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Foreword 

 

Land Use and Land Cover (LULC) is a cornerstone of a wide range of applications in 

the fields of landscape ecology, agriculture, forestry, etc. My Master’s degree comes 

from the field of landscape planning and, therefore, the issues of LULC are close to 

my background. Besides, LULC data are often acquired through Remote Sensing (RS) 

methods, the study of which started once I enrolled in my Ph.D. studies. Over time, I 

have progressed from satellites to unmanned aerial vehicles and gradually begun to 

understand the various aspects of the use of those technologies, which was one of the 

reasons I opted for this topic of my doctoral thesis. Novel technologies, techniques 

and data always face limitations and uncertainties and it was my goal to examine their 

potential for the use in (especially) environmental science. Although RS is a broad 

field encompassing many different techniques and means, I devoted my attention 

particularly to imaging data from passive (mostly multispectral) sensors mounted on 

satellite or UAV platforms. Therefore, whenever I speak of RS in this thesis, this is the 

relatively narrow part of the field I have in mind. 

To me, the study of LULC can be in a simplified way represented by three 

principal aspects – data classification, detection of changes in the classes and the 

utilization of LULC data for modelling. And it is exactly those three aspects that are 

being the focus of presented studies. This thesis comes as a set of three 

published/accepted studies, compiling my recent and current research interests 

interconnecting RS, GIS and (landscape) ecology. The thesis has four parts, beginning 

with the common general introduction and theoretical background, followed by a 

brief study concept of each of the presented studies. In the third part, the actual results 

of the three individual studies are presented in the form of a title and abstract (full 

texts are attached in the Supplements). The final chapter represents a discussion both 

related to the individual studies and to the general issues of LULC and RS, followed 

by conclusions and information about further ongoing/planned research.  

  



As I deal with the LULC topic, one never-ending issue I would like to describe 

in the beginning. Over the years, two similar basic terms have been established – land 

use and land cover. The difference between these terms is quite clear. Land use stands 

for characterization of how people utilize the land or the land management while land 

cover means a real surface cover, meaning the actual vegetation or material on the 

surface. Despite this, as the meanings are interconnected, those terms are often 

mistaken for each other. A good explanation gives Fisher et al. (2005). 

Finally, I would like to mention one thing – I like a brevity. That is why I wrote 

this thesis quite brief, but responsible. I tried to avoid repetition and hope I wrote my 

thoughts aptly and understandable. Thank you all those, who will read and comment 

the thesis. 

 



 

The speed at which any given scientific discipline advances will depend on how well 

its researchers collaborate with one another, and with technologists, in areas of 

eScience such as databases, workflow management, visualization, and cloud 

computing technologies. 

The Fourth Paradigm book.  
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1. Aims of the thesis 

The main objective is to assess the classification accuracy of land use/land cover data 

and evaluate its aspect and potential for environmental studies and ecological 

modelling. The aim of this thesis is to contribute to a more understanding of the 

relation between input data, expected results, and possible uncertainties within a 

study. The thesis focuses on utilization different platforms of remote sensing 

technologies and discusses the potential and drawbacks of used 

platform/sensor/approach/data in the field of (landscape) ecology. Particularly the 

thesis focuses on the primary classification of land cover using unmanned aerial 

systems, detection of land cover change using satellite imagery and application of land 

cover datasets for ecological modelling.   
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2. Introduction & theoretical background 

The land use and land cover (LULC) play an important role in the ecosystem 

of the Earth. The information about land cover is considered to be a factor of utmost 

importance for understanding the system and modelling its dynamics as well as for 

maintaining sustainable development or utilization of natural resources. 

Understanding the significance of the land cover depends on the availability of 

accurate and up-to-date information, which makes land mapping a research topic of 

utmost importance. Many national as well as several international programmes for 

land use/land cover classification schemes have been initialized. The land cover 

change can affect both the local and global ecosystems. Many programs for mapping 

changes in the land use and land cover categories across the space and time were 

created as a response to those classifications needs. No ultimate solution was however 

found and it is likely that such a universal solution will not be found even in the 

foreseeable future so the issue of the detection of changes in land use/land cover is 

still a prominent research topic, aiming at a production of accurate land cover maps 

and keeping them up-to-date. 

 

LULC & Remote sensing 

Remote sensing (RS) is a unique approach focused on data acquisition remotely, 

without a direct contact with the measured phenomenon for both small and large 

extents. An approach using RS techniques for acquiring data has been used with 

advantage for many years. Remote sensing represents a very useful technology for 

obtaining land cover data as it allows acquisition of continuous spatial information 

across any extent of the surface (Pfeifer et al., 2012). RS, or, more specifically, Earth 

observation, via tens of man-made satellites, provides nowadays uninterrupted 

recording of the Earth surface on a global scale. More and more satellites 

manufactured with various purposes in mind equipped with ever better technologies 

are being launched all the time.  

Remote sensing has already become a traditional technique for deriving 

(among other things) the land use/land cover information. Satellites may be beneficial 

at any scale, especially for large spatial extents or worldwide applications. Besides the 

conventional optical platforms that nowadays offer spatial resolutions up to ten 

meters, commercial platforms with resolutions of mere tens of centimetres exist. For 
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local scales, airborne platforms or unmanned aerial vehicles (UAVs) are also 

frequently used. These techniques are law- and weather dependent, they however 

generally provide better spatial and temporal resolutions. On the other hand, their 

operation is often on-demand only and the costs, especially those of airborne imaging, 

are high, which usually leads to acquiring of datasets solely for the purposes of 

individual studies. Unmanned aerial systems are nevertheless widely used for specific 

research activities, for example agricultural applications (Gómez-Candón et al., 2014; 

Zhang and Kovacs, 2012); forestry (Brovkina et al., 2018), specifically for detection of 

pest infestation (Näsi et al., 2015; Stoyanova et al., 2018); plant diseases and water 

stress detection (Nishar et al., 2016; Zarco-Tejada et al., 2012). UAVs are nowadays 

used also for land cover classification (Ahmed et al., 2017) or classification of 

vegetation (Gini et al., 2014; Husson et al., 2017; Michez et al., 2016; Weil et al., 2017). 

See Pajares (2015) for a review of UAV-based applications, however, it is clear that 

over the recent years, the use of small aerial vehicles has grown to supplement the 

satellite approach and UAVs have become progressive scientific tools. 

The most common representation of the land classification is a thematic map 

(Foody, 2004, 2002). Remote sensing techniques constitute the most important 

source of data for thematic maps. As the land cover products are usually an outcome 

of remote sensing approaches, raster data definitions have to be described. The basic 

unit of a raster is a pixel; with coarser data resolution, it is growing more likely that it 

will be a pixel containing several LULC types, therefore a so-called mixed pixel or 

mixel. Also, the term “data resolution” is sometimes misinterpreted. One of the basic 

data descriptors is the scale, which for the purpose of RS combines both resolution 

and spatial extent, and it is perceived in the sense of cartographic scale. As can be seen 

from Figure 1.1, a finer resolution of vector datasets in general increases the number 

of polygons and the boundaries become more accurate. In the case of the raster, a 

coarse resolution allows only the most prominent features (e.g. largest water bodies) 

or objects of very basic shapes to be captured while relatively small features are 

ignored in the global land cover datasets. Thus, the potential use of the global datasets 

is often limited by a lack of detail (Congalton et al., 2014). The relation between the 

area and perimeter of the body shape is an important issue - while the area is more or 

less similar across the resolutions, perimeter varies a lot. 
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Fig. 1.1 Spatial data resolution on an example of a water body. Area and perimeter 

differences – datasets detail: (a) GIW, (b) GCL, (c) OSM, (d) CLC, (e) CLC_100, (f) 

CLC_250, (g) DIB. Dataset details stated in Table 3.3.2. Source: Author. 

 

Data classification and quality assessment 

For easier interpretation, land use and land cover need to be categorized and 

thus simplified. Classification of the land cover is in a long-standing research focus. 

Classifying satellite imagery to acquire information of land use/land cover is a 

traditional part of geo-science (Kuria et al., 2014; Szostak et al., 2014; Teo and Huang, 

2016; Zhou and Qiu, 2015), even using unmanned aerial vehicles (Ahmed et al., 2017). 

Detailed species classification, from which many other applications may benefit, 

however, is still a challenging task (Ahmed et al., 2017) despite extremely high spatial 

resolution and variable spectral resolution of current sensors. Therefore, a fusion 

approach combining the spectral information with the elevation information is 

usually used (Husson et al., 2017). Specifically, combinations of multispectral (Bork 

and Su, 2007; Holmgren et al., 2008) or hyperspectral (Alonzo et al., 2014; Sankey et 

al., 2017) data with the LiDAR or image-matching based height data are quite 

common. However, inexperienced users often neglect the height information during 

the classification process (Feng et al., 2015), even though the height of objects can be 

in the case of UAV-borne data easily derived during the image-matching workflow. 

Besides the type of the data, the classification approach and classifier may affect the 
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results. Generally, pixel-based (Myint et al., 2011; Yu et al., 2006) and object-based 

(Blaschke, 2010; Liu et al., 2015) approaches can be distinguished. Selection of 

different classifiers can yield completely different results as shown in several studies 

(Huang et al., 2002; Pal and Mather, 2003) or reviews (e.g. Lu and Weng, 2007).  

One of the most classified land cover class is a surface water (Feng et al., 2016; 

Klein et al., 2017). Inland waters have been shown, for example, to be an important 

variable for modelling species distribution, one of the reasons being that they are not 

associated with the climate (Thuiller et al., 2004). However, disagreements for classes 

representing wetlands are common between land cover datasets (Arsanjani et al., 

2015; Giri et al., 2005). For example, recently announced global land-cover product 

for biodiversity and ecosystem modelling (Tuanmu and Jetz, 2014) performed 

reasonably well in modelling bird species distribution, except for wetland species. 

Water has a relatively specific spectral trace, hence it is relatively easily identifiable 

from the spectral images. If we are however unable to distinguish the heterogeneity of 

the land cover inside an individual pixel, it can be easily misclassified, thus incorrectly 

increasing the representation of a majority class while neglecting minority classes. 

The best-known satellite family, Landsat, is a typical example of successful 

classification of water bodies in both the local (Frazier et al., 2000; Toomey and 

Vierling, 2005) and global scale (Chen et al., 2015; Feng et al., 2016). Images from 

Landsat satellites also served as source data for the Landsat GeoCover dataset, which 

can be successfully used for water body classification (Verpoorter et al., 2012). For 

improving the classification of the water bodies, other supportive data such as terrain 

elevation models (digital surface/terrain models) can be used. The global 

representatives of those are e.g. Shuttle Radar Topography Mission (Rabus et al., 

2003) or the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

model (Tachikawa et al., 2011) that cover the entire Earth surface and are freely 

available. It can be generally stated that the use of combined spectral and topographic 

data can allow an automated detection of water bodies. The key to the correct 

classification is to find an algorithm capable of detecting a water body with a good 

local accuracy while at the same time providing good global consistency despite locally 

specific conditions (Tuanmu and Jetz, 2014). 

As the classification is a simplification of the reality, it therefore naturally 

contains mistakes, and the classification quality has to be assessed. However, an 

evaluation of the quality of the LULC classification is quite difficult. So far, it is not 

possible to verify every single area worldwide; on the other hand, assessment of the 

accuracy of the land classification in a small spatial extent is possible. Local-scale 
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products obviously tend to be more accurate in the land classification for that area 

than global products due to the spatial extent and data resolution. However, for hard 

decision-making, accurate information on a global scale in the best possible 

spatiotemporal resolution is often necessary (see Fig. 1.2, bottom right corner). Such 

necessity is one of the reasons why the product quality must be correctly evaluated 

and interpreted so that the data can be used for particular purposes (Foody, 2002). 

 

 

Fig. 1.2 Raster data resolution and spatial scale relation. Source: GISinEcology.com. 

 

Land cover datasets face limits due to data uncertainties or inconsistency 

(Verburg et al., 2011). Differences in aggregations of source/resolution/classification 

data may result in bias, therefore, detail product metadata must be recorded and 

available (Congalton et al., 2014). Products fusion, which shall bypass the aggregation 

limitations, have appeared recently (e.g. Tuanmu and Jetz, 2014). In addition, the 

classification schemes differ across land cover datasets. Therefore, the scheme should 

be properly chosen a described in detail in order to allow combining and updating of 

the individual products (Congalton et al., 2014). Another possible source of 

uncertainty may lie in ignoring minority land cover classes within a spatial scale. The 

land cover information is usually provided only in a categorical format, i.e., the land 

cover class is assigned to each pixel and thus the “within pixel heterogeneity” is usually 

not taken into account (Fig. 1.3), which results in the image quality worsening. If 

multiple classes are present in the pixel, classifications typically use the most 
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represented class within the pixel, which is usually the most common class. Cells of 

coarse (or any) spatial resolution often include multiple land cover types leading to 

mixed pixels (Foody, 2004; Mittal and Kaur, 2003). This leads to overestimation of 

common land cover classes at the expense of underestimation of minor classes (e.g. 

Blanco et al., 2013) and may result in different outcomes for the same area when using 

different datasets or algorithms (Fritz and See, 2008) and thus any modelling may 

suffer from classification errors. Although the spectral unmixing techniques (Keshava 

and Mustard, 2002), which can decompose the material composition mixture, are 

known in remote sensing community, it is not used widely. 

 

Figure 1.3 Pixel mixing, more than one category within each cell. 

Source: Mittal and Kaur (2003). 

 

Detection of changes in LULC 

As the information about the land use/land cover is fundamental and plays a 

key role in many (not only) environmental applications, it is necessary to keep this 

information up to date. Detection of such changes is one of the basic tasks of RS 

techniques. Classification schemes may be different for each product, which makes 

LULC change detection more complicated. For LULC, any of RS technologies can be 

used for mapping the current state or for detection of its changes. Land cover change 

detection (CD) is as old as the land cover mapping itself. One may detect the change 

in the sense of a physical change of the cover type using a bi-temporal analysis or time-

series or be interested in the change of condition of the objects (e.g. health of 

vegetation or stages of phenology). The change detection efforts are growing in 

importance with the landscape modification trends (e.g. afforestation/deforestation, 

intensification, urbanization), as well as with intensive international requirements 

and needs to categorize and monitor LULC. The most common way of LULC change 

detection using RS is an analysis of multispectral imagery based on changes in the 

spectral characteristics (Hussain et al., 2013). Numerous possible sources of 
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multispectral imagery are available nowadays, it is, however, crucial to use only 

appropriate data (Lu et al., 2014) and pre-processing steps suitable for the data in 

question (Song et al., 2001) along with the proper change detection variables (Lu et 

al., 2014). Many studies focused on analysing specific change of the land cover, for 

example in the forest ecosystems (Lu et al., 2008; Szostak et al., 2018) or urban areas 

(Liu and Zhou, 2004); nevertheless, only few studies exist in the field of agriculture 

(Tarantino et al., 2016). 

Change detection of land use/land cover is not as simple as it might seem and 

there are many studies dealing with this issue, using different approaches (Hussain et 

al., 2013; Lu et al., 2004; Radke et al., 2005). The land cover change is associated, 

besides the changes of bio-physical cover, also with the climate and its changes. That 

is another reason why the detection of changes is still a hot research topic (Gandhi et 

al., 2015; Tarantino et al., 2016). The expected result of change detection is a thematic 

map showing areas that have and have not undergone change over a certain period. 

Besides the indicated changes, understanding of the result and its right interpretation 

is a key to success (Coppin et al., 2004). There are many types of LULC changes. The 

cover can change completely (e.g. arable land to grassland), be only modified 

(different phenological stages of agricultural crops) or just vary in the geometry. For 

satisfactory results, it is necessary to take into account many aspects related to natural 

processes and different environments as well as spatial, temporal, and spectral 

resolutions of different platforms. Chosen techniques and technologies have to fit the 

aims of a study and such selection is one of the most difficult tasks of change detection 

(Coppin et al., 2004; Lu et al., 2004; Singh, 1989). 

In case of remote sensing techniques, a detectable change in spectral 

characteristics between the original and new observed objects is a necessary condition 

for change detection. However, this change may be also caused by using a different 

sensor and it is, therefore, important to distinguish such true changes from 

methodological artefacts arising during the analysis (Singh, 1989). The conventional 

satellites (family of Landsats, SPOT or Sentinel newcomers) have been successfully 

used for these analyses for years (Hansen and Loveland, 2012; Lu et al., 2008). For 

global detection, platforms with a coarse spatial resolution (e.g. TERRA) are often 

used (Coppin et al., 2004); on the other hand, satellites of very high spatial resolution 

(like QuickBird or WorldView) can be used for detailed analyses (Blaschke, 2010). 

In addition, several different approaches are available. A bi-temporal analysis uses 

only two images from different dates for identification of the change between two time 

points (e.g. Singh and Singh, 2018). Alternatively, images taken throughout a period 
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can be used for a time-series analysis (e.g. Lhermitte et al., 2011). Using time-series, 

the characteristics of an observed object are known throughout the observed period, 

which may be beneficial for many applications; however, the computational demands 

for such approach are obviously much higher. 

 

LULC data application 

One of the typical examples of LULC data application is an ecological modelling, e.g. 

species habitat/distribution models are strongly related to land cover. Ecology is 

increasingly changing into a data-intensive science (Michener and Jones, 2012) and 

the advancement of ecological studies on species-environment relationship is based 

on the availability of environmental data. Exploring relationships between species 

and their environment is a current issue in the ecological literature (Guisan et al., 

2013) attracting increasing attention both due to methodological advances in the 

physical geography that nowadays allow creating robust digital models of both the 

terrestrial surface and sea bottom (Elith and Leathwick, 2009) and due to novel 

statistical methods and GIS instruments (Guisan and Zimmermann, 2000). Species 

distribution models (SDMs) have become popular and frequently used tools to assess 

species-environment relationships, for example to investigate drivers of invasions 

(Bellard et al., 2016), to support conservation decision making (Guisan et al., 2013), 

to predict wildlife space use (McCue et al., 2014), or to assess potential impacts of 

climate change on species distribution (Randin et al., 2009). 

Only one land cover product is typically used within a model of species 

distribution and, consequently, differences in classification of land cover products 

may lead to biased conclusions. Land cover data are among the essential data for a 

wide range of environmental studies (see e.g. Grekousis et al., 2015). Explanatory 

variables derived from land use/land cover data have been proven to be important 

components of SDMs (e.g. Stanton et al., 2012). The selection of environmental 

variables has been recently identified as one of the caveats in SDM (Jarnevich et al., 

2015). Although it is often acknowledged (e.g. Austin, 2002, 2007), many studies use 

readily available variables without a proper consideration of ecological theory. 

Besides ecologically inappropriate or missing variables, the among-data inconsistency 

is another source of problems. The existing datasets are based on various data 

acquisition methods (e.g. remote sensing, field measurements, manual digitization 

over orthophoto images) and often differently represented in GIS (e.g. data models: 

vector/raster). The spatial and temporal scales of both the occurrence and 
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environmental data also play a significant role. Environmental data have to match the 

data of species occurrence to gain sufficient modelling accuracy (Gottschalk et al., 

2011; Guisan et al., 2007; Lechner et al., 2012a, 2012b).  

Existing studies that examined the influence of the resolution of 

environmental variables (i.e. observational scale sensu (Lecours et al., 2015)) on 

modelling species distribution concentrated mostly on raster data (e.g. Seoane et al., 

2004; Venier et al., 2004). Although raster data representation (e.g. of temperature, 

precipitation, land cover, terrain attributes, etc.) is probably used in the studies 

dealing with SDMs more frequently, vector data representations are also common, for 

example to calculate distances from linear features such as rivers and roads. While 

the resolution of raster data is explicitly defined by the size of the cells and the 

performance of data of various resolutions has been assessed many times by the SDM 

community (Lassueur et al., 2006; Pradervand et al., 2014), defining resolution for 

vector data is problematic and vector data are often mistakenly considered as having 

infinitely fine resolution (see Goodchild, 2011). Besides, only the most important 

features (e.g. largest water bodies) of the phenomenon are often captured, while 

relatively small features are ignored in global land cover datasets. 

The quality of input data for SDM is of greater importance than the quantity. 

There is a multitude of factors potentially deteriorating the data quality (Gottschalk 

et al., 2011; Rocchini et al., 2011) – to name but a few of the most important ones, we 

should mention that inaccurate recording of the position of a species (incorrect field 

measurement, instrumental errors, incorrect georeferencing) is still of concern, 

although it has improved over the years; the size of the observed sample (a greater 

amount of occurrence data requires more predictors); the scale of input data (non-

uniform scales of the explanatory and dependent variables); incorrect selection of 

predictors (including irrelevant environmental variables), etc. The data quality, or, to 

be more precise, their accuracy or resolution, are a primary requirement for 

improving the predictive properties of the model. Spatial resolution plays a great role, 

especially where qualitative predictors are concerned, such as, for land cover 

(Pradervand et al., 2014). 
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LULC datasets & contribution of volunteers 

As was mentioned above, the land cover plays a key role in ecosystems and the 

knowledge of it is essential for many ecological applications including understanding 

the dynamics of surface processes and land cover change. Therefore, many land cover 

datasets have been produced (see for example Grekousis et al. (2015) for a review of 

the datasets). The first RS-based global land cover datasets were prepared as long ago 

as 1980s (Bartholomé and Belward, 2005; Loveland et al., 2000) and the availability 

of global land cover maps has greatly improved over the last two decades. Many land 

cover products based on remote sensing techniques with different scales have been 

derived. Available land cover datasets are based on information from different 

sensors, for example (a) Meris (e.g. Defourny et al., 2007), (b) Modis  (e.g. Broxton et 

al., 2014); (c) Landsat (Enhanced) Thematic Mapper (e.g. Büttner et al., 2004), or (d) 

their combinations (e.g. Tuanmu and Jetz, 2014). Global land cover monitoring at 30 

m has become possible due to the free availability of Landsat data. Only recently, a 

new generation of regional and global land cover datasets with very high spatial 

resolution became available (e.g. Chen et al., 2015; Feng et al., 2016). However, land 

cover datasets significantly differ in their spatial, thematic, and temporal resolution 

(Giri et al., 2013; Grekousis et al., 2015). Several datasets are available at coarse 

spatial resolutions ranging from 300 m to 1 km (Bontemps et al., 2011; Channan et 

al., 2014; Tuanmu and Jetz, 2014). Although these datasets have been widely used, 

comparative studies highlighted a low level of agreement among these datasets 

(McCallum et al., 2006; Vintrou et al., 2012), which may complicates utilization or 

further analyses. A possible solution to overcoming data inconsistencies lies in 

combining several datasets (Tuanmu and Jetz, 2014). Fonte et al. (2017) performed a 

fusion of a global product with crowd-sourced data, which allowed improving the 

accuracy of the data and helped keeping them up-to-date. That is also a way to 

overcome data seasonality. 

