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Abstract 

Constitutive modelling of fibre reinforced solids is the focus of this work. To account for the 

resulting anisotropy of material, the corresponding strain energy function contains additional 

terms. Thus, tensile stiffness in the fibre direction is characterised by additional strain invariant 

and respective material constant. In this way deformation in the fibre direction is penalised. 

Following this logic, the model investigated in this work includes the term that penalises 

change in curvature in the fibre direction. The model is based on the large strain anisotropic 

formulation involving couple stresses, also referred to as "polar elasticity for fibre reinforced 

solids". The need of such formulation arises when the size effect becomes significant. 

Mechanical tests are carried out to confirm the limits of applicability of the classical 

elasticity for constitutive description of composites with thick fibres. Classical unimaterial 

models fail to take into account the size affect of fibres and their bending stiffness contribution. 

The specific simplified model is chosen, which involves new kinematic quantities related 

to fibre curvature and the corresponding material stiffness parameters. In particular, additional 

constant (associated with the fibre bending stiffness) is considered. Within the small strains 

framework, ks is analytically linked to the geometric and material properties of the composite 

and can serve as a parameter augmenting the integral stiffness of the whole plate. The numerical 

tests using the updated finite element code for couple stress theory confirm the relevance of this 

approach. 

An analytical study is also carried out, extending the existing solution by Farhat and 

Soldatos for the fibre-reinforced plate, by including additional extra moduli into constitutive 

description. 

Solution for a pure bending problem is extended analytically for couple stress theory. Size 

effect of fibres is observed analytically. 

Verification of the new constitutive model and the updated code is carried out using new 

exact solution for the anisotropic couple stress continuum with the incompressibility constraint. 

Perfect agreement is achieved for small strain case. Large strain problem is considered by finite 

element method only qualitatively. 

Three cases of kinematic constraints on transversely isotropic material are considered in the 

last section: incompressibility, inextensibility and the double constraint case. They are compared 

with a general material formulation in which the independent elastic constants are manipulated in 

order to converge the solution to the "constraint" formulation solution. The problem of a thick 

plate under sinusoidal load is used as a test problem. The inclusion of couple stresses and 

additional bending stiffness constant is considered as well. The scheme of determination of the 
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additional constant d.31 is suggested by using mechanical tests combined with the analytical 

procedure. 

Key words: fibre-reinforced materials, fibre bending stiffness, hyperelasticity, constitutive 

modelling, polar elasticity 
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1. Introduction 

Fibre reinforced composite materials are widely used especially in automotive and aerospace 

industries. In particular, fibre-reinforced rubber is being used in pneumatic tyres, air springs, 

tubing and belt structures. In contrast to composites used for components of car or aircraft 

bodies, the main load bearing component of a tyre (i.e. body of a tyre) consists of layers of fibres 

embedded in rubber called plies. A radial-ply tyre contains belts of relatively inextensible fibres 

running in the circumferential direction under the tread of the tyre [1]. This construction 

reinforces the tyre and prevents rubber from excessive stretching. Metal, polymer or textile cords 

are being used in tyre plies. In particular, commercial vehicle tyres typically contain layers of 

steel fibres. Naturally, the orientation of the plies and fibre directions affect the performance of 

the tire. 

Effective properties of a composite are generally influenced by the properties of 

constituents, volume fraction and directions of fibres, and quality of adhesion between rubber 

and fibres. Strength and stiffness in the preferred direction of the composite relate to properties 

of fibres, while properties of matrix determine material strength under shear, compression, 

tension perpendicularly to the fibres, and resistance of the composite to fatigue. 

From the mechanical point of view, a tyre belt is made of a heterogeneous, anisotropic, 

nearly incompressible hyperelastic material consisting of a compliant matrix reinforced by fibres 

being several orders stiffer. While for textile fibres their bending stiffness is negligible, for steel 

fibres, especially if the fibre consists of one wire only with its diameter comparable with the 

thickness of the layer, the bending stiffness of individual fibres contributes significantly to the 

overall bending stiffness of the composite. This fact represents an additional challenge in terms 

of evaluation of effective properties and response of the heterogeneous structure. It is therefore 

of both practical and theoretical interests to develop a relevant anisotropic homogeneous model 

which takes both tensile and bending stiffness of fibres into consideration and is suitable large 

strain applications. 

In the present work, fibres in the composite are regarded as slender beams embedded in the 

nonlinear or linear elastic matrix. Employing the kinematics and general constitutive formulation 

presented in [2] and some newer findings [3], [4], [5], [6], [1], [8], [9] the author investigates a 

homogeneous model taking both tensile and bending stiffness contributed by fibres into account. 

The effect of individual fibres is "smeared - out" so that the bending stiffness of the 

homogeneous model simulates bending behaviour of the real heterogeneous structure. 
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1.1. Goals of the thesis 

The broad objective of the thesis is to extend the existing research concerning constitutive 

modelling of the fibre-reinforced materials with elastomer matrix with the use of couple stress 

theory. In this objective the following issues are included: 

realization of mechanical tests to illustrate the limits of applicability of the classical large 

strain elasticity for constitutive description of composites with thick fibres; 

choice of the strain energy density model on the basis of polar elasticity theory; 

new analytical solutions for polar elasticity or the extension of existing ones; 

modification of FEM formulation; 

verification of FE solutions for some analytically solvable problems; 

theoretical study of the additional elastic constants and their influence. 

In the following chapter the works done on these issues are specified in greater detail. 

1.2. Structure and order of the thesis 

a) literature review about existing approaches to modelling of composite materials under 

large strains, in particular fibre-reinforced elastomers. 

b) mechanical tests with the steel fibre-reinforced rubber specimens; their discrepancies 

with the simulation results and assessment of the causes. 

c) recapitulation of the simplified approach to the effective constants derivation for 

composites; extension of this approach to include fibre size effect. 

d) formulation of the polar constitutive model on the basis of [2] that includes specifically 

fibre bending mode deformation, disregarding splay mode and torsion; modification of 

the finite element code by Lasota [3] to incorporate additional invariant; examination of 

influence of the additional material parameter; proposal of a scheme to define its value 

for linear elastic case; test the solution to bending problem of the composite plate with 

inclined fibres. 

e) precise verification of the aforementioned code by simulating the analytically solvable 

anisotropic polar elasticity problem for small strains; qualitative test of the code for large 

strains case. 

f) literature search for analytic solutions for the linearised polar theory for fibre reinforced 

solids; additional complementary calculations; 

g) plane strain linear problems that illustrate influence of fibre presence in bending 

h) incompressibility and fibre inextensibility constraints; addition of the intrinsic anisotropic 

bending stiffness into the model; mathematical convergence of the models by 

manipulating certain parameters. 
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2. State of the art 

In general, the fibre composite described above can be modelled in two ways. The first way 

implies explicit geometrical modelling of (linear elastic) fibres embedded in the (hyperelastic or 

even non-elastic) matrix. In accordance with Lasota [7], such models will be referred to as 

"bimaterial models" in this proposal. Even for relatively simple composite materials such as steel 

wire reinforced rubber, this approach is prohibitively expensive in computer time due to large 

number of fibres and consequently a large number of finite elements required for their real 

geometric models. Alternatively, a so called "unimaterial" model can be employed - it is based 

on geometry of the whole composite body only (without distinguishing its structural details) and 

includes phenomenological anisotropic constitutive model. The effect of tensile stiffness 

contributed by fibres is included mathematically into constitutive equations. Such model is 

computationally advantageous, but its application is limited, as will be explained further. In both 

models, constitutive parameters of rubber are based on various types of uniaxial and biaxial tests 

[9]. 

The use of phenomenological anisotropic models started with Spencer [11]. Anisotropic 

hyperelastic models typically include strain-energy density as a function of strain invariants with 

some of the invariants depending on the unit vector (vectors) of the reference fibre direction [11] 

[13], [12], [15]. In this way an intrinsic assumption of infinitesimally thin, densely and uniformly 

distributed fibres is implied, leading to their zero bending stiffness. The closer the composite 

structure is to these assumptions, the better agreement can be provided by the model. Such 

unimaterial finite strain models have been successfully employed for modelling of rubber 

reinforced by thin textile or carbon fibres [16], [17], [18], [19], [20], [5], [14]. However, these 

models fail if fibres are made (e.g.) of steel, and their bending stiffness may become relevant, 

especially in the case of steel wires; when multifibre ropes are used instead, their bending 

stiffness is lower but unfortunately hardly quantifiable. In general, these models are not 

applicable if the characteristic length scale of non-homogeneity is comparable with dimensions 

of the specimen [22] and so called size effects arise. It is often the case when microscale 

problems [23], [24], [25],[26], [27], [28], [29] or composite materials [22], [30], [31], [33] are 

considered. The applied classical Cauchy continuum theory is not able to account for the 

influence of the characteristic size of substructure on material behaviour. 

In order to deal with the presence of size effects, non-classical continuum mechanics 

theories are typically employed. There are two classes of generalized continuum theories: higher-

grade and higher-order theories [34]. In brief, higher-grade theories employ higher order 

gradients of the displacements, while higher-order continuum theories include additional 
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kinematic variables attached to the material point. In particular, Cosserat theory [35], [36] (also 

known as micropolar) adds independent rotational degrees of freedom to the classical 

continuum; a detailed review and bibliography of this theory can be found e.g. in Altenbach [33]. 

Phenomenological generalised continuum theories present an alternative to the explicit 

geometrical modelling of microstructure. The most general case of higher-order continuum is the 

so called micromorphic theory [37], in which material point possesses 9 additional degrees of 

freedom (three micro-rotations and six components of micro-strain tensor). Cosserat continuum 

[35] represents a simpler approach endowing each material point with the independent rotational 

degrees of freedom (without the micro-strain tensor). In this case the stress tensor is non-

symmetric and, in addition, the couple stresses are present in the equilibrium equations. The 

models within this approach were developed, among others, by Eringen and Suhubi [39], [40], 

[41], and are known as micropolar elasticity models. The couple stress theory [42], [43], [44], 

[45] can be considered as a special case of the micropolar theory. In the CST rotations of the 

material point are not independent kinematic variables, but derived from the displacement field 

in a conventional way. 

In this work the focus is on the fibre reinforced materials with one family of fibres -

transversely isotropic material, generally hyperelastic. For such solids with the size effects 

related to the bending stiffness, a new constitutive framework using CST was developed by 

Spencer and Soldatos in 2007 [2]. The authors intended the model to represent the behaviour of 

the fibre reinforced elastomers when the fibre thickness is comparable with the lowest lateral 

dimension of the specimen. Constitutive formulation is mathematically based on the notion of 

deformed fibre curvature, in addition to invariants of the deformation gradient. The introduced 

theoretical framework allows taking into account the contribution of the individual fibres to the 

bending stiffness of composite by employing the continuum capable of bearing couple stresses. 

A subsequent progress in that area was made by Soldatos [46], [46], [48]. This is the framework 

adopted in the present work. 

The latest contribution by Farhat et al [1] should be mentioned as well; it deals with some 

important analytical solutions within the linear polar elasticity for fibre-reinforced solids. 

Adopting the framework of Spencer and Soldatos, Lasota [3] develops a finite element 

formulation and implementation aimed at solving large strain polar elasticity problems. He also 

proposes a specific simplified strain energy description. 

Various finite element formulations for generalised continuum theories were presented in 

the literature in the last years. Two-dimensional formulations of the linear micropolar theory are 

proposed in [49], [50], [51], [52]. Planar elements for micropolar elastoplasticity are introduced 
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in [53], [54] and (within the micromorfic theory) in [55],[55]. Three-dimensional formulations 

are developed in [56], [57], [58] for micropolar and in [59] for micromorphic framework. 

Within the CST framework, linear elastic [60], [61], [62] and elastoplastic [63] 

formulations can be mentioned in a non-exhaustive list. Among them, [60] and [62] are of our 

special interest since they represent two possible finite element approaches to CST: a 

straightforward displacement based approach and an alternative penalty approach. The former 

approach implies the use of C1 continuity elements [62] (based on continuity of displacements 

and their derivatives) due to the presence of second-order derivatives of displacements in the 

main equations. Such approach is chosen in the present work as well. The latter approach applies 

CO continuity elements while introducing rotations as independent variables and then imposing 

the rotation/displacement dependency as constraint using Lagrange multipliers [60]. 

With the exception of [49], all the aforementioned models do not include anisotropy, and only 

one formulation [58] is fully non-linear and three-dimensional. 

The aim of the present work is to progress further in understanding and application of the 

polar elasticity and hyperelasticity for fibre-reinforced solids. The emphasis is on verification 

and enhancement of both the constitutive model and its FEM implementation. 
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3. Preliminary study: specimens with thick fibres 

In this section, experiments and computational simulations for the specimens with comparatively 

thick fibres are described. Results and overview presented in this section were published earlier 

in [5]. 

While material properties of most fibre composites are linear elastic and the theory of 

linear elasticity is well known and widely used for any types of anisotropic materials under small 

strain conditions, large strains induced in elastomers make the stress-strain analyses much more 

difficult and not yet fully managed. Although first applicable isotropic hyperelastic models were 

formulated in the forties and fifties of the last century [64], [65], their broader practical 

application has not started before the nineties, when the power of computers has enabled to solve 

more complex non-linear problems. However, there is still a lack of criteria for assessment of the 

risk of failure of isotropic elastomers [66] , [67], [67]. 

Even more difficulties arise when anisotropy is to be added to the theory as in the case of 

fibre reinforced elastomers. Constitutive formulations for strongly anisotropic solids [68], [69], 

[69] are being widely used and implemented into commercial finite element packages. 

Experience with their practical application in hyperelasticity cases and with identification of 

their parameters is not sufficient. This section presents results of simulations of basic mechanical 

tests of fibre composites with elastomer matrix using FEM and their experimental validation. 

The experiments and computational simulations of composite material with hyperelastic 

matrix and steel fibres carried out in the work of Lasota and Bursa [7] brought motivation for the 

following tests and computations. Two computational models of different levels are used for the 

simulations. The first one is the bimaterial model, which includes 3D geometry modelling of 

both matrix and fibres. The second one is the unimaterial model in which the fibre and matrix 

materials are not distinguished, but the reinforcing effect of fibres is described by an anisotropic 

hyperelastic constitutive model with polynomial strain energy density function. The simulations 

show that both models give nearly the same results in case of tension tests, while in case of 

bending tests the results differ substantially: the unimaterial model was unsuccessful, the 

discrepancy with the test was around 50 %. The authors assumed that the reason of this 

discrepancy is that the unimaterial model did not incorporate bending stiffness of the reinforcing 

fibres but their tensile stiffness only. In order to verify this suggestion, the following tests were 

carried out for the rubber specimens reinforced with textile fibres. Given that the textile fibres 

are perfectly flexible, the expectation is that the unimaterial model will give better agreement 

with bending experiments; this is described in the next paragraphs. 
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3.1. Experimental methods 

Uniaxial tension tests of composite specimens with a rubber matrix and single family of textile 

fibres in the middle layer of the specimen are carried out. Four groups of specimens with 

different declination of fibres were tested: 0°, 30°, 45°, 90°. All the specimens had dimensions 

approximately 110x22x2.5 mm and diameter of the fibres 0.8 mm. All the specimens were 

loaded in cycles with different amplitudes to evaluate Mullins effect [71]. The upper extreme 

value of total elongation of the specimen is nearly 20 mm, with the exception of 0° declination 

(longitudinal fibres), where the elongation had to be several times lower because of the much 

higher stiffness of the specimen. Tension tests were realized using universal testing machine 

ZWICK Z020-TND. Elongation in the middle region of the specimen was recorded by 

extensometers (Fig. 3.1); the distance between extensometer levers was 20 mm. 

A particular feature of the tension tests with specimens with declined fibres is that the 

dimensions of specimens strongly affect the results. Stress-strain curves would be different for 

the specimens with the same angle of declination but different width to length ratio. Due to the 

technical limitations of the experiment, longer specimens could not be used. It means that the 

regions of the specimen that contain fibres clamped on one edge affect the results drastically. 

The size of the region that contains only fibres free on the both ends is similar to that of the 

boundary regions with clamped fibres. 

Fig. 3.1. Tension test of fibre Fig. 3.2. Bending test of fibre 
composite with rubber matrix composite with rubber matrix 

Bending tests were realized also with the ZWICK testing machine as a three point bending. 

Also pure rubber specimens were tested. Specimens had dimensions approximately 60x20x2.5 

mm and diameter of the fibres approximately 0.8 mm. The distance between supports was 50 

mm. 
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During the test each specimen was placed in the test preparation and pushed against its 

middle part (Fig. 3.2). The dependency between the force and the middle deflection was 

recorded. 

Experiments with pure rubber were carried out as well in order to determine material 

constants for the chosen hyperelastic potential of the matrix. They included uniaxial and 

equibiaxial tension tests of rubber specimens. As the parameters of the textile fibres are rather 

uncertain and were not known, their stiffness was identified on the basis of the tension test of the 

composite specimen with fibres in longitudinal direction. 

3.2. Methods of computational simulations 

Material of the specimens shows large strains and incompressibility (due to rubber) and a 

substantial anisotropy (due to fibres). 

Rubber matrix of the specimen is characterized by large reversible deformations. Its 

behaviour is approximated as so called hyperelastic. Constitutive modelling in this case is based 

on the concept of strain energy density function (strain energy potential). Strain energy potential 

has to be a function of the strain measures and satisfy certain mathematical requirements such as 

continuity and polyconvexity. Stress-strain relations are derived from this potential. Commonly, 

the strain energy potential for isotropic hyperelastic material is based on strain invariants. 

For rubber-like materials, a phenomenological polynomial form of the strain energy density 

W is widely used. Its isovolumic part is based on the first and second deviatoric invariants /; and 

h and volumetric part on the third invariant J = X1X2X3 representing the volume ratio; it is given 

by the following formula: 

W = -3J(I2-3)J

 +±J-(j-lYk , (3.1) 
i+j=i k=i a k 

where cij, dk are material parameters. 

In our case, given that the local tensile strains do not exceed 40% in all tests, the simplest 

neo-Hooke model can be used for rubber matrix: 

W = ̂ (l1-3)+Uj-3f, (3.2) 
2 a 

2 2 2 

where l1 = X1 +A2 +A3 — first invariant of the right Cauchy-Green deformation tensor. 
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To model the behaviour of the given specimens, we need to account for the material 

anisotropy. As the specimens contain one family of fibres, they have a single preferred direction. 

In this direction the stiffness of the material is defined by the stiffness of fibres. The fibres are 

uniformly distributed not throughout the thickness but only in the middle layer of the specimen 

(with approximately constant spacing). Continuum approach based on assumption of affine 

deformation, i.e. perfect bonding between matrix and fibres, will be used for constitutive 

modelling. It takes into account contribution of both constituents: fibres and rubber. 

Specimens for bending simulations were modelled using a three-layer model with the 

middle layer being anisotropic hyperelastic and two others being isotropic hyperelastic. In 

contrast, specimens for tension simulations (with the exception of 0 deg. case) were modelled as 

homogeneous, using anisotropic hyperelastic material model. It has been proved that for uniaxial 

tension both the models gave the same results for all fibre declinations except for 0°. In this case 

all fibres are clamped between jaws on both ends which makes the specimen much stiffer and the 

deformation of the rubber layer between the jaws and the middle layer reinforced with fibres 

becomes decisive. Therefore the same three-layer model as for bending was used for tension 

with longitudinal fibres. 

