHNEC. Named entities found in page text were marked with respect to annotation
manuals for CNEC [47] and CHNEC [47] datasets that can be found in dataset’s archives.
However, these manuals have several conflicts listed below:

1. CNEC has animal names included in Personal names.

2. CNEC has a subclass “personal names of unspecified type / unclassifiable in other
types” in Personal names with example “Slované”. CHNEC has a subclass “desig-
nation of collectives” in Intitutions with examples “benediktini, husité, republikané,
atd.”.

31

3. CNEC have castles and palaces names in subclass “municipalities, castles and palaces”
in Geographical names. CHNEC has a subclass “specific building objects” in Artifact
names / Objects with examples “věž u svatých, kostel sv. Bartoloměje, zámek Kozel,
klášter benediktinský u Davle, hrad Domažlický, atd.”.

4. CNEC has a subclass “lectures, conferences, competitions, . . . ” with example “Stanley
Cup” in Institutions. CHNEC is missing such subclass.

5. CNEC have subclasses “measurement units (written is shortcuts)”, “names of unspeci-
fied types / unclassifiable in other types”, “regulations, standards,..., their collections”
and “names of chemicals, chemical formulas” in Artifact names / Objects. CHNEC is
missing such subclasses.

6. CHNEC have subclasses “names of historical events” with examples “bitvě na Bílé
hoře, Pražská defenestrace , bitva u Slavkova, atd.” and “names of official recurring
events” with examples “Mezinárodní filmový festival Karlovy Vary, Všesokolský slet,
atd.” in Time expressions. CNEC is missing such subclasses.

7. CHNEC has a subclass “books, magazines, editions etc. printed matter” in Artifact
names / Objects. CNEC has media class.

8. CHNEC has a subclass “currency names” in Artifact names / Objects. Both currency
abbreviations with examples “Kč, zl, zl. r. č.” and full names with examples “zlatých,
tolar, krejcarů” are marked. In CNEC, only currency abbreviations are marked.

These conflicts were solved the following way: Since the media class / entity type is not
used in the dataset or during training of NER models, CHNEC method is selected. Also
for conflicts 6 and 8 CHNEC method is selected. For all other conflicts, CNEC method is
selected.

Several other problems also occurred. Measurement units are sometimes put together
with their values by OCR algorithm (e.g. “25ha”, “4q”). However, Label Studio allows
only marking of whole words. These entities were not marked. The “whole word only”
policy also caused marking of special characters such as dots and commas at the end of
entity, even though it is not a part of it (e.g. “Jan Novák.”). In cases, where the decision
if a text span is a named entity or not and what type it belongs, CNEC and CHNEC
dataset were searched. Resulting annotation by Label Studio is a list of annotations con-
sisting of: start character index, end character index and entity type. Annotations can
be exported from Label Studio application in JSON file. Some of above mentioned short-
comings were filtered out. However, some could not be easily filtered and required writing
a set of rules. Still, several thousand problematic named entities / text spans needed
to be looked at manually. This lengthy process took several days. Basic filtering is im-
plemented in script remove_start_whitespace.py, semi-automatic adjustment is imple-
mented in adjust_annotation_end.py.

In order to be comparable to CNEC and CHNEC datasets, Label Studio JSON ex-
port file needed to be converted to CoNLL format. This conversion is implemented in
create_my_dataset_conll.py script. In CoNLL format, text is split into sentences sep-
arated by and empty line and sentences are split into words, each on a separate line (see
Subsection 5.1.3). Natural language toolkit (NLTK)[18] library was utilized for the task of
sentence and word tokenization (the task of text splitting into sentences or words). NLTK
provides a statistical model Punkt, supporting several languages including Czech. Although

32

the tokenization results are relatively good, Punkt model failed to tokenize more compli-
cated sentences correctly. Most frequent errors originated in separators (dot, comma) inside
of real sentence. This problem needed to be solved by manual correction of sentences in the
CoNLL file. This process took several days. Since the dataset contains corrected sentences,
it can be used for training a new model for sentence tokenization based on Transformers
architecture.

The final dataset consist of 1.268 kB, 9,310 sentences and 14,639 named entities (num-
bers are taken from split files). Average number of named entities per document page is
36.5975. The dataset is split into three sub-sets: 45% for training, 5% for validation and
50% for testing. The testing split is 50%, because an extensive test evaluation is needed.
Split ratio can be changed and dataset split again. Split statistics are described in Table 5.1.
The distribution of named entity types is shown in Table 5.2.

Split Sentences Entities
train 4,189 6,641
validation 465 707
test 4,655 7,291
Total 9,310 14,639

Table 5.1: PONER split statistics.

Named entity type Tag Entities
Personal names p 4,009
Institutions i 2,901
Geographical names g 2,964
Time expressions t 2,720
Artifact names/Objects o 2,045
Total 14,639

Table 5.2: PONER named entity type distribution.

Page crop tool

In the phase of collecting historical documents for the creation of PONER dataset a prob-
lematic documents were found. Since the real-life documents are scanned and then pro-
cessed by PERO OCR, all text in the images is gathered. Unfortunately, some archives
supply the scanned historical documents with additional header and footer, containing in-
formation like archive name, document name, date and copyright. This text is also in the
output transcription of the OCR algorithm. Because historical data are not easily avail-
able, documents had to be reprocessed by PERO OCR without the header and footer. The
possibility of defining a static rectangular region and the crop the images proved to be
false, since images vary in resolution dramatically even though they come from the same
historical document. An example of historical document with header and footer is shown
in Figure 5.4.

To solve this problem, a machine learning approach was used. A semantic segmentation
neural network model was trained. For training the model a suitable dataset was created.
The Page segmentation dataset consist of 50 images of historical document pages with
header and footer annotated in Label Studio label-studio tool. The number of images

33

is sufficient, since the dataset was used to fine-tune a small variant of SegFormer [57], a
pretrained image model nvidia_mit-b0 [8]. The model consists of a hierarchical Transformer
encoder and decoder head is attached during fine-tuning. It has only 3.7M parameters. The
model was trained for 100 epochs with learning rate 6.e-5 and batch size of 16 examples.
Additional data augmentation was applied: brightness, contrast, saturation and hue jitter.
The resulting model achieved 0.9822 mean Intersection over Union (IoU), while for actual
page class the model achieved 0.9960 IoU.

Page crop tool is implemented in script page_crop.py. Tool takes 2 arguments for
specification of source and output directories. It iterates over all JPEG images in source
directory, each image is processed by nvidia_mit-b0 model to get a segmentation mask.
Mask is used for crop rectangle calculation. Image is then cropped and saved to output
directory.

Figure 5.4: Example of historical document page with header and footer [2].

5.2.2 Masked language datasets

For training a language model from scratch a suitable textual dataset is needed. The data
needs to be close to target domain, here historical documents like chronicles, newspapers,
magazines, books and registry books. Also, same language across data needs to be ensured.

34

Three datasets were created: textual OCR-sourced PERO OCR Books and PERO OCR
Periodicals, and their tokenized combination PERO OCR MLM.

PERO OCR Books and PERO OCR Periodicals

As source data, books and periodicals (newspapers, magazines) from the first half of 20th
century were used. Data were processed by PERO OCR [28] algorithm. PERO OCR
outputs transcriptions in XML format and actual text is then extracted from the XML files
by script extract_transcriptions_from_page_xml.py from PERO OCR project. XML
transcriptions are structured by OCR regions. OCR regions are regions containing text,
they are detected in the first step of OCR pipeline. Usually they overlap with linguistic
paragraphs in document pages. In these OCR regions, text is processed line by line. Every
line object in XML transcription has a confidence of OCR algorithm. To prevent the model
from learning OCR-errors, the extraction script was edited to extract only regions with
average line confidence above 65%. This threshold was selected empirically. Document
pages with ≤ 8 lines were filtered out, since they mostly contain nonsense characters.
Periodicals data were almost completely in Czech language, some parts of other languages
were removed manually. Books data contained a lot of various languages beside Czech.
Since the number of books documents was close to 22,000, an automatic way of filtering
these documents was necessary. Extraction script was edited to use a language classification
model on first 200 characters of OCR region’s text. To accelerate the processing, only first
5 regions were considered. If ≤ 2 regions were classified as Czech out of the first 5 regions,
the document page was not extracted. As a language classification model, a fine-tuned
XLM-RoBERTa [6] model was chosen. XLM-RoBERTa [21] itself is a multilingual version
of RoBERTa. Filtered document pages were subsequently converted to Hugging face text
dataset format.