For land cover mapping and its change detection, volunteer projects and 

citizen science approach – crowdsourcing – can be also utilized with considerable 

advantage (Goodchild, 2007; Silvertown, 2009). With the availability of 

geoinformation technologies and mobile internet, this trend of volunteered 

geographic information became a topic of many studies, for example projects on 

monitoring of invasive species (Delaney et al., 2007), of water or air quality, 

population ecology, zoology (Wiersma, 2010), even astronomy (Raddick et al., 2010). 

Citizen science has become over the last decade a subject of many studies (Elwood, 

2008; Flanagin and Metzger, 2008; Goodchild, 2007; Source et al., 2008). In 
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ornithology, for example, citizen science is irreplaceable for a long time already 

(Greenwood, 2007), it can be used, among other things, for solving complicated 

problems in the field of biochemistry (Kawrykow et al., 2012). What is important for 

the thesis is volunteers contribution in creating and evaluating land cover data (Foody 

and Boyd, 2013; Fritz et al., 2012; Fritz and See, 2008; Perger et al., 2012) or collection 

of data about species occurrence for distribution modelling (Hochachka et al., 2012; 

Hurlbert and Liang, 2012; Snäll et al., 2011; Sullivan et al., 2009). The collection of 

data by volunteers is an interesting way to obtain low-cost up-to-date data, it is, 

however, necessary to understand its potential and limitations (Coleman and Eng, 

2010).  

 Citizen science has a potential to replace  (or, at least, keep up-to-date and 

supplement) some databases of national or private agencies for data collection 

(Coleman and Eng, 2010; Goodchild, 2007). A typical project collecting and validating 

LULC data is the Geo Wiki project (Fritz et al., 2012). The application works in the 

web browser on the Google Earth platform, allowing the validation of global land 

cover datasets through generating differences between datasets and offering the users 

to validate the data on the basis of Google Earth or geo-tagged photographs (e.g. 

Panoramio). The Degree Confluence project (Foody and Boyd, 2012) provides 

spatially extensive information as photographs of the intersections of meridians and 

parallels worldwide. The project thus can be helpful in the interpretation of aerial 

photos, evaluation of the landscape condition, land cover classification, and many 

other environmental applications. Thanks to a systematic design of the project that 

was instrumental in creating extensive data, those have a potential to be subsequently 

utilized for evaluation of the quality of other datasets and maps (Foody et al., 2013).  

Of course, there are limitations associated with the quality, credibility and spatial 

heterogeneity of the collected data. Nevertheless, if a suitable design of data collection 

is chosen, we can indeed acquire current data with a minimum effort.  
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3. Overview of the studies 

The thesis consists of a set of three studies with a commentary. The topic covers the 

issues of land use/land cover and assessment of its usability and application in various 

areas of (landscape) ecology. In this chapter, only brief methodology and conclusions 

of each study are described.  



 
25 

3.1 Detail classification of plant species 

 

The study concept 

The aim was to explore the potential of UAV-borne data for classification of land 

cover, particularly of individual plant species. The study interest was to verify if data 

from RGB, multispectral and thermal imagery can classify individual plant species 

with a sufficient accuracy. We also looked for answers to questions if it is possible to 

substitute additional spectral bands of a multispectral sensor by a better spatial 

resolution of RGB sensor and if the addition of thermal data can improve the 

classification accuracy.  

 

Brief methods  

The object of the study was an arboretum within the university campus. The area takes 

approx. 2.5 ha and contains hundreds of different plant species. Throughout the site, 

Ground Control Points were placed and surveyed for further data processing. Low 

altitude aerial survey was performed using a light fixed-wing UAV mounted with (a) 

low-cost RGB camera, (b) 4-chanell multispectral sensor, (c) thermal sensor. The 

sensors differed in their spectral as well as spatial resolution (see Table below). The 

data were acquired during the full vegetation period, processed using image-matching 

Structure from Motion photogrammetric approach using the Pix4DMapper software. 

Besides three orthomosaics, normalized digital surface model (nDSM) was built in 

order to obtain the height of the vegetation. 
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Table 3.1.2. Characteristics of used sensors. 

Sensor 

(abbreviatio

n) 

Image 

resolution 

GSD* at 

100 m 

(cm/px) 

FWHM**  

(nm) 

Band Peak 

(nm) 
Weight (g) 

DSC-WX220 

(RGB) 

17.98 MPx 

(4896 x 

3672) 

2,75  - 

B: 460 

G: 530 

R: 660 

113 

Multispec4C 

(MSC) 

4x 1.23 MPx 

(1280 x 960) 

 

10  

G: 530 - 570 

R: 640 - 680 

RE: 730 - 740 

NIR: 770 - 810 

G: 550 

R: 660 

RE: 735 

NIR: 790 

160 

ThermoMAP 

(TMP) 

0.33 MPx 

(640 x 512) 
18,5  

LWIR: 7,500 - 

13,500 
- 134 

*GSD (Ground Sampling Distance) 

**Full width at half maximum 

 

Field survey was conducted using a Collector for ArcGIS application to gain ground 

truth data about the vegetation. Collected data was divided into 24 categories within 

a 3-level legend. For each category, five items were randomly selected for training data 

and five items for validation data. Eight combinations (a) RGB or MSC mosaic, (b) 

each mosaic + thermal, (c) each mosaic + nDSM, (d) each mosaic + nDSM + thermal 

were classified using object-based segmentation and non-parametric Support Vector 

Machine classifier (Blaschke, 2010; Blaschke et al., 2014) in ENVI image analysis 

software. For validation assessment, confusion matrices were built (Foody, 2013; 

Olofsson et al., 2014; Stehman, 2013). 
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Figure 3.1.2a. Study processing workflow. 

 

 

Results & Conclusion 

The fusion of different types of UAV-borne imagery and its application in the 

environmentally specific area was performed. In general, RGB and multispectral 

sensors offered similar results, and their supplementing with any additional 

information further increased the classification accuracy. A multispectral sensor 

performs better, which is why it is not possible to substitute the spectral resolution 

with a higher spatial resolution. The data on the vegetation height increase the 

accuracy and, therefore, we strongly recommend to use it as an additional 

classification input. The thermal data is also an important source of information; 

however, we cannot confirm if the contribution of the thermal data is higher than that 

of the height data. In all, we can say that the UAV-borne imagery is a powerful source 

of information for plant species classification, even for species which are difficult to 

distinguish. 
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Figure 3.1.2b. Confusion matrix visualization using a circular plot. It represents the best 

model at the most detailed classification level and its misclassifications (lines connect 

misclassified categories, hence the larger section, the more incorrectly classified polygons in 

the category). 
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3.2 Land Use Land Cover Change Detection 

 

The study concept 

Despite the long-lasting interest in this issue, the detection of land cover change is still 

a much discussed research topic. The aim of this study was to assemble convenient 

variables for detecting change in a specific land cover type. Landsat 8 imagery was 

used for detecting change in land cover types from grassland to cropland. A specific 

objective was to verify the potential of selected variables for application in that 

particular change detection. We also assumed that the use of additional variables can 

provide a better accuracy and that spectral variables perform better than the textural 

ones. 

 

Brief methods & methodology 

The study site covers a western part of the Czech Republic (approximately half of the 

country), making the area topographically heterogeneous indeed. Landsat 8 OLI Level 

1 satellite images from two different years (three years apart) in the late summer 

seasons due to the suitability of the time period were selected. For classification, we 

used the Land Parcel Identification System – a government vector reference database. 

From that database, change and no-change plots were identified. The total number of 

59 variables were created for change detection and mean values were calculated for 

each LPIS plot using the ENVI image analysis software and GIS. 

 

Figure 3.2.2a. Study workflow. For validation of models, multi-temporal change detection 

was used. 
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First, highly inter-correlated (r>0.9) variables were excluded; only variables often 

used in change detection were subsequently included into the analysis. Therefore, the 

number of variables decreased to 18 items of vegetation indices, texture, tasselled cap 

and principal component analysis. Akaike Information Criterion (AIC) obtained from 

the individual generalized linear models was used to specify the best sets of variables. 

For the object-based classification, 300 plots with change and 1200 plots without 

change were stratified randomly selected (Congalton and Green, 2009); Support 

Vector Machine classifier was selected due to the non-normal distribution of the input 

data. The accuracy assessment used 200 validation samples for the change plots and 

800 for plots without change (Olofsson et al., 2014; Zhen et al., 2013). 

 

 

Figure 3.2.2b. An example of the study site. (A) Landsat 8 image from 2013. (B) Landsat 8 

image from 2016. (C) NDVI RGB composite (R = NDVI 2013, G = NDVI 2016, B = NDVI 

2013). (D) (No-)change grassland to cropland plots as acquired from the LPIS database. 
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Results & Conclusion 

Multiple sets of variables were tested in order to find the best one for grassland to 

cropland change detection. In that way, models containing one, three, five, seven, and 

fourteen variables were built. A simple Landsat image was also tested for the same 

reason. Generally, increasing the number of variables in the model improved the 

model accuracy. However, the effect of additional variables was not so great when 

comparing it with results from a model with only one variable, namely the Normalized 

Difference Vegetation Index (NDVI). Most surprisingly however, in the conditions of 

the central Europe, a simple Landsat image surprisingly achieved the best results.  

 

 

Figure 3.2.2c. Overall accuracy (%) of calculated models with 95% confidence intervals. 
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3.4 Water birds distribution modelling 

 

The study concept 

The aim of our study was to verify the capability of environmental datasets of various 

origins and scales to predict the occurrence of nesting birds dependent on water body 

environment. The primary research aims were to investigate the effect of the used 

datasets on the prediction accuracy and to find out how a selection of different 

explanatory variables affects the predictive model performance. We also assumed that 

(a) the perimeter of the water bodies would explain the species distribution better 

than the other explanatory variables; (b) the scale of Corine Land Cover should show 

the best fit with the species data from the species distribution atlas (c) the spatial scale 

of the consensus data would not correspond with atlas scale, i.e., the results would be 

poor. 

 

Brief methods & methodology 

The area of interest covers 67,742 km2 of the Czech Republic, approx. 2% of which are 

water bodies. It  was divided into mapping squares by meridians and parallels 

(by 10'E × 6' N; approx. 12 × 11.1 km). The data on species occurrence was obtained 

from the Third Atlas of Nesting Birds (Šťastný et al., 2006), representing a traditional 

source of information about the presence and absence of bird species in the Czech 

Republic. The occurrence data within mapping squares are divided into three 

categories (confirmed, probable, possible). In this thesis, only the “confirmed” 

category was considered as presences, remaining categories as absences of the species. 

The following species were selected: Tachybaptus ruficollis (Pallas, 1764), Podiceps 

cristatus (Linnaeus, 1758), Podiceps nigricollis (Brehm, 1831), Anas strepera 

(Linnaeus, 1758), Anas crecca (Linnaeus, 1758), Aythya ferina (Linnaeus, 1758), 

Aythya fuligula (Linnaeus, 1758). 

As a source of explanatory variables, the study used global and regional land 

cover datasets created through remote sensing methods, namely (a) Global 1-km 

Consensus Land Cover, (b) Corine Land Cover, (c) Global Inland Water, 

(d) OpenStreetMap, (e) Dibavod. The selection of the environmental variables 

respected the ecological requirements of the species (Guisan et Zimmermann, 2000). 
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The used explanatory variables were (1) water body area, (2) water body perimeter, 

(3) number of water bodies. All predictors were related to a single mapping square. 

 

Table 3.3.2. Description of tested water datasets. 

 
Global 

Inland 

Water 

Global 1-km 

Consensus 

Land Cover 

OpenStreetMap Corine 

Land 

Cover 

Dibavod 

Abbreviation GIW GCL OSM CLC DIB 

Type / 

representation 

raster / 

discrete 

raster / 

continuous 

vector 

 

vector 

raster / 

discrete 

vector 

 

Extent global global global regional 

(EU) 

local (CZ) 

Resolution, 

scale 

30 m 1 km approx. 1:10000 1:100000 

100 m, 250 

m 

1:10000 

Sensor Landsat 7 

ETM+ 

  Landsat 7 

ETM+ 

 

Coordinates WGS 1984 

UTM 

WGS 1984 WGS 1984 ETRS 1989 

LAEA 

S-JTSK 

Krovak 

Data 

classification 

Water Open water Water Water 

bodies, 

Water 

courses 

Water 

bodies, 

Water 

courses 

Reference Feng et al., 

2016 

Tuanmu et 

Jetz, 2014 

Haklay et Weber, 

2008 

Büttner et 

al. 2002 

T. G. M. 

Water 

Research 

Institute 
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Figure 3.3.2. A detail of a mapping square for (a) GCL, (b) CLC, (c) GIW, (d) OSM, (e) DIB; 

GCL dataset is represented by a pixel sized 1km, darker colour means a greater 

representation of water within the pixel. 

 

The relationship of the explanatory variables and dependent variable was 

investigated using both Generalized Linear Model and Generalized Additive Model 

(Guisan et al., 2002; McCullagh and Nelder, 1989) in the R environment. Models were 

performed individually for each variable, i.e., a single predictor approach was used for 

modelling (Guisan and Hofer, 2003). A binomial distribution and logistic function, 

i.e., logistic regression, were used. In total, 91 models (13 predictors, 7 species) were 

performed. K-distribution cross-validation was used for the model evaluation (k=5). 

For comparison of the predictive capabilities of the individual models, area under 

curve (AUC) of the receiver operating characteristic plot (Brown and Davis, 2006; 

Fawcett, 2006) and true skill statistics (TSS) (Allouche et al., 2006) were used.  

Results & Conclusions 

Species distributions of selected water birds were tested on different water datasets. 

Generally, models based on datasets with a higher spatial resolution performed better 

despite the coarse grain of the species data. Corine and GLC datasets performed worse 

than others with a better spatial resolution (GIW, OSM, DIB). The data with the best 

resolution generally give the best results, it may be however available only for limited 

extents; therefore, using a crowdsource dataset (OSM) is a suitable compromise and 

may be recommended. Also, the area and perimeter predictors of water bodies 

provided better occurrence prediction than the number of water bodies. The results 

indicate that even data with a high spatial resolution may not substitute a proper 

selection of explanatory variables.  
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4. Results of the thesis  

 

The thesis presents three aspects of the issue of land use/land cover. It consists of 

three studies dealing with a primary classification of land cover (Study 1), detection 

of specific LULC change (Study 2), and distinctive application of different land cover 

datasets for ecological modelling (Study 3). The potential contribution of this thesis 

lies in the description and comparison of different remote sensing platforms and 

remotely sensed data for various environmental applications. In this chapter, brief 

descriptions and abstracts are provided, full texts are attached as a supplementary 

material. Commentary and discussion are mentioned in the following caption. 

 

 

 

 Komárek J, Klouček T, Prošek J, 2018. The potential of Unmanned Aerial 

Systems: A tool towards precision classification of hard-to-distinguish 

vegetation types? 

 

International Journal of Applied Earth Observation and Geoinf., 71: 9 – 19.  

IF2017 4.003, Q1 

 

 

 Klouček T, Moravec D, Komárek J, Lagner O, Štych P. Selecting appropriate 

variables for detecting grassland to cropland changes using high resolution 

satellite data.  

 

PeerJ – accepted 

IF2017 2.118, Q2 

 

 

 Šímová P, Moudrý V, Komárek J, Hrach K, Fortin MJ. Fine scale waterbody 

data improve prediction of waterbirds occurrence despite coarse species data.  

 

Ecography – accepted 

IF2017 4.520, Q1 
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The first study is focused on evaluating various UAV-mounted sensors for 

distinguishing plant species. The contribution of this study is (a) an assessment of the 

potential of UAVs for land cover classification in very detail scale and (b) usability for 

various ecology analysis in the environmentally specific areas. The second study deals 

with the land cover change detection. The study contributes with the determination 

of appropriate variables for change detectability of specific LULC types with spectral 

similarity. The third study covers the topic of ecological modelling using different land 

cover datasets. The main contribution of the study is an evaluation of different data 

type/source/spatial scale effect for modelling of species distribution. 
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4.1 The potential of Unmanned Aerial Systems: A tool towards 

precision classification of hard-to-distinguish vegetation types? 

 

 

Abstract 

Detail species classification using very high spatial resolution data is a challenging 

task. Exploring the potential of imagery acquired by Unmanned Aerial Vehicle (UAV) 

to identify individual species of vegetation and assessing values of additional inputs 

such as height and thermal information into classification process are hot research 

topics. Our study uses a fusion of visible, multispectral and thermal imagery acquired 

through low altitude aerial survey for a detail classification of land cover. The study 

area is located in the central part of the Czech Republic and situated in an 

environmentally very specific area – an arboretum of 2.45 hectares. Visible (i.e. RGB), 

multispectral, and thermal sensors were mounted on a flying fixed-wing Unmanned 

Aerial System. Imagery was acquired at a very detailed scale with Ground Sampling 

Distance of 3 – 18 cm. Besides three mosaics (one from each sensor), normalized 

Digital Surface Models were built from visible and multispectral sensors. Eight 

classification models were created – each mosaic (visible/multispectral) was enriched 

with height data, thermal data, and combined height and thermal information. A 

classification into a three level system was performed through Geographic Object-

based Image Analysis using Support Vector Machine algorithm. In general, Overall 

Accuracy grew with the amount of information entering the classification process. 

Accuracy reached 77 – 91 % depending on the level of generalization for the best model 

based on multispectral data and 67 – 80 % for data from visible sensor. Both thermal 

data and height information improved the accuracy; however, the statistical 

evaluation did not reveal any significant difference between contribution of height 

and thermal data. Results also indicate that increasing spectral resolution leads to a 

significantly better performance of the models than higher spatial resolution. Finally, 

UAVs equipped with a proper sensor provide a convenient technology for detail land 

cover classification even in areas with many similar vegetation types. 
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4.2 Selecting appropriate variables for detecting grassland to 

cropland changes using high resolution satellite data 

 

 

Abstract 

Grassland is one of the most represented, while at the same time, ecologically 

endangered land cover categories in the European Union. In view of the global climate 

change, detecting its change is growing in importance from both an environmental 

and a socio-economic point of view. A well-recognised tool for Land Use and Land 

Cover (LULC) Change Detection (CD), including grassland changes, is Remote 

Sensing (RS). An important aspect affecting the accuracy of change detection is 

finding the optimal indicators of LULC changes (i.e. variables). Inappropriately 

selected variables can produce inaccurate results burdened with a number of 

uncertainties. The aim of our study is to find the most suitable variables for the 

detection of grassland to cropland change, based on a pair of high resolution images 

acquired by the Landsat 8 satellite and from the vector database Land Parcel 

Identification System (LPIS). In total, 59 variables were used to create models using 

Generalised Linear Models (GLM), the quality of which was verified through multi-

temporal object-based change detection. Satisfactory accuracy for the detection of 

grassland to cropland change was achieved using all of the statistically identified 

models. However, a three-variable model can be recommended for practical use, 

namely by combining the Normalised Difference Vegetation Index (NDVI), Wetness 

and Fifth components of Tasselled Cap. Increasing number of variables did not 

significantly improve the accuracy of detection, but rather complicated the 

interpretation of the results and was less accurate than detection based on the original 

Landsat 8 images. The results obtained using these three variables are applicable in 

landscape management, agriculture, subsidy policy, or in updating existing LULC 

databases. Further research implementing these variables in combination with spatial 

data obtained by other RS techniques is needed. 
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4.3 Fine scale waterbody data improve prediction of waterbirds 

occurrence despite coarse species data 

 

 

Abstract 

While modelling habitat suitability and species distribution, ecologists must deal with 

issues related to the spatial resolution of species occurrence and environmental data. 

Indeed, given that the spatial resolution of species and environmental of datasets 

range from centimeters to hundreds of kilometers, it underlines the importance of 

choosing the optimal combination of resolutions to achieve the highest possible 

modelling prediction accuracy. We evaluated how the spatial resolution of land 

cover/waterbody datasets (meters to 1 km) affect waterbird habitat suitability models 

based on atlas data (grid cell of 12 × 11 km). We hypothesized that area, perimeter and 

number of waterbodies computed from high resolution datasets would explain 

distributions of waterbirds better because coarse resolution datasets omit small 

waterbodies affecting species occurrence. Specifically, we investigated which spatial 

resolution of waterbodies had better explain the distribution of seven waterbirds 

nesting on ponds/lakes of area 0.1 ha to hundreds of hectares. Our results show that 

the area and perimeter of waterbodies derived from high resolution datasets (raster 

data with 30 m resolution, vector data corresponding with map scale 1:10,000) 

explain the distribution of the waterbirds better than those calculated using less 

accurate datasets despite the coarse grain of the species data. Taking into account the 

spatial extent (global vs regional) of the datasets, we found the Global inland 

waterbody dataset to be the most suitable for modelling distribution of waterbirds. In 

general, we recommend using land cover data of a sufficient resolution to be able to 

capture the smallest patches of the habitat suitable for given species presence for both 

fine and coarse grain habitat suitability and distribution modelling. 
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5. Annotation & comments 

 

From a general point of view, remote sensing means acquiring, processing, and 

analysing satellite, airborne or UAV imagery (or any flying thing). Increasing amount 

of remotely sensed data makes the land cover monitoring more easily accessible. On 

the other hand, selection of the most suitable map/data for a requested application is 

challenging due to limitations associated with the product inconsistency, data format, 

different data acquisition, or classification disagreements. The conclusions of my 

studies confirm the necessity of selecting appropriate input data/variables in order to 

gain accurate and meaningful results. Many recently published studies also confirm 

that this research direction is topical in the world of science. 

 

 

 

Detail land cover classification 

Although unmanned aerial systems and their utilization in land cover classification is 

nowadays a common task, their applicability for classification of plant species with 

similar spectral characteristics is still not easy. Differentiation of hard-to-distinguish 

plant types was tested using various vendor-provided sensors. We assessed the 

contribution of visible and multispectral sensors as well as that of additional inputs 

(normalized height and thermal information) into the classification process. 

An accuracy of almost 81 % was achieved for individual plant species using 

a multispectral sensor supplemented with the plant height and thermal information. 