Strain energy potential used for anisotropic hyperelastic materials consists of isotropic and 

anisotropic parts. The anisotropic part includes strain invariant I\\ 

I4 = ACA , (3.3) 

where A is unit vector characterising the preferred direction in the undeformed configuration 

and C is right Cauchy-Green deformation tensor, given by squared stretch ratios in the principal 

coordinate system: 

C 

f % 0 0 ^ 
0 A2

2 0 
2 
J 

0 0 % 
(3.4) 

If X Y coordinate plane coincides with the specimen's middle plane, the fibre vector has 

coordinates (cos a, sin a,6) where a defines the fibre declination angle. Accordingly, invariant U 

(representing stretch of fibres) is given by: 

I4 = A] cos2 cc + ?i2 sin2 a. (3.5) 

Anisotropic hyperelastic strain energy potential (volume-preserving part) can be given by 

polynomial form: 
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W = fjai(ll-3)i

+fjbj{l2-3)J + i> t ( / 4 - l )* • (3.6) 
i=l ;'=1 4=2 

Constants for potential (3.6) are being determined from the characteristics of constituents 

(rubber and fibres). 

The isotropic part of potential (3.6) can be set in the form of neo-Hooke model for an 

incompressible rubber: 

W K O = | ( / ; - 3 ) . (3.7) 

Material constant JU for rubber was determined on the basis of the stress-strain curves 

obtained from two sets of experiments: uniaxial tension and equibiaxial tension of rubber 

specimens. Approximation of response curves was performed employing the least squares 

method. 

The anisotropic part of potential (6) reflects the characteristics of composite in the preferred 

direction. It was set as follows: 

Wa=c2(l4-1)2. (3.8) 

Consequently, potential (6) acquires the form 

W = | ( / 1 - 3 ) + c 2 ( / 4 - l ) 2 . (3.9) 

The recent studies of our team on specimens with steel fibres [7] have shown substantial 

discrepancies between the computational and experimental results. There were two main reasons 

identified by the authors: first, the anisotropic hyperelastic constitutive model used could not 

account for the bending stiffness of steel fibres and second, the presence of Mullins effect in 

rubber. Therefore in the present study textile fibres (with zero bending stiffness) and rubber with 

low Mullins effect are used, thus minimizing the possible causes of errors. 

Specific type of rubber was chosen on the basis of preliminary uniaxial tension tests with 

different rubbers used typically for production of car tyres. From its loading and unloading 

curves it is clear that Mullins effect does not exceed 10 % of engineering stress for this type of 

rubber. Consequently, its influence on the results was neglected in this study. 

3.3. Results and discussion 

In this section results of experiments and the corresponding computational simulations are 

presented. 
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3.3.1. Uniaxial tension 

The figures below present results of uniaxial tension tests and their simulations. In all the figures 

the abscissa represents elongation of the middle part of the specimen with original length of 20 

mm. Tests were carried out with three groups of specimens: two specimens with 0° fibre 

declination, three specimens with 45° fibre declination and five specimens with the declination 

of 90°. Material constants used in Eq. (3.9) were set as follows: JU = 1,2 MPa, C2 = 60 MPa. While 

the simulations have been done only under monotonous loading (without unloading), all the 

experiments were carried out in several cycles so that some amount of hysteresis and Mullins 

effect can be seen. 

specimen 1 
specimen 2 
specimen 3 
specimen 4 
specimen 5 

0 2 4 6 simulation 

Middle stretch [mm] 

Fig. 3.3. Results of the tension test and its simulation for 90° declination of fibres. 

specimen 8 
specimen 6 
simulation 
specimen 7 

Middle stretch [mm] 

Fig. 3.4. Results of the tension test and its simulation for 45° declination of fibres. 
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—specimen 13 
—simulation 
—specimen 15 

2 

Fig. 3.5. Results of the tension test and its simulation for 0° declination of fibres. 

As it was shown in [7], the bimaterial model (which includes models of geometry of both matrix 

and fibres) can be successfully replaced with the unimaterial one in the case of tension load. It 

results in a substantial reduction of computational time. 

It is evident from Fig. 3.3-3.5 that simulations are in good agreement with the tests for all 

fibre declinations. The case of 0° fibre declination needs a particular explanation of the 

experimental and computationally obtained curves presented in Fig. 3.5 . The specimen was 

modelled as a three-layer sandwich with upper and bottom rubber layers (using the isotropic 

hyperelastic potential) and a fibre-reinforced middle layer (using the potential (3.9)). The 

specimen elongation during the experiment is mainly due to the shear in rubber layers between 

the jaws. The aim of numerical simulation was to determine material constant C2 representing the 

stiffness of fibres in (3.9). The potential (3.9) was employed in the computational model; 

accordingly, constant C2 was varied until an acceptable agreement between the simulation and 

the experimental response was reached. 

Different situation occurs when the fibres clamped on both ends absent (due to the 

geometry of specimen and angle of fibre declination). The value of C2 can be set very high, for 

only shear strain in matrix is substantial, not the fibre elongation. A very high C2 corresponds to 

almost inextensible fibres. If no fibres are clamped on both specimen ends in the experiment, the 

overall elongation of the specimen occurs almost purely due to shear in the matrix between the 

inclined fibres. So in this case the behaviour of fibre composite is almost identical with the 

response of that with inextensible fibres. 

3.3.2. Results of bending simulations 
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The figures below present results of bending tests and their simulations. The tests were carried 

out with three groups of three specimens each: for 45° and 90° declination of fibres and for pure 

rubber. The same material parameters were set as for the tension test simulations. 

'specimen 6 

•simulation 

'specimen 4 

•specimen 5 

(J 5 10 
Deflection [limi] 

15 

Fig. 3.6. Results of the bending test and its simulation for 45° declination of fibres. 

—simulation 
specimen 7 

—specimen 8 
—specimen 9 

5 10 
Deflection [mm] 

Fig. 3.7. Results of the bending test and its simulation for 90° declination of fibres. 

0 
"i r 
5 10 

Deflect ion LnmiJ 

15 

—simulation 
—specimen 10 
—specimen 11 
—specimen 12 

Fig. 3.8. Results of the bending test and its simulation. Specimens made of pure rubber. 
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In contrast with the previous chapter, for bending tests simulations the value of C2 shows a 

great influence on the results. As it was expected, the stiffening effect of the fibres with 90° fibre 

declination is negligible (also, the results for these specimens are very close to those obtained for 

pure rubber). 

As a result of the tests and simulations carried out it is verified that anisotropic hyperelastic 

constitutive model (in polynomial form) is able to simulate credibly results of tension and 

bending tests of fibre composites showing large strains under the following conditions: elastomer 

matrix shows negligible Mullins effect; bending stiffness of fibres is negligible. This result 

supports the earlier suggestion that in the case of not infinitely thin fibres the main reason of 

discrepancy between the unimaterial model and experiment lies in inability of the model to 

account for the bending stiffness and size effect of fibres. 
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4. Effective anisotropic constants within simplified mechanics of 

materials 

In this section, the well known "rule of mixtures" approach is recapitulated for the approximate 

derivation of effective constants within the classical linear elastic mechanics. 

It is done in order to proceed to apply a similar simplifying approach of mechanics of 

materials to include the additional parameter within the linear couple stress theory. 

4.1. Effective properties of fibre composite within the linear elasticity 

We review now the derivation of the effective material properties within the framework of linear 

elastic mechanics of materials. Specifically, long fibre composites are still considered. 

Assumptions and simplifications used in linear elastic mechanics of materials are employed. This 

approach sets the relationships between the effective properties and properties of the 

constituents. Engineering constants of an equivalent homogeneous material are derived using 

characteristics of the given composite and its components - volume fraction and geometric 

arrangement of fibres, matrix and fibre properties.. 

Elementary models employ representative volume element (RVE) based on the following 

simplifications: 

RVE consists of fibre and matrix ; 

both fibre and matrix materials are linear elastic and isotropic; 

RVE geometry does not change in the 3 r d direction; 

area fractions in the direction of fibres represent volume fractions; 

strains and stresses due to the Poisson's ratio mismatch at the fibre-matrix interface are 

neglected; 

the actual fibre arrangement in space (hexagonal, tetragonal, random) is of no 

consequence; 

the round fibre is replaced with rectangular block with the same volume fraction; 

perfect bonding at fibre/matrix interface is assumed; 

cross-sections of both the matrix and fibre remain planar under any deformation; 

the composite is macroscopically homogeneous and transversely isotropic. 
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For the load acting in longitudinal direction (Fig.4.1) we replace the RVE containing fibre 

and matrix elements by a respective volume element of an equivalent homogeneous material 

(EVE). 

When describing the material properties of transversely isotropic solid, here and further the 

following notation is used: subscript "71" refers to either x 2 or X3 direction, subscript "7" 

refers to the Xj direction - direction of fibres. 

h 7 

Fig. 4.1. R V E 

h 

j 

4.1.1. Effective longitudinal modulus 

A uniform state of stress within each material (fibre, matrix and equivalent material) is 

considered below. 

The relations used for a composite under tension in the direction of fibres (xi) are 

f m " f A 1 \ 

ex

J =ex =ex (4.1) 

(4.2) 

where ex , ex and s{ are average strains in the I s direction in the fibre, matrix and composite, 

respectively. Sf , Sm, S are, respectively, the areas of the fibre block in the RVE, matrix block 

in the RVE, and the area of the EVE at which the stress is applied. 

The strain energy of the composite must be equal to the strain energy of the homogeneous 

effective material. 
31 



™RVE ™EVE (4-3) 

Since the elongation in this case is the same for both constituents in the RVE as well as for the 

EVE, it is enough to consider the static equilibrium of forces. From the equality of forces acting 

on the RVE and EVE and using Hooke's law the conventional rule of mixtures can be obtained: 

a/Sf +crl

mSm =axS , (4.4) 

Ex =Efy/f + Em (l - y/f ) , (4.5) 

Ei is the effective longitudinal Young's modulus (in xi direction). 

Rule of mixtures obtained for the effective Young's modulus in the fibre direction is 

generally rather accurate and is used in design computations. 

4.1.2. Effective transverse modulus 

Within the simplified approach, the geometrical compatibility relation is used for load acting in 

the transversal direction x 2 (see Fig. 4.1) of the RVE: 

A/ 2 = A / / + A / 2

m (4.6) 

where Al2, Al2* , Al2

m are the elongations of the EVE and elongations of the fibre block and 

matrix block in the RVE, respectively, in the X2 direction. 

The simplifying assumption used here is the equality of stresses: 

f m " r A n s 

(72 = (72 = (72 (4.7) 

With it, and with the Hooke's law, the so called "Inverse Rule of Mixtures" can be obtained from 

the consideration of the strain energy equality between RVE and EVE: 

1 wi \ — wi 

— = + — ( 4 . 8 ) 
ET Ef Em 
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4.1.3. Effective longitudinal shear modulus 

To obtain effective in-plane shear modulus GIT, we use the following geometrical relation 

(4.9) 

where yl2 is the shear strain of the resulting EVE and yl2 (x2 ) is the varying shear strain in the 

RVE section. 

Taking into account the assumptions presented above in this section, this relation can be 

rewritten as 

fu =WfYxi + ¥ m Y i 2 m 

We use the equality of the strain energies in the RVE and EVE, where 

WEVE
 =^hTnY\2 

(4.10) 

(4.11) 

and 

W, 
RVE = ^{hfTl2fYu + h m * 1 2 m Y l 2 m \ (4.12) 

Where h, hf and hm are heights of the RVE, fibre block and matrix block in RVE, respectively 

(Fig. 4.1). 

With the assumption of equal stresses in the fibre and matrix <JX2 = <r12

m = al2 = cr12 and using 

Hooke's law we obtain 

w = - h a u 

EVE N 2 G 17" 

W =-a 2 

YYRVE 2 

fu 1 , 1 

hf —t + K 
V 

(4.13) 

(4.14) 

After substituting (4.13, 4.14) into equality (4.3) one obtains the effective modulus 

Mr 
yGf G j 

(4.15) 

If the fibre material stiffness is significantly higher than that one of the matrix then the following 

rough approximation is adopted 
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G\T = = (4.16) 

4.1.4. Effective major Poisson ratio 

The straightforward way to derive the effective Poisson's ratio is as follows. First we use the 

major definition of Poisson's ratio: 

vlT= — , (4-1V) 

where v1T is the effective Poisson's ratio, sx, s2 are the strains in the EVE. Poisson's ratios for 
both isotropic phases are 

-e f 

yf =—7-, (4.18) 
* 1 

£2 vm = L—. (4.19) 
m •1 

We employ the relation: 

Consequently, we have 

s2=y/f£2

f +y/ms2

m . (4.20) 

m V m \ ( 4 _ 2 I ) 

^1 

Since the given elongation in jc; is known and s/ = s™ = ex, we obtain 

v i r = ^ v 7 + (l -y/f \ m (4.22) 

In the chapters 8 and 9 of this work, the effective elastic constants for transversely isotropic 

material are employed without the connection to any specific fibre arrangement in a 

real composite, only with the purpose of numerical analysis and model verification. Therefore 

the choice of the material parameters was largely arbitrary, as long as they satisfy the given 

kinematic constraints (such as incompressibility etc.). In chapters 8 and 9 the convergence of 

numerical solution is of essence. Therefore the assigned sets of constants should be examined 
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for applicability: whether they permit numerical stability of the solution. In Li and Barbie [72] 

the relevant topic is investigated. The authors develop an approach for setting the material 

constants which insure stability of a subsequent numerical modelling. As a result, certain 

requirements to the engineering constants are introduced in order to ensure a positive-definite 

elasticity tensor. For transversely isotropic material, there are only five independent material 

constants, Eh ET, v1T, VJJ and Gu. The recommendations for the Poisson's ratios and the 

proposed formula for the shear modulus are as follows [72]: 

vlT

2 < 0 . 2 5 j L , 

vw <0.5, (4.23) 

G1T -
V' ElET 

2(l + A /v i r v n ) 

4.2. The inclusion of the fibre bending stiffness parameter 

Here we consider modelling of fibre as a beam. Such approach was employed by Fleck and Shu 

in [31] for the case of microbuckling problem in a composite under compression. In [31] the 

authors consider the fibres to behave as Timoshenko beams on a microscale which corresponds 

to the general Cosserat theory material description on a macroscale: the rotation angle of the 

fibre is independent. 

They consider both matrix and fibre elements to behave as Timoshenko beams, undergoing 

bending, axial extension, and shear deformation. 

In the present work, a somewhat different approach is being taken: the constraint Cosserat 

theory which envolves presence of the couple stress components, but no additional degree of 

freedom in a homogenized medium. The rotation at any given material point is linked to the 

derivatives of displacements, as in classical elasticity description. On a substructure scale, such 

assumption roughly corresponds to the fibre being regarded as a simple beam. Shear deformation 

of the fibre is neglected, and the cross-section is assumed to remain planar and normal to the 

fibre axis. To justify this approach, throughout this work the fibres in the composite are 

considered to be very stiff compared to the matrix material. 
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The defining geometric relations of the constrained Cosserat theory link the rotational 

degrees of freedom of the continuum to the displacements derivatives, making thus the rotations 

dependent. For a two-dimensional case it can be written in the following simple way: 

#3 = | («2,1 - « 1 , 2 ) ( 4- 2 4) 

For the present example of fibre-reinforced composite we distinguish between macro-scale and 

substructure scale. In the previous formula 63, Uj, U2 are characteristics of the point in the 

homogenised continuum, meaning that they refer to the macro-scale description. 

Small linear strains and reinforcement in xi only are considered here and further. 

4.2.1. Effective constant for the equivalent material 
Generally the notation for couple stress components acting on the plane is as shown below: 

Fig. 4.2. R V E (a, b) (taken from [21]) 

But in this section only m.13 is considered (plain strain problem for the unidirectional material). 

Presently, let us focus on a two-dimensional representative element of the composite, similar to 

that specified above (Fig. 4.1) but with consideration of fibre bending stiffness. We consider the 

RVE consisting of a fibre element and matrix element; fibre is regarded as a simple beam; matrix 

material is assumed to be significantly softer. Such approach implies inextensibility of fibres, or 

the problem formulation in which fibre elongation is negligible. 
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Below we consider a general stress state of the composite. In Fig. 4.3 below, the stress 

components acting on fibre and matrix elements represent an average of the actual stress 

distribution. 

Fig. 4.3. R V E at a substructure scale: resultant loads for each constituent (matrix in the upper part and fibre in the 
lower part) 

The actual stress distribution in the fibre cross-section (Fig. 4.4) is linked to the resultant loads 

in Fig. 4.3 as follows (by averaging the function throughout the fibre element height): 

I n' 
f ~ 

m1Q = 13 uf h 0 

jan

fx2dx2 (4.25) 

f _ 1 r~ 
12 hf 

r, / = — jt12

fdx2 (4.26) 
0 

h> -1 ft' 

f _ 1 f ~ 
11 y 

cr,, =—r /dx2 (4.27) 
o 
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tX2 

7 

Fig. 4.4. Substructure scale: distributed load for the constituents 

If we focus on the normal stress distribution ^ (x2 ) acting in the fibre cross-section, we 

can see that it contains a constant part which corresponds to the resulting traction and 

another linear part which corresponds to resulting couple stress m-, J (see Fig. 4.5) 

*u'(x2) m13f 

+ 

Fig. 4.5. The normal stress distribution and the resulting loads 

Now we can transform the real stresses to the equivalent homogenised cell below (Fig. 4.6) (by 

averaging the function throughout the whole representative element hight h): 

m 1 3 = - (4.28) 
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(h> 

•12 h 
j"r 1 2 dx2 + J" T12 dx2 

V o hi j 

Ml h 

(hf h 

| ax / dx2 +J"<?i \ldx2 

(4.29) 

(4.30) 

Fig. 4.6. E V E (macro-scale) 

The equivalent strains can be obtained by averaging as well, similarly to the equivalent stresses 

depicted above. In a current desciption, we accept that on the substructure scale the fibres behave 

as simple beams; on a macro scale (Fig. 4.6 above) when we consider an equivalent element of 

the homogenised continuum, the only independent degrees of freedom are displacements. 

A more complicated model of the unit cell is used by Fleck and Shu in [31]. There the fibre 

element is modelled as Timoshenko beam experiencing both bending and shear deformation. 

Such behaviour on a substructure scale corresponds to the general Cosserat theory with presence 

of the additional degree of freedom - rotation in the point. 

4.2.2. Example 

An illustrative example similar to that mentioned in [31] is presented below. 
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Now we expand the two-dimensional representation to the three-dimensional one. The fibre 

has a certain shape of the cross-section, and we consider a representative volume element with 

the associated notation „RVE", containing a fibre element embedded into a matrix block. We 

also consider an equivalent homogeneous block of material with the associated notation „EVE". 

The working assumption is that the overall bending moment acting on the block is the same for 

these two models: 

EVE RVE (4.31) 

a) RVE b) EVE 

¥-X, >X, 

Fig. 4.7 R V E and E V E (3D) 

If we consider the bending contribution of the normal stresses in the matrix negligible, the 

cumulative bending moment in the cross-section on Fig. 4.7 (a) equals to the bending moment in 

the fibre cross-section 

M13

RVE=Mf (4.32) 

Since we consider the representative element of the equivalent homogeneous material (EVE) in 

Fig. 4.7 (b) to be under uniform shear stress and uniform couple-stress loading, we can state that 

Mn

WE=mliS, (4.33) 
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where S is the area of couple-stress action (the whole cross-section). 

Mf , A n „ m i 5 = — . (4.34) 

If we consider fibre with curvature kf, the second moment of the cross-section 7/ and volume 

fraction y/f then the following is true 

m 1 3= f —kf. (4.35) 
Sf 

EfJ fy/f 

where the expression ——-—— is a material constant for EVE, linking the couple stress and 
Sf 

associated fibre curvature. This expression is obtained from the RVE properties. This is a very 

rough approach, mainly for illustration purpose. 

