
MASTER THESIS

Factor analysis of ordinal data

Algorithms and experiments

2020 Tomáš Chlup
Supervisor: prof. RNDr. Radim
Bělohlávek, Ph.D., DSc

Study field: Computer Science, full-
time form

Bibliografické údaje

Autor: Tomáš Chlup

Název práce: Faktorová analýza relačních dat (Algoritmy a experimenty)

Typ práce: diplomová práce

Pracoviště: Katedra informatiky, Přírodovědecká fakulta, Univerzita
Palackého v Olomouci

Rok obhajoby: 2020

Studijní obor: Informatika, prezenční forma

Vedoucí práce: prof. RNDr. Radim Bělohlávek, Ph.D., DSc

Počet stran: 66

Přílohy: 1 CD/DVD

Jazyk práce: anglický

Bibliograhic info

Author: Tomáš Chlup

Title: Factor analysis of ordinal data (Algorithms and experi-
ments)

Thesis type: Master thesis

Department: Department of Computer Science, Faculty of Science,
Palacký University Olomouc

Year of defense: 2020

Study field: Computer Science, full-time form

Supervisor: prof. RNDr. Radim Bělohlávek, Ph.D., DSc

Page count: 66

Supplements: 1 CD/DVD

Thesis language: English

Anotace

Formální konceptuální analýza (FCA) je metoda analýzy relačních dat. Tato
práce se věnuje využití FCA k analýze objekto-atributových relací, ve kterých
relační vztah může mít více než dva stavy (0,1). Práce obsahuje shrnutí potřebné
teorie, a také experimenty s reálnými daty.

Synopsis

Formal concept analysis is a method of relation data analysis. This thesis deals
with the usage of FCA for analysis of object-attribute relations, where the rela-
tionship could have more than just two states (0,1). This thesis summarizes the
underlying theory and also experiments with real datasets.

Klíčová slova: formální konceptuální analýza, faktorová analýza, fuzzy logika,
relační data

Keywords: formal concept analysis, FCA, factor analysis, fuzzy logic, ordinal
data

I am grateful to everyone who supported me during the work on this thesis.

I hereby declare that I have completed this thesis including its appendices on my
own and used solely the sources cited in the text and included in the bibliography
list.

date of thesis submission author’s signature

Contents
1 The basic motivation of the thesis 1

2 Introduction to Formal Concept Analysis 2
2.1 Basic setting . 2
2.2 Closure operators and Galois connections 4

3 Boolean matrix decomposition 7
3.1 Matrix decomposition . 7
3.2 Grecond algorithm . 11

4 Preliminaries from fuzzy logic 14
4.1 Introduction to fuzzy logic . 14
4.2 Fuzzy structures . 15
4.3 Binary fuzzy relations . 17

5 Formal concept analysis of ordinal data 18
5.1 Fuzzy contexts . 18
5.2 Concept forming operators . 19
5.3 Fuzzy concepts . 22
5.4 Optimal decomposition . 24

6 Algorithm for the decomposition of a matrix with ordinal data 26
6.1 General setting . 26
6.2 Basic algorithm . 26
6.3 Matrix similarity . 30
6.4 Variants of basic algorithm . 34
6.5 Complexity . 34

7 Experiments with real data 35
7.1 Decathlon . 36

7.1.1 Data transformation . 36
7.1.2 L-Grecond equipped with s= 37

7.1.2.1 Performance of individual factors 38
7.1.2.2 Merged performance of factors 39

7.1.3 L-Grecond equipped with s↔ 41
7.1.3.1 Performance of individual factors 41
7.1.3.2 Merged performance of factors 42

7.1.4 L-Grecond equipped with sf↔ 43
7.2 Education data . 45

7.2.1 Data transformation . 46
7.2.2 Performance of L-Grecond equipped with s= 46
7.2.3 Performance of L-Grecond equipped s↔ 48
7.2.4 Performance of L-Grecond equipped with sf↔ 50
7.2.5 Comparison of dominant factors 52

iv

7.3 Elections data . 53
7.3.1 Data transformation . 53
7.3.2 Performance of L-Grecond equipped with s= 55
7.3.3 Performance of L-Grecond equipped with s↔ 57
7.3.4 Performance of L-Grecond equipped with sf↔ 59
7.3.5 Comparison of dominant factors 60

Conclusions 62

A Desktop application for L-Grecond analysis 63

B Contents of the embedded CD 65

Bibliography 66

v

List of Figures
1 Exact coverage for Fs= (Decathlon) 38
2 Biresiduum coverage for Fs= (Decathlon) 39
3 Exact merged coverage for Fs= (Decathlon) 40
4 Biresiduum merged coverage for Fs= (Decathlon) 40
5 Individual factors coverage for F↔(Decathlon) 42
6 Merged factors coverage for F↔(Decathlon) 42
7 Individual factors coverage for Ff↔ (Decathlon) 44
8 Merged factors coverage for Ff↔ (Decathlon) 44
9 Individual factors coverage for F=(Education) 47
10 Merged factors coverage for F=(Education) 48
11 Individual factors coverage for F↔(Education) 49
12 Merged factors coverage for F↔(Education) 49
13 Individual factors coverage for Ff↔(Education) 51
14 Merged factors coverage for Ff↔(Education) 51
15 Individual factors coverage for F=(Elections) 56
16 Merged factors coverage for F=(Elections) 57
17 Individual factors coverage for F↔(Elections) 58
18 Merged factors coverage for F↔(Elections) 58
19 Individual factors coverage for Ff↔(Elections) 59
20 Merged factors coverage for Ff↔(Elections) 60
21 Application UI . 64

List of Tables
1 Decathlon score table . 36
2 Decathlon as fuzzy context . 37
3 Education data . 45
4 Education data as fuzzy context (A students) 46
5 Intents comparison (Education) 52
6 Election data . 53
7 Election data transformation 1 . 54
8 Election data transformation 2 . 55
9 Election data transformation 3 . 55
10 Intents comparison (Elections) . 60

vi

1 The basic motivation of the thesis
Formal concept analysis (FCA) is a method of data analysis, which is nowadays
taking place across various domains. It can be described as a data mining tech-
nique, which can obtain or describe the relationships between a particular set of
objects and their attributes. FCA has growing popularity and usage. Examples
of uses are data mining, informational retrieval, and further data analysis. Input
of FCA is set of several objects, set of attributes and the relation between these
objects and attributes. One of the essential terms in FCA is a formal concept,
which is one of the main outputs from FCA. Formal concepts are clusters, which
should represent the human-like concept of real life notions like “winter sports”
or “car with rare wheel drive.” The primary purpose of the FCA is to find various
kinds of patterns in the given data. Some of these patters could be obvious, but
on the other side, we can find interesting hidden patterns that can not be easily
found by any human. If we have, for example, a dataset with different kinds of
sports, there could occur a natural pattern typical for all winter sports, and the
FCA method can find it. The second important output from the FCA method
are attribute implications. Attribute implication describes valid dependency in
data, such as “every number divisible by 2 and 3 is also divisible by 6”. Attribute
implications are well known from another data mining method, so-called Market
Basket Analysis.
Research in this area is widespread and has several difficulties and challenges
which have to be solved. Classical FCA is designed for boolean data analysis.
In case of boolean data as input, we have just two states for object-attributes
relation. In simple words, the object has a particular attribute, or it does not
have it. If we want to analyze the ordinal data, which are supposed to have
more than two values for object-attribute relation, we have to deal with data
transformation or extend the classical FCA algorithm. In this thesis, we will aim
at the algorithms, which can be used for explanation of object-attribute relation
datasets with a small set of essential factors. We will introduce and test methods
of FCA, which will be extended for ordinal data analysis with the help of fuzzy
logic (many-valued logic). Let us also denote, that wee will work only with the
main FCA output, formal concepts.
In the next chapters, we will start with basics about the classical FCA, then the
usage of FCA for boolean matrix decomposition, and expand this knowledge to
factor analysis of ordinal data in the later chapters. In the very last chapter, we
will show the usage of the FCA method on real datasets and also measure the
performance of individual variants of our method.

1

2 Introduction to Formal Concept Analysis
This chapter is a summary of the basic theory of FCA. It consists of definitions
and examples which are essential for the rest of the thesis. Content of this chapter
was written with the help of [1].

2.1 Basic setting
The input data for FCA is the relation I between a particular set of objects X
and a set of their attributes Y . This relation is most of the time represented as a
matrix that has |X| rows and |Y | columns. For clarification, the |X| denotes the
number of elements in the set X. Since the matrix represents boolean object-
attribute relation, it contains just element 0 or 1. A table entry Ix,y containing
1 indicates that the corresponding object x has attribute y.

Example 1 (Example of matrix I)

I =


y1 y2 y3

x1 1 0 1
x2 1 1 1
x3 0 1 0


where X = {x1, x2, x3} , Y = {y1, y2, y3} and I = {〈x1, y1〉 ,〈x1, y3〉 ,〈x2, y1〉
,〈x2, y2〉 ,〈x2, y3〉 ,〈x3, y3〉}.

Formally we will call matrix I the formal context.

Definition 2 (Formal context)
A formal context is a triplet 〈X, Y, I〉 where X 6= ∅, Y 6= ∅ and I is a binary

relation between X a Y (I ⊆ X × Y).

To define the formal concept and concept lattice, which is an output of FCA,
we have to specify two special operators. Every formal context induces pair of
operators ↑, ↓. We call them concept-forming operators. As these operations are
induced by the triplet 〈X, Y, I〉, we should use ↑I , ↓I , but in this thesis simplified
label will be written so we will omit the bottom label if the context is clear.
Operator ↑ assign set of shared attributes for a set of objects. Analogically the
↓ for the set of attributes assigns a set of objects which share them.

Definition 3 (Concept-forming operators)
For A ⊆ X, B ⊆ Y and I ⊆ X × Y let operators ↑,↓ be defined by

A↑ = {y ∈ Y |∀x ∈ A : 〈x, y〉 ∈ I},

B↓ = {x ∈ X|∀y ∈ B : 〈x, y〉 ∈ I}.

2

Example 4 (Matrix I and operations ↑, ↓)

I =



y1 y2 y3 y4

x1 1 0 1 0
x2 1 0 1 1
x3 1 1 0 0
x4 1 1 1 0
x5 0 0 0 1


For example:
{y1, y3}↓ = {x1, x2, x4},
{y1, y2, y3}↓ = {x4},
{x2, x5}↑ = {y4},
{x1, x2, x4}↑ = {y1, y3},
and elementary X↑ = ∅, ∅↑ = Y .

Now we will define the formal concept, which is a fundamental notion in FCA,
and it is also one of the most important notions for the rest of the chapters in
this thesis. Formal concepts is a pair 〈A, B〉, where A is a set of objects, and
B is a set of attributes. These sets have to fulfill conditions associated with our
concept-forming operators.

Definition 5 (Formal concept)
A pair 〈A, B〉 in formal context 〈X, Y, I〉 where A ⊆ X, B ⊆ Y such that

A↑ = B and B↓ = A is formal concept in I.

Formally for formal concept 〈A, B〉 A is the intent and B is extent. Formal
concepts can be seen as a particular cluster in our matrix I.

Example 6 (Formal concepts)

I =



y1 y2 y3 y4

x1 1 0 1 0
x2 1 0 1 1
x3 1 1 0 0
x4 1 1 1 0
x5 0 0 0 1


Example of formal concepts in matrix I:
〈A1, B1〉 = 〈{x1, x2, x3, x4}, {y1}〉, 〈A2, B2〉 = 〈{x3, x4}, {y1, y2}〉, 〈A3, B3〉 =
〈{x1, x2, x4}, {y1, y3}〉, 〈A4, B4〉 = 〈{x2, x5}, {y4}〉.

Formal concepts can be as well defined as maximal rectangles in the matrix.
At first, we have to define rectangle in a formal context.

3

Definition 7 (Rectangle in formal context)
A rectangle in formal context 〈X, Y, I〉 is pair 〈A, B〉 where A ∈ X and

B ∈ Y such that A × B ⊆ I (alternatively for x ∈ A and y ∈ B there is
〈x, y〉 ∈ I).

Also we put 〈A1, B1〉 v 〈A2, B2〉 if and only if A1 ⊆ A2 and B1 ⊆ B2.

Rectangle 〈A1, B1〉 is maximal, if there is no rectangle 〈A2, B2〉 such that
〈A1, B1〉 v 〈A2, B2〉.

Theorem 8 (Maximal rectangles as formal concepts)
I = 〈X, Y, I〉 is a formal context. Pair 〈A, B〉 is a formal concept of I if

and only if 〈A, B〉 is a maximal rectangle in I.

Proof
Let 〈A, B〉 be the maximal rectangle. From the definition of ↑ we know

that 〈A, A↑〉 is also a rectangle. From the definition of the maximal rectangle,
we know that we cannot add anything to set A. So we have A = A↑↓ and also
A↑ = B.

2.2 Closure operators and Galois connections
In the previous section, we presented basic settings of FCA, but for purposes of
our algorithms, we also have to define the closure operators and mathematical
structures behind FCA.

Definition 9 (Closure operator)
The closure operator in a set X is mapping C : 2X → 2X which for each

A, A1, A2 ⊆ X holds

A ⊆ C(A) (1)
A1 ⊆ A2 ⇒ C(A1) ⊆ C(A2) (2)

C(A) = C(C(A)) (3)

We will see that the concept-forming operators can be together used as closure
operators, and they also form a representative case of Galois connections and
their fixpoints.

4

Definition 10 (Galois connection)
A Galois connection between sets X and Y is a pair 〈f, g〉 where f : 2X ×2Y

and g : 2Y × 2X holds for A, A1, A1 ⊆ X and B, B1, B2 ⊆ Y :

A1 ⊆ A2 ⇒ f(A2) ⊆ f(A1) (4)
B1 ⊆ B2 ⇒ g(B2) ⊆ g(B1) (5)

A ⊆ g(f(A)) (6)
B ⊆ f(g(B)) (7)

Theorem 11 (Concept-forming operators as Galois connection)
For a formal context 〈X, Y, I〉, the pair of induced concept-forming operators

〈↑, ↓〉 is a Galois connection between X and Y .

Proof
Let I = 〈X, Y, I〉 be formal context and 〈↑, ↓〉 its induced concept-forming

operators. We will verify only that (4) and (6) holds, as the verification of (5),(7)
can be obtained analogically.
Lets start with verification of (4) as

A↑2 = {y ∈ Y |∀x ∈ A2 : 〈x, y〉 ∈ I} =

{y ∈ Y |∀x ∈ A1 : 〈x, y〉 ∈ I
∧
∀x ∈ A2 \ A1 : 〈x, y〉 ∈ I} =

{y ∈ Y |∀x ∈ A1 : 〈x, y〉 ∈ I}
⋂
{y ∈ Y |∀x ∈ A2 \ A1 : 〈x, y〉 ∈ I} =

A↑1
⋂
{y ∈ Y |∀x ∈ A2 \ A1 : 〈x, y〉 ∈ I} ⇒ A↑2 ⊆ A↑1.

Lets prove also (6). Let A↑ = B and thus

B↓ = {x ∈ X|∀y ∈ B : 〈x, y〉 ∈ I} =

{x ∈ A ∨ x ∈ X \ A|∀y ∈ B : 〈x, y〉 ∈ I } =
{x ∈ A|∀y ∈ B : 〈x, y〉 ∈ I }

⋃
{x ∈ X \ A|∀y ∈ B : 〈x, y〉 ∈ I } ⇒ A ⊆ A↑↓.

Definition 12
Let 〈f, g〉 be Galois connection between sets X and Y . Then the set of pairs

fix(〈f, g〉) = {〈A, B〉 ∈ 2X × 2Y |f(A) = B, g(B) = A}

is called a set of fixpoints of 〈f, g〉.

As we can see, the fixpoints of Galois connection between sets X and Y
are also useful regarding formal concepts. The formal concepts are fix(〈↑, ↓〉).
Another interesting and for us important consequence of the previous definitions
and lemma is the calculation of the fixpoints itself. The behavior of Galois

5

connections and their chaining allows us to effectively calculate the minimal
formal concept for a given set of objects from X or a given set of attributes
from Y . The chaining of the Galois connection will later help our algorithms to
calculate the formal concepts.

Lemma 13 (Chaining of Galois connections)
Let X and Y be the sets and 〈f, g〉 the Galois connection between them. For

any A ⊆ X and B ⊆ Y we have f(A) = f(g(f(A))) and g(B) = g(f(g(B)))
respectively.

Proof
First we will prove f(A) = f(g(f(A))). Lets start with the

f(A) ⊆ f(g(f(A))).