Dataset statistics are displayed in Table 5.3. An important value is the total number of
words. This dataset is relatively small, in order to be able to train a language model in a
reasonable time. For example, RobeCzech [51] was trained on 4,917M words – a 17.9 times
more.

Dataset Number of words Size in MB
PERO OCR Books 131.89M 846,50
PERO OCR Periodicals 142.65M 932.91
PERO OCR Books + Periodicals 274.54M 1,779.41
*datasets for RobeCzech training 4,917M -

Table 5.3: Sizes of PERO OCR Books and Periodicals text datasets.

PERO OCR MLM

Language model training requires vast amounts of text data. Text data need to be converted
to a numerical representation – in a process of tokenization. This can be done at the
beginning of a training job, but since this process requires some time and is repeated every
training, it is reasonable to perform it only once in advance. PERO OCR MLM consist
of combined text datasets PERO OCR Books and PERO OCR Periodicals. The datasets
were concatenated, tokenized and split by chunks of predefined length. The chunk length
equals to maximal input length of a language model. It was set to 512 tokens, same as in

35

RoBERTa and RobeCzech. Resulting dataset was split into train and test splits in ratio
0.995:0.005. This ratio was chosen according to other works.

PERO OCR Extraction and
filtration

Conversion to
Hugging Face dataset

format

Dataset
concatenation

TokenizationSplit to chunksCreate train and test
splits

Historical
books

document
pages

Historical
periodicals
document

pages

PERO OCR
XML

transcriptions

Text
document

pages

PERO OCR
Books

PERO
OCR

Books and
PeriodicalsTokenized

dataset

Tokenized
dataset
split to
chunksPERO

OCR MLM

PERO OCR
Periodicals

"Text"

{'input_ids': [0, 2639, 27806, 3, 2],
'attention_mask': [1, 1, 1, 1, 1]}

train split

test split

Figure 5.5: PERO OCR MLM creation steps.

In order to create more experiments for Masked Language Modeling (Section 6.1), 4
variants of the dataset defined by tokenizer vocabulary size were created. For this pur-
pose 3 new tokenizers were trained on train splits of PERO OCR Books and PERO OCR
Periodicals datasets. For comparison, the fourth tokenizer was taken from RobeCzech
model. Tokenizer training is implemented in train_tokenizer.py. The tokenizers are
byte-level [41] Byte-Pair Encoding (BPE) [45] type. Tokenizers Hugging Face library was
utilized. The size of tokenizer vocabulary directly affects the parameter size of language
model. Model with bigger (up to some point) vocabulary tend to achieve better language
understanding and thus better results on downstream tasks. The tokenizers were trained
with following vocabulary sizes: 52k, 26k and 12k. The original tokenizer from RobeCzech
has 52k vocabulary. The final dataset is in Hugging Face format and prepared for lan-
guage model training. The creation steps of PERO OCR MLM are depicted in Figure 5.5.
Datasets statistics are summarized in Table 5.4. As can be seen in the table, with the
increase of vocabulary size, the total number of examples decreases, as tokenizer with big-
ger vocabulary splits the text data into smaller subwords. This rule does not apply to old
original tokenizer from RobeCzech model, since this tokenizer was trained on different text
dataset.

36

Dataset variant Vocabulary size Total examples Train split Val split
new_tokenizer_12k_dts 12,000 1,090,924 1,085,469 5,455
new_tokenizer_26k_dts 26,000 994,275 989,303 4,972
new_tokenizer_dts 52,000 925,753 921,124 4,629
old_tokenizer_dts 51,961 1,021,431 1,016,323 5,108

Table 5.4: Sizes of variants of PERO OCR MLM dataset.

5.3 Masked language models
Masked language model training is implemented in train_ml_model.py. This script allows
training a Hugging Face language model from scratch on a Masked Language Model task.
The model learns to predict masked tokens in an input sequence. By this way a language
representation is learned. The script takes a required argument --config for a YAML
file training configuration. Training settings are configurable, similarly to Named Entity
Recognition training script (Subsection 5.1.1). The configuration file represents one train-
ing experiment, allowing for easy reproduction, editing and repeating of an experiment. In
the configuration file, a tokenizer (Subsection 5.2.2), a model, datasets and training hyper-
parameters are specified. Any RoBERTa model can be specified by a model configuration
JSON file, allowing setting properties like hidden size, number of attention heads, number
of hidden layers, maximum position embeddings and vocabulary size. With small changes
in the script, other model architectures could be accepted as well. For a selected tokenizer
out of 4 prepared tokenizers, related dataset is used. The datasets are loaded and ready
for training. Training hyperparameters are configurable: type of learning rate scheduler,
batch size, number of training epochs, learning rate, weight decay, warmup rate, etc.

All training logs are logged into experiment_results.txt file. Short summary is logged
with basic information like experiment name, model, start time and training hyperparam-
eters. After that, necessary objects are loaded, for example tokenizer, dataset, model and
data collator. The dataset is ready for training; it is already tokenized and split to chunks
of 512 tokens. An example is shown in Figure 5.6. In Masked Language Model task, tokens
are masked, therefore labels are taken from the original text. Following RoBERTa [31]
training, tokens are masked dynamically – every time an example is fed to the model. A
15% of tokens are masked, the same masking strategy as in RoBERTa is employed. The
token masking is performed by the data collator object. The training is performed for a
specified number of epochs. The metric for model evaluation is the Perplexity metric. Per-
plexity is computed as exponentiation of evaluation loss. Additional logging of train loss,
learning rate, evaluation loss and perplexity to TensorBoard is performed during training.
In order to prevent a gradient explosion, a gradient norm clipping is used with value of 8.0.

{’input_ids’: [885, 14, 4211, 440, 539, 489, 2059, 15, 142, 951, 5184,
12764, 413, 196, 440, 16224, 24965, 7611, 142, 85, 28463, 7375, ...,
33758],
’attention_mask’: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, ..., 1],
’labels’: [885, 14, 4211, 440, 539, 489, 2059, 15, 142, 951, 5184, 12764,
413, 196, 440, 16224, 24965, 7611, 142, 85, 28463, 7375, ..., 33758] }

Figure 5.6: One training example from PERO OCR MLM dataset.

37

Since the language model training is much more time and resource expensive than
NER model training, more performance optimizations were implemented. The training
script supports distributed setup, so multiple GPUs can be used. Mixed precision [35]
training is also employed. To further accelerate the training process, gradient accumulation
is used. Gradient accumulation is a technique, where optimizer performs a step after several
training steps, instead of every training step. This effectively magnifies training batch size.
Increasing batch size improves perplexity, as was shown in RoBERTa. Also skipping the
optimization step saves computation time. In the script, gradient accumulation steps are
calculated from fixed effective batch size, as shown in Equation 5.1. The effective batch
size was set to 4,096. With a minor code change, it can be also configurable. Additional
functionality of finding executable batch size is used. This functionality starts the training
code with batch size set in configuration file. If the used GPUs run out of memory, another
try with halved batch size is performed. Because of that, a lengthy process of finding
runnable batch size is resolved; no manual training script reruns are needed. Script skeleton
was taken over from Hugging Face Course Chapter 7 Training a causal language model from
scratch [13].