Nevertheless, for some plant categories, the accuracy is not consistent. This 

inconsistency may originate from an absence of blue spectral channel in the 

multispectral sensor as some plant categories were better distinguished using the 

visible sensor, especially for coniferous plants.  Not surprisingly, results indicated that 

the sensors are interchangeable for distinguishing low and tall vegetation. For 

problematic categories (e.g. shadows), where sensors themselves did not provide good 

enough results, additional inputs in a form of height or thermal information were 

needed or use of special workflows was necessary (Milas et al., 2017). The overall 

results correspond to other recently published studies (Ahmed et al., 2017; Husson et 

al., 2017; Sankey et al., 2017; Weil et al., 2017), however, to the best of our knowledge, 

no study assessed the utilization of thermal data for a detailed plant species 

classification. There were several possible uncertainties affecting not only our results 

but also applicable to results of any study dealing with the land cover and plant species 
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classification. The chosen classification approach (pixel vs object base) and classifier 

substantially influence the resulting accuracy (Blaschke, 2010; Liu et al., 2015; Yu et 

al., 2006). In addition, in case of UAV-borne imagery, the chosen image matching as 

well as image analysis software may affect the results. Besides other issues, we can 

affect (possibly increase) the accuracy of the analysis by using different sensors, 

though our study was limited by vendor’s mercy. Professional solutions are available 

on the market; however, the price is far from favourable. Moreover, these devices tend 

to require more experienced users for both operating and data processing, which 

makes them more suitable for research than for industry use. 

 

 

Detection of LULC change 

As the knowledge of land cover is essential for many ecological applications, land 

cover change knowledge is a key for understanding the dynamics of surface processes. 

Therefore, the knowledge of land use land cover changes is as important as that of the 

land cover itself, because the (bio)physical surface cover is changing constantly. While 

humans are responsible for many of those changes, others are results of natural 

processes (seasonality or continuous climate change). The change plays a key role not 

only for environmental scientists and landscape protection but also for economists 

and decision makers. As LULC maps are usually produced through classification, 

maps originating from different time points can be compared, which is the principle 

of CD. Remote sensing makes the land cover mapping efficient; however, spatial 

resolutions provided by satellite imagery may be insufficient for many applications 

because land cover changes often occur at a much finer resolution. 

 NDVI vegetation ratio index is widely applied as the explanatory variable due 

to its correlation with a plenty of phenomena. It may be also used for change detection 

(Gandhi et al., 2015; Lunetta et al., 2006; Mallick et al., 2012; Pu et al., 2008; 

Wardlow et al., 2007); however, result interpretation can be difficult. The NDVI 

recognizes only the change in spectral characteristics and, therefore, phenological 

stages have to be taken into consideration. In our case, NDVI provided a poor accuracy 

in the case of grassland to cropland change detection due to the topographical 

heterogeneity across the study area (some fields may have still been covered with 

green crops while others were already harvested). In this case, additional information 

must be introduced into a classification process (e.g. Tasselled Cap components). 

Of course, choosing the right time for image acquisition is crucial for several reasons 
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(Müllerová et al., 2017). It is especially necessary to compare data taken  

approximately at the same time point within a periodical repetition (e.g. every late 

spring) to make sure that the same basic conditions apply. Another issue that has to 

be considered during the study planning is the selection of a suitable phenological 

stage allowing the best differentiation between (among) classes. It is also necessary to 

bear in mind that the phenological stages of an identical plant species will differ across 

longitudes, latitudes or altitudes (Coppin et al., 2004; Tarantino et al., 2016). Besides, 

the use of additional explanatory variables may not lead to better results (Lu and 

Weng, 2007). In our case, raw bands of Landsat image provide the best resulting 

accuracy, which is an important outcome because it leads to the possibility of leaving 

out all the calculations variables/indices and thus to simplify the entire analysis. 

In general, results of any change detection analysis may be influenced by several 

uncertainties associated especially with the raw image pre-processing, classification 

analysis, and errors in a reference database.  

 

 

LULC data utilization 

One of the common utilizations of remotely sensed land cover datasets in ecology is 

their use as an explanatory variable for statistical modelling, which is also the case 

with species distribution/habitat models. One of the big tasks in this field is dealing 

with the use of appropriate scales. Therefore, we assessed the effect of water-related 

land cover datasets varying in spatial scales on a prediction of bird species 

distribution. A finer thematic resolution (i.e., finer grain size) results in general in a 

better habitat classification (i.e. better model performance). Prediction of species 

having a close relationship to their preferred habitats are more sensitive to grain size 

and a model performance for those species is then strongly affected by grain size 

coarsening (Gottschalk et al., 2011). Goodchild (2011) acknowledged that the results 

could be confusing when some details (e.g. habitats) are smaller than the spatial 

resolution of the used dataset. It is necessary to know which resolution is sufficient 

for the analysis, i.e., how much information can be lost with coarser resolution. 

A better spatial resolution generally increases the number of water bodies and makes 

its perimeters more precise when comparing calculations from individual datasets. 

For example, see Fig. 1.3 in the Introduction where the difference in the area 

parameter was only 0.18 sq. km while it was 6 km in the perimeter on the example 

of one water body). 
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LULC characteristics are quite easily measurable, unlike other species-

distribution dependent factors such as inter-species relationships (Rüdisser et al., 

2015). Generally, the mutual correlation of similar-scale datasets (DIB and OSM) was 

high. In our case, across all predictors, OSM a DIB provided very similar results, 

which were at the same time also the best results of all datasets, despite the fact that 

species data are in a much coarser scale. The area and perimeter parameters are the 

best predictors of waterbird distribution, especially if using data with the highest 

spatial resolution. Nevertheless, data with highest spatial resolution are typically only 

available for small extents, which underlines the potential of crowdsourced datasets 

due to their global character despite the possible uncertainties. Our study also showed 

that a higher spatial resolution of used datasets, although important, cannot rectify 

problems caused by selecting improper explanatory variables. 

 

 

Classification of inland water 

As the modelling of distribution of waterbirds is related the occurrence of water 

bodies, let me introduce issue of classification of this specific land cover type. As the 

knowledge of land-use land-cover is an essential for understanding the planetary 

ecosystem, the knowledge of the occurrence and size of water bodies is crucial for 

prediction of floods, modelling catchment areas or a simple evaluation of water 

supply. Water is however, a highly changeable element of the landscape, which is the 

principal cause for traditional terrestrial data collection methods being difficult to 

apply. Water area can also vary seasonally and its classification is particularly 

challenging, as it is difficult to detect water under a vegetation canopy, especially with 

increasing data resolution. With the increasing level of technology and data 

availability, remote sensing can deal with those challenges due to the fact that water 

has a specific spectral change. It absorbs energy the best in the mid-IR band (approx. 

1,300 – 2,500 nm) and partially in the near IR band (750 – 1,300 nm) of the spectrum, 

which is the reason why these spectral characteristics and relative indices from these 

parts of spectrum are the most frequently utilized for water detection (Gao, 1996; 

McFeeters, 1996; Xu, 2006). Besides several remotely sensed global land cover 

datasets, there are also some detailed land cover products with a nationwide range. 

A major problem is that some products were made for political reasons and in effect, 

they may not be shared openly or they may have ceased being updated. The advantage 

lies however in the fact that the nation-wide products tend to be more detailed and 
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accurate, usually covering smaller extents or focusing on particular parts of land 

cover. This is also a case of Dibavod, one of the used datasets, which only covers the 

area of the Czech Republic while specifically focused on water-related phenomena at 

a level of detail that global products are unable to capture. 

 The Globeland30, the world’s first global land cover dataset at a 30m 

resolution, was created in 2014 by China’s donation and belongs to Chen et al. (2015). 

The dataset comes from extraction of more than 20k satellite images and provides a 

worldwide land cover map at a very detailed scale. However, due to the inconsistencies 

and uncertainties were mentioned above, it is also an example of a partially incorrect 

result of water related land cover classification (Fonte et al., 2017). When using 

satellite imagery, one of the problematic categories is the category of clouds or, more 

specifically, shadows. It is quite common that shadows are incorrectly classified 

during the classification process (Fig. 5a). Globeland30 is distributed in overlapping 

tiles, which are classified probably using different images. That is why one may finds 

disagreements (Fig. 5b) in classification of the same phenomenon at neighbouring 

tiles as well as disagreement in pixel positioning in the same area. We performed an 

unpublished study, in which we assessed the accuracy of the water classification in the 

Globeland30 Global Inland Water dataset (mentioned in caption 3.3; Feng et al. 

(2016)) and a widely known Corine Land Cover datasets in comparison with the 

above-mentioned Czech Dibavod database. While the broadly used Corine data 

yielded the lowest accuracy, the other two global products did relatively well 

(Producer's accuracy of approx. 70 % and User's accuracy of almost 90 %). Despite 

numerous misclassifications and spatial disagreements, Globeland30 offers a detailed 

land cover classification with sufficient accuracy, which implies a wide usability of 

global products not only for environmental applications but also for economical and 

other applications, especially in the areas of the world where  detailed national 

products are not available (Jokar Arsanjani et al., 2016).  

  



 
47 

 

Figure 5a. Clouds incorrectly classified as water in a highly urbanised area, surrounding 

Prague main railway station. Globeland30. Source: Author. 

 

 

Figure 5b. Pixel positioning disagreement of GL30 neighbouring overlapping tiles: on the 

left, two tiles in the same coordinate projection; on the right, overlapping tiles in a different 

projection. Source: Author. 

 

 

Promising platforms of remote sensing 

Unmanned Aerial Systems are widely used for various research tasks (see a review by 

Pajares 2015); however, it is still quite a novel technique and the current use is limited 

by country-specific regulations. These systems are quite susceptible to failures 

(Freeman and Balas, 2014; Zuiev et al., 2015) compared to traditional remote sensing 

techniques so there are still numerous challenges to be overcome. However, their 

broad utilization introduces a photogrammetric approach in a greater detail also to 

interested public. As the photogrammetric solutions offer a low-cost alternative to 
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expensive high-tech solutions (i.e., LiDAR), the use of UAVs is on the rise for many 

different applications (Fonstad et al., 2013). The mentioned photogrammetric 

approach or, better, image-matching algorithm (widely known as the Structure from 

Motion) performs an alignment of UAV-borne imagery and generates point clouds. 

During the first step, an algorithm tries to refine both interior (properties of lens) and 

exterior (position and orientation of cameras) parameters, the second step generates 

point clouds. Interior parameters are crucial and imply the estimation of the 

distortion parameters (Fig 5c); exterior parameters are acquired from onboard GNSS 

and IMU units. As the interiors are adjusted automatically during the image aligning 

process, many authors neglect the precise computation of the parameters, which 

requires a little more effort. It is however, worth the effort as neglecting a correct 

geometry reconstruction using accurately measured ground control points may lead 

to errors. The resulting generated point clouds can be classified and transformed into 

digital elevation models. As the digital surface model is a necessary output, 

subtracting a classified terrain model from it results in creation of a model with 

normalized heights (known also as normalized digital surface model or canopy height 

model). As mentioned above, classification results may benefit from supplementing 

with such height models. 

 

 

Figure 5c. Obvious radial distortions in a single non-calibrated image. Source: Author. 
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Across the remote sensing platforms, unmanned aerial systems are becoming 

the most popular ones over the last years. There are many pros and cons to favour 

each of the platforms. However, in many cases, users prefer or are forced to use the 

newest technologies and most recently available satellites, which goes sometimes 

against rational decision and the cost effectiveness is often neglected or forgotten. 

A selection of a correct platform is strongly associated with the intended utilization 

and aims or requirements of the use. All platforms are specific in some way and their 

comparison is often rather difficult than obvious. Many factors can affect the decision 

with spatial resolution being just one of them. It is also necessary to take into account 

for example processing time, flexibility, reliability, dependency, endurance, and last 

but not least – costs and expenses associated with the particular data. Even if 

equipment costs are disregarded, there may be still expenses for licencing and for an 

operator or a pilot, which can be quite high sums nowadays. Nevertheless, if the 

researcher wants to acquire imagery as a service, the most explicit variable is a unit 

price.  The cost-effectiveness of the use of satellite, air-borne and UAV-borne data also 

depends on the spatial extent of the data. With increasing extent, the price of UAV 

imagery grows exorbitantly (Matese et al., 2015). As the Fig. 5 shows, the use of UAV 

is more cost-effective for small extents when compared with airborne or satellite data 

while from an extent of approx. 20 ha (Matese et al. (2015) found even lower threshold 

value), acquiring satellite data makes much more sense from the financial point of 

view. This is of course logical – while for a small extent, UAV imagery can be acquired 

and processed simply, doing the same with a large area would require immense 

amount of both time in the field  and processing time. Another issue is of course the 

spatial resolution, which is very fine when using UAVs. The spatial resolution also 

affects the price of satellite imagery. Images with pixel size of 30 m (Landsat) or even 

10 m (Sentinel) are available free of charge within a few hours after imaging. However, 

even the price of higher spatial resolution images is affordable, it is a few USD per sq. 

km or few tens USD for a sub-meter pixel size. It is likely that these prices will drop 

further in the future. Nevertheless, expenses for imagery processing can be 

significantly higher if one is not able to do the analysis by himself. Satellite imagery 

fits a large scale of applications but there are still fields where its spatial resolution is 

not sufficient (e.g. surveying or civil engineering). 
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Figure 5d. Unit costs. Source: https://droneapps.co. 

 

 

Besides price, other factors are also important, such as flexibility. On-demand 

solutions are growing more and more popular. While freely available imagery is orbit-

driven and offers periodical imaging of the same area every few days, the use of 

commercial platforms allows to select the date of imaging to project needs. Both air-

borne and UAV-borne imagery can be acquired, due to their rapid deployment, 

approximately at a chosen date and time. UAVs in particular can deal with a challenge 

of timing necessary to capture some research phenomenon (Müllerová et al., 2017). 

However, these technologies are strongly weather dependent, especially the 

unmanned ones. On the other hand, an UAV or an aircraft may be deployed under a 

cloud cover when satellite imagery may not be useful. Processing precision grows with 

the above ground altitude disproportionately; on the other hand, the processing time 

rises with the ground sampling distance. That is why the real potential of unmanned 

aerial systems does not lie in the cost savings but rather in the emerging flexibility for 

smaller extents. A rapid reaction in the matter of hours can outweigh the acquisition 

costs due to the possible economic benefits of quick information. 
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Traditional (satellite-based) remote sensing faces its limits in terms of the 

spatial resolution while terrestrial measurements are quite labour intensive and time 

consuming. Therefore, unmanned aerial systems offer the potential to fill the gap 

between satellites and fieldwork. Various unmanned aerial platforms are available on 

the market and their price keeps dropping, while their popularity and use in many 

research fields as well as in industry and agriculture increase. The suitability of UAVs 

for particular tasks varies, just as the possibility of equipping the platform with 

various sensors. In general, the customer is able to choose between a full generic 

vendor-provided solution and between using platforms that are more customizable 

and finding the solution by himself. Although vendor solutions come typically ready 

for deployment and their promotion is sometimes stunning, they can have very user-

friendly environment and be easy to operate, home-assembled solutions may offer an 

even higher quality at lower expenses (Moudrý et al., n.d.). 
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6. Conclusions 

 

Land-use land-cover is an important variable that can be of interest to researchers in 

many fields. It is therefore likely that more datasets will be created and that the 

information in both the new and old ones will be kept updated in the general interest. 

Datasets can be created using various sensors, classification algorithms, for different 

purposes, in various spatial extents and scales, and the dataset creators can affect the 

results through their individual more or less qualified decisions. There is no one 

universal dataset that would perfectly suit any purpose. However, to aid the 

reproducibility of the experiments, global and (if possible) open datasets should be 

used for studies in lower scales (large extents). On the other hand, accurate detailed 

data should be used for local studies regarding desired detail. For any study, 

a potential of volunteered data should be considered. In many cases, volunteered 

based data may at least keep up-to-date and supplement the other data source. 

Many remote sensing platforms exist. As satellites have a fixed-timing 

acquisition, aircraft as well as UAV timing of acquisition is much more flexible. When 

UAV is situated for small extents in detail scale, aircrafts and mainly satellites are able 

to cover large areas. There are many other issues to be compared, for example 

questions about payload, endurance, weather dependency, reliability, but also 

organization efforts etc. That is why the chosen platform has to match a study aim and 

awaited results. An important aspect of proper platform/organization selection 

should be also the thinking about a financial point of the thing. Therefore, a cost 

analysis of planned study/survey should be included in the process of making a 

decision. 

 In the current digital age, many data sources exist and a user with limited 

experience gives in to temptation of using the newest, the most detailed, the easiest to 

access datasets, or to use as many as possible regardless of the rationality. This data 

availability is in a way quite dangerous and seems like a trap for the users. For many 

applications, a multitude of variables may be created, although the reasonability of 

these variables is sometimes lacking. Moreover, many of them are strongly 

intercorrelated. In remote sensing, variables are often derived from raw emitted data 

and, typically, ratio indices are calculated.  The real contribution of such approach is 

however questionable, because raw data may often reflect the reality or explain the 

issue much better than derived variables. Hence, a rational approach to the selection 
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of variables prior to initializing computations is crucial for improving the effectiveness 

of researcher’s work. 

 Let me just mention one of many examples. Perhaps everyone who ever 

worked with multispectral data knows the NDVI vegetation index. Over the last few 

decades, it became a universal tool utilized in various environmental analyses. NDVI 

(Rouse et al., 1973; Tucker, 1977) was created when Landsat satellite data became 

available and was developed as a tool for qualitative evaluation of the presence or state 

of vegetation. Since then, the index became very popular due to its simplicity and was 

used in a number of diverse research applications. At present, it is computed in 

addition to satellite data also from UAV data. Unfortunately, its interpretation is 

much more difficult than the users realise. NDVI values change with seasons but it 

can undergo a much faster change within a few days or even within one day 

(e.g. depending on the time of day or on the weather). An NDVI map measured at a 

single time point therefore often leads to imprecise decisions, typically in (precision) 

agriculture. Uncertainties can also be borne by the use of various sensors (spatial or 

spectral resolution) or the calculations and calibrations. NDVI is undoubtedly an 

effective and very easily attainable RS data indicator (typically used for the 

assessment of the vegetation health or state). On the other hand, its overuse is 

associated with limited possibilities of results interpretation and its utilization should 

always be based on rational consideration rather than on the popularity of the index; 

alternatively, the acquired results should be at least complemented or confronted with 

other RS indicators to make sure that no misinterpretation occurred. 

 

Afterword 

The formulated aims were reached. I believe that and the presented studies 

appropriately demonstrate the principal issues of the LULC/RS combination and that 

their results contribute towards better understanding of those issues and of the 

environmental science in general. It is however necessary to mention that those 

approaches are not by far the only possible approaches, regardless whether we discuss 

land cover classification, change detection or the application of data for ecological 

modelling. In fact, not even the best model can completely encompass the reality and 

we can be sure that it will always represent a better or worse simplification and 

generalization of that reality. I can, as we can all, only strive for providing models, 

which are the best possible approximation of that reality. 
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7. Further research 

 

As the thesis was dealing with the issues of land cover classification and land cover 

change detection, I would like to focus my further research on the same field, 

especially with the utilization of unmanned aerial systems. The plan is to assess its 

still largely unknown potential and the frontiers of its possible utilization as UAVs are 

indeed still actually quite a new technology still under development. One of the 

possible applications of the change detection is to detect the within-season spectral 

changes. As the pest’s outbreaks become a serious environmental threat, and,  

therefore, a hot research topics (Abdullah et al., 2018; Fassnacht et al., 2014; Latifi et 

al., 2014; Seidl et al., 2017; Stoyanova et al., 2018), there is another ongoing project 

focused on detection of bark beetle infestation. One of the aims is early detection, for 

which it is necessary to find a detectable spectral difference between healthy and early 

infected trees in the shortest time possible. Besides early detection, spatiotemporal 

dynamics connected with topography and climatic conditions will be studied. The 

second near-future research topic is to assess the possibilities of temperature 

calculations. As the UAV-mounted thermal sensors are readily available on the 

market, almost nobody performs the transformation of brightness temperature into 

the real surface temperature anymore. One of the objectives is to revise employed 

techniques in the satellite remote sensing in order to modify and update these 

techniques for use in the close-range. 

 

  



 
55 

8. References 

  



 
56 

Abdullah, H., Darvishzadeh, R., Skidmore, A.K., Groen, T.A., Heurich, M., 2018. 

European spruce bark beetle (Ips typographus, L.) green attack affects foliar 

reflectance and biochemical properties. Int. J. Appl. Earth Obs. Geoinf. 64, 

199–209. https://doi.org/10.1016/j.jag.2017.09.009 

Ahmed, O.S., Shemrock, A., Chabot, D., Dillon, C., Williams, G., Wasson, R., 

Franklin, S.E., 2017. Hierarchical land cover and vegetation classification using 

multispectral data acquired from an unmanned aerial vehicle. Int. J. Remote 

Sens. 38, 2037–2052. https://doi.org/10.1080/01431161.2017.1294781 

Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species 

distribution models: Prevalence, kappa and the true skill statistic (TSS). J. 

Appl. Ecol. 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x 

Alonzo, M., Bookhagen, B., Roberts, D.A., 2014. Urban tree species mapping using 

hyperspectral and lidar data fusion. Remote Sens. Environ. 148, 70–83. 

https://doi.org/10.1016/j.rse.2014.03.018 

Arsanjani, J.J., Mooney, P., Zipf, A., 2015. Quality Assessment of the Contributed 

Land Use Information from OpenStreetMap Versus Authoritative Datasets. 

OpenStreetMap in GIScience 37–58. https://doi.org/10.1007/978-3-319-

14280-7 

Austin, M.. M., 2002. Spatial prediction of species distributiion: an interface 

between ecological theory and statistical modelling. Ecol. Modell. 157, 101–118. 

https://doi.org/10.1016/S0304-3800(02)00205-3 

Austin, M., 2007. Species distribution models and ecological theory: A critical 

assessment and some possible new approaches, Ecological Modelling. Elsevier. 

https://doi.org/10.1016/j.ecolmodel.2006.07.005 

Bartholomé, E., Belward, A.S., 2005. GLC2000: a new approach to global land cover 

mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977. 

https://doi.org/10.1080/01431160412331291297 

Bellard, C., Leroy, B., Thuiller, W., Rysman, J.-F.F., Courchamp, F., 2016. Major 

drivers of invasion risks throughout the world. Ecosphere 7, e01241. 

https://doi.org/10.1002/ecs2.1241 

 

 



 
57 

Blanco, P.D., Colditz, R.R., López Saldaña, G., Hardtke, L.A., Llamas, R.M., Mari, 

N.A., Fischer, A., Caride, C., Aceñolaza, P.G., del Valle, H.F., Lillo-Saavedra, M., 

Coronato, F., Opazo, S.A., Morelli, F., Anaya, J.A., Sione, W.F., Zamboni, P., 

Arroyo, V.B., 2013. A land cover map of Latin America and the Caribbean in the 

framework of the SERENA project. Remote Sens. Environ. 132, 13–31. 

https://doi.org/10.1016/J.RSE.2012.12.025 

Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. 