This equation follows directly from (7) by putting B = f(A). Now we have to
verify the second direction

f(A) ⊇ f(g(f(A))).

This follows from A ⊆ g(f(A)) by (6) and if we also apply the (4) we have
A ⊆ g(f(A)) ⇒ f(g(f(a))) ⊆ f(A) where f(g(f(a))) ⊆ f(A) is the same as
f(A) ⊇ f(g(f(a))) which we wanted to prove.
We proved both directions so we have f(A) = f(g(f(A))). We will omit the
g(B) = g(f(g(B))) as it is a dual problem and the proof would just need to use
another equation from Galois connections definition.

6

3 Boolean matrix decomposition

3.1 Matrix decomposition
In previous section we described the theory needed for boolean matrix decom-
position. Now we will define a problem of matrix decomposition and after that,
we will introduce the algorithms which are able to solve the problem. Content
of this chapter was written with the help of [2].
For the formal definition of the matrix decomposition problem, we need to define
matrix multiplication. Matrix multiplication is an operation performed on two
matrixes A, B and we will mark it as A ◦B.

Definition 14 (Matrix multiplication (A ◦B))
Matrix product of matrix A and B is defined as

(A ◦B)i,j =
k∨

l=1
Ai,l ∧Bl,j

where ∨ is the maximum and ∧ is a multiplication.
In the boolean case, the maximum is a logical disjunction, and multiplication is
conjunction.

Example 15 (A ◦B)

0 0 0 1
0 1 1 0
1 0 0 0
1 0 0 0
0 0 1 0
0 1 0 1


◦


1 1 0 0 1
1 0 0 1 0
0 0 1 1 0
0 1 0 0 0

 =



0 1 0 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 0 1
0 0 1 1 0
1 1 0 1 0


Now we can precisely define the problem of matrix decomposition.

Definition 16 (Matrix decomposition problem)
The boolean matrix decomposition for matrix I with n columns and m rows

(n×m) is the problem of finding matrix A and B such that A ◦B = I. The size
of matrix A is n× k and size of B is k ×m, and the dimension k is as small as
possible.

To more specify the problem, it is not hard to find the matrix A and B, if
we do not care about the dimension k. The crucial part is to find the smallest
k possible. Currently, there is not an efficient algorithm that would be able to
solve this problem. Every effective algorithm, which tries to solve this problem
is not always able to find the best solution. If the input is complex, that means

7

that matrix I is large, we are not able to find the best solution or decide if there
is no better solution.
To find the best solution for the input, we would need to start with k = 1, gen-
erate all possible matrixes A, B with corresponding size, and verify if any pair
meets the requirement A ◦ B = I. If none held the requirement, we would need
to increment the parameter k and repeat until we find some A, B, which would
hold the requirement. The problem is that for example for input I100,100 and
k = 15 there exist 5062500000000 possible solutions (((100 · 15)2 · (15 · 100)2)).
It is obvious that going through all the possible solutions is not effective, and it
is not even possible for bigger instances with current computation power.
Most of the currently useful algorithms use the greedy approach. When the al-
gorithm uses a greedy approach, it means that the algorithm builds the solution
from scratch, and it decides what the best move from current information in the
current state is. This approach could lead the algorithm to the “bad branch” of
computation of the solution and end up with obtaining a sub-optimal solution.
The input for decomposition is matrix Mn,m which we can also see as correspond-
ing formal context 〈X, Y, I〉, where |X| = n, |Y | = m and Mi,j = 1 if 〈Xi, Yj〉 ∈ I.
For clarification, let us assume that sets X, Y are ordered, so every element in
the set has an index. That means that our algorithm can use the theory of FCA
to deal with decomposition. Now we will introduce the term coverage of the
matrix. The matrix coverage is important to construct the algorithm and also
for the performance measurement.

Definition 17 (Coverage)
Let F1 be the formal concept and I = 〈X, Y, I〉 the formal context. Formal

concept F1 = 〈{xn}, {yn}〉 where xn ∈ X a yn ∈ Y cover one element in formal
context I, if 〈xn, yn〉 ∈ I (Ixn,yn = 1).

Theorem 18 (Coverage of matrix)
For every formal context I = 〈X, Y, I〉 there exists the set of formal concepts

F which cover all the ones in I.

Proof (Coverage of matrix)
For every 〈x, y〉 ∈ I we can construct the formal concept Fi, so Fi =

〈{x}, {y}〉. The set F of Fi will naturally cover the formal context I

Let F be the set of the k formal concepts which covers the formal context I.
Corresponding matrix for I is I. Let us show that with formal concepts from F
we are able to construct a n×k object–factor matrix A and k×m factor–attribute
matrix B, which together hold A ◦B = I.

8

Definition 19 (Construction of matrix decomposition from a set F)
Let I = 〈X, Y, I〉 be the formal context and F set of formal concepts, which

covers all entries in formal context I. We can build matrix A and B from formal
concept Fi = 〈Ci, Di〉 ∈ F so that Aji = 1 if j ∈ Ci else Aji = 0 and Bij = 1 if
j ∈ Di else Bij = 0. Then (A ◦B) = I.

In other words, we construct the matrix A from F by columns. Column i is
represented by extent from Fi ∈ F and the element j of the column is 1 if object
xj is present in the extent of Fi.
Analogically it is for matrix B, but it is constructed from rows. Row i is repre-
sented by intent from Fi, and the element j is 1 if attribute yj is present in the
intent.

Example 20 (Construction of matrix decomposition from a set F)

I1 =



y1 y2 y3 y4 y5

x1 0 1 0 0 0
x2 1 0 1 1 0
x3 1 1 0 0 1
x4 1 1 0 0 1
x5 0 0 1 1 0
x6 1 1 0 1 0


Let formal concepts be 〈A1, B1〉 = 〈{x3, x4}, {y1, y2, y5}〉, 〈A2, B2〉 = 〈{x2, x6}, {y1, y4}〉,
〈A3, B3〉 = 〈{x2, x5}, {y3, y4}〉, 〈A4, B4〉 = 〈{x1, x6}, {y2}〉,
So the set is F = {〈A1, B1〉, 〈A2, B2〉, 〈A3, B3〉, 〈A4, B4〉}.
The final solution is I = AF ◦BF

0 1 0 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 0 1
0 0 1 1 0
1 1 0 1 0


=



0 0 0 1
0 1 1 0
1 0 0 0
1 0 0 0
0 0 1 0
0 1 0 1


◦


1 1 0 0 1
1 0 0 1 0
0 0 1 1 0
0 1 0 0 0



We can also see that one place in the matrix could be covered by more than one
concept.
Another approach is that each formal concept from I (n×m) could be interpreted
as n×m matrix with only the values which particular formal concept covers and
then I is a union of these rectangles. By union, it is meant the ∨-superposition
of the matrices made from formal concepts. Let us show this idea in the previous
example.

9

For formal concepts F1, F2, F3, F4 and formal context I:

0 1 0 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 0 1
0 0 1 1 0
1 1 0 1 0


=



0 0 0 0 0
0 0 0 0 0
1 1 0 0 1
1 1 0 0 1
0 0 0 0 0
0 0 0 0 0


∨



0 0 0 0 0
1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 0


∨



0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0


∨



0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0


We can see that the union of these four matrices forms the initial formal

context I.
This approach is also an important assumption that allows us to reduce the
problem of matrix decomposition to the problem of finding the set of factors
that together covers the initial matrix.

10

3.2 Grecond algorithm
Grecond is the algorithm that solves the matrix decomposition problem by greedy
approach, but generally with high-quality output (close to optimum solution).
It covers the input matrix with factors, and then, it outputs the factors, from
which we can construct the matrix A and B with ease. The dimension k of the
A ∈ {0, 1}n×k and B ∈ {0, 1}k×m will be the same as the number of factors which
the algorithm finds. Let us note that the algorithm uses the fact that operators
↑, ↓ together form Galois connection, and it uses chaining of Galois connections
for computing of formal concepts (their extents and intents). The algorithm tries
to find as few factors as possible, but as we mentioned before, it does not always
return the optimal solution.
The principle of the algorithms is to cover each table entry with 1 in the input
matrix I with at least one factor. The algorithm starts with an empty set of
factors F . It stops when the F covers every 1 in the input table (element).
It starts with big factors that cover many entries in the I, and then it continues
with smaller factors to the factors, which covers, for example, just one element.
As it may seem like Grecond calculates all the factors and selects the most
valuable one at the moment, it is not true. Grecond builds each formal concept
from F incrementally from scratch. It starts with an empty extent and adds the
most promising attribute to it, while it also enriches the current formal concept
by using the concept-forming operators. Then it selects the next attribute, which
will be added to the extent of a factor concerning the maximization of the current
factor cover of uncovered elements of I. If there does not exist the attribute which
would increase the cover of the current factor, it adds the current factor to the
F and starts again with an empty extent.

Algorithm 1 Grecond
1: procedure Grecond(I) . (Boolean matrix)
2: set U = {〈i, j〉|Ii,j = 1}
3: set F = ∅
4: while U 6= ∅ do
5: set D = ∅
6: set V = 0
7: while exist j 6∈ D, for which *|D � j| > V do
8: Select j 6∈ D, which maximizes D � j:
9: set D = (D ∪ {j})↓↑
10: set V = |(D↓ ×D) ∩ U |
11: set C = D↓

12: add 〈C, D〉 to F
13: for each 〈i, j〉 ∈ C ×D do
14: delete 〈i, j〉 from U

15: return F
. *D � j = ((D ∪ {j})↓ × (D ∪ {j})↓↑) ∩ U

11

Example 21 (Grecond algorithm output example)
Let I be the input matrix.

I =

1 1 0 0
1 0 1 1
0 1 1 1


Let us briefly explain the operation of the algorithm. Outer while loop is search-
ing for attribute which maximizes actual formal concept 〈D, D↓〉 so it covers as
much uncovered elements in U . U is auxiliary set which tracks the uncovered
elements. These are the elements, which are not covered by any yet calculated
formal concepts from F . The first output factor is F1 = 〈{1, 2}, {2, 3}〉 which
covers 4 uncovered elements. These elements are removed from set U . Next
factor is F2 = 〈{0, 1}, {0}〉. It covers 2 uncovered elements, again we need to
delete them from U . The last factor is F3 = 〈{0, 2}, {1}〉. The auxiliary set U is
empty after the update, that means that we have covered all elements in input
matrix I and algorithm returns F = F1, F2, F3.
From F we can easily construct the matrix A and B which holds A◦B = I. The
final output is as below.0 1 1

1 1 0
1 0 1

 ◦
0 0 1 1

1 0 0 0
0 1 0 0

 =

1 1 0 0
1 0 1 1
0 1 1 1


The algorithm described in this section is limited to the boolean data input.

That means that if we have data with more than one value for the relationship
between objects and attributes, we can not use Grecond. An example of the data
with such many-valued relations could be data with students and their grades
from particular subjects. If we wanted to use this algorithm on this dataset, we
would need to transform the data. Let us show the simple principle which could
be used for data transformation.

Example 22 (Ordinal data matrix transformation)
Let I1 be the matrix with data about three students and their grades from

physics and math.

Ix =


M P

S1 2 3
S2 3 4
S3 1 1


Where Si is a student, M means math, and P means physics. Grade 1 is the
best; 5 is the worst.

To transform Ix to such a boolean matrix, which will represent the same
data, we need to replace a set of attributes with a new set of attributes. For
every attribute with more than one possible value for object-attribute relation,

12

we will create new attributes. The number of new attributes will be the number
of possible values. Then, for a particular object and attribute, we will create the
new relation only with the newly created attribute, which corresponds with the
value which the object had. The boolean matrix I created from Ix is as follows.

I =


M1 M2 M3 M4 M5 P1 P2 P3 P4 P5

S1 0 1 0 0 0 0 0 1 0 0
S2 0 0 1 0 0 0 0 0 1 0
S3 1 0 0 0 0 1 0 0 0 0


When a student Sx has the attribute Mi it means, that the student has the grade
i from math. Analogically for physics.

As we can observe, the number of objects grows very fast if we want to
transform the input into the boolean case. The transformation can also cause
the data to be far less readable. In the next chapters, we will introduce fuzzy
logic fundaments and use these approaches to extend our algorithm so it will be
able to handle the ordinal data as input.

13

4 Preliminaries from fuzzy logic
This chapter is a summary of the underlying theory of fuzzy logic. It consists
of definitions and examples which are essential for the extension of the Grecond
algorithm to be able to handle ordinal data. Content of this chapter was written
with the help of [3].

4.1 Introduction to fuzzy logic
Fuzzy logic is a type of many-valued logic, which could handle the case where
some statement is not fully true, but not false. It is inspired by the observa-
tion from the real world as there is a gradual transition between true and false
statements, which is not sharp. For example, we can have a set of “long books”,
and one of them has 400 pages. The question is that if we have another book
with 390 or even 399 pages, will it also be a member of the “long books”? As we
can see in the real world, there is often not clearly defined the border between
being a member of the collection and not being a member of a collection. In
classical mathematics, there is always defined the edge point or restrictions for
the membership in the set. As in the real world many terms and states are not
strict; fuzzy logic can be a better choice for the modeling of the real world sit-
uation. That is the reason why fuzzy logic found its way to many areas in the
real world, for example, engineering. It is widely used for temperature regulation
where it can define the state “being cold” or “being hot” in a more natural way
than classical mathematics.
In fuzzy logic, the truth value could be any real number from interval [0, 1].
Boolean logic is the special case of fuzzy logic, where statements could have the
truth value only 1 or 0. In this thesis, we will not use the whole continuous
interval [0, 1], but we will focus on finite sets of truth values from it. Most of the
time, we will label the set of truth values as L. For example we will use a few
elements scale as L = {0, 0.25, 0.5, 0.75, 1}. In particular, people could attach
linguistic labels to these value such as "not true", "maybe", "middle", "probably"
and "fully true".

Let us start with the formal setting of a fuzzy structure. In the next chap-
ter, we will then define the problem of matrix decomposition for the matrix,
which entries will be more complex than just two values.

14

4.2 Fuzzy structures
Graded truth approach directly leads to the assumption that the set L of truth
values is partially ordered. We denote this by 〈L,≤〉. The complete definition
of the fuzzy set is as follows.

Definition 23 (Fuzzy set)
Let 〈L,≤〉 be a partially ordered set with the least element 0 and the greatest

element 1. A fuzzy set (L-set) in a universe X is a mapping

A : X → L

A is the mapping of X to A.

Elements fromL(a ∈ L) are called truth degrees. Truth degree L(x) expresses
the degree of membership of element x ∈ X in A. Mapping A is called L-set in
X and we can read this it as "fuzzy set" in X. We can denote the L-set in X also
by {A(x)/x|x ∈ A}. For elements x, y, A(x) ≤ A(y) means, that y belongs to A
at least with the same degree as x.

Example 24 (Fuzzy set)
Let L-set be defined as

A(x) =


−x− 1 if − 1 ≤ x ≤ 0

1− x if 0 < x ≤ 1
0 otherwise

Then A is a fuzzy set that represents the concept “approximately 0”. The fol-
lowing graph visualizes A.

−2 −1 1 20

1

From the graph, we can see that the number x will have a higher membership
value A(x) the nearer it will be to 0, and it will be the full truth if the x = 0.

We have defined the L-set, and now we can define the residuated lattice,
which plays a fundamental role in fuzzy logic. Residuated lattice will equip the
L-set with operations and also restrict the behavior of these operations.

15

Definition 25 (Residuated lattice)
A residuated lattice is an algebra L = 〈L,∨,∧,⊗,→, 0, 1〉 such that L is

partially ordered set of truth degrees, 〈L,∨,∧, 0, 1〉 is a lattice with the least and
greatest element, 〈L,⊗〉 is a commutative monoid and ⊗,→ satisfy adjointness:

a⊗ b ≤ c iff a ≤ b→ c

Let us clarify the definition of residuated lattice. ⊗ is the truth function
of many-valued conjunction, we can also call it multiplication. → is the truth
function of many-valued implication and it is called residuum. The ∨ and ∧ are
infimum and supremum. 0 and 1 is the least and greatest element of L. Commu-
tative monoid means that ⊗ is commutative, associative and a⊗ 1 = 1⊗ a = a
is satisfied for each a ∈ L. Adjointness is satisfied, if for all elements a, b, c ∈ L
a ⊗ b ≤ c hold if and only if a ≤ b → c. When two operations satisfy the ad-
njointness, we can call them an adjoint couple.
Two elements boolean algebra 〈{0, 1},∨,∧,⊗,→, 0, 1〉 is therefore a special case
of residuated lattice.