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝𝑠 =
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 · 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑃𝑈 𝑑𝑒𝑣𝑖𝑐𝑒𝑠
(5.1)

Cloud computation

For training, the MetaCentrum [7] was utilized. Shell script train_mlm_model.sh for train-
ing the language model on the MetaCentrum was implemented. It clones this thesis git
repository, downloads datasets and tokenizers and prepares software environment. All re-
quired libraries are installed and then the train_ml_model.py script is started. On the
MetaCentrum, jobs using GPUs are put into job scheduler queue gpu@meta-pbs.metacentrum.cz.
This queue has maximum runtime of 24 hours, which is insufficient for language model
training even with all above mentioned performance optimizations. Another option is to
use queue gpu_long@meta-pbs.metacentrum.cz with maximum runtime 336 hours. Unfor-
tunately, this queue has very long waiting times, so different solution was needed. Instead,
using the gpu@meta-pbs.metacentrum.cz queue with modified training script was chosen.
The train_ml_model.py script was modified to be able to save training before MetaCen-
trum job times out into a training state checkpoint and restore the training from this
checkpoint on the next training job. The train state saving and loading use functions from
Accelerator class from Accelerate library. All necessary objects are saved in a train state:
the model, optimizer, learning rate scheduler, random number generators, etc. Addition-
ally, current epoch, training steps and batch size are saved to a YAML file. Upon restoring
the train state, last epochs is used in a training loop and the data loader object skips the
number batches set by last training step. This ensures that the model starts to train from
the same state when it was stopped. Besides before job timeout, script also saved train
state during evaluation, which is performed every 200× 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝𝑠. The
train state restoration is controlled by the script --from_state argument.

38

Chapter 6

Experiments

This chapter describes experiments performed in order to create a NER system suitable for
identifying and correctly classifying named entities in Czech historical documents. Experi-
menting with various models, datasets and training hyperparameters also brings insights for
further development. Since model training is highly configurable, new models, datasets a
hyperparameters can be used in future experiments. The experiments were evaluated with
its relevant metrics. The NER models time performance was also indicatively evaluated.

All model training was performed on MetaCentrum [7] cloud service, due to requirement
of great computation power. The MetaCentrum provides several computation clusters (a
set of computation nodes) with GPUs. Computation cluster galdor with 4 NVIDIA A40
GPUs was selected as the most powerful and available GPU cluster. The NVIDIA A40
GPU [10] offers a memory of 45,634 MiB, up to 74.8 TFLOPS with tensor 32bit (float) and
memory bandwidth 696 GB/s.

First, experiments with masked language models are described, followed by experiments
with Named Entity Recognition models.

6.1 Masked Language Modeling
Masked Language models were trained on PERO OCR MLM dataset (Subsection 5.2.2).
In general, neural network models achieve better results with increasing number of their
parameters. At the same time, the training and the inference time also increase. With
few exceptions, published models are focused on the best results possible. However, the
proposed NER system is intended to be used on big databases of historical documents, thus
the computation costs and corresponding training and inference time need to be consid-
ered. For example RoBERTa BASE [31] model has 125M, RoBERTa LARGE 355M and
RobeCzech [51] 125M parameters. The authors of these big language models use either
huge number of GPUs (RoBERTa LARGE was trained with 1024 NVIDIA V100 GPUs for
1 day) or train for a very long time (RobeCzech was trained with 8 NVIDIA QUADRO
P5000 GPUs for 3 months). Besides that, these big models are trained on a much bigger
datasets than PERO OCR MLM (while PERO OCR MLM has 1,779.41MB, RoBERTa was
trained on a combination of Books corpus and Wikipedia datasets totaling 160GB of un-
compressed text data). To meet the performance demands and to be able to actually train
the model in a reasonable time, smaller model variants were proposed and trained. The
sizes of models were inspired by paper: Well-Read Students Learn Better: On the Impor-
tance of Pre-training Compact Models [55]. Model types are listed in Table 6.1. There are

39

5 types of models: Big, Medium, Small, Mini and Tiny. The main parameter affecting the
resulting size of a model is the number of hidden layers (and also the quality of a model).
Second most important parameter is the vocabulary size. Last important parameter is
hidden size. The intermediate size and number of attention heads were fixed to the hidden
size parameter. The intermediate size is calculated as ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑖𝑧𝑒 * 4 and the number of
attention heads is calculated as ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑖𝑧𝑒 / 64.

Model type Big Medium Small Mini Tiny
num_hidden_layers 8 6 4 4 8
hidden_size 512 256 512 256 128
intermediate_size 2048 1024 2048 1024 512
num_heads 8 4 8 4 2
par_new_t_12k 31.9M 8.0M 19.3M 6.4M 3.2M
par_new_t_26k 39.1M 11.6M 26.5M 10.0M 5.0M
par_new_t_52k 52.4M 18.3M 39.8M 16.7M 8.4M
par_old_t_52k 52.4M 18.3M 39.8M 16.7M 8.4M

Table 6.1: Statistics of trained RoBERTa language models.

Training hyperparameters setting was inspired by RoBERTa, RobeCzech and recently
published paper dealing with pretraining Masked Language models: Trained on 100 million
words and still in shape BERT meets British National Corpus [43]. In the last paper, the
authors explore the effects of pretraining a Masked Language model on modestly-sized and
representative dataset. All used hyperparameters are listed in Table 6.2. The number of
epochs was set to 100, because of training time reasons. As is shown below, the resulting
perplexity of models is relatively good. Initial batch size was set to 128. Most of the training
experiments were not able to train on this value and following the finding executable batch
size technique (described in Section 5.3), the batch size was halved. The largest model
types were even trained on batch size of 32. Nevertheless the effective batch size was set
to 4,096; so batch size halving prolonged the training time. AdamW optimizer was used
with initial learning rate 1.e-3, 𝛽1 0.9, 𝛽2 0.98 and weight decay 0.1. Cosine learning rate
scheduler was employed with warmup ratio (percentage of warmup steps) of 0.04.

The model training was performed on 4 NVIDIA A40 GPUs. This is the maximum
number of GPUs on 1 computation node. More nodes could be requested, but the queue
gpu@meta-pbs.metacentrum.cz waiting times would be too long. With 4 GPUs on 1
node, the waiting times were usually several days. The training took 1 – 3 days to com-
plete. For this reasons, no extensive hyperparameter search was performed, only 1 ex-
periment for each model type and dataset (vocabulary size). Total 20 experiments were
conducted. Unfortunately, the experiments with dataset created by RobeCzech original
tokenizer (old_tokenizer_dts) failed. This error was caused by omitting necessary file
config.json in tokenizer’s directory on MetaCentrum. Because of that, the model was
trained with empty vocabulary. The training script did not report any problem during
training. This fact was found out during subsequent NER training. Running experiments
again was not possible due to time limitation. Therefore only 15 correct language models
were obtained. In total, the language model training took several weeks.

The experiment results are presented in Table 6.3. As can be seen in the table, with
increasing model size the quality of model also increases. The naming of “Medium” model
might be misleading, because “Small” model has more parameters. Within each model type,
perplexity is increasing with bigger vocabulary. An explanation for phenomena is probably

40

Hyperparameter Big Medium Small Mini Tiny
Number of layers 8 6 4 4 8
Hidden size 512 256 512 256 128
FF intermediate size 2048 1024 2048 1024 512

Vocabulary size [k] 12, 26,
52, 52

12, 26,
52, 52

12, 26,
52, 52

12, 26,
52, 52

12, 26,
52, 52

Attention heads 8 4 8 4 2
Dropout 0.1 0.1 0.1 0.1 0.1
Number of epochs 100 100 100 100 100

Training steps [k] 26.5, 24.1,
22.5, 24.8

26.5, 24.1,
22.5, 24.8

26.5, 24.1,
22.5, 24.8

26.5, 24.1,
22.5, 24.8

26.5, 24.1,
22.5, 24.8

Batch size 4k 4k 4k 4k 4k
Warmup ratio 0.04 0.04 0.04 0.04 0.04
Learning rate 1.e-3 1.e-3 1.e-3 1.e-3 1.e-3
Learning rate decay cosine cosine cosine cosine cosine
Weight decay 0.1 0.1 0.1 0.1 0.1
Optimizer AdamW AdamW AdamW AdamW AdamW
AdamW 𝜖 1e-8 1e-8 1e-8 1e-8 1e-8
AdamW 𝛽1 0.9 0.9 0.9 0.9 0.9
AdamW 𝛽2 0.98 0.98 0.98 0.98 0.98
Gradient clipping norm 8.0 8.0 8.0 8.0 8.0

Table 6.2: Pretraining hyperparameters. Hyperparameters that differ in the model types
are underlined, other are identical for all model types.

