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  Annotation 

The relationship among morphology, host specificity, geography and phylogeny has been one 

of the long-standing and frequently discussed issues in the field of parasitology. Since the 

morphological descriptions of parasites are often brief and incomplete and the degree of host 

specificity may be influenced by numerous factors, such analyses are methodologically difficult 

and require modern molecular methods. The presented study addresses several questions related 

to evolutionary relationships within a large and important group of apicomplexan parasites, 

coccidia, particularly Eimeria and Isospora species from various groups of small mammal 

hosts. At a population level, the pattern of intraspecific structure, genetic variability and 

genealogy in the populations of Eimeria spp. infecting field mice of the genus Apodemus is 

investigated with respect to host specificity and geographic distribution. 
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1. INTRODUCTION

1.1. Molecular insight into phylogenetic relationships, host specificity and 
morphology

Similar to other organisms, most features and processes in parasites can 
only be understood and interpreted in a phylogenetic/evolutionary context. 
While this approach had long been hampered by the lack of characters suitable 
for phylogenetic and genealogical reconstruction, an immense amount of 
molecular data has been accumulated during the last two decades. Based on the 
analyses of these data, many previously inaccessible questions in parasitology 
could be addressed or even solved, and some traditional views had to be 
changed or completely abandoned. For example, several parasite phyla or 
genera were relegated to different taxonomic groups (e.g. Microsporidia and 
Pneumocystis from protozoa to Fungi, Myxozoa from protozoa to Metazoa), 
relationships between some parasites and free-living, non-parasitic organisms 
were discovered (e.g. Apicomplexa and the photosynthetic alga Chromera, or 
Acanthocephala and Rotifera), or some artificially established parasite 
assemblages containing unrelated taxa were revealed (e.g. in eucestodes or 
protozoa) (Edman et al. 1988, Smothers et al. 1994, Winnepenninckx et al. 
1995, Keeling and McFadden 1998, Kodedová et al. 2000, Miquelis et al. 2000, 
Brabec et al. 2006, Moore et al. 2008).

Early parasitological studies using methods of molecular biology were 
based predominantly on PCR detection of individual parasite species or simple 
phylogenetic analyses of a single gene, usually nuclear-encoded ribosomal 
RNA (Clark and Cross 1988, McCutchan et al. 1988, Jaureguiberry et al. 1990, 
Cai et al. 1992, Weiss et al. 1992, Putland et al. 1993, Awad-el-Kariem et al. 
1994, Ellis et al. 1995). Since this region was eventually found to be quite 
conserved (and the phylogenetic information limited), other genes with higher 
degree of variability (mitochondrial, plastid, various protein-coding genes, or a 
combination of these) were adopted in such analyses. However, phylogenies 
based on a single gene may not match the correct phylogeny. The inclusion of 
more sequences/taxa into the data set, or less effectively, increasing the length 
of the sequences, can improve the accuracy and robustness of phylogenetic 
inference (Cao et al. 1994, Graybeal 1998, Whelan et al. 2001, Noda et al. 
2012). Recently, combined (concatenated) analyses based on a set of several 
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different genes have been shown to provide more reliable information on 
evolutionary history and the genetic structure of parasites (Whelan et al. 2001, 
Gill and Fast 2006, Bartošová et al. 2009, Knapp et al. 2011). However, even 
the concatenation approach is sensitive to serious artifacts due to different 
evolutionary histories of individual genes. This problem, sometimes called 
“gene trees vs. species trees”, is particularly critical at the low phylogenetic or 
even population level. It can be solved by adding multiple genes together with 
multiple individuals per species into the data set and analysing by modern 
MCMC-based Bayesian methods (programs BEAST or *BEAST) (Heled and 
Drummond 2010, Drummond et al. 2011).

In addition, results of such molecular analyses have also revealed 
significant incongruencies between morphology and phylogeny. Coccidia and 
Myxozoa provide typical examples of this trend. Whereas their genera and 
species are described based on oocyst/spore morphology, their phylogenetic 
relationships do not often reflect such classification (Smothers et al. 1994, 
Relman et al. 1996, Pieniazek and Herwaldt 1997, Andree et al. 1999, Kent et 
al. 2001, Modrý et al. 2004, Barta et al. 2005, Fiala 2006). This phenomenon 
could be caused either by incorrect phylogenetic reconstruction (when the 
obtained phylogeny does not reflect the true phylogeny due to various artifacts 
mentioned above and in section 1.4.), or by the homoplasy of morphological 
characters. The same problem of phylogenetic incongruency applies to some 
other biological traits. Among them, the host specificity (i.e. distribution of a 
parasite in a restricted taxonomic set of hosts) belongs to the most important 
and often discussed. This leads to the question of how host specificity in 
various parasite groups originates, evolves and is maintained, and also what are 
its main causes and consequences.

1.2. Host specificity

Host-parasite-environment interactions lead to the development of either 
susceptibility or resistance of a host species to a particular parasite taxa. This 
situation results in a characteristic pattern of parasite distribution in a more or 
less restricted group of hosts, generally called “host specificity”. It is a complex 
interplay of at least 4 components that overlap each other (Duszynski 1986, 
Poulin 2007): 1) The parasite, its viability, fecundity, factors and modes of 
transmission (e.g. physical contact vs. ingestion). 2) The host and its attributes 
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(e.g. age, sex, body size, nutritional state, immune status, genetic constitution, 
social behaviour). 3) The ecosystem with its biotic & abiotic, geographic & 
ecological factors. 4) The coevolutionary process with its macro- and 
microevolutionary patterns.

An array of concepts and methods for expressing host specificity has 
been developed, based on a number of parasite individuals in a particular host 
species (Rohde 1980, Rohde and Rohde 2005), usage and availability of 
individual hosts (Lymbery 1989), phylogenetic relationships among hosts 
(Poulin and Mouillot 2003) or a combination of both ecologic and evolutionary 
aspects (Poulin and Mouillot 2005).

When exploring host specificity, we must be vigilant since this 
phenomenon poses several problems. It is generally known that some parasites 
are reported to be “highly/strictly host-specific”, i.e. restricted to a single host 
species, whereas others are more flexible in their host requirements (on the
genus-, family- or even class- level) (de Vos 1970, Pellérdy 1974, Duszynski 
1986, Duszynski and Upton 2001��+ĤUNRYi�HW�DO��������3RXOLQ��������+RZHYHU��
the observed degree of host specificity is influenced by numerous factors. First, 
high host specificity can be an artifact caused by inadequate sampling 
(Klompen et al. 1996, Poulin 1992, 1997) that depends on the frequency of the 
collection of a particular species. Second, a parasite with broader host range, 
able to exploit several species, may be adapted only to locally available hosts 
(and thus appears more “host-specific” since the host range is limited by their 
availability). Third, the incorrect identification of parasite species may also play 
an important role in assessing host specificity; in particular, many descriptions 
of parasite species were based merely on their host and a parasite found in a 
new host was often designated as a new species. Many of these “species” were 
eventually found to be conspecific; coccidia and helminths belong to the most 
typical examples (Pellérdy 1974, Higgs and Nowell 1991, Seville and Stanton 
1993a, Wilber et al. 1998, Dallas et al. 2001, Bell et DO��������+ĤUNRYi�HW�DO��
2005).

In coccidia, another problem can arise due to their passive ingestion by a 
non-susceptible host. When a coccidium is found to occur in faeces of a 
particular host, two possible hypotheses should be taken into account: 1) this 
coccidium represents a real parasite of the host species, 2) it is just an 
occurrence of a random “passage” through the host; such a phenomenon is 
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typical for predators (a passage of coccidia of the prey item through the 
intestinal tract of their predators) and for geographically syntopic hosts with 
similar nutritional requirements (Duszynski 1986, Wilber et al. 1998, Zhao and 
Duszynski 2001a, Golemansky and Koshev 2009).

Moreover, some degree of “resistance to reinfection” exists in host 
organisms, mostly cell-mediated and correlated with host age. Coinfections and 
interactions with other microorganisms (bacteria, viruses, parasites), leading 
sometimes to cross-immunity, also play an indisputable role in the host 
specificity phenomenon (Desowitz 1957, Duszynski 1986, Behnke et al. 2005, 
Hang et al. 2010, Noland et al. 2010).

One of the methods allowing the assessment of the degree of host 
specificity is the transfer of a parasite to a new host under laboratory conditions 
(an experimental cross-transmission study). However, such an artificial process 
poses significant problems; the success rate of cross-transmission studies relies 
on many factors, e.g. the origin, strain, age/viability of the used parasite and 
above mentioned host attributes (section 2 of this chapter). The possibility that 
some negative results of these experimental studies can be due to adverse 
laboratory conditions must always be taken into account (Duszynski 1986). 
However, the most reliable current methods of studying host specificity and 
parasite distribution in different host taxa are based on molecular techniques 
combined with phylogenetic and population genetic data. These approaches 
have been successfully applied within all major groups of parasites, i.e. 
arthropods (Štefka and Hypša 2008), helminths (Nieberding et al. 2004, 2005, 
Brouat et al. 2011) and protists (Jenkins and Owens 2011, Rougeron et al. 2011, 
Salim et al. 2011).

1.3. Host - Parasite cophylogeny

Host-parasite associations represent suitable model systems for studying 
coevolutionary processes, when host and parasite lineages evolve and adapt 
together over a length of time (Price 1980, Brooks and McLennan 1993, 
Thompson 1994, Johnson and Clayton 2001, Timothy and Littlewood 2003, 
Poulin 2007). The main question in cospeciation studies is the extent to which 
cladogeneses of the two counterparts, host and parasite, are correlated (Brooks 
and McLennan 1991). An identity of host and parasite phylogenies often serves 
as a null hypothesis for evaluation of host-parasite coevolution. In reality, most 
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host and parasite phylogenies are more or less incongruent, so they mirror each 
other only imperfectly (Paterson and Banks 2001, Clayton et al. 2004). These 
incongruencies may be caused by the complex interplay of cophylogenetic 
events, such as cospeciation, host switching, sorting events and duplication 
(Clay 1949, Page 1994, 1995, 1996a, Paterson and Gray 1997, Paterson and 
Banks 2001).

Several methods of analysing cospeciation have been developed (e.g. 
Brooks´ parsimony analysis, reconciliation analysis, maximum likelihood 
methods, rates of evolution, molecular clock). These methods are topology-
based and rely on topologies being robust enough and accurate (Brooks 1988, 
Page 1991, 1993, 1994, Huelsenbeck et al. 1997, Charleston 1998, Huelsenbeck 
et al. 2000).

Within last two decades, many studies of different cophylogenetic 
associations were carried out in this area. For example, associations between 
pocket gophers and their chewing lice (Page 1996a), birds and tapeworms 
(Hoberg et al. 1997), birds and feather mites (Dabert et al. 2001), ascourarid 
mites and megapodes (Proctor 1999), trematods and teleost fish (Jousson et al. 
2000), field mice (Apodemus sylvaticus) and its nematode Heligmosomoides 
polygurus (Nieberding et al. 2004, 2005). In particular, much of the recent 
progress has been made in studies of lice and their hosts (Hafner and Nadler 
1988, Barker 1994, Page 1996a, Page et al. 1996, Page et al. 1998, Paterson et 
al. 1999, Johnson and Clayton 2001, Banks et al. 2006, Š tefka and Hypša 
2008). Interestingly, all possible scenarios of cophylogenetic events were 
described in lice-vertebrate hosts associations. For example, a strict 
cospeciation pattern was revealed for chewing lice and geomyid rodents 
(Hafner and Nadler 1988, 1990), while frequent host switches were strongly 
suggested in lice infecting rock wallabies in Australia (Barker 1991). The 
accidental occurrence (“straggling”) of lice on an atypical host species was 
described by Ròzsa (1993) and Whiteman et al. (2004). The duplication event 
probably occurred in Polyplax serrata infecting field mice of the genus 
Apodemus (Štefka and Hypša 2008). In lice parasitizing birds, cospeciation, 
host switching and “missing the boat” represent the most common events 
(Paterson et al. 1993, 1999, Clayton et al. 1996, Johnson et al. 2002a, 
Weckstein 2004, Whiteman et al. 2004). On the contrary, host switching is 
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supposed to play a crucial role in the evolution of helminth parasites (Brant and 
Gardner 2000, Carney and Dick 2000, Hoberg et al. 2001, Perlman et al. 2003).

Compared to all of these studies, surprisingly small attention has been 
given to the coevolutionary relationships of protistan parasites. Possible 
cospeciation was proposed between microsporidians and their insect hosts 
(Baker et al. 1998). In apicomplexans, only a few studies have so far been 
published in this area, dealing with cophylogenetic associations within 
haemosporoid parasites and their hosts (Escalante and Ayala 1995, Escalante et 
al. 1995, Carreno et al. 1997, Ricklefs and Fallon 2002, Ricklefs et al. 2004), 
and between Sarcocystis and reptiles (Doležel et al. 1999, Šlapeta et al. 2003).

1.4. Inter- and intra- specific variability in parasites

Although most coevolutionary studies are based on phylogenetic-level 
analyses (for references, see section 1.3.), the genealogy and population 
structure of parasites appear to represent the key determinants in the 
coevolutionary, speciation and diversification processes (Nadler 1990, Brooks 
and McLennan 1993, Page and Holmes 1998, Banks and Paterson 2005, Brooks 
and Ferrao 2005, Leo et al. 2005).

The degree of host specificity may significantly influence intraspecific 
genetic structure (Johnson et al. 2002b). It is generally known that a high 
degree of polymorphism exists in parasite populations. Many parasites reported 
as polyxenous form assemblages of morphologically indistinguishable but 
genetically distinct species/strains (Jousson et al. 2000, Demanche et al. 2001, 
Štefka and Hypša 2008). A model of neutral evolution, depending only on the 
frequency of new mutations and probability of their fixation, serves as a null 
hypothesis for assessing genetic variability within a population. The real degree 
of polymorphism within a population varies due to the mutational rate and 
population size. However, closely related species can share a polymorphism 
that was inherited from a common ancestor – such phenomenon is called 
“ancestral polymorphism” and significantly influences the genealogical 
relationships within species.

Several methods are commonly used for analysing parasite relationships 
at a population level; classic methods of molecular phylogeny based on 
analyses of a single or multiple genes possessing a higher degree of variability 
(see section 1.1.), fragment length polymorphism-based methods (AFLP, 
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RFLP) or methods of population genetics (haplotype networks). However, each 
method offers both advantages and drawbacks.

Nuclear ribosomal DNA (rDNA) is the most commonly used marker for 
reconstructing phylogenies among and within many organisms (Hillis and 
Dixon 1991, Buckler et al. 1997, Avise 2004). Although intragenomic rDNA 
diversity is generally low due to the concerted evolution within ribosomal loci, 
divergent paralogues, pseudogenes and recombinants can sometimes emerge in 
a single genome. These phenomena influence phylogenetic analyses and can 
result in erroneous phylogenies (Sanderson and Doyle 1992, Buckler et al. 
1997). For example, divergent rDNA paralogues and pseudogenes are common 
within internal transcribed spacers (ITS), so these regions are not suitable for 
reconstructing meaningful phylogenies or examining genetic diversity (Buckler 
et al. 1997, Alasaad et al. 2009). AFLP (Amplified Fragment Length 
Polymorphism) is a highly sensitive method for detecting polymorphisms in 
DNA, using restriction enzymes to digest genomic DNA and subsequently 
amplify and analyse selected fragments. However, it requires ultrapure parasite 
samples. The parsimony-based methods using haplotypes describe reticular 
relationships (networks, “star patterns”) among individual sequences. Such an 
arrangement reflects both natural (recombinations) and methodical (uncertainty 
of reconstruction, difficulty with rooting) problems.

1.5. Model organisms

In this study, I use the largest genus of the phylum Apicomplexa, 
Eimeria, as a model group for addressing various questions connected to 
parasite speciation, host specificity and phylogeny. I focus mainly on the 
eimerian taxa associated with small mammals (especially rodents) since they 
represent easily obtainable hosts with relatively high prevalences of coccidia.

1.5.1. Apicomplexa: Eucoccidiorida

The protistan phylum Apicomplexa Levine, 1970 (Chromalveolata: 
Alveolata) is well-adapted to a parasitic strategy. Its members possess 
complicated life-cycles, usually formed by combination of both asexual and 
sexual reproduction. At least one of their developmental stages contain an 
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apical complex, the unique assemblage of organelles evolved for penetration 
into the tissues and cells of host organism.

Within Apicomplexa, members of the family Eimeriidae Minchin, 1903 
(Conoidasida: Coccidiasina: Eucoccidiorida), comprising 17 genera, belong to 
the most abundant. They are usually homoxenous, excystating via Stieda 
bodies. The second largest family, Sarcocystidae Poche, 1913, is represented by 
heteroxenous coccidia excystating via 4 plates, and comprises 6 genera (Perkins 
et al. 2000). Since the last summarizing taxonomic review (Perkins et al. 2000), 
several genera have been cancelled or synonymized with others (e.g. 
Atoxoplasma became the junior objective synonym of Isospora; Frenkelia was 
proposed to be cancelled and synonymized with Sarcocystis), or new genera 
have been established or revived (e.g. Acroeimeria, Choleoeimeria, 
Cystoisospora, Epieimeria, Goussia) (Frenkel 1977, Dyková and Lom 1981, 
Overstreet et al. 1984, Carreno et al. 1998, Votýpka et al. 1998, Lainson and 
Paperna 1999, Mugridge et al. 1999, Franzen et al. 2000, Modrý et al. 2004, 
Barta et al. 2005).

The definition of coccidian genera is based on the morphology of 
infectious stages - sporulated oocysts, containing a fixed number of sporocysts, 
each possessing a constant number of sporozoites. However, this rigid 
definition is often in contradiction to results from molecular phylogeny 
(Relman et al. 1996, Pieniazek and Herwaldt 1997, Eberhard et al. 1999, 
)UDQ]HQ�HW�DO��������-LUNĤ�HW�DO��������%arta et al. 2005, Li et al. 2007).

The genus Eimeria Schneider, 1875 is the largest genus within coccidia, 
with more than 1700 described species. A majority of them parasitize the 
gastrointestinal tract of vertebrates. Several species (e.g. Eimeria intestinalis, E. 
necatrix, E. stiedai, E. tenella, E. zuernii) are important parasites of domestic 
animals that cause serious diseases with high morbidity and mortality. 
Sporulated oocyst contains 4 sporocysts, each filled with 2 sporozoites 
(Pellérdy 1974, Levine and Ivens 1990, Perkins et al. 2000).