Adjoint couples ⊗,→ on [0, 1] have many forms. For a, b ∈ L we call the oper-
ation a → b the residuum of b by a. For each operation ⊗ there exist at most
one → which forms the adjoint couple with it. That means that for each ⊗ the
residuum → is uniquely defined. Let us mention a few most common pairs of
operation which forms a complete residuated lattice L = 〈L,∨,∧,⊗,→, 0, 1〉.

Definition 26 (Łukasiewicz structure)

a⊗ b = max(a + b− 1, 0)

a→ b = min(1− a + b, 1)

Definition 27 (Gödel structure)

a⊗ b = min(a, b)

a→ b =
{

1 if a ≤ b
0 otherwise

Definition 28 (Product structure)

a⊗ b = a · b

a→ b =
{

1 if a ≤ b
b/a otherwise

The corresponding algebras are called standard product algebra, standard
Łukasiewicz algebra, and standard Gödel algebra. We will use only the Łukasiewicz

16

algebra for our purposes. Let us just remind that the pair of operation 〈+,−〉 is
not associative, so when we are calculating the values of the ⊗ or →, the exact
order of operations needs to be preserved.
Use of another pair of operations such as Gödel in the matrices decomposition
could be the area of further research.

From now we will assume that the residuated lattice used in all examples
will be L = 〈L,⊗,→,∧,∨, 0, 1〉, where→ and ⊗ are the Łukasiewicz operations.
The set of truth values L will be different within the various examples so that it
will be specified for each example separately.

4.3 Binary fuzzy relations
For a lot of various problems, binary relations turn out to be a useful and straight-
forward tool. However, binary relation with just boolean elements is often not
descriptive enough. For example, if we have a relation between students and
school subjects or a particular test, it is natural that grades themselves repre-
sent the relation. As an example, let {1, 2, 3} be the set of grades. The students
can have one grade for each subject or test. We can transform the rich relation
between grades and students to just boolean relation by some kind of trans-
formation, but it could end up into information loss or making the relation less
readable. If we want to avoid these problems, we can manipulate with the grades
themselves by assigning each of them the value from the fuzzy set. Let us define
the binary fuzzy relation.

Definition 29 (Binary fuzzy relation)
Fuzzy relation (L-relation) between nonempty sets X and Y is any mapping

R : X ×Y → L, where L is the support set of the complete residuated lattice L.

For x ∈ X and y ∈ Y , the R(x, y) ∈ L is the truth degree to which x and y
are in the relation R. For the students and subjects, we can work with the grades
as with corresponding truth degrees from L. Let L = {0.0, 0.25, 0.5, 0.75, 1.0} be
the set of truth degrees. The grade 1 could be represented by truth degree 1.0,
while the degree 2 would be represented by 0.75 et cetera.

We defined everything which will be needed to step deeper into the ordinal data
decomposition problem. In the next chapter, we will continue with the FCA
enriched with fuzzy logic.

17

5 Formal concept analysis of ordinal data
This chapter is an introduction to the basic theory of FCA extended with fuzzy
logic, which will later allow us to analyze ordinal data. Content of this chapter
was written with the help of [4] and [5].

5.1 Fuzzy contexts
The form of elementary knowledge about a given domain of interest is as in
the boolean case, the triple consisting of a collection of objects, collection of
attributes, and a relation between objects and attributes. The only difference is
that in the boolean case, the relation between objects and attributes is strictly
sharp, which means that the particular object has the attribute or does not have
it. In fuzzy logic, the relation between objects and attributes can have more
degrees of relationship between full truth and false. This corresponds with real
world concepts, where the relation is not that strict most of the time. When
we describe the real world, we often use vague terms to define the attributes of
the objects. For example, the empirical attribute for cities, the size of the city,
is not strictly defined. The cities with around one million citizens or more are
usually recognized as big cities, and the closer the number of citizens is to one
million, the more is the city perceived as big. The vague definition of various
attributes of objects leads to the idea that the attribute applies to a given object
to a certain degree (truth degree). As we can easily see, fuzzy logic seems to be
helpful for the formalization of real world relations.
We can continue with the formulation of formal context enriched with the fuzzy
relation. The data from the triplet are naturally depicted in the matrix, where
rows correspond to objects, columns to attributes, and the matrix entries specify
the degree to which the objects have the attributes. Let us formalize this in
more mathematical terms as follows: We suppose that there is a nonempty set
X (elements of the X are called objects) and the nonempty set Y (elements of Y
are called attributes). We choose a truth degree structure L, which provides an
appropriate scale of truth values with its structure, and lastly, there is a binary
fuzzy relation (L-relation) between objects and attributes. The formal definition
of a fuzzy context is as follows.

Definition 30 (Fuzzy context)
The triplet 〈X, Y, I〉, where X 6= ∅, Y 6= ∅ and I : X × Y → L is the binary

fuzzy relation (L-relation).

For clarification of fuzzy context definition, the L is the set of partially ordered
truth values. For each element a ∈ L applies that a ∈ 〈0, 1〉. We will call the
elements from L the truth degrees; hence the entry in the table which represents
the fuzzy context is the truth degree, in which attribute y ∈ Y applies to object
x ∈ X. Let us show an easy interpretable fuzzy context as an example.

18

Example 31 (Fuzzy context)
Let X = {s1, s2, s3, s4, s5, s6} be the set of students and set

Y = {math, english, german, physics, biology} the set of subjects, in which were
the students evaluated. The set of truth degrees is L = {0, 0.25, 0.5, 0.75, 1}. The
binary fuzzy relation I is represented by following matrix.

I =



math english german physics biology

s1 1 0.75 0.75 1 1
s2 0.25 0.5 0.5 0.25 0.5
s3 0.75 0.55 0.5 0.75 0.5
s4 1 1 1 1 1
s5 0.75 0.5 0.5 0.5 0.75
s6 0.5 1 1 0.5 0.5


The possible matrix values are {0, 0.25, 0.5, 0.75, 1} and these values correspond
to the grades {5, 4, 3, 2, 1} which are commonly used to evaluate students’ efforts.
Matrix entry represents the grade which a student obtained in a particular sub-
ject. For example s3 has the grade 4 from math, 3 from english, 3 from german,
4 from physics and 3 from biology.

Let us continue with the definition of concept forming operators, which we
defined in the second chapter for formal context with boolean values yet, but
now we will extend the definition for fuzzy formal context.

5.2 Concept forming operators
Each fuzzy context I = 〈X, Y, I〉 induces a pair of operators ↑, ↓, we call them
concept-forming operators. As these operations are induced by the I, we should
use ↑I , ↓I , but will omit the bottom label if the parent context is clear. Oper-
ator ↑ assigns a fuzzy set of common attributes to a given fuzzy set of objects.
Analogically the ↓ for a fuzzy set of attributes assigns a fuzzy set of objects
which share them. Operators ↑, ↓ may be thought of as mappings ↑: LX → LY ,
↓: LY → LX . The value A↑(y) for attribute y ∈ Y and A ⊆ X is the truth degree
in which y belongs to A↑ and the value follows from the proposition "for each
x ∈ A, x has y in at degree at least A↑(y)". Conversely the B↓(x) for B ⊆ Y and
x ∈ X is the truth degree to which each attribute of B is shared by the object
x. Let us show the precise definition of these operators.

19

Definition 32 (Concept forming operators)
Let I = 〈X, Y, I〉 be the fuzzy context. The induced operator ↑I is defined

as
A↑I (y) =

∧
A(x)→ I(x, y)

where A ⊆ X, y ∈ Y and ∧ is the infimum.

Conversely the induced operator ↓I is defined as

B↓I (x) =
∧

B(x)→ I(x, y)

where B ⊆ Y , x ∈ X and ∧ is the infimum.

As the calculation of sets A↑ and B↓ could not be entirely clear from the
definitions of operators, let us continue with a short example of its usage.

Example 33 (Concept forming operators)
Let us use our fuzzy context from the previous example. So X = {s1, s2, s3, s4, s5, s6},

Y = {math, english, german, physics, biology} and

I =



math english german physics biology

s1 1 0.75 0.75 1 1
s2 0.25 0.5 0.5 0.25 0.5
s3 0.75 0.75 0.5 0.75 0.5
s4 1 1 1 1 1
s5 0.75 0.5 0.5 0.5 0.75
s6 0.5 1 1 0.5 0.5


Just to remind, the set of truth degrees is L = {0, 0.25, 0.5, 0.75, 1} and we use
Łukasiewicz operations →,⊗.
A = 〈1, 0, 0, 0.75, 1, 0〉 is the fuzzy set of students. The students s1 and s5 fully
belong to the set A, the student s4 belongs to A in degree 0.75 and the other
students do not belong to the set A at all. Let us calculate the fuzzy set A↑.

20

A↑(math) =
∧

s∈A

A(s)→ I(s, math)

= (A(s1)→ I(s1, math)) ∧ (A(s2)→ I(s2, math))
∧ (A(s3)→ I(s3, math)) ∧ (A(s4)→ I(s4, math))
∧ (A(s5)→ I(s5, math)) ∧ (A(s6)→ I(s6, math))

= (1→ 1) ∧ (0→ 0.25) ∧ (0→ 0.75) ∧ (0.75→ 1) ∧ (1→ 0.75)
∧ (0→ 0.5) = 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0.75 ∧ 1 = 0.75

A↑(english) =
∧

s∈A

A(s)→ I(s, english)

= (1→ 0.75) ∧ (0→ 0.5) ∧ (0→ 0.75) ∧ (0.75→ 1) ∧ (1→ 0.5)
∧ (0→ 1) = 0.75 ∧ 1 ∧ 1 ∧ 1 ∧ 0.5 ∧ 1 = 0.5

A↑(german) = (1→ 0.75) ∧ (0→ 0.5) ∧ (0→ 0.5) ∧ (0.75→ 1) ∧ (1→ 0.5)
∧ (0→ 1) = 0.75 ∧ 1 ∧ 1 ∧ 1 ∧ 0.5 ∧ 1 = 0.5

A↑(physics) = (1→ 1) ∧ (0→ 0.25) ∧ (0→ 0.75) ∧ (0.75→ 1) ∧ (1→ 0.5)
∧ (0→ 0.5) = 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0.5 ∧ 1 = 0.5

A↑(biology) = (1→ 1) ∧ (0→ 0.5) ∧ (0→ 0.5) ∧ (0.75→ 1) ∧ (1→ 0.75)
∧ (0→ 0.5) = 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0.75 ∧ 1 = 0.75

So our final fuzzy set A↑ is A↑ = 〈0.75, 0.5, 0.5, 0.5, 0.75〉. If we have con-
sidered to not include the student s5 to our set A, the truth degree in which
most attributes belong to A↑ would be higher, as the set A would consist of only
“great students”.
Now we use the operator ↓ to calculate the fuzzy set of objects for a fuzzy set of at-
tributes. As the set of attributes B we will use our set A↑ = 〈0.75, 0.5, 0.5, 0.5, 0.75〉.

21

B↓(s1) =
∧

a∈B

B(a)→ I(a, s1)

= (B(math)→ I(math, s1)) ∧ (B(english)→ I(english, s1))
∧ (B(german)→ I(german, s1)) ∧ (B(physics)→ I(physics, s1))
∧ (B(biology)→ I(biology, s1))

= (0.75→ 1) ∧ (0.5→ 0.75) ∧ (0.5→ 0.75) ∧ (0.5→ 1)
∧ (0.75→ 1) = 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 = 1

B↓(s2) =
∧

a∈B

B(a)→ I(a, s2)

= (0.75→ 0.25) ∧ (0.5→ 0.5) ∧ (0.5→ 0.5) ∧ (0.5→ 0.25)
∧ (0.75→ 0.5) = 0.5 ∧ 1 ∧ 1 ∧ 0.75 ∧ 0.75 = 0.5

B↓(s3) = (0.75→ 0.75) ∧ (0.5→ 0.75) ∧ (0.5→ 0.5) ∧ (0.5→ 0.75)
∧ (0.75→ 0.5) = 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0.75 = 0.75

B↓(s4) = (0.75→ 1) ∧ (0.5→ 1) ∧ (0.5→ 1) ∧ (0.5→ 1)
∧ (0.75→ 1) = 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 = 1

B↓(s5) = (0.75→ 0.75) ∧ (0.5→ 0.5) ∧ (0.5→ 0.5) ∧ (0.5→ 0.5)
∧ (0.75→ 0.75) = 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 = 1

B↓(s6) = (0.75→ 0.5) ∧ (0.5→ 1) ∧ (0.5→ 1) ∧ (0.5→ 0.5)
∧ (0.75→ 0.5) = 0.75 ∧ 1 ∧ 1 ∧ 1 ∧ 0.75 = 0.75

The fuzzy set B↓ = 〈1, 0.5, 0.75, 1, 1, 0.75〉.
Furthermore, the A↑(x) is the truth degree to which each student of A is suc-
cessful in a subject (course) x and the B↓(s) is the truth degree to which each
subject (course) of B is handled by student s.

As we can see, concept forming operators for fuzzy context need a bit more
computation than the calculation for boolean formal context, which we described
in the second chapter.

5.3 Fuzzy concepts
Now when we have defined the fuzzy context and concept forming operators, we
can step forward and move closer to our main aim, the formal concepts in fuzzy
context. The main idea is the same as for formal context, which we defined for
the boolean context, but the intent and extent are a little more complicated.
Previously, the extents and intents were just classic sets, which have or have not
the particular element. In this case, the extents and intents are fuzzy sets, which
means that every element has to belong to the set in a particular truth degree.
It also means that every object from the initial fuzzy context will belong to each
intent in some truth degree, and also every attribute will belong to each extent

22

in some truth degree. For clarification, when the truth degree of some element
in the fuzzy set is 0, it means that the element does not belong to the set, it is
the analogy to boolean set when the element is not present in the set. We will
call the formal concept in a fuzzy context the fuzzy concepts.

Definition 34 (Fuzzy concept)
A pair 〈A, B〉 in fuzzy context 〈X, Y, I〉 where A ∈ LX , B ∈ LY such that

A↑ = B and B↓ = A

is fuzzy concept in I.

The members of pair 〈A, B〉 are called extent and intent.

Example 35 (Fuzzy concept)
Let us use the same fuzzy context as in the example of concept forming op-

erators and let us also use the calculated fuzzy sets B and B↓.
Let 〈E, F 〉 be the potential L-concept, where the E = 〈1, 0.5, 0.75, 1, 1, 0.75〉 and
F = 〈0.75, 0.5, 0.5, 0.5, 0.75〉. Our fuzzy set E is the previously calculated fuzzy
set B↓ and the set F is the previously calculated B which was calculated as A↑.
We need to verify E↑ = F and F ↓ = E.
We can easily see that the second equation directly follows from the definition of
our initial sets F and E, because we put F = B and E = B↓. So the equation
F ↓ = E holds.
The equation E↓ = F also holds, but it is not so obvious at the first sight. We
can manually verify it, but we can also use the theory from the first chapter,
mainly the observation that the usage of both context-forming operators is clo-
sure operator. We know that the E = B↓ and we also know that we calculated
the set B as A↑ so E = B↓ = A↑↓ and thus E↑ = B↓↑ = A↑↓↑. From the fact that
operators ↑, ↓ form Galois connections and from the chaining of Galois connec-
tions we have A↑↓↑ = A↑ so we have E↑ = A↑ = B = F . Therefore we verified
that pair 〈E, F 〉 is a fuzzy concept.

The role of the fuzzy concepts for our purposes is that they could be helpful
when we are describing the data. They are considered as new variables of the
context itself, which are hidden but can be more fundamental than the original
object and attributes variables. So now, when we have defined the fuzzy context
and also the idea of a fuzzy concept, we can extend our main problem of optimal
boolean matrix decomposition to optimal Lmatrix decomposition.

23

5.4 Optimal decomposition
The problem we considered may be formulated in terms of matrices or equiva-
lently in terms of relation. We proceed for matrices, which framework is com-
monly used for this problem. We talked about the optimal boolean matrix de-
composition in the 3rd chapter, so let us talk about crucial differences. Let L
denote a partially ordered set of grades bounded by 0 and 1 and matrix I ∈ Ln×m,
which we would like to decompose into matrix A and B. The main difference
between the optimal decomposition we defined before will be that now we will
consider the decomposition of matrice I, which has more complex ordinal data
entries instead of just boolean entries. Namely, each entry Ii,j of I will represent
the grade in which the particular object i has the attribute j. Thus matrix I
could represent fuzzy relation of some fuzzy context 〈X, Y, I〉. To precisely define
the problem of fuzzy matrix decomposition, we first need to extend the matrix
multiplication by the fuzzy operations. This matrix multiplication operation is
also known as a sup-t-norm-product.