Experiment name Model type Dataset Perplexity Train time [h]
m_4L_256H_new_t_12k Mini new_t_12k 9.6591 20
m_4L_256H_new_t_26k Mini new_t_26k 11.6932 32.5
m_4L_256H_new_t_52k Mini new_t_52k 13.3614 30.5
m_4L_512H_new_t_12k Small new_t_12k 5.1387 32
m_4L_512H_new_t_26k Small new_t_26k 6.5031 34.5
m_4L_512H_new_t_52k Small new_t_52k 7.4445 43.5
m_6L_256H_new_t_12k Medium new_t_12k 8.0355 24.5
m_6L_256H_new_t_26k Medium new_t_26k 10.0622 27.5
m_6L_256H_new_t_52k Medium new_t_52k 11.5481 34.5
m_8L_128H_new_t_12k Tiny new_t_12k 15.0521 21.5
m_8L_128H_new_t_26k Tiny new_t_26k 18.6940 24.5
m_8L_128H_new_t_52k Tiny new_t_52k 21.1557 28.5
m_8L_512H_new_t_12k Big new_t_12k 3.9487 51
m_8L_512H_new_t_26k Big new_t_26k 4.8481 53
m_8L_512H_new_t_52k Big new_t_52k 5.6538 63

Table 6.3: Masked Language Modeling experiment results.

in undertraining of the bigger models. The training time increases with the number of
model parameters and is especially high for the Big model type. This is caused by the fact,
that batch size was decreased from 128 to 32 due to low GPU memory. The number of

41

experiment was limited by computation resources and time, more extensive experimenting
is needed.

6.2 Named Entity Recognition
Experiments with Named Entity Recognition models were performed on several datasets.
Czech Named Entity Corpus (CNEC) 2.0 CoNLL [47][29] dataset with flat entities, Czech
Historical Named Entity Corpus (CHNEC) 1.0 [27] and PERO OCR NER (PONER) 1.0
(Subsection 5.2.1) datasets were used. Datasets were converted to CHNEC named entities
format and prepared for training (as described in Subsection 5.1.3). Before training train
and validation splits of all specified datasets were concatenated and the model was on this
dataset. Trained model was then evaluated on separate datasets test splits.

The SumeCzech-NER [34] dataset could not be used, as the description of the dataset
preparation was no longer reproducible. This dataset consist of only NER annotations in
IOB format for SumeCzech 1.0 [50] dataset. The SumeCzech 1.0 dataset was downloaded
from Common Crawl [1] after fixing the provided download script. Unfortunately, the
SumeCzech-NER preparation depends on sentence and word tokenization from NLTK [18]
Punkt model and the present Punkt model version is different from the one used by the
authors. The quality of annotations is also very limited; the annotations were produced by
a model with 78.45 F1-score.

For experiment evaluation, the F1-score metric (Section 2.4) was used. A named entity
is considered correct only if both the span and the type of the named entity are correct.
All model training used 1 NVIDIA A40 GPU. The training times were in range of 10 to
60 minutes, so the use of multiple GPUs was not necessary. First experiments with known
Czech language models are described, followed by experiments on own Masked Language
models.

6.2.1 Experiments with known Czech models

Experiments were conducted with following Czech language models: RobeCzech [51], Slavic-
BERT [17] and Czert-B [49]. Several experiment sets were created, as is listed below. All
experiment results are averaged over 3 runs. The hyperparameters batch size, learning rate
decay were fixed to values of 16 for batch size and “linear” for learning rate decay. AdamW
𝛽1 was set to 0.9 and 𝛽2 to 0.999.

RobeCzech base experiments

The RobeCzech model was trained on CNEC and CHNEC datasets. This initial experiment
set was aimed to gain insights which hyperparameters most influence the model results and
influenced the following experiments. Hyperparameter search was done on: number of
epochs (3, 5, 10), learning rate (1.e-5, 2.e-5, 3.e-5), weight decay (0.0, 0.01) and warmup
ratio (0.0, 0.06). The results are listed in Tables 6.4 6.5. Hyperparameters are encoded in
experiments names. It is clear, that the experiments with lowest learning rate 1.e-5 and
lowest number of epochs tend to have worse results. Naturally, learning rate and number of
epochs are bigger factors than weight decay and warmups. Experiments with same learning
rate and number of epochs, but different in weight decay and warmups have similar results.
The differences among models with same learning rate and number epochs are very low,
which clearly suggests that weight decay and warmup minimally influence the results.

42

In the case of F1 measured on CNEC 2.0 test split (average), first 8 of first 10 results are
scored by models trained with number epochs set to 10. In all 3 runs, first 8 experiments
reach above 88 F1. Best results are achieved by models with learning rate 3.e-5 and number
epochs 10. This gives a possibility to achieve even better results with increasing both hy-
perparameters. For CNEC 2.0 test F1, there is a low decrease between results in descending
order, whereas for CHNEC 1.0 test F1 the decrease is higher and there is bigger variance
between the best and worst result. This is probably caused by the small size of dataset.
The CHNEC 1.0 test split has only 391 examples. The largest difference between the best
and worst results is in Run3 - more than 7% F1. Overall, models with bigger learning rate
and num of epochs achieve better results, but there is greater difference in order than for
CNEC 2.0. This can be also explained by the small size of dataset. The average best model
linear_lr_3e5_10_epochs_wd_wr for CNEC 2.0 achieves 88.85% F1, which is greater than
RobeCzech model by 1.36%. The average best model linear_lr_3e5_10_epochs_wr for
CHNEC 1.0 achieves 87.19% F1, which is greater than CHNEC 1.0 model by 5.19%. New
state-of-the-art results were obtained.

Exp name CNEC 2.0 test
linear_lr_3e5_10_epochs_wd_wr 88.8462
linear_lr_3e5_10_epochs 88.7701
linear_lr_3e5_10_epochs_wd 88.7018
linear_lr_2e5_10_epochs 88.6883
linear_lr_3e5_10_epochs_wr 88.6361
linear_lr_2e5_10_epochs_wd 88.4940
linear_lr_2e5_10_epochs_wd_wr 88.4382
linear_lr_2e5_10_epochs_wr 88.3092
linear_lr_3e5_5_epochs_wd 88.0942
linear_lr_3e5_5_epochs 88.0337
linear_lr_3e5_5_epochs_wd_wr 87.9874
linear_lr_3e5_5_epochs_wr 87.8325
linear_lr_2e5_5_epochs_wd_wr 87.7829
linear_lr_1e5_10_epochs_wd 87.5831
baseline_linear_lr_2e5_5_epochs 87.5783
linear_lr_1e5_10_epochs_wr 87.5293
linear_lr_1e5_10_epochs 87.3479
linear_lr_1e5_10_epochs_wd_wr 87.2911
linear_lr_2e5_5_epochs_wr 87.1676
linear_lr_2e5_5_epochs_wd 87.1213
linear_lr_2e5_3_epochs_wd_wr 86.3061
linear_lr_2e5_3_epochs_wr 86.2600
linear_lr_2e5_3_epochs_wd 86.2049
linear_lr_2e5_3_epochs 86.1972
linear_lr_1e5_5_epochs_wr 86.1010
linear_lr_1e5_5_epochs 85.7330
linear_lr_1e5_5_epochs_wd 85.6914
linear_lr_1e5_5_epochs_wd_wr 85.5893

Table 6.4: RobeCzech base experiments results on CNEC test split. Experiments are listed
in descending order.