1.5.2. Taxonomic pitfalls in coccidiology

The identification of Eimeria and Isospora species is based merely on 
the morphology and morphometry of sporulated oocysts (oocyst and sporocyst 
shapes and sizes, character and thickness of oocyst wall, presence/absence of 
oocyst and sporocyst structures - micropyle, micropyle cap, oocyst residuum, 
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polar granule/s, sporocyst residuum, Stieda body) (Pellérdy 1974, Levine and 
Ivens 1990, Duszynski and Wilber 1997). However, such a description and 
classification of coccidian species is insufficient and suffers significant pitfalls. 
Older descriptions (ca. 1890s-1960s) especially are often brief and inadequate, 
lacking important details of oocyst inner structures; in most cases, line drawings 
or photomicrographs of oocysts are absent (for examples, see Pellérdy 1974). 
Therefore, the validity of such descriptions remains debatable; many of these 
species have never been reported again and within the revisions, it turned out 
that species described from one host are identical with species described from 
another host - so they were united into a single species (Lewis and Ball 1983, 
Higgs and Nowell 1991, Seville and Stanton 1993a, Wilber et al. 1998, 
+ĤUNRYi�HW� DO�� �������6HFRQG�� WKH�RRFyst/sporocyst sizes vary within a single 
species during the patency (Duszynski 1971, Joyner 1982, Parker and 
Duszynski 1986, Gardner and Duszynski 1990, Upton et al. 1992, Seville and 
Stanton 1993b), thus do not represent a reliable discriminative trait. The oocyst 
size within a single species usually fluctuates 5-7 ȝP�DQG��-3 ȝP�LQ�VSRURF\VWV�
(for examples, see Pellérdy 1974, Wilber et al. 1998, Š lapeta et al. 2001, 
+ĤUNRYi� HW� DO�� ������ *ROHPDQVN\� DQG� .RVKHY� ������� 7KHUHIRUH�� LW� LV� RIWHQ�
difficult to judge on the species identity of Eimeria oocysts present in the
examined samples.

In several studies, however, other features (site of endogenous 
development, morphology of endogenous stages, sporulation time, prepatent 
and patent periods, pathogenicity and host specificity) were also utilized for 
taxonomy (Kartchner and Becker 1930, de Vos 1970, Pellérdy 1974, Long and 
Joyner 1984, Koudela et al. 2000, Šlapeta et al. 2001, .YLþHURYi�HW�DO��������

Only a few species (mostly coccidia infecting rodents and domestic 
animals) have also been characterized using modern methods of molecular 
biology (Barta et al. 1997, Carreno et al. 1998, Hnida and Duszynski 1999a, b, 
Franzen et al. 2000, Ruttkowski et al. 2001, Š lapeta et al. 2001, Zhao and 
Duszynski 2001a, b, .YLþHURYi� HW� DO�� ����, 2011, Motriuk-Smith et al. 2009, 
Miska et al. 2010). These studies have shown that many morphological traits do 
not correlate with molecular phylogeny. For example, the genus Isospora is 
undoubtedly polyphyletic, scattered among Eimeria species (mammal-
associated isosporan species on the base of eimerian topology/related to 
Sarcocystidae, bird-associated species split into 2 lineages, one scattered among 
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rodent eimerians and one related to fowl-Eimeria spp.) (Franzen et al. 2000,
-LUNĤ� HW� DO�� ������ ������ 6DPDUDVLQJKH� HW� DO�� ������ 'ROQLN� HW� DO�� �������
Sporulated oocysts of Isospora spp. are morphologically quite uniform (2 
sporocysts containing 4 sporozoites, usually spherical oocyst shape, smooth, 
thin and delicate oocyst wall, absent oocyst residuum) (Pellérdy 1974, 
Duszynski and Upton 2000). Nevertheless, the genus Isospora was divided into 
2 separate genera according to phylogeny, host specificity and presence/absence 
of a Stieda body (SB): bird-associated Isospora (former Atoxoplasma) with SB 
belonging to Eimeriidae, and mammal-associated Cystoisospora, lacking SB 
belonging to Sarcocystidae (Carreno et al. 1998, Franzen et al. 2000, Barta et al. 
2005). Recently, it seems that such a division is not entirely correct: several 
Isospora (“Cystoisospora”) species described from insectivores (i.e. mammals) 
possess distinct SB (Duszynski and Upton 2000) – however, none have been 
sequenced yet. Sequences from these species could potentially bring new, 
surprising insight into isosporan phylogeny.

A similar taxonomic problem has emerged within eimerians. While the 
genus Eimeria is evidently polyphyletic, members of the so far monophyletic 
genus Cyclospora cluster within fowl-associated Eimeria (Relman et al. 1996, 
Pieniazek and Herwaldt 1997, Eberhard et al. 1999, Lopez et al. 1999, Li et al. 
2007). However, only data on Cyclospora spp. from man, primates and dairy 
cattle are currently available, while inclusion of additional Cyclospora species 
from other hosts (e.g. insectivores or reptiles) may bring more surprises.

This situation poses a serious problem for future reclassification of this 
species-rich group of parasites. Undoubtedly, more samples and studies are 
essential for better understanding the diversity of coccidian parasites and their 
evolutionary history. A combination of molecular methods with data on 
morphology, host specificity and geographic distribution seems to represent the 
most reliable approach both for species determination and analysing the 
evolutionary relationships within coccidia.

1.5.3. Coccidia associated with rodents

Eimeria together with Isospora are the most frequent and common 
coccidian genera parasitizing rodent hosts (Pellérdy 1974, Levine and Ivens 
1990). According to the latest review by Duszynski and Upton (2001), 415 
Eimeria spp. and 40 Isospora spp. were reported from 280 rodent species (out 
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of >2200 extant species), which is certainly only a fragment of the real diversity 
within these hosts. Laboratory animals (namely Mus musculus and Rattus 
norvegicus) represent the best studied rodents for Eimeria species, with Eimeria 
falciformis (originally described from Mus musculus in 1870) as the type 
species of the genus Eimeria.
The epidemiological role of coccidian parasites still remains unknown in small 
mammals. Some species are highly pathogenic to their hosts (e.g. 
E. chinchillae), while others are not (e.g. E. cahirinensis) (de Vos and van der 
Westhuizen 1968, .YLþHURYi�HW�DO������). Wild-living rodents are often infected 
with several species concurrently (so called multi-species infections) (Wash et 
DO��������'XV]\QVNL�������+ĤUNRYi�HW�DO��������*ROHPDQVN\�DQG�.RVKHY��������
Host specificity restricted to certain species (E. caviae, E. gundii, E. 
micromydis), genus (E. apodemi, E. saxei, E. scholtysecki) or family 
(E. beecheyi, E. callospermophili, E. larimerensis) was reported in rodent 
Eimeria species; rarely, even the familial boundaries are crossed (E. 
chinchillae) (Todd and Hammond 1968a, b, de Vos 1970, Pellérdy 1974, 
:LOEHU�HW�DO��������ýtåNRYVNi�������+ĤUNRYi�HW�DO��������

As in many other groups of organisms, molecular techniques have 
brought new significant insight into the phylogeny, taxonomy and evolution of 
eimerian species. Such a first attempt to include molecular data into eimerian 
phylogeny was a study by Reduker et al. (1987), based on cladistic and phenetic 
analyses of isozyme banding patterns, sporulated oocyst morphology and life 
history traits. He realized that Eimeria species from the same rodent host, but 
with different oocyst morphology, were grouped into two separate lineages. 
Similar results, based on phylogenetic analyses of nuclear ITS1 sequences and 
riboprinting data, were recorded by Hnida and Duszynski (1999a, b). 
Subsequent analyses within a broader phylogenetic context proved that most of 
the biological and morphological features used to classify these parasites are 
phylogenetically inconsitent and taxonomically irrelevant (Eberhard et al. 1999, 
Zhao and Duszynski 2001a, Morrison et al. 2004, Matsubayashi et al. 2005, 
.YLþHURYi�HW al. 2008).

Interestingly, the presence or absence of an oocyst residuum (OR) in 
sporulated oocysts of Eimeria from rodent hosts corresponds well to the 
phylogenetic relationships among rodent Eimeria species (Zhao and Duszynski 
2001a, b). Phylogenetic analyses based on plastid ORF 470 and nuclear 
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18S rDNA sequences placed 10 studied Eimeria species from rodents into 2 
major lineages, corresponding to the morphology of their sporulated oocysts. 
Species in lineage A had spherical to subspherical oocysts, that did not differ 
much in size, and possessed OR. In contrast, eimerian species in lineage B were 
ovoidal or ellipsoidal, differed greatly in size, and lacked OR (Zhao and 
Duszynski 2001b). From data obtained from these studies, it seems that the 
morphological similarity of sporulated oocysts of Eimeria is more significant in 
reflecting evolutionary relationships than is host specificity.

However, further analyses of eimerian 18S rDNA sequences from more 
host taxa suggest that Eimeria spp. tend to form lineages specific to their host 
taxa (e.g. the fowl-, rabbit-, livestock-, porcine- and rodent- lineages) (Morrison 
HW�DO��������0DWVXED\DVKL�HW�DO��������.YLþHURYi�HW�DO��������3RZHU�HW�DO���������
Interestingly, unlike other host-specific lineages, rodent Eimeria species were 
described to cluster into 2 (Zhao and Duszynski 2001a, b, Power et al. 2009), 
DQG�UHFHQWO\�DSSHQGHG�WR����.YLþHURYi�HW�DO���������GLVWLQFW�OLQHDJHV��6LQFH�RQO\�
a few of the described Eimeria species infecting rodents have been sequenced, 
it can be assumed that the real number of the rodent-specific Eimeria lineages 
may be even higher.

1.5.4. Mammalia: Rodentia

The diversification of mammals and evolutionary relationships among 
their major taxonomic groups (encompassing ~5400 living species described) 
have been a subject of exciting debates for decades. Fierce battles were waged 
among proponents of morphological, paleontological/fossil and molecular 
approaches (Catzeflis 1993, Graur 1993a, b, Novacek 1993). In the latest 
review, Meredith et al. (2011) seem to resolve the long-term puzzle regarding 
the relationships among mammalian families; a study based on 164 mammals, 5 
outgroups and 26 gene fragments has yielded a well-resolved phylogeny, 
representing the first molecular phylogeny that incorporates all living 
mammalian families.

Rodents (Mammalia: Rodentia), encompassing more than 2200 extant 
species in 33 families, are the most diverse order among placental mammals 
(Wilson and Reeder 2005). Numerous studies have been published regarding 
rodent phylogeny and the position of the “rodent root”, unfortunately without 
success. According to various morphological approaches (dentition, masticatory 
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apparatus, angle of the jaw, fetal membranes, middle ear features, arterial 
pattern), rodents were divided into suborders and families and the monophyly 
of order Rodentia was strongly supported (Bugge 1985, Lavocat and Parent 
1985, Luckett 1993, Luckett and Hartenberger 1993, McKenna and Bell 1997). 
Based on the position of masseter muscles, rodents were split into 3 suborders: 
Hystricomorpha, Myomorpha and Sciuromorpha. Since this feature was found 
to be homoplasic, a new system was proposed, clustering rodents into 2 
suborders – Hystricognathi and Sciurognathi - according to the position of 
incisors and the angle of the jaw. However, this classification did not reflect 
evolutionary relationships; moreover, several analyses revealed the paraphyly 
of the order Rodentia, whereas others supported their monophyly (Graur 1993a, 
b, D´Erchia et al. 1996, Adkins et al. 2001, Huchon and Douzery 2001, DeBry 
2003, Montgelard et al. 2008). It is thus evident that morphological features 
alone are not sufficient for resolving rodent relationships and that the results of 
molecular phylogeny are determined by the range of taxon sampling and 
evolutionary model used (Luckett and Hartenberger 1993, Sullivan and 
Swofford 1997, Montgelard et al. 2008, Blanga-Kanfi et al. 2009). The latest 
review by Blanga-Kanfi et al. (2009), based on analyses of six genes and 41 
rodent species, strongly supports the division of Rodentia into 3 clades: a 
squirrel-related clade (Sciuroidea and Gliridae), a mouse-related clade 
(Myodonta, Anomaluromorpha and Castorimorpha), and Ctenohystrica 
(Ctenodactylidae and Hystricognathi).

In coccidia, most of sequences and molecular studies on Eimeria
infecting rodents are available from the mouse-related clade, namely Myodonta. 
Eimerians from the Ctenohystrica are completely lacking in GenBank, and only 
a few Eimeria sequences representing the squirrel-related host clade (namely 
the genera Cynomys, Marmota, Sciurus, Urocitellus and Eliomys) are available 
to date (www.ncbi.nlm.nih.gov).
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2. OBJECTIVES

The main goal of this study is to investigate phylogenetic and 
genealogical relationships among various Eimeria species on both the 
interspecific and intraspecific levels, to assess the evolutionary history of 
eimerians as well as the intraspecific variability and population structure traits 
of the selected model system. The project combines techniques of field and 
laboratory parasitology/zoology, together with molecular, phylogenetic and 
coevolutionary approaches. The results will be used as the basis for evaluating 
the coevolution between coccidia and their hosts and the influence of host 
specificity on coccidian parasites.

The specific objectives are the following:

1. To extend the data set of Eimeria species for molecular and 
phylogenetic studies with species parasitizing different rodent families 
and other small mammal hosts (insectivores, rabbits, tree pangolin) and 
reconstruct their evolutionary relationships.

2. To evaluate the intraspecific variability and population structure of 
Eimeria species from field mice of the genus Apodemus (Eimeria -
Apodemus model).

3. To compare morphological traits of sporulated oocysts of Eimeria
species with results of molecular phylogeny (topology) and specify the 
features of phylogenetic and taxonomic significance.

4. To interpret observed patterns with respect to biology and evolutionary 
history of the hosts.
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3. METHODOLOGY

Coccidian oocysts were obtained from fresh faeces or the gut content of 
host organisms. Rodents were trapped in the field using the Sherman live-traps 
or classic wooden traps, with official permissions. Faecal samples from 
insectivores, mole-rats and tree pangolin were obtained from already deceased 
animals.

Faecal samples were placed into 4% (w/v) potassium dichromate 
solution (K2Cr2O7), allowed to sporulate on air for several days, and then stored 
at 4 oC. Oocysts of coccidian parasites were detected by the standard flotation 
technique with Sheather´s sucrose solution (sp.gr. 1.30) and light microscopy. 
An Olympus BX51 microscope equipped with the Olympus Camedia C-5060W 
camera and Quick Photo Pro v. 2.0 PC software was used for species-specific 
identification of oocysts. Morphological and morphometrical features were 
evaluated according to criteria suggested by Duszynski and Wilber (1997).

Genomic DNA of coccidia was extracted using commercial kits (Qiagen 
or 03�%LRPHGLFDOV��� 3&5� UHDFWLRQV�ZHUH� SHUIRUPHG� DW� D� ��� ȝO� YROXPH�ZLWK�
HotStarTaq DNA polymerase (Qiagen). In total, 3 different genes were selected 
as suitable for amplification, sequencing and phylogenetic analyses: nuclear 
18S rRNA (~1500 bp), plastid ORF 470 (~700 bp) and mitochondrial COI 
(~700 bp). Primers and PCR protocols were designed manually (18S rDNA) or 
adopted from publications by Zhao and Duszynski (2001b) (ORF 470) and 
Schwarz et al. (2009) (COI). PCR products were enzymatically purified and 
cloned into the pGEM–T Easy Vector (Promega). Plasmids were extracted by 
the PureLink Quick Plasmid Miniprep Kit (Invitrogen). Sequencing of selected 
genes was performed by Macrogen, Inc. (Korea). Obtained sequences were 
identified by BLAST analysis (www.ncbi.nlm.nih.gov), manually adjusted 
using the SequenceScanner (Applied Biosystems), EditSeq and SeqMan 
(DNASTAR Inc.) programs, and deposited in the GenBank database (NCBI).

Alignments were created in MAFFT (Katoh et al. 2002, 2005) and 
BioEdit (Hall 1999) programs. Phylogenetic relationships were analysed using 
3 principal approaches - maximum parsimony (MP), maximum likelihood (ML) 
and Bayesian inference (BI), employing 3 different phylogenetic programs -
PAUP (Swofford 2001), Phyml (Guindon and Gascuel 2003) and MrBayes 
(Huelsenbeck and Ronquist 2001). The most suitable evolution models were 
selected with the jModeltest program (Posada 2008, 2009). The trees were 
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visualized using TreeView (Page 1996b) and adjusted in Adobe Illustrator 
(Adobe Systems Inc.). The genealogy of eimerians from field mice was 
evaluated using the TCS program (Clement et al. 2000). More detailed 
descriptions of the methods and parameters are available in the individual 
publications.
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4. RESULTS AND DISCUSSION

4.1. Coccidia in small mammals as model organisms and the current state 
of their phylogeny

Within coccidia, Eimeria species are among the best represented not 
only in morphological, but also in phylogenetic and evolutionary studies.
Molecular data currently available in GenBank (www.ncbi.nlm.nih.gov) cover 
98 Eimeria spp. infecting 41 host genera (including 1 environmental sample 
from wastewater).

Within the scope of this doctoral thesis, 3 different genes were selected 
as suitable markers for inference of phylogenetic relationships among coccidian 
parasites: nuclear 18S rRNA (commonly used in most of the available studies 
and reported from 83 of 98 Eimeria spp. deposited in GenBank), plastid 
ORF 470 and mitochondrial COI.

Over 1500 faecal samples from various host organisms (rodents, 
lagomorphs, insectivores, dogs, cats, horses, reptiles, birds) were examined by 
the standard flotation technique. In addition, I also aimed to enlarge the 
coccidian sequence data set with some rare samples, and samples from 
endemites (Calotriton arnoldi, Castor fiber, Chaetophractus villosus, Eulemur 
albocollaris, Lagurus lagurus, Mus spretus, Pleurodeles waltl, Procavia 
capensis), but unfortunately all of the obtained specimens were negative for 
coccidia. I managed to extend the molecular data with 79 coccidia spp. from 23
small mammal hosts from worldwide sampling and 125 sequences of selected 
genes. The following section summarizes the results and conclusions of the five 
studies.