Definition 36 (Sup-t-norm-product (A ◦B))
Let the 〈L,∨,∧,⊗,→, 0, 1〉 be the complete residuated lattice. Let A and B

be the matrices with entries from L. The sup-t-norm-product ◦ is defined by

(A ◦B)i,j =
k∨

l=1
Ai,l ⊗Bl,j

The sup-t-norm-product could have many forms, depending on the opera-
tions, which we choose as ⊗ and →. The general example could be the defini-
tions of the boolean matrix multiplication, which is a special case of sup-t-norm-
product and it is defined as (A ◦ B)i,j = maxk

l (min(Ai,l, Bl,j)). Another version
of the ◦ could also be obtained by using another fuzzy structure for the opera-
tions ⊗ and →. We will use just the Łukasiewicz structure for our calculations,
algorithms, and examples. The usage of another structure in decomposition al-
gorithms could be the area of further research. Let us recall, that in Łukasiewicz
structure we have a⊗ b = max(a + b− 1, 0) and a→ b = min(2− a + b, 1). The
precise define the fuzzy context decomposition problem is as follows.

Definition 37 (Fuzzy context decomposition problem)
The fuzzy context decomposition for context I = 〈X, Y, I〉 represented by

matrix I with |X| columns and |Y | rows (n×m) is the problem of finding matrix
A and B such that A ◦ B = I. The size of matrix A is |X| × k and size of B is
k × |Y |. Our aim is to have the dimension k as small as possible.

Let us denote that as the I is the matrix which represents the binary fuzzy
relations, its entries are from some L = 〈0, 1〉. This also applies to matrix A and
B. As we can see, the problem of binary matrix decomposition was the special
case where L = {0, 1}. We can also transform the matrix I which represents the

24

fuzzy relation to the boolean matrix I{0,1} which will represent the same data,
but in general the matrix I{0,1} will be much bigger.
The transformation for I from I = 〈X, Y, I〉 where Ix,y ∈ {0, 0.25, 0.5, 0.75, 1}
could be defined as follows. For each y ∈ Y we will create attributes {y0, y0.25, y0.5, y0.75, y1}
and we will construct I0,1 as

I0,1
x,yi

=
{

1 if Ix,y <= i
0 otherwise

In other words, for each attribute, we will create attributes that will represent
all the degrees in which the object could have a particular attribute.
This transformation was mentioned just to extend the viewpoint on the decom-
position problem. A comparison of the outputs from fuzzy decomposition and
boolean decomposition of the transformed matrix could be an area of further
research.

25

6 Algorithm for the decomposition of a matrix
with ordinal data

6.1 General setting
In this chapter, we will introduce the extended version of the Grecond algorithm,
which we talked about in the chapter about the boolean matrix decomposition.
Content of this chapter was written with the help of [6]. Let us briefly remind
how Grecond algorithm works.
Grecond was designed to take the boolean matrix I0,1 as input. The matrix I0,1

could represent the relation from formal context 〈X, Y, I0,1〉. Grecond incremen-
tally covers the input matrix I0,1 with the formal concepts. It starts with a big
formal concept and continues with the smaller formal concepts which appear in
input data. Grecond uses the operators ↑, ↓ for the calculation of formal concepts
and it also uses the fact that ↑, ↓ together form Galois connection, so it also uses
the properties of Galois connections, namely the Chaining of Galois connections
for the extent and intent computation.
With the help of fuzzy logic, we will extend the Grecond algorithm so it will be
able to handle the real-valued input. To be specific, the input will be real-valued
matrix IL, which stands for the fuzzy relation from fuzzy context 〈X, Y, I〉 and
L is a set of truth degrees.

6.2 Basic algorithm
The input for the algorithm will be the fuzzy context 〈X, Y, I〉. The X is the
set of objects, Y is a set of attributes, and I is the matrix which represents the
Lrelation between objects and attributes where L ∈ 〈0, 1〉 is the partially ordered
set of truth values.
The main idea of the algorithm is still the same as with the boolean version.
Algorithms start with the empty set F of formal concepts, and then it systemat-
ically builds the F until the set of uncovered matrix entries Iij is empty. There
are a few obstructions that we need to solve to obtain the extended version of
Grecond, which we will call FuzzyGrecond or L-Grecond.
The first issue is about the formal concept itself. In the classic version, the intents
and extents are just sets that contain particular elements. In the L-Grecond, we
can not use the framework of the standard set to model the formal concepts. We
need to use fuzzy concept, which use fuzzy sets as intents and extents. This,
in general, means that intent and extents contain every element in some truth
degree, at least in degree 0.
The second difference which needs to be solved is the calculation of promising
factors. In the classic version, we choose the next factor regrading to some set
of promising attributes from Y . Now we have to deal also with the degree of
membership of the attributes in the promising set. The issue is that the formal
concept we calculate from some extent, which is a fuzzy set of attributes where

26

every attribute has the membership degree equal to 1, could have the final cover-
age value far worse than the same fuzzy set in which some of the attributes will
have the membership degree lowered to 0.9 or 0.75. This is caused by the fact
that objects x ∈ X, which have not the attribute in at least the same degree as
the initial extent, are not included in the fuzzy concept at all. To solve this, we
have to include also the membership degree to the calculation of new concepts.
This is solved by going through all elements a ∈ L when calculating the next
fuzzy concept.
The last issue and also the biggest one is the selection of the next fuzzy concept,
which has to be added to the final solution. In the boolean version, the algorithm
selects the next formal concept, which fully covers the most significant amount
of uncovered 1 entries in the input matrix. For simplification, let us name the
number of covered entries by the concept, the coverage score. In the fuzzy ver-
sion, the exact and sounds calculation of coverage itself is hard to obtain. We
describe the problematic situation as follows. Let us have some fuzzy concept
which almost covers all matrix entries in I, but none of them entirely. Namely,
the particular entry Iij = 0.9, but our concept covers just 0.8. This concept will
have a coverage score of 0, but it describes the input data very well, and it is a
valuable factor. This leads us to the problem of matrix similarity, which will be
described more further later in this chapter. Now we can stick with the coverage
as the exact coverage, which counts just the fully covered entries to the coverage
score of the potential concept.
We can proceed with the pseudocode of the L-Grecond algorithm. Pseudocode of
L-Grecond uses auxiliary procedure selectBestTriplet, which returns the most
promising triplet, which consists of attribute, truth degree, and the correspond-
ing coverage score.

27

Algorithm 2 L-Grecond
1: procedure L-Grecond(I ∈ Ln×m) . I is a real valued matrix
2: set U = {〈i, j〉|Ii,j > 0}
3: set F = ∅
4: set J = [n, m] . Empty matrix, the same size as I
5: while U 6= ∅ do
6: set D = ∅ . Fuzzy set - intent of factor
7: set V = 0
8: set 〈j, a, v〉 = selectBestTriplet(D,F , U, I, J)
9: while v > V do
10: set V = v
11: set D = (D[j] = a)↓↑
12: set 〈j, a, v〉 = selectBestTriplet(D,F , U, I, J)
13: set C = D↓

14: add 〈D↓, D〉 to F
15: update J with 〈C, D〉
16: for each 〈i, j〉 ∈ C ×D do
17: if Ji,j = Ii,j then
18: delete 〈i, j〉 from U

19: return F . F = {〈A, B〉 ∈ B(I)|A ∈ LN , B ∈ LM}

Algorithm 3 selectBestTriplet

1: procedure selectBestTriplet(D,F , U, I, J) . I, J ∈ Ln,m

2: set 〈j, a, v〉 = 〈0, 0.0, 0〉
3: for j1 ∈ 0, ..., m− 1 do
4: for a1 ∈ L do . L is a set of distinct values ∈ {0, .., 1}
5: set D1 = D
6: set D1 = (D1[j1] = a1)↓↑
7: set v1 = s(I, J, 〈D↓1, D1〉, U)
8: if v1 > v then
9: set 〈j, a, v〉 = 〈j1, a1, v1〉
10: return 〈j, a, v〉

. s is one of the similarity functions. It compares the matrix I
with the auxiliary matrix J and updated with the potential factor 〈D↓1, D1〉.
It also compares only indexes which are in U .

28

For simplification, we separate the selection of the next promising fuzzy con-
cept from the root procedure. As we can see, the root procedure is almost the
same as in the Grecond algorithm. Let us describe the pseudocode meaning more
further.
The algorithm starts with the initialization of the auxiliary structures. The set
U is the set that contains all of the matrix entries which need to be covered.
U is important to track the progress of the main loop of the algorithm, and
when it is empty, the algorithm will stop. The second set, which we initialize, is
the set F of concepts, which starts as an empty set, and during the algorithm
progress, it is filled and then returned as the output. The last auxiliary struc-
ture is a matrix J , which begins as an empty matrix with the same size as the
input matrix I. J helps the algorithm to track the coverage of the input matrix
by the concepts from F , and it is updated every time we obtain a new concept
which we are adding to the solution. After the initialization of the auxiliary
structures algorithm continues with the main while loop, which is executed until
it covers all the uncovered matrix entries from U . The while loop starts with
the initialization of D, which represents the fuzzy set of attributes (extent) and
V , which is used to store the best-found coverage score. After initialization, it
calls the auxiliary procedure selectBestTriplet, which returns the triplet of the
most promising attribute j, the truth degree a in which is the attribute j the
most valuable regarding the coverage and the actual coverage score v. Main
while loop then extends fuzzy set D by adding the attribute j in degree a to
it, and then it updates D by using the concept forming operators together, to
obtain new attributes which also fit into the actual concept. Then it tries to
find new attributes that could magnify the current concept score, and if there is
not any possibility, it forms the final fuzzy concept, which will be added to the
solution and also updates the matrix J and set U regarding the new concept.
After the last iteration of main while loop algorithm returns F from which we
can construct the matrix A and B for which holds A ◦B = I. The construction
of the matrix A and B remains the same as we described in the chapter about
boolean matrix decomposition.
Let us also describe a procedure selectBestTriplet. The procedure input is the
fuzzy set of attributes D, which represents the intent of the fuzzy concept, which
we want to extend, set of previously obtained F , set of uncovered entries U and
also input matrix I and auxiliary matrix J . The algorithm’s main calculation
process consists of two nested for loops. The first for loop is going through all
attributes j (columns of I), and the second is going through all truth degrees
a ∈ L. In each nested iteration algorithm tries to extend the intent D as D1
with the current attribute and truth degree, and then it calculates coverage score
of the D1. The coverage score is calculated depending on the selected matrix
similarity function s, which in general compares the difference between the input
matrix I and auxiliary matrix J also updated with D1. We will talk more about
suitable similarity functions later as it is an important topic. Function s also
does not have to compare all elements of I and J ; it could just compare the

29

elements which are currently uncovered and are tracked in set U . Lastly, the
algorithm compares the score of the D1, and if it is bigger than the score of the
previously best concept, it updates the currently best triplet 〈j, a, v〉. After all
iterations of nested loops are done, the best triplet 〈j, a, v〉 is returned.
Let us also denote that algorithm will never overcover any Iij which means
∀i,j (AF ◦BF)ij ≤ Iij because it approximates I from below.

The output of the algorithm is a set of formal concepts that describe entirely
the input data I. This set can be used to form matrices A, B, which will hold
A ◦B = I, but formal concepts can also be used for data analysis purposes.

6.3 Matrix similarity
In this section, we will describe the matrix similarity problem, and we will also
introduce some of the matrix similarity functions, which will be later used in
the variants of L-Grecond algorithm. In the last chapters, we will also com-
pare the output of the algorithm with the usage of individual matrix similarity
function and also measure their efficiency. The definition and substitution of
matrix similarity is an essential area of our fuzzy context decomposition algo-
rithm. When we are talking about matrix similarity, we denote the measure
s : Ln×m × Ln×m → [0, 1] of similarity, or approximate equality where L is the
partially ordered set of truth degrees bounded by 0 and 1. In the boolean ma-
trix case, the matrix similarity is very intuitive, as we can just check how many
matrix entries are the same. In the case of matrices with grades, it is a bit more
complicated as the individual matrix entries could be close to each other, but
not equal. The closeness of the individual matrix entries will be our main topic
in this section. We will also need to verify if the functions s, which will be in-
troduced in this section, are complements of metrics, and in other words, if the
functions 1−s are metrics. This is important for the usage in the decomposition
algorithm because we use the matrix similarity functions as the matrix distance
measurement, and we need to verify if the functions are suitable for this purpose.

Definition 38
A metric space is an ordered pair (M, d) where M is a set and d is a metric

on M . Thus d is a function d : M ×M → R such that for any x, y, z ∈M :

1. d(x, y) ≥ 0
2. d(x, y) = 0⇔ x = y

3. d(x, y) = d(y, x)
4. d(x, y) ≤ d(x, y) + d(y, z)

In our case the set M will be the set of all matrices I ∈ Ln×m thus the function
d : Ln×m × Ln×m → [0, 1]. Let us show some suitable similarity functions which
could be helpful in the decomposition topic. For each function which we mention,

30

we will also verify if they are metric spaces and thus suitable for the use in the
decomposition algorithm.
The first similarity function, which is also the easiest to handle, will be the
similarity-equality.

Definition 39 (Equality similarity s=)

s=(I, J) = |i, j; 1 ≤ i ≤ n, 1 ≤ j ≤ m, Iij = Jij|
n ·m

where I, J ∈ Ln×m.

The idea which is behind this function is implicitly used in the boolean ma-
trix decomposition algorithm. s= just calculates the percentage of the similar
elements by counting the number of matrix entries, which are the same in the
input matrices, and dividing the number by the size of the matrix. Now we need
to prove that function s is a metric space in the universe of matrices I ∈ Ln×m.
We will prove it by direct verification of 1.− 4. from the metric space definition.

Proof
For matrices I, J, X, Y, Z ∈ Ln×m and function

s=(I, J) = |i, j; 1 ≤ i ≤ n, 1 ≤ j ≤ m, Iij = Jij|
n ·m

we have:
1. 1− s=(I, J) ≥ 0 holds, because maximum for s=(I, J) is n·m

n·m = 1

2. s=(I, J) = 1⇔ ∀i,jIi,j = Ji,j, thus 1− s=(I, J) = 0⇔ I = J

3. s=(I, J) = |i,j;1≤i≤n,1≤j≤m,Iij=Jij |
n·m = |i,j;1≤i≤n,1≤j≤m,Jij=Iij |

n·m = s=(J, I)

4. 1− s=(X, Y) ≤ (1− s=(X, Z)) + (1− s=(Z, Y))
thus s=(X, Z) + s=(Z, Y) ≤ 1 + s=(X, Y).

Let n(I, J) = |i, j; 1 ≤ i ≤ n, 1 ≤ j ≤ m, Iij = Jij|
and then n(X, Z) + n(Z, Y) ≤ n ·m + n(X, Y).

We need to prove if ∀i, j n(Xi,j, Zi,j) + n(Zi,j, Yi,j) ≤ 1 + n(Xi,j, Yi,j),
which holds, because if n(Xi,j, Zi,j) + n(Zi,j, Yi,j) = 2
then Xi,j = Zi,j ∧ Zi,j = Yi,j ⇒ Xi,j = Yi,j

s= seems like a great choice of the similarity function for our purposes, but it
could be problematic in some cases. We want our algorithm to discover hidden
properties of input data, but with s=, these properties could stay hidden for our
algorithm. These hidden properties are fuzzy concepts, and the decomposition
algorithm builds the set of fuzzy concepts from the essential concepts to less

31

important concepts. Usage of s= in the selection of next fuzzy concept will
rate the fuzzy concepts by the number of fully covered uncovered entries; thus,
the algorithm will never prefer some of the important fuzzy concepts which cover
most of the entries but just partially. This leads us to consider another operation
than = for the comparison of individual matrix elements.
The next similarity function will use the biresiduum operation from fuzzy logic
for the comparison of individual matrix entries.

Definition 40 (Biresiduum similarity s↔)

s↔(I, J) =
∑n,m

i,j=1 Iij ↔ Jij

n ·m
where I, J ∈ Ln×m.

The biresiduum↔ is defined in terms of the residuum a→ b = ∨{c | a⊗ c ≤
b} via a↔ b = min(a→ b, b→ a). The biresiduum naturally measures closeness
of truth degrees. For instance, a↔ b = 1−|a−b| for the Łukasiewicz conjunction
⊗. We can observe that s↔(I, J) = 1 iff I = J . Let us prove that 1− s↔ is also
metric space.