Fleck and Shu in [31] obtain this relation for the case of microbuckling (caused by initial 

alignment imperfections of fibre), and for the round shape fibre the formula is 
Efy/fd2 

m,, = k f, where d is the fibre diameter. 
1 3 16 f 

We use a condition of equality of the bending moments in the cross-section to obtain 

effective properties of the equivalent homogeneous unit cell. This is a simplified approach. The 

general approach should consider the equality of the strain energies. 

4.2.3. Notes on the constitutive model 

Here and below a two-dimensional problem is considered for simplicity. 

The general definition of the rotation vector in the point is 

Oi=\e®»k,j (4-36) 

Within a two-dimensional problem only one component (4.24) of the rotation vector is used: 

@s =^{u2,i - u i , i ) 

Throughout this work, the following kinematic tensor quantities are used ([2], [6]) for the 

general case of large strains: 
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S(FiRAR) 
dX, 

(4.37) 

(4.38) 

with A being fibre direction unit vector. 

The tensor quantity G can be decomposed as follows [6]: 

dA 
GiR=kiR+—^, (4.39) 

dXj 

where the tensor quantity k was introduced by Soldatos [6] as "curvature-strains" of the fibre: 

kiR = Ui,RPAP + Ui,PAP,R • (4.40) 

For the particular case of small strains and initially straight fibres (for instance, A=(1,0,0)T) the 

components of interest are: 

k2l = u 2 l l , 
_ (4.41) 

^31 — M 3 , l l ' 

which are, essentially, curvatures of the implied fibre in two different planes. If the fibre is 

considered as a simple beam, the above components can be regarded as the curvatures of the 

beam axis. 

We keep in mind that the material model in consideration is based on the assumption of a 

homogenous anisotropic continuum in which fibres are represented by mathematical curves 

possessing a certain bending stiffness. The specificity of this continuum is that couple-stress is 

produced by this curve resisting to bending and therefore is directly related to the above 

components of the k tensor (4.41) as follows (in linear case) [2]: 

m12 = — d31 • k3l, 
mi3 ~ dl3 • k21 

(4.42) 

The work contribution done by couple stress in the element of such continuum is 

W = jjf m12 • d • ^-dV where 9 is the general formula from (4.24). 
v dx\ 
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5. Composites reinforced with fibres resistant to bending: mathematical 

model for large strains and its implications 

5.1. Adopted kinematics and balance laws 

We adopt Cartesian coordinate system OX1X2X3. In a conventional manner, a material point with 

position vector X in the reference configuration moves to the position x of the deformed 

configuration. In the notation applied below, boldface denotes a tensor or vector; uppercase letter 

and lowercase letter indices are associated with the reference and deformed configurations, 

respectively. Subscripts vary from one to three and Einstein's summation convention applies for 

repeated indices unless stated otherwise. 

Within the framework of constrained Cosserat theory a quasi-static problem is considered. 

The spin vector co is not independent but related to the displacement rate vector v in the 

following way: 

1 dv 
" r ^ T 1 , (5.1) 2 ~ijk dx 

where eijk represents the Levi-Civita operator. Deformation gradient tensor F and right Cauchy-

Green deformation tensor C are given by: 

— . (5-2) 
* dxR 

CKL = FiKFiL. (5.3) 

For a unidirectional fibre-reinforced composite, unit vector fields A(X) and a(X) define 

fibre directions in reference and deformed configurations, respectively. Conventional kinematics 

has to be enhanced in order to account for fibre bending stiffness. Adopting theoretical 

framework proposed in [2], additional second grade kinematical quantities are to be introduced. 

On the basis of the vector b 
= FiRAR, (5.4) 

deformed fibre gradient tensor G and tensor A are defined as follows: 

GU =•!%-. (5-5) 
8X .1 

^RS=FiRGiS. (5.6) 
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As we endow the material point with bending stiffness, additional stress measures are to be 

employed in the form of moments per unit area. These measures are generally referred to as 

"couple stresses". Cauchy stress tensor is no longer symmetric due to the presence of couple 

stresses. This interconnection is obvious from the equations of equilibrium (body forces and 

body couples are absent): 

= 0 , (5.7a) 
dx 

dm... 
-^-+^^=0 (5.7b) 

where a and m are Cauchy stress tensor and couple stress tensor, respectively. 

For the sake of further computations the stress tensor can be decomposed into symmetric and 

antisymmetric parts: 

The couple stress tensor can be decomposed into the deviatoric and spherical parts [2]: 
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Fig. 5.2. Components of the couple stress tensor 

If we assume the elementary volume is transversely isotropic with the direction xi 

representing the direction of reinforcement, the couple stress mn would correspond to the torsion 

moment acting on the fictitious fibre (and the "twist mode"), m.23 and m.32 would correspond to 

the "splay mode" and, finally, only mn and mn correspond to the bending moment acting on 

the fibre (m.13 would cause bending in the X1X2 plane, mn would cause bending in the X1X3 

plane) [2]. For the current model representing the influence of thick and stiff fibres in a 

unidirectional composite, only the mn and mn components are of interest. Here are 

mathematical consequences of the chosen constitutive model: 

in the strain energy density an additional deformation invariant is included that 

reflects the bending mode of deformation of fibres; 

an additional material constant is introduced that corresponds to this invariant (the 

physical meaning of such constant will be discussed later); 

the resulting stresses and couple stresses are derived by differentiation of the 

strain energy with respect to the respective deformation measures; 

only those couple stresses that refer to bending moment will be left non-zero. 

5.2. Constitutive formulation within couple stress theory 

5.2.1. Form of strain-energy density 

Conventional form of the strain energy density for hyperelastic materials with one family of 

fibres is function of the right Cauchy-Green deformation tensor C and fibre direction vector A. 
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In order to include the effect of gradients of the deformed fibre direction into the mathematical 

framework, Spencer and Soldatos [2] proposed the strain energy density being, in addition, a 

function of tensor A (introduced by Eq. (5.6)). This function is introduced by means of 33 

specific invariants of the above tensors C, A and vector A on the basis of canonical forms 

presented by Zheng [74]. However, these 33 independent invariants lead to excessively 

complicated constitutive equations. To simplify this theory, Spencer and Soldatos propose to 

assume that the strain energy depends on one directional derivative of the fibre vector only, 

namely that in the fibre direction representing the curvature of fibres. This assumption implies 

the dependence on the tensor A is replaced by dependence on the vector K with components K R = 

ARSAS. With this restriction the amount of invariants decreases from 33 to 11 having the 

following forms and physical dimensions: 

h=trC, [-] 

12 = 1

2{trC)-trC2} [-] 

13 = detC, [-] 
I4=ACA, [-] 
I5=AC2A, [-] 

I6=AATAA, [m~2] (5.10) 
I7=AATCAA, [m~2] 
I8=AATC2AA, [m~2] 

I9 = AAA, [m'1] 
l10 = ACAA,[m-1] 
In = AC2AA. [m'1] 

However, the strain energy density, as function of all the 11 above invariants, still yields 

excessively complicated constitutive equations. 

5.2.2. Constitutive equations for stresses and couple stresses 

It should be noted that only the symmetric part of Cauchy stress tensor generates work upon 

deformation [2]. Analogously, if we decompose couple stress tensor into spherical and deviatoric 

parts, only its deviatoric components contribute to the energy balance equation. Antisymmetric 

components of Cauchy stresses can be derived from (5.7b), while spherical components of the 

couple stresses remain indeterminate within the framework of couple stress theory [75]. 

Constitutive equations are formulated by Spencer and Soldatos [2] for the symmetric part 

of Cauchy stress and for the deviatoric part of couple stress as follows: 
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p_ 
Po 

dW dW 
\ U ^ R S u y ^ S R j 

+ (GiRFjS+GjRFiS) 
dW 
cA SR 

l e P_^LF (F B + F B] 
0

 Kibn ~, A

 1 mP V iRuk ^ 1 kRu j / 

3 p0 8APR 

(5.11a) 

(5.11b) 

where P(/p=J is volume ratio. The detailed derivation of the equations based on the energy 

balance equation can be found in [2]. 

In accordance with equilibrium equations, the anti-symmetric part of the stress is defined 

by the following equation [6]: 

1 dm,,. 
'V' 8x, (5.12) 

5.3. Choice of the specific form of the model - slightly compressible material 

5.3.1. Introduction of the modified invariants 

To construct computationally applicable strain energy form suited for the rubber-like 

composites reinforced with stiff fibres, simplifying assumptions were employed by Lasota [3]. 

The strain energy density W was restricted to be at most quadratic function of the components of 

A. Such assumption, as pointed out in [2], implies that the fibre radius of curvature is large 

compared to the substructure dimensions (fibre diameters or fibre spacing). To reduce the 

amount of invariants, the coupling between A and C is ignored. For simplicity the strain energy 

density function is chosen to contain only one additional invariant accounting for the bending 

stiffness of fibres. 

To reduce numerical difficulties in finite element simulation it is advantageous to perform 

multiplicative decomposition of deformation gradient [76], [3]: 

F = JmF, => C = J2/3C. (5.13) 

where F and C = FTF are associated with volume-preserving (distortional) deformation of the 

material. Tensors F and C will be referred to as the modified deformation gradient tensor and 

modified right Cauchy-Green tensor, respectively [76]. 

Multiplicative decomposition was extended to second gradient kinematics by Lasota [3], as 

outlined below. First the modified tensorG is introduced: 
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- _ 3b, _d(FIRAR) 
(5.14) 

Modified tensor A is introduced by the formula 

(5.15) 

Modified invariants can be introduced on the basis of the above modified tensors. Model, 

proposed by Lasota, retains for simplicity only few invariants from (5.10) and has the following 

form: 

W = k, (1 -3)+k2 (l4 - ij + k9I2 + ^(J-1)2. 

where 

I =C =J~2/3C 
L l AA J AA> 

I4 — ABCCBAC — J ABCCBAC, 

-2/3 ABACBAc IAGWFOK 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

In (5.16) invariant I9 is present in square due to the requirement of the energy density W 

being an even function of tensor A . 

In the present work the form of the energy density is modified and the invariant I6 is 

included instead of the invariant I9 in the following way: 

As ~ ABA0BA0CAC - J 1 (ABA0BA0CAC 

— t I7OK GKO CLR A S A ^ F 0 K GK0 + A N A M — — GBC F C B A 0 C0R , 
V J J 

W = kj(ij -3)+ k2(l4 -lf + k3I6 +^(j-l)2. (5.21) 

Through the invariant I6 the energy potential relates directly to the fibre curvature and serves to 

introducing the bending mode of fibre deformation into the model; the previously used invariant 

lg equals to zero in the pure bending deformation. 
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Similarly to model eq. (5.16) formulated by Lasota, the anisotropic term (I4-I) can occur in 

W only through its squares [77] to ensure positive strain energy contribution when the fibres are 

compressed. The strain energy density must be at least quadratic in the components of either F or 

G [46]. The coefficients represent material parameters: ki is related to properties of the matrix 

(neo-Hooke model), &2 and ks relate to the tensile and bending stiffness of the medium in the 

direction of reinforcement, respectively; d relates to the material compressibility. 

The invariant I6 relates directly to the fibre curvature and serves to introduce bending 

mode of fibre deformation into the model, as it will be illustrated by the linearised case, while 

the previously used invariant I9 contributes to the so called "splay mode" of fibre deformation 

[2] and not to the bending mode. Another advantage of the choosing I6 over I9 is due to the 

fact that - within the linear beam theory - the presence of I6 yields a simple relation between 

the curvature of the beam (and the underlying fibres) and the couple stresses contributing to the 

bending moment in the beam cross-section (see Section 4.4). Another important reason for 

modifying the form of energy density function is that the coefficient £ 9 from (5.16) does not 

appear in the corresponding constitutive equations for couple stresses [2] in linearised form. 

Let's now introduce symmetric Kirchhoff (force, i.e. classical) stress and deviatoric 

Kirchhoff couple stress : 

r < W = / f f ( W (5.22) 
H = M i y 

According to (5.1 la, b) and (5.21), the constitutive equations acquire the form: 

-2/3 
$SR 0 CRS CAA I + 2k2 (l4 A ARAS AB CCB AC 

+UJ-I)C^J 
d 

3/2 + k. FIRFJS 
dh +dl6 

r)C r)C 
\ + (GISFJR+GJSFIR) 

dh 
dA RS 

(5.23a) 

3 dAm 

(5.23b) 
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5.3.2. Correlation between the invariants and deformation modes of fibres 

For the purpose of elucidation it makes sense to trace the correlation between the additional 

invariants included in the strain energy function, the resulting constitutive equations and the 

corresponding physical meaning. It is done below for the case of energy function (5.21) and 

small strain conditions (within linearised theory). 

Here we evoke the notation employed in [2]. In the general case of the theory presented in 

[2] a complete list of 33 invariants is introduced denoted as /; - I33 (such notation is different 

from and not consistent with that employed in eq. (5.10) above). The invariant AA AA can be 

expressed via some of those 33 invariants as follows [2]: 

AATAA = I21 -122 + 2I„. (5.24a) 

I2]=AAS

2A , (5.24b) 

I22=AAa

2A, (5.24c) 

I27=AAsAaA, (5.24d) 

where As and/fa are the symmetric and antisymmetric parts of tensor A. The expression AA AA 

corresponds to the invariant denoted as h in (5.10). 

In order to verify the formulas employed in the present work, we establish relations 

between alternative notations used for the following material parameters: 

parameter from (5.21) represents additional bending stiffness of the 

homogenised material with respect to the reinforced direction within the large 

strain framework; 

parameters bs, b6, bj below refer also to the additional bending stiffness; they 

represent coefficients in the linear combination of general invariants [2] as shown 

in (5.24a) and further, in the expression for the strain energy function); 

d.31 is the additional bending stiffness parameter that refers to the influence of 

fibres (it links directly the respective couple stress and fibre curvature as shown 

below) 

The general form of strain energy density formulated in Section 9 of [2] contains, among 

others, the following members: 

W = ... + b5I2] + b6I22+b7I27. (5.25) 
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For comparison, in the present work we choose the additional term of the strain energy density to 

be ksh (before multiplicative decomposition of the deformation gradient): 

W = ... + k3I6. 

It means that the constant fcj relates to b5,b6,b7in the following way: 

b5 =k3, 

h =~k3> 

b7 =2k3. 

In this case it holds in accordance with [2] 

(5.26) 

d3i=^s-3h+2b7), 

And the linearised relations for the nonzero couple stresses are given as follows [2]: 

(5.27) 

in 12 
\mnJ 

f-d3l 0 
v 0 dnj 

8 Ho 

d un 

'dx\ 

'dx\ j 

(5.28) 

which correspond to the "bending mode of deformation". Consequently, the addition of the 

invariant h (or its modified form I6) to the strain energy density function serves to account for 

the strain energy accumulated in the composite due to bending of fibres of the substructure. 

5.4. Identification of material parameters for the simple beam case 

Generally, two main classical approaches exist for determination of the effective overall 

properties of the heterogeneous materials - average-field theory and homogenization theory 

(multiscale perturbation method) [79]. Within the average-field theory the effective properties 

are determined as relations between the volume averages of the microstresses and microstrains 

within periodically repeated RVE. 

In case of a strictly periodic fibre arrangement the unit cell serves as a representative of 

material (RVE). If the substructure possesses symmetry, it can be used as well in the relevant 

boundary value problem. 

Classical homogenization techniques are based on Cauchy description at both micro- and 

macro-scales. Classical theory holds an assumption that the size of the microstructural 

components is negligible with respect to the macrostructure. In the present work, such 
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assumption is not sustained: the so called "polar theory" [6] employed here for constitutive 

modelling of fibre composites becomes relevant when the fibre thickness becomes comparable to 

the size of the composite structure. 

The applicable scheme of determination of the effective material constants for the 

specific new model is the matter of the current and future studies. Considerations of low 

computational cost and sufficient simplicity are essential. As a result, new homogeneous model 

with the effective material properties should correctly mimic the response of the given composite 

under both tension and bending loads. 

5.4.1. Couple stress theory for the planar problem 

For illustration, let us consider an elementary volume in equilibrium for a planar problem (Fig. 

5.3). In accordance with balance equations (5.7b) the following holds in the given undeformed 

coordinates: 

dm j 2 dm 22 dm3 

dX, dX2 dX3 

— o13 + o31 H 1 1 = u P-^y) 

Fig. 5.3 Positive directions of shear stresses and couple stresses in a planar problem 

Let us consider a beam undergoing pure bending around X2 axis. Fig.5.4 presents schematically 

inner resultants acting in the section of the beam and depicts (for the given coordinate system) 

normal stress distribution contributing to a positive value of the classical moment M2 and 

positive direction of the couple stresses. 
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Fig. 5.4. Stress and couple stress distribution in pure bending. 

For the case of small linear strains, we operate with displacements w, and rotations 

0i = — Gijk instead of displacement rates and spins. 
2 dxj 

The overall bending moment in the beam cross-section in the chosen coordinate system can be 

calculated as 

M /"" = jj(a/x, + m12^lx2dx3, (5.30) 
s 

M /"" = M2 + jjm12dx2dx3, (5.31) 
s 

where double integration is done throughout the cross section S. 

5.4.2. Discrepancy between heterogeneous and homogeneous models in bending 

Let us consider linear elastic behaviour of a composite beam with one family of fibres aligned 

along the beam axis. Such a specimen can be modelled as a heterogeneous structure 

characterized by elastic constants of constituents and a specific arrangement and size of fibres. 

Also, it can be modelled using a homogenized anisotropic (transversely isotropic) hyperelastic or 

even linear elastic model. In this case the tensile stiffness of the specimen in the preferred 

direction is uniformly "smeared-out" throughout the section of the model. The corresponding 

elastic modulus in the direction of fibres can be obtained by the rule of mixtures: 

E^m = ^-¥f)Em+WfEf, (5.32) 
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where y/f is the volume fraction of fibres. As it can be seen from (5.32), the homogeneous model 

is characterized by elastic constants of constituents and their volume fractions only, with no 

regard to disposition and distribution of fibres in the given composite. 

Let us compare the pure bending behaviour of these two beam models. If the 

heterogeneous model is subjected to bending along the fibres, we can express the overall bending 

d2u 
moment in the section as M2 = Dhetkpure, where kpure = j- is the curvature of the beam, Dhet 

dxx 

is the bending stiffness of the model along the preferred direction: 

Dhet=EmJm+EfJf , (5.33) 

where Jm and 7/ are overall moments of inertia of the sections of matrix and fibres, respectively, 

with respect to the principal central axis of the whole beam section. 

If the homogeneous model is subjected to bending along the direction of the reinforcement, 

we can express the overall bending moment in the section as M 2 = Dhomkpure, where Dhom is the 

bending stiffness of the homogeneous model: 

Dhom = EhomJ (5.34) 

where 7 is the moment of inertia of the whole cross-section of the beam. 

If we substitute Ehom from (5.32) we obtain 

Dhom = il-¥f)Em+¥fEf)j (5.35) 

If we compare (5.33) and (5.35) it is obvious that the homogenized model cannot 

successfully simulate bending behaviour of the heterogeneous model. The bending stiffness Dhom 

takes into account volume fraction of fibres and properties of the constituents only but does not 

include moments of inertia of constituents. By replacing the heterogeneous model with a 

transversely isotropic homogeneous one we preserve the same tensile stiffness but not the same 

bending response, as illustrated in Fig. 5.5. 

• • • • • • o o o c o o o o o 

Fig. 5.5a, b Sections of the models with the same value of Dhom but different Dhet 
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Bending stiffness Dhom can be larger or smaller than the actual stiffness Dhet of the 

corresponding heterogeneous model, depending on the distribution of the fibres with respect to 

the neutral plane (middle plane in case of symmetrical cross-section). A homogeneous model 

which describes bending behaviour in better accordance with the heterogeneous one can be 

formulated using couple stress theory. 