Photogramm. Remote Sens. 65, 2–16. 

https://doi.org/10.1016/j.isprsjprs.2009.06.004 

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz 

Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. 

Geographic Object-Based Image Analysis - Towards a new paradigm. ISPRS J. 

Photogramm. Remote Sens. 87, 180–191. 

https://doi.org/10.1016/j.isprsjprs.2013.09.014 

Bontemps, S., Defourny, P., Bogaert, E., Arino, O., Kalogirou, V., Perez, J., 2011. 

{GLOBCOVER 2009 - Products description and validation report}. 

Bork, E.W., Su, J.G., 2007. Integrating LIDAR data and multispectral imagery for 

enhanced classification of rangeland vegetation: A meta analysis. Remote Sens. 

Environ. 111, 11–24. https://doi.org/10.1016/j.rse.2007.03.011 

Brovkina, O., Cienciala, E., Surový, P., Janata, P., 2018. Unmanned aerial vehicles 

(UAV) for assessment of qualitative classification of Norway spruce in 

temperate forest stands. Geo-Spatial Inf. Sci. 21, 12–20. 

https://doi.org/10.1080/10095020.2017.1416994 

Brown, C.D., Davis, H.T., 2006. Receiver operating characteristics curves and 

related decision measures: A tutorial. Chemom. Intell. Lab. Syst. 80, 24–38. 

https://doi.org/10.1016/j.chemolab.2005.05.004 

Broxton, P.D., Zeng, X., Sulla-Menashe, D., Troch, P.A., 2014. A Global Land Cover 

Climatology Using MODIS Data. J. Appl. Meteorol. Climatol. 53, 1593–1605. 

https://doi.org/10.1175/JAMC-D-13-0270.1 

Büttner, G., Feranec, J., Jaffrain, G., Mari, L., Maucha, G., Soukup, T., George 

ButtnerJan Feranec...., 2004. the Corine Land Cover 2000 Project. Corine L. 

Cover 2000 Proj. 3, 331–346. 



 
58 

Channan, S., Collins, K., Emanuel, W.R., 2014. Global mosaics of the standard 

MODIS land cover type data. Maryland, USA. 

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, 

M., Zhang, W., Tong, X., Mills, J., 2015. Global land cover mapping at 30 m 

resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote 

Sens. 103, 7–27. https://doi.org/10.1016/J.ISPRSJPRS.2014.09.002 

Coleman, D.J., Eng, P., 2010. Volunteered Geographic Information in Spatial Data 

Infrastructure : An Early Look At Opportnities And Constraints. GSDI 12 World 

Conf. 1–18. 

Congalton, R.G., Green, K., 2009. Assessing the accuracy of remotely sensed data : 

principles and practices. CRC Press/Taylor & Francis. 

Congalton, R.G., Gu, J., Yadav, K., Thenkabail, P., Ozdogan, M., 2014. Global land 

cover mapping: A review and uncertainty analysis. Remote Sens. 

https://doi.org/10.3390/rs61212070 

Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., Lambin, E., 2004. Review 

ArticleDigital change detection methods in ecosystem monitoring: a review. Int. 

J. Remote Sens. 25, 1565–1596. 

https://doi.org/10.1080/0143116031000101675 

Defourny, P., Vancutsem, C., Bicheron, C., Brockmann, C., Nino, F., Schouten, L., 

Leroy, M., 2007. GlobCover: A 300M Global Land Cover Product for 2005 

Using ENVISAT MERIS Time Series. Proc. ISPRS Comm. VII Mid-Term Symp. 

8–11. 

Delaney, D.G., Sperling, C.D., Adams, C.S., Leung, B., 2007. Marine invasive species: 

validation of citizen science and implications for national monitoring networks. 

Biol. Invasions 10, 117–128. https://doi.org/10.1007/s10530-007-9114-0 

Elith, J., Leathwick, J.R., 2009. Species Distribution Models: Ecological Explanation 

and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–

697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 

Elwood, S., 2008. Volunteered geographic information: future research directions 

motivated by critical, participatory, and feminist GIS. GeoJournal 72, 173–183. 

https://doi.org/10.1007/s10708-008-9186-0 

 



 
59 

Fassnacht, F.E., Latifi, H., Ghosh, A., Joshi, P.K., Koch, B., 2014. Assessing the 

potential of hyperspectral imagery to map bark beetle-induced tree mortality. 

Remote Sens. Environ. 140, 533–548. 

https://doi.org/10.1016/J.RSE.2013.09.014 

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–

874. https://doi.org/10.1016/j.patrec.2005.10.010 

Feng, M., Sexton, J.O., Channan, S., Townshend, J.R., 2016. A global, high-

resolution (30-m) inland water body dataset for 2000: first results of a 

topographic–spectral classification algorithm. Int. J. Digit. Earth 9, 113–133. 

https://doi.org/10.1080/17538947.2015.1026420 

Feng, Q., Liu, J., Gong, J., 2015. UAV Remote sensing for urban vegetation mapping 

using random forest and texture analysis. Remote Sens. 7, 1074–1094. 

https://doi.org/10.3390/rs70101074 

Fisher, P.F., Comber, A.J., Wadsworth, R., 2005. Land use and Land cover: 

Contradiction or Complement. Re-presenting GIS 85–98. 

Flanagin, A.J., Metzger, M.J., 2008. The credibility of volunteered geographic 

information. GeoJournal 72, 137–148. https://doi.org/10.1007/s10708-008-

9188-y 

Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E., 2013. 

Topographic structure from motion: a new development in photogrammetric 

measurement. Earth Surf. Process. Landforms 38, 421–430. 

https://doi.org/10.1002/esp.3366 

Fonte, C., Minghini, M., Patriarca, J., Antoniou, V., See, L., Skopeliti, A., 2017. 

Generating Up-to-Date and Detailed Land Use and Land Cover Maps Using 

OpenStreetMap and GlobeLand30. ISPRS Int. J. Geo-Information 6, 125. 

https://doi.org/10.3390/ijgi6040125 

Foody, G.M., 2013. Ground reference data error and the mis-estimation of the Area 

of land cover change as a function of its abundance. Remote Sens. Lett. 4, 783–

792. https://doi.org/10.1080/2150704X.2013.798708 

Foody, G.M., 2004. Thematic Map Comparison. Photogramm. Eng. Remote Sens. 

70, 627–633. https://doi.org/10.14358/PERS.70.5.627 

 



 
60 

Foody, G.M., 2002. Status of land cover classification accuracy assessment. Remote 

Sens. Environ. 80, 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4 

Foody, G.M., Boyd, D.S., 2013. Using volunteered data in land cover map validation: 

Mapping west African forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 

6, 1305–1312. https://doi.org/10.1109/JSTARS.2013.2250257 

Foody, G.M., Boyd, D.S., 2012. Exploring the potential role of volunteer citizen 

sensors in land cover map accuracy assessment. 10th Int. Symp. Spat. Accuracy 

Assess. Nat. Resour. Environ. Sci. 203–208. 

Foody, G.M., See, L., Fritz, S., Van der Velde, M., Perger, C., Schill, C., Boyd, D.S., 

2013. Assessing the Accuracy of Volunteered Geographic Information arising 

from Multiple Contributors to an Internet Based Collaborative Project. Trans. 

GIS 17, 847–860. https://doi.org/10.1111/tgis.12033 

Frazier, P.S., Frazier, P.S., Page, K.J., Page, K.J., 2000. Water Body Detection and 

Delineation with Landsat TM Data. Photogramm. Eng. Remote Sens. 66, 1461–

1467. https://doi.org/0099-1112I0OI6612-1461$3.00/0 

Freeman, P., Balas, G.J., 2014. Actuation failure modes and effects analysis for a 

small UAV, in: 2014 American Control Conference. IEEE, pp. 1292–1297. 

https://doi.org/10.1109/ACC.2014.6859482 

Fritz, S., McCallum, I., Schill, C., Perger, C., See, L., Schepaschenko, D., van der 

Velde, M., Kraxner, F., Obersteiner, M., 2012. Geo-Wiki: An online platform for 

improving global land cover. Environ. Model. Softw. 31, 110–123. 

https://doi.org/10.1016/j.envsoft.2011.11.015 

Fritz, S., See, L., 2008. Identifying and quantifying uncertainty and spatial 

disagreement in the comparison of Global Land Cover for different 

applications. Glob. Chang. Biol. 14, 1057–1075. https://doi.org/10.1111/j.1365-

2486.2007.01519.x 

Gandhi, G.M., Parthiban, S., Thummalu, N., Christy, A., 2015. Ndvi: Vegetation 

Change Detection Using Remote Sensing and Gis – A Case Study of Vellore 

District. Procedia Comput. Sci. 57, 1199–1210. 

https://doi.org/10.1016/J.PROCS.2015.07.415 

 

 



 
61 

Gao, B., 1996. NDWI—A normalized difference water index for remote sensing of 

vegetation liquid water from space. Remote Sens. Environ. 58, 257–266. 

https://doi.org/10.1016/S0034-4257(96)00067-3 

Gini, R., Passoni, D., Pinto, L., Sona, G., 2014. Use of unmanned aerial systems for 

multispectral survey and tree classification: A test in a park area of northern 

Italy. Eur. J. Remote Sens. 47, 251–269. 

https://doi.org/10.5721/EuJRS20144716 

Giri, C., Pengra, B., Long, J., Loveland, T.R., 2013. Next generation of global land 

cover characterization, mapping, and monitoring. Int. J. Appl. Earth Obs. 

Geoinf. 25, 30–37. https://doi.org/10.1016/J.JAG.2013.03.005 

Giri, C., Zhu, Z., Reed, B., 2005. A comparative analysis of the Global Land Cover 

2000 and MODIS land cover data sets. Remote Sens. Environ. 94, 123–132. 

https://doi.org/10.1016/j.rse.2004.09.005 

Gómez-Candón, D., De Castro, A.I., López-Granados, F., 2014. Assessing the 

accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision 

agriculture purposes in wheat. Precis. Agric. 15, 44–56. 

https://doi.org/10.1007/s11119-013-9335-4 

Goodchild, M.F., 2011. Scale in GIS: An overview. Geomorphology 130, 5–9. 

https://doi.org/10.1016/j.geomorph.2010.10.004 

Goodchild, M.F., 2007. Citizens as sensors: The world of volunteered geography. 

GeoJournal. https://doi.org/10.1007/s10708-007-9111-y 

Gottschalk, T.K., Aue, B., Hotes, S., Ekschmitt, K., 2011. Influence of grain size on 

species–habitat models. Ecol. Modell. 222, 3403–3412. 

https://doi.org/10.1016/J.ECOLMODEL.2011.07.008 

Greenwood, J.J.D., 2007. Citizens, science and bird conservation. J. Ornithol. 148, 

77–124. https://doi.org/10.1007/s10336-007-0239-9 

Grekousis, G., Mountrakis, G., Kavouras, M., 2015. An overview of 21 global and 43 

regional land-cover mapping products. Int. J. Remote Sens. 1161, 1–27. 

https://doi.org/10.1080/01431161.2015.1093195 

Guisan, A., Edwards, T.C., Hastie, T., 2002. Generalized linear and generalized 

additive models in studies of species distributions: Setting the scene. Ecol. 

Modell. 157, 89–100. https://doi.org/10.1016/S0304-3800(02)00204-1 



 
62 

Guisan, A., Hofer, U., 2003. Predicting reptile distributions at the mesoscale: 

Relation to climate and topography. J. Biogeogr. 30, 1233–1243. 

https://doi.org/10.1046/j.1365-2699.2003.00914.x 

Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., 

Tulloch, A.I.T., Regan, T.J., Brotons, L., Mcdonald-Madden, E., Mantyka-

Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., 

Schwartz, M.W., Wintle, B.A., Broennimann, O., Austin, M., Ferrier, S., 

Kearney, M.R., Possingham, H.P., Buckley, Y.M., 2013. Predicting species 

distributions for conservation decisions. Ecol. Lett. 16, 1424–1435. 

https://doi.org/10.1111/ele.12189 

Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in 

ecology. Ecol. Modell. 135, 147–186. https://doi.org/10.1016/S0304-

3800(00)00354-9 

Guisan, A., Zimmermann, N.E., Elith, J., Graham, C.H., Phillips, S., Peterson, A.T., 

2007. What matters for predicting the occurrences of trees: Techniques, data, 

or species’ characteristics? Ecol. Monogr. 77, 615–630. 

https://doi.org/10.1890/06-1060.1 

Hansen, M.C., Loveland, T.R., 2012. A review of large area monitoring of land cover 

change using Landsat data. Remote Sens. Environ. 122, 66–74. 

https://doi.org/10.1016/J.RSE.2011.08.024 

Hochachka, W.M., Fink, D., Hutchinson, R. a, Sheldon, D., Wong, W.-K., Kelling, S., 

2012. Data-intensive science applied to broad-scale citizen science. Trends 

Ecol. Evol. 27, 130–7. https://doi.org/10.1016/j.tree.2011.11.006 

Holmgren, J., Persson, Å., Söderman, U., 2008. Species identification of individual 

trees by combining high resolution LiDAR data with multi‐spectral images. Int. 

J. Remote Sens. 29, 1537–1552. https://doi.org/10.1080/01431160701736471 

Huang, C., Davis, L.S., Townshend, J.R.G., 2002. An assessment of support vector 

machines for land cover classification. Int. J. Remote Sens. 23, 725–749. 

https://doi.org/10.1080/01431160110040323 

Hurlbert, A.H., Liang, Z., 2012. Spatiotemporal variation in avian migration 

phenology: citizen science reveals effects of climate change. PLoS One 7, 

e31662. https://doi.org/10.1371/journal.pone.0031662 



 
63 

Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D., 2013. Change detection from 

remotely sensed images: From pixel-based to object-based approaches. ISPRS 

J. Photogramm. Remote Sens. 80, 91–106. 

https://doi.org/10.1016/J.ISPRSJPRS.2013.03.006 

Husson, E., Reese, H., Ecke, F., 2017. Combining spectral data and a DSM from 

UAS-images for improved classification of non-submerged aquatic vegetation. 

Remote Sens. 9, 1–15. https://doi.org/10.3390/rs9030247 

Jarnevich, C.S., Stohlgren, T.J., Kumar, S., Morisette, J.T., Holcombe, T.R., 2015. 

Caveats for correlative species distribution modeling. Ecol. Inform. 29, 6–15. 

https://doi.org/10.1016/j.ecoinf.2015.06.007 

Jokar Arsanjani, J., Tayyebi, A., Vaz, E., 2016. GlobeLand30 as an alternative fine-

scale global land cover map: Challenges, possibilities, and implications for 

developing countries. Habitat Int. 55, 25–31. 

https://doi.org/10.1016/j.habitatint.2016.02.003 

Kawrykow, A., Roumanis, G., Kam, A., Kwak, D., Leung, C., Wu, C., Zarour, E., 

Sarmenta, L., Blanchette, M., Waldispühl, J., Waldispühl, J., 2012. Phylo: A 

Citizen Science Approach for Improving Multiple Sequence Alignment. PLoS 

One 7, e31362. https://doi.org/10.1371/journal.pone.0031362 

Keshava, N., Mustard, J.F., 2002. Spectral unmixing. IEEE Signal Process. Mag. 19, 

44–57. https://doi.org/10.1109/79.974727 

Klein, I., Gessner, U., Dietz, A.J., Kuenzer, C., 2017. Global WaterPack – A 250 m 

resolution dataset revealing the daily dynamics of global inland water bodies. 

Remote Sens. Environ. 198, 345–362. 

https://doi.org/10.1016/j.rse.2017.06.045 

Kuria, D.N., Menz, G., Misana, S., Mwita, E., Thamm, H.-P., Alvarez, M., Mogha, N., 

Becker, M., Oyieke, H., 2014. Seasonal Vegetation Changes in the Malinda 

Wetland Using Bi-Temporal , Multi-Sensor , Very High Resolution Remote 

Sensing Data Sets. Adv. Remote Sens. 3, 33–48. 

https://doi.org/10.4236/ars.2014.31004 

Lassueur, T., Joost, S., Randin, C.F., 2006. Very high resolution digital elevation 

models: Do they improve models of plant species distribution? Ecol. Modell. 

198, 139–153. https://doi.org/10.1016/j.ecolmodel.2006.04.004 



 
64 

Latifi, H., Schumann, B., Kautz, M., Dech, S., 2014. Spatial characterization of bark 

beetle infestations by a multidate synergy of SPOT and Landsat imagery. 

Environ. Monit. Assess. 186, 441–456. https://doi.org/10.1007/s10661-013-

3389-7 

Lechner, A.M., Langford, W.T., Bekessy, S.A., Jones, S.D., 2012a. Are landscape 

ecologists addressing uncertainty in their remote sensing data? Landsc. Ecol. 

27, 1249–1261. https://doi.org/10.1007/s10980-012-9791-7 

Lechner, A.M., Langford, W.T., Jones, S.D., Bekessy, S.A., Gordon, A., 2012b. 

Investigating species-environment relationships at multiple scales: 

Differentiating between intrinsic scale and the modifiable areal unit problem. 

Ecol. Complex. 11, 91–102. https://doi.org/10.1016/j.ecocom.2012.04.002 

Lecours, V., Devillers, R., Schneider, D., Lucieer, V., Brown, C., Edinger, E., 2015. 

Spatial scale and geographic context in benthic habitat mapping: review and 

future directions. Mar. Ecol. Prog. Ser. 535, 259–284. 

https://doi.org/10.3354/meps11378 

Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Coppin, P., 2011. A comparison of 

time series similarity measures for classification and change detection of 

ecosystem dynamics. Remote Sens. Environ. 115, 3129–3152. 

https://doi.org/10.1016/J.RSE.2011.06.020 

Liu, H., Zhou, Q., 2004. Accuracy analysis of remote sensing change detection by 

rule-based rationality evaluation with post-classification comparison. Int. J. 

Remote Sens. 25, 1037–1050. https://doi.org/10.1080/0143116031000150004 

Liu, J., Li, P., Wang, X., 2015. A new segmentation method for very high resolution 

imagery using spectral and morphological information. ISPRS J. Photogramm. 

Remote Sens. 101, 145–162. 

Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L., Merchant, 

J.W., 2000. Development of a global land cover characteristics database and 

IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21, 1303–1330. 

https://doi.org/10.1080/014311600210191 

Lu, D., Batistella, M., Moran, E., 2008. Integration of Landsat TM and SPOT HRG 

Images for Vegetation Change Detection in the Brazilian Amazon. 

Photogramm. Eng. Remote Sensing 74, 421–430. 



 
65 

Lu, D., Li, G., Moran, E., 2014. Current situation and needs of change detection 

techniques, International Journal of Image and Data Fusion. Taylor & Francis. 

https://doi.org/10.1080/19479832.2013.868372 

Lu, D., Mausel, P., Brondízio, E., Moran, E., 2004. Change detection techniques. Int. 

J. Remote Sens. 25, 2365–2401. 

https://doi.org/10.1080/0143116031000139863 

Lu, D., Weng, Q., 2007. A survey of image classification methods and techniques for 

improving classification performance, International Journal of Remote 

Sensing.  Taylor & Francis . https://doi.org/10.1080/01431160600746456 

Lunetta, R.S., Knight, J.F., Ediriwickrema, J., Lyon, J.G., Worthy, L.D., 2006. Land-

cover change detection using multi-temporal MODIS NDVI data. Remote Sens. 

Environ. 105, 142–154. https://doi.org/10.1016/j.rse.2006.06.018 

Mallick, J., Singh, C.K., Shashtri, S., Rahman, A., Mukherjee, S., 2012. Land surface 

emissivity retrieval based on moisture index from LANDSAT TM satellite data 

over heterogeneous surfaces of Delhi city. Int. J. Appl. Earth Obs. Geoinf. 19, 

348–358. https://doi.org/10.1016/J.JAG.2012.06.002 

Matese, A., Toscano, P., Di Gennaro, S., Genesio, L., Vaccari, F., Primicerio, J., Belli, 

C., Zaldei, A., Bianconi, R., Gioli, B., 2015. Intercomparison of UAV, Aircraft 

and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 

7, 2971–2990. https://doi.org/10.3390/rs70302971 

McCallum, I., Obersteiner, M., Nilsson, S., Shvidenko, A., 2006. A spatial 

comparison of four satellite derived 1km global land cover datasets. Int. J. Appl. 

Earth Obs. Geoinf. 8, 246–255. https://doi.org/10.1016/j.jag.2005.12.002 

McCue, A.J., McGrath, M.J., Wiersma, Y.F., 2014. Benefits and drawbacks of two 

modelling approaches for a generalist carnivore: can models predict where Wile 

E. Coyote will turn up next? Int. J. Geogr. Inf. Sci. 28, 1590–1609. 

https://doi.org/10.1080/13658816.2013.847444 

McCullagh, P. (Peter), Nelder, J.A., 1989. Generalized Linear Models, 2nd ed. 

Chapman & Hall, London. 

McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in 

the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432. 

https://doi.org/10.1080/01431169608948714 



 
66 

Michener, W.K., Jones, M.B., 2012. Ecoinformatics: supporting ecology as a data-

intensive science. Trends Ecol. Evol. 27, 85–93. 

https://doi.org/10.1016/j.tree.2011.11.016 

Michez, A., Piégay, H., Lisein, J., Claessens, H., Lejeune, P., 2016. Classification of 

riparian forest species and health condition using multi-temporal and 

hyperspatial imagery from unmanned aerial system. Environ. Monit. Assess. 

188, 1–19. https://doi.org/10.1007/s10661-015-4996-2 

Milas, A.S., Arend, K., Mayer, C., Simonson, M.A., Mackey, S., 2017. Different 

colours of shadows: classification of UAV images. Int. J. Remote Sens. 38, 

3084–3100. https://doi.org/10.1080/01431161.2016.1274449 

Mittal, M., Kaur, G., 2003. Mixels Resolution by hybridization approach ( BBO 

&amp; GA ) - Semantic Scholar. Int. J. Innov. Res. Sci. Eng. Technol. 2. 

Moudrý, V., Urban, R., Štroner, M., Komárek, J., Brouček, J., Prošek, J., n.d. 

Comparison of a commercial and home-assembled fixed-wing UAV for terrain 

mapping of a post-mining site under leaf-off conditions. Int. J. Remote Sens. 

Müllerová, J., Brůna, J., Bartaloš, T., Dvořák, P., Vítková, M., Pyšek, P., 2017. 

Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant 

Invasion Monitoring. Front. Plant Sci. 8, 1–13. 

https://doi.org/10.3389/fpls.2017.00887 

Myint, S.W., Gober, P., Brazel, A., Grossman-Clarke, S., Weng, Q., 2011. Per-pixel vs. 

object-based classification of urban land cover extraction using high spatial 

resolution imagery. Remote Sens. Environ. 115, 1145–1161. 

https://doi.org/10.1016/J.RSE.2010.12.017 

Näsi, R., Honkavaara, E., Lyytikäinen-Saarenmaa, P., Blomqvist, M., Litkey, P., 

Hakala, T., Viljanen, N., Kantola, T., Tanhuanpää, T., Holopainen, M., 2015. 

Using UAV-based photogrammetry and hyperspectral imaging for mapping 

bark beetle damage at tree-level. Remote Sens. 7, 15467–15493. 

https://doi.org/10.3390/rs71115467 

Nishar, A., Richards, S., Breen, D., Robertson, J., Breen, B., 2016. Thermal infrared 

imaging of geothermal environments and by an unmanned aerial vehicle 

(UAV): A case study of the Wairakei – Tauhara geothermal field, Taupo, New 

Zealand. Renew. Energy 86, 1256–1264. 

https://doi.org/10.1016/J.RENENE.2015.09.042 



 
67 

Olofsson, P., Foody, G.M., Herold, M., Stehman, S. V., Woodcock, C.E., Wulder, 

M.A., 2014. Good practices for estimating area and assessing accuracy of land 

change. Remote Sens. Environ. 148, 42–57. 

https://doi.org/10.1016/j.rse.2014.02.015 

Pajares, G., 2015. Overview and Current Status of Remote Sensing Applications 

Based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 

81, 281–330. https://doi.org/10.14358/PERS.81.4.281 

Pal, M., Mather, P.M., 2003. An assessment of the effectiveness of decision tree 

methods for land cover classification. Remote Sens. Environ. 86, 554–565. 

https://doi.org/10.1016/S0034-4257(03)00132-9 

Perger, C., Fritz, S., See, L., Schill, C., Van Der Velde, M., Mccallum, I., Obersteiner, 

M., 2012. A Campaign to Collect Volunteered Geographic Information on Land 

Cover and Human Impact. GI Forum 2012 Geovizualisation, Soc. Learn. 83–91. 

Pfeifer, M., Disney, M., Quaife, T., Marchant, R., 2012. Terrestrial ecosystems from 

space: A review of earth observation products for macroecology applications. 

Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2011.00712.x 

Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A., Randin, C., 2014. Very high 

resolution environmental predictors in species distribution models. Prog. Phys. 

Geogr. 38, 79–96. https://doi.org/10.1177/0309133313512667 

Pu, R., Gong, P., Tian, Y., Miao, X., Carruthers, R., Anderson, G., 2008. Using 

Classification and NDVI Differencing Methods for Monitoring Sparse 

Vegetation Coverage: A Case Study of Saltcedar in Nevada, USA. Int. J. Remote 

Sens. https://doi.org/http://dx.doi.org/10.1080/01431160801908095 

Rabus, B., Eineder, M., Roth, A., Bamler, R., 2003. The shuttle radar topography 

mission—a new class of digital elevation models acquired by spaceborne radar. 

ISPRS J. Photogramm. Remote Sens. 57, 241–262. 

https://doi.org/10.1016/S0924-2716(02)00124-7 

Raddick, M.J., Gay, P.L., Lintott, C.J., Haven, N., Szalay, A.S., 2010. Galaxy Zoo : 

Exploring the Motivations of Citizen Science Volunteers. 

Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B., 2005. Image change detection 

algorithms: a systematic survey. IEEE Trans. Image Process. 14, 294–307. 

https://doi.org/10.1109/TIP.2004.838698 



 
68 

Randin, C.F., Engler, R., Normand, S., ZAPPA, M., Zimmermann, N.E., Pearman, 

P.B., VITTOZ, P., Thuiller, W., Guisan, A., 2009. Climate change and plant 

distribution: local models predict high-elevation persistence. Glob. Chang. Biol. 

15, 1557–1569. https://doi.org/DOI 10.1111/j.1365-2486.2008.01766.x 

Rocchini, D., Hortal, J., Lengyel, S., Lobo, J.M., Jiménez-Valverde, A., Ricotta, C., 

Bacaro, G., Chiarucci, A., 2011. Accounting for uncertainty when mapping 

species distributions: The need for maps of ignorance. Prog. Phys. Geogr. 35, 

211–226. https://doi.org/10.1177/0309133311399491 

Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation 

systems in the great plains with ERTS. Third Earth Resour. Technol. Satell. 

Symp. 1, 309–317. https://doi.org/citeulike-article-id:12009708 

Rüdisser, J., Walde, J., Tasser, E., Frühauf, J., Teufelbauer, N., Tappeiner, U., 2015. 

Biodiversity in cultural landscapes: influence of land use intensity on bird 

assemblages. Landsc. Ecol. 30, 1851–1863. https://doi.org/10.1007/s10980-

015-0215-3 

Sankey, T., Donager, J., McVay, J., Sankey, J.B., 2017. UAV lidar and hyperspectral 

fusion for forest monitoring in the southwestern USA. Remote Sens. Environ. 

195, 30–43. https://doi.org/10.1016/j.rse.2017.04.007 

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., 

Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, 

P., Svoboda, M., Fabrika, M., Nagel, T.A., Reyer, C.P.O., 2017. Forest 

disturbances under climate change. Nat. Clim. Chang. 7, 395–402. 

https://doi.org/10.1038/nclimate3303 

Seoane, J., Bustamante, J., Dı́az-Delgado, R., Díaz-Delgado, R., 2004. Are existing 

vegetation maps adequate to predict bird distributions? Ecol. Modell. 175, 137–

149. 

Silvertown, J., 2009. A new dawn for citizen science. Trends Ecol. Evol. 24, 467–471. 

https://doi.org/10.1016/j.tree.2009.03.017 

Singh, A., 1989. Review Articlel: Digital change detection techniques using remotely-

sensed data. Int. J. Remote Sens. 10, 989–1003. 

https://doi.org/10.1080/01431168908903939 

 



 
69 

Singh, A., Singh, K.K., 2018. Unsupervised change detection in remote sensing 

images using fusion of spectral and statistical indices. Egypt. J. Remote Sens. 

Sp. Sci. https://doi.org/10.1016/J.EJRS.2018.01.006 

Snäll, T., Kindvall, O., Nilsson, J., Pärt, T., 2011. Evaluating citizen-based presence 

data for bird monitoring. Biol. Conserv. 144, 804–810. 

https://doi.org/10.1016/j.biocon.2010.11.010 

Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P., Macomber, S.A., 2001. 

Classification and Change Detection Using Landsat TM Data: When and How 

to Correct Atmospheric Effects? Remote Sens. Environ. 75, 230–244. 

https://doi.org/10.1016/S0034-4257(00)00169-3 

Source, J.P.C., By, P., Sciences, B., 2008. Citizen Science : Can Volunteers Do Real 

Research ? 58, 192–197. 

Stanton, J.C., Pearson, R.G., Horning, N., Ersts, P., Reşit Akçakaya, H., Re??it 

Ak??akaya, H., 2012. Combining static and dynamic variables in species 

distribution models under climate change. Methods Ecol. Evol. 3, 349–357. 

https://doi.org/10.1111/j.2041-210X.2011.00157.x 

Šťastný, K., Bejček, V., Hudec, K., 2006. Atlas of breeding bird distribution in the 

Czech Republic 2001-2003. Aventinum, Praha. 

Stehman, S. V., 2013. Estimating area from an accuracy assessment error matrix. 

Remote Sens. Environ. 132, 202–211. https://doi.org/10.1016/j.rse.2013.01.016 

Stoyanova, M., Kandilarov, A., Koutev, V., Nitcheva, O., Dobreva, P., 2018. Potential 

of multispectral imaging technology for assessment coniferous forests bitten by 

a bark beetle in Central Bulgaria. MATEC Web Conf. 01005, 01005. 

https://doi.org/10.1051/matecconf/201814501005 

Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D., Kelling, S., 2009. 

eBird: A citizen-based bird observation network in the biological sciences. Biol. 

Conserv. 142, 2282–2292. https://doi.org/10.1016/j.biocon.2009.05.006 

Szostak, M., Hawryło, P., Piela, D., 2018. Using of Sentinel-2 images for automation 

of the forest succession detection. Eur. J. Remote Sens. 51, 142–149. 

https://doi.org/10.1080/22797254.2017.1412272 

 



 
70 

Szostak, M., Wezyk, P., Tompalski, P., 2014. Aerial Orthophoto and Airborne Laser 

Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the 

Milicz Forest District (Poland). Pure Appl. Geophys. 171, 857–866. 

https://doi.org/10.1007/s00024-013-0668-8 

Tachikawa, T., Hato, M., Kaku, M., Iwasaki, A., 2011. Characteristics of ASTER 

GDEM version 2, in: 2011 IEEE International Geoscience and Remote Sensing 

Symposium. IEEE, pp. 3657–3660. 

https://doi.org/10.1109/IGARSS.2011.6050017 

Tarantino, C., Adamo, M., Lucas, R., Blonda, P., 2016. Detection of changes in semi-

natural grasslands by cross correlation analysis with WorldView-2 images and 

new Landsat 8 data. Remote Sens. Environ. 175, 65–72. 

Teo, T.-A., Huang, C.-H., 2016. Object-Based Land Cover Classification Using 

Airborne Lidar and Different Spectral Images. Terr. Atmos. Ocean. Sci. 27, 491. 

https://doi.org/10.3319/TAO.2016.01.29.01(ISRS) 

Thuiller, W., Brotons, L., Araújo, M.B., Lavorel, S., 2004. Effects of restricting 

environmental range of data to project current and future species distributions. 

Ecography (Cop.). 27, 165–172. https://doi.org/10.1111/j.0906-

7590.2004.03673.x 

Toomey, M., Vierling, L.A., 2005. Multispectral remote sensing of landscape level 

foliar moisture: techniques and applications for forest ecosystem monitoring. 

Can. J. For. Res. 35, 1087–1097. https://doi.org/10.1139/x05-043 

Tuanmu, M., Jetz, W., 2014. A global 1km consensus land cover product for 

biodiversity and ecosystem modeling. Glob. Ecol. Biogeogr. 

Tucker, C.J., 1977. Asymptotic nature of grass canopy spectral reflectance. Appl. Opt. 

16, 1151. https://doi.org/10.1364/AO.16.001151 

Venier, L.A., Pearce, J., Mckee, J.E., McKenney, D.W., Niemi, G.J., 2004. Climate 

and satellite-derived land cover for predicting breeding bird distribution in the 

Great Lakes basin. J. Biogeogr. 31, 315–331. https://doi.org/10.1046/j.0305-

0270.2003.01014.x 

Verburg, P.H., Ellis, E.C., Letourneau, A., 2011. A global assessment of market 

accessibility and market influence for global environmental change studies. 

Environ. Res. Lett. 6, 034019. https://doi.org/10.1088/1748-9326/6/3/034019 



 
71 

Verpoorter, C., Kutser, T., Tranvik, L., 2012. Automated mapping of water bodies 

using Landsat multispectral data. Limnol. Oceanogr. Methods 10, 1037–1050. 

https://doi.org/10.4319/lom.2012.10.1037 

Vintrou, E., Desbrosse, A., Bégué, A., Traoré, S., Baron, C., Lo Seen, D., 2012. Crop 

area mapping in West Africa using landscape stratification of MODIS time 

series and comparison with existing global land products. Int. J. Appl. Earth 

Obs. Geoinf. 14, 83–93. https://doi.org/10.1016/J.JAG.2011.06.010 

Wardlow, B.D., Egbert, S.L., Kastens, J.H., Wardlow, B.D.;, 2007. Analysis of Time-

Series MODIS 250 m Vegetation Index Data for Crop Classification in the U.S. 

Central Great Plains &quot;Analysis of Time-Series MODIS 250 m Vegetation 

Index Data for Crop Classification in the. 

Weil, G., Lensky, I., Resheff, Y., Levin, N., 2017. Optimizing the Timing of 

Unmanned Aerial Vehicle Image Acquisition for Applied Mapping of Woody 

Vegetation Species Using Feature Selection. Remote Sens. 9, 1130. 

https://doi.org/10.3390/rs9111130 

Wiersma, Y.., 2010. Birding 2 . 0 : Citizen Science and Effective Monitoring in the 

Web 2 . 0 World. Avian Conserv. Ecol. 5, 13. https://doi.org/10.5751/ACE-

00427-050213 

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance 

open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–

3033. https://doi.org/10.1080/01431160600589179 

Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., Schirokauer, D., 2006. Object-

based Detailed Vegetation Classification with Airborne High Spatial Resolution 

Remote Sensing Imagery. Photogramm. Eng. Remote Sens. 72, 799–811. 

https://doi.org/10.14358/PERS.72.7.799 

Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A.J., 2012. Fluorescence, 

temperature and narrow-band indices acquired from a UAV platform for water 

stress detection using a micro-hyperspectral imager and a thermal camera. 

Remote Sens. Environ. 117, 322–337. 

https://doi.org/10.1016/J.RSE.2011.10.007 

Zhang, C., Kovacs, J.M., 2012. The application of small unmanned aerial systems for 

precision agriculture: a review. Precis. Agric. 13, 693–712. 

https://doi.org/10.1007/s11119-012-9274-5 



 
72 

Zhen, Z., Quackenbush, L.J., Stehman, S. V., Zhang, L., 2013. Impact of training and 

validation sample selection on classification accuracy and accuracy assessment 

when using reference polygons in object-based classification. Int. J. Remote 

Sens. 34, 6914–6930. https://doi.org/10.1080/01431161.2013.810822 

Zhou, Y., Qiu, F., 2015. Fusion of high spatial resolution WorldView-2 imagery and 

LiDAR pseudo-waveform for object-based image analysis. ISPRS J. 

Photogramm. Remote Sens. 101, 221–232. 

https://doi.org/10.1016/j.isprsjprs.2014.12.013 

Zuiev, O.V., Demydko, V.G., Musyenko, A.O., Gerasymenko, T.S., 2015. Analysis of 

control processes influence on UAV equipment classification veracity, in: 2015 

IEEE International Conference Actual Problems of Unmanned Aerial Vehicles 

Developments (APUAVD). IEEE, pp. 102–105. 

https://doi.org/10.1109/APUAVD.2015.7346572 

  



 
73 

  



 
74 

9. Supplements 

 

  



 
75 

A – Biography & Publications 

  



 
76 

CURRICULUM VITAE 

 

 

 

PERSONAL 

 

Jan Komárek, born in 1990, Czech nationality, married 

 

 

BELONGING 

    

Department of Applied Geoinformatics and Spatial Planning, since 2014 

Centre for Precision Farming, since 2017 

Spatial Science in Environment and Ecology Research Group, since 2017 

 

 

JOB POSITIONS 

 

Since 2016/11  

Assistant for UAVs at the Department of Applied Geoinformatics and Spatial 

Planning 

 

2014/10 - 2016/10 

Technician at the Department of Applied Geoinformatics and Spatial Planning 

 

 

EDUCATION 

Czech University of Life Sciences Prague, Faculty of Environmental Sciences,  

Territorial Technical and Administrative Services    

(2009 – 2012; 2012 bachelor's degree) 

 Bachelor thesis topic: GNSS reliability testing in urban environment 

 

 Czech University of Life Sciences Prague, Faculty of Environmental Sciences, 

Landscape and Land Improvement 

 (2012 – 2014; 2014 master's degree) 

Master thesis topic: The assessment of topographical data for the purpose of 

precision farming system in the Czech Republic conditions 



 
77 

Czech University of Life Sciences Prague, Faculty of Environmental Sciences, 

Applied and Landscape Ecology  

(2014 – until now; PhD candidate) 

PhD thesis topic: Land-cover datasets accuracy assessing and its implication 

for ecological modelling 

 

Czech University of Life Sciences Prague, Institute of Education and 

Communication, 

Complementary pedagogical studies for teachers  

(2015 – 2018; certificate for teaching at technical high schools) 

Final thesis topic: Design of open source GIS utilization for the teaching of 

technical subjects 

 

 

TRAININGS 

 

2018/06 GeoSpatial Summer School G3S Open, Olomouc, CZ 

2017/06 Trans-Atlantic Training, Pécs, HU 

2017/04 Fundamentals of GNSS, Warsaw, PL 

2016/06 Split Summer School on Remote Sensing, Chania, GR 

 

 

ACADEMIC VISITS 

 

2018/03 Universidad Politécnica de Madrid, Spain (5 weeks) 

2017/05 Universita degli Studi Roma Tre, Italy (1 week) 

2017/05 Universidad Politécnica de Madrid, Spain (2 weeks) 

 

 

OTHER DEGREES 

 

2018/06 Complementary pedagogical studies for teachers 

2018/02 Authorized operator of rotary-wing UAV (MTOW 1.5 kg) 

2017/11 Restricted certificate for radio operator for an aeronautical mobile 

service 

2015/06 Authorized operator of rotary-wing UAV (MTOW 10 kg) 

 



 
78 

TEACHING EXPERIENCES 

 

Since 2014 Seminars of GIS, Remote Sensing, Remote Sensing using UAVs 

Since 2016 Supervision of Bachelor and Master Thesis (applications of UAVs) 

2017 High School Teaching Practise (3 weeks) 

 

 

RESEARCH PROJECTS 

 

2018 – 2019 Detection of infection forest bark beetle (Ips typographus) in 

advance using unmanned air vehicles. Technology Agency of the Czech 

Republic. Co-leader. 

 

2018 – 2019 Remote sensing: an effective tool for the study of spatial 

dynamics of bark beetles at Krkonoše National Park. Czech University of Life 

Sciences Prague. Co-investigator. 

 

2017 – 2019  Fusion of LiDAR and UAV borne multispectral data to assess 

physiographic diversity of post-mining sites. Czech Science Foundation. UAV 

operator. 

 

2017 – 2018  Influence of Remote Sensing Data Resolution in Evaluating 

Ecological Measures. Czech University of Life Sciences Prague. Co-

investigator 

 

2016 – 2017  Development and implementation of technologies for digital 

soil mapping. Czech University of Life Sciences Prague. GIS support. 

 

 

CONFERENCES & WORKSHOPS SPEAKER 

    

2018/07 The IX Conference of the Italian Society of Remote Sensing 

Firenze, Italy, presentation of research topic, in English 

 

2018/06 Field days out of the air Workshop 

Crop Research Institute, Prague, invited speaker, in Czech 

 



 
79 

2018/06 Fifth International Split Remote Sensing Professional Summer 

School 

Prague, workshop of UAV-borne data processing, in English 

 

2018/04 Workshop for start-ups, Close-range remote sensing 

ESA Business Incubation Centre, Prague, invited speaker, in Czech 

 

2017/06 Field days out of the air Workshop 

Crop Research Institute, Prague, invited speaker, in Czech 

 

2016/09 The second conference of the Alliance for Unmanned Aviation 

Industry 

Alliance for Unmanned Aviation Industry, Prague, invited speaker, in Czech 

 

 

RESEARCH PUBLICATIONS 

 

Komárek J, Klouček T, Prošek J, 2018. The potential of Unmanned Aerial 

Systems: A tool towards precision classification of hard-to-distinguish 

vegetation types?  

International Journal of Applied Earth Observation and Geoinformation, 71: 

9 – 19.  

 

Moravec D, Komárek J, Kumhálová J, Kroulík M, Prošek J, Klápště P,  2017. 

Digital elevation models as predictors of yield: Comparison of an UAV and 

other elevation data sources. 

Agronomy Research, 15: 249 – 255. 

 

Komárek J, Kumhálová J, Kroulík M, 2016. Surface modelling based on 

unmanned aerial vehicle photogrammetry and its accuracy assessment.  

Engineering for Rural Development 2016, pp 888 – 892, Jelgava, Latvia. 

 

Moudrý V, Komárek J, Šímová P, 2016. Which breeding bird categories should 

we use in models of species distribution? 

Ecological Indicators, 74: 526 – 529. 

 

 



 
80 

In press: 

 

Klouček T, Moravec D, Komárek J, Lagner O, Štych P. Selecting appropriate 

variables for detecting grassland to cropland changes using high resolution 

satellite data. 

(accepted, PeerJ) 

 

Moudrý V, Urban R, Štroner, Komárek J, Brouček, Prošek J, 2018. 

Comparison of a commercial and home-assembled fixed-wing UAV for terrain 

mapping of a post-mining site under leaf-off conditions. 

(accepted, International Journal of Remote Sensing) 

 

Šímová P, Moudrý V, Komárek J, Hrach K, Fortin MJ. Fine scale waterbody 

data improve prediction of waterbirds occurrence despite coarse species data. 

(accepted, Ecography) 

 

 

  



 
81 

B – Full text of manuscripts 

 



Contents lists available at ScienceDirect

Int J Appl Earth Obs Geoinformation

journal homepage: www.elsevier.com/locate/jag

The potential of Unmanned Aerial Systems: A tool towards precision
classification of hard-to-distinguish vegetation types?

Jan Komárek⁎, Tomáš Klouček, Jiří Prošek
Department of Applied Geoinformatics and Spatial Planning, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha – Suchdol,
165 00, Czech Republic

A R T I C L E I N F O

Keywords:
Low altitude aerial survey
Classification accuracy
Fine spatial resolution
Normalized digital surface model (nDSM)
Geographic object-based image analysis
(GEOBIA)
Multispectral and thermal imagery fusion
Image processing
Structure from motion (SfM)

A B S T R A C T

Detail plant species classification using very high spatial resolution data is a challenging task. Exploring the
potential of imagery acquired by Unmanned Aerial Vehicle (UAV) to identify individual species of plants and
assessing values of additional inputs such as height and thermal information into classification process are hot
research topics. Our study uses a fusion of visible, multispectral and thermal imagery acquired through the low
altitude aerial survey for detail classification of land cover and vegetation types. The study area is located in the
central part of the Czech Republic and situated in an environmentally specific area – an arboretum of 2.45 ha.
Visible (i.e. RGB), multispectral, and thermal sensors were mounted on a flying fixed-wing Unmanned Aerial
System. The imagery was acquired at a very detailed scale with Ground Sampling Distance of 3–18 cm. Besides
three mosaics (one from each sensor), normalized Digital Surface Models were built from visible and multi-
spectral sensors. Eight classification models were created – each mosaic (visible/multispectral) was enriched
with height data, thermal data, and combined height and thermal information. A classification into a three level
system was performed through Geographic Object-based Image Analysis using Support Vector Machine algo-
rithm. In general, Overall Accuracy grew with the amount of information entering the classification process.
Accuracy reached 77 – 91 % depending on the level of generalization for the best model based on multispectral
data and 67 – 80 % for data from the visible sensor. Both thermal data and height information improved the
accuracy; however, the statistical evaluation did not reveal any significant difference between the contribution
of height and thermal data. Results also indicate that increasing spectral resolution leads to a significantly better
performance of the models than higher spatial resolution. UAVs equipped with a proper sensor provide a con-
venient technology for detail land cover classification even in areas with many similar plant species.