Proof
For matrices I, J, X, Y, Z ∈ Ln×m and function

s↔(I, J) =
∑n,m

i,j=1 Iij ↔ Jij

n ·m

we have
1. s↔(I, J) =

∑n,m

i,j=1 Iij↔Jij

n·m =
∑n,m

i,j=1 1−|Iij−Jij |
n·m , so maximum is n·m

n·m = 1,
thus 1− s↔(I, J) ≥ 0

2. ”⇒ ” 1− s↔(I, J) = 0⇔ ∀i,jIi,j = Ji,j ⇒ I = J
”⇐ ” I = J ⇐ s↔(I, J) = 1⇐ 1− s↔(I, J) = 0

3. Because |Ii,j − Ji,j| = |Ji,j − Ii,j| we have
s↔(I, J) =

∑n,m

i,j=1 1−|Iij−Jij |
n·m =

∑n,m

i,j=1 1−|Jij−Iij |
n·m = s↔(J, I)

4. 1− s↔(X, Y) ≤ (1− s↔(X, Z)) + (1− (Z, Y)) thus
s↔(X, Z) + s↔(Z, Y) ≤ 1 + s↔(X, Y) and moreover
∀i,j (1− |Xi,j − Zi,j|) + (1− |Zi,j − Yi,j|) ≤ 1 + (1− |Xi,j − Yi,j|).

From triangle inequality we have |Xi,j − Yi,j| ≤ |Xi,j − Zi,j|+ |Zi,j − Yi,j| so
the previous statement holds.

Usage of the s↔ will solve the previously mentioned issue as it will also give
a score for partially covered entries and not just the fully covered. We can

32

generalize the s↔ as

sL(I, J) =
∑n,m

i,j=1 sl(Iij, Jij)
n ·m

, (8)

where sl : L × L → L is function which meets some requirements. The
function sl needs to satisfy three basic requirements.
Namely ∀x, y, z function sl needs to hold

1.sl(x, y) = 1⇔ x = y

2.sl(x, y) = sl(y, x)
3.sl(x, z) + sl(z, y) ≤ sl(x, y).

If the function sl meets these requirements, it could be used inside the sL, and
sL will meet the requirements to be the complement of metric space.

Example of function sl is sl(x, y) = x↔ y or sl(x, y) =
{

1 if x = y
0 otherwise .

Usage of great function s in the decomposition algorithm is crucial to obtain
valuable fuzzy concepts in the output. We showed the function of s=, which has
some disadvantages and the function s↔, which solves them. However, s↔ also
has some issues. The decomposition algorithm, which uses the score obtained
by s↔ for the selection of the next fuzzy concept, could tend to prefer “flat”
concepts, which are wide but usually not valuable. As example we can imagine
matrix I in which every matrix entry is Ii,j = 0.9 or Ii,j = 0.5. In this case, the
algorithm will select the most valuable factor, the fuzzy concept, which explains
the whole matrix I but only in degree 0.5. The penalization of these flat factors
leads us to the extension of s↔ as

sf (I, J) =
∑n,m

i,j=1 f(Iij ↔ Jij)
n ·m

(9)

where f : L → L. The function f needs to be not decreasing and also it
needs to hold f(x) = 1⇔ x = 1. If we put f(a) = a we will obtain the s↔. The
setting of function f gives us the possibility to penalize some kind of factors.
In our case we will use f(a) = aq

√
mn where parameter q can be adjusted for

the bigger or lesser penalization of “flat” factors. Tuning of parameter q allows
us to adjust the preference of factors between s= and s↔. Parameter q should
also be changed among datasets as it works together with

√
mn, which depends

on the input size. Let us name this similarity function as a Scaled similarity of
matrices.

Definition 41 (Scaled biresiduum similarity sf↔)

sf↔(I, J) =
∑n,m

i,j=1((Iij ↔ Jij)q
√

mn)
n ·m

where I, J ∈ Ln×m.

33

6.4 Variants of basic algorithm
We can obtain different variants of the decomposition algorithm by using differ-
ent similarity functions inside the auxiliary procedure selectBestTriplet. The
substitution of s could change the preference of factors in the algorithm, and
therefore algorithm can provide us another set of formal concepts as output. We
will compare the differences in the output when using the similarity functions we
mentioned in the previous section. We will equip our decomposition algorithm
with s=, s↔ or sf↔ and then check the difference in the sets of fuzzy concepts
returned.

6.5 Complexity
As mentioned about boolean matrix decomposition, the Grecond algorithm does
not guarantee to find the optimal solution. The optimal solution for input I is the
one which has the smallest possible dimension k for the matrices A ∈ {0, 1}n×k

and B ∈ {0, 1}k×m for which holds A ◦ B = I. The k is also the number of
concepts returned as a solution. If we want to find the optimal solution in the
boolean case, we have to go through all possible boolean matrices A and B while
increasing the dimension k from 1 until we find such A ◦ B = I. The universe
of boolean matrices with dimension k > 15 is almost impossible to go through,
and the situation is getting much worse when we want to browse the universe
of matrices A ∈ Ln×k and B ∈ Lk×m. That is why the L-Grecond has to use
the greedy approach to build a set of fuzzy concepts and does not guarantee to
find the optimal solution. Let us talk about the real input complexity of the
L-Grecond algorithm and also the variables which affect the complexity.
Our algorithm starts with the empty set of fuzzy concepts and uses the procedure
selectBestTriplet for the greedy steps of choosing the next fuzzy concept. If we
simplify the whole process, we can say the algorithm calls the selectBestTriplet
until the set U is not empty. So the first variable which affects the complexity is
the number of not null entries in the input matrix I. Now let us talk about the
procedure selectBestTriplet. selectBestTriplet is looping through all attributes
which are not present in the input set D, and for each such attribute, it also loops
through all a ∈ L. Therefore the main variables which affect the complexity of
selectBestTriplet are the number of attributes and number of truth degrees in
L. The number of calls of procedure selectBestTriplet is hard to estimate, as
we do not know how many concepts will cover the input matrix. The number of
formal concepts present in the context could be exponential regarding the size
of the context, and the algorithm may need to go through all of them. However,
it is not likely to happen.
The main variables which affect the complexity of the algorithm are the size of
U , the number of attributes, and also the number of truth degrees. The number
of objects also affects the complexity, but not directly as the algorithm is not
looping through them. Objects affect the complexity during the usage of concept
forming operators ↓, ↑. The selection of different function s has a minor impact

34

on complexity. For clarification, each similarity function s, if implemented well,
compares just the differences in matrix entries in U and while using the sf↔ the√

nm should be calculated just once.

7 Experiments with real data
In this chapter, we will examine in detail various data as decathlon results,
students’ performance, and election results. We will compare and evaluate
the output of the decomposition algorithm equipped with different similarity
function s. Our main aim will be to evaluate the reasonability of dominant
factors and also compare the basic properties as the size of the output set
of factors. The truth degree scale L for object-attribute relation will be dif-
ferent within the examples, but we will not use more comprehensive L than
L = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. As the datasets are not usually
in the form we would like them to be, we will also talk about the transformation
and preparation of the data within the examples.
The framework of the experiments will be as follows. First, we will describe the
transformation of the data to the desired form. Then we will run L-Grecond
algorithm equipped with each of the similarity function s=, s↔ and sf↔. We will
check the reasonability of dominant factors from each output F , and we will also
compare the number of factors, coverage score of each factor included in different
solutions, and the associated coverage of the first Fi ∈ F factors in the solution.
Let us talk more about the coverage itself.
We will use two different methods to calculate the coverage. These methods will
be giving us the percentage of cover based on matrix similarity functions s= and
sf↔. So for each variant of the algorithm, we will have two different coverage
measurements for individual factors and two different coverage measurements
of merged factors. The first coverage will be called Exact coverage, which will
tell us the percentage of the fully covered matrix entries; therefore, it tells us
how many percents of the constructed matrix is the same as the input matrix.
The second coverage will be called Biresiduum coverage, which will determine
the percentage of entries that are covered concerning s↔; thus, it will also count
the not fully covered entries. We also considered the score calculated regarding
sf↔, but we will omit it in this chapter as it does not give much information. In
the first factors performance comparison section, we will present the information
obtained more thoroughly, and in the rest, it will be simplified.

35

7.1 Decathlon
The first dataset which we will examine is decathlon results from the summer
Olympic Games 2004. The dataset consists of 5 best athletes and their scores
in corresponding decathlon disciplines. The raw data obtained using the IAAF
Scoring Tables are shown in Table 1.

Table 1: Decathlon score table
100m LJ SP HJ 400m 110mH DT PV JT 1500m

Sebrle 894 1020 873 915 892 968 844 910 897 680
Clay 989 1050 804 859 852 958 873 880 885 668
Karpov 975 1012 847 887 968 978 905 790 671 692
Macey 885 927 835 944 863 903 836 731 715 775
Warners 947 995 758 776 911 973 741 880 669 693

The rows from the decathlon score table are particular athletes, and the
columns are disciplines such as 100-meter sprint race, long jump, shot put, high
jump, 400 meters sprint race, 110 meters hurdles, discus throw, pole vault, javelin
throw, and 1500 meter run. Therefore if we want to clarify our table as context,
the rows are objects, and columns are the attributes of objects. Next, we will
talk about the transformation of the data to a suitable form. Let us also denote
here that for experiments with decathlon dataset the parameter q which is used
in sf↔ was set to q = 0.5.

7.1.1 Data transformation

We have specified the objects and attributes of our dataset, but we also need
to specify the fuzzy relation to obtain the full fuzzy context, which we need
to run our algorithm. As the matrix entries in the decathlon score table are
not truth degrees, we will need to do data transformation. Data transformation
could usually be handled in many different ways, but for this dataset, there is
just one reasonable transformation that we will use. We need to normalize the
matrix entries to the elements from interval [0, 1]. To be more concrete, we will
transform the data from Table 1 to eleven-element scale

L = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

by linear transformation and rounding. For every discipline, we will take the
lowest and highest score achieved among all present athletes, and then we will
perform a linear transformation from interval [lowest, highest] to [0, 1] and round
to the closest element of L. For the 100-meter sprint race, we will obtain

f100m(x) = x− 782
989− 782 = x− 782

207 ∈ [0, 1].

As an example we can show the calculation of scaled value for Sebrle, thus

f100m(894) = 894− 782
207 = 112

207 = 0.541

36

which we can round to the 0.5 ∈ L.
The function f is different for each column as the highest and lowest score is
different in every discipline. After we obtain all functions f , we need to do the
transformation of each matrix entry to obtain the fuzzy relation. The final fuzzy
context, in this case, is depicted in 2.

Table 2: Decathlon as fuzzy context
100m LJ SP HJ 400m 110mH DT PV JT 1500m

Sebrle 0.6 0.9 1.0 0.9 0.7 1.0 0.8 0.7 1.0 0.7
Clay 1.0 1.0 0.7 0.7 0.6 0.9 0.9 0.6 1.0 0.6
Karpov 0.9 0.9 0.9 0.8 1.0 1.0 1.0 0.3 0.2 0.7
Macey 0.6 0.6 0.8 1.0 0.6 0.7 0.8 0.2 0.4 1.0
Warners 0.8 0.8 0.5 0.4 0.8 1.0 0.4 0.6 0.2 0.7

The matrix entries are now members of a fuzzy relation. The meaning of
individual entry is the degree of skill that the athlete has for the discipline.

7.1.2 L-Grecond equipped with s=

Let the fuzzy context I = 〈X, Y, I〉, where X are our athletes, Y are disciplines
and I is the fuzzy relation between the athletes and disciplines depicted in 2. The
algorithm equipped with the similarity function s= found for the input context
I a set

Fs= = {
〈{1.0, 0.9, 1.0, 0.7, 0.6} , {0.6, 0.9, 0.8, 0.8, 0.7, 1.0, 0.8, 0.3, 0.2, 0.7}〉,
〈{0.9, 0.7, 0.8, 1.0, 0.4} , {0.6, 0.6, 0.8, 1.0, 0.6, 0.7, 0.8, 0.2, 0.4, 0.8}〉,
〈{0.6, 1.0, 0.7, 0.6, 0.8} , {1.0, 1.0, 0.7, 0.6, 0.6, 0.9, 0.6, 0.6, 0.4, 0.6}〉,
〈{0.7, 0.6, 1.0, 0.6, 0.4} , {0.9, 0.9, 0.9, 0.8, 1.0, 1.0, 1.0, 0.3, 0.2, 0.7}〉,
〈{0.9, 0.8, 0.7, 0.6, 1.0} , {0.7, 0.8, 0.5, 0.4, 0.8, 1.0, 0.4, 0.6, 0.2, 0.7}〉,
〈{1.0, 0.7, 0.2, 0.4, 0.2} , {0.6, 0.9, 1.0, 0.9, 0.7, 1.0, 0.8, 0.7, 1.0, 0.7}〉,
〈{0.9, 1.0, 0.2, 0.4, 0.2} , {0.7, 1.0, 0.7, 0.7, 0.6, 0.9, 0.9, 0.6, 1.0, 0.6}〉,
〈{0.7, 0.6, 0.7, 1.0, 0.7} , {0.6, 0.6, 0.8, 0.7, 0.6, 0.7, 0.7, 0.2, 0.4, 1.0}〉}

of eight fuzzy concepts.
The factor concepts are shown in order in which the algorithm obtained them.
If we construct corresponding matrices AF , BF we can obtain I = AF ◦BF . For
our F= the corresponding matrices are

AF =


1.0 0.9 0.6 0.7 0.9 1.0 0.9 0.70
0.9 0.7 1.0 0.6 0.8 0.7 1.0 0.6
1.0 0.8 0.7 1.0 0.7 0.2 0.2 0.7
0.7 1.0 0.6 0.6 0.6 0.4 0.4 1.0
0.6 0.4 0.8 0.4 1.0 0.2 0.2 0.7


37

BF =



0.6 0.9 0.8 0.8 0.7 1.0 0.8 0.3 0.2 0.7
0.6 0.6 0.8 1.0 0.6 0.7 0.8 0.2 0.4 0.8
1.0 1.0 0.7 0.6 0.6 0.9 0.6 0.6 0.4 0.6
0.9 0.9 0.9 0.8 1.0 1.0 1.0 0.3 0.2 0.7
0.7 0.8 0.5 0.4 0.8 1.0 0.4 0.6 0.2 0.7
0.6 0.9 1.0 0.9 0.7 1.0 0.8 0.7 1.0 0.7
0.7 1.0 0.7 0.7 0.6 0.9 0.9 0.6 1.0 0.6
0.6 0.6 0.8 0.7 0.6 0.7 0.7 0.2 0.4 1.0


.

In the rest of the examples, we will omit the set of fuzzy concepts F as the ma-
trices AF and BF are more readable. The individual fuzzy concepts of F can be
obtained from AF , BF as columns of AF are intents and rows from BF are extents.

7.1.2.1 Performance of individual factors

Let us talk about the portion of data explained by individual factors from F .
The coverage percentage of an individual factor can be calculated by comparing
the input matrix I with the matrix obtained by AFi

◦BFi
. We will visualize the

percentage of data explained by the bar graph in which the x axis will represent
the fuzzy concept from F and y axis will stand for the percentage of input
covered. Let us start with a graph which shows Exact coverage of the factors.

Figure 1: Exact coverage for Fs= (Decathlon)

F1 F2 F3 F4 F5 F6 F7 F8

30

35

40

42

30

36

30
28 28

30 30

Fi ∈ F

C
ov
er
ag
e
pe

rc
en
ta
ge

We can see that F1 and F3 are more dominant than the others, but all the
factors have reached a great coverage score. Let us show the coverage against
the Biresiduum coverage.

38

Figure 2: Biresiduum coverage for Fs= (Decathlon)

F1 F2 F3 F4 F5 F6 F7 F8

60

65

70

75

80 79

68.6
70.2

72

67.8

61.2 60.8

64.2

Fi ∈ F

C
ov
er
ag
e
pe

rc
en
ta
ge

We can observe that the F1 is still a dominant factor, but the other factors
are more equivalent. The main reason the percentages are far higher against
the Exact coverage measurement is because the Biresiduum coverage also counts
the entries which are covered just partially. We can say that the F1 is the most
dominant factor, which reasonably explains almost the whole decathlon dataset.
F1 is the factor in which long jump and 110 meters hurdles are significant, and
pole vault and javelin throw are almost not necessary at all. Therefore the best
five athletes are excellent in the long jump and 110 meters hurdles, and they are
not the best among all athletes in the javelin throw and pole vault.

7.1.2.2 Merged performance of factors

In this section, we will compare the performance of a grouped coverage of first Fi

factors instead of comparing just their individual coverage. A merged coverage
can be calculated by comparing the input matrix I with the output of A ◦ B,
where the matrices A, B are constructed just with the first i concepts Fi ∈ F .
With the growing i, the percentage of input coverage will converge to 100%. For
the clarification of the following graph, the y-axis represents the percentage of
input covered, and the x-axis indicates how many of the first factors are included
in the coverage calculation. Let us start with the Exact merged coverage, which
is shown in Figure 3.