Phylogenetic relationships among all valid eimerians (11 species) 
infecting rabbits (Oryctolagus cuniculus) are described in Manuscript (MS) 
no. 1. Despite the fact that the problematics of rabbit coccidia is quite “popular” 
since they are important pathogens, most of the studies deal with descriptions of 
endogenous life-cycles or precocious strains for vaccine development (Pakandl 
et al. 1996a, b, c, Pakandl and Jelínková 2006). Only sporadic data focused on 
molecular methods, namely PCR identification of individual Eimeria species 
(Ceré et al. 1995, 1996, 1997, Oliveira et al. 2011). However, it was never clear 
whether the rabbit-specific Eimeria species originated from different eimerian 
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groups by switching to rabbit or differentiatied only after their ancestor 
established an association with the rabbit (and perhaps a few related) hosts.

Surprisingly, MS no. 1 represents the first study published on rabbit 
coccidia in the field of molecular phylogeny and evolution. Based on analyses 
of nuclear 18S rDNA sequences, we have proved that all rabbit Eimeria species 
are monophyletic. This finding indicates that the speciation of rabbit coccidia 
occurred in a single host, or several closely related species. This monophyletic 
group, most related to bovine- and ovine- Eimeria spp., is further formed by 2 
distinct lineages (MS no. 1, Fig. 1). An interesting aspect of the study is a lack 
of congruence between phylogeny and the bionomical traits of rabbit eimerians. 
A thorough comparison of phylogenetic relationships with morphological and 
biological traits (MS no. 1, Table 3) indicates that this two-lineage-clustering of 
rabbit coccidia clearly correlates only with the presence/absence of the OR (MS 
no. 1, Fig. 1). The inner arrangement of the OR+ lineage does not further reflect 
any morphological OR trait (e.g. compact globule vs. scattered granules vs. 
vacuoles). This finding is in contradiction to the conclusions of Barta et al. 
(1997), who observed a relatively high degree of phylogenetic congruence for 
some bionomical features (oocyst shape and size, site of infection and degree of 
pathogenicity) within a monophyletic lineage of fowl Eimeria species.

Interestingly, Eimeria stiedai evinces several remarkable peculiarities, 
both from the molecular and bionomical point of view: its 18S rDNA sequence 
(1345 bp) forms a relatively long branch with a ca. 100 bp long deletion, its 
endogenous development is located extraintestinally (in the bile ducts), it 
possesses an unusual OR structure and is able to also infect a different host 
genus (hares of the genus Lepus) (Pellérdy and Dürr 1970, Pellérdy 1974, 
Varga 1976, Entzeroth and Scholtyseck 1977, Scholtyseck et al. 1979, Eckert et 
al. 1995).

The original description of E. myoxi (Galli-Valerio 1940) does not 
provide the morphology of oocyst inner structures and is merely based on the 
oocyst shape and size. Therefore, subsequent findings of eimerian oocysts in 
glirid hosts were difficult to assign to particular species, causing many 
confusions and misinterpretations (Pellérdy 1974, Golemansky and Darwish 
1993, Bertolino and Canestri-Trotti 2005).
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Hence, the aim of the next study described in Manuscript no. 2 was 
twofold: 1) to provide a detailed description (re-description) of Eimeria myoxi; 
2) more importantly, to extend the available set of rodent-associated Eimeria
species with coccidium from the squirrel-related clade, until now missing for 
reliable molecular analyses. We obtained and examined 54 faecal samples of 
Eliomys quercinus (garden dormouse), a critically endangered species in the 
Czech Republic. In 46 samples (85.2 %), a single coccidium species, 
morphologically similar to Eimeria myoxi and also sequentially quite uniform, 
was detected and characterized both morphologically and molecularly (MS 
no. 2, Figs. 1, 2, 3, 4).

Phylogenetic analyses based on nuclear 18S rRNA and plastid ORF 470 
genes revealed an unstable position of E. myoxi within other eimerians. 
However, this instability was not due to the general lack of phylogenetic signal; 
other Eimeria species in the data set clearly clustered according to their host 
group (the rabbit-, poultry- and rodent- derived lineages), corresponding to 
previous studies by Morrison et al. (2004) and Matsubayashi et al. (2005). The 
most suprising finding was that E. myoxi (a coccidium lacking OR) did not fall 
into any of the 2 rodent-specific lineages. Moreover, it formed its own, 
independent lineage, representing a “third lineage” of rodent eimerians (MS 
no. 2, Figs. 3, 4). Since E. myoxi is the first representative of the “squirrel-
related host clade” (Blanga-Kanfi et al. 2009), for which suitable phylogenetic 
data are now available, we propose that additional species from 
phylogenetically unexplored host taxa might lead to surprising results and 
undermine the concept of host-specific lineages within Eimeria species, as 
suggested by Relman et al. (1996), Pieniazek and Herwaldt (1997) or Zhao et 
al. (2001) (Eimeria species from bats clustering inside the “rodent-clade” and 
Cyclospora spp. inside the “fowl-clade”).

A comprehensive species description, including detailed oocyst 
morphology, photomicrographs, prepatent and patent periods, sporulation time, 
complete endogenous development, pathogenicity and host specificity pattern, 
is reported in Manuscript no. 3 on Eimeria cahirinensis from Acomys 
dimidiatus (Sinai Spiny Mouse). Oocysts of E. cahirinensis, previously 
described by Couch et al. (1997), were obtained from 3 different localities in 
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the Near East: south- and north- facing slopes (SFS and NFS) of “Evolution 
Canyon” in Israel, and Wadi Ramm (WR) in Jordan.

E. cahirinensis, infecting the duodenal and jejunal villi of spiny mice, 
seems to be only mildly pathogenic to its hosts. Even when infected by a large 
amount of sporulated oocysts (~300 000), no clinical signs of coccidiosis were 
observed, and only inflammatory infiltrate in the jejunal mucosa appeared in 
histological sections (MS no. 3, Fig. 3). This observation correlates with 
previous conclusions that Eimeria spp. developing within the intestinal villi are
less pathogenic than those located within the crypts of enterocytes or in the 
cells of the lamina propria mucosae (Mesfin et al. 1978, Duszynski and Upton 
2001, Šlapeta et al. 2001).

To assess the degree of host specificity, experimental cross-transmission 
studies were performed. E. cahirinensis was successfully transmitted to all 6 
tested Acomys species, even those geographically (A. cahirinus, A. cilicicus, A. 
wilsoni) or phylogenetically (A. russatus) distant from the original host species. 
However, attempts to infect other rodent genera (Apodemus, Gerbillus, 
Lemniscomys, Mastomys, Meriones, Mus) or immunocompromised hosts (SCID 
mice) failed. This observation indicates that E. cahirinensis is likely to 
represent a genus-specific species.

Since this study does not include any molecular data, because these were 
obtained only after publication of the results, I added a “Supplement to the 
MS no. 3”, containing phylogenetic analyses based on nuclear 18S rDNA and 
mitochondrial COI sequences. All analyses placed E. cahirinensis, possessing 
OR, to the rodent-derived Eimeria lineage with OR (Supplement to the MS no. 
3, Figs. 1, 2). These results further support the conclusions by Zhao and 
Duszynski (2001a, b) about the unexplained importance of OR in coccidian 
phylogeny. Compared to the original description by Couch et al. (1997), we 
found a difference in OR morphology in our isolates of E. cahirinensis; two 
distinct OR forms, a globule consisting of many small granules versus several 
smooth vacuoles, were observed. Interestingly, we noticed that the first OR type 
is typical for “young” oocysts (up to 15 days after faeces collection), whereas 
vacuoles only occur in “older” oocysts. Furthermore, we also revealed that 
several coccidia species (e.g. E. citelli from Spermophilus citellus and/or 
Eimeria n. sp. from Habromys lophurus) possess OR when young, but it 
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entirely disappears when older. Such a weird and unknown pattern may play a 
crucial role in the evolution of coccidia.

Two morphologically similar, but phylogenetically unrelated Eimeria
species from ancient mammals (the Tree Pangolin Phataginus tricuspis and the 
Sunda Pangolin Manis javanica; Pholidota: Manidae), originating from two 
distant geographic areas (Africa, Angola and Asia, Singapore), are described 
and compared in Manuscript no. 4. Moreover, the eimerian found in P. 
tricuspis is designated here as a new species, Eimeria nkaka n. sp.

Members of the family Manidae, inhabiting forests of Central and 
Southern Africa and Southern Asia, represent a lineage of ancient placental 
mammals, most closely related to Carnivora (Meredith et al. 2011). They are on 
the brink of extinction due to hunting for both subsistence and commercial 
purposes. Only a single coccidian species has been so far reported from the 
entire order Pholidota, namely Eimeria tenggilingi described from Manis 
javanica by Else and Colley (1976). Thus, E. nkaka is a second described (and 
the first sequenced) coccidium from this host order and its detailed oocyst 
morphology together with phylogenetic relationships are provided in MS no. 4.

In MS no. 4, the oocysts of E. cf. tenggilingi and E. nkaka share a 
similar morphological feature, a relatively thick oocyst wall with rough and 
yellowish/brownish outer layer (MS no. 4, Fig. 1. A-D). The thick oocyst wall 
may represent an adaptation allowing for the high resistance of oocysts to 
severe environmental conditions in the tropics and their long-term viability 
outside the host.

Phylogenetic analyses based on 18S rDNA, ORF 470 and COI 
sequences yielded an unstable position of E. nkaka. In all analyses, E. nkaka
clusters with E. myoxi from the garden dormouse as a sister lineage to fowl-
associated eimerians, however always with low bootstrap support (MS no. 4, 
Figs. 2-4). Only 18S rDNA and COI sequences were successfully obtained 
from E. cf. tenggilingi, clearly unrelated to E. nkaka. In the 18S rDNA 
analyses, E. cf. tenggilingi clusters most closely to E. pilarensis described from 
the vespertilionid bat Myotis ciliolabrum (with low bootstrap support, Fig. 2). 
In the COI analyses, E. cf. tenggilingi clusters with the fowl E. tenella and E. 
necatrix, most probably due to the lack of other representative taxa in the COI 
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data set (only bird-associated Isospora species and Eimeria spp. from rabbits, 
fowl and 3 rodents are available, Fig. 3).

This study demonstrates a typical issue of the importance of 
representative sampling – while several host groups (e.g. rodents, poultry, 
livestock) are relatively well-studied in the field of coccidian phylogeny, other 
hosts (e.g. carnivore families except for Canidae and Felidae, or ancient 
mammals such as Xenarthra) are entirely missing in the data sets. Enrichment 
of the existing/present data set by Eimeria sequences from the closest relatives 
of Manidae (members of families Canidae, Eupleridae, Felidae, Herpestidae, 
Mephitidae, Mustelidae, Nandiniidae, Procyonidae, Ursidae and Viverridae) 
would certainly provide more insight into coccidian phylogeny. However, no 
coccidium has yet been described from some of these families (namely 
Eupleridae, Nandiniidae and Prionodontidae).

A rigorous study of the evolutionary relationships among phylogeny, 
host specificity and morphology is presented in Manuscript no. 5. It contains 
86 new coccidian sequences (27 eimeriids from various rodent groups, 
involving 11 rodent genera from 8 families). Sequence data for another 81 
specimens were retrieved from GenBank and incorporated into the analyses 
(MS no. 5, Table 1).

Recently published phylogenetic studies on coccidia suggest that the 
genus Eimeria is not monophyletic. A majority of Eimeria species tend to form 
several paraphyletic lineages, clustering according to their host organism 
(Morrison et al. 2004, Matsubayashi et al. 2005, Yabsley and Gibbs 2006,
.YLþHURYi� HW� DO�� ������ 3RZHU� HW� DO�� ���9). Rodent Eimeria species were 
supposed for a long time to be divided into 2 monophyletic but distinct 
lineages: the OR possessing and OR lacking lineages (Zhao and Duszynski 
2001a, b). However, these samples only represented 3 rodent families -
Cricetidae, Heteromyidae and Muridae – and were all collected on the North 
American continent (mostly USA). Nevertheless, a similar phenomenon 
regarding OR distribution was also observed in rabbit-associated Eimeria
species (MS no. 1, Fig. 1). Thus, the discovery of a third rodent lineage formed 
by a single E. myoxi from the garden dormouse indicates that the situation 
might be much more complex (MS no. 2).
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In all analyses provided in MS no. 5, the rodent Eimeria species are 
divided into several paraphyletic lineages, corresponding with the trait of 
possessing or lacking OR. In contrast to the study of Barta et al. (1997) - who 
found some correlations between topology, oocyst shape and size plus the site 
of infection in Eimeria spp. from domestic fowl - but similar to other studies 
(Zhao and Duszynski 2001a, b, MS no. 1), other morphological criteria do not 
fully correlate with the obtained phylogenies.

In MS no. 5, the pattern revealed by individual analyses of 18S rRNA, 
ORF 470 and COI genes was compatible with results obtained by analysis of a 
concatenated data set and yielded well-resolved phylogenies. This study 
confirms previous suggestions that eimerians are not a monophyletic group, and 
indicates that the host specificity plays a much weaker role in eimerian 
phylogeny than has been believed so far. It seems that with an increasing 
number of available taxa, phylogenetic relationships become less host-
dependent. Similarly, the geographic origin of samples included in the analyses 
did not show any phylogenetically consistent pattern. However, the 
concatenated tree also demonstrates the issue of insufficient sampling; there are 
still several taxa lacking a robust phylogenetic position (e.g. eimerians from the 
tree pangolin, garden dormouse, ferret or marsupials) (MS no. 5, Fig. 2).

The sporocyst excystation structures (Stieda body vs. plates) and 
presence/absence of OR were recently reevaluated by phylogenetic methods as 
taxonomic markers for clustering of coccidian species (Zhao and Duszynski 
2001a, E��-LUNĤ�HW�DO���002, MS no. 1). However, this pattern is not absolute. For 
instance, mammal Isospora species were reported to lack SB (excysting via 4 
plates) and to be phylogenetically related to family Sarcocystidae, therefore 
transferred to a separate genus Cystoisospora �-LUNĤ� HW� DO�� ������ %DUWD� HW� DO��
2005). It is pertinent to stress that so far, only 10 Isospora/Cystoisospora
species from mammals (mainly cats and dogs) out of >130 described species 
have been sequenced. However, according to comprehensive descriptions 
including photomicrographs, several Isospora species infecting mammals 
(namely I. brevicauda, I. condylurae, I. cristatae, I. lamoillensis, I. neurotrichi
and I. palustris – parasites of moles and shrews) evidently possess conspicuous 
SB (Duszynski and Upton 2000). In MS no. 5, some new sequences of mammal 
isosporans (namely Isospora sp. from Apodemus flavicollis and Isospora spp. 
from Talpa europaea) cluster clearly within the family Eimeriidae, not 
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Sarcocystidae. Therefore, it is evident that adding more sequences of Isospora
spp. from other hosts could potentially bring new, surprising insight into 
isosporan phylogeny.

Another counterexample is represented by Eimeria rioarribaensis from 
bats, always clustering within the uniform lineage of OR+ rodent eimerians, but 
clearly lacking this structure (Duszynski et al. 1999). Since it appears that OR 
can be present in the oocyst of certain coccidium species but changes its 
structure or completely disappears after time (Kartchner and Becker 1930, MS. 
no. 3), this phenomenon may apply also to this species. In fact, virtually 
nothing is known about the importance and function of this curious structure, 
which may play a significant role in coccidian evolution.

4.2. Eimeria - Apodemus model

A taxonomically and methodologically suitable complex host-parasite 
system was designed for the following study. It is represented by rodents of the 
genus Apodemus (field mice) and a protistan parasite of the genus Eimeria.

Altogether, 44 coccidia samples (43 Eimeria and 1 Isospora) from 
Apodemus spp. were gathered for the analyses of population structure (Draft 
no. 1). Analysed material was retrieved from 3 host species (Apodemus 
agrarius, A. flavicollis and A. sylvaticus) sampled across Europe (Czech 
Republic, England, France, Germany, Italy, Macedonia and Slovak Republic) 
(Draft no. 1, Fig. 1, Table 1). These 3 species often live in sympatry. The 
mitochondrial gene for cytochrome c oxidase subunit I (COI) was selected as 
the most suitable genetic marker for such an analysis in coccidia. This gene has 
previously been successfully applied to resolve intraspecific variability within 
fowl Eimeria species (Schwarz et al. 2009). Analyses were performed using 
both phylogenetic approaches and methods of population genetics.

The current state of knowledge on coccidia provides only limited 
information on intraspecific structure and the significance of both host-
preference and geography. For example, Hnida and Duszynski (1999b) did not 
find any intraspecific variability within multiple isolates of 4 rodent Eimeria
species of different geographic origin. On the contrary, a notable genetic 
variation between strains of chicken Eimeria species was described by Barta et 
al. (1998), Lew et al. (2003) and Blake et al. (2004).
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Indication of a possible intraspecific pattern was already noted in MS 
no. 5. Against expectation, the more detailed analyses revealed great 
phylogenetic diversity of 11 Eimeria samples obtained from the genus 
Apodemus. While the exact taxonomic status of the analysed samples and their 
precise position could not be entirely clear from the available topologies, they 
evidently clustered at least at 4 different places in the tree and covered quite a 
large phylogenetic span (MS no. 5, Fig. 2).

In Draft no. 1, phylogenetic analyses of the COI gene of 43 Eimeria
specimens from field mice reveal 6 previously unrecognized lineages, differing 
strikingly in their host distribution, degree of host specificity, and population 
sizes (Draft no. 1, Fig. 2). In contrast, only 4 Eimeria species (E. alorani, E. 
apionodes, E. jerfinica and E. kaunensis) (Musaev and Veisov 1965, Pellérdy 
������ $UQDVWDXVNLHQH� HW� DO�� ������ +ĤUNRYi� HW� DO�� ������ DUH� GLVWLQJXLVKDEOH�
based on morphological and morphometrical features of sporulated oocysts 
(Draft no. 1, Figs. 1, 2, Table 2). Populations of Eimeria spp. from field mice 
are structured only according to one of the studied components, the host 
species. The geographic origin of individual isolates does not seem to play a 
significant role (Draft no. 1, Fig. 3, Table 1). As expected, the single sequence 
of Isospora sp. formed a distant, separate branch in both phylogenetic tree and 
TCS haplotype network.