43

Exp name CHNEC 1.0 test
linear_lr_3e5_10_epochs_wr 87.1938
linear_lr_3e5_10_epochs_wd_wr 86.3387
linear_lr_2e5_10_epochs 86.1782
linear_lr_3e5_10_epochs 86.1438
linear_lr_3e5_5_epochs_wr 85.9637
linear_lr_2e5_10_epochs_wd 85.7523
linear_lr_3e5_5_epochs_wd_wr 85.6452
linear_lr_3e5_5_epochs 85.6016
linear_lr_3e5_10_epochs_wd 85.5275
linear_lr_2e5_5_epochs_wd 85.3444
linear_lr_2e5_10_epochs_wd_wr 85.2069
linear_lr_2e5_10_epochs_wr 85.0981
linear_lr_3e5_5_epochs_wd 84.8112
linear_lr_1e5_10_epochs_wd_wr 84.7795
linear_lr_1e5_10_epochs_wd 84.7032
linear_lr_2e5_5_epochs_wd_wr 84.6745
linear_lr_2e5_5_epochs_wr 84.3771
linear_lr_1e5_10_epochs_wr 84.2870
baseline_linear_lr_2e5_5_epochs 84.2685
linear_lr_2e5_3_epochs_wd_wr 84.1756
linear_lr_1e5_10_epochs 84.0974
linear_lr_2e5_3_epochs_wd 83.6815
linear_lr_1e5_5_epochs_wr 83.3998
linear_lr_2e5_3_epochs 83.3521
linear_lr_1e5_5_epochs_wd_wr 82.9886
linear_lr_2e5_3_epochs_wr 82.9206
linear_lr_1e5_5_epochs 82.8305
linear_lr_1e5_5_epochs_wd 81.9030

Table 6.5: RobeCzech base experiments results on CHNEC test split. Experiments are
listed in descending order.

RobeCzech more epochs

The results of base set of experiments suggested, that with training on more epochs, better
results can be achieved. Since the learning rate 3.e-5 proved to perform the best, only this
value is included in the experiments. The results are shown in Tables 6.6 6.7. Except for the
best validation result 0.8713 F1, all results are very similar among each dataset. In compar-
ison with base experiments, no benefit from training on more epochs is seen. The results are
comparable, in case of the best base experiment linear_lr_3e5_10_epochs_wd_wr even
very slightly better. CHNEC results show greater difference between the best and worst
result than CNEC.

Slavic-BERT experiments

To enable comparison with RobeCzech, a different Czech language model was trained.
Slavic-BERT is a multilingual BERT model, pretrained on 4 languages: Czech, Bulgar-
ian, Polish and Russian. Its architecture follows BERT BASE with 177M parameters

44

Exp name CNEC 2.0 test
linear_lr_3e5_20_epochs_wd 88.6677
linear_lr_3e5_15_epochs_wd_wr 88.6376
linear_lr_3e5_20_epochs_wr 88.5532
linear_lr_3e5_15_epochs_wr 88.5527
linear_lr_3e5_20_epochs 88.4945
linear_lr_3e5_20_epochs_wd_wr 88.3507
linear_lr_3e5_15_epochs_wd 88.2413
linear_lr_3e5_15_epochs 88.1368

Table 6.6: RobeCzech experiments with more epochs results on CNEC test split. Experi-
ments are listed in descending order.

Exp name CHNEC 1.0 test
linear_lr_3e5_20_epochs_wd 87.4118
linear_lr_3e5_15_epochs_wd_wr 86.8378
linear_lr_3e5_20_epochs_wr 86.6167
linear_lr_3e5_20_epochs 86.5554
linear_lr_3e5_15_epochs_wr 86.4139
linear_lr_3e5_15_epochs_wd 86.1648
linear_lr_3e5_20_epochs_wd_wr 85.7825
linear_lr_3e5_15_epochs 85.2996

Table 6.7: RobeCzech experiments with more epochs results on CHNEC test split. Exper-
iments are listed in descending order.

(RobeCzech has 125M parameters). Hyperparameter search was done on: number of epochs
(10, 15, 20), learning rate (2.e-5, 3.e-5), weight decay (0.0, 0.01) and warmup ratio (0.0,
0.06). The results are listed in Tables 6.8 6.9. As can be seen in the tables, results are
very similar among each dataset. Experiments with more epochs and learning rate 3.e-5
tend to have better results. In comparison with base experiments, the results are worse, as
was expected, since RobeCzech is based on more advanced architecture and pretrained on
different data.

Czert experiments

Another Czech language model Czert was also added. Czert is Czech version of BERT
model, trained on only Czech corpora. The Czert authors report training on more than 340K
senteces on training corpora Czech national corpus, Czech Wikipedia and Crawled of Czech
news, in total 37GB of uncompressed text data. The number of model parameters is 110M.
The Czert paper report 86.27 F1 on CNEC dataset with Czert-B. The model variant used in
experiments is Czert-B cased, that follows BERT BASE architecture. Same hyperparameter
search as for Slavic-BERT was performed. The results are listed in Tables 6.10 6.11. Lower
F1 results than with Slavic-BERT and RobeCzech are achieved. Czert-B model has the
lowest number of parameters and is learned on less data than RobeCzech. There is greater
variance in CHNEC result than in Slavic-BERT and RobeCzech. This can be also explained
by lesser number of model parameters and by the fact that CHNEC contains only third of
the examples as CNEC. CNEC results show signs, that warmup rate and warmup rate with
weight decay actually hurt NER training. Another interesting fact is that greater number

45

Exp name CNEC 2.0 test
slavic_bert_linear_lr_3e5_15_epochs_wd_wr 86.6065
slavic_bert_linear_lr_3e5_20_epochs_wd_wr 86.5576
slavic_bert_linear_lr_3e5_10_epochs_wd 86.4728
slavic_bert_linear_lr_2e5_10_epochs_wr 86.3629
slavic_bert_linear_lr_3e5_15_epochs_wd 86.3152
slavic_bert_linear_lr_3e5_15_epochs 86.3070
slavic_bert_linear_lr_3e5_20_epochs 86.2699
slavic_bert_linear_lr_2e5_10_epochs_wd 86.2441
slavic_bert_linear_lr_2e5_10_epochs_wd_wr 86.1816
slavic_bert_linear_lr_3e5_20_epochs_wr 86.1651
slavic_bert_linear_lr_3e5_15_epochs_wr 86.1164
slavic_bert_linear_lr_3e5_10_epochs_wd_wr 86.0540
slavic_bert_linear_lr_3e5_10_epochs 86.0259
slavic_bert_linear_lr_3e5_20_epochs_wd 85.8328
slavic_bert_linear_lr_2e5_10_epochs 85.8225
slavic_bert_linear_lr_3e5_10_epochs_wr 85.4577

Table 6.8: Slavic-BERT experiments results on CNEC test split. Experiments are listed in
descending order.

Exp name CHNEC 1.0 test
slavic_bert_linear_lr_3e5_15_epochs_wr 85.6803
slavic_bert_linear_lr_3e5_20_epochs 85.6146
slavic_bert_linear_lr_3e5_10_epochs_wd 85.3077
slavic_bert_linear_lr_2e5_10_epochs_wd 85.2621
slavic_bert_linear_lr_2e5_10_epochs_wr 85.1259
slavic_bert_linear_lr_3e5_15_epochs 85.1191
slavic_bert_linear_lr_3e5_15_epochs_wd 85.1190
slavic_bert_linear_lr_2e5_10_epochs 85.0053
slavic_bert_linear_lr_3e5_10_epochs_wr 84.8835
slavic_bert_linear_lr_3e5_20_epochs_wd 84.8225
slavic_bert_linear_lr_3e5_20_epochs_wd_wr 84.8202
slavic_bert_linear_lr_3e5_10_epochs_wd_wr 84.7845
slavic_bert_linear_lr_3e5_10_epochs 84.6580
slavic_bert_linear_lr_3e5_15_epochs_wd_wr 84.2058
slavic_bert_linear_lr_2e5_10_epochs_wd_wr 84.0861
slavic_bert_linear_lr_3e5_20_epochs_wr 84.0767

Table 6.9: Slavic-BERT experiments results on CHNEC test split. Experiments are listed
in descending order.

of epochs does not bring extra benefits, especially with CHNEC. Remarkable finding is
that original results presented in the paper were not matched and showed relatively big
difference of 1.17% F1.