5.4.3. Parameter ksfor the fibre reinforced incompressible material 

We continue to consider a beam reinforced by parallel fibres subjected to pure bending with 

respect to X 2 axis (Fig. 5.6). For simplicity, material incompressibility is assumed. 

* X2 

P 

2 ^ 

L 

Fig. 5.6. The beam in the reference configuration 

In the case when fibres are initially aligned along the Xj direction, it holds from eq. (5.14, 

5.15) in general: 

1 + 

o 

8ux dux 

dXl dX2 

du2 

3XX 

8u3 

i+ 

dX, 
du-, dur. 
ax, 

8u3 

ax. 

ax 3 

1 + — 3-
ax 3 J 

1 + 
du. 
axj 

du2 

dXl 

ax i J 

(5.36) 

(5.37) 

(5.38) 
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Overall bending moment A/U11 acting in the cross-section of the model is given by Eq. (5.31). The 

constitutive relations for an incompressible material given in the general form are 

(a) FlRFjS 

dW dW 
dC 

+ (GiRFjS+GjRFiS) 
8W 

SR J DA SR 

+ pSy, 

_ 2 dW 
Itl — — € 

ii t ihn j 
3 dADB 

KP(FjRbk+FkRb). 
(5.39a, b) 

where p is hydrostatic pressure. In this case it holds for the energy density 

W = j(l1-3)+k2(l4-l)2+k3I6 (5.40) 

where unmodified invariants Ix, I4, I6 can be used. 

Let us linearise constitutive relations (5.39a, b) for the case of small strains. The basic 

assumption is that all partial derivatives of displacements are much smaller than one. If we 

follow the notation of [2] we can state that all —'- are of the order of magnitude 0(e). 
dxj 

Consequently the strain energy density W has to be of the order 0(e2) and the terms of higher 

order can be discarded. 

Symmetric stresses have to be of order 0(e). If we leave out higher order terms in (5.39a), 

the following expression is left: 

dW dW c °(n\ = 1 voup. 
U J1 

(5.41) 

It should be noted that if no volumetric deformation occurs, and we use strain energy 

density function such as (5.40), in which no coupling between C and A is present, the symmetric 

stresses (5.41) do not depend on the fibre curvature. Therefore the expressions for normal 

stresses are identical with those in the classical (Cauchy) theory of transversely isotropic 

materials. If we compute er ĵ for the case of bending of the beam along the fibre direction using 

(5.40) and (5.41) and then linearise to the order of magnitude 0(e), we obtain 

°(n) =(3Ju + 8k2)s11 + p, (5.42) 

where snis tensile strain and (3ju + Sk2) is equivalent of Young's modulus of the material in the 

preferred direction. We can rewrite it as 

56 



°{ii)=Ehon£n+P (5-43) 

If shear is absent and plane Xi X2 coincides with the neutral plane of the beam, the 

longitudinal strain en is expressed via curvature k as sn= kpure • X3, where k = j- . Then we 

dxj 

can rewrite Eq. (5.43) as 

a{11)=EhomkpureX3+P (5.44) 

Now let us consider deviatoric couple stresses. For the given problem we have 

7 6 = A 1 1

2 + A 2 1

2 + A 3 1

2 (5.45) 

dl 
" -2AU, (5.46) dAu 

Relation (5.6) gives 

A31 =F13—± + F23 — f + F33 —f. (5.47) 
dX, ex, DD dx; 

If we assume small strains and consider only bending with respect to axis X2 , it holds 

31 33 dx] dxf 

Employing relations (5.1 lb) and (5.48) and leaving out the higher order terms we obtain: 

— '"' & j A 8 d2u3 mn =--k3A31=--k3—f (5.49) 
3 3 oXj 

Using the notion of curvature k p introduced above we can reformulate (5.49) as 

m12

Un =-k3kpure (5.50) 

Employing Eqs. (5.31), (5.44), (5.50) we obtain 

8 > 
M full 

2 
's 

\\\EhomX3

2

+-k3y-dX2dX3. (5.51) 

As the curvature and the material parameters for the polar anisotropic beam model are 

assumed to be constant throughout the cross-section, the following is valid: 

Mf'"=Ehomkpure-\\X3

2dX2dX3 +-k3kpure-\\dX2dX3. (5.52) 
s s 

The bending moment then equals 
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2 horn 

full 

M?"=Dhom
m -kpure (5.53) 

where the Dhom can be identified as the bending stiffness of the beam model: 

DhJ'"=EhomJ +yk3-S, (5.54) 

where S is the beam cross-section area. 

The constant ks is then determined from the condition Dhom
fu" = Dhet as 

^ _ 3 EmJm +EfJf EhomJ _ 3 Dht -Dhom (555) 
3 8 S 8 S 

Dhet is the bending stiffness of the heterogeneous specimen along the preferred direction: it 

is calculated by using all geometrical information of fibres (volume fraction and second 

moments of fibres with respect to the axis). Dhom is the bending stiffness of the homogeneous 

model: the only geometrical input is the volume fraction of fibres. The constant is then 

calculated in order to correct the difference between Dhet and Dhom- Thus we obtain Dh0Jul1. 

Having computed &j for the case of fibres aligned along Xj , we then can use it for problems with 

the different fibre angle (but the same fibre arrangement) by changing the vector A. Thus, the 

enhanced bending characteristics of the specimen are covered by the vector A (present in 

invariant Is) and the constant fcj in the constitutive model (5.40). 

This formula is analogous to the rule of mixture in application to the bending stiffness. The 

effective bending stiffness of the initial heterogeneous model is "smeared out" uniformly 

throughout the section of the homogeneous model by means of the couple stress theory. 

A somewhat similar approach to representing flexural rigidity of a beam with pronounced 

substructural size effects has been taken, for instance, in [27] for the case of microscale 

problems and in [81] within investigation of the microstructure design of cellular solids . 

We can see from (5.55) that the material constant is directly related to the difference 

between Dhom (which can be described as the bending stiffness generated by the averaged tensile 

stiffness of the structure throughout the cross-section) and Dhet which is the actual bending 

stiffness of the heterogeneous block resulting from the specific fibre arrangement. It follows that 

constant approaches zero if the distribution of fibres throughout the cross-section tends to be 

more and more uniform; consequently the polar theory problem transits to the conventional 

theory. 

The formula (5.55) stems from the requirement of the equivalence of the bending moment 

occurring in two models: homogeneous polar model (or couple stress theory model) and the 
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heterogeneous model (model with explicitly defined substructure). The same formula can be 

obtained if, instead of the moment equivalence, strain energy equivalence is required (with 

respect to the strain energy of the beam per unit length in both models). 

5.4.4. Parameter k2 derivation 

The material parameter 1(2 can be determined under condition that the tensile force P in the 

direction of fibres remains the same in both the homogenous and heterogeneous models under 

uniaxial tension 

het r\hom phet _ p (5.56) 

Consider A 0 and uniaxial tension in the direction X i . We consider small tensile strains in 

8W 
the fibre direction, therefore linearised constitutive equations can be used. ov = 2Fik Fn is a 

general constitutive relation for incompressible hyperelastic material (hydrostatic pressure is 

absent). The strain energy density is given by equation W = ̂ (l1 — 3)+k2(l4 — if. The right 

Cauchy-Green deformation tensor is C = 

rx2 0 0^ 
0 X2 0 

Ko 0 k2

3j 

and the incompressibility condition 

A.jA.2A.3 =1 holds, where X1,X2,X3 are principal stretch ratios. 

Consequently, we can write that 

a li 2X2— +4k2U4 -X2) (5.57) 

where X = Xt is the stretch ratio in the direction of fibres. 

For small strains it takes the form 

a%m = (3M + 8k2ysn=E1

hom-sn. (5.58) 

The tensile force acting in the cross section will be 
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phom = ^Ohomds = s . ohom = $ .fa + 8k2\ En , (5.59) 

S 

where S is the cross section area. As to the heterogeneous model, the tensile force in the 

linearised case is as follows 

Phet = J a%dS = S-((l-y,f )• Em + yf-Ef )• en (5.60) 

s 

where y/f is the fibre volume fraction, Em, Ef are matrix and fibre moduli of elasticity, 

respectively. Consequently, we obtain the condition (5.56) in the form 
(3// + Sk2)• sxx = ((l - y/f )• Em + y/f • Ef )• ex, (5.61) 

and it follows 

k2 = l ((l" Vf )• Em + VfEf- 3/u). (5.62) 

5.5. Numerical examples 

The new finite element code developed in Matlab software by Lasota [3] is used below for 

computations within polar theory, and Ansys software is used for computations within 

conventional theory. The new code has been undergoing changes and modifications; the 

modifications introduced by me included: 

the change of the constitutive model and all the related finite element equations in 

accordance with (5.21, 5.23a, b); 

reformulation of code equations in the matrix form instead of index form which reduced 

the computational time substantially. 

The main specific features of the FEM formulation for the couple stress framework are 

outlined below. More detailed derivation can be found in [3]. 

5.5.1. FEM formulation outline 
With couple stresses the principle of virtual work can be rewritten into the form 

It 
ddv, 1 

(»•) QX ^2 F*JI 

S2Svk 

dx.dx, 
J 1 

dV=0. (5.63) 

60 



where dv is virtual displacement rate field. 

Due to presence of the gradients of strain in the variational formulation, a need arises for 

higher orders of continuity in the interpolation functions. Namely, so called complete Ci element 

shape functions are to be employed. Displacement field and virtual displacement rate field within 

the element are approximated in the following manner: 

u,. (<f ) = N" (fa + O" (<f)zf + Pa {g)p° + Qa (£)y°, (5.64) 

dvt (<f ) = N" (tyv? + O" (<f + Pa (g)5b° + Qa (5.65) 

where are normalized local coordinates: -1<^. <1 (natural coordinates); u" can be regarded 

as nodal displacements, and a",j3",y" as nodal slopes in directions £ i 5 d f 2 , ^respectively; 

superscript indices identify the node number. Virtual rates of nodal displacements and slopes are 

denoted as dv", da",db",dg"in (5.65). N, O, P, Q are Hermite polynomials [78] satisfying the 

following conditions: Na{£) takes the value of 1 at node a and zero at all the other nodes within 

the element; its derivatives — are zero at all nodes; Oa{£), Pa(^), Qa(<±) take zero value 

dOa{l) dPa(£) dOaU) at all nodes, while their derivatives —, —, — take the value of 1 at node a and 
Hx Hi Hz 

zero at all the others; the derivatives with respect to the other £• are zero at all nodes. 

In order to proceed with discretization let us convert derivatives into the weak form (5.63) 

to the reference coordinates Xt, thus obtaining 

r ddv. 1 f *2s~ aE" ^ 
T ( y ) rMj + 2 m PjirMj 

, d dv, , , ddv, dF „ 
v* dx„dx„ N" Pk dx„ ex, 

dV = 0. (5.66) 
M V M N N M J J 

Using eq. (5.65) and element connectivity and utilizing the fact that dv",da",db",dg" are 

arbitrary everywhere except for the boundary surface, we obtain four systems of nonlinear 

equations. Integration is performed using a standard Gauss quadrature scheme. 

These nonlinear systems are to be solved using Newton-Raphson iterative procedure. After 

their linearisation, the following four linear systems with respect to unknown increments of 

displacements Au" and increments of slopes Aa", A/3", Ay" are considered: 

61 



KlM + KtM + KthM + K^M = R; 

KIM + KIM + KIM + KIM = s; (5.67) 

KIM+KIM+KIM + KatbMk = V 

KIM + KIM + KiM + KIM = u-

As an illustrative example, let us consider a fibre reinforced thin rectangular plate with two 

rows of unidirectional fibres (cross-section is schematically presented in Fig. 5.4a) undergoing 

four-point bending (Fig. 5.6). As the fibre diameter is comparable to the dimensions of the 

specimen, size effect is to be expected. The given specimen is modelled in three different ways: 

via a heterogeneous FE model with explicitly modelled fibres embedded in matrix; 

via equivalent homogeneous transversely isotropic FE model in accordance with the classical 

elasticity (later referred to as classical model); 

via equivalent homogeneous transversely isotropic FE model in accordance with the couple 

stress theory and formulations given in sections 5.1, 5.2, 5.3 (later referred to as CST model). 

5.5.2. A thin composite plate with 0 degrees fibre declination: four-point bending 

Let us consider a fibre reinforced nearly incompressible rectangular plate with the dimensions 

40x2xlmm (length x height x width) with two rows of unidirectional fibres along its length. Fibre 

diameter is d=0.1mm, distance from the middle plane to fibre centre is c=0.35 mm, the fibre 

spacing in each row is s=0.2mm. Material constants of the constituents include elastic modulus 

Ef=2100 MPa and Poisson's ratio Vf=0.3 of fibres and matrix parameters for neo-Hooke material 

law [4=2 MPa, d=0.0001MPdl'. The strain energy potential for the rubber matrix is given as 

follows 

The classical model with fibre direction defined by vector A (1,0,0) is based on the strain 

energy density 

W £<j,-3) + l(j-ii 
2 a 

(5.68) 

W ^(/i-5)+fc2(/4-i)+i(y-i) 
2 a 

(5.69) 

Then it holds for stress 
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dW 
dC„ 

°(,=2FacFJl— (5.70) 
'Id 

The shear modulus JU is the same as used for matrix in the heterogeneous model. For the given 

problem with linear elastic fibres under small strains, the constant &2 can be calculated from the 

condition of the same average tensile stiffness of the heterogeneous and homogeneous models in 

the preferred direction (see 5.4.4.) as k2 =-(fc-y/f)-Em +y/f • Ef -3//)= 18.244 MPa . 
8 

In the CST model a new term I6 is added related to the curvature of the deformed fibres. 

The corresponding hyperelastic anisotropic potential is as follows: 

W = j(l1 -3)+k2{l4-if +k3I6 + ±(j-lf (5-71) 

The objective of setting all the constants is to simulate correctly both tensile and bending 

behaviour of the given heterogeneous model. 

According to (5.55) and the given data we set the constant ks =2.1718 N. Constants p. and 

are the same as in the classical model used above. Boundary conditions prescribed for the 

respective finite element model in the new code are outlined below. Only a quarter of the plate 

(Fig. 5.7) is modelled due to the symmetries of the problem. Displacements and displacement 

derivatives (slopes) are prescribed in accordance with the problem setting and code requirements 

in the following way: 

u3=0 

Fig. 5.7 Boundary conditions (slopes and displacements prescribed) 

Here the displacements within the element are approximated in the following manner: 
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ut (f) = Na (fa + Oa {fa + (<f ) # + G f l , 

du" 

(5.72) 

or a _ i 

P, 

dXx 

du" 

7; 

dX2 

(5.73) 

dX, 

where £ ; are normalized local coordinates: -1<£. <1 (natural coordinates); u" can be regarded 

as nodal displacements, and a?,P",y? as nodal slopes in directions £ i 5 £ 2 , ^respectively; 

superscript indices identify the node number. TV, 0, P, 2 are Hermite polynomials. 

Results of all the three simulations are compared in Fig. 5.8. 
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Fig. 5.8 Comparison of FE simulations of 4-point bending using different constitutive models. 

5.5.3. A thin composite plate with 30 degrees fibre declination: four-point bending 

The example above is a standard linear problem which can be solved analytically with respect to 

the deflection which can be assumed constant throughout the plate thickness. This simplicity 

occurs due to the fibres being aligned along the Xi axis. In the present example, we consider the 

case when the fibres have 30 degrees declination angle which renders the problem unsolvable 

analytically. Dimensions of the composite structure are given as follows: 240x25.4x5,8 mm. 
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Fibre diameter is d=0.45mm, distance from the middle plane to fibre centre is c=1.45 mm, the 

fibre spacing in each row is s=lmm. 

Material constants of the constituents include elastic modulus Ef=2100 MPa and Poisson 

ratio Vf=0.3 of fibres and matrix parameters for neo-Hooke material law /J=2 MPa, 

d=0.0001MPaJ'. The plate is loaded as shown in Fig.5.6. 

The constant ki is determined using (5.55) on the basis of the corresponding representative 

periodic element containing two fibres in the cross-section (Fig.5.9). 

O 

Fig. 5.9 Representative periodic element 

The values of the material parameters obtained for the expression (5.71) are as follows: 

= 12.75 MPa, k3 =-25.27 Pant2. Negative value of the constant indicates that the bending 

stiffness of the classical homogeneous model, generated by the averaged tensile stiffness of the 

heterogeneous plate, is higher than the actual plate's bending stiffness. So the CST model is 

constructed by augmenting the classical model with the additional term that, roughly speaking, 

subtracts the excessive bending stiffness without affecting the tensile properties of the model in 

any way (which are in complete agreement with the heterogeneous structure already). 

Importantly, the fibre direction unit vector is now defined as (0.866, 0, 0.5)T 
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Fig. 5.10. Comparison of FE simulations of 4-point bending using different constitutive models for the case of fibre 

declination angle of 30 degrees. 
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6. An exact solution of the boundary problem for the thick polar 

material plate for the linearised case 

In this section, thick fibre-reinforced plate under certain boundary conditions is considered. Polar 

theory equations are employed in linear formulation. The solution of the plane strain boundary 

problem of polar elasticity for the static and dynamic flexure of a thick laminated plate has been 

recently derived by Farhat and Soldatos in [1]. The authors take into account the contribution of 

the couple stresses with the help of one extra elastic modulus. In the present study, after 

reproduction of the solution presented in [1] for the case of static flexure of a single-layer plate, 

the solution is extended to different boundary conditions with three extra elastic moduli in the 

model. In this chapter some new numerical results are presented which complement those in [1]. 

6.1. Problem setting 

Let us consider a planar boundary problem: a thick transversely isotropic plate, infinite in the xs 

direction, subjected to certain boundary conditions corresponding to the plane strain. In this case, 

the displacements are functions of only two coordinates 

u2 = u2(xl,x2), (6.1) 
w3 = 0. 

The following equations in terms of displacements uj, u2, obtained by Spencer and 

Soldatos [2] for the case of the plane strain problem of the plate with the fibres initially aligned 

with xi direction, will be further employed: 

d2ux d2u2 d2ux dAux d4u2 d4u2 

'11 ~ 2 + ( C 1 2 + C 6 6 / ~ ~ *~C66 a 2 + C 2 a 2 a 2 + C 3 a 3 a ^ C l a a~T = ^ ' 

oxi oxx ox2 ox2 oxi ox2 oxi ox2 ox1 ox2 
~,2 ~,2 ~,2 ~,4 ~,4 ~,4 

O U2 O Mj o u2 o u2 o ux o u2 

'66 ~ 2 + ' C 12 + C 6 6 )~Z a C 2 2 " ^ ~ 2 C l a 2 n 2 ~ C 2 a 3 n C 3 a 4 = ^ -

CDCj OX[ O X 2 OA:2 OXJ OX2 oxi ox2 oxx 

(6.2) 

where c„ represent stiffness matrix components from classical elasticity, and c,- are elastic moduli 

that characterise the substructure (cj , c 2 correspond to the resistance to "splay" mode 

deformation of fibres and c3 - to "bending" mode deformation, also see (6.9)). 