Draft no. 1 represents the first study at a population level on Eimeria
spp. infecting hosts in the wild and may have important epidemiological and 
evolutionary implications.
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5. CONCLUSIONS AND FUTURE PROSPECTS

The availability of detailed morphological descriptions together with 
informative molecular data on a representative set of species is a prerequisite 
for any meaningful analysis of coccidian diversity and evolution. However, 
while hundreds of coccidia species have so far been described from various 
taxonomic groups of mammals (Pellérdy 1974, Levine and Ivens 1990), their 
descriptions as well as subsequent reports are often incomplete and do not allow 
for their comparison. Thus, it is extremely difficult to decide on the identity of 
individual coccidian species (whether two morphologically similar or even 
indistinguishable coccidian oocysts really represent two distinct species) and 
the degree of their host specificity. Apparently, except for the availability of a 
representative taxonomic sample of the host, another serious problem rests in 
the knowledge of the eimerian diversity within a single host genus or species. 
Taken together, “there is an enormous lack of information regarding the 
occurrence of coccidia in most host groups, not because they are not there, but 
because we have not made a concerted effort to look for them.” (Duszynski et 
al. 2007).

Results based on molecular techniques (namely DNA extraction and 
PCR) may be influenced by numerous factors; e.g. base composition (GC 
content), secondary structure, amplicon size, copy numbers, involvement of 
potential inhibitors, but also by such factors as PCR reagents (polymerase, 
buffers) and parameters of the PCR reaction (temperatures and times). In 
phylogeny, results of the analyses depend on the gene/s selected for the study 
and its/their informativeness, alignment parameters and adjustment, 
phylogenetic approach used (e.g. MP vs. ML vs. BI) and evolutionary model 
selected (Buckler et al. 1997, Whelan et al. 2001). Therefore, the results of 
molecular phylogeny may vary considerably according to the above mentioned 
factors and approaches used, and thus should be interpreted with caution.

Nowadays, population-genetics, genomics and proteomics approaches 
(microsatellites/STRs, minisatellites/VNTRs, AFLPs, SNPs, ESTs) in 
parasitology have rapidly developed, allowing even more comprehensive 
analyses (Su and Wellems 1996, Cacciò et al. 2000, Chigagure et al. 2000, 
Shirley et al. 2004, Elsheikha et al. 2006, Höglund et al. 2006, Simo et al. 2008, 
Blaxter et al. 2011, Caballero et al. 2011, Freitas et al. 2011, Xie et al. 2011, 
Liu et al. 2012). However, some of these methods (e.g. AFLP) cannot be 
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applied for coccidians, since they require ultrapure parasite samples. Unlike 
helminths or arthropods, which are macroscopic and easily collected, life-cycle 
stages of microscopic unicellular coccidia occur in host faeces or tissues, so it is 
almost impossible to obtain ultrapure material.

Recently, an advanced molecular technique, real-time PCR (qPCR) has 
started to be used in “coccidiology” (Blake et al. 2008, Morgan et al. 2009). It 
is a sensitive assay enabling both quantification and identification of different 
Eimeria species present in hosts with mixed-species infections, irrespective of 
the life-cycle stage or the presence of other pathogens. This method could 
therefore represent an advance over traditional microscopic techniques. It was 
successfully applied to pure strains of chicken Eimeria species (Blake et al. 
2006, 2008, Swinkels et al. 2006, 2007, Morgan et al. 2009). However, the 
qPCR method requires large amounts of sporulated oocysts/DNA, so it might 
be difficult to employ it for coccidia of wild-living or even endangered host 
species.

Despite the above mentioned difficulties, coccidia represent easily 
available material, obtained by non-invasive techniques (oocysts are 
present/discharged in host faeces), and are therefore suitable model organisms 
for scientific research.

For the future, I intent to enlarge the COI sequence data set for 
population studies of Eimeria spp. from Apodemus species with more samples 
throughout Europe (~ 50 additional samples) and compare the genealogical 
structures between Eimeria spp. and their hosts. A similar study evaluating the 
intraspecific variability and population structure of coccidia will be performed 
also on the Eimeria - Microtus model. Patterns obtained within Eimeria-rodent 
host systems will be compared with results obtained by analyzing “lower 
apicomplexans”, haemogregarines, namely the intracellular blood parasites 
Hemolivia mauritanica, infecting tortoises of the genus Testudo.
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Abstract

Monophyly of all 11 valid Eimeria species from rabbits (Oryctolagus cuniculus 

Linnaeus, 1758) was revealed based on nuclear 18S rDNA sequence data. This 

finding implies that  these species,  which vary considerably in terms of their 

morphology and biology, diversified on a single host or several closely related 

species.  Phylogenetic  analysis  divided  rabbit Eimeria species into  2  sister 

lineages, corresponding to the presence/absence of the oocyst residuum. Other 

morphological or biological traits (oocyst shape and size, presence/absence of 

oocyst  inner  structures,  pathogenicity,  infection  site, pre-patent and  patent 

periods, sporulation time, and number of asexual generations) do not explicitly 

correlate with the phylogeny of rabbit coccidia.

© Cambridge University Press 2008

The original publication is available at www.journals.cambridge.org.

http://journals.cambridge.org/action/displayAbstract?

fromPage=online&aid=1826024
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Manuscript No. 2: 

 

Kvičerová J, Mikeš V, Hypša V (2011) Third lineage of rodent eimerians: 

morphology, phylogeny and re-description of Eimeria myoxi (Apicomplexa: 

Eimeriidae) from Eliomys quercinus (Rodentia: Gliridae). Parasitology 138 

(10): 1217-1223. 
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Abstract

Coccidian  oocysts  from  feces  of  46  individuals  of  the  garden  dormouse, 

Eliomys quercinus (Rodentia: Gliridae), were morphologically and molecularly 

characterized.  Both  morphological  and  sequence  data  (18S  rDNA and  ORF 

470)  showed  low  variability,  indicating  that  all  samples  represent  a  single 

species. By comparison with published morphological descriptions of coccidia 

from glirid rodents, we determined that the samples represent  Eimeria myoxi. 

Molecular  data  suggest  that  this  species  does  not  fall  within  the  2  known 

rodent-specific groups but branches as a third independent lineage. However, its 

exact position in respect to other eimerian clusters could not be established due 

to  the lack  of  phylogenetic  information at  this  taxonomic level  for  the  18S 

rRNA and ORF 470 genes. Based on these results, we provide a redescription 

of Eimeria myoxi, which contains morphological and molecular characteristics 

sufficient for its further unequivocal identification.

© Cambridge University Press 2011

The original publication is available at www.journals.cambridge.org.

http://journals.cambridge.org/action/displayAbstract?

fromPage=online&aid=8358487
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Manuscript No. 3: 

 

Kvičerová J, Ptáčková P, Modrý D (2007) Endogenous development, 

pathogenicity and host specificity of Eimeria cahirinensis Couch, Blaustein, 

Duszynski, Shenbrot, and Nevo, 1997 (Apicomplexa: Eimeriidae) from Acomys 

dimidiatus (Cretzschmar, 1826) (Rodentia: Muridae) from the Near East. 

Parasitology Research 100 (2): 219-226. 
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Abstract

Eimeria cahirinensis Couch et al. 1997 was found in faecal samples of Acomys 

dimidiatus from three different localities in the Near East. Twenty-two of 104 

(21 %)  A.  dimidiatus trapped  on  both  the  south-  and  northfacing  slopes  of 

“Evolution Canyon”, Lower Nahal Oren, Mt. Carmel, Israel in August 2001 and 

2002 were infected with  E. cahirinensis. Oocysts were also obtained from a 

single individual of A. dimidiatus trapped in Wadi Ramm, Jordan in the summer 

of  1999.  Laboratory-reared  spiny  mice  (Acomys spp.)  were  inoculated  to 

determine the prepatent and patent period, sporulation time, site of infection, 

immunogenicity,  pathogenicity,  pathology  and  morphology  of  endogenous 

stages of E. cahirinensis. Both asexual and sexual stages were localised in the 

apical  part  of  duodenal  and  jejunal  villi.  An  experimental  inoculation  of 

representatives  of  several  rodent  genera  revealed  the  host  range  of  E. 

cahirinensis to be limited to the genus Acomys.

© Springer-Verlag 2006

The original publication is available at www.springerlink.com.

http://www.springerlink.com/content/p35323xp07j213v1/
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Supplement to the MS no. 3

Additional molecular data were obtained for the taxa studied in the 
Manuscript no. 3 after the MS was accepted for publication. Here I attach 
summary of the new data and analyses as a Supplement. The 18S rDNA tree is 
shown below in Fig. 1, the tree obtained by analysis of a concatenated matrix is 
a part of the MS no. 5 (Fig. 2).

Materials and methods

Molecular approaches and phylogenetic analyses

Genomic DNA of E. cahirinensis (samples from all 3 localities - NFS, 
SFS and WR) was extracted using the standard phenol-chloroform technique. 
3&5� UHDFWLRQV� ZHUH� SHUIRUPHG� DW� D� ��� ȝO� YROXPH� ZLWK� +RW6WDU7DT� '1$�
polymerase (Qiagen). Two different genes were amplified and sequenced: 
nuclear 18S rRNA (~1500 bp) and mitochondrial COI (~700 bp). Primers and 
PCR conditions were designed manually (18S rDNA) or adopted from a 
publication by Schwarz et al. (2009) (COI). PCR products were enzymatically 
purified and cloned into the pGEM–T Easy Vector (Promega). Plasmids were 
extracted by the PureLink Quick Plasmid Miniprep Kit (Invitrogen). 
Sequencing of selected genes was performed by Macrogen, Inc. (Korea). 
Obtained sequences were identified by BLAST analysis 
(www.ncbi.nlm.nih.gov) and manually adjusted using the SequenceScanner 
(Applied Biosystems), EditSeq and SeqMan (DNASTAR Inc.) programs.

Alignments were created in MAFFT and BioEdit programs (Hall 1999, 
Katoh et al. 2002, 2005). Phylogenetic relationships were analysed using 3 
principal approaches - maximum parsimony (MP), maximum likelihood (ML) 
and Bayesian inference (BI), employing 3 different phylogenetic programs –
PAUP v. 4.0b10 (Swofford 2001), Phyml v. 2.4.3 (Guindon and Gascuel 2003) 
and MrBayes v. 3.1.2 (Huelsenbeck and Ronquist 2001). Most suitable 
evolution models were selected with jModeltest program (Posada 2008, 2009). 
The trees were visualized using TreeView v. 1.6.6 (Page 1996b) and adjusted in 
the Adobe Illustrator CS5 v. 15.0 (Adobe Systems Inc.).
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Since the single-gene COI analyses did not provide reliable phylogenies 
due to the unsufficient sampling, we used a concatenated (18S rDNA + COI) 
matrix to include the COI information into the phylogenetic analysis. Therefore, 
two phylogenetic trees (18S rDNA and a concatenated tree) are provided in this 
Supplement (Figs. 1, 2).

Results

Molecular characterization of sequences of Eimeria cahirinensis.
Partial sequences of two genes were obtained for this eimerian species from 
each locality.

E. cahirinensis NFS:
Nuclear 18S rDNA: total length 1517 bp, GC content of 47 %.
Mitochondrial COI: total length 755 bp, GC content of 36 %, 251 amino acids.

E. cahirinensis SFS:
Nuclear 18S rDNA: total length 1500 bp, GC content of 47 %.
Mitochondrial COI: could not be amplified.

E. cahirinensis WR:
Nuclear 18S rDNA: total length 1426 bp, GC content of 47 %.
Mitochondrial COI: total length 679 bp, GC content of 35 %, 226 amino acids.
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Fig. 1. Phylogenetic tree of the 18S rDNA obtained by BI. The tree is rooted with Isospora belli and I. felis. Numbers at the 
nodes show bootstrap values for ML and MP, and posterior probability under BI (the values are provided only for the nodes
also present in ML and MP trees). Bootstrap supports and posterior probabilities lower than 50% or 0.50, respectively, are
marked with asterisk (*).
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coccidia (Apicomplexa) - striking morphological convergence in unrelated 
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Abstract 

 

Two morphologically similar, but phylogenetically unrelated Eimeria 

species from ancient mammals (the Tree Pangolin Phataginus tricuspis and the 

Sunda Pangolin Manis javanica; Pholidota: Manidae), from two distant 

geographic areas (Africa, Angola and Asia, Singapore), are characterized and 

compared both morphologically and molecularly. The evolutionary 

relationships of these coccidia in respect to other eimerian groups are discussed. 

Phylogenetic analyses suggest the unstable topology of both Eimeria species 

within other eimerians. While their precise position can not be established from 

the available topologies due to the lack of related taxa, it is evident that both 

Eimeria species do not fall into any of the so far recognized eimerian lineages. 

Moreover, an eimerian found in P. tricuspis is described here as a new species, 

Eimeria nkaka n. sp. 

 

Key words: coccidia, Eimeria, pangolin, oocyst morphology, geographic 

origin, phylogenetic relationships. 
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Introduction 

 

Within the apicomplexan subclass Coccidiasina, the taxonomically most 

diverse order Eucoccidiorida (commonly known as “coccidia”) includes 

plethora of families and genera with unclear relationships. This situation is 

reflected by numerous taxonomic misinterpretations and rearrangements that 

occur throughout the literature (Tenter et al. 2002). Due to a coincidence of 

high diversity and limited data available for molecular analyses, surprisingly 

little is known about phylogenetic relationships among coccidians. One of the 

few patterns in coccidian phylogeny, recognized by several authors but seldom 

discussed (e.g. Morrison et al. 2004), is a monophyly of coccidians possessing 

unique structure in their sporocyst wall, the Stieda body (SB) (Jirků et al. 

2009a, b). In all analyses, the SB-bearing taxa appear as a bulk of homoxenous 

coccidia infecting mostly homeothermic vertebrates. They include several 

genera traditionally characterized by number of sporocysts and sporozoites per 

oocyst. In all analyses encompassing sufficiently wide array of taxa, the most 

speciose genus Eimeria seems paraphyletic with SB-bearing members of 

several other genera (Caryospora, Cyclospora and Isospora from birds, i.e. 

Atoxoplasma) clustering among Eimeria species (Morrison et al. 2004, 

Matsubayashi et al. 2005, Jirků et al. 2009b). Although such pattern calls for 

taxonomic rearrangements, the relatively small size and marked bias of 

available data sets make any taxonomic changes premature. For example, over 

860 Eimeria species have been described from mammalian hosts (Duszynski 

and Upton 2001), whereas only 56 nuclear 18S rDNA sequences and even 

fewer sequences of other genes (e.g. 23S rRNA, ORF 470, ITS, COI, Hsp 90) 

are available in the GenBank database (NCBI). Due to their medical and 

veterinary importance, coccidia parasitizing man (and other primates) and 

domestic animals (mainly rabbit and chicken) received main attention. The 

other relatively well-sampled host groups are only rodents and bats. As a result, 

phylogenetic knowledge on the most diverse apicomplexan order is based on 

very incomplete sampling. 

Several morpho- and biologically peculiar lineages of homeothermic 

vertebrates are particularly interesting from the evolutionary point of view. 

These various groups mostly share a relatively low diversity of extant forms 

with rather restricted distributions and a status of surviving representatives of 
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ancestral taxa that were much more widespread and diversified in the more or 

less distant geological past. Among mammals, such lineages include for 

example marsupials, anteaters, sloths, tenrecs, sirens, pangolins, elephant 

shrews and other groups, which are rather marginal in terms of diversity. 

Importantly, these groups often represent either unique radiations, such as 

marsupials, or ancestral sister lineages of speciose extant taxa - such a 

relationship is for example between pangolins (Pholidota) and Carnivora 

(Meredith et al. 2011). Coccidia parasitizing these distinct hosts are of a special 

interest from the phylogenetic point of view. Their molecular characteristics 

may provide missing information allowing for better resolution among SB-

bearing lineages as well as better understanding to their diversity and evolution. 

To date, this issue has only been addressed by Power et al. (2009), who 

suggested coevolution of SB-coccidia with higher-level taxa of hosts by the 

analysis of a marsupial coccidium. 

Eight extant species of pangolins or scaly anteaters (Pholidota: Manidae) 

represent unique ancestral Laurasian lineage of mammals, forming a sister 

group of the Carnivora. All extant representatives of Pholidota are restricted to 

the Old World tropics (Arnason et al. 2002, Amrin-Madsen et al. 2003, 

Springer et al. 2004, Gaudin et al. 2009, Agnarsson et al. 2010, Yu et al. 2011). 

Four species representing two genera (Phataginus, Smutsia) occur in sub-

Saharan Africa, while another four species belonging to the genus Manis occur 

in Oriental realm. All species of Pholidota are progressively getting rare due to 

the large-scale hunting for both subsistence and commercial purposes, and are 

therefore listed in appendix II by CITES. Only a single coccidian species is 

known from the entire group, namely Eimeria tenggilingi Else et Colley, 1976, 

described from Sunda Pangolins Manis javanica from Malay Peninsula. 

In the present work, we provide phylogenetic analyses of two 

morphologically similar Eimeria species from African and Asian pangolins 

using three molecular markers. We show striking morphological convergence 

of unrelated coccidia from phylogenetically and biologically close, but 

biogeographically distant hosts. In addition, we describe the African species as 

new to science. 
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Materials and Methods 

 

Sample collections and treatment, oocyst morphology 

Samples of intestinal contents and tissues were obtained from a single 

adult African Tree Pangolin or African White-bellied Pangolin Phataginus 

tricuspis (Rafinesque, 1821), snared by local people. The animal originated 

from environs of the village Kungutadi in Mayombe forest in Cabinda province, 

Angola, 4°42'31.76"S, 13° 0'52.14"E. A sample of colon contents was 

preserved in 2.5% (w/v) potassium dichromate solution (K2Cr2O7) and tissue 

samples from the stomach, duodenum, jejunum and colon were fixed in 10% 

buffered formalin. For histology, the formalin-preserved tissues were embedded 

in paraffin, sectioned at 6 μm, stained with haematoxylin-eosin (H&E) and 

mounted in Canada balsam. 

Comparative material of Eimeria cf. tenggilingi was obtained from faecal 

samples of captive, wild-originating Sunda Pangolins Manis javanica 

Desmarest, 1822, generously provided by Wildlife Reserves Singapore. 

Oocysts were detected in huge numbers in samples from 1 out of 5 examined 

animals. Although only unsporulated oocysts were available for the study, their 

dimensions (18.0-20.0 × 17.5-19.5 μm) and typical character of the oocyst wall 

(Fig. 1. C, D) suggest this coccidium to represent E. tenggilingi. Oocysts of E. 

cf. tenggilingi used in this study are preserved in absolute ethanol and deposited 

at the protistological collection of the Institute of Parasitology, Biology Centre, 

Academy of Sciences of the Czech Republic, České Budějovice, under 

accession number IPASCR ProtColl 18. 