1. Introduction

Nowadays, it is relatively easy to acquire one´s own image data with
a detailed spatial, sufficient spectral and variable temporal resolution.
Unmanned Aerial Vehicles (UAVs) and their use are among the most
dynamically developing fields of remote sensing (RS), being a suitable
source of data for environmental analyses focused e.g. on classification
of vegetation (Gini et al., 2014; Husson et al., 2017; Laliberte et al.,
2011; Lisein et al., 2015; Michez et al., 2016; Weil et al., 2017), in-
vasive plant detection (Müllerová et al., 2017), pests (Näsi et al., 2015),
plant diseases and water stress detection (Baluja et al., 2012; Berni
et al., 2009; Calderón et al., 2013; Nishar et al., 2016; Zarco-Tejada
et al., 2012), modelling of individual treetops (Díaz-Varela et al., 2015),
in agriculture (Moravec et al., 2017; Pérez-Ortiz et al., 2015), or for
monitoring animal species (Chrétien et al., 2016).

One of the major UAV challenges lies in a detail classification of the

land cover (Ahmed et al., 2017), which may support decision-making
mechanisms and operations. Besides low altitude UAV surveys, other
technologies are used for precision classification, e.g., for species clas-
sification of trees (Ali et al., 2004; Holmgren et al., 2008), of vegetation
specific for various environment types (Alonzo et al., 2014; Bork and
Su, 2007; Feng et al., 2015; Hartfield et al., 2011; Husson et al., 2017;
Rampi et al., 2014; Reese et al., 2015; Sankey et al., 2017), or a com-
plex land cover classification (Kuria et al., 2014; Szostak et al., 2014;
Teo and Huang, 2016; Zhou and Qiu, 2015).

Classification accuracy can be affected by the properties and quality
of both the spectral information and height data from (a) digital terrain
models (DTMs); (b) digital surface models (DSMs) or (c) normalized
digital surface models (nDSM). For land cover classification, a fusion
approach combines multi(hyper)-spectral satellite data (Reese et al.,
2015; Zhou and Qiu, 2015), airborne (Alonzo et al., 2014; Bork and Su,
2007; Teo and Huang, 2016) and UAV-borne (Sankey et al., 2017) with
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Airborne Laser Scanning (Alonzo et al., 2014; Bork and Su, 2007;
Holmgren et al., 2008; Zhou and Qiu, 2015) or with airborne images
processed through photogrammetric image matching (Reese et al.,
2015). The height data (point clouds) can be also derived from UAV-
borne imagery by a photogrammetric Structure from Motion (SfM)
method. However, the height data are frequently inappropriately ne-
glected during classification utilizing UAV imagery (Feng et al., 2015)
despite the fact that they can be instrumental in achieving better results
(Husson et al., 2017).

The accuracy of resulting classification is also affected by the clas-
sification approach. If processing very high resolution data (e.g. UAV-
borne data), classifications based on Geographic Object-based Image
Analysis approach (GEOBIA; Blaschke, 2010; Liu et al., 2015) tend to
provide better results than the traditional pixel-based approach (Yu
et al., 2006). The benefit of GEOBIA has been repeatedly shown in
multiple studies utilizing predominantly satellite or airborne high
spatial resolution data (Addink et al., 2007; Alonzo et al., 2014; An
et al., 2007; Diaz-Varela et al., 2014; Hartfield et al., 2011; Peña et al.,
2013).

UAV sensors are typically RGB cameras recording images in visible
(Feng et al., 2015; Gini et al., 2014; Husson et al., 2017; Müllerová
et al., 2017) or in near infrared spectrum (Ahmed et al., 2017; Weil
et al., 2017). RGB cameras are used on a mass scale due to their
availability, their classification accuracy is however substantially lower
(Ahmed et al., 2017). On the other hand, the higher spatial resolution
may act as a substitution for additional spectral bands in specific RS
studies. Other sensors, e.g. hyper-spectral cameras or UAV LiDAR
(Sankey et al., 2017) are also available, however, their costs are high.

Due to current restrictions and regulations, use of UAV is limited by
country-specific legislation. Applicability is also limited by a higher
price of miniaturized sensors or a relatively high UAV susceptibility to
failures (Freeman and Balas, 2014; Zuiev et al., 2015). UAV is still a
novel technology, therefore use is still facing challenges and problems
that need to be identified and overcome than the traditional remote
sensing methods (Ahmed et al., 2017). The analysis of imagery obtained
through other (non-UAV) methods have led to the development of
many more or less standardized approaches over the years. It is likely,
although not properly verified yet, that for various environment-related
analyses, these approaches will be also applicable very high resolution
data (magnitude of a few cm). Recent general reviews of UAV appli-
cations have been published (Marris, 2013; Pajares, 2015), more studies
using different types of UAV imaging sensors are however needed to
increase the potential of the utilization of such new platforms in ve-
getation inventorying and other environmental applications. Despite
the fact that UAVs have been a hot research topic in the recent years,
only a few studies focused on their usability for precise classification
using a set of sensors have been published.

The aim of our study is to evaluate the potential of UAV acquired
data (namely of images acquired using visible, multispectral and
thermal sensors, and height models – nDSMs – derived from such data)
for classification of land cover, particularly on the level of individual
plant species. Following research questions are presented: (i) Is it pos-
sible to classify individual plant species with a sufficient accuracy based
on UAV imagery? (ii) Is it possible to substitute additional spectral data
by an RGB sensor with a higher spatial resolution for classification of
plant species? (iii) Do the height data contribute to improving the

Fig. 1. (Above left) Location of the study area. (Right) The study area, a part of the Libosad arboretum (2.45 ha). Seven ground control points were used to facilitate
further data processing. (Bottom left) Oblique view of the coloured densified Point Cloud from the point indicated on the orthophotomap. The map corresponds to
ETRS 1898 LAEA projection (EPSG 3035).
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classification more than thermal data? (iv) Do the thermal data con-
stitute an important source of information for detailed land cover
classification?

2. Materials and methods

2.1. Study area

The area of interest is an arboretum (called Libosad) on site of the
campus of the Czech University of Life Sciences in Prague, Czech
Republic (Fig. 1). The arboretum, founded in 2007, takes up 2.67 ha
and includes approximately 900 plant species, divided into 22 thematic
units. The relief of the area of interest is topographically homogeneous
(elevation ranges 280–289 amsl).

2.2. Image data collection

UAV imagery was acquired during the full vegetation period be-
tween 20th and 22nd June 2017, always between 12:00 - 13:00 (proper
sun angle, minimizing the effect of shadows). The eBee aerial platform
(senseFly, Switzerland), a miniature fixed-wing vehicle with a max-
imum take-off weight approximately 0.8 kg and the wingspan of
0.96m, was used for image acquisition. The following cameras were
used for individual flights: (a) DSC-WX220 (Sony, Japan, Fig. 2A) – a
consumer grade digital compact camera; (b) MultiSPEC 4 C (Airinov,
France, Fig. 2B) – a 4-channel multispectral camera and (c) Ther-
moMAP (senseFly, Switzerland, Fig. 2C) – an eBee-ready thermal
camera based on FLIR Tau sensor. Detail characteristics of the cameras
are available from the manufacturer‘s websites, parameters important
for the study are collected in Tables 1 and 2.

Flight missions were performed using eMotion 2 ground station
software. The flight plan was conducted using perpendicular flight lines
with 80% overlaps and sidelaps to acquire high quality data. Conditions
for UAV flight mission were convenient, ceiling and visibility were fine,
the weather was sunny without clouds, the temperature of 30–31 °C,
and a light breeze of 2–5m.s−1. Only vendor-provided sensors, one at a

time, can be mounted on the eBee platform. Therefore, three separate
specific flights with the UAV equipped with (a) visible (i.e. camera
records in a visible part of the spectrum) camera; (b) multispectral
camera and (c) thermal camera were conducted; flight details are
shown in Table 2 below. A grayscale calibration target with known
reflectance values was captured for further image calibration. For data
post-processing, a total number of seven Ground Control Points (GCP),
designed as 0.5 m white numbered boards with a centre hole for survey
rod, was surveyed using GPS Leica 1200 (Leica, Germany) through real-
time kinematic connected to the CZEPOS network of permanent GNSS
stations.

2.3. Image processing and orthomosaic building

All acquired imagery was processed using a photogrammetric soft-
ware Pix4Dmapper 3.1.2 (Pix4D S.A., Switzerland). Firstly, point clouds
(densified) were created for all data types using stereo-photogrammetry
based photo-reconstruction method (Structure from Motion).
Orthomosaics were built and accurately georeferenced using Ground
Control Points, the Root Mean Square Error (RMSE; mean of X, Y, and
Z) was 0.038m for RGB mosaic and 0.054m for MSC mosaic. RMSE,
which indicates how was the model fitted to the GCPs, was lower than a
double value of Ground Sampling Distance (GSD). As the last step, the
Surface Reflectance values were calculated from the multispectral
mosaic using values from onboard irradiance sensor (Sun irradiance
and Sun angle) and the calibration target. The values were subsequently
verified in the terrain using the GreenSeeker (Trimble, US) crop sensing
system. Similarly, thermal sensor values were corrected using object
emissivity values estimated from NDVI vegetation index.

2.4. Creating normalized digital surface models

Digital surface models were created through the Inverse Distance
Weighing and using an algorithm implemented in Pix4Dmapper, the
digital terrain model with a resolution of 5 x GSD was derived (software
limitation due to robustness, see Pix4D User Manual). A normalized

Fig. 2. Used devices: Unmanned Aerial Vehicle eBee was equipped with a visible (A), multispectral (B), and thermal camera (C).

J. Komárek et al. Int J Appl  Earth Obs Geoinformation 71 (2018) 9–19

11



digital surface model was subsequently created in ArcGIS for Desktop
10.4 (ESRI, US) by subtracting DTM raster from DSM raster for both
RGB and MSC mosaics, resulting in two distinct models, namely (a)
nDSMRGB and (b) nDSMMSC.

2.5. Classification models

Image to image registration was conducted due to different spatial
resolutions of built mosaics and models (Table 3). Thermal mosaic and
nDSM data were resampled (Nearest Neighbour) to the same pixel size
as RGB and MSC mosaics. Input datasets were cropped to fit the study
area using ArcGIS and classification models were subsequently created
in ENVI 5.4 (Exelis VIS, US). Selected combinations of obtained image
mosaics and nDSMs were layered into a single image using the Layer
Stacking tool. In total, eight classification models were created from
various combinations of input data, see Table 4.

2.6. Delineation of land cover and vegetation types

The land cover structure was created using pre-existing inventory
records and maps from 2015, accurately describing the occurrence of
plant species in the area of interest. Species represented by less than 10
individuals were not included. This step was necessary for the study as
the area of interest was an arboretum containing a high number of
species and cultivars with a small number of individuals, which could
have possibly complicated the interpretation of the results. The struc-
ture contained 24 classes, consisting of 17 elements of living and 7 of
inanimate nature on the most detailed level (see Table 5).

2.7. Ground data collection

The field survey was performed at the same time as the UAV flights
by recording exact positions of objects into a detail orthomosaic built
within pre-analysis. The data collection process was conducted using a
Collector for ArcGIS (ESRI, US) application to verify the inventory re-
cords. In total, 436 reference polygons (each containing a single taxo-
nomic individual) covering approx. 7 % of the area of interest were
classified into 24 land cover types. For each class, 10 polygons were
randomly selected for analysis and each of those sets was, again ran-
domly, divided into training data (5 polygons) and validation data
(remaining 5).

2.8. Classification process

Verification of suitability of UAV input data acquired using various
sensors for classification was performed through object classification
(Blaschke, 2010; Blaschke et al., 2014) using Feature Extraction method

Table 1
Selected characteristics of utilized UAV sensors; abbreviations: B (Blue), G (Green), R (Red), RE (Red Edge), NIR (Near Infrared), LWIR (Long Wavelength Infrared),
GSD (Ground Sampling Distance), FWHM (Full Width at Half Maximum).

Sensor
(abbreviation)

Image resolution GSD at 100m (cm/px) FWHM
(nm)

Band Peak (nm) Weight (g)

DSC-WX220
(RGB)

17.98 MPx
(4896×3672)

2.75 B: 410 - 490
G: 460 - 600
R: 580 - 660

B: 460
G: 530
R: 660

113

MultiSPEC 4C
(MSC)

4× 1.23 MPx
(1280×960)

10 G: 530 - 570
R: 640 - 680
RE: 730 - 740
NIR: 770 - 810

G: 550
R: 660
RE: 735
NIR: 790

160

ThermoMAP
(TMP)

0.33 MPx
(640×512)

18.5 LWIR: 7,500 - 13,500 LWIR 10,000 134

Table 2
Basic parameters of the flight missions and data processing parameters. Flight height, a high number of gained images and points density for ThermoMAP is a subject
of technical specification of the sensor; AGL (Above Ground Level).

Sensor Date of Acquisition Fly Area (ha)/Fly Time (min) Fly Height AGL (m) No. of gained images No. of aligned images Avg. points density per m3

DSC-WX220 June 22 15.0/21 70 218 217 274.5
MultiSPEC 4C June 20 13.8/27 60 428 408 18.8
ThermoMAP June 20 10.1/27 100 4794 386 1.6

Table 3
Input datasets. Description of the created mosaics (RGB, MSC and TMP) and normalized digital surface models (nDSM).

Input dataset Bands Ground Sampling Distance (cm/px) Description

RGB mosaic Blue, Green, Red 2.2 Image mosaic built from imagery taken by DSC-WX220 sensor.
MSC mosaic Green, Red, RE, NIR 5.7 Image mosaic built from imagery taken by MultiSPEC 4 C sensor.
TMP mosaic LWIR 20.1 Image mosaic built from imagery taken by ThermoMAP sensor.
nDSMRGB Normalized height 10.8 Normalized height created by subtraction of DTMRGB from DSMRGB.
nDSMMSC Normalized height 28.4 Normalized height of objects created subtraction DTMMSC from DSMMSC.

Table 4
Classification models. An overview of the eight classification models derived
from combinations of selected input datasets.

Classification model Input dataset

MSC MSC mosaic
MSC-TMP MSC mosaic, TMP mosaic
MSC-nDSM MSC mosaic, nDSMMSC

MSC-nDSM-TMP MSC mosaic, nDSMMSC, TMP mosaic
RGB RGB mosaic
RGB-TMP RGB mosaic, TMP mosaic
RGB-nDSM RGB mosaic, nDSMRGB

RGB-nDSM-TMP RGB mosaic, nDSMRGB, TMP mosaic
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in ENVI, see Fig. 4 for classification workflow. Individual classification
models and training data were used as input data (Table 4). In all,
therefore, eight individual classifications using identical training data
and classification parameters were performed (see Fig. 3).

Image segmentation was performed using the following parameters:
(a) Scale level: 30, Scale Algorithm: Edge, and Segment bands: MSC/
RGB bands only; (b) Merge level: 98, Merge Algorithm: Full Lambda
Schedule and Merge Bands: MSC/RGB bands only, and (c) Texture
Kernel Size: 9. As the software manufacturer recommendation is not to
use data with variable value range as Segment bands data, neither
nDSM nor thermal data were used for segmentation (ENVI Help). The
optimum setting of segmentation parameters was found experimentally
using ENVI Preview. In the second step, the classification itself, we used
the Support Vector Machine (SVM) classifier in default settings (Radial
Basis kernel type) with selected classification attributes (chosen by
logic/experimental) as follows: (a) Spectral (Mean, Standard
Deviation), (b) Texture (Range, Mean, Variance, Entropy), (c) Spatial
(Compactness, Elongation, Hole Area/Solid Area).

2.9. Validation assessment

The accuracy of individual models was assessed through compar-
ison with validation samples. Stratified random sampling design uti-
lizing supervised object-based classification suggested by Zhen et al.
(2013) was used. The number of validation samples was set to 600
(Cochran, 1977). In each of the validation polygons of each class, five
simple random samples were created. The relative accuracy of the
classifications acquired through comparison with validation samples
via Confusion Matrix (Foody, 2013; Olofsson et al., 2014; Stehman,
2013), together with 95% Confidence Interval for accuracies in order to
cover classification errors. The differences among individual models
were tested through a test for homogeneity with a binomial distribution
using Holm's p-value adjustment method to compensate for multiple
comparisons (used for example by Klouček et al., 2015), see Fig. 5. All
statistical analyses were done at three hierarchical levels: (a) Level 1 (4
classes); (b) Level 2 (8 classes); (c) Level 3 (24 classes).

3. Results and discussion

The Overall Accuracy of models in general increases with the
amount of information entering the classification process and with
decreasing level of detail. The results imply that models based on
multispectral data are of significantly better quality than those based
solely on data from the visible sensor. The highest Overall Accuracy on
the individual levels (Level 1, 2 or 3) was acquired through models
combining all input data both for multispectral data (model MSC-
nDSM-TMP 77.33 – 90.50 %) and for visible data (model RGB-nDSM-
TMP 66.83 – 79.33 %). Conversely, one-input models were the least
accurate on any given levels (model MSC 64.00 – 85.00 % and RGB
59.00 – 71.17 %). Addition of a second input did yield a significant
improvement of the relative accuracies besides one-input models (MSC-
nDSM 73.00 – 86.50 %; MSC-TMP 70.67 – 90.00 %; or RGB-nDSM
64.33 – 75.83 %: RGB-TMP 63.17 – 77.50 %); however no significant
differences between the two-input models of both individual sensors
were detected with respect to the Overall Accuracy, see Table 6.

Table 5
A class structure used in the study, consisting of 24 classes divided into a 3-level
system.

Level 1 Level 2 Level 3

Coniferous plants Tall Fir (Abies), Pine (Pinus)
Low
(under 3m)

Juniper (Juniperus), Golden Juniper
(Juniperus), Pine (Pinus), Spruce (Picea), Yew
(Taxus), Golden Yew (Taxus)

Broadleaf plants Tall Maple (Acer), Willow (Salix)
Low
(under 3m)

Cotoneaster (Cotoneaster), Lavender
(Lavandula), Cinquefoil (Potentilla), Rose
(Rosa), Spiraea (Spiraea)

Herbaceous
(Grasses)

Lawns Lawns

Meadows Meadows
Non-vegetation Artificial

surfaces
Pavement, gravel, crushed stones, barkdust,
wooden elements, metallic elements

Shadows

Fig. 3. An example of all created classification models. For clarity, data on artificial surfaces are presented at Level 3 while vegetation classes depicted at Level 2.
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3.1. Assessment in individual classes

3.1.1. Plant species at level 3
The overall classification accuracy of individual plant species at the

most detailed level grew in the case of MSC based models with the
increasing number of input data (51.47 – 69.33 %). For species re-
cognition, the role of height data (63.20 %) appears to be greater than
that of the thermal data (57.33 %). However, both inputs have a sig-
nificant positive impact on the quality of models (see Table 7). MSC-
only model was more accurate for recognition of a single species class
(e.g. Fir). On the other hand, a two-input model combining the spectral
model with thermal data provided significantly better results in four

classes, with nDSM data in five classes and models using all inputs were
better in eight out of fifteen classes. Regardless of the number of inputs,
the worst distinguishable classes were Fir and Cotoneaster. The use of
multiple inputs did not yield any significant improvement from using a
single MSC input for classes Juniper, Yew, Golden Yew, Willow, Cin-
quefoil and Rose. The accuracy of recognition of remaining classes was
however improved by additional inputs. In all MSC-based models, some
classes were significantly overestimated (e.g. Low Pines) while other
underestimated (e.g. Cotoneaster), see Fig. 6 for illustration. The mis-
classification occurred most often between these extremes and the
under- and overestimation was decreasing with increasing number of
inputs, see Appendix A for details.

Fig. 4. A scheme depicting the principles of the methodology used in the study.

Fig. 5. Test for homogeneity with a binomial
distribution of models generated from visible
and multispectral sensors. The figure illustrates
(dis)similarity of individual models at all levels.
Dark represents the statistically significant dif-
ference between models (95% level of sig-
nificance); light represents models that cannot
be distinguished at the particular level. The size
of the circle illustrates the strength of the re-
lationship (high, moderate, or low).
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RGB-based models reveal a similar pattern as the MSC-based ones.
The contribution of additional inputs, however, unlike for MSC-based
models, differed for individual classes and, in most cases, was lower
than for corresponding MSC-derived models. The overall classification
accuracy of plant species acquired through RGB-based models was in all
instances lower than that of MSC-based models. The least accurate
model was RGB only (42.67 %) while the most accurate model is RGB-
nDSM-TMP (55.73 %). Slightly higher Overall Accuracy was achieved
using thermal (50.13 %) than height data (48.27 %), see Table 7. The
over- and underestimation of classified individual classes is smaller
than in the case of MSC models, see Figs. 6 and 7 for comparison.
Conversely, when compared to the one-input RGB model, including
TMP into the model provided a significant improvement of accuracy of
five classes, including nDSM of six classes and a model containing all
input data led to improvement in eight classes. RGB data appear to be
ineffectual (throughout all models) for distinguishing classes low Pine,
low Spruce and Cinquefoil. Using additional inputs has no effect on the
accuracy of classes Golden Juniper and Golden Yew. Conversely, en-
hancing the models by at least one input leads to a significant im-
provement of the accuracy of remaining classes, see Appendix A.

3.1.2. Plant species at level 2
At Level 2, MSC-based models show a better Overall Accuracy than

RGB-derived models in distinguishing Tall Coniferous, Low Coniferous,
Tall Broadleaf, and Low Broadleaf plants (65.60 – 80.27 % for MSC and
49.60 – 67.47 % for RGB) and the accuracy for both grew with the
number of inputs, see Table 7. The only class classified more accurately
through RGB-based models is Tall Coniferous plants. Conversely, the
best accuracy was achieved in both instances for Low Coniferous plants,
see results of Level 2 in Appendix A.

3.1.3. Plant species at level 1
Distinguishing Broadleaf and Coniferous plants were also better

when using MSC-based models (Overall Accuracy of 81.07 – 87.73 %
for MSC vs 60.53 – 74.14 % for RGB; depends on model, Table 7). The
difference from the previous levels lies in a significantly higher accu-
racy of thermal-based two-input models than the height. For both
sensors, the classification of Coniferous plants was more accurate than
that of the Broadleaf plants (with the exception of the RGB-only model).
When enhancing the models with additional inputs, however, the ac-
curacy of the classification of Broadleaf plants grew, significantly more
so for MSC-based models (65.14 – 81.14 %) than for RGB-derived
models (61.71 – 65.14 %), see Level 1 accuracies in Appendix A.
Conversely, when detecting differences in the vegetation height, both
RGB and MSC models achieved very high accuracy (78.67 – 89.07 % for
MSC vs 65.87 – 86.13 % for RGB), see Table 7. MSC-based models were
more accurate where low vegetation was concerned, while RGB-based
models provided very similar results for both Low and Tall vegetation.