These equations are derived from the equilibrium equations of couple stress theory and 

linearised constitutive relations for the case of small strains. Constitutive equations of couple 
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stress theory for small strains are given in [2]. The relations for the symmetric part of the stresses 

are given in the form of the generalized Hooke's law for transversely isotropic materials: 

(c c1 2 °1 
CT22 c 1 2 c 2 2 0 
CT33 c 1 2 

C23 0 

v a(i2)y 1° 0 c66y 

"22 
. 2s , V ci2y 

(6.3) 

where en, s22, sl2 are the only non zero strain tensor components conventionally derived as 

S< = 2 

8uL+duL 

, 3X: DX: 
(6.4) 

The theory employed in the present paper assumes that the rotation vector a is not independent 

but related to the displacement vector u in the following way: 

1 du,, 

CO; ~ijk 
dx, 

(6.5) 

The components of the symmetric and antisymmetric parts of the stress are denoted as cr^ and 

G^J] respectively so that 

°n =a(ij)+(J\ijY (6.6) 

The linearised relations for the nonzero couple stresses are given as follows [2]: 

f „ , \ 

23 ^ (it d'J Q 0 ^ 

V m n y 

H J W33 

0 0 d 3iy 

5e n 5e n 

^22 

<92«2 

5xj2 

(6.7) 

And the antisymmetric part of the stress tensor can be expressed in this case as: 

2a = d r U l 3 1 ^ 
^21' dxj dx2 

The constants a, C2, C3 in (6.2) are related to the physical constants in (6.7) as follows: 

(6.8) 

1 1 1 
3̂3 ' 2̂ — j • — (6.9) 
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Let us examine the order of the system of differential equations (6.2). With the substitution 

{x1,x2), the system (6.2) can be written in the following alternative form: 

U2,l ~ U2 \ X \ ' X2 )' 

d2u 
dx] 

+ (c„+c66) • + c. 

-66 dx. •+( C U + C 6 6 ) 

dx2 

d2ul 

8x1 dx2 

66 
d ux 

dxl • + c~ 
d u. 

• + c 22 
d u7 

dxl 

8x1 dx2 

• + c. 
d jL 

— ' ̂  dxfdx 1 ^ 2 

84u, 

d u2 

dxl 
0, (6.10) 

dx, dxl ' dx1 dx2 

d u2 

~dxj 

The system is of the 6 t h order with respect to the coordinate xi and requires 6 boundary 

conditions applied at the plate ends: 

cr1(0,x2) = 0, 
u2(0,x2)= 0, 
ra13(0,x2) = 0, 
<71{L,x2) = 0, 
U2(L,X2)= 0, 

(6.11) 

m13(L,x2) = 0. 

If the solution is sought in the form 

Ul = fl{Xl)COS 

u2 = f2(x2)sin 

It 
f7tX ^ 

(6.12) 

then with the substitution f2=f the system (6.2) yields the following set of equations: 

k\f\+k2f2+k3fl +k4f2 =0, 
t 

^ 5 / 2 + k6fi + k7f2 = 0 

(6.13) 

which is clearly a system of the 4 t h order with respect to xj. Consequently, the lateral boundary 

conditions for the present problem are set as follows: 

ul(xl,h/l) = 0, 
u2{x1,h/2) = —u0 sin(7ixx/L), 

ul(xl,-h/2) = 0, 

u2(xl ,-h/2) = 0. 

(6.14) 
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Fig. 6.1 Displacement boundary conditions 

6.2. Solution 

We make use of the method of the boundary problem solution in [1] for the case of static flexure 

of a single-layered plate and extend it to different boundary conditions (Fig. 6.1) and additional 

components of the model (terms with coefficients cj, C2 in the system (6.10)). 

For a plate under the above specified load, the solution in the following form can be used: 

where 

(6.15) 

(6.16) 

The presence of constants a, C2 relates to the splay modes of fibre deformation and c? 

relates to the bending mode [2]. The presence of these constants in the equations (6.10) is 

dependent on the choice of relevant invariants in the form of the polynomial strain energy 

density function. 
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6.3. Results 

The elastic constants for the transversely isotropic material are set as follows: EL =40 ET 

GLT =0.5ET GJT =0.2 Ej v-rr =
 VLT =0.25. 

Adopting notation from [1] we set 

d31=cn AhL (6.17) 

where X is a non-dimensional parameter related to intrinsic material length parameter (for more 

details see [1]). 

Each of the remaining moduli can be set in the similar manner (du=cuX\hL, 

d33=cu X2hL), although the definition of these moduli is out of the scope of this study. 

The constants a, C2, C3 are then defined in accordance to (6.9). 

In the Table 6.1 the results of calculations are presented for the plate of the length L and 

thickness h=0,25L. 

For each calculation only one additional elastic modulus is considered nonzero, the other 

additional moduli are omitted from the model (i.e., not present in the system (6.10)). Thus we 

have obtained a quantitative estimation of the influence of each of the additional elastic moduli 

as presented in Table 6.1. 
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Table 6.1. Through-thickness distribution of u> 

Ul(0,X2)/ Uo 

c1=c2=c3=0 
Ul(0,X2)l Uo 

c1=c2=0, 

A =0.01 

Ul(0,X2)l m 

c3=c2=0, 

c^O 

X =0.01 

Ul(0,X2)l Uo 

Cl=c3=0, 

A2 =0.001 0.4 -0.013948196 -0.005908389 -0.013918808 -0.02828146: 

0.3 -0.0205631560 -0.00859638: -0.021534995 : -0.02764271 

0.2 -0.023533576 -0.0097066' -0.02552476' -0.027067310 

0.1 -0.02465696 -0.0100383: -0.027351710 -0.02657205' 

0 -0.0247528504 -0.0099579: -0.02774786: -0.026155487 

-0.1 -0.02407952: -0.00958854: -0.026954455 • -0.0258163' 

-0.2 -0.0224657: -0.00887389' -0.024801370 : -0.025553716 

-0.3 -0.01922424: -0.007550236 6-0.02065144 -0.025366720 

-0.4 -0.0128034: -0.00501168' -0.013191293 : -0.025238771 



7. Application of polar elasticity to bending of a thick plate under 

small strains. 

To gain a better understanding of the additional constant and the role of couple stress in polar 

theory [2], we focus on exact analytical (polar elasticity) solutions for the problem of pure 

bending of thick infinite plates. The solution is done for a transversely isotropic material under 

small strain assumption. 

The section is organized in the following manner: in 7.1 the displacement solution is 

derived for a transversely isotropic thick plate under pure bending (and the conventional -

Cauchy theory of elasticity); in 7.2 the solution is derived for the case of longitudinal modulus 

being a periodic function of position in transversal direction; in 7.3 the first problem is analyzed 

on the basis of couple stress theory. In 7.4 solutions of all the three models, taken with the 

matching effective properties and the same effective load, are compared. 

7.1. Homogeneous material (conventional theory of elasticity) 

Let us consider a rectangular plate subjected to a known bending moment Ms (Fig. 7.1). The 

material is transversely isotropic and characterized by the following constants related to 

conventional linear elasticity theory: Eh E2, v1T, v23= v32= VJI, G1T. The isotropic plane of the 

material is X2X3. This model is referred to as the EC (effective classical) model below. 

*2 

<4 • 

2L 

Fig. 7.1. A thick plate with infinite length in X 3 direction 

The following boundary conditions have to hold for the tractions ti and t2 

on the faces defined by: X2= ±h => t2=0 
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Xi=±L => \tldX2=Q 
-h 

h 

jt1X2dX2 = M2 

(7.1) 

Equilibrium equations (with negligible volume loads) must be satisfied as well: 

dXj 

0 , (7.2) 

The following stress distribution satisfies both (7.1) and (7.2): 

(7.3) 

The stress distribution throughout the plate thickness is the same at any cross-section (Fig. 7.2). 

Fig. 7.2. Normal stress distribution throughout the plate thickness 

Under plane strain conditions (£?=#) and for stresses in the form (7.3) the constitutive equations 
yield: 

1 Vŷ jVjy1 

^1 

So = cr 
(7.4) 

By integrating (7.4) we obtain 

x=\sxdXx+gx{X2) 

2 = \s2dX2 +g2{Xx) 
(7.5) 
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U l = l Vfv cXxX2+gx(X2) 
Ex 

U2 = 

2EX 

(7.6) 

With the additional condition of zero shear strain 

du, du-, 
- + — - = 0 

dX2 dXx 

(7.7) 

we find that 

' Vl^-aXl+gl\x2) + g2\xi) = Q (7.8) 

and 

l-vTlvy 82 (Xl) = ~- y ^ l T a X x + c , 

(x2) c, 

(7.9) 

8 ,{XX)=-1~VT^T -~2 

2Et 

aX{ +cX] + C j , 
(7.10) 

where the constants ci, C2, c are set to zero ( ci, C2 refers to rigid body translation, c to the rigid 

body rotation). The final solution in displacements then acquires the form 

Wo 

1 VTlVlT-aX1X2, 
E, 

2EX 

2 _ l - V r l V l r 2 

2Et 

(7.11) 

7.2. Heterogeneous material with periodic properties 

We still consider a plate subjected to a known bending moment M3 (Fig. 7.3) 
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Fig. 7.3. Composite plate pure bending 

The Young's modulus is changing throughout the plate thickness, its distribution in j c 2 direction 

is given using cosinus function, as shown on the Fig.7.4 while it is independent of xj coordinate. 

\ A 1 S 0 7 

\ 1 \ 1 4 C r ' 

1 / 1 1 0 r 0 ' 

\ / 1 r 0 ' 

\j \too-

-10 10 x2 

v 

Fig. 7.4. Young's modulus throughout the plate thickness 

Such periodically changing stiffness can be regarded as an approximation of a composite 

reinforced by fibres aligned with xi direction. This model is referred to as the PS (periodical 

stiffness) model. 

Thus the material is also transversely isotropic, characterized by the following parameters: 

TUN 
El = E0 +Ecos( X2 ), E2 

h 

rN2N/h dX, 
2h { El(X2) 

, VJT, Vfr, GJT-
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The same boundary conditions (7.1) and equilibrium equations (7.2) must be satisfied. In 

order to ensure pure bending, the applied normal stress at the ends of the plate must 

accommodate to the strain distribution ex = kX2, where the curvature is introduced as 

k = -u211. The curvature can be defined in relation to the load as follows: 

M 3 = 
l - W i r -h 

JEiX2dx2 (7.12) 

Xn 

Fig. 7.5. Normal stress distribution throughout the plate thickness 

Thus the stresses are 

<j22 = 0, 

E0 +Ecos(7^-X2 ) 
<ju = ^ kX, 

1 Vjy1 Vy1 

2 ' (7.13) 

<712 =0. 
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The distribution of normal stress 6u is shown in Fig. 7.5. By integrating strains we arrive to the 

displacement solution, where 6u is the expressed above function of x2. 

The displacements are presented as functions of the stress distribution and the curvature. 

— kXx X 2 > 

(7.14) 

Following the logics of the previous section and the Hooke's law relations for plane strain (7.4) 

the solution has final form 

Wj — kXx X 2, 

(7.15) 

7.3. Homogeneous material (polar theory of elasticity) 

Now let us consider pure bending of the plate with the additional elastic constant dn indicative 

of the bending stiffness of the substructure. The loading conditions stay the same as on the Fig. 

7.1. Such model we refer to as the EP (effective polar) model. 

The boundary conditions on the faces are as follows in this case: 

X2=±h: t2=0 
h 

X]=±L: \txdX2 = 0 (7.16) 
-ft 
h h 

^tlX2dX2 + jml3dX2 =M3 

-h -h 

where the couple stress [2] win is introduced. 

Equilibrium equations in the polar theory for the present case are augmented by the 

equation connecting the antisymmetric shear stress and the couple stress: 
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8 X > (7.18) 
0^ -dm13 

where equation (6.6) holds again for the symmetric and antisymmetric parts of the stress tensor. 

The following stress and couple stress distribution satisfies both (7.16) and (7.18) (also see Fig. 

7.6): 

r r 2 2 =0, <x21=0 
o-j =aX2, al2 =0 (7.19) 

= const = P 

Fig. 7.6 Distribution of the non-zero stress and couple stress components in a section of the plate 

The strain-stress relations hold in the form of (7.4) with the additional equation [2]: 

m l 3 = ^31M2,ll (7.20) 

which can be rewritten here as 

M2,ll — 

d3l 

(7.21) 

From the integration of (7.4) and zero shear condition (7.7) we obtain the displacement solution 

identical with (7.11): 

1 ^T\^\T 

u2 = 
_-y1T(i+yTr)aXs i-vTlvlT 

(7.22) 

2El 2El 

•aXx 

If we now insert the second equation of (7.22) into (7.21) we can see that this solution is valid 

only if 
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F d 
c l M31 

So (7.23) is the result of requirement of zero shear strain (20). It means that for the given 

material constant d31 the applied stress parameter a and the applied couple stress value P must 

relate via (7.23) in order to ensure pure bending. 

As this section shows, it can be concluded that the displacement solution in the form of (7.22) for 

the pure bending problem is valid for 

a) transversely isotropic plate (d3i=0) under end loading <Ju = aX2 or 

b) transversely isotropic polar material plate (Jj#0) under the end loading an =aX2 and 

m 1 3 = const = P under condition of validity of eq. (7.23). 

It can be verified that the units of the elastic constant d^ correspond to Newtons [N]. 

7.4. Comparison summary 

To briefly illustrate the differences in the equivalent models, a summary of the models presented 

in chapters 7.1 and 7.3 is presented below (not the periodic structure acc. chapter 7.2) for 

comparison. 
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classical (EC) periodic (PS) couple stress (EP) 

h h h 

^anX2dx2 = M 3 ^anX2dX2 + ^mudX2 = M3 

-h -h -h 

Fig. 7.7. Comparison of the models. Bending moment 

The heterogeneous plate (PS model) under pure bending can be modelled as effective 

classical (EC) homogenous model (option 1) or effective polar (EP) homogeneous model (option 

2). The overall applied bending moment in all the cases has the same value, but the stress 

distribution is different. 

In the 1st model the moment is transferred to the material by tensile stress only, and in the 

2nd model the moment is transferred by tensile stress as well as couple stress. While normal 

stress is related to the extension or compression of the fibre, Couple stress is directly related to 

the fibre curvature only. 
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£1 ~E0 

El = E0 +E cos(^ X2 ), 
h 

• V1"P VTV ^21 • 

E1-E0 

j 2k2E 
31 x2N2(l - vTlvlT) 

Fig. 7.8. Comparison of the models. Material parameters 

In order to compare the above 3 models, the equivalent effective material parameters must 

be defined. We start with the heterogeneous (periodic) model: Ej is the function of x2, the rest of 

parameters are constants. Its periodically changing stiffness can be regarded as an approximation 

of the fibre reinforced composite. 

For the EC homogeneous model the E} is defined by averaging, and the rest of the 

constants are the same. 

For the EP homogeneous model, all the constants are identical to the classical, but the 

additional parameter is present. Bending stiffness parameter serves as a correction parameter 

which ensures that the overall bending stiffness of the plate in the EP model equals that one of 

the PS model. 

Even without going into detail, we can see that characteristics of the heterogeneous model 

are more comprehensively accounted for in the 2nd (EP) model: particularly, the amplitude E 

wave is not present in the 1st model in any way, since it has no effect on the averaged modulus. 

Also the number N which is indicative of the number of fibres can not be included in the 1st 

model. 
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7.5. Discussion 

On the basis of the previous developments we compare the solutions of the three corresponding 

models under the given value of the applied bending moment. The model from the Section 7.2 is 

taken as a reference model. Its periodically changing stiffness can be regarded as an 

approximation of the fibre reinforced composite. This model is referred to as the PS (periodical 

stiffness) model. If we try to replace the PS model with a homogeneous one, we can do it in two 

ways. Firstly, the model from the Section 7.1, taken with the corresponding properties, can serve 

this goal. This model we refer to as the EC (effective classical) model. Secondly, the model from 

the Section 7.3, further called the EP (effective polar) model, can simulate the given problem. 

The goal is to compare the results from two of the alternative homogeneous models (ES and EP) 

with the PS model and to evaluate their accuracy under varying N which can be regarded as 

analogous to the nominal number of fibres per height in a unidirectional fibre composite. The 

properties of both the homogeneous models are set as effective (averaged) properties of the PS 

model. In addition, the bending stiffness parameter in the EP model is set as 

2h2E 
a 3 1 = —z—T-, r and serves as a correction parameter which ensures that the overall 

n N ( l - v n v l r ) 
bending stiffness of the plate in the EP model equals that one of the PS model. Al l models are 

loaded at both ends of the plate by two equilibrated couples with magnitude (per unit width) of 

M=-500 N inducing the same bending moment in all sections along the plate length. The 

dimensions are: 2L=200 mm (length of the plate), 2h=50 mm (thickness). 

The material properties set in the computations are listed in Table 7.1. 
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Table 7.1. Material parameters used in the models of thick plate 

PS model EC model EP model 

Eu MPa 
1000+999 cos(—X2) 

h 

1000 1000 

ET, MPa 44,71 44,71 44,71 

0,3 0,3 0,3 

0,3 0,3 0,3 

d.3i,MPa mm2 8690 forN=4 

1390 for N=10 

N = 4 xl, mm 

0,17 I — i — — i 

•0,2*2 

—0,23 1 

deflection, mm 

Fig. 7.9. Plate deflection for different models and 4 fibres per thickness (N=4) 
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-0,23 1 

deflection, mm 

Fig. 7.10. Plate deflection for different models and 10 fibres per thickness (N=10) 

The motivation for such comparison sprung from chapter 4 in [2] where the authors 

consider Euler-Bernoulli beam with the cosinusoidal Young's modulus distribution to point out 

the inaccuracy of the conventional theory of fibre-reinforced materials in cases where the fibres 

are not infinitesimally thin. 

In polar theory, the length scale can be introduced via the additional elastic constant dsi. In 

the present computations, the formula for d3i contains (h/N)2 which is the (squared) dimension of 

a representative volume unit related to the nominal fibre thickness ( similarly to [1], [85].) 

Therefore the EP model gives correct results (equal to the PS model) for N=4 while the 

conventional theory of elasticity (EC model) neglects the bending stiffness of fibres and 

consequently underestimates the stiffness because the fibre thickness is not negligible. With 

increasing N the bending stiffness of fibres decreases and the correct solution obtained by both 

PS and EP models becomes closer to the EC model which gives still the same results 

independent of the number of fibres (no size effect). 
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8. Verification of the FEM code based on the exact solutions for small 

strain problems 

Verification is carried out using new exact solutions for the anisotropic couple stress 

continuum with the incompressibility constraint. 

Considerations and techniques employed in Section 6 are used to achieve exact solutions of 

the linear boundary problems below. 

Plane strain boundary problem is solved both analytically and numerically (using the new 

FEM code). The large strain problem is also examined. 

8.1. Large strain framework 

The large-strain framework modified by Spencer and Soldatos [2] for couple stress theory 

and shortly outlined in 5.1 is used in this section. Deformation gradient tensor F and right 

Cauchy-Green deformation tensor C are conventionally used. 

The tensor A will be denoted as "curvature tensor" below because it is related to the 

curvature of fibres and to other derivatives of the deformation gradient tensor F in the deformed 

configuration (although only some components of this tensor can be interpreted geometrically as 

fibre curvatures). 

For a unidirectional fibre-reinforced composite model, unit vector A(X) defines the fibre 

direction in the reference configuration. 

The basic differential equations of equilibrium of the couple stress theory were introduced 

in 5.1. and served as a basis for the formulation of FE code by Lasota in [3] based on calculus of 

variations. 

8.1.1. Choice of the specific form of the model - incompressible material 
To construct a computationally applicable strain energy density function in a form suitable for 

the rubber-like composites reinforced with fibres stiff in bending, we choose a strain energy 

density function that contains only one additional invariant accounting for the bending stiffness 

of fibres. Here and below the chosen material is considered to be fully incompressible. Therefore 

the constitutive model differs somewhat from that described in section 5.3, where "nearly 

incompressible" formulation is outlined. The following invariants are employed from (5.10): 

h=Cn, (8.1) 
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14 —AjCLJAL (8.2) 

16 — A j A O J A O L A L (8.3) 

Then the strain energy density has the final form based on [8] and now is modified for material 

incompressibility: 

W = k1(l1 ~3) + k2(l4-if +k3I6+p(J-l) (8.4) 

where p is Lagrange multiplier related to incompressibility and 7 is the volume ratio. 