Oocysts concentrated by flotation and histological sections were 

examined by light microscopy using an Olympus AX70 microscope equipped 

with Nomarski interference-contrast optics (NIC, used for oocysts only). 

Morphological and morphometrical features were evaluated according to 

Duszynski and Wilber (1997). 

 

Molecular techniques and phylogenetic analyses 

Genomic DNA of coccidia was extracted from oocysts isolated from the 

intestinal content by the standard phenol-chloroform procedure. Nuclear 18S 

rRNA (~1400 bp), plastid ORF 470 (~450 bp) and mitochondrial cytochrome c 

oxidase subunit I (COI; ~770 bp) genes were amplified by PCR using specific 
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primers and protocols described by Zhao and Duszynski (2001), Kvičerová et 

al. (2008), and Schwarz et al. (2009), and sequenced on an automatic 3730XL 

DNA analyzer (Macrogen Inc., Korea). Sequences were identified by BLAST 

analysis, adjusted using the DNASTAR program package (DNASTAR Inc.) 

and deposited in the GenBank database (NCBI) under the Accession numbers 

xx-xx. Alignment of 18S rDNA was created with the MAFFT v. 6 program 

(Katoh et al. 2002, 2005) using the G-INS-i algorithm with default parameters, 

and then manually adjusted in the BioEdit program (Hall 1999). Sequences of 

the ORF 470 and COI genes were aligned and manually adjusted in the BioEdit 

program (Hall 1999) in the aminoacid mode. The alignments were then 

switched to nucleotide mode and used for analyses. Three different 

phylogenetic approaches were employed for analyses – maximum parsimony 

(MP), maximum likelihood (ML) and Bayesian inference (BI) – using the 

programs PAUP v. 4.0b10 (Swofford, 2001), Phyml v. 2.4.3 (Guindon and 

Gascuel, 2003) and MrBayes v. 3.1.2 (Huelsenbeck and Ronquist, 2001). MP 

was performed by heuristic search with TBR swapping algorithm and the clade 

support was assessed with 1000 bootstrap replicates. ML was computed using 

the GTR+Г+I evolutionary model and the clade support with bootstrap analysis 

of 1000 replicates. BI was performed with parameters (rates=invgamma, nst=6, 

ncat=4) corresponding to the model estimated (GTR+Г+I). The MCMC was 

run for 10 million generations and tree sampling every 100 generations. The 

program AWTY (Nylander et al. 2008) was used to check the MCMC 

convergence and determine burn-in. A possible effect of LBA (long branch 

attraction) artifact was tested by several methods (removing and adding of taxa, 

LogDet analyses). The trees were visualized and exported using TreeView v. 

1.6.6 (Page 1996) and adjusted in the Adobe Illustrator CS5 v. 15.0 (Adobe 

Systems Inc.). More detailed descriptions of the methods and parameters are 

provided in Table 1. 

 

 

Results 

 

Huge numbers of coccidian oocysts containing four dizoic sporocysts 

were found in intestinal contents of the single P. tricuspis examined by the 

flotation method. According to a presence of SB in sporocysts, the coccidian 
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was assigned to the genus Eimeria. In addition, coccidian endogenous 

developmental stages were detected in histological sections of both small and 

large intestine. Due to the presence of exceptionally high numbers of oocysts 

representing a single Eimeria sp. in intestinal contents and numerous 

endogenous stages in intestinal epithelial cells, the oocysts and endogenous 

stages are considered conspecific. Comparison with other mammal-host 

Eimeria spp. shows that our material represents a new species, the description 

of which is provided below. 

 

Oocyst morphology of Eimeria nkaka n. sp. Fully sporulated oocysts 

(Fig. 1.A) are variable both in shape and size, spherical to broadly elliptical 

with mean length/width ratio 1.1 (range 1.0-1.3), measuring 17.5 (14.0-21.5) × 

15.5 (12.5-18.0) μm (n=44) with bilayered oocyst wall consisting of thin 

colourless inner layer (~0.5 μm) and thicker yellowish outer layer (~1.0 μm) 

with markedly rugged outer surface (Fig. 1.B). Oocyst residuum and micropyle 

are absent. One, rarely two polar granules, 2-6 μm in diameter, irregular, 

seemingly composed of a few fused granules. Sporocysts dizoic, elliptical, 

often asymmetrical – flattened at one side, with length/width ratio 2.3 (range 

1.7-3.1), measuring 13.5 (11.5-15.5) × 6.0 (4.0-8.0) μm (n=21). Stieda body 

well-recognizable, 1.5-2.0 μm wide, 0.5-1.0 μm high (Fig. 1.A). Transparent, 

barely visible sub-Stieda body might be present. The sporocyst pole bearing the 

SB often slightly tapered (Fig. 1.A). Sporocysts usually lying parallelly, tightly 

appressed to each other, leaving almost no free space within oocyst. Each 

sporozoite possesses one large refractile body 3-5 μm long and another smaller 

one measuring 3.0 × 2.5 μm (Fig. 1.A). Dense granulation of sporozoite 

cytoplasm sometimes did not allow for exact recognition of internal sporocyst 

structures. The sporocyst residuum consists of a dense irregular cluster of fine 

granules, ~6.5 μm in diameter (Fig. 1.A). In incompletely sporulated oocysts, 

the sporocyst residuum consists of relatively larger granules of variable size 

scattered among sporozoites. 

Molecular characterization of sequences of Eimeria nkaka n. sp. 

Partial sequences of 3 genes were obtained for this eimerian species. 

Nuclear 18S rDNA: total length 1376 bp, GC content of 47 %. 

Plastid ORF 470: total length 449 bp, GC content of 25 %, 149 amino acids. 

Mitochondrial COI: total length 768 bp, GC content of 35 %, 256 amino acids. 
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Molecular characterization of sequences of Eimeria cf. tenggilingi. 

Partial sequences of 2 genes were obtained for this eimerian species. 

Nuclear 18S rDNA: total length 1432 bp, GC content of 45 %. 

Mitochondrial COI: total length 771 bp, GC content of 33 %, 257 amino acids. 

Phylogenetic position of Eimeria spp. from pangolins. 

Phylogenetic analyses based on the 18S rRNA, ORF 470 and COI genes 

yielded unstable positions of both E. nkaka and E. cf. tenggilingi sequences 

within the other eimerian species. Nevertheless, this unstability is not due to the 

overall lack of the phylogenetic signal in the matrix or poor tree resolution; 

other sequences included in the matrices formed stable and robust host-specific 

clusters (i.e. fowl-, rabbit- and rodent-specific) in all analyses performed (MP, 

ML and BI) (Figs. 2-4). 

In most analyses, the African E. nkaka clusters with Eimeria myoxi from 

the garden dormouse, close to the Cyclospora and fowl-Eimeria clade, but 

always with low bootstrap support (Figs. 2, 3). Similarly, the unstable position 

was previously shown for E. myoxi (Kvičerová et al. 2011). Only in ORF 470 

phylogenies, E. nkaka was placed inside the rodent-specific cluster (Fig. 4). 

However, ORF 470 data set contains only 16 Eimeria sequences since no other 

species are available in the GenBank. It is therefore obvious that the results can 

be distorted due to the lack of taxa. 

In the tree based on 18S rDNA sequences, E. cf. tenggilingi clusters to Eimeria 

pilarensis from bat; in COI tree, however, it falls to the fowl-Eimeria group. 

The low bootstrap support for the E. cf. tenggilingi nodes is shown in analyses 

of both genes (Figs. 2, 3). Unfortunately, we were not successful in obtaining 

the ORF 470 sequence of E. cf. tenggilingi. Details on phylogenetic analyses 

are provided below (Table 1). Accession numbers of sequences used in the 

analyses are provided in Table 2. 
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Table 1. Information on phylogenetic analyses of molecular data and 

parameters used. 

 
Matrix MP (PAUP) ML (Phyml) BI (MrBayes) 

18S rDNA 
 
46 sequences, 
alignment 
length 1620 bp 

hsearch + TBR 
1000 replicates 
best tree = 1004, 
strict consensus 
of 42 trees 
CI = 0,6026 

GTR + Г +I 
1000 replicates 
-ln: 7920.252959

GTR + Г +I 
mcmc = 10,000,000 
gens. 
burn-in = 1100 trees 

ORF 470 
 
16 sequences, 
alignment 
length 585 bp 

hsearch + TBR 
1000 replicates 
best tree = 463, 
strict consensus 
of 6 trees 
CI = 0,6847 

GTR + Г +I 
1000 replicates 
-ln: 2989.351591

GTR + Г +I 
mcmc = 10,000,000 
gens. 
burn-in = 2000 trees 

COI 
 
26 sequences, 
alignment 
length 714 bp 

hsearch + TBR 
1000 replicates 
best tree = 484, 
strict consensus 
of 9 trees 
CI = 0,6054 

GTR + Г +I 
1000 replicates 
-ln: 3338.626500

GTR + Г +I 
mcmc = 10,000,000 
gens. 
burn-in = 2000 trees 

 
 
Discussion 

 

Comparison among morphology, host specificity and phylogeny of the 

two pangolin Eimeria species reveals an interesting phenomenon. While these 

parasites are phylogenetically distant, they display a striking morphological 

similarity. It includes a combination of the following traits: a relatively thick 

oocyst wall composed of thin colourless inner layer and thicker yellowish to 

brownish outer layer with markedly rugged surface; delicate thin-walled, 

colourless, usually asymmetrical sporocysts; absence of oocyst residuum (for 

visual comparison of oocyst morphology, see Results and/or publication of Else 

and Colley 1976). The above mentioned traits present in both species are 

particularly conspicuous, because such a combination of features is only rarely 

found in eimerians. It is thus interesting to hypothesize that especially the 

relatively thick oocyst wall may be an independent adaptation facilitating high 

resistance of the oocysts to environmental conditions and their long-term 
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viability outside the host. Necessity for the long-term survival of oocysts 

outside host might reflect the relatively low population densities resulting from 

solitary life style, large home ranges and sedentarity of pangolins (Kingdon 

1997), which logically result in infrequent encounters of oocysts with potential 

new hosts. 

While it is clear from the resulting trees that the two species are not 

closely related, their exact phylogenetic position could not be resolved. It is 

generally known that inferring the evolutionary history of phylogenetically 

isolated, deep-branching groups of taxa may be difficult because their close 

relatives are not available for the analyses. This is the case of both eimerians 

from pangolins; their phylogenetic analysis is hampered by the lack of Eimeria 

species infecting closely related host taxa, such as nandinia, lisangs, 

mongooses, meerkats, coatis, skunks and other members of the order Carnivora 

(Meredith et al. 2011). Eimeria nkaka represents a second described (and the 

first sequenced) coccidium from the order Pholidota. Enrichment of the existing 

data set by Eimeria sequences from the closest relatives of Manidae, as well as 

carnivores, might help to fill in this missing link and resolve the topology of 

coccidia infecting this ancient group of placental mammals. Unfortunately, no 

coccidium has yet been described from some of these host groups (namely 

Eupleridae, Nandiniidae and Prionodontidae). 

This study thus confirms the often stressed importance of a representative 

sampling. In Eimeriidae, the available taxon sampling is quite uneven. While 

several host groups (e.g. rodents, rabbits, poultry, livestock) are relatively well-

studied from the phylogenetic point of view, other groups of hosts (both diverse 

and species-poor) are undersampled or even absent. Diversified homeothermic 

host taxa that are surprisingly poorly represented are for example wild-living 

birds (molecular studies are focused mostly on coccidia from domestic fowl) 

and wild-living ungulates. In these groups, however, extension of sampling 

might be quite easy. In contrast, numerous host groups will probably remain 

difficult to sample due to their restricted distribution ranges or rarity, which 

applies also to their parasites. 

Another feature that deserves particular attention is a presence of SB. It is 

a plug-like structure located at one pole of the sporocyst wall that disintegrates 

after ingestion of infectious developmental stage (the sporulated oocyst) by a 

new host in its digestive tract. An opening appears at the place of former SB, 
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which allows motile sporozoites to leave the sporocyst, enter the gut lumen, and 

eventually find and infect receptive host cells. SB is therefore essential in the 

initial stage of infection and its uniqueness is of a great taxonomic significance, 

as it represents the only evident synapomorphy of Eimeriidae (Jirků et al. 2002, 

Barta et al. 2005, Jirků et al. 2009b). 

In the original description of E. tenggilingi, it is explicitly stated that it 

does not possess SB. However, SB is present in all mammal-host Eimeria 

species, including the very similar and closely related E. nkaka described in this 

work (Fig. 1. A). Therefore, we believe that also E. tenggilingi possesses, 

though probably barely discernible, SB that was overlooked by Else and Colley 

(1976). 

 

 

TAXONOMIC SUMMARY 

 

Eimeria nkaka n. sp. 

Type host: African Tree Pangolin or African White-bellied Pangolin 

Phataginus tricuspis (Rafinesque, 1821) (Mammalia, Pholidota, Manidae) 

Type locality: Kungutadi, Cabinda province, Angola, 4°42'31.76"S, 13° 

0'52.14"E. 

Prevalence: Only a single animal was examined. 

Site of infection: Epithelial cells of the whole intestine – enterocytes of 

villar bases and glandular crypts of colon. 

Type material/Hapantotype: Histological sections of infected intestine, 

oocysts in absolute ethanol, digital photomicrographs (photosyntypes) and liver 

tissue sample of the symbiotype P. tricuspis are deposited at the protistological 

collection of the Institute of Parasitology, Biology Centre, Academy of 

Sciences of the Czech Republic, České Budějovice, no. IPASCR ProtColl 17. 

DNA sequences: Sequences of nuclear 18S rRNA, plastid ORF 470 and 

mitochondrial COI genes of Eimeria nkaka are available in the GenBank 

database (NCBI) under the Accession numbers xx-xx. 

Etymology: The specific epithet is name for pangolin in local Ibinda 

language of Cabinda. 
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Table 2. Sequences included in the phylogenetic analyses. 

 

n.d.: our sequences, not deposited in the GenBank yet. 

- : the sequence is not available. 

 
 
Organism Acc. number  

18S rDNA 
Acc. number 
ORF 470 

Acc. number 
COI 

Eimeria acervulina U67115 - FJ236419 
E. ahsata AF338350 - - 
E. alabamensis AF291427 - - 
E. albigulae AF307880 AF311630 - 
E. alorani - - n.d. 
E. antrozoi AF307876 - - 
E. apionodes - - n.d. 
E. arizonensis AF307878 AF311631 - 
E. arnyi AY613853 - - 
E. bovis U77084 - - 
E. catronensis AF324213 - - 
E. cf. mivati - - FJ236441 
E. chobotari AF324214 - - 
E. coecicola EF694015 - n.d. 
E. crandallis AF336339 - - 
E. dipodomysis AF339490 - - 
E. exigua - n.d. n.d. 
E. falciformis AF080614 AF311632 - 
E. faurei AF345998 - - 
E. flavescens EF694011 JF304149 n.d. 
E. gruis AB205165 - - 
E. intestinalis - n.d. n.d. 
E. irresidua - - n.d. 
E. langebarteli AF311640 AF311639 - 
E. leucopi AF339491 - - 
E. magna EF694016 JF304150 n.d. 
E. maxima - - FJ236459 
E. mivati U76748 - EF174185 
E. myoxi JF304148 JF304151 n.d. 
E. necatrix - - EU025108 
E. nieschulzi U40263 AF311633 - 
E. nkaka n.d. n.d. n.d. 
E. onychomysis AF307879 AF311634 - 
E. peromysci AF339492 - - 
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E. pilarensis AF324215 - - 
E. piriformis - - n.d. 
E. polita AF279667 - - 
E. porci AF279666 - - 
E. reedi AF311642 AF311636 - 
E. reichenowi AB205175 - - 
E. rioarribaensis AF307877 - - 
E. scabra AF279668 - - 
E. scholtysecki AF324216 - - 
E. separata AF311643 AF311637 - 
E. sevilletensis AF311644 AF311638 - 
E. telekii AF246717 - - 
E. tenella U67121 Y12333 FJ236458 
E. tenggilingi n.d. - n.d. 
E. trichosuri FJ829323 - - 
E. tropidura AF324217 - - 
E. vejdovskyi - - n.d. 
E. sp. TKC-1-2005 DQ072716 - - 
E. sp. TKC-2-2005 DQ167480 - - 
    
Cyclospora 
cayetanensis 

AF111183 - - 

    
Goussia neglecta FJ009242 - - 
    
Isospora hypoleucae - - FJ269363 
Isospora sp. iSAT1 - - FJ269357 
Isospora sp. iSAT2 - - FJ269358 
Isospora sp. iSAT3 - - FJ269359 
Isospora sp. iSAT4 - - FJ269360 
Isospora sp. iSAT5 - - FJ269361 
Isospora sp. iSAT6 - - FJ269362 
    
Toxoplasma gondii M97703 - - 
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Fig. 1. A-D. Oocyst morphology of Eimeria species from pangolins. 
A-B. Eimeria nkaka n. sp. from Phataginus tricuspis. C-D. Eimeria cf. tenggilingi from Manis javanica.
Oocysts concentrated from faeces by flotation; Nomarski interference contrast. All in the same scale,
VFDOH�EDU� ����ȝP�

Fig. 1.A. Morphology of sporulated oocyst of E. nkaka showed in optical section. Note a distinct refractile
body of the sporozoite (*), irregular polar granule (arrowhead), assymetrical shape of the sporocysts and
clearly discernible Stieda bodies (arrows).
Fig. 1.B. Oocyst wall of E. nkaka showing irregular granulation of its external surface.
Fig. 1.C. Unsporulated oocyst of Eimeria cf. tenggilingi showing typical character of oocyst wall.
Fig. 1.D. Oocyst wall of E. cf. tenggilingi showing granulation of its external surface.
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E. chobotari99/97/1.00

69/52/*

E. scabra
E. porci

E. polita83/90/0.84

99/100/1.00

Cyclospora cayetanensis
E. tenella

E. mivati
E. acervulina100/100/1.00

98/96/1.00

72/73/1.00

E. nkaka
E. myoxi

E. alabamensis
E. flavescens

E. coecicola
E. magna84/84/0.99

97/95/1.00

E. faurei
E. bovis

E. crandallis
E. ahsata99/97/1.00

81/77/0.82

100/100/1.00

E. cf. tenggilingi
E. pilarensis

34/*/0.55

E. langebarteli
E. scholtysecki

67/72/0.99

E. telekii
E. separata

99/99/1.00

52/60/0.91

E. falciformis
E. sevilletensis

E. nieschulzi
68/69/0.99

97/96/1.00

74/71/1.00

E. arnyi
E. sp. TKC-1-2005 ex Lissemys punctata

E. sp. TKC-2-2005 ex Lissemys punctata90/78/1.00

75/68/0.97

50/*/0.89

79/71/0.96

94/94/1.00

50/*/0.57

*/51/1.00

*/*/0.78

*/*/0.83

*/*/0.84

Fig. 2. Phylogenetic tree of the 18S rDNA obtained by BI. The tree is rooted with Toxoplasma gondii. Numbers at the 
nodes show bootstrap values for ML and MP, and posterior probability under BI (the values are provided only for the nodes
also present in ML and MP trees). Bootstrap supports and posterior probabilities lower than 50% or 0.50, respectively, are
marked with asterisk (*).