The accuracy of the MSC and RGB models inside individual classes
was increasing with decreasing level of detail, i.e. the incorrect classi-
fication occurred more frequently at more detailed levels. Results from
all levels and both data types indicate that during classification, the
misclassification of Coniferous and Broadleaf plants for Artificial sur-
faces or Herbaceous plants is negligible while the misclassification for
Shadows occurs substantially more often.

3.1.4. Non-vegetation and Herbaceous classes at all levels
The accuracy of models derived from both sensors for Artificial

surfaces is high. Additional inputs improve the MSC models’ classifi-
cation (89.33 – 96.00 %) while they do not elicit any significant im-
provement in RGB model (92.00 – 95.33 %) at Level 3. One of the
lowest accuracies were recorded in one-input MSC model in the clas-
sification of Gravel, Crushed stone and Metallic elements, which were
misclassified for Barkdust. Increasing land cover generalization corre-
sponds with classification accuracy for all sensors and models. At Levels
1 and 2; the accuracy for both MSC and RGB-based models is very high
and comparable, see Appendix A.

A similar pattern can be observed in the Herbaceous class where
both MSC- and RGB-based models reveal almost similar, highly accu-
rate, results. The Overall Accuracy for Herbaceous is 94.00 – 100 % for
MSC and 92.00 – 98.00 % for RGB. Classification of Lawns was per-
formed with lower accuracy than that of Meadows. For example, one-
input RBG model lies in negligible misclassification (overestimation) of
meadows for classes of low broadleaf plants. The accuracy of Lawns
classification is increasing in both sensors with the addition of thermal
data while the addition of height information surprisingly does not
improve accuracy. Conversely, meadows achieve the same accuracy
independently of sensors/models, see Appendix A.

The least accurate results were recorded for the class of Shadows,
which was frequently mistaken for Coniferous plants classes (Figs. 6
and 7) and where the Overall Accuracy for either of the sensors did not
exceed 60 %. Even here, however, the observation that additional in-
puts increase the performance was confirmed.

Table 6
A comparison of the accuracies of models derived from the multispectral and visible sensors using Support Vector Machine algorithm within object classification; OA
= Overall Accuracy (%); 95% CI=95% Confidence Interval.

Classification model OA 95% CI OA 95% CI OA 95% CI
Level 1 Level 2 Level 3

MSC 85.00 82.14 – 87.86 75.33 71.88 – 78.78 64.00 60.16 – 67.84
MSC-TMP 90.00 87.60 – 92.40 82.17 79.10 – 85.23 70.67 67.02 – 74.31
MSC-nDSM 86.50 83.77 – 89.23 82.00 78.93 – 85.07 73.00 69.45 – 76.55
MSC-nDSM-TMP 90.50 88.15 – 92.85 85.83 83.04 – 88.62 77.33 73.98 – 80.68
RGB 71.17 67.54 – 74.79 64.33 60.50 – 68.17 59.00 55.06 – 62.94
RGB-TMP 77.50 74.16 – 80.84 69.00 65.30 – 72.70 63.17 59.31 – 67.03
RGB-nDSM 75.83 72.41 – 79.26 72.17 68.58 – 75.75 64.33 60.50 – 68.17
RGB-nDSM-TMP 79.33 76.09 – 82.57 75.17 71.71 – 78.62 66.83 63.07 – 70.60

Table 7
A comparison of overall percentage accuracies of models derived from the
multispectral and visible sensors for individual models. Level 1a represents the
accuracy of analysis focused on differentiation of Coniferous vs Broadleaf
plants; Level 1b on Tall vs Low vegetation; Level 2 differentiation between Tall
Coniferous, Low Coniferous, Tall Broadleaf, and Low Broadleaf plants; Level 3
presents accuracy of detail plant species classification. Values of Overall
Accuracy are derived from the confusion matrix in Appendix A.

Classification model Level 1a Level 1b Level 2 Level 3

MSC 81.07 78.67 65.60 51.47
MSC-TMP 86.93 82.13 74.40 57.33
MSC-nDSM 83.47 89.07 76.27 63.20
MSC-nDSM-TMP 87.73 86.93 80.27 69.33
RGB 60.53 65.87 49.60 42.67
RGB-TMP 71.47 71.73 57.87 50.13
RGB-nDSM 65.07 78.67 59.20 48.27
RGB-nDSM-TMP 74.13 86.13 67.47 55.73
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3.2. Overall accuracy assessment

The study results are in the general sense similar for both multi-
spectral and visible sensors. It is obvious that multiple-input based in-
formation increases the accuracy of the classification and, therefore,
models based on more information provide better results. Besides,
models based on multispectral sensor perform better than RGB-derived
models. To achieve a detailed classification of the vegetation types, it is
therefore not feasible to substitute higher spectral resolution (multi-
spectral sensors) with higher spatial resolution (visible sensor, see RQ
ii). In both sensors, it is necessary to use both height and thermal data
to achieve the best results at a detailed scale. This requirement, how-
ever, increases both the economic and temporal demands on the ana-
lysis as well as demands on the personnel performing the analysis and
computational capacity. Based on the resulting accuracies, we therefore
recommend using a combination of data acquired through a multi-
spectral sensor with nDSM. However, for some classes (e.g. Lawns) or
lower detail levels, thermal data are a more significant predictor than
nDSM and enhancing the models with thermal data is, therefore, a
welcome contribution. Our results also indicate that the land cover and
vegetation types can be classified with a sufficient accuracy (almost 81
%) using UAV at the level of individual plant species (RQ i) even in an
environmentally very specific area. When analyzing the usability of
individual models, it is necessary to take into account, besides Overall
Accuracy, their potential for individual classes of the vegetation types
as well. For some classes, the accuracy may be inconsistent with the
Overall Accuracy due to a lower or, contrary, higher accuracy of other
classes.

3.3. Class-specific assessment

Based on the results of the individual plant species (Level 3), mul-
tispectral data are necessary for achieving a sufficient accuracy. The
RGB spectral resolution is insufficient for distinguishing between these
classes as their reflectance values in this bandwidth are very similar and
even the addition of height or thermal data cannot make up for this lack
of spectral information. The accuracy of most classes is in accordance
with the trend of the Overall Accuracy and the assumption that in-
cluding more inputs into the analysis improves the plant species clas-
sification accuracy was confirmed for both thermal and nDSM data.

The Fir class was frequently misclassified for low Pine and Spruce in
MSC-based models. A possible explanation for this fact lies in the ab-
sence of the blue band in the multispectral data, which may be sig-
nificant for distinguishing a large number of garden varieties of con-
iferous plants. The situation was altogether different for Pines that were
classified with a sufficient accuracy; pines are present in the non-in-
tervention zone of the arboretum and only one cultivar was present.
This simple comparison can lead us to an assumption that in natural or
near-natural areas, the classification can be more accurate than in an
artificial landscape such as arboretum. The assumption of the blue band
significance is further backed by results at Level 1 where RGB models
detected Coniferous plants with a greater accuracy than MSC models.
To achieve the best Overall Accuracy of classification of both
Coniferous and Broadleaf plants (Level 1–3), however, it is necessary to
use MSC based models. For classification of Herbaceous and Artificial
surfaces, RGB and MSC data are interchangeable and thermal data do
not play any significant role as the addition of nDSM data into the
model is sufficient to improve the model accuracy. Conversely,

Fig. 6. Visualization of the confusion matrix. The circular plot of the MSC-nDSM-TMP model at Level 3 represents the misclassifications (lines connect misclassified
classes, hence the larger section, the more incorrectly classified polygons in the class).
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additional data are needed for the class of Shadows as neither MSC, not
RGB sensors provide good enough results and their supplementing by
nDSM (for RGB sensor) and/or TMP (MSC sensor) improves the results.
The need for different additional data is caused by the different spectral
characteristics acquired by the different sensors.

3.4. Uncertainties assessment

The accuracy of the performed classifications may be affected, be-
sides the input data, by (a) the selection of the classification system
(pixel-based or object-based) and, subsequently, classifier. It is cus-
tomary in the remote sensing community to use object classification for
high resolution data as that type of classification brings multiple ben-
efits. In this case, an SVM non-parametric classifier was selected due to
its robustness as it was shown that SVM can be used without compro-
mising accuracy even if the reference polygons are not ideally dis-
tributed (Lu and Weng, 2007); (b) the used classification and processing
software. The most commonly used classification software in the lit-
erature for GEOBIA is the eCognition Developer (Trimble, US) (Husson
et al., 2017; Müllerová et al., 2017; Weil et al., 2017) or ENVI software
(Ahmed et al., 2017). No study focused on the global comparison of
these programs is however available and, therefore, it is hard to make a
clear decision on the suitability of one or the other for a particular
application. Where photogrammetry is concerned, either Pix4Dmapper
or Agisoft PhotoScan (Agisoft LLC, Russia) are the most commonly
used. The limitation of Pix4Dmapper is its inability to build a DTM with
better spatial resolution than 5 x GSD; (c) the time of UAV image ac-
quisition. Choosing the right season for image acquisition greatly af-
fects the resulting accuracy (Müllerová et al., 2017; Weil et al., 2017).

Zhen et al. (2013) and Husson et al. (2017) acquired images in August,
Ahmed et al. (2017) in July. Late spring to early summer appeared to be
the most suitable month for image acquisition under the conditions of
Czech Republic (tempered zone, Northern hemisphere). Images used in
our study were acquired in accordance with the literature in full ve-
getation (Sankey et al., 2017; Weil et al., 2017); (d) used accuracy as-
sessment, based on randomly selected spatially independent validation
data (different from the training data) (Zhen et al., 2013). The stratified
random sampling design was used for the reference polygons to make
sure land cover classes with low spatial extent were not omitted. The
accuracy assessment was performed in accordance with the good
practice as summarized e.g. by Olofsson et al. (2014). Accuracy as-
sessment using reference polygons may lead to its overestimation by up
to 10 %, as reported by Zhen et al. (2013), we minimized that effect by
maintaining the percentage representation of individual classes of land
cover in the reference polygons (training and validation data) propor-
tional to reality. As accuracy assessment by Confusion Matrix is highly
dependent on the area of interest (Olofsson et al., 2014), we have added
95% Confidence Intervals allowing a more general application of re-
sults. Another approach used in some studies lies in multiple selections
of validation and training data (Weil et al., 2017).

3.5. Comparison with other UAV studies

Our results are in accordance with findings from previous studies,
however, to our best knowledge no study published so far took thermal
data in detail scale into consideration, much the less combining it with
visible, multispectral or height data. Ahmed et al. (2017) achieved 79%
accuracy of hierarchical classification of the land cover on a detailed

Fig. 7. Visualization of the confusion matrix. The circular plot of the RGB-nDSM-TMP model at Level 3 represents the misclassifications (lines connect misclassified
classes, hence the larger section, the more incorrectly classified polygons in the class).
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scale (10 categories) when using the visible camera and 82% when
using multispectral imagery; height data (DSM, it was not stated if the
model was normalized) was used. When taking into account Level 2 in
our study with a similar number of categories (8), 72 % accuracy was
achieved for RGB and 82 % for MSC when including height data
(nDSM); further enhancement of the model with thermal data led to an
increase of accuracy to 75 % and 86 %, respectively. Weil et al. (2017)
reported an average accuracy of their classification of nine categories to
be 85 % (predominantly forest and herbaceous vegetation in the East
Mediterranean). A combination of SVM and object classification was
used by Müllerová et al. (2017) who achieved 65 – 86 % accuracy of
their binary detection of invasive plant species in the Czech Republic by
the visible camera. One of the few studies systematically utilizing nDSM
for UAV-based vegetation classification is the study by Husson et al.
(2017) using object based classification and Random Forest classifier.
The accuracy of recognition of individual water plant species in their
study ranged from 52 to 75 %. In our study, the accuracy on a similar
detail based on visible data was 60 – 68 %, increasing to 63 – 71 %
when including thermal data into the model and even to 74 – 81 %
where visible data were replaced with multispectral. Their results are in
agreement with ours also in the conclusion that the accuracy decreases
with the increasing complexity of the vegetation/land cover. The con-
tribution of the height data for classification of (semi)arid species was
also confirmed by Sankey et al. (2017) who combined data from UAV-
mounted hyper-spectral sensor and LiDAR for six categories (one of
which were shadows as well) to achieve an 84 – 89 % Overall Accuracy
and 72 – 76 % accuracy where only hyper-spectral data were involved.
Similarly to our study, Shadows belonged to the most problematic ca-
tegories in their study, particularly so when using hyperspectral data
only.

The study results do not confirm the usability of visible sensor for a
detailed classification of land cover at the level of species, which is in
accordance with the findings of the above mentioned studies related to
aquatic plants (Husson et al., 2017), park greenery (Gini et al., 2014) or
detection of invasive plant species (Müllerová et al., 2017). It is obvious
that not even higher spatial resolution can for this purpose act as a
surrogate for the missing spectral channels, not even in models utilizing
nDSM data where the more detailed height information could have
increased the RGB model performance. The visible sensor can be
however successfully used for detailed classification of Artificial sur-
faces and for basic classification of Herbaceous plants. Thanks to the
presence of the blue channel, RGB can be used for satisfactory species
classification of Coniferous plants. However, the multispectral sensor
provides general better results despite the missing blue band.

We could possibly increase the accuracy by substituting the multi-
spectral sensor with hyperspectral (Sankey et al., 2017). The question of
the degree of improvement when using such an expensive high-grade
technology, however, remains unanswered. We can also assume that
using multispectral cameras with a higher spectral resolution, such as
Micasense Rededge (Weil et al., 2017), Parrot Sequoia (Ahmed et al.,
2017) or Tetracam Multi-Camera Array (Laliberte et al., 2011) could
further improve the accuracy of the classification and increase the
difference between the performance of the multispectral and visible
sensors, a comparison is however also missing at present. On the other
hand, the accuracy of SfM-derived point clouds is comparable to that of
LiDAR-derived point clouds (Koska et al., 2017) and, therefore, if the
vertical structure of the vegetation at each point is not of concern and
only the information about the vegetation surface is sufficient, invest-
ment into this expensive sensor is not necessary for classification of
vegetation.

3.6. General assessment

For a general purpose in any classification analysis based on UAV-
borne data, we recommend the combination of a multispectral sensor
and nDSM as the most efficient method requiring only a single flight (as

the height information can be easily extracted during UAV imagery
processing). A statistical evaluation has not revealed if nDSM or TMP
data are more valuable for the classification (RQ iii); however, adding
any one of these two into the MSC-based model significantly improved
the accuracy (RQ iv). When searching for the best compromise between
the number of sensors used (costs) and a sufficient classification accu-
racy, the answer can differ with the level of detail. As it is not possible
to generalize the results, a test for homogeneity with binomial dis-
tribution was performed for every pair of models. Results indicate that
models based on multiple inputs can be utilized for classification of
individual plant species; however, distinguishing among individual
multi-input models is more difficult (Fig. 5). Our study area contains
multiple cultivars with not entirely natural height, which potentially
affect the result of classification. It can be therefore assumed that in a
more natural environment with a smaller number of species, it is pos-
sible to achieve even better results and accuracies. We also assume that
in such environments, even various models based on two inputs could
give results that will be distinguishable both mutually and from all-
input models. However, further studies are needed to verify these hy-
potheses.

4. Conclusion

The study proves the contribution of UAV-borne thermal and height
data for classification of land cover and vegetation types. Thermal data
and normalized height (nDSM) inputs increase classification accuracy
when compared to spectral data only, even in a very specific environ-
ment of an arboretum. The best Overall Accuracy was achieved by
combining all acquired input datasets on the multispectral sensor. The
results confirmed our hypotheses that (RQ i) it is possible to classify
individual plant species with a sufficient accuracy using UAV-borne
data; (RQ ii) RGB sensor with a better spatial resolution cannot fully
substitute additional spectral information acquired using MSC sensors;
and that (RQ iv) thermal data are an important source of information
distinguishing some classes. On the other hand, the hypothesis (RQ iii)
that the height data contribute to the accuracy more than thermal data
was not confirmed. Nevertheless, it is clear that UAV technology is,
providing suitable parameters and input data, a powerful tool for a
detailed and accurate classification of the land cover and recognition of
plant species.

Funding

This study was supported by the Czech University of Life Sciences
Prague, project No. CIGA 20184206.

Acknowledgements

We acknowledge the anonymous referees for their constructive
comments. Also, many thanks for the helpful comments to our collea-
gues from the Department of Applied Geoinformatics and Spatial
Planning at the Czech University of Life Sciences Prague (CULS). We
would also like to thank Michal Fogl and Magda Ejemová for help with
ground data collection, Ondřej Lagner for help with the acquisition of
UAV imagery and Vojtěch Barták for help with R.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.jag.2018.05.003.

References

Addink, E.A., deJong, S.M., Pebesma, E.J., 2007. The importance of scale in object or-
iented mapping of vegetation mparameters with hyperspectral imagery.
Photogramm. Eng. Remote Sens. 73, 905–912.

J. Komárek et al. Int J Appl  Earth Obs Geoinformation 71 (2018) 9–19

18

https://doi.org/10.1016/j.jag.2018.05.003
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0005
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0005
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0005


Ahmed, O.S., Shemrock, A., Chabot, D., Dillon, C., Williams, G., Wasson, R., Franklin,
S.E., 2017. Hierarchical land cover and vegetation classification using multispectral
data acquired from an unmanned aerial vehicle. Int. J. Remote Sens. 38, 2037–2052.
http://dx.doi.org/10.1080/01431161.2017.1294781.

Ali, S.S., Dare, P., Jones, S.D., 2004. Fusion of remotely sensed multispectral imagery and
lidar data for Forest structure assessment at the tree level. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. XXXVII, 1089–1094.

Alonzo, M., Bookhagen, B., Roberts, D.A., 2014. Urban tree species mapping using hy-
perspectral and lidar data fusion. Remote Sens. Environ. 148, 70–83. http://dx.doi.
org/10.1016/j.rse.2014.03.018.

An, K., Zhang, J., Xiao, Y., 2007. Object-oriented urban dynamic monitoring — a case
study of Haidian District of Beijing. Chin. Geogr. Sci. 17, 236–242. http://dx.doi.org/
10.1007/s11769-007-0236-1.

Baluja, J., Diago, M.P., Balda, P., Zorer, R., Meggio, F., Morales, F., Tardaguila, J., 2012.
Assessment of vineyard water status variability by thermal and multispectral imagery
using an unmanned aerial vehicle (UAV). Irrig. Sci. 30, 511–522. http://dx.doi.org/
10.1007/s00271-012-0382-9.

Berni, J.A.J., Zarco-Tejada, P.J., Suárez, L., González-Dugo, V., Fereres, E., 2009. Remote
sensing of vegetation from UAV platforms using lightweight multispectral and
thermal imaging sensors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38.

Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J.
Photogramm. Remote Sens. 65, 2–16. http://dx.doi.org/10.1016/j.isprsjprs.2009.06.
004.

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R.,
van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. Geographic
object-based image analysis - towards a new paradigm. ISPRS J. Photogramm.
Remote Sens. 87, 180–191. http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014.

Bork, E.W., Su, J.G., 2007. Integrating LIDAR data and multispectral imagery for en-
hanced classification of rangeland vegetation: a meta analysis. Remote Sens. Environ.
111, 11–24. http://dx.doi.org/10.1016/j.rse.2007.03.011.

Calderón, R., Navas-Cortés, J.A., Lucena, C., Zarco-Tejada, P.J., 2013. High-resolution
airborne hyperspectral and thermal imagery for early detection of verticillium wilt of
olive using fluorescence, temperature and narrow-band spectral indices. Remote
Sens. Environ. 139, 231–245. http://dx.doi.org/10.1016/J.RSE.2013.07.031.

Cochran, G.W., 1977. Sampling Techniques. Wiley.
Díaz-Varela, R.A., de la Rosa, R., León, L., Zarco-Tejada, P.J., 2015. High-resolution

airborne UAV imagery to assess olive tree crown parameters using 3D photo re-
construction: application in breeding trials. Remote Sens. 7, 4213–4232. http://dx.
doi.org/10.3390/rs70404213.

Diaz-Varela, R.A., Zarco-Tejada, P.J., Angileri, V., Loudjani, P., 2014. Automatic identi-
fication of agricultural terraces through object- oriented analysis of very high re-
solution DSMs and multispectral imagery obtained from an unmanned aerial vehicle.
J. Environ. Manage. 134, 117–126. http://dx.doi.org/10.1016/j.jenvman.2014.01.
006.

Feng, Q., Liu, J., Gong, J., 2015. UAV remote sensing for urban vegetation mapping using
random forest and texture analysis. Remote Sens. 7, 1074–1094. http://dx.doi.org/
10.3390/rs70101074.

Foody, G.M., 2013. Ground reference data error and the mis-estimation of the Area of
land cover change as a function of its abundance. Remote Sens. Lett. 4, 783–792.
http://dx.doi.org/10.1080/2150704X.2013.798708.

Freeman, P., Balas, G.J., 2014. Actuation failure modes and effects analysis for a small
UAV. 2014 American Control Conference. IEEE 1292–1297. http://dx.doi.org/10.
1109/ACC.2014.6859482.

Gini, R., Passoni, D., Pinto, L., Sona, G., 2014. Use of unmanned aerial systems for
multispectral survey and tree classification: a test in a park area of northern Italy.
Eur. J. Remote Sens. 47, 251–269. http://dx.doi.org/10.5721/EuJRS20144716.

Hartfield, K.A., Landau, K.I., van Leeuwen, W.J.D., 2011. Fusion of high resolution aerial
multispectral and lidar data: Land cover in the context of urban mosquito habitat.
Remote Sens. 3, 2364–2383. http://dx.doi.org/10.3390/rs3112364.

Holmgren, J., Persson, Å., Söderman, U., Persson, A., Söderman, U., 2008. Species
identification of individual trees by combining high resolution LiDAR data with
multi-spectral images. Int. J. Remote Sens. 29, 1537–1552. http://dx.doi.org/10.
1080/01431160701736471.

Husson, E., Reese, H., Ecke, F., 2017. Combining spectral data and a DSM from UAS-
images for improved classification of non-submerged aquatic vegetation. Remote
Sens. 9, 1–15. http://dx.doi.org/10.3390/rs9030247.

Chrétien, L.-P., Théau, J., Ménard, P., 2016. Visible and thermal infrared remote sensing
for the detection of white-tailed deer using an unmanned aerial system. Wildl. Soc.
Bull. 40, 181–191. http://dx.doi.org/10.1002/wsb.629.