The coefficients in eq. (8.4) represent material parameters: ki is related to properties of the 

matrix (neo-Hooke model), k2 and fcj relate to the tensile and bending stiffness of the material in 

the direction of reinforcement, respectively. 

The specific constitutive equations can be derived for the proposed strain energy density 

from the general relations [2]: 

(</) FiRFjS 

8W 8W 
• + -

\uy^RS uy^SR J 

+ (GiRFjS+GjRFiS) 8W 
cA SR 

(8.5a) 

_ 2 dW 
m ; ; =-e. u o ikm a 

3 dAz 

F , n P { F j R b k + F k R b j ) (8.5b) 

where G:I , b, = F,RAR. 
3X, 
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8.1.2. Finite element formulation 

As it has been mentioned before, two finite element approaches exist with relation to CST. One 

of them introduces the rotations as independent variables which enables application of CO finite 

elements. In this case the rotations-displacements dependency is taken into account using penalty 

term in the virtual work expression. Such approach has been used in [4] which, however, has not 

yielded successful numerical results. 

The present work uses the pure displacement based approach and employs CI Hermite 

elements, as elaborated in Section 5.5. 

Displacement vector field and the hydrostatic pressure are taken to be the only fundamental 

unknowns. 

After the linearisation, the following five linear systems with respect to unknown increments of 

nodal displacements Au", increments of nodal slopes Aa",Aj3",Ay" and increments of nodal 

hydrostatic pressure are considered: 

KZM + KZM + KiM + KZbkAy\ + KZAph = R« , 

KZM + KIM + KiM + KLM + KiM = s;, 

KlM + K^hkAah

k + K^M + KalkAyh

k + K*4p> = V, (8-6) 

KZM + KZkAah

k + KZM + KZM + KZAph = U° , 

KZAph + KZAp" + KiAp" + KZAp" + KpJhAph = Va, 

where R", S" , T" , U" , V are residual vectors components and nodal number a changes from 

1 to n, coordinate number k changes from 1 to 3. 

The above finite element formulation refers to the case of purely incompressible material, as is 

evident from the presence of the hydrostatic pressure parameter. This is the approach alternative 

to the approach in 4.5.1 for the slightly compressible case where four systems of equations were 

used. Both approaches have been implemented in Matlab software by Lasota [3]. 

8.2. Numerical results for linear elastic case 

The above solver is based on finite element method (FEM) and applies the polar (couple 

stress) theory. To test the applicability of this solver, it is applied to two plane strain problems in 
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the first part of this section. In order to verify the element formulation and the chosen form of 

strain energy density function, the FEM numerical results are compared with values obtained 

analytically. Since there are no analytical solutions available for large strain anisotropic polar 

elasticity, we consider a small strain case here. 

8.2.1. Verification within the small strains range 
Analytical solution of a plane strain boundary problem of polar elasticity for flexure of the thick 

plate under sinusoidal pressure load (Fig. 8.1) has been derived recently by Farhat and Soldatos 

in [1] the outline of the solution is presented briefly in Appendix. 

As it is shown in paragraph 5.3.2, for the case of the strain energy density with the 

additional invariant h and the case of small strains, only two components of the couple stress 

tensor are non-zero. Here, since the plane strain problem is considered, only one component is 

left: 

mis^d31—f, (8.7) 
OX] 

so that 

oM=\d31

d^\. (8.8) 
2 ox, 

So the lateral boundary conditions (see (A.l 1) in Appendix) can be written in the following way: 

'12 
dux 

dxt 

'8u 

Xx 

du2 f h 
-22 dx Xx,~ 

2 V 
-q0 sin L 

V ^ J 

- 66 
V & 2 v 

dux

 f 

Xx, • 
du2

 f 

•J dx 
X j , • 

i V •J J 

1 , d3u2

r 

2 dx/ 

'12 dx. i v 
X v 2 

du2

 f 

C22 ~~Z 
ox 

h 
\ 2 v 

xx,-- 1 = 0, 

'' dux 
f h) du0 

f h )1 '' dux 
X j , 

V 
— + — -

X j , 
V Kdx2 

X j , 
V V 

X j , 
V 2, 1) 

-d. d «, 

xv^ 1 = 0, 

2 31 dx/ v / 

(8.9) 

0, 

And they are satisfied by identifying 4 unknown coefficients (eight coefficients are used overall, 

but only four of them are independent) in the solution functions fi(x2), fiixi) (introduced earlier 

in (6.15), (6.16)) and then used below in (8.10) (see Appendix for more details): 
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u, =a.e 1 cos\ 
1 I L J (8.10) 

- ^ix2 • Uj=a.e 1 sin 
1 i 

However, we couldn't use the values in [1] directly for the verification of the code, since it is 

programmed for the incompressible material model only and the numerical results given in [1] 

are calculated for a specific material with some compressibility. Therefore we use the solution 

technique offered in [1] for another linear elastic, transversely isotropic incompressible polar 

material. 

8.2.2. The equivalent linear constitutive law 

The FEM code produced by Lasota [3] and modified in the present work is designed to 

accommodate a certain form of material description. Material must be defined by elastic strain 

energy density being a function of several invariants. On the other hand, the linear boundary 

problem described in Section 6 and later in this section requires material law to be presented in 

the form of the generalised Hooke's law. The aim of this section is to compare analytically 

obtained solutions (for the linear elastic material) with the FEM obtained solutions (for the 

hyperelastic material under small strains). Evidently, it has to be the same material (same 

behaviour described in two different forms). In this paragraph we briefly outline the transition 

between the nonlinear anisotropic material law (NAML) and the equivalent generalised Hooke's 

law (EGHL) which describe the same behaviour under small strains. 

We start with the conventional elasticity (with no regard for the presence of couple 

stresses). The given incompressible transversely isotropic material with fibres initially aligned 

along the xj direction is described as follows 

W = k, {ij-3)+k2(l4-lf +p(J-l), (8.11) 

where kj is related to properties of the matrix (neo-Hooke model), &2 relates to the tensile and 

stiffness of fibres, p plays the role of a Lagrange multiplier. Let us construct equivalent material 

model within the framework of the Hooke's law. 

Shear moduli of the EGHL are Gi2=G23=G3i=2ki. The Young's modulus in the preferred 

direction is 

E1=6k1+8k2 (8.12) 

The relations between elastic constants for the orthotropic material are as follows: 
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V21 V12 

E2 Er 
V31 V13 

E3 Ex 

V23 _ V 3 2 

E2 
E3 

(8.13) 

For the orthotropic material in general, the following relations of Poisson's ratios ensure 

incompressibility: 

v12+v13=l, 
v21 + v23=l, (8.14) 
V 3 2 + V 3 1 = 1 -

In our case (transversely isotropic material) the following is true: 

v1T =0.5, 

E 

vT1=-zLv1T, (8.15) 
E, 
1 ~ , 

where index T denotes transversal directions and index 1 denotes the preferred direction. 

So, with G given by 2kj, E} given by (8.12) and v1T given by (8.15) the two remaining elastic 

constants (ETand consequetnly vT1) are to be found from the following relations: 

2{i+vTTy 

VT1 IT 

(8.16) 

Then we can say that for the present calculations, the following parameters are further employed: 

k]=l, k2= 11.75, d=0 in the large-strain description, and, consequently, the following constants 

for the equivalent linear elastic material: GIT=GTT=2, E]=100, ET=7.84, V1T=0.5, VTT=0.96. 

Now let us consider additional elastic parameters related to couple stress theory. Within the 

couple stress theory the energy density has the following form with additional parameter fo: 
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W = k1 (l, -3)+ k2(l4 -1)2 + k3I6 +-(j-l)2, (8.17) 
a 

where d is incompressibility constant 

or an incompressible formulation 
W = kt (Ij -3) + k2 (l4 -1)2 + k3I6 + p(J -1) (8.18) 

From the paragraph 5.3.2. it can be concluded that 

m13=d31^l, (8.19) 
OXj 

and that for the present form of the strain energy density 

d31=-k3, (8.20) 

where dsi=2cs in the governing equations for the linear boundary problem in Appendix. 

The material behaviour is characterised by the strain energy density (8.18) with the following 

constants: ki=l MPa, fe= 11.75 MPa, k3= 30 mPamm . 

The above material parameters correspond (within the small strain range) to the linear 

constitutive equations (see Appendix) described by means of the following constants: 

G12=G22=2 MPa, Ei=100MPa, E2=7.84MPa, v12=0.5, v23=0.96, c3=40 mPamm2, where the 

indices denote numbers of axes with 1 denoting the preferred direction. 

where go=0.01 N/mm. 

The length L of the plate was 100 mm, the height was h=L/4. Complete boundary conditions are 

depicted in Fig. 8.1. 

(
\ I 7ZX, ' 

Xj,h/2)= —q0sin\ 
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u2—0 

O-=-0.01 sinfTTXj/L) 

a21=0 

0=0 

a21=0 

L 

u2=0 

Fig. 8.1. Boundary value problem 

The finite element model represents one half of the plate due to its symmetry and employs three 

dimensional elements. The boundary conditions including nodal forces, slopes and 

displacements are applied to the surfaces as shown in Fig. 8.2. 

u3=0 
fX2 p—qoSinfnx/L) a3=/33=0 

Fig. 8.2. Half of the plate with boundary conditions of the FE model 

8.2.3. Results 
Numerical and analytical results for the deflection of the top surface of the plate (x2=h/2), the 

normal stress and the couple stress along the axis x 2 (in the cross-section xi=L/2) are depicted in 
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Figs. 8.3, 8.4, 8.5, respectively. Al l the FEM results show highly accurate agreement with the 

exact analytical curves. 

-3.00E-01 

-3.50E-01 

Fig. 8.3. Displacement in x 2 direction computed at the top surface of the plate (results are shown along a half of the 
plate due to its symmetry) 

Sigma 1 
0,15 

\ 
0,05 

-15 -10 -5 í ' 10 15 

-0,05 

Fig. 8.4. Distribution of first principal stress Gi throughout the thickness of the plate in the middle section 
(x1 =L/2). 
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0,02 Ij 
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0,015 

0,01 

0,005 

i 1 1 8 - i i i 

• FEM 

— exact 

-15 -10 -5 0 5 10 15 

x2, [mm] 

Fig. 8.5. Distribution of couple stress nii3 throughout the thickness of the plate in the middle section (x^L/2) . 

8.3. Illustrative problem in large strains 

The capability of the FEM code to model three-dimensional problems under large strains is 

demonstrated below. 

To illustrate the capability of the FEM code to solve problems under large strains, tension test of 

a fibre reinforced elastomer specimen loaded in another direction than that of the fibres was 

chosen. The FEM applications on the basis of both classical elasticity and nonlinear polar theory 

are compared in this section by means of analyses of stresses and deformations of the specimen. 

Let us consider a thin rectangular elastomer specimen reinforced with one family of fibres. 

The specimen is subjected to uniaxial tension as shown in Fig.8.6. The fibre direction corners a 

general angle with the direction of tension. The material law for the model is chosen in the form 

(8.18). Two models with the same mesh have been used for FEM computations. The material 

parameters of the models were set as follows: ki=l MPa, k2= 11.75 MPa, k3= 0 for the 1st 

model, and k/=I MPa, k2= 11.75 MPa, k3= 0.5 MPamm2 for the 2 n d model. The angle between 

the principal material direction and tension direction was a=it/4 in the further analyses. 

The 1st model corresponds to the classical theory of elasticity and so the respective problem 

can be easily solved using commercial FEM code Ansys. The 2 n d model incorporates the 
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material constant k3 related to the intrinsic bending stiffness and the respective problem is solved 

in the new code presented above. We pay particular attention to the deformed fibre rotation 

angle in both models (Fig. 8.7). We keep in mind that fibres are not present in either geometrical 

model explicitly, but the effect of their presence is included mathematically in the constitutive 

law. Consequently, the "deformed fibre rotation angle" is calculated by subtracting the relevant 

angular positions of the nodes in the deformed and undeformed meshes (Fig.8.8). 

As expected, the non-zero parameter k3 influences the response by adding anisotropic 

bending stiffness to the model (namely, to the implicitly present fibres). From Fig. 8.7 it can be 

seen that the deformed fibre rotation angle is higher in the classical (k3= 0) model. The influence 

was also confirmed by maximum lateral displacements (in j c 2 direction) of the specimen being 

20 % lower for the non-zero k3 constant. 

Fig. 8.6. Specimen of fibre reinforced elastomer loaded in tension 

0 0,5 1 1,5 2 2,5 3 3,5 4 

x, [mm] 

Fig. 8.7. Comparison of the deformed fibre rotation angle in both models under the same load 
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Fig. 8.8. Deformed and undeformed mesh of the fibre reinforced elastomer under tension (k3=0.5) 

In the large strain range no solution enabling us a verification was found in literature, so 

the presented example illustrates only qualitatively the capability of the code to mimic the 

bending stiffness of the fibres. When the parameter k3 is set to zero in the applied material 

model, it is reduced to a classical (Cauchy) model taking only tension stiffness of the fibres into 

consideration, i.e. based on the assumption of the infinitesimal diameter of fibres and their 

uniform distribution. Under these conditions the solution obtained by the new code showed a 

full agreement with the commercial FEM code ANSYS. Addition of a non-zero value of the k3 

parameter has increased the stiffness of the specimen, demonstrating thus the increased 

resistance of the specimen against deformation caused by bending stiffness of the fibres. 
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9. Problems with kinematic constraints: linear elasticity with and 

without additional bending stiffness 

Analytical solutions for small deformations of thick isotropic plates are established in the 

literature for long. The studies relevant to this work are outlined below. 

Extending the study of Srinvas et al [82] by adding the incompressibility constraint, 

Aimmanee and Batra [83] provide an analytical solution for free vibration of a simply supported 

rectangular plate. They focus on identifying natural frequencies of a three-dimensional plate, 

which is out of the scope of this work, but the general logic of their solution is relevant to the 

present study. 

In terms of conventional linear elasticity, the present work extends the study [83] by 

extending the case to orthotropy, specifically transversal isotropy, the fibre inextensibility 

constraint while in the same time restricting the case to plane strain and static deformation. 

Then the recently introduced polar elasticity for fibre-reinforced solids [1] is employed in 

this part, the applied material description includes homogeneity, anisotropy and additional 

intrinsic bending stiffness, corresponding to the contribution of fibres in the equivalent 

composite. 

In terms of polar theory the present study extends the work [1] by adding kinematic 

constraints of incompressibility and inextensibility to the relevant problem. The work [1] itself 

can be regarded as a polar elasticity generalization of the classical elasticity approach of [84]. 

Pagano in [84] derives elasticity solutions for cylindrical bending of orthotropic laminates. The 

scheme of his solutions is adopted in the present work with appropriate modifications, related to 

the introduced kinematic constraints. 

With regard to the kinematic constraints in polar elasticity problems, some other recent 

works have to be mentioned. Incompressibility and inextensibility constraints have been applied 

to the problem of large strain hyperelastic deformation of a transversely isotropic block [46] and 

azimuthal shear of a transversely isotropic tube [85]. 

9.1. Restrictions on elastic constants outgoing from the kinematic 

constraints 

The restrictions on Poisson's ratios for isotropic and transversely isotropic incompressible 

materials are established for long, but here they are derived again in order to reiterate the 

mathematical logics behind such restrictions. The aim is to outline how introducing a kinematic 
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constraint yields the restrictions for material constants, and how the corresponding Lagrange 

multipliers (e.g., hydrostatic pressure or an arbitrary tension in the direction of reinforcement) 

appear in the constitutive equations based on the generalized Hooke's law. 

For all the cases, the hydrostatic pressure can be expressed, by definition, as 

P = ~ \ ( a n + 0 - 2 2 + 0 - 3 3 ) (9.1) 

9.1.1. Isotropic case 
First, let us consider the isotropic case of an incompressible material 

From the generalised Hooke's law we know 
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(9.2) 

Let us introduce 0 = sl l + s22 + s33 representing relative volumetric change. 

Then inserting the expressions for normal stresses from (9.2) into (9.1) we obtain the relation for 

isotropic material: 

E 
3(1-2v) 

We can use an alternative to (9.2) form of Hooke's law 

6 (9.3) 

(9.4) 

and consequently, alternative form of relation (9.3): 

P = ~(3A + 2ju)8 

Now we impose the incompressibility constraint 

sn + s22 + s33 =0 = 0 

(9.5) 

(9.6) 

Then from (9.3) we have 

1 — 2v / \ 8 = (cTj +cr2 +<J3) = 0 (9.7) 
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and straightforward consequent restriction for Poisson's ratio: 

v = 0.5 (9.8) 

Alternative form (9.3) of constitutive equations with use of Lame constants gives 

s,+s2+s3= 1 (a 1 +a 2 +a 3 ) = 0 (9.9) 
3/1 + 2// 

and a corresponding restriction 

2 - > o o (9.10) 

Then constitutive relations for normal stresses can be rewritten in a new form. Using the 

example of normal stress o\ we can see below how the hydrostatic pressure occurs in the 

equations. 

V E 0Sii+2Gsij (9.11) 
i j (l+vXl-2v) i j 

we insert 6 = 0(P) using (9.3) 

J V P + 2Gsn, (9.12) 
1 +v 

since v = 0.5, it holds 

an=-P + 2Gsn. (9.13) 

Similarly, other normal stresses are derived. 

Now, by carrying out same steps for (9.4) Lame form, we will obtain same result with 

alternative constants. The Hooke's law transforms as follows: 

crij=WSij+2lusij, (9.14) 

cru = A0 + 2jU sn, (9.15) 

we insert 6 = 0(P) using (9.5) and obtain 
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-51 
°n=-^—^P + 2V£n, (9-16) 3/1 + 2// 

since A- > G O , 

O-JJ =-P + 2jU sn. (9.17) 

9.2.2. Transversely isotropic case 
Now similar steps can be performed for transversely isotropic material 

c 1 2 c 1 2 0 0 0 

2̂2 c 1 2 c 2 2 
C23 0 0 0 

CT33 c 1 2 
C23 c 2 2 0 0 0 

2̂3 0 0 0 C44 0 0 
cr13 0 0 0 0 0 

vO 0 0 0 0 C66 

'22 
'33 

2s 23 
2P 

2̂ -
66 A 12,/ 

(9.18) 

Hydrostatic pressure is given by (9.1) as before. We insert (9.1) into (9.18) to obtain P = P(0) 

P = --{{cl2 +c22 +c23)e + {cl2 +cn-c22-c23)s,) (9.19) 

The components of the stiffness matrix can be, of course, expressed using the five independent 

technical constants Eh ET, v1T, vT, Gn. 

We also can use alternative form of Hooke's law for transversely isotropic material [86] when 

the anisotropy axis is characterised by vector «=(1,0,0)T 

cr.. = JWSy + 2juTstj + a(euSy + Oa^j)+ Ps^Qj + l(jux - juT \atsn + a}£iX), (9.20) 

where X, a, J3, /Uj, jiT are five independent material constants. 

Then the link between P and 0 is obtained as before: 

P = -^((3A + a + 2/jT)6 + (4(/j1 - / J T ) + 3a + fi)el), 

e = 3 p 4(Ml-fiT) + 3a + J3 c 

3A + a + 2jUT 3A + a + 2/UT ' 

(9.21) 

(9.22) 
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We impose incompressibility constraint sl + s2 + s3 =0 again and observe the mathematical 

consequence concerning material constants. 
We use constitutive equations (Hooke's law) expressed with technical constants 

( V 0 0 0 
r _ \ /ET / E T 

0 0 0 

1/ - V , , . V 0 0 0 
s22 / X 

0 0 0 
o-22 

-vlT/ 
/EL 

~~ Vliy^ 1/ 0 0 0 
°" 3 3 

2s23 0 0 0 2(l + VJJ 0 0 

y 0 0 0 0 y 0 
v°"i2 y 

0 
V 

0 0 0 0 y 

(9.23) 

and obtain 

l-2v 
O, 17" 

3 
+ (o-2+<73) 

1-v. 7T V 0 

fv i r =0.5 

(9.24) 

(9.25) 

In this way, only three material constants are left independent. 