We can observe that the first five factors exactly explain almost 90% of the
input data; therefore, the factors F6, F7, F8 are probably not as essential and
universal. We will continue with the biresiduum coverage. The corresponding
graph is shown in Figure 4.

As we can see, we can obtain an almost similar matrix as the input matrix I
just by using the F1, F2, F3 for its construction. Also, we can observe that F8 is
an almost unnecessary factor which covers just the least 0.4% of I, so if we omit
F8 from the solution, the output from AF ◦BF will be probably indistinguishable

39

Figure 3: Exact merged coverage for Fs= (Decathlon)

1 2 3 4 5 6 7 8
40

60

80

100

42

58

72
80

88
94

98 100
C
ov
er
ag
e
pe

rc
en
ta
ge

Figure 4: Biresiduum merged coverage for Fs= (Decathlon)

1 2 3 4 5 6 7 8

80

85

90

95

100

79

84.6

91.4
93

95.8
98.6 99.6 100

C
ov
er
ag
e
pe

rc
en
ta
ge

40

from the I.
The graphs presented in this section were presented distinctly just for clarification
of the concept of measurement and transparency. In the following examples, we
will merge these graphs to make them more useful for comparison purposes.

7.1.3 L-Grecond equipped with s↔

The fuzzy context I = 〈X, Y, I〉 remains the same. For reference, fuzzy relation
I is depicted in Table 2. Algorithm equipped with the similarity function s↔
found F↔ = {Fi = 〈Ci, Di〉|1, ..., 10}. Accordingly, the algorithm needed two
more concepts to explain the data, which is caused by another preference of
factors during the calculation. The matrices AF↔ , BF↔ constructed from F↔ are
as follows.

AF↔ =


0.9 1.0 0.9 0.7 0.7 0.6 1.0 1.0 0.8 1.0
0.8 0.9 1.0 0.6 0.6 1.0 0.7 0.9 0.9 1.0
0.9 0.6 0.2 0.7 1.0 0.9 0.9 1.0 1.0 0.2
0.7 0.5 0.4 1.0 0.6 0.6 0.8 0.7 0.8 0.4
0.5 0.9 0.2 0.4 0.8 0.8 0.5 1.0 0.4 0.2



BF↔ =



0.7 0.9 0.9 0.9 0.8 1.0 0.9 0.4 0.3 0.8
0.6 0.9 0.6 0.5 0.7 1.0 0.5 0.7 0.3 0.7
0.7 1.0 0.7 0.7 0.6 0.9 0.9 0.6 1.0 0.6
0.6 0.6 0.8 1.0 0.6 0.7 0.8 0.2 0.4 1.0
0.9 0.9 0.7 0.6 1.0 1.0 0.6 0.3 0.2 0.7
1.0 1.0 0.7 0.6 0.6 0.9 0.6 0.4 0.3 0.6
0.6 0.8 1.0 0.9 0.7 0.9 0.8 0.4 0.3 0.7
0.6 0.8 0.5 0.4 0.7 1.0 0.4 0.3 0.2 0.7
0.8 0.8 0.8 0.8 0.7 0.9 1.0 0.3 0.2 0.7
0.6 0.9 0.7 0.7 0.6 0.9 0.8 0.6 1.0 0.6



.

7.1.3.1 Performance of individual factors

Figure 5 shows all of the coverage scores for individual factors. For clarification,
the y-axis is the percentage covered, the x-axis indicates the concept, and the bar
color distinguishes the method of coverage measurement. The methods used for
measurement are the same as in the previous examples, but now we aggregated
both methods to one graph. The coverage percentage concerning s= is marked
by red color, while the coverage concerning s↔ is marked by blue.
We can observe that the coverage percentage is almost the same as for the factors
found by the algorithm equipped with s=. The first factor found is the same as
in set F=, and the rest has just a little difference regarding the coverage. The
main difference is only that the current variant of the algorithm needed one
more concept to explain the input completely, but the individual coverage of
found factors is quite similar to these in F=.

41

Figure 5: Individual factors coverage for F↔(Decathlon)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

40

60

80

100

32 36

30 28 30

36 34 38 34

28

78
.8

66
.8

60
.8 63
.2 70

.6

71
.6 75

.8

74
.4

75
.6

60
.2

C
ov
er
ag
e
pe

rc
en
ta
ge

s= s↔

7.1.3.2 Merged performance of factors

Now we will talk about the merged coverage of factors in F↔. The percentages
are shown in Figure 6, and all of the coverage measurements are again aggregated
in one bar graph. The bar colors and meaning of the y-axis remain the same.
The x-axis indicates how many of Fi ∈ F↔ are included in the calculation of the
particular comparison matrix.
The performance is again pretty similar to the performance of factors from F=,
but if we look more thoroughly, we can observe that F1, F2 together have a
slightly better performance concerning the biresiduum. Although, in general,
the obtained factors have a lesser performance concerning the exact coverage,
in some cases, the coverage against the biresiduum cover could have more value
when obtaining reasonable factors from the dataset.

Figure 6: Merged factors coverage for F↔(Decathlon)

1 2 3 4 5 6 7 8 9 10

40

60

80

100

32

52

60

72

82 86

92 96 98 10
0

78
.8 87 91

.8 95 97
.4

98
.2

99 99
.4

99
.8

10
0

C
ov
er
ag
e
pe

rc
en
ta
ge

s= s↔

42

7.1.4 L-Grecond equipped with sf↔

The fuzzy context I = 〈X, Y, I〉 remains the same. Corresponding fuzzy relation
I used as input is depicted in Table 2. Algorithm equipped with the similarity
function sf↔ and q = 0.5 found Ff↔ = {Fi = 〈Ci, Di〉|1, ..., 8}. Therefore
algorithm was able to explain the input I by the same number of concepts as
algorithm equipped with s=. The matrices AFf↔ , BFf↔ constructed from Ff↔
are as follows.

AFf↔ =


1.0 0.8 0.9 0.7 0.7 0.6 1.0 0.9
0.8 0.9 1.0 0.6 0.6 1.0 0.7 0.8
1.0 0.7 0.2 0.7 1.0 0.9 0.2 1.0
0.7 0.6 0.4 1.0 0.6 0.6 0.4 0.8
0.6 1.0 0.2 0.4 0.4 0.8 0.2 1.0



BFf↔ =



0.6 0.9 0.9 0.8 0.7 1.0 0.8 0.3 0.2 0.7
0.8 0.8 0.5 0.4 0.7 1.0 0.4 0.6 0.2 0.7
0.7 1.0 0.7 0.7 0.6 0.9 0.9 0.6 1.0 0.6
0.6 0.6 0.8 1.0 0.6 0.7 0.8 0.2 0.4 1.0
0.9 0.9 0.9 0.8 1.0 1.0 1.0 0.3 0.2 0.7
1.0 1.0 0.7 0.6 0.6 0.9 0.6 0.4 0.3 0.6
0.6 0.9 1.0 0.9 0.7 1.0 0.8 0.7 1.0 0.7
0.7 0.8 0.5 0.4 0.8 0.9 0.4 0.3 0.2 0.7


.

We will not go into the details about the coverage data obtained as the coverage
percentage data are almost the same.
In the Figure 7 an 8 we can check the percentage coverage of the factors.
Let us denote that the usage of the particular similarity function does not guar-
antee to obtain smaller output (fewer factors). The reason why the algorithms
equipped with s= and sf↔ were able to find a smaller set of factors that fully ex-
plained the output is more about the luck of greedy choice. Tuning of parameter
q can lead us to obtain another set of factors, as it can tune algorithm preference
of factors between two extremes - the exact similarity and biresiduum.

43

Figure 7: Individual factors coverage for Ff↔ (Decathlon)

F1 F2 F3 F4 F5 F6 F7 F8

40

60

80

100

38

30 30 28 30

36

28 32

78

67
.8

60
.8 63
.2 72 71

.6

61
.2

73
.2

C
ov
er
ag
e
pe

rc
en
ta
ge

s= s↔

Figure 8: Merged factors coverage for Ff↔ (Decathlon)

1 2 3 4 5 6 7 8

40

60

80

100

38

58

70

82

88 90

98 10
0

78

86
.6 92

.6 96
.6

98
.2

98
.8

99
.8

10
0

C
ov
er
ag
e
pe

rc
en
ta
ge

s= s↔

44

7.2 Education data
In this chapter, we will analyze data that consist of anonymized data coming
from examination tests that are used by UK universities to measure and select
appropriate students. Initial work on this dataset is described in paper [7], where
the authors tried to find factors that may explain the students’ performance with
the help of the FCA method. This dataset is exciting for our purposes as it ex-
hibits the property of so-called "flat" factors, and we will try to analyze how to
deal with them.
The dataset contains results of 2774 individual students, who were performing
on a given examination in the subject "Government and Politics". The whole
examination consists of four modules, but we will deal just with the second mod-
ule, which covers questions about the current British governance. In the British
governance module, students have to choose two out of four topics. The dataset
contains results just from the topics "parliament" and "executive", as these two
are the most popular combination among students. Each of these topics consists
of three questions. Examiners assess the first question with regards to "knowledge
and understanding", and the second and third questions are assessed additionally
to two more objectives, namely "analysis and evaluation" and "communication".
Therefore for each student, we have seven examination results for each topic, and
thus 14 results in total. Each examination result is marked from 4 to 0, where
4 represents the best performance and 0 the worst. The sum of all marks gives
the total mark of maximum value 80. A students’ final result is based on the
summed value by thresholding, and possible grades are A, B, C, D, E, and N,
where A is the best result. In the whole dataset, 607 students obtained grade A
as the final result, and we will try to analyze their factors. An example of a few
raw data rows is shown in Table 3. In the data transformation section, we will
talk about how data are transformed into a suitable form to be analyzed by our
methods. Then we will discuss and measure the performance of the factor found
by each of the variants of our algorithm.

Table 3: Education data
ID Total Grade 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 56 5 1 3 3 3 3.5 3 3 3.5 3 3 3 3 3 3
2 60 5 2 2 4 4 3.5 3 3 3.5 3 3 3 3 3 3
3 50 4 2 2 3 2 1.5 3 3 3.5 3 3 3 3 3 3
4 61 5 2 2 4 4 3.5 3 3 3.5 3 3 3 3 3 3
5 44 3 3 2 2 2 3.5 2 2 3.5 3 3 3 2 2 2
6 40 2 2 3 3 2 3.5 3 2 3.5 2 2 2 2 2 2
7 47 3 2 2 3 2 3.5 3 3 3.5 3 3 3 2 2 2
...

45

7.2.1 Data transformation

As we analyze the performance of the best students who obtained the final grade
A, the dataset which we will analyze is represented by 607×14 matrix I. Each of
607 student examination is represented by 14 fuzzy attributes over a five-element
scale L = {0, 0.25, 0.5, 0.75, 1} whose degrees correspond the marks 0, ..., 4. In
the raw data (Table 3), we can observe that in the two columns, there are some
not crisp values. We will round these values down to solve inaccuracies. The
value 1.5 will be represented by 0.25 ∈ L and 3.5 by 0.75 ∈ L. A part of the
final transformed data which is suitable for our analysis is shown in Table 4. For
clarification, Table 4 is yet filtered on A-grade students; therefore the first three
lines correspond to the students with IDs 1,2,4, and the other lines do not have
their corresponding student shown in Table 3.

Table 4: Education data as fuzzy context (A students)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.25 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
0.5 0.5 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
0.5 0.5 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
0.5 1 0.75 0.5 0.75 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
0.75 0.5 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1 1 0.5 0.5 0.75
...

In the next sections we will analyze a following fuzzy context I = 〈X, Y, I〉,
where X are the best performing students, Y are the examination results and
I ∈ L607×14. First, we will show the performance of individual methods, and
then we will discuss the difference between the output from each of them. Every
variant of the algorithm needed more than 30 factors to explain the dataset fully.
We will focus on the first 14 of them as in all variants, the first 14 factors explain
around 95% of input data, so the rest is not reasonably important for us.

7.2.2 Performance of L-Grecond equipped with s=

The algorithm equipped with the similarity function s= found for the input
context I a set F= = {Fi = 〈Ci, Di〉|1, ..., 31} of 31 concepts (factors). The
factors are generated one by one, from the most significant ones in terms of data
coverage to the least significant. As the number of factors is high and the higher
is the number of factors, the lesser is the data coverage growth, we will deal with
just the first 14 factors as they together explain more than 95% of the data. We
will also omit the intents as the corresponding matrix A has 607 rows, so we will

46

just show the first 14 extents which are depicted in matrix BF=

BF= =



0.75 0.75 1.0 0.75 1.0 0.75 0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.75 0.75 1.0 1.0 0.5 1.0 1.0 0.5 1.0 0.75 1.0 0.75 0.75 1.0
1.0 1.0 0.5 0.5 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.75 0.5 0.75
0.5 0.25 0.5 0.25 0.25 0.25 0.25 0.25 1.0 1.0 1.0 0.75 0.75 0.75
0.25 0.5 0.5 0.25 0.25 1.0 0.75 0.75 0.75 0.5 0.75 0.75 0.5 0.75
0.5 0.5 1.0 0.75 0.75 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.75
0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.75 0.75 0.5 1.0 1.0 1.0
0.5 1.0 0.5 0.5 0.75 0.5 0.5 0.75 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.75 0.0 0.0 0.0 0.5 0.75 1.0 0.5 0.5 0.75
0.5 0.5 0.75 1.0 0.25 0.25 0.5 0.25 0.75 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.25 0.25 0.75 1.0 0.25 0.75 0.5 0.75 0.5 0.5 0.75
0.25 0.5 0.5 0.25 0.75 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.75 1.0
1.0 0.5 0.25 0.25 0.25 0.0 0.0 0.0 0.5 0.5 0.75 0.5 0.5 0.5
0.5 0.5 0.5 0.25 0.25 0.5 0.5 0.75 0.5 1.0 0.75 0.5 0.5 0.5



The coverage scores of individual factors is as follows.

Figure 9: Individual factors coverage for F=(Education)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

20

40

60

80

100

39
.4

24
.1

14
.5 21 18 15
.6 19
.5

15
.7

16
.7

9.
8 11 12

.5

8.
7 11
.3

75
.8

68
.1

51
.3 56

.4 58
.9

54
.6

55
.3

55
.2 58
.5

48
.4 50
.6

52
.7

42
.7 54

.2

s= s↔

From the individual factors coverage score graph showed in Figure 9, we can
observe that the first factor is very dominant as it precisely explains nearly 40%
of the input. The second and fourth factors also accurately explain more than
20% of the data, but the others are less significant when standing alone. Let us
also show the merged coverage percentage and then discuss the whole output.

47

Figure 10: Merged factors coverage for F=(Education)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
40

60

80

100
39

.4

51
.5 59

.5 66
.7 71

.4 75
.6 80

.5 84 86
.9 89
.2 91
.4 93
.2

94
.6

95
.7

75
.8 83

.4 87
.7 90
.6

92 93
.4

94
.7

95
.7

96
.5

97
.1

97
.7

98
.1

98
.6

98
.9

s= s↔

In the merged coverage, which is depicted in Figure 10, we can observe that
biresiduum-wise, the first four factors together explain more than 90% of the
input. This means that 90% of the input entries are nearly covered, but we can
also observe that exactly covered is just 66.7%. After this point, the increase in
biresiduum coverage is less significant, and the 14 factors together explain more
than 95% of the input measured by biresiduum and also exact similarity.