72



0.1

Isospora hypoleucae

I. sp. iSAT5 ex Sylvia atricapilla

I. sp. iSAT6 ex Sylvia atricapilla

I. sp. iSAT2 ex Sylvia atricapilla
97/75/0.68

57/*/0.71

I. sp. iSAT4 ex Sylvia atricapilla

I. sp. iSAT3 ex Sylvia atricapilla

I. sp. iSAT1 ex Sylvia atricapilla
63/58/0.94

85/86/1.00

E. apionodes

E. alorani

100/100/1.00

E. intestinalis

E. magna

E. vejdovskyi

E. coecicola

61/81/0.92

100/99/1.00

E. irresidua

E. exigua

E. flavescens

E. piriformis
73/79/0.98

68/63/0.91

87/87/0.99

89/86/1.00

E. myoxi

E. nkaka
34/35/*

E. acervulina

E. mivati

E. cf. mivati

E. maxima

56/*/0.94

93/84/1.00

52/57/0.85

E. cf. tenggilingi

E. tenella

E. necatrix

100/100/1.00

92/81/1.00

*/55/0.56

*/*/0.97

Fig. 3. Phylogenetic tree of the COI obtained by BI. The tree is rooted with Isospora hypoleucae. Numbers at the nodes
show bootstrap values for ML and MP, and posterior probability under BI (the values are provided only for the nodes
also present in ML and MP trees). Bootstrap supports and posterior probabilities lower than 50% or 0.50, respectively, are
marked with asterisk (*).
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E. magna

E. intestinalis

99/99/1.00

E. exigua

E. flavescens

98/89/1.00

83/84/1.00

E. langebarteli
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E. nieschulzi
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E. onychomysis

92/89/1.00

99/99/1.00

70/66/0.98

33/59/0.50

*/*/0.59

*/*/0.51

Fig. 4. Phylogenetic tree of the ORF 470 obtained by BI. The tree is rooted with Eimeria tenella. Numbers at the 
nodes show bootstrap values for ML and MP, and posterior probability under BI (the values are provided only for 
the nodes also present in ML and MP trees). Bootstrap supports and posterior probabilities lower than 50% or 0.50,
respectively, are marked with asterisk (*).
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Abstract 

 

The degree of host specificity, its phylogenetic conservativeness and 

underlying processess are virtually unknown. This is largely due to inadequate 

sample of eimerians represented by molecular data that can be used for reliable 

phylogenetic analyses. In this study, we extend the data on Eimeria spp. with 86 

new sequences of eimerians from 16 small mammals genera, mostly rodents. 

According to the feasibility of the genes amplification, the new samples are 

represented by one or more of the following genes: 18S rRNA, ORF 470 and 

COI. The results confirm the previous suggestion that Eimeria, in its current 

morphology-based delimitation, is not a monophyletic group. Several samples 

corresponding morphologically to other genera are scattered among the Eimeria 

lineages. More importantly, the distribution of eimerians from different hosts 

indicates that the clustering of eimerian species is influenced by their host 

specificity, but does not arise from a cophylogenetic/copseciation process; 

while several clusters are specific to particular host group, inner topologies of 

these clusters do not reflect the host phylogeny. This suggests that host 

specificity in Eimeria is caused by adaptive rather than cophylogenetic 

processess. 
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Introduction 

 

Specificity to more or less restricted group of hosts is one of the 

fundamental characteristics of most parasitic taxa. In parasitological research, 

this trait has traditionally been considered highly conserved from the 

phylogenetic point of view. This led to establishment of a broad spectrum of 

concepts and methods dealing with coevolution/cospeciation between the host 

and parasite (Brooks 1988, Brooks and McLennan 1991, 1993, Page 1991, 

1993, 1994, Thompson 1994, Huelsenbeck et al. 1997, Paterson and Gray 

1997). More recently, analyses based on molecular data revealed a tendency to 

the conservativeness of host specificity and even strong cospeciation signal in 

many parasitic groups (Page 1996a, Hafner and Nadler 1990, Ricklefs et al. 

2004). On the other hand, they also demonstrated that such a conservativeness 

is not a “rule”, and found many surprising inconsistencies among the host and 

parasite phylogenies (Charleston 1998, Page et al. 1998, Huelsenbeck et al. 

2000, Jousson et al. 2000, Ricklefs and Fallon 2002). Moreover, many other 

features, morphological or ecological, presumed to be reliable determinants of 

taxonomy and classification, proved to suffer the same phylogenetic 

inconsistencies (Relman et al. 1996, Pieniazek and Herwaldt 1997, Carreno et 

al. 1998, Fiala 2006, Štefka and Hypša 2008). Consequently, traditional 

classifications of many taxa remain artificial and many generic names do not 

designate monophyletic groups. 

Currently, there is no consensus or general view on how might be the 

host specificity in various parasites phylogenetically conserved. Apart from 

many methodological problems (Page 1996a, Paterson and Banks 2001), one 

drawback is the traditional focus on several model groups (e.g. chewing lice, 

lice and nematodes; Hafner and Nadler 1988, 1990, Brant and Gardner 2000, 

Perlman et al. 2003, Weckstein 2004, Whiteman et al. 2004) and unsufficient 

data for many others. The situation may be particularly difficult and the 

analyses misleading in taxonomically rich groups for which only poor sampling 

is currently available; any pattern observed on the phylogenetic background 
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may be a random outcome of the inadequate arbitrary sampling rather than 

reflection of real tendencies within the group. Considering their importance, it 

is quite surprising that coccidia of the genus Eimeria provide such an example. 

Majority of the traditional studies on coccidia with taxonomic implications are 

based solely on morphology of sporulated oocysts (e.g. Pellérdy 1974, Lewis 

and Ball 1983, Levine and Ivens 1990, Higgs and Nowell 1991, Hůrková et al. 

2005, Seville et al. 2005, Golemansky and Koshev 2007, Lynch et al. 2007). 

Several other publications deal with the host specificity (mostly laboratory 

cross-transmission studies) and pathogenicity of coccidia (de Vos 1970, Upton 

et al. 1992, Koudela and Vítovec 1994, Schito et al. 1996). 

Only few comprehensive molecular studies have been performed so far 

(Barta et al. 1997, Franzen et al. 2000, Morrison et al. 2004, Matsubayashi et al. 

2005, Kvičerová et al. 2008). They show that some morphological features of 

the oocyst (i.e. oocyst size, sporocyst size and shape index) are phylogenetically 

incosistent and can not be used as taxonomic determinats. In addition, several 

morphological studies indicate that these features even vary during the 

development/patency of the oocyst (Long and Joyner 1984, Parker and 

Duszynski 1986, Gardner and Duszynski 1990). Moreover, determination of the 

“oocyst shape” is a subjective criterion that depends on the microscopic 

experience of the individual observer (e.g. oval vs. ovoidal vs. ellipsoidal 

shape; the “spherical” or “subspherical” shape is often detected in dependence 

on the view angle). 

In this study, we further explore phylogenetic significance of host 

specificity within Eimeria by adding 86 new eimerian sequences. Since the 

most frequently utilized phylogenetic marker, the 18S rDNA, proved to be 

unsufficient for this group, we also sequenced two additional DNA regions 

where possible, cytochrome c oxidase subunit I (COI) and ORF 470. To obtain 

a consistent picture allowing for evolutionary inference, we mainly focused on 

the rodent-derived Eimeria; the complete set thus contains 46 eimerian parasites 

from various rodent groups, covering/involving 8 rodent families. This 

representative set demonstrates that with increasing number of available taxa, 

the phylogenetic relationships become less host-dependent. 
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Materials and Methods 

 

Samples collection and treatment 

Rodents were trapped using the Sherman live-traps or classic wooden 

traps, with official permissions. Fresh faeces or the gut content of each 

individual animal were placed into 4% (w/v) potassium dichromate solution 

(K2Cr2O7) and stored at 4 oC. Several samples (e.g. shrews, moles and mole-

rats) were obtained from already deceased animals. Faecal samples were 

examined for the presence of coccidian oocysts by the standard flotation 

technique with Sheather´s sucrose solution (sp.gr. 1.30). An Olympus BX51 

microscope equipped with the Olympus Camedia C-5060W camera and Quick 

Photo Pro v. 2.0 PC software was used for species-specific identification of 

oocysts found. Morphological and morphometrical features were evaluated 

according to Duszynski and Wilber (1997). 

 

Molecular analyses 

Genomic DNA of coccidia was extracted using the FastDNA SPIN Kit 

for Soil (MP Biomedicals). Three different genes (nuclear 18S rRNA, plastid 

ORF 470 and mitochondrial COI) were amplified using the HotStarTaq DNA 

polymerase (Qiagen) and PCR protocols according to Zhao and Duszynski 

(2001b), Kvičerová et al. (2008) and Schwarz et al. (2009). PCR products of 

expected sizes (18S rDNA ~1500 bp, ORF 470 ~700 bp and COI ~700 bp) 

were enzymatically purified and cloned into the pGEM-T Easy Vector 

(Promega). Five clones of each sample were used for the plasmid extraction by 

the PureLink Quick Plasmid Miniprep Kit (Invitrogen). Plasmids were 

sequenced on an automatic 3730XL DNA analyzer in Macrogen, Inc. (Korea) 

with the PCR primers and inner primers (Zhao and Duszynski 2001b, 

Kvičerová et al. 2008, Schwarz et al. 2009). Sequences were identified by 

BLAST analysis, adjusted using the DNASTAR program package (DNASTAR 

Inc.) and deposited in the GenBank database (NCBI) under the Accession 

numbers xx-xx. 

 

Phylogenetic analyses 

To explore phylogenetic signal in the obtained sequences in a complex 

way, we built several different single-gene and multi-gene matrices. Three 
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single-gene matrices, 18S rDNA, COI and ORF 470, were designed with 

different taxa samplings according to the availability of the given sequences for 

individual taxa (Table 1). The Skeleton matrix included taxa for which all three 

genes were available. The Concatenate matrix encompassed all taxa for which 

at least one gene was available. To achieve stable and reliable placement of the 

root, multiple taxa were used as outgroups (Table 1). All matrices were aligned 

and analyzed at nucleotide level. Alignments were constructed in MAFFT v. 6 

program (Katoh et al. 2002, 2005) and corrected manually in BioEdit program 

(Hall 1999). Maximum likelihood (ML) and Bayesian inference (BI) were used 

for phylogenetic analyses. Most suitable models of sequence evolution were 

identified in jModelTest (Posada 2008, 2009) and MrModel (Nylander 2004) 

programs using Akaik’s criterion. ML was performed in Phyml v. 2.4.3 

(Guindon and Gascuel 2003) with GTR + Г + I model and parameters estimated 

from the data. BI was done using MrBayes v. 3.1.2 (Huelsenbeck and Ronquist 

2001) with GTR + Г + I model for 50 million generations. Chain convergence 

and burn-in were estimated according to the indices implemented in the 

MrBayes program (deviation of split frequencies, potential scale reduction 

factor – PSRF) and using the program Tracer (Rambaut and Drummond 2007). 

The trees were summarized after removing 20% burn-in and visualized using 

TreeView v. 1.6.6. (Page 1996b). 

 

 

Results 

 

While the trees obtained by phylogenetic analyses with different data 

sets and methods vary in positions of individual branches, they are well-

compatible in their overall structure and arrangement. Since the aim of this 

study was to analyse the monophyly and composition of the whole clusters 

characterized by various biological features (e.g. morphology, host specificity) 

rather than relationships among individual species, we focused on comparison 

among particular internal nodes in the trees. To allow for a transparent 

comparison among the trees inferred from different data sets, we established a 

specific reference method. We chose the Concatenated ML tree with bootstrap 

values to delimit clusters of two types. First, we labelled all monophyletic 

groups that were characterized by well-defined spectrum of the host taxa 
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(vertical lines in the Fig. 2); second, we “fixed” all nodes that were strongly 

supported by the bootstrap values and were also preserved in the BI tree (open 

squares at the branches; Fig. 2). We then identified whether each of these 

“fixed” groups is represented by at least one sample in the Skeleton tree 

(asterisks at the taxa names in Fig. 2). 

The Skeleton tree divides the included taxa into 6 main arbitrary 

delimited clades (A-D, Fig. 1). When fixed according to the Skeleton taxa, these 

clades are also preserved and well-supported in all performed single-gene 

analyses and in the Concatenated tree. The single-gene trees as well as the 

Concatenated tree also demonstrate that whereas some genera (e.g. Cyclospora) 

are monophyletic, others (Eimeria and Isospora) are polyphyletic. In all 

analyses performed, the rodent Eimeria species are divided into several (6-8) 

paraphyletic lineages. Composition of these clades corresponds to the 

presence/absence of the oocyst residuum (OR). Other criteria (oocyst shape and 

size, presence/absence of micropyle and other inner oocyst structures, location 

of endogenous development, pre-patent and patent periods, sporulation time), if 

known for the studied taxa, do not correlate with the topology. Of our new 

rodent samples, three species from the newly added hosts fall within the OR+ 

rodent cluster (namely E. cahirinensis, E. callospermophili and Eimeria sp. 

from Acomys sp.). Another twelve samples (i.e. E. caviae, E. chinchillae, 

Eimeria spp. from Apodemus, Cricetus, Heliophobius, Mastomys) branched 

within the OR- rodent cluster. While most of Eimeria tend to cluster according 

to the host (i.e. distinct and stable fowl-, wild living bird-, porcine-, bovine-, 

rabbit- and rodent- lineages), the Concatenated tree also indicates that the 

sampling is still insufficient and several taxa lack the clear phylogenetic 

position (e.g. eimerians from the tree pangolin, garden dormouse, sheep, ferret 

and marsupials) (Fig. 2). 

 

 

Discussion 

 

This study provides the most up-to-date insight into the phylogeny of 

eimerian parasites. Altogether, 86 new sequences of Eimeria species belonging 

to 16 small mammals genera (8 rodent families, 2 insectivores and 1 manid) and 

1 new rodent Isospora sequence were analyzed together with coccidian 
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sequences available from the GenBank. Two main conclusions arise from the 

presented results. Firstly, they confirm the previous suggestion that Eimeria, in 

its current morphology-based delimitation, is not a monophyletic group. 

Secondly, and more importantly, they show an interesting relationship between 

the host specificity and phylogeny: the distribution of eimerians from different 

hosts indicates that clustering of eimerian species is influenced by their host 

specificity but does not stem from a cophylogenetic process. Before attempting 

any serious evolutionary conlusion, however, it should be admitted that the 

current sample of molecularly characterized Eimeria spp. and spectrum of their 

available genes is extremely poor and incosistent. Nevertheless, despite this 

drawback, both conclusions stated above are well-supported by all data and 

analyses. 

The non-monophyly issue of the genus Eimeria has been indicated by 

several previous studies (Morrison et al. 2004, Matsubayashi et al. 2005, 

Yabsley and Gibbs 2006). It introduced into the recognition of the 

inconsistency between various phenotypic traits (most typically the oocyst 

morphology) and phylogenetic relationships in coccidia (Relman et al. 1996, 

Pieniazek and Herwaldt 1997, Franzen et al. 2000, Kvičerová et al. 2008). 

However unpleasant this finding may had been for the coccidian taxonomists, it 

is hardly surprising that similar decoupling of the morphology of resistant 

stages and phylogenetic positions was also demonstrated in some other groups 

of parasites (e.g. Myxosporea; Fiala 2006). 

This situation brings a serious problem with future reclassification of the 

family Eimeriidae. Several species corresponding morphologically to different 

genera (e.g. Cyclospora and Isospora) branch within the Eimeria cluster. For 

example, genus Isospora is undoubtedly polyphyletic, with several lineages 

scattered among Eimeria species (mammal-associated species on the base of 

coccidian topology/related to Sarcocystidae, bird-associated species split into 2 

lineages, one scattered among rodent Eimeria species and one related to 

Eimeria from cattle and rabbits, mole isosporans and Isospora sp. from field 

mouse form separate clusters within Eimeriidae) (Fig. 2; Franzen et al. 2000, 

Jirků et al. 2002, Samarasinghe et al. 2008, Dolnik et al. 2009, Jirků et al. 

2009). Sporulated oocysts of Isospora spp. are quite morphologically uniform 

(for examples, see Pellérdy 1974 and/or Duszynski and Upton 2000); 

nevertheless, the genus Isospora was divided into 2 individual genera according 
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to the phylogeny, host specificity and the presence/absence of a Stieda body 

(SB): bird-associated Isospora (former Atoxoplasma) with SB belonging to 

Eimeriidae and mammal-associated Cystoisospora lacking SB belonging to 

Sarcocystidae (Carreno et al. 1998, Franzen et al. 2000, Barta et al. 2005). 

However, it is pertinent to stress that only 10 Isospora/Cystoisospora species 

from mammals (mainly cats and dogs) out of >130 described species 

(Duszynski and Upton 2001) have been sequenced so far. Moreover, the 

comprehensive descriptions including photomicrographs show that several 

Isospora species infecting mammals (namely those parasitising moles and 

shrews) evidently possess conspicuous SB (Duszynski and Upton 2000). 

Sequences from these species could potentially bring new, surprising insight 

into isosporan phylogeny. Similarly, the genus Cyclospora keeps to cluster 

strikingly within Eimeria species, related to fowl-associated Eimeria (Relman 

et al. 1996, Pieniazek and Herwaldt 1997, Eberhard et al. 1999, Li et al. 2007). 

However, only data on Cyclospora spp. from man, primates and dairy cattle are 

currently available, while inclusion of additional Cyclospora species from other 

hosts (e.g. insectivores or reptiles) may bring more surprises. 

The issue of the host specificity and its phylogenetic significance has 

been much less explored in the published studies. One of the main reasons is an 

inadequate representation of the host-specific groups. In fact, only the rodent-

derived Eimeria are currently represented by a reasonable number and diversity 

of samples, whereas the other so-called host-specific lineages are mostly 

derived from very closely related hosts or even a single host species. 