And for Lame form (9.20) the equation (9.22) turns to zero for incompressibility case, 

which corresponds to X- > 0 0 . When we substitute 6 from (9.22) to (9.20) we obtain constitutive 

equations in the new form for incompressible material - with inclusion of hydrostatic pressure. It 

should be noted, that they do not contain the constant a anymore. It means that the three 

independent constants are left now - /?, Lih LIT. The equations can be seen in the following 

section (see (9.35)). 

9.2. Problem setting 

Let us consider a plane strain boundary problem: a simply supported thick transversely isotropic 

plate, infinite in the x3 direction, loaded by sinusoidal pressure on the top surface. In this case, 

the displacements are functions of only two coordinates 

U-2 (X\ > X2 ), (9.26) 

u3 = 0. 
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The material in question is transversely isotropic with high tensile stiffness in xj direction. It 

simulates a fibre-reinforced composite with one family of straight fibres. 

First the main equations of the general case of polar elasticity are considered. Equilibrium 

equations involve components of the couple stress tensor m, and components of the stress tensor 

oc ejjk represents the Levi-Civita symbol. 

da, 

dx 
0, 

j 
dm ;,• 

j,i=l,2 (9.27) 

For the present case of plane strain and given that win is the only couple stress present 

(corresponding to the bending stiffness of fibres aligned along xi) the equilibrium equations 

become: 

dan | do-(i2) | da[21] 

3xj 

da 

dxn 

22 
da, 

dx^ + • 
(12) 

dx2 

da\ 

dx2 

1 dm 

+ • 12 
dxx 

= 0, 

= 0, 

° " F 2 i l -
13 

2 dxj 
1 dm 

a\ 12 2 dxj 

This system can be written in the alternative form 

dan da{l2) \ d 

dxx 

da 

+ + • 
in 13 

dx2 2 dxjdx2 

22 
da 

dxn 

+ • 
(12) 1 d m 13 

dx0 2 dx{ 

= 0, 

0. 

Strain-displacement equations relate strains to displacements 

l 
ydXj dx, J 

(9.28) 

(9.29) 

(9.30) 

and the "curvature-strains" component 
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Boundary conditions include sinusoidal pressure on the top surface of the plate and zero vertical 

displacement at the ends of the plate, similar to Fig. 8.1. More detailed description is given for 

each material case below. 

In the below paragraphs 9.3, 9.4, 9.5 the related equations (including the couple stress 

formulation) for each case are presented. In the paragraph 9.6 numerical illustrations for the 

cases within classical elasticity (d31=0) are presented.. 

In the paragraph 9.7 the numerical results for couple stress formulation are presented. 

9.3. Incompressibility constraint case 

Here the focus is on the incompressible material and corresponding elastic solutions. 

Constitutive relations in the following general form [86] for symmetric stress components can be 

used: 

a(u) = m u + 2^ij + afo Aj + Oa.a^+Ps, laiai + 2(/ux -/uT \atsfl + a-eiX), (9.32) 

where 0 = s1+s2+£3. 

Here /uT and fij represent shear moduli in transversal and longitudinal planes, respectively; X, a 

and P are material constants to be examined further on. 

With regard to material incompressibility we use hydrostatic pressure P = ~(<J1 + 0 - 2 + 0 - 3 ) a s 

introduced in the above section. 
Then using (9.32) the following relation between P and 6 is obtained: 

0= 3 — P _ < ^ - f r h ^ ^ S i ( 9 3 3 ) 

3A + a + 2jUT 3A + a + 2jUT 

With the use of X- > QO (which corresponds to incompressibility), equations (9.33) yield 

an=-P + 

a22 =-P 

2 „ 4\u,T - uT) 4ju1T-2juT+-p- M t J e„ 
V 3 J J 

3 
°"(12) = 2M\T£n-

K 3 J 3 + 3 P + 2 / / ^ 2 ' ( 9 3 4 ) 
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The second part of the constitutive equations is unchanged: 

d2u-
m i 3 ^31 _ 2 

ax1 

(9.35) 

Three independent material constants fin, JUt. ß are required for the description of a transversely 

isotropic incompressible material, and four constants (with (I31) if the fibre bending stiffness is 

included in formulation. 

With the substitution of equations (9.34, 9.35) into the system (9.29) the resulting 

governing equations together with the incompressibility constraint 0 = Otake form: 

8P (8 2 2 n)8 u. 
8xt 

8P 

8x0 

8u2 du, 1 +• 1 

dx 
8 u-. 

ydx1 dx2 

82u^ 1 
dx\ j 

8 u7 

+ -d31—3-^-
2 dx, 8xr, 

0, 

1 1 ß,T +-juT --ß 
3 1 T 3 T 3 

8x2 8xi 

0. 

82u 
dx, dx 

82Ur, l , 8AUr. 
i , —f- = 0, 3x0 2 3 1 *~4 

(9.36) 

the solution is sought in the form 

Ul = fl {X2 ) c o s 
Tlx, 

u2 = f2 (x2 )sin 

V L 

• (m\ 
V L 

P = p(x2 )sin 

(9.37) 

This corresponds to the boundary conditions applied at the plate ends: 

cr1(0,x2) = 0, 
M2(0, x2) = 0, 
m13(0, x2) = 0, 
O-J(L, X 2 ) = 0, 

W 2 ( L , X 2 ) = 0, 
m13(L,x2) = 0. 

(9.38) 

The upper and lower boundary conditions for the present problem, i.e. along the upper and lower 

surfaces, are set as follows: 
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Or, in alternative form, 

a2l(xl,h/2) = 0, 

cr2(xl,h/2) = - q 0 sin(^x1 / L), 
<J2(x1,-h/2) = 0, 

a21(x1,-h/2) = 0. 

a,l2)(xx,hl2) + 
1 dm13(xx,hl 2) 

' w w ^ 2 — & ; — 
cr2 (xj, /* / 2) = - g 0 sin(m! / L), 
CT 2 (A : 1 , -^/2) = 0, 

0, 

cr( l2)(x1,-/?/2) + 
1 dm13(xx,-h/2) 

2 dxj 

(9.39) 

(9.40) 

For a plate under a specified load (the boundary problem (9.36, 9.39)), the solution is sought in 

the form of (9.37) as mentioned above where 

fl(x

2)- c.e 
i 

M.x2 

/ 2 y = v 

p(x2)=c.e 
M . x 2 

The governing equations (9.36) yield fourth order differential equation 

^ + ^ + c/ 2 =0, 

(9.41) 

(9.42) 

where a, b, c are constants. 

It should be noted that parameters a, b, c in (9.42) are functions of material constants JU1t, juT, ft, 

d 3 1 . 

Four unknown constants ju. are found from (9.42). Then we use upper and lower boundary 

conditions (9.40) to determine ci, c,, ci. 

The resulting stresses are as follows: 
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CTi ={-P{XI)-J(jMi ~^MT + ^Afi{x2))sin(^ 

1 
a2 = 

\ 

- P ( ^ 2 ) - ^ U "/"r) + ^ fx (*2 ) + 2/"r fi (*2 )j 5 k [ Y " ] 

CT12 = 
V i) 

3 > 

^31/2(^2) 

J 
cos 

CT21 = MlT 
V 4 

3 > 

^31/2 (X2 ) 

y 
COS » 

(9.43) 

13 - J ^3i/2(^2)sm 
7DC, 

(9.44) 

We can see that d.31 is explicitly present in couple stress expression (9.44) and both shear stress 

expressions in (9.43). Nevertheless, the influence of d.31 is present in all stresses implicitly, via 

the constants // . (see (9.41)). 

If <i31is set to zero (fibre bending stiffness is neglected), the problem (9.37, 9.40) reduces 

to the corresponding conventional elasticity problem for an incompressible material. To the best 

knowledge of the author, such a case has not been considered in literature before. Therefore we 

compare the present (extensible) incompressible formulation (EIF) (with hydrostatic pressure as 

additional unknown and kinematic constraint employed) with a "general" (extensible and 

compressible) material formulation (GF) below. In general, GF includes five independent 

material constants for a transversely isotropic material in generalised Hooke's law. The 

respective solutions can be found in [84] (classical elasticity) and in [1] (polar elasticity). We 

approach EIF with GF by setting respective material constants closer to the values corresponding 

to incompressibility. In terms of generalised Hooke's law for transversely isotropic material, 

perfect incompressibility is achieved by setting Poisson's ratios as follows: 

\ T = 0.5 
1 T (9.45a, b) 

In computations, such constitutive description is not applicable since these values would yield 

division by zero in stiffness matrix and the compliance matrix becomes ill-conditioned [87]. 

Therefore the constitutive approach (9.34, 9.35, 9.36) is of use for incompressible material. 

Conditions (9.45) given for engineering constants correspond to /\- > oo if we return to 

Lame notation. Hereinafter the parameters that are manipulated in all the computations are 

engineering constants, since they are more illustrative in terms of their physical meaning. 
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The relations linking components of the material stiffness matrix to the Lame constants are given 

in the paragraph 9.7. 

To approximate GF to EIF we adopt the following scheme. We set the respective Poisson 

ratios close to the conditions (9.45) vlT = 0.5 vn + vT = 1 with the following deviation 8 which 

tends to zero: 

\v1T =0.5-8 
[vT1 + VJJ = 1-3 

(9.46) 

The Fig. 9.1 shows comparison of the normal stress at the end of the plate between EIF model 

and the general GF formulation models which are tending to EIF (e) -> 0). The differences are 

on the order of 10"4 or 10"5 MPa, thus not visible in the graph. Therefore the table 9.1 presents 

their numerical values illustrating the convergence of the results obtained with the general 

formulation (GF) to the results obtained with incompressible formulation (EIF) if the deviation 3 

approaches zero. 
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Fig. 9.1. Normal stress in the middle cross-section calculated for different constitutive models 
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Table 9.1. Error values illustrating convergence 

8 0.05 0.04 0.03 0.02 0.01 
Error 

_ EIF _ GF 
62 - <32 

at X2=-12.5 

0,000102491 8,319E-05 6,33E-05 4,28E-05 2,163E-05 

More comprehensive computational results can be found in Section 9.5. 

9.4. Inextensibility constraint case 

In this section the material in question is set to be inextensible in xi direction (this represents 

inextensible fibres). The constitutive description involves Lagrange multiplier T which is related 

to unknown tension in xi direction. Applying the corresponding constitutive equations (9.20) for 

the present plane strain problem we obtain: 

o n =As2 +T 
cr22=(A + 2jUT)s2 (9.47) 
Cr(l2) = 2/J]T£]2 

The resulting governing equations together with the inextensibility constraint sx = O take form: 

dxldxl 

dr 
dx. 

du, du 2.. > 

ydxx dx2 dx 
1 , 

H—d 
dAUr, 

2 J 

( 
ß1T 

dux 

dx{ 

du, du 2„ > 

ydxi dx2 dx 
+ (2jUT + A) 

1 J 

d2u2 

dxl 

2 3 1 dxxdx2 

1 d4u2 

~2n~dxT 
(9.48) 

Similarly to (9.37) the solution is chosen as follows: 

Ul = / l ( * 2 ) C 0 S | ^ 
7TX, 

s i n 
7DC, 

T = f(x2)sin 

(9.49) 

which corresponds to the boundary conditions applied at the plate ends (9.38). 
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The the upper and lower boundary conditions are given by: 

|cr2(x l,hll) = -q0 sin(^x, /L), 
\a2(xl,-h/2) = 0, 

The shear stress on the the upper and lower surfaces can not be set as boundary conditions in this 

case. 

For a plate under a specified load (the boundary problem (9.48, 9.49, 9.50)), the solution is 

/ i W = 0 ' 

/ 2 (x 2 )=c . / ' X 2, (9.51) 

tL)=i 

The governing equations (9.48) yield 

d^ + cf2=0 (9.52) 
ox2 

It should be noted that parameters d, cm (9.52) are functions of the material constants JU1T, JUt, X, 

dn- Two unknown constants jut are found from (9.52). Then we use lateral boundary conditions 

(9.50) to determine ct, bt. 

The shear stress can no longer be prescribed zero on the top and bottom surfaces since it would 

imply zero displacement field for classical elasticity case (see last relation in (9.53) below). The 

resulting normal stresses and symmetric shear stress can be expressed as follows: 

o-, = [t(x2)-Af2 {x2))sin\ TDCX 

\ L 

*2=(A + 2MT)f2\x2)J^\ (9-53) 

CT(i2)=/"ir 7/2(x2)cos\ 
DC 

I. L 

The couple stress is 

m1 3 
^ I d3lf2(x2)sin 

( 7DC, ~\ 

-j- • (9.54) 

The general shear stresses can be written as 

109 



12 

21 

Mil 
71 1 3> 

f2(x2)cos 
2 3 1 

f2(x2)cos 1 
L 2 3 1 

f2(x2)cos 
y 

71 1 /2(x2)cos ( 7DC, 
— + 

2 3 1 - /2(x2)cos -r 
L 2 3 1 

J 

/2(x2)cos I L J 

(9.55) 

We can see that dn is explicitly present only in couple stress expression (9.54) and shear stress 

expressions (9.55). Nevertheless, dn influences all the stresses implicitly, via the constants 

jut (because dn is present in equation (9.52), from which //. are calculated). 

Such formulation will be referred as EIF (extensible incompressible formulation). Related 

computational results can be found in Section 9.6 and 9.7. 

9.5. Inextensibility and incompressibility: double kinematic constraint 

In this section, the material is assumed to be both incompressible and inextensible, it means also 

reinforced by inextensible fibres in x\ direction. Such material with two kinematic constraints 

was constitutively characterised by Spencer [11]. 

The corresponding relations in case of plane strain are: 

' 22 

'(12) 

-P + T, 
-P, 

du2 
AfJ,lTSl2 fIlT 

OXL 

(9.56) 

Equilibrium equations with constraints give the following system: 

jLl 

dux 

8x, 

dP dT ( d2u2 d2u^ 1 , 
+ 2^3i 

d4u2 

cbq dx\ v dx\ dx2 dx\ j 
1 , 

+ 2^3i dxfdx2 

( d\ , d2u2^ DP 1 , 
2 3 1 

d4u2 o, IT 
v dxx dx2 dx 2 

1 J 

dx2 

1 , 
2 3 1 dx* 

o, 

0, 

du, dur. 
dxx dx2 

0 

(9.57) 

Analogously to the previous sections the solution is sought in the form 
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ui = fi(x2)cos(^- , 

U2 =fl{x2)sin[^ 

I \ . (7DC, 

P = p\x2)sin\ —j-

(9.58) 

T = t(x2)sin 7DC, 

L 

which corresponds to the boundary conditions applied at the plate ends (9.38). The system (9.57) 

is then reduced to: 

p- t = 

f-f 
n 

{I L 

= dx2 

/ i = -0 

f^iT 2 31l £ 
4\ 

dx2 (9.59) 

The solution is then found as follows: 

fi ~ c\ > 
f 

P = 

t = p 

/ i = 0 

/Ar 2 31 1̂*̂2 — "̂ 2̂ (9.60) 

The upper and lower boundary conditions are given by (9.50). Two unknown constants a, c2 are 

determined from the upper and lower boundary conditions. 

With the given kinematic constraints the only present strain is the shear strain £j2. The 

resulting normal stresses and symmetric shear stress can be expressed as follows: 

o-ii=0 

fff X2 
' 71 

' 22 1/ 1 2̂ 31 
^ 7ZX > 

sin 

71 
° (12) _ )"lT ~ C 1 C O S 

(9.61) 

The couple stress is 
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mu = d3lcx sin 
í 7rxx ^ 

(9.62) 

The total shear stresses can be written as 

' 12 

'21 

/J, 
JU__l 

TL 2 
do 

71 
Cj cos\ 

( 7DC1 

7T_ 1 
ß l T L + 2 3\Lj Cj cos I 

(9.63) 

The specifics of this solution in comparison to the previous ones are as follows. Firstly, the 

normal stress is zero throughout the plate (9.61). Secondly, the influence of d^ is present in the 

normal stress o2 both explicitly and implicitly, via the constants cj, c2 (see (9.60)). Thirdly, 

couple stress is constant throughout each cross-section (see (9.62)). 

The formulation is here and further abbreviated as IIF (inextensible, incompressible 

formulation). 

9.6. Comparison of results 

9.6.1. IIF model vs GF model 
The comparison below is done between two models (both within classical elasticity - Jj;=0): IIF 

(inextensible incompressible formulation) and GF (general formulation) accordingly. 

IEF requires two upper and lower boundary conditions identical to (9.50) while GF 

requires four of them [1]. The equivalency of the problems is achieved by setting resulting 

surface shear stress from IIF solution as boundary conditions for GF. 

As it can be seen from the Fig. 9.2, if the GF parameters (Poisson's ratios and longitudinal 

Young's modulus) approach those corresponding to the IIF model (see (9.64)), the normal stress 

oi tends to zero. 

X t 
v1T -»0 .5 

ET n , (9.64) 

YTT = ( l - * , n ) - > 1 112 



NORMAL STRESS AT THE MIDDLE xl-L/2 
slightly compressible slightly extensible mate 2 

-0,00025 

x2 

v1T=0.499, Ei=10e4 

v1T=0.48, E!=10e3 

v1T=0.46, E]=100 

11F 

Fig. 9.2. Normal stress in the middle cross-section calculated for different constitutive models 

The Fig. 9.3 shows comparison of the shear stresses at the end of the plate between IIF model 

and GF models which are approaching the IIF model. 

'12 

IIF 
v1T=0.46, Ej=100 
v1T=0.48, E,=10es 

v,T=0.499, E,=10e4 

Fig. 9.3. Shear stress in the middle cross-section calculated for different constitutive models 
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9.6.2. IIF model vs ICF model 
Another way how to verify the presented models is to compare the IIF model and the 

inextensible compressible (ICF) model. Relations that are valid for the ICF model: 

E, —> co 

0 
(9.65) 

Both ICF and IIF require two the upper and lower boundary conditions (9.50). 

u2=0 
o}=o 

O 2=-q sin(TTx/L) 

u2=0 

Fig. 9.4. Given boundary conditions for ICF and IIF 

In terms of engineering constants the incompressibility of material is characterised by the 

following: 

\v1T = 0.5 
[vT1 +vTT =1 

(9.66) 

Since the IIF model also has restriction VJI=Q due to inextensibility, (9.66) acquires the form 

\v1T =0.5 
(9.67) 

In order to converge ICF to IIF, we use second of the relations (9.67) and approach it by varying 

the parameter Vjf. VJJ —> 1 

We don't vary the parameter v]T since it is not explicitly present in the formulation. 
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By manipulating VJJ we converge ICF model to the IIF model. 

0,00018 

V-TT-0.91 

-+— VTR=0.92 

VTr=0.93 

VTr=0.94 

v-rr^O.99 

- • — I I F 

NORMAL STRESS ATTHE MIDDLE xl=L/2 
extensible incompress material vs inext compress 

12,5 

Fig. 9.5. Normal stress in the middle cross-section calculated for different constitutive models 

15 
-0,0127 

0,01276 

-0,01277 

0,01278 

-0,01279 

I X 2 
15 

Fig. 9.6. Shear stress at the end of the plate calculated for different constitutive models 
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Analogously, EIF (extensible incompressible formulation) and IIF (inextensible incompressible 

formulation) models can be compared. IIF requires two lateral boundary conditions (9.40) while 

EIF requires four [1]. The equivalency of the problem setting can be achieved by applying 

resulting surface shear stress from IIF solution as boundary conditions for EIF. 