7.2.3 Performance of L-Grecond equipped s↔

The algorithm equipped with the similarity function s↔ found for the input
context I a set F↔ = {Fi = 〈Ci, Di〉|1, ..., 31} of 31 L-concepts. Let us show the
matrix BF↔ which corresponds to the 14 intents of the F↔

BF↔ =



0.5 0.5 0.5 0.5 0.75 0.5 0.5 0.25 0.75 0.75 0.75 0.75 0.75 0.75
0.75 0.75 1.0 0.75 0.5 1.0 0.75 0.75 0.75 0.75 1.0 0.5 0.5 0.75
0.75 1.0 0.5 0.5 0.25 0.5 0.5 0.75 0.75 0.75 0.75 0.5 0.5 0.75
0.5 0.5 0.75 1.0 0.5 0.75 1.0 1.0 1.0 0.75 0.75 0.75 0.75 1.0
1.0 0.5 0.75 0.75 0.25 0.25 0.25 0.25 1.0 1.0 1.0 0.75 0.75 0.75
0.5 0.5 1.0 1.0 0.75 0.25 0.25 0.25 0.75 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.5 0.75 1.0 0.5 0.75 1.0
0.5 0.5 0.5 0.25 0.25 1.0 1.0 0.25 0.75 0.5 0.75 0.75 0.5 0.75
0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.75 0.75 0.5 1.0 1.0 1.0
0.5 0.25 0.5 0.25 0.25 0.0 0.0 0.0 0.75 1.0 1.0 0.5 0.5 0.5
0.25 0.25 0.5 0.25 0.75 0.5 0.25 0.75 0.5 0.5 0.5 0.5 0.5 0.5
1.0 1.0 0.5 0.5 0.25 0.0 0.0 0.0 0.5 0.5 0.75 0.5 0.5 0.5
0.5 0.5 1.0 0.75 0.25 0.0 0.0 0.0 0.5 0.5 0.5 0.75 0.5 0.5
0.5 0.25 0.5 0.25 0.25 0.25 0.5 0.25 1.0 0.75 0.75 0.75 0.5 0.5


If we compare the BF↔ with BF= , we can find out that the extents are quite
different. Let us check how these factors are performing in the coverage field.

48

From the individual factors coverage graph, we can assume that even though the

Figure 11: Individual factors coverage for F↔(Education)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

20

40

60

80

100
38

.8

20 17
.7

19
.3

18
.9

13
.9

15
.7

14
.4 19

.5

14
.4

15
.8

11
.5

13
.1

11
.2

76
.3

66
.3

59
.5

61
.3

58
.5

50
.3 56

.6

52
.3 55
.3

50
.5 62

.3

44
.5 51

.6

53

s= s↔

factors found are different, in the coverage field, they perform similarly. We will
check the difference between the most dominant factors more thoroughly later
in this chapter. Figure 12 showed us that the factors generated by our method

Figure 12: Merged factors coverage for F↔(Education)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

40

60

80

100

38
.8

49
.9 57

.3 65
.5 69

.9 73
.4 77

.2 80
.4 83
.4 86 88

.5

89
.9 91
.7

93
.2

76
.3 83

.9 87
.3 89
.8 91
.7

92
.8

93
.9

94
.8

95
.6

96
.3

96
.9

97
.4

97
.8

98
.2

s= s↔

equipped with s↔, perform a little bit worse than factors generated with the help
of s=. The fact that we obtained different and a little bit worse set of factors
may not mean that these factors are less valuable, and we will try to compare
the value of the most dominant ones at the end of this chapter.

49

7.2.4 Performance of L-Grecond equipped with sf↔

While using the L-Grecond equipped with sf↔, it is important to set the param-
eter q of the function f correctly, to obtain a desired output. As the parameter
can tune the algorithm factors preference between s= and s↔, we have set q to
be 0.075 for our tests. This setting causes the algorithm preference of factors to
be somewhere in the "middle" between s= and s↔, and therefore we obtain the
different output. The algorithm equipped with the similarity function sf ↔ and
q = 0.075 found for the input context I a set Ff↔ = {Fi = 〈Ci, Di〉|1, ..., 30} of
30 concepts (factors). Matrix BFf↔ shows us the first 14 most important intents
of factors from Ff↔

BFf↔ =



0.75 0.75 0.75 0.75 1.0 1.0 0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.75 0.75 1.0 0.75 0.25 0.5 0.75 0.25 0.75 0.75 0.75 0.5 0.5 0.75
0.5 1.0 0.5 0.5 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.75 0.75 0.75
0.5 0.5 0.75 1.0 0.5 0.75 0.5 0.25 1.0 1.0 1.0 0.75 0.75 1.0
0.5 0.5 0.5 0.25 0.25 1.0 1.0 0.75 0.75 0.5 0.75 0.75 0.5 0.75
1.0 0.5 0.5 0.5 0.75 0.0 0.0 0.0 0.75 0.75 1.0 0.5 0.5 0.50
0.5 0.5 0.5 0.5 0.25 0.5 0.25 0.25 0.75 0.75 0.5 1.0 1.0 1.0
0.5 0.25 0.5 0.25 0.25 0.25 0.25 0.25 1.0 1.0 1.0 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.75 0.25 0.25 0.25 0.5 0.75 1.0 0.5 0.75 1.0
0.25 0.5 0.5 0.25 0.75 1.0 0.5 0.25 0.75 0.5 0.75 0.5 0.5 0.5
0.25 0.25 0.5 0.25 0.75 0.5 0.25 0.75 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 1.0 1.0 0.75 0.25 0.25 0.25 0.75 0.5 0.5 0.5 0.5 0.5
1.0 0.5 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.5 0.75 0.75 0.5 0.75
0.5 0.5 0.5 0.25 0.75 0.0 0.0 0.0 0.5 1.0 0.75 0.5 0.5 0.5



The intents are different from the ones obtained previously, and also the
total number of needed concepts is lesser. Let us show how they compete in the
coverage field. In Figure 13, we can check the coverage performance of individual
factors, which is quite similar to the performance of the previous one. We can
also observe that the most prominent individual coverage score has the first and
fourth factors as in the output calculated by L-Grecond equipped with s=.
Figure 14 shows the merged coverage percentages, which are also quite similar
to the previous outputs. Most of the coverage scores are somewhere between the
scores obtained by L-Grecond equipped with s= and s↔. This can be caused by
the setting of the parameter q as we wanted the preference of the algorithm to
be between the two extremes s= and s↔.

50

Figure 13: Individual factors coverage for Ff↔(Education)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

20

40

60

80

100
39

.6

18
.3

20
.4

22
.3

15
.8

12
.7 19

.6

18
.7

16
.8

12
.7 15
.8

13
.9

12
.6

11
.1

75
.8

63
.1

57
.9 64

.4

54
.9

50
.3 56

.9

51
.4 58

.7

53
.9 62

.3

50
.3

47
.7 51
.4

s= s↔

Figure 14: Merged factors coverage for Ff↔(Education)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
40

60

80

100

39
.6

51

58
.7 66

71
.5 76

.5 80
.9 84

.3 86
.5 88
.3 90
.4 92 93
.1

94
.2

75
.8 83

.9 87
.5 90 91

.9 93
.7

94
.9

95
.9

96
.5

97 97
.5

97
.9

98
.2

98
.5

s= s↔

51

7.2.5 Comparison of dominant factors

In this section we will analyze and compare the first factor from each fuzzy
concept sets F=, F↔ and Ff↔ which were calculated by L-Grecond equipped with
corresponding similarity function s=, s↔ and sf↔. All of these factors explain
nearly 40% of our data. We aim to check the differences of these factors and
mainly to determine which one is the clearest and useful in the case of education
dataset analysis. We will check the direct differences of the extents and to explore
more about them; we will check how these factors apply to students with the
help of intents.
To simplify marking of variables, we will label D1 ∈ F= as D=, D1 ∈ F↔ as D↔
and D1 ∈ Ff↔ as Df↔. In Table 5, we can check the difference between these
intents.

Table 5: Intents comparison (Education)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

D= 0.75 0.75 1.0 0.75 1.0 0.75 0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0
D↔ 0.5 0.5 0.5 0.5 0.75 0.5 0.5 0.25 0.75 0.75 0.75 0.75 0.75 0.75
Df↔ 0.75 0.75 0.75 0.75 1.0 1.0 0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Elements of intent D= are close to Df↔, while the D↔ is a far more different.
D= and Df↔ are different just on attributes 3, 6, and they have most of the
attributes present in a high degree. Conversely, the intent D↔ does not have any
attribute in degree 1.0, and it tends to have all of the attributes in the "middle"
degree.
Let us talk about how these factors apply to our 607 students. D= applies to
395 students in degree 0.75, to 121 in degree 0.5, to 90 in 0.25, and one student
does not have this factor at all. Therefore this factor applies to the students in
degree 0.6248 on average.
D↔ applies to 479 students in degree 1.0, and the rest has it in degree 0.75 or
0.5. An average degree is 0.9324 in this case.
Df↔ applies to the students quite similarly as D=, while the average degree is
0.6244.

This information together leads us to the conclusion that factor D↔ can
be considered as a "flat" factor. Although it describes a reasonable amount of
input, it aims to cover the lesser degrees while just partially covering the higher
degrees. In the education data, we wanted to find factors that would describe
the interesting hidden properties of A grade students and not the general truth,
which applies to all of them. Therefore for this kind of datasets, it should be
essential to decide which kind of factors are valuable for us. By tuning the
parameter q of the function f while using the L-Grecond equipped with sf↔,
we can obtain different sets of factors, while tuning between the exact similarity
and biresiduum similarity extremes.

52

7.3 Elections data
A dataset which we will analyze in this section contains data about the elections
in the Czech Republic in the year 2013. The raw dataset can be obtained on
https://www.volby.cz/opendata/ps2013/ps2013_opendata.htm. This election dataset
contains information about votes for political parties. The rows in the dataset
represent the districts and the columns the information for the particular dis-
trict. The raw dataset consists of 6336 districts, and for each district, it stores
information about the number of people who can vote in the district, the number
of people who participated in the elections, and mainly the number of votes for
all of the major parties. The major parties are CSSD, TOP09, ODS, KDUCSL,
SPD, ANO, KSCM, the rest of insignificant parties are aggregated as one column
and we will omit them. Examples of a few rows from the dataset are shown in
Table 6.

Table 6: Election data
CSSD TOP09 ODS KDUCSL SPD ANO KSCM

Praha 1 1410 4260 2011 1067 327 1671 692
Praha 2 2431 5295 2843 1290 524 2799 1188
Praha 3 4287 7536 3774 1637 945 4450 2584
Olomouc 10104 5714 4141 3598 3224 9370 6086
Bouzov 164 64 29 83 61 105 182

...

From the perspective of FCA we will talk about the context I = 〈X, Y, I〉,
where X are the districts, Y the political parties and I, which we will construct
in the next section, will be the fuzzy relation between districts and parties based
on the votes earned.
This dataset is complicated as it contains tiny areas with just a few votes and
significant areas with thousands of votes. Therefore there are a lot of possible
ways how to process this dataset. One possibility is to filter the areas by the
number of people and analyze just a particular part of the dataset, for example,
just big or small districts. We will deal with the whole dataset without any
filtering. There are also a lot of ways of the raw data transformation to a suitable
form for our algorithm. Let us continue with the data transformation section,
where we will introduce a few possible ways of data transformation.

7.3.1 Data transformation

As the raw data of the dataset are not suitable to be used as input for our
algorithm, we have to transform them so the matrix entries will be in L ∈ {0, 1}.
In this section, we will present three different data transformation methods,

53

https://www.volby.cz/opendata/ps2013/ps2013_opendata.htm

which will also have different scales L.
First, the most straightforward method will directly transform the percentage
of votes eleven-element scale L = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. For
each row, it summarizes the number of votes and calculates the percentage of
votes for each major political party. Then we will round the percentage to the
nearest value of L. The transformation of data from Table 6 is shown in Table
7.

Table 7: Election data transformation 1
CSSD TOP09 ODS KDUCSL SPD ANO KSCM

Praha 1 0.1 0.3 0.1 0.1 0.0 0.1 0.0
Praha 2 0.1 0.3 0.1 0.1 0.0 0.1 0.1
Praha 3 0.1 0.2 0.1 0.1 0.0 0.1 0.1
Olomouc 0.2 0.1 0.1 0.1 0.1 0.2 0.1
Bouzov 0.2 0.1 0.0 0.1 0.1 0.1 0.2

...

Although this transformation is justifiable and straightforward, we will not
use it for experiments as it has just low grades across the dataset and in general
the output matrix is sparse.
Let us continue with the next transformation approach, which has entirely differ-
ent strategy and calculates the truth grades for each row individually. The trans-
formation process starts with the selection of the worst and best placed political
parties in the district, and it will use a five-element scale L = {0.0, 0.25, 0.5, 0.75, 1.0}.
After the selection of the worst and best column, it will perform a linear trans-
formation from interval [worst, best] to [0, 1] and round the particular values to
the closest elements of scale L. As an example, we can use Praha 1. TOP09
achieved the best score through major parties with 4260 votes and the worst
by SPD with 327 votes. The value for each of the columns of Praha 1 can be
obtained by

RowV alueP raha1(x) = x− 327
4260− 327 = x− 327

3933 ∈ [0, 1].

Therefore we will obtain 0.0 for SPD, 1.0 for TOP09 and value for other parties
like ODS can be calculated as

RowV alueP raha1(ODS) = 2011− 327
3933 = 0.4281

which is rounded to 0.5 ∈ L. The transformation of the data from Table 6 is
shown in Table 8.
The third approach for election dataset transformation is the most complex one
but has the most interesting outputs among our testings. This approach deals
with the whole dataset, not the individual rows. First, it transforms all of the
votes to percentages, which are calculated concerning the district. Then it finds

54

Table 8: Election data transformation 2
CSSD TOP09 ODS KDUCSL SPD ANO KSCM

Praha 1 0.25 1.0 0.5 0.25 0.0 0.25 0.0
Praha 2 0.5 1.0 0.5 0.25 0.0 0.5 0.25
Praha 3 0.5 1.0 0.5 0.0 0.0 0.5 0.25
Olomouc 1.0 0.25 0.25 0.0 0.0 1.0 0.5
Bouzov 1.0 0.25 0.0 0.25 0.25 0.5 1.0

the best percentage result among all districts and political parties. This partic-
ular value could be distorted by some small districts with the people voting for
just one party, so we did not choose the best result directly but by aggregation
of the top 100 results. Therefore the best value in our case is 37%, which is a
reasonable value for the excellent performance of the political party. We will use
five-element scale L = {0.0, 0.25, 0.5, 0.75, 1.0}. The process of assigning corre-
sponding a ∈ L for particular x is defined as assigning the a for which a · 0.37 is
the closest to x. For L = {0.0, 0.25, 0.5, 0.75, 1.0} and a ∈ L the values a · 0.37
are {0, 0.09, 0.18, 0.28, 0.37}.
The transformation of the data from Table 6 is shown in Table 9.

Table 9: Election data transformation 3
CSSD TOP09 ODS KDUCSL SPD ANO KSCM

Praha 1 0.25 0.75 0.5 0.25 0.0 0.25 0.25
Praha 2 0.25 0.75 0.5 0.25 0.0 0.5 0.25
Praha 3 0.5 0.75 0.25 0.25 0.0 0.5 0.25
Olomouc 0.5 0.25 0.25 0.25 0.25 0.5 0.25
Bouzov 0.5 0.25 0.0 0.25 0.25 0.25 0.5

For testing of performance of our decomposition algorithm, we will use just
the data transformed by the third approach as it has the clearest outputs and it
is agreed to be the most reasonable transformation which preserves the dataset
features and hidden factors.
In the next sections, we will test our algorithm on the election dataset with all of
its 6366 rows, which are transformed the same way as the data, which are shown
in Table 9.

7.3.2 Performance of L-Grecond equipped with s=

Input for the algorithm is I = 〈X, Y, I〉 where X are the districts, Y are the
rows, and fuzzy relation I ∈ L6365×7 is the dataset transformed by the third
approach mentioned in the data transformation section. Part of fuzzy relation I
is depicted in Table 9. Algorithm equipped with the similarity function s= found
F= = {Fi = 〈Ci, Di〉|1, ..., 14} of 14 concepts. As the extent AF= is big, we will
omit it in the text, and we will just show the matrix BF= .

55

BF= =



1.00 0.75 0.50 0.50 0.75 1.00 1.00
1.00 1.00 1.00 0.50 1.00 0.50 0.50
1.00 0.25 0.25 0.75 0.50 0.25 0.25
0.00 0.00 0.00 0.00 0.25 1.00 0.00
0.50 0.00 0.00 0.00 0.50 0.00 1.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 0.50 0.25 0.00 0.25 0.00
0.00 0.00 0.00 1.00 0.25 0.00 0.00
0.00 0.25 1.00 0.00 0.00 0.00 0.00
0.50 0.25 0.00 0.00 1.00 0.25 0.25
0.25 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00


As we can see, the last few concepts are not useful as they are dealing just with
one or two attributes; hence these factors are not genuinely hidden attributes of
the dataset, and we can consider them as not so unusual. Let us continue with
the coverage scores of individual factors.

Figure 15: Individual factors coverage for F=(Elections)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

40

60

80

100

45
.6

35
.6

28
.7

29
.4

30
.9

29
.5

27
.4

24 24
.8 27
.2 29
.4

29
.3

27
.2

23
.9

82
.3

72
.5

73 72
.5

73 73
.3

69 68
.2

67
.8

68
.5 72

.2

72
.4

69 68
.2

s= s↔

Let us also show the merged coverage percentage and then discuss the output.