Alternatively, they are defined by various artificial rather than taxonomic 

characteristics of their hosts (e.g. poultry parasites, livestock parasites, etc.). 

Previous phylogenetic studies tended to group the rodent-specific 

Eimeria species in two distant but monophyletic clusters with unclear 

dependency on the taxonomic position of the hosts (Zhao and Duszynski 2001a, 

b, Zhao et al. 2001). Taking the number of eimerian samples from rodents and 

taxonomic diversity of their hosts into account, these two clusters could be 

potentially envisaged as two main evolutionary sources of rodent eimerians. 

Identification of a third lineage formed by Eimeria myoxi suggested that the 

situation may be more complex (Kvičerová et al. 2011). The 26 new rodent-

derived samples added in this study further support this view. While many of 

these new samples from so far unexplored hosts (e.g. black-bellied hamster, 
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chinchilla, ground squirrel, guinea pig, mole-rats, spiny mice, and several field 

mice) clearly belong to the “1st” and “2nd” rodent clades, the position of others 

(garden dormouse, gerbil, multimammate rat, and some field mice) is more 

variable. It is also interesting to note that no rodent sample of Eimeria–like 

morphology falls into the A group, containing mainly parasites from poultry, 

livestock, rabbits, and the isosporan lineage: the only Apodemus–isolated 

sample branching in this group clearly corresponds to the Isospora morphology 

(Fig. 2). 

The relationship between host specificity and phylogeny displays an 

interesting pattern. While host specificity provides useful characteristics for 

many clusters (e.g livestock, pigs, poultry, rabbits), species arrangements within 

the clusters do not show any correlation with host phylogenies. The host 

conservativeness of the clusters is thus likely to reflect ecological, physiological 

or other adaptations to particular host group rather than host-parasite 

cospeciation. Perhaps the most surprising outcome of this study is the 

phylogenetic diversity of Eimeria samples obtained from the genus Apodemus. 

While an exact taxonomic status of the 11 analyzed samples and their precise 

position may not be entirely clear from the available topologies, they 

demonstrably cluster at least at four different places in the tree and cover quite a 

large phylogenetic span (Fig. 2). This suggests that apart from the availability 

of representative taxonomic sample of the host, another serious problem rests in 

the knowledge of the eimerian diversity within a single host genus or species. 

Considering the composition of the available data set (with only rodents 

sufficiently sampled in respect to the taxonomic representativeness as well as 

parasite diversity within a single host species), the trends pointed out in this 

study have to be further examined using similar representative samples of other 

host groups. 
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Table 1. Taxa and sequences included in the phylogenetic analyses. 

 

*: sequences included in the Skeleton matrix. 

•: taxa used as outgroups for the phylogenetic analyses. 

Taxa for which new sequences were obtained in this study are printed in bold. 

n.d.: our sequences, not deposited in the GenBank yet. 

- : the sequence is not available. 

 
 
Organism Acc. number  

18S rDNA 
Acc. number 
ORF 470 

Acc. number 
COI 

Eimeria acervulina U67115 - FJ236419 
E. adenoeides AF324212 - - 
E. ahsata AF338350 - - 
E. alabamensis AF291427 - - 
E. albigulae AF307880 AF311630 - 
E. antrozoi AF307876 - - 
E. arizonensis AF307878 AF311631 - 
E. arnyi AY613853 - - 
E. attwateri EU481858 - - 
E. auburnensis AY876927 - - 
E. auritusi DQ398107 - - 
E. banffensis n.d. - - 
E. bovis U77084 - - 
E. brunetti U67116 - - 
E. cahirinensis NFS n.d. - n.d. 
E. cahirinensis SFS n.d - - 
E. cahirinensis WR n.d. - n.d. 
E. callospermophili n.d. - n.d. 
E. catronensis AF324213 - - 
E. caviae * n.d. n.d. n.d. 
E. cf. mivati FJ236378 - FJ236441 
E. chaetodipi AF339489 - - 
E. chinchillae n.d. - - 
E. chobotari AF324214 - - 
E. coecicola EF694015 n.d. n.d. 
E. crandallis AF336339 - - 
E. cylindrica AY876928 - - 
E. dipodomysis AF339490 - - 
E. ellipsoidalis AY876929 - - 
E. exigua * EF694007 n.d. n.d. 
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E. falciformis AF080614 AF311632 - 
E. faurei AF345998 - - 
E. flavescens * EF694011 JF304149 n.d. 
E. furonis AB239130 - - 
E. gruis AB205165 - - 
E. intestinalis * EF694012 n.d. n.d. 
E. irresidua * EF694009 n.d. n.d. 
E. langebarteli AF311640 AF311639 - 
E. leucopi AF339491 - - 
E. magna * EF694016 JF304150 n.d. 
E. maxima DQ538348 - FJ236459 
E. media EF694013 - - 
E. meleagrimitis AF041437 - - 
E. mitis U40262 - - 
E. mivati U76748 - EF174185 
E. myoxi * JF304148 JF304151 n.d. 
E. necatrix DQ136185 - EU025108 
E. nieschulzi U40263 AF311633 - 
E. nkaka * n.d. n.d. n.d. 
E. onychomysis AF307879 AF311634 - 
E. ovinoidalis AF345997 - - 
E. papillata AF311641 AF311635 - 
E. perforans EF694017 n.d. n.d. 
E. peromysci AF339492 - - 
E. phalacrocoraxae DQ398106 - - 
E. pilarensis AF324215 - - 
E. piriformis EF694014 n.d. n.d. 
E. polita AF279667 - - 
E. porci AF279666 - - 
E. praecox U67120 - - 
E. ranae EU717219 - - 
E. reedi AF311642 AF311636 - 
E. reichenowi AB205175 - - 
E. rioarribaensis AF307877 - - 
E. scabra AF279668 - - 
E. scholtysecki AF324216 - - 
E. separata AF311643 AF311637 - 
E. sevilletensis AF311644 AF311638 - 
E. stiedai EF694008 n.d. n.d. 
E. subspherica AY876930 - - 
E. synaptomysis n.d. - - 
E. telekii AF246717 - - 
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E. tenella * U67121 Y12333 FJ236458 
E. trichosuri FJ829323 - - 
E. tropidura AF324217 - - 
E. vejdovskyi EF694010 n.d. n.d. 
E. vilasi n.d. - - 
E. weybridgensis AY028972 - - 
E. wyomingensis AY876931 - - 
E. zuernii AY876932 - - 
E. sp. DAM-2009 FN298443 - - 
E. sp. ESP-181 AB447983 - - 
E. sp. TKC-1-2005 DQ072716 - - 
E. sp. TKC-2-2005 DQ167480 - - 
E. sp. ex Acomys sp. n.d. - - 
E. sp. ex A. agrarius 21439 n.d. - - 
E. sp. ex A. agrarius 21455 n.d. - - 
E. sp. ex A. agrarius 21615 n.d. - - 
E. sp. ex A. agrarius 21617 
* 

n.d. n.d. n.d. 

E. sp. ex A. agrarius 21655 
* 

n.d. n.d. n.d. 

E. sp. ex A. agrarius 21668 n.d. - n.d. 
E. sp. ex A. flavicollis 1 - - n.d. 
E. sp. ex A. flavicollis 4 - - n.d. 
E. sp. ex A. flavicollis 12 - - n.d. 
E. sp. ex A. sylvaticus 08/50 n.d. - n.d. 
E. sp. ex A. sylvaticus 08/53 
* 

n.d. n.d. n.d. 

E. sp. ex C. cricetus K7 n.d. - - 
E. sp. ex G. dasyurus n.d. - - 
E. sp. ex Heliophobius E1 n.d. - n.d. 
E. sp. ex Heliophobius K12 
* 

n.d. n.d. n.d. 

E. sp. ex M. natalensis n.d. - - 
E. sp. ex S. araneus - n.d. n.d. 
    
Caryospora bigenetica AF060975 - - 
    
Choleoeimeria sp. AY043207 - - 
    
Cyclospora cayetanensis AF111183 - - 
C. cercopitheci AF111184 - - 
C. colobi AF111186 - - 

93



 

 

C. papionis AF111187 - - 
    
Cystoisospora belli • AF106935 - - 
C. felis • L76471 - - 
C. ohioensis • AF029303 - - 
C. orlovi • AY365026 - - 
C. rivolta • AY618554 - - 
C. suis • U97523 - - 
C. timoni • AY279205 - - 
    
Goussia janae AY043206 - - 
G. metchnikovi FJ009244 - - 
G. neglecta FJ009242 - - 
G. noelleri FJ009241 - - 
G. ex Bufo bufo FJ009243 - - 
    
Intranuclear coccidium JW-
2004 

AY728896 - - 

    
Isospora gryphoni AF080613 - - 
I. robini AF080612 - - 
Isospora sp. iSAT1 - - FJ269357 
Isospora sp. iSAT2 - - FJ269358 
Isospora sp. iSAT3 - - FJ269359 
Isospora sp. iSAT4 - - FJ269360 
Isospora sp. iSAT5 - - FJ269361 
Isospora sp. iSAT6 - - FJ269362 
I. sp. ex A. flavicollis B13 - - n.d. 
I. sp. ex Talpa 106 n.d. - n.d. 
I. sp. ex Talpa 151 n.d. - n.d. 
I. sp. ex Talpa 156 n.d. - - 
I. sp. ex Talpa 218 - n.d. n.d. 
    
Toxoplasma gondii • M97703 U87145 DQ228959 
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0.01

E. myoxi

E. ex A. sylvaticus 08/53

E. ex A. agrarius 21655

E. ex A. agrarius 21617

E. ex Heliophobius K12

E. caviae

E. nkaka

E. tenella

E. irresidua

E. exigua

E. flavescens

E. intestinalis

E. magna

Fig. 1. A Skeleton tree (ML and BI) including taxa for which all three genes (18S rDNA, ORF 470 and COI) are
available.
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Caryospora bigenetica

E. coecicola

E. mitis

E. ex Heliophobius K12

E. subspherica

E. polita

E. ex Apodemus agrarius 21655

E. ranae  OR+

E. cahirinensis NFS

E. synaptomysis

E. dipodomysis

E. banffensis

E. zuernii

E. ex Apodemus flavicollis 12

E. chinchillae

E. adenoeides

E. separata

C. colobi

E. reedi

E. ovinoidalis

E. ex Apodemus flavicollis 4

E. sp. TKC-2-2005 ex Lissemys punctata

E. sp. DAM-2009 ex Dendrocopos leucotos

C. papionis

E. ex Apodemus agrarius 21455

E. wyomingensis

E. ex Sorex araneus 136

E. onychomysis

C. cayetanensis  OR+
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*

*

*

A

B

*

rodents 1st

poultry

rodents 2nd
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Fig. 2. Concatenated ML tree. Letters A-D show clusters delimited according to the Skeleton trees (taxa present in the Skeleton
trees are marked with asterisk). The clades A and B are also supported by BI and ML analyses of Concatenated matrix as well as the
Skeletons. The red node indicates a low-host-specific cluster, containing taxa from several different host groups. Numbers 1-4 indicate
lineages also supported by the BI analyses of the following matrices: 1, Concatenated; 2, ORF 470; 3, COI; 4, 18S rDNA. The newly
added taxa are printed in bold; coccidia from rodents are printed in blue. To decrease the size of the tree for the printed presentation,
we removed several most basal outgroups.
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Preliminary results for the population structure, host specificity and 
biogeography in Apodemus and Eimeria

Background

Apodemus Kaup, 1829 (Old World Field mice) is a Palearctic genus of 
murid rodents, distributed throughout the whole Europe and Asia. Twenty 
species have been described based on morphological features, geographic 
distribution and genetic structure (Wilson and Reeder 2005). However, the 
number of valid species changes regularly (for examples, see Wilson and 
Reeder 2005), and the genus systematics is still not settled (Aulagnier et al. 
2009). In Europe, 8 Apodemus species have been recorded: A. agrarius, A. 
alpicola, A. epimelas, A. flavicollis, A. mystacinus, A. sylvaticus, A. uralensis
(former A. microps) and A. witherbyi (Wilson and Reeder 2005). Only four of 
them have been reported from the Czech Republic: A. agrarius, A. flavicollis, 
A. sylvaticus and A. uralensis. Geographic distribution and habitats of these 
VSHFLHV� RYHUODS�� VR� WKH\� RIWHQ� OLYH� LQ� V\PSDWU\� �$QGČUD� DQG� %HQHã� ������
$QGČUD� DQG� +RUiþHN� ������� FRPSHWLQJ� IRU� WKH� IRRG� UHVRXUFHV�� 7KH\� DUH
omnivorous, the diet usually includes grains, seeds, nuts, roots, insects and 
other invertebrates. They have been recorded from a variety of habitats, often in 
connection with grassy fields, woodlands, forests, shrubs, water streams, but 
also from cultivated areas and human vicinities (âWHIDQþtNRYi� HW� DO�� ������
1RZDN�������$QGČUD�DQG�%HQHã�������:LOVRQ�DQG�5HHGHU�������

It is generally known that based on morphological features, it may be 
difficult to distinguish among A. flavicollis, A. sylvaticus and A. uralensis in the 
field. This problem occurs especially in juveniles and subadults, in which the 
morphological features (body size and colour, hind foot length, collar spot) are 
RYHUODSSLQJ�DPRQJ�WKHVH�VSHFLHV��âWXViN�������)LOLSSXFFL�HW�DO��������$QGČUD�
DQG�%HQHã�������$QGČUD�DQG�+RUiþHN 2005). Therefore, methods of molecular 
biology proved to be the most efficient tool for resolving the species identity 
(Filippucci et al. 1989, Martin et al. 2000, Michaux et al. 2001, 2002). Ecology, 
phylogeny, phylogeography, genetics and genealogy of the genus Apodemus
have been studied extensively within last three decades (Tsuchiya and Yosida 
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1971, Tsuchiya 1974, Filippucci et al. 1989, Martin et al. 2000, Michaux et al. 
2001, 2002, Sakka et al. 2010).

Coccidia of the genus Eimeria Schneider, 1875, members of the largest 
apicomplexan genus, are frequently found in faeces or gut contents of field 
mice (Lewis and Ball 1983, Higgs and Nowell 2000). To date, these parasites 
have been recorded from 6 Apodemus species (A. agrarius, A. argenteus, A. 
flavicollis, A. mystacinus, A. speciosus and A. sylvaticus) (Higgs and Nowell 
������:DVK�HW�DO��������+ĤUNRYi�HW�DO���������7KH�ILUVW�Eimeria species reported 
from the field mice was Eimeria muris, described from Apodemus flavicollis by 
Galli-Valerio (1932). Later, 22 more Eimeria species were described (Higgs 
anG� 1RZHOO� ������ +ĤUNRYi� HW� DO�� ������� IURP� WRGD\¶V� SHUVSHFWLYH�� KRZHYHU��
many of these descriptions are inadequate and do not allow unequivocal species 
identification. Since they do not provide the photomicrographs/line drawings or 
enough details on inner structures of the oocysts (see Musaev and Veisov 1965 
or Pellérdy 1974), the observations reported by other authors were difficult to 
relate to the original descriptions, and also to each other (Wash et al. 1985, 
+LJJV�DQG�1RZHOO�������+ĤUNRYi�HW�DO��������

From the phylogenetic point of view, the rodent-associated Eimeria
species are among the most extensively studied coccidia; till now, 22 Eimeria
species from 11 rodent genera have been sequenced and analyzed using the 
methods of molecular phylogeny (www.ncbi.nlm.nih.gov). However, these 
samples still represent only a small portion of the known diversity of the rodent 
eimerians (more than 350 Eimeria species have been described from rodents; 
Levine and Ivens 1990, Duszynski and Upton 2001). Phylogenetic analyses 
indicate that the rodent-associated Eimeria species cluster in several (at least 3) 
different and phylogenetically unrelated lineages (Zhao and Duszynski 2001a, 
E��3RZHU�HW� DO�� ������.YLþHURYi� HW� DO�� �����. In general, phylogenetic studies 
also show that most of the biological and morphological characteristics are 
SK\ORJHQHWLFDOO\� LQFRQVLVWHQW� �(EHUKDUG� HW� DO�� ������ .YLþHURYi� HW� DO�� ������
Samarasinghe et al. 2008). A future taxonomic revision in eimerians is thus 
inevitable.

No molecular data are yet available for any of Eimeria exploiting 
Apodemus hosts. The situation is further complicated by the potential degree of 
host specificity of these eimerians. It is evident that some Eimeria species can 
infect several species of Apodemus (e.g. E. alorani, E. apionodes, E. apodemi, 
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E. argenteus, E. hungaryensis, E. inuyamensis, E. montgomeryae, E. uptoni) 
(Lewis and Ball 1983, Wash et al. 1985, Higgs and Nowell 1991, +ĤUNRYi�HW�DO��
������.YLþHURYi��WKLV�VWXG\���ZKLOH�RWKHUV�KDYH�VR�IDU�EHHQ�GHVFULEHG�RQO\�IURP�
a single host species. Moreover, molecular analyses may be further complicated 
by the multi-species Eimeria infections that often occur in Apodemus
individuals.

In Apodemus hosts, genealogy and genetic diversity were previously 
analyzed for populations of a nematode Heligmosomoides polygurus
(Nieberding et al. 2004, 2005) and lice Polyplax serrata (Štefka and Hypša 
2008). The aim of this study is twofold: to place Apodemus – specific eimerians 
into the phylogenetic tree of Eimeria and to study for the first time genealogy 
and population structure of these rodent parasites.

Materials and Methods

Collections of host & parasite samples

Rodents of the genus Apodemus (A. agrarius, A. flavicollis and A. 
sylvaticus) were trapped in the field using Sherman live-traps or classic wooden 
traps. All animals were trapped with official permissions (Nos. PP 42/2006 and 
KUJCK 11134/2010 OZZL/2/Ou). Host tissues (a piece of ear, finger or tail) 
were collected for molecular identification of Apodemus species. Oocysts of 
Eimeria species were recovered from fresh faeces or the gut content of the 
hosts.