46

Exp name CNEC 2.0 test
czertB_linear_lr_3e5_20_epochs_wd 85.1049
czertB_linear_lr_3e5_15_epochs 85.0896
czertB_linear_lr_3e5_15_epochs_wr 84.9028
czertB_linear_lr_3e5_20_epochs 84.8831
czertB_linear_lr_3e5_10_epochs_wd_wr 84.8399
czertB_linear_lr_2e5_10_epochs 84.7451
czertB_linear_lr_3e5_10_epochs_wd 84.7285
czertB_linear_lr_3e5_15_epochs_wd 84.6423
czertB_linear_lr_3e5_20_epochs_wr 84.5822
czertB_linear_lr_3e5_10_epochs_wr 84.5666
czertB_linear_lr_2e5_10_epochs_wd 84.4971
czertB_linear_lr_3e5_10_epochs 84.4397
czertB_linear_lr_2e5_10_epochs_wr 84.3985
czertB_linear_lr_3e5_20_epochs_wd_wr 84.2631
czertB_linear_lr_3e5_15_epochs_wd_wr 84.0965
czertB_linear_lr_2e5_10_epochs_wd_wr 84.0010

Table 6.10: Czert-B experiments results on CNEC test split. Experiments are listed in
descending order.

Exp name CHNEC 1.0 test
czertB_linear_lr_2e5_10_epochs 84.0112
czertB_linear_lr_2e5_10_epochs_wr 83.8381
czertB_linear_lr_3e5_10_epochs_wd_wr 83.7556
czertB_linear_lr_3e5_15_epochs_wr 83.5913
czertB_linear_lr_3e5_20_epochs 83.5603
czertB_linear_lr_2e5_10_epochs_wd_wr 83.5307
czertB_linear_lr_3e5_15_epochs 83.4023
czertB_linear_lr_3e5_10_epochs_wr 83.1894
czertB_linear_lr_3e5_10_epochs 83.1503
czertB_linear_lr_3e5_20_epochs_wr 83.1412
czertB_linear_lr_3e5_15_epochs_wd 83.0510
czertB_linear_lr_3e5_15_epochs_wd_wr 83.0046
czertB_linear_lr_3e5_10_epochs_wd 82.8246
czertB_linear_lr_2e5_10_epochs_wd 82.7206
czertB_linear_lr_3e5_20_epochs_wd 82.6186
czertB_linear_lr_3e5_20_epochs_wd_wr 82.4114

Table 6.11: Czert-B experiments results on CHNEC test split. Experiments are listed in
descending order.

RobeCzech PONER experiments

Since the PONER dataset was finished long after experiments above, experiment set in-
cluding PONER dataset is presented additionally here. Weight decay and warmup rate
proved to be insignificant and were omitted in experiments with RobeCzech on PONER
dataset. Learning rate of 3.e-5 also showed the best results, so the hyperparameter search
was limited to number of epochs. Again all datasets were concatenated and used together

47

during training and the model was evaluated separately on each dataset. The results are
listed in Table 6.12. PONER test split includes 50% of all dataset examples, in order to
show the model quality on historical documents. The PONER result can be judged as very
good, since the dataset contains more complicated and longer named entities. The CNEC
and CHNEC results are not affected by additional PONER dataset.

Exp name CNEC 2.0
test

CHNEC 1.0
test

PONER 1.0
test

linear_lr_3e5_10_epochs_poner 0.8861 0.8742 0.8695
linear_lr_3e5_15_epochs_poner 0.8854 0.8758 0.8690
linear_lr_3e5_20_epochs_poner 0.8833 0.8716 0.8705

Table 6.12: RobeCzech experiments results on all test splits including PONER.

Experiments conclusion

Extensive experiments were conducted with various models and datasets. RobeCzech con-
firmed its qualities among other BERT-like models. CNEC dataset results were never
matched by CHNEC, which was caused by size difference. A limit of the number of epochs
was found to be 10 or 15 epochs for all three models. Weight decay and warmup rate
proved to be insignificant for NER training and should be used for tasks with much bigger
datasets like Masked Language Modeling. Results on the PONER dataset can be regarded
as very good. Most importantly, new state-of-the-art results were achieved, outperforming
previous best results by 1.36% on CNEC and by 5.19% on CHNEC datasets.

6.2.2 Experiments with own Masked language models

The Masked Language models described in Section x were used for NER training. All 15
language models were used. Linear learning rate decay was used and AdamW 𝛽1 was set to
0.9 and 𝛽2 to 0.999. Batch size was increased to 32, as no memory problems occurred. With
insights gained during experiments with known models, learning rate was fixed to the value
3.e-5, weight decay and warmup rate hyperparameters were omitted. Due to high number
of experiments, the experiment configurations were generated by a script. Three different
dataset settings are used: CNEC + CHNEC, CNEC + CHNEC + PONER and PONER
only. To find suitable number of epochs, a search was performed. With the smallest (Tiny
model, 8 hidden layers, 128 hidden size and vocabulary 12k) and the largest (Big model, 8
hidden layers, 512 hidden size and vocabulary 52k) models, gradually several values were
tested until the experiment result stopped to benefit for extra epochs. Values of 20, 25,
30, 35, 40, 45, 50 and 55 were tried. 40 and 50 epochs were then chosen for experiments.
For each language model, configurations with 3 dataset settings and 2 different numbers
of epochs were created, in total 90 experiment configurations. All experiment results are
averaged over 3 runs.

The models achieve worse results than those in RobeCzech experiments, as was ex-
pected. Also, the size of vocabulary was an important factor. Training for more epochs
is necessary, because underlying language model was trained on less data than RobeCzech
and thus achieves worse language understanding. The models trained for 50 epochs clearly
shows better results. With the CNEC + CHNEC dataset setting, the best model achieved
79.9663 F1 on CNEC and 86.6073 F1 on CHNEC. With the CNEC + CHNEC + PONER

48

dataset setting, the best model achieved 81.0050 F1 on CNEC, 87.0109 F1 on CHNEC
and 84.0611 F1 on PONER. The CHNEC results are comparable to those in RobeCzech
experiments. There is a benefit from more data from PONER. With the CNEC + CHNEC
dataset setting, the best model achieved 83.2326 F1 on PONER.

49

Chapter 7

Conclusion

The goal of this thesis was to design, implement and experiment with a system for recog-
nition of named entities in historical documents text. I studied theoretical backgrounds of
Natural language processing, information extraction, language models, neural networks and
Transformers, together with Named entity recognition (NER) task and relevant datasets.

The theoretical backgrounds were used to design a NER system. This system is based
on masked language models trained on several NER datasets, notably Czech Named Entity
Corpus 2.0 and Czech Historical Named Entity Corpus 1.0. Creation of own datasets was
proposed. The system is intended to be included in PERO OCR project pipeline. PERO
OCR is an application for document digitalization. The NER system inputs will be OCR-
processed historical documents in text format. The outputs are recognized named entities,
their text spans and named entity types. To be able to compare with previous works, a
CHNEC named entity schema was adopted. In order to meet computation requirements,
smaller language model architectures were proposed.

Several own datasets were created. PERO OCR NER 1.0 is a new NER dataset created
from historical Czech chronicles. The dataset is comparable in size to Czech Named Entity
Corpus 2.0. This dataset can be used in future works and can be published. PERO
OCR Books and PERO OCR Periodicals are new text datasets created from books OCR
transcriptions and periodicals (newspapers, magazines) OCR transcriptions. These datasets
can be used to train a Masked Language model. Implemented training process is highly
configurable, allowing simple way to create, modify and reproduce experiments.

Extensive experiments were conducted. First, Masked Language models were trained
on own text datasets PERO OCR Books and PERO OCR Periodicals. Second, experiments
with several known Czech language models were performed and then own Masked Language
models were used for NER training. Experiments were evaluated on Czech Named Entity
Corpus 2.0, Czech Historical Named Entity Corpus 1.0 and PERO OCR NER 1.0 NER
datasets. New state-of-the-art results were achieved, outperforming previous best results
by 1.36% on Czech Named Entity Corpus 2.0 and by 5.19% on Czech Historical Named
Entity Corpus 1.0 datasets.