In terms of engineering constants the inextensibility of material in Xj direction is 

characterised by the following: 

Then, by manipulating modulus E l (and, consequently, Poisson ratio vTl = — vlT), EIF model 

can be converged to the IIF model. 

9.7. Effect of additional bending stiffness for inextensible incompressible 

The results obtained for the models in different formulations with converging their effective 

properties are still considered, but now with the additional non-zero parameter dn included. In 

this section the focus is on the resulting couple stress distribution in the middle cross-section of 

the plate. The dn parameter is set the same in all computations. Different combinations of 

kinematic constraints and their effect on the couple stress distribution mu are examined below. 

The graph in (Fig. 9.7) illustrates convergence of the results obtained with general 

formulation (GF) to the result obtained with (extensible) incompressible formulation (EIF). For 

both Jj;=10 N. We converge GF model to EIF by approaching Poisson ratio vlT —> 0.5 . 

(9.68) 

E 
E, 

material 
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The comparison in Fig. 9.8 is between two models (for both d?/=10 N) which we refer to as 

IIF (inextensible incompressible formulation) and EIF (extensible incompressible formulation) 

accordingly. The material properties were set such that EIF approaches inextensibility (Ej is 

increasing). 

IIF requires two upper and lower boundary conditions identical to (9.50) while EIF requires 

four of them. The equivalency of the problems is achieved by setting the resulting surface shear 

stress from the IIF solution as boundary conditions for the EIF. 

As it can be seen from the figure below, with increasing longitudinal Young's modulus in 

EIF Ej T, the couple stress nin tends to constant value throughout the cross-section, as it is for 

IIF. 
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Fig. 9.8. Couple stress in the middle of the plate calculated for different constitutive models 

Comparison in the Fig. 9.9 is between IIF model and inextensible (ICF) model. Relations that 

are valid for the inextensible (ICF) model: 

Ex —> QO 

ET (9.69) 
= VIT TT = 0 

In order to converge ICF to IIF, we take incompressibility relation (9.45b) and approach it by 

varying the parameter vT: 
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9.8. Graphs examination 

Inextensible (ICF) model response converges to HF by manipulating Poisson's ratio vT. 

Extensible incompressible (EIF) model response converges to IIF by increasing of Young/s 

modulus Ei. 

Classical elasticity graphs: 

Normal stress distribution in the middle cross-section (Fig. 9.1) is strongly non-linear for 

materials close to EIF (incompressible) model, independently of material compressibility; 

For materials close to IIF (incompressible and inextensible case) (Fig. 9.2) normal stress 

throughout the whole middle cross section tends to zero; 

For materials close to IIF, shear stress (Fig. 9.3, 9.6) in the middle cross-section of the plate 

tends to constant throughout the cross-section; 

inextensible model (ICF) has linear normal stress distribution (Fig. 9.5) and only positive 

values throughout the middle cross section 

Polar elasticity graphs: 

EIF model (incompressible material with extensible, though stiff fibres) shows couple stress 

distribution close to constant in the cross-section. Fig. 9.7 shows gradual convergence of the 

GF (general formulation) model results to the EIF ones. 
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Figs. 9.8, 9.9 show gradual convergence of the EIF and ICF results to IIF result (which is 

constant couple-stress distribution). The impact of compressibility seems to be significantly 

higher than that of extensibility. 

9.9. Elucidation on the equivalence of constants in different formulations. 

The behaviour of linear elastic material can be described in three alternative ways: using 

stiffness matrix components, using Lame description, or using engineering constants. For the 

sake of adequate switching between constitutive descriptions, relations linking different 

constants for the transversely isotropic elastic material are presented below. These relations have 

been used in the current computations. 

General formulation for linear elastic, transversely isotropic material with the anisotropy 

vector (1,0,0)T is, as previously stated: 

adj) = m a + 2 ^ T s i j + a(£iAj + 0aiaj)+ falaiaj + 2(//1 - J J t \ a t s n + a.ea) (9.70) 

Generalised Hooke's law has the form: 
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where C44=(c22-ci2)/2. 

The following general relations were derived using the work [88]: 

(9.71) 

'23 

P ~ C22 C11 

f-lj — c44 

Ml = c66 

• 2c]2 4c66 (9.72) 

The relations in question are presented below for each case of kinematic constraint. 

9.9.1. Extensible incompressible material 
With use of (9.45a, b) and (9.72)) the following is valid for EIF material: 
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a is not present in constitutive equations; 

X- > GO, 

P (2-vT1y. 
4G IT ' (9.73) Tl 

As expected, 3 material parameters are left independent. 

9.9.2. Inextensible compressible material 
For ICF material: a and /? are not present in constitutive equations, and 

2 ' 

MT -G T ' (9.74) 
Mi - GlT. 

3 of the parameters are left independent. 

9.9.3. Incompressible inextensible material 

For incompressible inextensible material (IIF): 

a and /? are not present in constitutive equations, and 

2 of the parameters are left independent. 

9.10. Concluding remarks regarding results applicability 

As mentioned earlier, the general solution of the problem presented in this section was fully 

mathematically derived in [1] by Farhat and Soldatos. The kinematic constraints, applied in the 

current work, serve to 1) produce simplified solutions for common characteristics of the 

material; 2) underscore the influence of the fibre bending stiffness under conditions of the 

normal stress close to zero. 

The ultimate goal of this section is to set conditions for linking the mathematical 

constitutive dependencies to the actual properties of the material. On the basis of this section, the 

following scheme is suggested in order to validate the phenomenological model. 

(9.75) 
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Actual composite material (corresponding to the model described above) consists of close 

to incompressible matrix and close to inextensible fibres. Such material is, for example, rubber 

and steel cord composite. Such block of material can be used for the mechanical tests correlating 

with the problem (Fig. 8.1.). 

Since the experimental measurement of the resulting couple stress distribution niu in the 

specimen (or the bending moment in each fibre cross-section) does not seem feasible, the less 

straightforward approach might be used: 

the specimen is set under the given load (Fig. 8.1.) and the resulting displacements u2 are 

measured; 

resulting values of u2 are approximated as analytical function in the form of solution (9.37), 

(9.41) (if the incompressibility assumption only is chosen and paragraph 9.3 is used). The 

simplest solution form is given in paragraph 9.5 (full incompressibility and full 

inextensibility of fibres is assumed), where displacement Uj is zero and u2 is constant 

throughout any cross-section; 

consequently, analytical function^ is known; 

then equation (9.42) can be used. Parameters a, b, c in (9.42) are functions of the material 

constants - classical elastic constants and dn- Again, the simplest setting is given by 9.5 (IIF 

formulation) where only two independent classical constants are present - two shear moduli. 

If the classical moduli are known, the only unknown in (9.42) is dn-
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10. Conclusions and future work suggestions 

10.1. Summary 

Fibre-reinforced hyperelastic materials are conventionally described using phenomenological 

constitutive models. Phenomenological models are usually constructed by adding additional 

invariants to existing isotropic strain energy functions. These additional invariants penalise 

deformation in the fibre direction [69]. 

Following this logic, the model investigated in this work is augmented with the term that 

penalises change in curvature in the fibre direction. The model is based on the large strain 

anisotropic formulation involving couple stresses [2], also referred to as "polar elasticity for fibre 

reinforced solids" [11], [46], [6]. In continuation of the research conducted by Lasota [3], the 

present study aims to establish and verify new higher order homogeneous model with the 

effective material properties that should correctly mimic the response of the given fibrous 

composite. As it has been shown here and in [2], the need of such formulation arises when the 

fibre size is comparable to some of the characteristic sizes of the structure. 

The current work is an attempt of a systematic study of the so called "polar elasticity for 

fibre-reinforced solids", its mechanical interpretation and specifics of numerical implementation 

and represents a natural continuation of Lasota's dissertation [3]. Polar elasticity for fibre 

reinforced solids operates couple stresses that occur in accordance with bending, "twist", or 

"splay" mode of fibre deformation (the fibre in question is fictitious, and is modelled by 

introducing direction vector field) that represent a general case of material behaviour. The full 

mathematical description of such model was introduced by Spencer and Soldatos and later 

enhanced by Soldatos. The contribution of fibres to the material stiffness is characterized by the 

tensile stiffness parameter and the additional parameters related to another fibre deformation 

mode. 

The work starts with an experimental mechanical study with the steel fibre-reinforced 

rubber specimens. The fibres are comparatively thick and located in the middle plane of the 

specimen. The study shows the validity of the anisotropic unimaterial constitutive model in case 

of tension tests but its inability to simulate the bending behaviour of the composite correctly. 

This result supports the earlier suggestion that main reason of discrepancy lies in the inability of 

the model to account for the bending stiffness contribution and size effect of fibres. Unless the 

fibres are infinitesimally thin and uniformly distributed throughout the specimen height, the 

classical anisotropic unimaterial model does not offer a reliable representation. In other words, 
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such unimaterial model cannot be deemed fully equivalent to the bimaterial one, even though 

they have similar behaviour under tension. 

As a next step, the general logic of the effective constants derivation is considered for a 

small strains case of fibre composites. The "rule of mixtures" approach of mechanics of 

composite materials is recapitulated, and a similar simplifying scheme is employed to include the 

additional parameter corresponding to the bending stiffness contributed by fibres. 

The role of the additional effective constant in the model is investigated further on. The 

constitutive equations published in Spencer and Soldatos [2] are used to formulate a specific 

form of strain energy density function on the basis of constraint Cosserat theory (in which couple 

stresses are introduced and displacements or displacement rates are the only independent 

unknowns). This approach leads to second derivatives of displacement rates occurring in the 

finite element formulations. A specific form of strain energy density is proposed with an 

additional term correcting the effective bending stiffness of the continuum. The model used 

recently by Lasota [3] is examined and modified in order to make it more mechanically 

representative. The different invariant is chosen due to some mathematical and physical benefits. 

New invariant in the energy formulation yields physical relations that link the deformed fibre 

curvature and the relevant couple stress, especially illustrative in the small strain case. Thus the 

bending mode of fibre deformation is specifically taken into account, while the invariant used 

previously by Lasota [3] equals to zero in pure bending deformation. For the modified 

constitutive model the issue of determination of the additional constant k3 (associated with the 

fibre bending stiffness) is considered. Within the small strains framework, the formula is offered 

linking k3 to the geometric and material properties of the initial heterogeneous structure (fibrous 

composite plate). 

The finite element code by Lasota [3] is modified to incorporate the additional invariant. 

Code equations are reformulated in the matrix form instead of index form which reduces the 

computational time substantially. The corresponding calculation is carried out for the composite 

plate under bending in the case of small strains. Two examples are considered: composite plate 

with fibres aligned along the longitudinal axis, and composite plate with fibres aligned under the 

angle of 30 degrees to the longitudinal axis. It is shown that the discrepancy between the 

classical homogeneous model and a heterogeneous model can be largely diminished by the 

presented approach. 

A complementary study is also carried out for a thick fibre-reinforced plate under 

displacement boundary conditions. Polar elasticity equations are employed in linear formulation. 

The solution of the plane strain boundary problem of polar elasticity for the static and dynamic 

flexure of a thick laminated plate has been recently derived by Farhat and Soldatos [1]. The 
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authors take the contribution of the couple stresses into account with the help of one extra 

modulus of elasticity. In the present study, after having reproduced the solution in [1] for the 

case of static flexure of a single-layer plate, I extended the solution to different boundary 

conditions with three extra modules of elasticity applied in the model. In this chapter some new 

numerical results are presented which complement those in [1]. 

In Section 7 a new pure bending elasticity solution is derived for the transversely isotropic 

polar material. It is compared with solutions based on the conventional theory in order to 

demonstrate how the size effect can be taken into consideration in the homogeneous polar model. 

With the increasing nominal number of fibres their bending stiffness decreases and the polar 

elasticity model converges to the conventional elasticity model. In this example, the additional 

elastic constant has a role of a correcting parameter. It corrects the error in bending stiffness 

resulting from averaging the Young's modulus. 

In Section 8 verification of the new constitutive model and finite element code [8] is 

carried out using new exact solution for the anisotropic couple stress continuum with the 

incompressibility constraint. Considerations and techniques employed in Section 6 are used to 

achieve exact solution of the linear boundary problem. Plane strain boundary problem is solved 

both analytically and numerically. The finite element calculations and analytical solution show 

perfect agreement. The large strain problem is also examined. In the large strain range no 

solution enabling us a comparison was found in literature, so the presented example illustrates 

only qualitatively the capability of the code to mimic the bending stiffness of the fibres. 

In Section 9, a known linear elasticity problem is considered in two new ways. Firstly, 

constraints of incompressibility and inextensibility in fibre direction are added; secondly, the 

intrinsic anisotropic bending stiffness (based on polar elasticity) is included in the model. 

Inextensibility and incompressibility constraints cause the presence of respective Lagrange 

multipliers in the formulation. The resulting stress fields are compared to those obtained using 

the slightly compressible and slightly extensible formulation. The observed characteristics of 

stress distribution are compared and it is shown that those obtained with compressible and 

extensible formulations tend to the incompressible and inextensible ones with decreasing 

compressibility and extensibility. The scheme of determination of the additional constant d3i is 

suggested. 

10.2. Future work proposal 

Limitations of the present work and suggestions for the future research are outlined below. 

Additional parameter k3 in the model (Section 5) represents additional bending stiffness of 

the homogenised material with respect to the reinforced direction. In the proposed example, k3 is 
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calculated for the specific geometry of the specimen under the small strain assumption. It can be 

stated that the term with reflects the influence of the geometrical fibre arrangement (while the 

classic model takes into account the fibre volume fraction only, regardless of their arrangement 

and size). Then the term containing fc? is added into the classical homogenous model for the 

strain energy density. Thus ks serves as the corrective parameter. The constant ks can be 

approximately computed for the small strain case. Having computed ks for the case of fibres 

aligned along Xj, we can then use this value for problems with the different fibre angle (but the 

same fibre arrangement) by changing the vector A. Thus, the enhanced bending characteristics of 

the specimen are accounted for by the vector A (present in invariant Is) and the constant ks in the 

constitutive model (5.40). Current stage of the study suggests future steps in 2 main directions: 

1) examining the mathematical ways how to derive the constant k3 for the elastic fibres/ 

hyperelastic matrix case; 2) carry out additional mechanical tests in bending, complementing 

those in Section 3, with the focus on the specimens with the fibre declination; establish, if 

possible, the correlation between the new tests and the FEM simulations for the polar model; 

validate, if the use of constant k3 obtained by the formula (5.55) from Section 5 and used in FEM 

simulations yields agreement with the tests for the small/large strain cases. 

In Section 7 the exact analytical (polar elasticity) solution is presented for a transversely 

isotropic thick plate under pure bending (and compared with the alternative solutions). To 

deepen the mathematical understanding of the couple stresses presence in the current model, 

other analytical problems can be examined, and if possible, adjusted for the polar elasticity 

model. For instance, the bending problem of a plate under a concentrated force. It does present 

analytical difficulty though, due to the use of the stress function (while the pure bending problem 

is solved in displacements). 

The analytical verification of the FEM code by Lasota is carried out for the small strains 

case in the Section 8, using the two-dimensional linear problem of polar theory. Also, a small 

numerical study is performed to illustrate the capacity of the code regarding the non-linear 

problems and the influence of parameter ks. Essentially, the verification of the large strain 

computations by this code is still an open question. The attempt of the analytical verification can 

be made using some large-strain analytical solution for the two-dimensional problem with 

kinematic constraints. Such problems (bending of a fibre-reinforced rectangular block and area-

preserving azimuthal-shear deformation of a fibre-reinforced tube) were extended to polar theory 

by Soldatos [46]. 

In Section 9 two-dimensional linear elastic problems with the kinematic constraints are 

considered with and without fibre bending stiffness. The most simple and illustrative case is the 
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IIF (inextensible incompressible formulation). The solution yields zero normal stress throughout 

the whole plate and constant couple stress throughout each cross-section. Fibres are curved, but 

not compressed or elongated. The bending moment acting on the plate cross-section has zero 

classical part and non-zero {hm13 in this case) couple stress part (see also (5.30), (5.31)). The 

constant value of couple stress in each cross-section is dictated by the constant d13 (bending 

stiffness parameter for the linear elastic case) (9.62), plate length L, and applied pressure 

amplitude q0 (9.50). This solution can be used in future to study the size effect of fibres. It can be 

compared with the analogous solution for the heterogenous (bimaterial) fibre reinforced plate 

(modelled by FEM, modelled analytically, or obtained, if feasible, from the actual test with the 

specimen). Partly analytical/partly experimental scheme of determination of the additional 

constant d3i (suggested in 9.10) can be verified. 
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Appendix 

Analytical solution to flexure of a thick plate under sinusoidal pressure load (from Farhat and 

Soldatos [1]). 

Let us consider a planar boundary problem: a thick transversely isotropic plate, infinite in the xs 

direction, subjected to boundary conditions corresponding to the plane strain as specified in 

(Fig. 8.1). In this case, the displacements are functions of only two coordinates 

u2 -u2(xl,x2), 
u3=0. 

(A.1) 

The following equations in terms of displacements ui, 112, obtained by Spencer and Soldatos [2] 

for the case of the plane strain problem of a plate with fibres initially aligned along the xi 

direction, will be further employed: 

d2u, , , d2iii 
Cn-z-r + (c12+c66) „ 

ox, ox, ox 
d2u, 

0, 

+ (C12 + C 6 6 ) -
d2u, d2iii 

(A.2) 

-66 ~, 2 ' 12 ' *-66 / _ _ 1 ^22 - 2 3 ~, 4 
OX j 0X^X2 OX 2 OX j 

0. 

The relations for the symmetric part of the stresses are given in the form of the generalized 

Hooke's law for transversely isotropic materials: 

-11 c 1 -> 0 a 11 

o-
(7 33 

K(T{12)J 

0 
0 

V 0 0 c66j 

r s > 

•22 

2s2 

(A.3) 

K^^J2j 

where en, e22, s12 are the only non-zero strain tensor components conventionally derived as 

du, +8uj 

KdXj dxt J 

(A.4) 

The theory employed in the present paper assumes that the spin vector (rotation vector in a static 

setting) & is not independent but related to the displacement vector u in the following way: 

1 dut 

co, = — -ijk 
8X; 

(A.5) 
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The components of the symmetric and antisymmetric parts of the stress tensor are denoted as 

o-(y) and cr̂ .j respectively so that 

(A.6) 

The linearised relation for the non-zero couple stress are given as follows [2]: 

< 3 2 w , 
m13 = 2c3 

(A.7) 

It should be noted that the above linear constitutive law (A.3), (A.7) can be set equivalent to the 

hyperelastic law (5.21) in Section 5 under small strain by a respective translation of the 

constants. In particular, the following relation connects constants c3 and k3: c3 =4/3k3. 

With the 6 boundary conditions applied at the plate ends: 

a j (0, x2) = 0, 
u2(0,x2) = 0, 
m]3(0,x2) = 0, 
o1(L,x2) = 0, 
U2(L,X2) = 0, 

m]3(L,x2) = 0, 

the solution is sought in the form [1] 

h = fi{x2)cos\ -j- \, 

u2 = f2 (x2 )sin 7TX, 

where 

f1{x2)=a.e K.x2 

' f2\x2rail 
IL.x2 

(A.8) 

(A.9) 

(A. 10) 

The four remaining lateral boundary conditions are as follows: 

a2[xj,h/2) = -q0sin\ ̂ j- 1, 

o21(x1,h/2) = 0, 
o2(x1,-h/2) = 0, 
o21(x1,-h/2) = 0. 

(A.11) 
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