Sample treatment, oocyst morphology and determination

Faecal material was examined by standard flotation technique with 
Sheather´s sucrose solution (sp.gr. 1.30) (Sheather 1923). Coccidia-positive 
samples were allowed to sporulate on air for several days, and then stored 
individually in 4% (w/v) potassium dichromate solution (K2Cr2O7) at 4 oC.
Sporulated oocysts were measured and evaluated according to Duszynski and 
Wilber (1997) using an Olympus BX51 light microscope equipped with the 
Olympus Camedia C-5060W camera and Quick Photo Pro v. 2.0 PC software. 
Morphology of sporulated oocysts was then compared with published 
descriptions of coccidia species infecting Apodemus (Musaev and Veisov 1965, 
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Pellérdy 1974, Arnastauskiene et al. 1978, Wash et al. 1985, +ĤUNRYi� HW� DO��
2005).

DNA extraction, PCR and sequencing

Genomic DNA of coccidia was isolated by commercial kit (FastDNA 
SPIN Kit for Soil, MP Biomedicals). Mitochondrial gene for cytochrome c 
oxidase subunit I (COI, ~700 bp) was selected as the most suitable genetic 
marker: this gene has previously been successfully applied to resolve 
intraspecific variability within fowl Eimeria species (Schwarz et al. 2009). PCR 
UHDFWLRQV�ZHUH�SHUIRUPHG�DW�D����ȝO�YROXPH�ZLWK�+RW6WDU7DT�'1$�SRO\PHUDVH�
(Qiagen). Primers and PCR protocols were adopted from a publication by 
Schwarz et al. (2009). PCR products were enzymatically purified and sent to 
Macrogen, Inc. (Amsterdam, the Netherlands) for sequencing on an automatic 
3730XL DNA analyzer. For the correct identification of Apodemus species, the 
host DNA was extracted by commercial kit (NucleoSpin Tissue, Macherey-
Nagel) and mitochondrial cytochrome b gene together with mitochondrial DNA 
control region (D-loop) were amplified by PCR (Martin et al. 2000, Bellinvia 
2004) and sequenced.

Sequence alignment, phylogenetic analyses and population structure

Obtained sequences were identified by BLAST analysis 
(www.ncbi.nlm.nih.gov), manually adjusted using the SequenceScanner 
(Applied Biosystems), EditSeq and SeqMan (DNASTAR Inc.) programs, and 
deposited in the GenBank database (NCBI) under the Accession Nos. xx-xx. 
Alignments were created and adjusted in BioEdit program (Hall 1999) in the 
aminoacid mode. The alignments were then switched to nucleotide mode and 
used for the analyses. Evolutionary relationships and population structure in 
Eimeria spp. were analyzed using 3 phylogenetic approaches (maximum 
parsimony - MP, maximum likelihood - ML, and Bayesian inference - BI) and 
methods of population genetics (haplotype networks generated by TCS 
program). Four different computer programs were employed for phylogenetic 
and genealogical analyses - PAUP v. 4.0b10 (Swofford 2001), Phyml v. 2.4.3 
(Guindon and Gascuel 2003), MrBayes v. 3.1.2 (Huelsenbeck and Ronquist 
2001) and TCS v. 1.21 (Clement et al. 2000). Most suitable evolutionary 
models were selected with jModeltest program (Posada 2008, 2009). The trees 
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were visualized using TreeView v. 1.6.6 (Page 1996) and adjusted in the Adobe 
Illustrator CS5 v. 15.0 (Adobe Systems Inc.).

Results and discussion

Altogether, 44 coccidia specimens (43 Eimeria and 1 Isospora) of 
Apodemus spp. were gathered for the population structure. The parasites were 
retrieved from 3 host species (11 individuals of Apodemus agrarius, 29 A. 
flavicollis and 4 A. sylvaticus) with overlapping areas of distribution, by 
sampling across Europe (Czech Republic, England, France, Germany, Italy, 
Macedonia and Slovak Republic) (Fig. 1; Table 1). Morphological traits of 
sporulated oocysts of collected Eimeria samples corresponded to the 
descriptions of four species, E. alorani, E. apionodes, E. jerfinica and E. 
kaunensis (Musaev and Veisov 1965, Pellérdy 1974, Arnastauskiene et al. 
1978, +ĤUNRYi� HW� DO�� ������ �7DEOH� ���� 6SRUXODWHG� RRF\VWV� REWDLQHG� IURP� A. 
flavicollis sample B13 and identified as Isospora sp. did not correspond to a so 
far described species from the genus Apodemus, Isospora uralicae Svanbaiev, 
1956. Compared to isosporan species reported from murid rodents and also 
from animals that may occur in sympatry with field mice, the oocyst 
morphology of this coccidium is most similar to I. araneae Golemansky, 1978 
described from shrews (Pellérdy 1974).

The length of 43 COI sequences of obtained Eimeria samples ranged 
between 500 and 779 bp, with the GC content of ~36 %. The COI sequence of a 
single specimen, morphologically corresponding to the genus Isospora and 
found in A. flavicollis, was 771 bp long, with the GC content of 35 %. When 
analyzed by MP, ML and BI, the COI sequences of Eimeria spp. split into 6 
distinct and well-supported clades. While the relationships among the clades 
varied with the method (Fig. 2), the composition of the clades was identical in 
all analyses. The deep distinction among the clades obtained by phylogenetic 
analyses also reflected the results of haplotype network analysis performed in 
TCS program. When collapsed into haplotypes, the 43 eimerian sequences of 
COI generated 3 major clades (A, B and C) with 11 unique haplotypes (Fig. 3; 
Tables 1, 2). The haplotype distribution was relatively uneven; while a majority 
of the haplotypes was represented by 1-5 sequences, the two most abundant 
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haplotypes, H1 and H6, were represented by 13 and 8 samples, respectively 
(Tables 1, 2). As expected, the single sequence of the sample morphologically 
determined as Isospora sp. formed a distant, separate branch in both 
phylogenetic tree and TCS haplotype network.

The current state of knowledge on coccidia provides only limited 
information on intraspecific structure and the significance of both host-
preference and geography. For example, Hnida and Duszynski (1999) did not 
find any intraspecific variability for the 18S rRNA gene within multiple isolates 
of 4 rodent Eimeria species of different geographic origin. On the contrary, a 
notable genetic variation between strains of chicken Eimeria species was 
described by Barta et al. (1998) and Lew et al. (2003), based on analyses of the 
ITS regions.

Indication of a possible intraspecific pattern in coccidia infecting wild-
living rodents was already noted in MS no. 5. Against expectation, analyses in a 
broader phylogenetic context revealed great phylogenetic diversity of 11 
Eimeria samples obtained from the genus Apodemus. While an exact taxonomic 
status of analysed samples and their precise position could not be entirely clear 
from the available topologies, they evidently clustered at least at 4 different 
places in the tree and covered quite a large phylogenetic span (MS no. 5, Fig. 
2).

This study brings several interesting findings regarding the origin and 
genealogy of Apodemus–specific Eimeria. Phylogenetic position of different 
samples from single Apodemus sp. in several distant eimerian lineages shows 
that these parasites switched multiple times independently to the same host. 
Their branches are intertangled not only with the eimerians from other 
Apodemus spp. but even with samples obtained from different host genera (Fig. 
2). This is in contrast to for example rabbit-specific eimerians, where 11 
previously described species proved to form a monophyletic clade, indicating 
that they diversified on the host (.YLþHURYi�HW�DO��������

Another interesting phenomenon is that despite their distribution among 
several clusters in the tree, all Apodemus–associated Eimeria fall only in some 
particular subtrees. It is remarkable that eimerians infecting A. agrarius always 
form separate lineages even inside the clades of eimerians from A. flavicollis. 
However, only samples from Eastern Slovakia are yet available for A. agrarius. 
Therefore, before attempting any serious conlusion, it would be particularly 
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interesting to enlarge the present data set also with samples from the Czech 
Republic (and/or from other countries). Similarly, Eimeria species from A. 
flavicollis tend to cluster together; however, eimerians from A. sylvaticus, 
represented only by 4 samples, are scattered among the A. flavicollis lineages. 
Our results indicate that Apodemus-associated Eimeria tend to cluster according 
to the host species rather than to the geographic origin (Figs. 1, 3).

Regarding the Eimeria species/morphotypes revealed by microscopy of 
sporulated oocysts, it is evident that at least one species, namely E. apionodes, 
is not monophyletic and its 5 haplotypes cluster at three different places in the 
trees (Fig. 2; Table 2).

This study also reveals new aspects regarding the host specificity of
Apodemus–associated Eimeria; it is evident that these species are not as strictly 
host-specific as was previously believed. At least ten of them (namely E. 
alorani, E. apionodes, E. apodemi, E. argenteus, E. hungaryensis, E. 
inuyamensis, E. jerfinica, E. kaunensis, E. montgomeryae and E. uptoni) – that 
is almost a half of so far described species, are able to infect more than a single 
Apodemus species (Lewis and Ball 1983, Wash et al. 1985, Higgs and Nowell 
������+ĤUNRYi�HW�DO��������.YLþHURYi��WKLV�VWXG\�.
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Table 1. Origin of the obtained haplotypes.

(CZ – Czech Republic, DE – Germany, FR – France, IT – Italy, MK –
Macedonia, SK – Slovak Republic, UK – England)

Apodemus agrarius (11 COI sequences of Eimeria spp.)

Sample 
name

Locality District, 
Region/Province

Country 
of origin

Haplotype

AGR 
21455

Rozhanovce Košice-Okolie, 
Košický

SK H8

AGR 
21617

Šebastovce Košice, Košický SK H7

AGR 
21649

Rozhanovce Košice-Okolie, 
Košický

SK H7

AGR 
21650

Rozhanovce Košice-Okolie, 
Košický

SK H3

AGR 
21655

Rozhanovce Košice-Okolie, 
Košický

SK H3

AGR 
21657

Rozhanovce Košice-Okolie, 
Košický

SK H7

AGR 
21668

Rozhanovce Košice-Okolie, 
Košický

SK H3

AGR 
21831

Botanic Garden 
of Košice

Košice, Košický SK H11

AGR 
21882

Botanic Garden 
of Košice

Košice, Košický SK H3

AGR 
21906

Botanic Garden 
of Košice

Košice, Košický SK H10

AGR 
21914

Botanic Garden 
of Košice

Košice, Košický SK H8

Apodemus flavicollis (28 COI sequences of Eimeria spp. and 1 COI sequence 
of Isospora sp.)

Sample 
name

Locality District, 
Region/Province

Country 
of origin

Haplotype

AF 1 Solany /LWRPČĜLFH��ÒVWHFNê CZ H6
AF 2 Solany /LWRPČĜLFH��ÒVWHFNê CZ H9
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AF 2 VK VelNê�.RVtĜ 3URVWČMRY��
Olomoucký

CZ H2

AF 4 Boršov nad 
Vltavou

ýHVNp� %XGČMRYLFH��
-LKRþHVNê

CZ H1

AF 4 VM 3DVWêĜVNp�
kameny

'ČþtQ��ÒVWHFNê CZ H1

AF 8 Stružná Karlovy Vary, 
Karlovarský

CZ H6

AF 10 Stružná Karlovy Vary, 
Karlovarský

CZ H5

AF 11 &KRWČERUN\ Trutnov, 
Královéhradecký

CZ H6

AF 12 Stružná Karlovy Vary, 
Karlovarský

CZ H9

AF 15 Stružná Karlovy Vary, 
Karlovarský

CZ H1

29 AF Stružná Karlovy Vary, 
Karlovarský

CZ H1

SB 3 Litvínov Most, Ústecký CZ H1
SB 5 Litvínov Most, Ústecký CZ H1
SB 11 Litvínov Most, Ústecký CZ H5
RR 196 Litvínov Most, Ústecký CZ H6
OB I 173 Litvínov Most, Ústecký CZ H6
AF 21423 Rozhanovce Košice-Okolie, 

Košický
SK H1

AF 21833 Botanic 
Garden of 
Košice

Košice, Košický SK H1

AF 21898 Botanic 
Garden of 
Košice

Košice, Košický SK H1

AF 22027 +êĐRY�� +OERNi�
dolina

Košice-Okolie, 
Košický

SK H5

ITAF 10 Brinzio Varese IT H1
ITAF 20 Civitanova del 

Sannio
Isernia, Molise IT H6

AF 2 D Pinkowitz Meissen DE H5
AF 10 D Pinkowitz Meissen DE H1
AF 95 D Torgau Torgau-Oschatz DE H1
MAC 1/3 Popova Šapka Tetovo, Tetovo MK H6
MAC 9/8 Nižepole 

(Pelister)
Bitola MK H4

MAC 10/8 Kruševo Krusevo MK H9
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AF B 13 
(Isospora)

Litvínov Most, Ústecký CZ -

Apodemus sylvaticus (4 COI sequences of Eimeria spp.)

Sample 
name

Locality District, 
Region/Province

Country 
of origin

Haplotype

AS 08/50 Ashford South East UK H10
AS 08/53 Ashford South East UK H5
AS 07/104 Toulouse Haute-Garonne FR H1
ItBA 7 Bubbiano Milano IT H6
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Table 2. Eimeria species/morphospecies determined based on oocyst 
morphology and the details of sampled specimens.

Eimeria species 
(morphospecies)

Sample name Host species Haplotype

E. alorani AGR 21650 A. agrarius H3
AGR 21655 A. agrarius H3
AGR 21668 A. agrarius H3
AGR 21882 A. agrarius H3

E. apionodes AF 1 A. flavicollis H6
AF 8 A. flavicollis H6
AF 11 A. flavicollis H6

RR 196 A. flavicollis H6
OB I 173 A. flavicollis H6
ITAF 20 A. flavicollis H6
MAC 1/3 A. flavicollis H6

ItBA 7 A. sylvaticus H6
AGR 21617 A. agrarius H7
AGR 21649 A. agrarius H7
AGR 21657 A. agrarius H7
AGR 21831 A. agrarius H11

AF 2 VK A. flavicollis H2
AF 4 A. flavicollis H1

AF 4 VM A. flavicollis H1
AF 15 A. flavicollis H1
AF 29 A. flavicollis H1
SB 3 A. flavicollis H1
SB 5 A. flavicollis H1

AF 10 D A. flavicollis H1
AF 95 D A. flavicollis H1
ITAF 10 A. flavicollis H1

AF 21423 A. flavicollis H1
AF 21833 A. flavicollis H1
AF 21898 A. flavicollis H1
AS 07/104 A. sylvaticus H1

E. jerfinica AF 2 A. flavicollis H9
AF 12 A. flavicollis H9

MAC 10/8 A. flavicollis H9
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AS 08/50 A. sylvatius H10
AGR 21455 A. agrarius H8
AGR 21906 A. agrarius H10
AGR 21914 A. agrarius H8

E. kaunensis AF 10 A. flavicollis H5
SB 11 A. flavicollis H5

AF 2 D A. flavicollis H5
AF 22027 A. flavicollis H5
AS 08/53 A. sylvaticus H5
MAC 9/8 A. flavicollis H4
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0.1

E. ranae
E. ex Talpa 106
E. ex Talpa 151

100/100/1.00

E. ex Sorex ITAS1
E. ex Sorex 136

99/99/1.00

E. ex Crocidura ITCR02
E. myoxi

E. ex Apo. agrarius 21455
E. ex Apo. agrarius 21914
E. ex Apo. agrarius 21906
E. ex Apo. sylvaticus 08/50

70/73/0.99 E. ex Apo. flavicollis 2
E. ex Apo. flavicollis MAC10/8
E. ex Apo. flavicollis 12

75/74/0.85

85/*/0.58

80/*/0.56

89/92/1.00

E. ex Apo. flavicollis ITAF10
E. ex Apo. flavicollis 4VM
E. ex Apo. flavicollis 21898
E. ex Apo. flavicollis 21833
E. ex Apo. flavicollis 15
E. ex Apo. flavicollis 21423
E. ex Apo. flavicollis 4
E. ex Apo. flavicollis SB3
E. ex Apo. flavicollis SB5
E. ex Apo. flavicollis 29
E. ex Apo. flavicollis 2VK

E. ex Apo. sylvaticus 07/10450/*/*

E. ex Apo. flavicollis 95D
E. ex Apo. flavicollis 10D

85/84/0.93

E. ex Apo. agrarius 21668
E. ex Apo. agrarius 21655
E. ex Apo. agrarius 21882
E. ex Apo. agrarius 21650

99/98/1.00

88/84/1.00

E. ex Myodes 39D
E. ex Microtus 3

62/57/0.87

E. ex Apo. flavicollis MAC9/8
E. ex Apo. sylvaticus 08/53
E. ex Apo. flavicollis 2D
E. ex Apo. flavicollis 22027
E. ex Apo. flavicollis SB11
E. ex Apo. flavicollis 10

67/65/0.75
96/90/1.00

E. ex Apo. flavicollis RR196
E. ex Apo. agrarius 21657
E. ex Apo. agrarius 21649
E. ex Apo. agrarius 2161763/61/0.82

E. ex Apo. flavicollis 1
E. ex Apo. flavicollis OBI173
E. ex Apo. flavicollis 8
E. ex Apo. flavicollis MAC1/3
E. ex Apo. flavicollis 11
E. ex Apo. sylvaticus ItBA7
E. ex Apo. flavicollis ITAF20

94/98/1.00

78/91/0.98

E. ex Heliophobius K1
E. ex Heliophobius E1100/100/1.00

100/100/1.00

Isospora ex Apo. flavicollis B13
E. ex Myodes SB12

E. intestinalis
E. magna
E. coecicola
E. vejdovskyi56/*/0.67

67/*/0.97

100/100/1.00

E. irresidua
E. exigua

E. flavescens
E. piriformis78/81/1.00

63/70/0.90

96/97/1.00
81/76/0.98

55/*/0.96

E. ex Apo. agrarius 21831
E. callospermophili

E. cahirinensis
100/100/1.00

E. acervulina
E. mivati

E. maxima55/71/0.78

74/77/0.90

E. tenella
E. necatrix

100/100/1.00

64/*/1.00

E. jerfinica

  E. apionodes

     E. alorani

    E. kaunensis

   E. apionodes

E. apionodes
E. pirii irr fii off rmrr isi

E. ex Apo. agrarius 21831
E ll hili

E. apionodes
E. pirii irr fi off rmrr isi78/81/1.00

E ll hili
p

*/*/0.93

*/*/0.60

Fig. 2. Phylogenetic tree of the COI obtained by ML. The tree is rooted with Eimeria ranae. Numbers at the 
nodes show bootstrap values for ML and MP, and posterior probability under BI (the values are provided only 
for the nodes also present in ML and MP trees). Bootstrap supports and posterior probabilities lower than 50%
or 0.50, respectively, are marked with asterisk (*). The interrupted line indicates branching not corresponding to
the BI analysis.
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