For future development, larger NER datasets would benefit the NER system perfor-
mance. More text data for Masked Language model training would also be beneficial.
Multilingual models instead of only Czech model are an option.

50

Bibliography

[1] Common Crawl [online]. Common Crawl Foundation [cit. 2023-07-26]. Available at:
https://commoncrawl.org/.

[2] Digitální archiv [online]. Státní oblastní archiv v Třeboni [cit. 2022-01-24]. Available
at: https://digi.ceskearchivy.cz/Uvod.

[3] Digitální archiv Zemského archivu v Opavě [online]. Zemský archiv v Opavě [cit.
2022-01-24]. Available at: https://www.archives.cz/web/digitalni_archiv/.

[4] Hugging Face [online]. Hugging Face, Inc. [cit. 2023-07-23]. Available at:
https://huggingface.co/.

[5] Institute of Formal and Applied Linguistics [online]. Faculty of Mathematics and
Physics, Charles University, Czech Republic [cit. 2022-01-22]. Available at:
https://ufal.mff.cuni.cz/.

[6] Language-detection-fine-tuned-on-xlm-roberta-base [online]. Hugging Face, Inc. [cit.
2023-07-26]. Available at: https:
//huggingface.co/ivanlau/language-detection-fine-tuned-on-xlm-roberta-base.

[7] MetaCentrum [online]. MetaCentrum [cit. 2023-07-23]. Available at:
https://metavo.metacentrum.cz/.

[8] Mit-b0 [online]. Hugging Face, Inc. [cit. 2023-07-26]. Available at:
https://huggingface.co/nvidia/mit-b0/.

[9] NLP group [online]. Department of Computer Science and Engineering, University of
West Bohemia, Czech Republic [cit. 2022-01-22]. Available at:
https://nlp.kiv.zcu.cz/.

[10] NVIDIA A40 [online]. Nvidia Corporation [cit. 2023-07-26]. Available at: https:
//images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf.

[11] Porta fontium [online]. Státní oblastní archiv v Plzni [cit. 2022-01-24]. Available at:
https://www.portafontium.eu/.

[12] Token classification [online]. Hugging Face, Inc. [cit. 2023-07-26]. Available at:
https://huggingface.co/course/en/chapter7/2?fw=pt.

[13] Training a causal language model from scratch [online]. Hugging Face, Inc. [cit.
2023-07-26]. Available at: https://huggingface.co/course/en/chapter7/6?fw=pt.

51

https://commoncrawl.org/
https://digi.ceskearchivy.cz/Uvod
https://www.archives.cz/web/digitalni_archiv/
https://huggingface.co/
https://ufal.mff.cuni.cz/
https://huggingface.co/ivanlau/language-detection-fine-tuned-on-xlm-roberta-base
https://huggingface.co/ivanlau/language-detection-fine-tuned-on-xlm-roberta-base
https://metavo.metacentrum.cz/
https://huggingface.co/nvidia/mit-b0/
https://nlp.kiv.zcu.cz/
https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf
https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf
https://www.portafontium.eu/
https://huggingface.co/course/en/chapter7/2?fw=pt
https://huggingface.co/course/en/chapter7/6?fw=pt

[14] WikiStats – List of Wikipedias [online]. [cit. 2022-01-13]. Available at:
https://wikistats.wmcloud.org/display.php?t=wp.

[15] Český národní korpus [online]. Ústav Českého národního korpusu [cit. 2022-01-13].
Available at: https://www.korpus.cz/.

[16] Alec Radford, T. S. and Sutskever, I. Improving Language Understanding by
Generative Pre-Training. In:. 2018.

[17] Arkhipov, M., Trofimova, M., Kuratov, Y. and Sorokin, A. Tuning
Multilingual Transformers for Language-Specific Named Entity Recognition.
In: Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing.
Florence, Italy: Association for Computational Linguistics, August 2019, p. 89–93.
DOI: 10.18653/v1/W19-3712. Available at: https://aclanthology.org/W19-3712.

[18] Bird, S., Klein, E. and Loper, E. Natural language processing with Python:
analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.“, 2009.

[19] Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. Enriching Word Vectors
with Subword Information. Transactions of the Association for Computational
Linguistics. Cambridge, MA: MIT Press. 2017, vol. 5, p. 135–146. DOI:
10.1162/tacl_a_00051. Available at: https://aclanthology.org/Q17-1010.

[20] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. et al.
Natural Language Processing (Almost) from Scratch. Journal of Machine Learning
Research. february 2011, vol. 12, p. 2493–2537.

[21] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G. et al.
Unsupervised Cross-lingual Representation Learning at Scale. 2020.

[22] Devlin, J., Chang, M., Lee, K. and Toutanova, K. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. CoRR. 2018,
abs/1810.04805. Available at: http://arxiv.org/abs/1810.04805.

[23] Gupta, S. Named Entity Recognition: Applications and Use Cases [online]. February
2018 [cit. 2022-01-22]. Available at: https://towardsdatascience.com/named-entity-
recognition-applications-and-use-cases-acdbf57d595e.

[24] Hinton, G., Vinyals, O. and Dean, J. Distilling the Knowledge in a Neural
Network. 2015.

[25] Huang, Z., Xu, W. and Yu, K. Bidirectional LSTM-CRF Models for Sequence
Tagging. ArXiv. 2015, abs/1508.01991.

[26] Hubková, H. and Kral, P. Transfer Learning for Czech Historical Named Entity
Recognition. In: Proceedings of the International Conference on Recent Advances in
Natural Language Processing (RANLP 2021). Held Online: INCOMA Ltd.,
September 2021, p. 576–582. Available at:
https://aclanthology.org/2021.ranlp-main.65.

[27] Hubková, H., Kral, P. and Pettersson, E. Czech Historical Named Entity
Corpus v 1.0. In: Proceedings of the 12th Language Resources and Evaluation
Conference. Marseille, France: European Language Resources Association, May 2020,

52

https://wikistats.wmcloud.org/display.php?t=wp
https://www.korpus.cz/
https://aclanthology.org/W19-3712
https://aclanthology.org/Q17-1010
http://arxiv.org/abs/1810.04805
https://towardsdatascience.com/named-entity-recognition-applications-and-use-cases-acdbf57d595e
https://towardsdatascience.com/named-entity-recognition-applications-and-use-cases-acdbf57d595e
https://aclanthology.org/2021.ranlp-main.65

p. 4458–4465. ISBN 979-10-95546-34-4. Available at:
https://aclanthology.org/2020.lrec-1.549.

[28] Kodym, O. and Hradiš, M. Page Layout Analysis System for Unconstrained
Historic Documents. 2021.

[29] Konkol, M. and Konopík, M. CRF-Based Czech Named Entity Recognizer and
Consolidation of Czech NER Research. In: Habernal, I. and Matoušek, V.,
ed. Text, Speech, and Dialogue. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
p. 153–160. ISBN 978-3-642-40585-3.

[30] Li, J., Sun, A., Han, R. and Li, C. A Survey on Deep Learning for Named Entity
Recognition. IEEE Transactions on Knowledge and Data Engineering. march 2020,
PP, p. 1–1. DOI: 10.1109/TKDE.2020.2981314.

[31] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M. et al. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. 2019. Available at:
http://arxiv.org/abs/1907.11692.

[32] Liu, Z., Lin, Y. and Sun, M. Word Representation. In: Representation Learning for
Natural Language Processing. Singapore: Springer Singapore, 2020, p. 13–41. DOI:
10.1007/978-981-15-5573-2_2. ISBN 978-981-15-5573-2. Available at:
https://doi.org/10.1007/978-981-15-5573-2_2.