56

Figure 16: Merged factors coverage for F=(Elections)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

60

80

100
45

.6

57
.9

67
.6 75

80
.9 86

.5 91
.4 94

.2 96
.7 98
.9

99
.8

99
.9

99
.9

10
0

82
.3 85

.9 89
.4 91
.8 93
.9 95
.8 97
.4

98
.3

99 99
.7

99
.9

99
.9

99
.9

10
0

s= s↔

From the coverage graphs, we can observe that the first two concepts are
dominant, and they exactly explain almost 60% of the input. The extent of
the first factor consists of the strong votes for CSSD and strong votes for ANO,
which also corresponds with the final result of the elections. In next section we
will check how our decomposition algorithm processes the input with the usage
of another similarity function.

7.3.3 Performance of L-Grecond equipped with s↔

Algorithm equipped with the similarity function s↔ found F↔ = {Fi = 〈Ci, Di〉|1, ..., 14}
also of 14 concepts. Let us also omit the extent AF= and just show the intent
BF↔ .

BF↔ =



1.00 0.75 0.50 0.50 0.75 1.00 1.00
1.00 0.25 0.25 0.75 0.75 0.50 0.25
0.50 1.00 1.00 0.50 0.50 1.00 0.50
0.25 0.00 0.00 0.00 0.50 1.00 0.25
1.00 0.00 0.00 0.00 0.00 0.00 0.75
0.25 0.00 0.00 0.00 0.25 0.00 1.00
0.00 0.25 0.00 1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.50 0.25 0.00 0.00 1.00 0.25 0.25
1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.25 1.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.25 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00



57

We can observe that the first factor is the same as for the F=. If we check
the factors in more detail, we will find out that also F8, F9, F11, F12, F13, F14 are
the same, but most of them were obtained in another order. Let us check the
coverage score performance. The individual coverage is shown in Figure 17, and
the merged coverage score is shown in Figure 18. In the case of F=, the first two

Figure 17: Individual factors coverage for F↔(Elections)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

40

60

80

100

45
.6

32
.1

31
.3

30
.9 34 29
.5

24 27
.2

27
.2 29
.5

24
.8 29

.3

29
.4

23
.9

82
.3

73
.7

71
.9

72
.8 76

.9

72
.2

68
.2

69 68
.5 73

.3

67
.8 72

.4

72
.2

68
.2

s= s↔

Figure 18: Merged factors coverage for F↔(Elections)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

60

80

100

45
.6

56
.2

67
.8 75

.1 81
.7 86

.1 90

93
.9 96
.3 97
.7 99
.1

99
.8

99
.9

10
0

82
.3 86

89
.5 91
.9 94
.3 95
.8

97
.1

98
.3

98
.9

99
.3

99
.7

99
.9

99
.9

10
0

s= s↔

are more dominant than the others in the coverage performance. In this case,
F2, ..., F6 are almost similar in their performance, and just F1 is dominant. We
will discuss the differences later at the end of this chapter.

58

7.3.4 Performance of L-Grecond equipped with sf↔

Algorithm equipped with the similarity function sf↔ with the parameter q = 0.02
found Ff↔ = {Fi = 〈Ci, Di〉|1, ..., 15} of 15 concepts. Let us also omit the extent
AFf↔ and just show the intent BFf↔ .

BF= =



1.00 0.75 0.50 0.50 0.75 1.00 1.00
1.00 0.75 0.75 0.25 0.25 0.50 0.25
0.75 0.50 0.50 1.00 1.00 0.50 0.50
0.00 0.00 0.00 0.00 0.25 1.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.75
0.00 1.00 0.50 0.25 0.00 0.25 0.00
0.25 0.00 0.00 0.00 0.25 0.00 1.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.75 0.50 1.00 0.50 1.00 0.50 0.50
1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.25 0.00 0.00 1.00 0.25 0.25
0.00 0.25 1.00 0.00 0.00 0.00 0.00
0.25 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00


We can again observe that the first factor is the same as in previous sets F=

and F↔. Also, F4, ..F8 and F10, ..., F15 are present in one or both of previous sets,
but most of them in a different order. Let us check the coverage score perfor-
mance. The individual coverage is shown in Figure 19, and the merged coverage
score is shown in Figure 20. We can observe that the coverage performance is

Figure 19: Individual factors coverage for Ff↔(Elections)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

40

60

80

100

45
.6

35
.1

27
.6

29
.4 34

27
.4 29
.5

23
.9 30

.5

29
.5

27
.2

24
.8 29

.4

29
.3

27
.2

82
.3

74
.4

69 72
.5 76

.9

69 72
.2

68
.2

69
.2 73

.3

68
.5

67
.8 72

.2

72
.4

69

s= s↔

similar to the two sets obtained before. The only noticeable difference is that

59

Figure 20: Merged factors coverage for Ff↔(Elections)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

60

80

100
45

.6

57
.8

67
.4 74

.7 81
.2 85

.8 90
.3 93

.5 96
.3

97
.6

98
.7

99
.7

99
.8

99
.9

10
0

82
.3 86 89

.1 91
.5 94 95

.5 97 98
.2

98
.9

99
.3

99
.6

99
.9

99
.9

99
.9

10
0

s= s↔

the L-Grecond equipped with sf↔ needed one more fuzzy concept to cover the
input, but as the last seven concepts F9, ..., F15 together cover less than 4% of
the input, it is not much important.

7.3.5 Comparison of dominant factors

In this section we will take a look at the output obtained by all variants of our
algorithm and check the differences. The first factor F1 is the same in every set
F=, F↔ and Ff↔. This is the sign that F1 is a strong factor, as every variant
of our algorithm gave this factor a high priority. F1 consists of high degree for
CSSD,ANO and KSCM, which corresponds with the final result of the elections.
It is not surprising to see this kind of pattern as the most important factor in
the dataset. This factor itself exactly covers more than 45% of the input, while
the other factors obtained by various variants cover around 30% or less.
Let us compare the second factor, which is different across our sets of concepts.
To simplify marking of variables, we will label D2 ∈ F= as D=, D2 ∈ F↔ as D↔
and D2 ∈ Ff↔ as Df↔. In Table 10 we can check the difference between their
intents.
All of these intents have a strong degree in CSSD, where the degree of other

Table 10: Intents comparison (Elections)
CSSD TOP09 ODS KDUCSL SPD ANO KSCM

D= 1.0 1.0 1.0 0.5 1.0 0.5 0.5
D↔ 1.0 0.25 0.25 0.75 0.75 0.5 0.25
Df↔ 1.0 0.75 0.75 0.25 0.25 0.5 0.25

attributes is various. Intents of D= and Df↔ have a partly similar pattern, but
intent of D↔ is more different. The average degree in which the factors apply to

60

the districts is around 0.1269 for both D=, Df↔ and 0.3648 for D↔ which is a
very high average degree compared to D= and Df↔. This can lead us to the ver-
ification if the D↔ can be the so-called "flat" factor as the L-Grecond equipped
with s↔ tends to prefer them. When we check the actual individual coverage
score of these three factors, we can observe that the biresiduum similarity cov-
erage percentage is for the D↔ lesser than for Df↔, which is an interesting fact.
This fact also tells us that this factor is probably not an occurrence of "flat"
factor, as the biresiduum similarity score is lesser than for Df↔. The greedy
choices of algorithms caused this occurrence. The algorithm equipped with sf↔
chose another direction during greedy steps based on sf↔ scores and at the end,
obtained a concept which has bigger biresiduum similarity score than the factor
which was obtained by algorithm equipped with s↔.
As a conclusion, we can say that the election dataset does not suffer from "flat"
factors within the most important factors. Also, we can conclude that various
variants of our algorithm or just tuning of parameter q used in f can lead us
to obtain another set of factors that can be more interesting. In this case, the
example is the second factor, where the algorithm equipped with s↔ found fac-
tor with different kind of pattern than the two other variants. Further work
of our election can include the usage of another data transformation and also
filtering district by a certain restriction. Another interesting direction could be
also to apply and measure the performance of obtained factors to filtered data,
for example, small villages or big cities.

61

Conclusions
The aim of the thesis was to study and implement existing algorithms for formal
concept analysis of ordinal data and measure their performance. The essential
underlying theory was described, and we also analyzed three datasets with the
different variants of the method. Regarding the method of data analysis, we
described the L-Grecond algorithm, and we suggested suitable matrix similarity
functions for which we also verified their correctness.
Provided dataset analysis could be a valuable resource for someone who will
try to analyze ordinal data by FCA, as they give insight into the behavior of
L-Grecond equipped by different matrix similarity functions and also the ideas
of appropriate data transformation. Nevertheless, in general, we can not say
which alternative of the L-Grecond is the most beneficial, and this decision is
left on the future user. The best choice would probably always be to use a scaled
similarity function and tune the parameter to obtain different points of view on
a particular dataset until receiving an attractive output.
Future work within the formal concept analysis of the ordinal data could be,
for example, the research of the impact while using a different adjoint couple
instead of the Łukasiewicz. An interesting area could also be a comparison of
the performance of the L-Grecond algorithm and the boolean Grecond algorithm,
used for transformed input.

62

A Desktop application for L-Grecond analysis
In this chapter, we will briefly describe the application which was created for the
testing of L-Grecond algorithm.
The application is written in C#, and therefore, it can be run only on computers
running Windows with the .NET framework (version 4.6.1 or newer). The appli-
cation can load data from a file and analyze them with the L-Grecond algorithm.
Supported file formats for import of input matrix are *.mat and *.txt. As the
application also supports reading *.mat files, which are Matlab files, it requires
the Accord framework dynamic linked libraries to be present on the computer.
Accord libraries (*.dll files) are present within the build of the application on the
embedded CD.
The text files containing the input matrix have to be formatted as follows. Each
row of the file represents one row of the matrix, while the matrix entries are
real numbers separated by space. The decimal point of each number has to be
represented by "." (dot).
After the import of the file, the user can select the similarity function, which will
be used by the L-Greconds. If the input matrix is smaller than 15×15, it will be
shown in the application window as a table with entries represented by squares
filled with the grey color with different intensity depending on the real number
of the entry. Users can also specify the parameter q, which will be used for the
scaled biresiduum similarity. After the selection of parameters, users can run the
computation. The progress of the calculation can not be estimated, so there is
no remaining time shown. Usual calculation time for small datasets is less than
a few seconds. Bigger datasets, like the mentioned education or election dataset,
are usually done within 15 seconds. More extensive datasets were not analyzed
with this application.
The output of the computation is a set of factors. The factors are represented by
matrix A and B for which A ◦B is equal to the input matrix. Smaller matrixes
as 15× 15 are shown in the application window. Bigger matrixes are not shown,
but they can be optionally saved to a file. Let us mention that because we oper-
ate with real numbers, which does not have accurate representation in C#, the
tolerance of 0.01 for the coverage of input entry was applied. The application
calculates the coverage score of each factor and also the merged coverage score.
The scores are calculated concerning all similarity functions within this thesis,
and they are organized in the graph, which is present in the application window
after the computation. The figure 21 shows the application window after the
computation ended; the input was the decathlon dataset. Individual coverage
scores are differentiated by the color and also the width of the line.

63

Figure 21: Application UI

The application can save the raw output to the file system. The raw output
consists of three text files. The first and second files are matrixes A and B. The
third output file is an info file, which contains all coverage scores for the factors,
computation time, and also the location of the input and output matrixes. All
output files are located in the "_FCAOutput" folder, which is created in the
directory where the input file is.

64

B Contents of the embedded CD
Embedded CD has following directory structure:

bin/
The bin folder contains the release build of the application for L-Grecond
testing. It also contains dynamic-link libraries (*.dll), which are needed to
read Matlab files. The "FuzzyFCAVisualization.exe" file runs the applica-
tion.

datasets/
Datasets folder contains Decathlon, Education, and Election dataset. It
contains the raw data input, the transformed input, which was used for
tests, and also the output files which were generated with the L-Grecond
testing application.

src/
Src folder contains the source codes for the L-Grecond testing application.

doc/
Doc folder contains the pdf file with the full text of the thesis also with all
Latex dependencies, which are needed to generate the pdf successfully.

readme.txt
Instruction for the application start.

65

Bibliography
[1] Wille, Rudolf and Bernhard Ganter. Formal concept analysis: mathematical

foundations. Translated from the German by Cornelia Franzke. Berlin: Springer-
Verlag, c1999, x, 284 s. ISBN 3-540-62771-5.

[2] Belohlavek R., Vychodil V.: Discovery of optimal factors in bi-
nary data via a novel method of matrix decomposition. Journal
of Computer and System Sciences 76(1)(2010), 3-20. [Elsevier Sci-
ence, ISSN 0888-613X, DOI 10.1016/j.jcss.2009.05.002]Available at:
http://belohlavek.inf.upol.cz/publications/BeVy_Dofbdnmmd.pdf

[3] Belohlavek, Radim. Fuzzy relational systems: foundations and principles. New
York: Kluwer Academic, 2002c, xii, 369 s. ISBN 0306467771.

[4] Belohlavek, R., Krmelova, M.: Factor analysis of ordinal data via
decomposition of matrices with grades. Annals of Mathematics and
Artificial Intelligence 72(1)(2014), 23-44. [Springer, print ISSN 1012-
2443, Online ISSN 1573-7470, doi:10.1007/s10472-014-9398-6]. Available at:
http://belohlavek.inf.upol.cz/publications/BeKr-Faoddmg.pdf

[5] Belohlavek R.: Optimal decompositions of matrices with en-
tries from residuated lattices. Journal of Logic and Computation
22(6)(2012), 1405-1425. [Oxford University Press, ISSN 0955-792X,
doi: 10.1093/logcom/exr023, online: September 7, 2011]. Available at:
http://belohlavek.inf.upol.cz/publications/Bel_Odmerl.pdf

[6] Belohlavek, R., Vychodil, V.: Factorization of matrices with
grades. Fuzzy Sets and Systems 292(2016), 85-97. [Elsevier,
ISSN 0165-0114, doi:10.1016/j.fss.2015.03.020]. Available at:
http://belohlavek.inf.upol.cz/publications/BeVy_Fmg.pdf

[7] Bartl, E., Belohlavek, R., Scharaschkin, A.: Toward factor analysis of educational
data. CLA 2018: Proceedings of the 14th International Conference on Concept
Lattices and Their Applications, 2018, pp. 191-168. [ISBN 978–80–244–5328–6]

66

http://belohlavek.inf.upol.cz/publications/BeVy_Dofbdnmmd.pdf
http://belohlavek.inf.upol.cz/publications/BeKr-Faoddmg.pdf
http://belohlavek.inf.upol.cz/publications/Bel_Odmerl.pdf
http://belohlavek.inf.upol.cz/publications/BeVy_Fmg.pdf

	Factor analysis of ordinal data
	Title page
	Synopsis
	Contents
	1 The basic motivation of the thesis
	2 Introduction to Formal Concept Analysis
	2.1 Basic setting
	2.2 Closure operators and Galois connections

	3 Boolean matrix decomposition
	3.1 Matrix decomposition
	3.2 Grecond algorithm

	4 Preliminaries from fuzzy logic
	4.1 Introduction to fuzzy logic
	4.2 Fuzzy structures
	4.3 Binary fuzzy relations

	5 Formal concept analysis of ordinal data
	5.1 Fuzzy contexts
	5.2 Concept forming operators
	5.3 Fuzzy concepts
	5.4 Optimal decomposition

	6 Algorithm for the decomposition of a matrix with ordinal data
	6.1 General setting
	6.2 Basic algorithm
	6.3 Matrix similarity
	6.4 Variants of basic algorithm
	6.5 Complexity

	7 Experiments with real data
	7.1 Decathlon
	7.1.1 Data transformation
	7.1.2 L-Grecond equipped with s=
	7.1.2.1 Performance of individual factors
	7.1.2.2 Merged performance of factors

	7.1.3 L-Grecond equipped with s
	7.1.3.1 Performance of individual factors
	7.1.3.2 Merged performance of factors

	7.1.4 L-Grecond equipped with sf

	7.2 Education data
	7.2.1 Data transformation
	7.2.2 Performance of L-Grecond equipped with s=
	7.2.3 Performance of L-Grecond equipped s
	7.2.4 Performance of L-Grecond equipped with sf
	7.2.5 Comparison of dominant factors

	7.3 Elections data
	7.3.1 Data transformation
	7.3.2 Performance of L-Grecond equipped with s=
	7.3.3 Performance of L-Grecond equipped with s
	7.3.4 Performance of L-Grecond equipped with sf
	7.3.5 Comparison of dominant factors

	Conclusions
	A Desktop application for L-Grecond analysis
	B Contents of the embedded CD
	Bibliography