[33] Marcińczuk, M. and Oleksy, M. Inforex — a Collaborative Systemfor Text
Corpora Annotation and Analysis Goes Open. In: Proceedings of the International
Conference on Recent Advances in Natural Language Processing (RANLP 2019).
Varna, Bulgaria: INCOMA Ltd., September 2019, p. 711–719. DOI:
10.26615/978-954-452-056-4_083. Available at:
https://www.aclweb.org/anthology/R19-1083.

[34] Marek, P., Müller, Š., Konrád, J., Lorenc, P., Pichl, J. et al. Text
Summarization of Czech News Articles Using Named Entities. Prague Bulletin of
Mathematical Linguistics. Charles University in Prague, Karolinum Press. Apr 2021,
vol. 116, no. 1, p. 5–26. DOI: 10.14712/00326585.012. ISSN 0032-6585. Available at:
http://dx.doi.org/10.14712/00326585.012.

[35] Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E. et al. Mixed
Precision Training. 2018.

[36] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. and Dean, J. Distributed
Representations of Words and Phrases and Their Compositionality. In: Proceedings
of the 26th International Conference on Neural Information Processing Systems -
Volume 2. Red Hook, NY, USA: Curran Associates Inc., 2013, p. 3111–3119.
NIPS’13.

[37] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019, p. 8024–8035.
Available at: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf.

53

https://aclanthology.org/2020.lrec-1.549
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/978-981-15-5573-2_2
https://www.aclweb.org/anthology/R19-1083
http://dx.doi.org/10.14712/00326585.012
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[38] Pennington, J., Socher, R. and Manning, C. GloVe: Global Vectors for Word
Representation. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, October 2014, p. 1532–1543. DOI: 10.3115/v1/D14-1162.
Available at: https://aclanthology.org/D14-1162.

[39] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C. et al. Deep
Contextualized Word Representations. In: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, June 2018, p. 2227–2237. DOI:
10.18653/v1/N18-1202. Available at: https://aclanthology.org/N18-1202.

[40] Piskorski, J., Laskova, L., Marcińczuk, M., Pivovarova, L., Přibáň, P. et al.
The Second Cross-Lingual Challenge on Recognition, Normalization, Classification,
and Linking of Named Entities across Slavic Languages. In: Proceedings of the 7th
Workshop on Balto-Slavic Natural Language Processing. Florence, Italy: Association
for Computational Linguistics, August 2019, p. 63–74. Available at:
https://www.aclweb.org/anthology/W19-3709.

[41] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. et al. Language Models
are Unsupervised Multitask Learners. In:. 2019. Available at:
https://api.semanticscholar.org/CorpusID:160025533.

[42] Ruder, S. NLP-progress: Named entity recognition [online]. [cit. 2022-01-12].
Available at: http://nlpprogress.com/english/named_entity_recognition.html.

[43] Samuel, D., Kutuzov, A., Øvrelid, L. and Velldal, E. Trained on 100 million
words and still in shape: BERT meets British National Corpus. 2023.

[44] Sanh, V., Debut, L., Chaumond, J. and Wolf, T. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. 2020.

[45] Sennrich, R., Haddow, B. and Birch, A. Neural Machine Translation of Rare
Words with Subword Units. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Berlin,
Germany: Association for Computational Linguistics, August 2016, p. 1715–1725.
DOI: 10.18653/v1/P16-1162. Available at: https://aclanthology.org/P16-1162.

[46] Ševčíková, M., Žabokrtský, Z. and Krůza, O. Named Entities in Czech:
Annotating Data and Developing NE Tagger. In: Matoušek, V. and Mautner, P.,
ed. Lecture Notes in Artificial Intelligence, Proceedings of the 10th International
Conference on Text, Speech and Dialogue. Berlin / Heidelberg: Springer, 2007, vol.
4629, XVII, p. 188–195. Lecture Notes in Computer Science. ISBN
978-3-540-74627-0.

[47] Ševčíková, M., Žabokrtský, Z., Straková, J. and Straka, M. Czech Named
Entity Corpus 2.0. 2014. LINDAT/CLARIAH-CZ digital library at the Institute of Formal
and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.
Available at: http://hdl.handle.net/11858/00-097C-0000-0023-1B22-8.

54

https://aclanthology.org/D14-1162
https://aclanthology.org/N18-1202
https://www.aclweb.org/anthology/W19-3709
https://api.semanticscholar.org/CorpusID:160025533
http://nlpprogress.com/english/named_entity_recognition.html
https://aclanthology.org/P16-1162
http://hdl.handle.net/11858/00-097C-0000-0023-1B22-8

[48] Sharnagat, R. Named Entity Recognition: A Literature Survey [online]. 2014.
Available at:
https://www.cfilt.iitb.ac.in/resources/surveys/rahul-ner-survey.pdf.

[49] Sido, J., Pražák, O., Přibáň, P., Pašek, J., Seják, M. et al. Czert – Czech
BERT-like Model for Language Representation. 2021.

[50] Straka, M., Mediankin, N., Kocmi, T., Žabokrtský, Z., Hudeček, V. et al.
SumeCzech: Large Czech News-Based Summarization Dataset. In: Proceedings of the
Eleventh International Conference on Language Resources and Evaluation (LREC
2018). Miyazaki, Japan: European Language Resources Association (ELRA), May
2018. Available at: https://aclanthology.org/L18-1551.

[51] Straka, M., Náplava, J., Straková, J. and Samuel, D. RobeCzech: Czech
RoBERTa, a Monolingual Contextualized Language Representation Model. In: 24th
International Conference on Text, Speech and Dialogue. Cham, Switzerland:
Springer, 2021, p. 197–209. ISBN 978-3-030-83526-2.

[52] Straková, J., Straka, M. and Hajič, J. Neural Architectures for Nested NER
through Linearization. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Florence, Italy: Association for Computational
Linguistics, July 2019, p. 5326–5331. DOI: 10.18653/v1/P19-1527. Available at:
https://aclanthology.org/P19-1527.

[53] Tjong Kim Sang, E. F. and De Meulder, F. Introduction to the CoNLL-2003
Shared Task: Language-Independent Named Entity Recognition. In: Proceedings of
the Seventh Conference on Natural Language Learning at HLT-NAACL 2003. 2003,
p. 142–147. Available at: https://aclanthology.org/W03-0419.

[54] Tkachenko, M., Malyuk, M., Holmanyuk, A. and Liubimov, N. Label Studio:
Data labeling software. 2020-2022. Open source software available from
https://github.com/heartexlabs/label-studio. Available at:
https://github.com/heartexlabs/label-studio.

[55] Turc, I., Chang, M.-W., Lee, K. and Toutanova, K. Well-Read Students Learn
Better: On the Importance of Pre-training Compact Models. 2019.

[56] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L. et al. Attention
Is All You Need. 2017.

[57] Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M. et al. SegFormer:
Simple and Efficient Design for Semantic Segmentation with Transformers. CoRR.
2021, abs/2105.15203. Available at: https://arxiv.org/abs/2105.15203.

[58] Yamada, I., Asai, A., Shindo, H., Takeda, H. and Matsumoto, Y. LUKE: Deep
Contextualized Entity Representations with Entity-aware Self-attention.
In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Online: Association for Computational Linguistics, November
2020, p. 6442–6454. DOI: 10.18653/v1/2020.emnlp-main.523. Available at:
https://aclanthology.org/2020.emnlp-main.523.

55

https://www.cfilt.iitb.ac.in/resources/surveys/rahul-ner-survey.pdf
https://aclanthology.org/L18-1551
https://aclanthology.org/P19-1527
https://aclanthology.org/W03-0419
https://github.com/heartexlabs/label-studio
https://arxiv.org/abs/2105.15203
https://aclanthology.org/2020.emnlp-main.523

	Introduction
	Information extraction
	Distributed word representations
	Language modeling
	Named entity recognition
	Metrics and evaluation

	Datasets
	Historical content
	CoNLL-2003
	Czech NER datasets

	Named entity recognition system design
	Challenges
	Current state
	Input data
	Used datasets
	Model architecture and training

	Implementation
	Named Entity Recognition models
	Datasets
	Masked language models

	Experiments
	Masked Language Modeling
	Named Entity Recognition

	Conclusion
	Bibliography