Klouček, T., Lagner, O., Šímová, P., 2015. How does data accuracy influence the relia-
bility of digital viewshed models? A case study with wind turbines. Appl. Geogr. 64,
46–54. http://dx.doi.org/10.1016/J.APGEOG.2015.09.005.

Koska, B., Jirka, V., Urban, R., Křemen, T., Hesslerová, P., Jon, J., Pospíšil, J., Fogl, M.,
2017. Suitability, characteristics, and comparison of an airship UAV with lidar for
middle size area mapping. Int. J. Remote Sens. 38, 2973–2990. http://dx.doi.org/10.
1080/01431161.2017.1285086.

Kuria, D.N., Menz, G., Misana, S., Mwita, E., Thamm, H., Alvarez, M., Mogha, N., Becker,
M., Oyieke, H., 2014. Seasonal vegetation changes in the Malinda wetland using Bi-
temporal, multi-sensor, very high resolution remote sensing data sets. Adv. Remote
Sens. 3, 33–48. http://dx.doi.org/10.4236/ars.2014.31004.

Laliberte, A.S., Goforth, M.A., Steele, C.M., Rango, A., 2011. Multispectral remote sensing
from unmanned aircraft: image processing workflows and applications for rangeland
environments. Remote Sens. 3, 2529–2551. http://dx.doi.org/10.3390/rs3112529.

Lisein, J., Michez, A., Claessens, H., Lejeune, P., 2015. Discrimination of deciduous tree
species from time series of unmanned aerial system imagery. PLoS One 10, 1–20.

http://dx.doi.org/10.1371/journal.pone.0141006.
Liu, J., Li, P., Wang, X., 2015. A new segmentation method for very high resolution

imagery using spectral and morphological information. ISPRS J. Photogramm.
Remote Sens. 101, 145–162. http://dx.doi.org/10.1016/j.isprsjprs.2014.11.009.

Lu, D., Weng, Q., 2007. A survey of image classification methods and techniques for
improving classification performance. Int. J. Remote Sens. http://dx.doi.org/10.
1080/01431160600746456.

Marris, E., 2013. Drones in science: fly, and bring me data. Nature 498, 156–158. http://
dx.doi.org/10.1038/498156a.

Michez, A., Piégay, H., Lisein, J., Claessens, H., Lejeune, P., 2016. Classification of ri-
parian forest species and health condition using multi-temporal and hyperspatial
imagery from unmanned aerial system. Environ. Monit. Assess. 188, 1–19. http://dx.
doi.org/10.1007/s10661-015-4996-2.

Moravec, D., Komárek, J., Kumhálová, J., Kroulík, M., Prošek, J., Klápště, P., 2017.
Digital elevation models as predictors of yield: comparison of an UAV and other
elevation data sources. Agron. Res. 15, 249–255.

Müllerová, J., Brůna, J., Bartaloš, T., Dvořák, P., Vítková, M., Pyšek, P., 2017. Timing Is
important: unmanned aircraft vs. Satellite imagery in plant invasion monitoring.
Front. Plant Sci. 8, 1–13. http://dx.doi.org/10.3389/fpls.2017.00887.

Näsi, R., Honkavaara, E., Lyytikäinen-Saarenmaa, P., Blomqvist, M., Litkey, P., Hakala, T.,
Viljanen, N., Kantola, T., Tanhuanpää, T., Holopainen, M., 2015. Using uav-based
photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-
level. Remote Sens. 7, 15467–15493. http://dx.doi.org/10.3390/rs71115467.

Nishar, A., Richards, S., Breen, D., Robertson, J., Breen, B., 2016. Thermal infrared
imaging of geothermal environments and by an unmanned aerial vehicle (UAV): a
case study of the Wairakei – Tauhara geothermal field, Taupo, New Zealand. Renew.
Energy 86, 1256–1264. http://dx.doi.org/10.1016/J.RENENE.2015.09.042.

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A.,
2014. Good practices for estimating area and assessing accuracy of land change.
Remote Sens. Environ. 148, 42–57. http://dx.doi.org/10.1016/j.rse.2014.02.015.

Pajares, G., 2015. Overview and current Status of remote sensing applications based on
unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 81, 281–329.
http://dx.doi.org/10.14358/PERS.81.4.281.

Peña, J.M., Torres-Sánchez, J., Isabel De Castro, A., Kelly, M., López-Granados, F., 2013.
Weed mapping in early-season maize fields using object-based analysis of unmanned
aerial vehicle (UAV) images. PLoS One 8. http://dx.doi.org/10.1371/journal.pone.
0077151.

Pérez-Ortiz, M., Peña, J.M., Gutiérrez, P.A., Torres-Sánchez, J., Hervás-Martínez, C.,
López-Granados, F., 2015. A semi-supervised system for weed mapping in sunflower
crops using unmanned aerial vehicles and a crop row detection method. Appl. Soft.
Comput. 37, 533–544. http://dx.doi.org/10.1016/J.ASOC.2015.08.027.

Rampi, L.P., Knight, J.F., Pelletier, K.C., 2014. Wetland mapping in the Upper Midwest
United States. Photogramm. Eng. Remote Sens. 80, 439–448. http://dx.doi.org/10.
14358/PERS.80.5.439.

Reese, H., Nordkvist, K., Nyström, M., Bohlin, J., Olsson, H., 2015. Combining point
clouds from image matching with SPOT 5 multispectral data for mountain vegetation
classification. Int. J. Remote Sens. 36, 403–416. http://dx.doi.org/10.1080/
2150704X.2014.999382.

Sankey, T., Donager, J., McVay, J., Sankey, J.B., 2017. UAV lidar and hyperspectral fu-
sion for forest monitoring in the southwestern USA. Remote Sens. Environ. 195,
30–43. http://dx.doi.org/10.1016/j.rse.2017.04.007.

Stehman, S.V., 2013. Estimating area from an accuracy assessment error matrix. Remote
Sens. Environ. 132, 202–211. http://dx.doi.org/10.1016/j.rse.2013.01.016.

Szostak, M., Wezyk, P., Tompalski, P., 2014. Aerial orthophoto and airborne laser scan-
ning as monitoring tools for Land cover dynamics: a case study from the Milicz Forest
District (Poland). Pure Appl. Geophys. 171, 857–866. http://dx.doi.org/10.1007/
s00024-013-0668-8.

Teo, T.-A., Huang, C.-H., 2016. Object-Based Land cover classification using airborne
lidar and different spectral images. Terr. Atmos. Ocean. Sci. 27, 491. http://dx.doi.
org/10.3319/TAO.2016.01.29.01(ISRS).

Weil, G., Lensky, I., Resheff, Y., Levin, N., 2017. Optimizing the timing of unmanned
aerial vehicle image acquisition for applied mapping of woody vegetation species
using feature selection. Remote Sens. 9, 1130. http://dx.doi.org/10.3390/
rs9111130.

Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., Schirokauer, D., 2006. Object-based
detailed vegetation classification with airborne high spatial resolution remote sensing
imagery. Photogramm. Eng. Remote Sens. 72, 799–811. http://dx.doi.org/10.14358/
PERS.72.7.799.

Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A.J., 2012. Fluorescence, temperature and
narrow-band indices acquired from a UAV platform for water stress detection using a
micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 117,
322–337. http://dx.doi.org/10.1016/J.RSE.2011.10.007.

Zhen, Z., Quackenbush, L.J., Stehman, S.V., Zhang, L., 2013. Impact of training and va-
lidation sample selection on classification accuracy and accuracy assessment when
using reference polygons in object-based classification. Int. J. Remote Sens. 34,
6914–6930. http://dx.doi.org/10.1080/01431161.2013.810822.

Zhou, Y., Qiu, F., 2015. Fusion of high spatial resolution WorldView-2 imagery and LiDAR
pseudo-waveform for object-based image analysis. ISPRS J. Photogramm. Remote
Sens. 101, 221–232. http://dx.doi.org/10.1016/j.isprsjprs.2014.12.013.

Zuiev, O.V., Demydko, V.G., Musyenko, A.O., Gerasymenko, T.S., 2015. Analysis of
control processes influence on UAV equipment classification veracity. 2015 IEEE
International Conference Actual Problems of Unmanned Aerial Vehicles
Developments (APUAVD). IEEE 102–105. http://dx.doi.org/10.1109/APUAVD.2015.
7346572.

J. Komárek et al. Int J Appl  Earth Obs Geoinformation 71 (2018) 9–19

19

http://dx.doi.org/10.1080/01431161.2017.1294781
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0015
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0015
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0015
http://dx.doi.org/10.1016/j.rse.2014.03.018
http://dx.doi.org/10.1016/j.rse.2014.03.018
http://dx.doi.org/10.1007/s11769-007-0236-1
http://dx.doi.org/10.1007/s11769-007-0236-1
http://dx.doi.org/10.1007/s00271-012-0382-9
http://dx.doi.org/10.1007/s00271-012-0382-9
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0035
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0035
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0035
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014
http://dx.doi.org/10.1016/j.rse.2007.03.011
http://dx.doi.org/10.1016/J.RSE.2013.07.031
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0060
http://dx.doi.org/10.3390/rs70404213
http://dx.doi.org/10.3390/rs70404213
http://dx.doi.org/10.1016/j.jenvman.2014.01.006
http://dx.doi.org/10.1016/j.jenvman.2014.01.006
http://dx.doi.org/10.3390/rs70101074
http://dx.doi.org/10.3390/rs70101074
http://dx.doi.org/10.1080/2150704X.2013.798708
http://dx.doi.org/10.1109/ACC.2014.6859482
http://dx.doi.org/10.1109/ACC.2014.6859482
http://dx.doi.org/10.5721/EuJRS20144716
http://dx.doi.org/10.3390/rs3112364
http://dx.doi.org/10.1080/01431160701736471
http://dx.doi.org/10.1080/01431160701736471
http://dx.doi.org/10.3390/rs9030247
http://dx.doi.org/10.1002/wsb.629
http://dx.doi.org/10.1016/J.APGEOG.2015.09.005
http://dx.doi.org/10.1080/01431161.2017.1285086
http://dx.doi.org/10.1080/01431161.2017.1285086
http://dx.doi.org/10.4236/ars.2014.31004
http://dx.doi.org/10.3390/rs3112529
http://dx.doi.org/10.1371/journal.pone.0141006
http://dx.doi.org/10.1016/j.isprsjprs.2014.11.009
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1038/498156a
http://dx.doi.org/10.1038/498156a
http://dx.doi.org/10.1007/s10661-015-4996-2
http://dx.doi.org/10.1007/s10661-015-4996-2
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0160
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0160
http://refhub.elsevier.com/S0303-2434(18)30122-3/sbref0160
http://dx.doi.org/10.3389/fpls.2017.00887
http://dx.doi.org/10.3390/rs71115467
http://dx.doi.org/10.1016/J.RENENE.2015.09.042
http://dx.doi.org/10.1016/j.rse.2014.02.015
http://dx.doi.org/10.14358/PERS.81.4.281
http://dx.doi.org/10.1371/journal.pone.0077151
http://dx.doi.org/10.1371/journal.pone.0077151
http://dx.doi.org/10.1016/J.ASOC.2015.08.027
http://dx.doi.org/10.14358/PERS.80.5.439
http://dx.doi.org/10.14358/PERS.80.5.439
http://dx.doi.org/10.1080/2150704X.2014.999382
http://dx.doi.org/10.1080/2150704X.2014.999382
http://dx.doi.org/10.1016/j.rse.2017.04.007
http://dx.doi.org/10.1016/j.rse.2013.01.016
http://dx.doi.org/10.1007/s00024-013-0668-8
http://dx.doi.org/10.1007/s00024-013-0668-8
http://dx.doi.org/10.3319/TAO.2016.01.29.01(ISRS)
http://dx.doi.org/10.3319/TAO.2016.01.29.01(ISRS)
http://dx.doi.org/10.3390/rs9111130
http://dx.doi.org/10.3390/rs9111130
http://dx.doi.org/10.14358/PERS.72.7.799
http://dx.doi.org/10.14358/PERS.72.7.799
http://dx.doi.org/10.1016/J.RSE.2011.10.007
http://dx.doi.org/10.1080/01431161.2013.810822
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.013
http://dx.doi.org/10.1109/APUAVD.2015.7346572
http://dx.doi.org/10.1109/APUAVD.2015.7346572


Please only
ANNOTATE
the proof.
Do not edit
the PDF.
If multiple
authors will
review this PDF,
please return
one file
containing all
corrections.

Submitted 27 February 2018
Accepted 30 July 2018
Published 23 August 2018

Corresponding author
Tomáš Klouček, tkloucek@fzp.czu.cz

Academic editor
Le Yu

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.5487

Copyright
2018 Klouček et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Selecting appropriate variables for
detecting grassland to cropland changes
using high resolution satellite data

Q1
Tomáš Klouček1, David Moravec1, Jan Komárek1, Ondřej Lagner1 and
Přemysl Štych2

1Department of Applied Geoinformatics and Spatial Planning, Faculty of Environmental Sciences,
Czech University of Life Sciences Prague, Czech University of Life Sciences Prague, Prague, Czech Republic

2Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University in Prague,
Charles University in Prague, Prague, Czech Republic

ABSTRACT
Grassland is one of the most represented, while at the same time, ecologically
endangered land cover categories in the European Union. In view of the global climate
change, detecting its change is growing in importance from both an environmental
and a socio-economic point of view. A well-recognised tool for Land Use and Land
Cover (LULC) ChangeDetection (CD), including grassland changes, is Remote Sensing
(RS). An important aspect affecting the accuracy of change detection is the finding the
optimal indicators of LULC changes (i.e., variables). Inappropriately selected variables
can produce inaccurate results burdened with a number of uncertainties. The aim of
our study is to find themost suitable variables for the detection of grassland to cropland
change, based on a pair of high resolution images acquired by the Landsat 8 satellite
and from the vector database Land Parcel Identification System (LPIS). In total, 59
variables were used to create models using Generalised Linear Models (GLM), the
quality of which was verified through multi-temporal object-based change detection.
Satisfactory accuracy for the detection of grassland to cropland change was achieved
using all of the statistically identified models. However, a three-variable model can
be recommended for practical use, namely by combining the Normalised Difference
Vegetation Index (NDVI), Wetness and Fifth components of Tasselled Cap. Increasing
number of variables did not significantly improve the accuracy of detection, but rather
complicated the interpretation of the results and was less accurate than detection based
on the original Landsat 8 images. The results obtained using these three variables are
applicable in landscapemanagement, agriculture, subsidy policy, or in updating existing
LULC databases. Further research implementing these variables in combination with
spatial data obtained by other RS techniques is needed.

Subjects Natural Resource Management, Spatial and Geographic Information Science
Keywords Change detection (CD), Grassland, Tasseled Cap (TC), Cropland, Normalized
Difference Vegetation Index (NDVI), Variables

INTRODUCTION
Land Use and Land Cover (LULC) techniques form an integral part of many studies
(Kindu et al., 2013; Gupta & Shukla, 2016; Chaudhuri & Mishra, 2016) overlapping with
other research fields (Cardinale et al., 2012). LULC is considered an important factor

How to cite this article Klouček et al. (2018), Selecting appropriate variables for detecting grassland to cropland changes using high reso-
lution satellite data. PeerJ 6:e5487; DOI 10.7717/peerj.5487

https://peerj.com
mailto:tkloucek@fzp.czu.cz
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5487
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.5487


influencing the environment and its changes have a demonstrable impact on climate
change (Tasser, Leitinger & Tappeiner, 2017). Among the land cover types in the European
Union (EU), grassland and cropland are the most prominent, accounting for 44% of the
total area (Eurostat, 2017). Since the 1990s, the main LULC change trends in most post-
communist Central European countries are afforestation, grassing over, intensification,
and urbanisation. Even though the change of grassland to cropland is not as frequent
a transition as it was during the communist era (Kupková & Bičík, 2016), it still elicits a
significant impact on the ecosystem. Grassland plays an irreplaceable role as a natural
habitat of many organisms, helps with the accumulation of greenhouse gases, prevents
erosion, keeps water in the landscape and reduces pollution (European Union, 2016).
However, these benefits are easily disrupted by ploughing the grassland, thus turning
it into cropland. It is, therefore, important to detect such changes, quantify them and
continuously monitor the developments. The occurrence of new cropland at the expense
of grassland is especially prominent in post-communist states that have recently joined
the EU and started to receive agricultural subsidies (Pazúr et al., 2014). This process is
also affected by a number of national and European agricultural policies and initiatives
(Sklenicka et al., 2014), such as the Good Agricultural and Environmental Conditions
(GAEC) (Sklenicka et al., 2015). Change data acquired from remote sensing based models
can, therefore, serve both as a basis for decision-making in the landscape management and
have a socio-economic application in agriculture and its subsidy policy (Esch et al., 2014).

The primary data source for LULC Change Detection (CD) is Remote Sensing (RS).
Multi-spectral satellite images are one of the most commonly used types of RS data, among
which Landsat satellites images stand out due to long-term imaging, a suitable compromise
between spectral, spatial and temporal resolution and free availability (Wulder et al., 2008;
Xian, Homer & Fry, 2009; Chen et al., 2012; Roy, Ghosh & Ghosh, 2014). LULC change
detection using RS data is based on the theoretical assumption that each LULC type has
its own typical spectral signatures. If an LULC type changes, so will change its spectral
signatures (Hussain et al., 2013). In practice, it is often difficult to distinguish the signal
of true changes from the false signals arising from external factors (different atmospheric
conditions, soil moisture, or the phenological stage Jensen, 1996), the selection of RS data
(Lu, Li & Moran, 2014), pre-processing (Dai, 1998) and atmospheric corrections (Song
et al., 2001), the choice of the change detection method, the selection of the variables or
the inexperience of the analyst (Lu et al., 2003). The significance of these uncertainties is
even greater in LULC objects with very similar spectral signatures, which is exactly the
case of croplands with a high degree of heterogeneity and significant effects of different
phenological phases of individual crops and plants (Lu et al., 2003).

Some studies dealing with the classification and change detection of grassland and
cropland have been published (Chen & Rao, 2008; Esch et al., 2014). These categories
are often a part of a comprehensive change detection study (Mas, 1999; Bergen et al.,
2005; Wondrade, Dick & Tveite, 2014; Vorovencii, 2014). We can also find studies aimed
at a more detailed classification on the level of individual croplands (Wardlow, Egbert
& Kastens, 2007; Turker & Ozdarici, 2011) or on grassland change detection (Weeks et
al., 2013). Studies focusing specifically on grassland to cropland change are, however,
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still exceedingly rare (Tarantino et al., 2016). Among the studies closest to the topic of our
study, the papers by Tarantino et al. (2016), who achieved 86.91% accuracy in the detection
of semi-natural grassland to cropland changes in Italy using a cross-correlation analysis
of Landsat 8 OLI images, and by Weeks et al. (2013), who used NDVI differencing for the
change of ‘‘indigenous’’ grasslands in New Zealand and achieved 56% accuracy, can be
mentioned.

Many papers have been published that reviewed the methods and techniques used for
the detection of LULC changes (Singh, 1989; Lyon et al., 1998; Lu et al., 2003; Coppin et al.,
2004; Berberoglu & Akin, 2009; Bhandari, Kumar & Singh, 2012; Hussain et al., 2013; Lu,
Li & Moran, 2014; Tewkesbury et al., 2015), in forest ecosystems (Coppin & Bauer, 1996;
Woodcock et al., 2001; Lu, Batistella & Moran, 2008), urban areas for building detection
(Liu & Zhou, 2004; Sohn & Dowman, 2007; Aleksandrowicz et al., 2014) or for the detection
of imperious surfaces (Xian, Homer & Fry, 2009). Other studies focus on the problem of
mapping the general land use change (Yin et al., 2014) or on agricultural land specifically
(Weeks et al., 2013; Müller et al., 2015; Tarantino et al., 2016). The application of RS in
agriculture is summarised, for example, in a review by Atzberger (2013). The current trend
uses a time series for agricultural change detection (for example, all the available Landsat
imagery), which provides additional phenological information (Müller et al., 2015). In
many cases, an insufficient number of satellite images is available due to cloud cover and,
therefore, bi-temporal change detection is still needed. The alternative approach uses
imagery from two dates, for which the time of the acquisition and the variable selection are
crucial. The potential usefulness of various CD variables and their impact on LULC CDs
has not been sufficiently studied either.

Variables used for CD may be divided into three categories. One category consists of
spectral variables that include spectral bands and derived vegetation indices, transformed
images, segments, sub-pixel features, and classification results. The second category
includes spatial variables such as textures, different scales, the complexity of the landscape
or topography. The temporal variables comprise the third category (Lu, Li & Moran, 2014).
With more than 40 modifications, vegetation indices form the most numerous group of
variables (Bannari et al., 1995). Significant variability and the amount of RS data, as well as
the choice of variables, are very likely to affect the LULC CD, as was shown in other spatial
analyses (Barry & Elith, 2006; Moudrý & Šímová, 2012; Klouček, Lagner & Šímová, 2015).
Using a large number of variables can potentially improve the accuracy of the CD. On the
other hand, such an approach can introduce a number of uncertainties into the detection
and make the interpretation of obtained results difficult (Lu &Weng, 2007).

Despite the fact that LULC change detection has been one of the most discussed RS
topics for decades, to the best of our knowledge, only few studies have focused their
attention on selection of appropriate variables for detection of changes in croplands. The
aim of our study is to find the optimal variable(s) for grassland to cropland detection
based on the Landsat 8 OLI high resolution data and the vector database, called the Land
Parcel Identification System (LPIS), and to test the results for the 2013-2016 period on the
selected territory. We hypothesised that (1) it is possible to find a suitable variable or group
of variables capturing the change of the grassland to cropland due to different spectral
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Figure 1 The study area is (located in the Czech Republic, specifically) comprising a part of Landsat 8
scene Path 192 Row 25.

Full-size DOI: 10.7717/peerj.5487/fig-1

profiles; (2) the greater the amount of the incorporated variables, the more accurate the
CD would be; (3) spectral variables would be more significant than textural ones; (4) an
important aspect of the grassland to cropland change detection would be the time of the
acquisition input satellite data.

MATERIALS AND METHODS
Study area
The study area is located inCentral Europe, namely in thewestern part of theCzechRepublic
intersecting with Landsat 8 scene No. 192/25 with centre point coordinates approximately
50◦22′N, 13◦41′E, see Fig. 1. The study area is on a regional scale (approx. 36,260 km2) and is
characterised by notable variability (topographical, landscape ecology as well as vegetational
variability). This scale and localisation therefore warrants the occurrence of a sufficient
number of both grassland to cropland changes and of no-change areas. The expected
occurrence of changes was manually verified prior to the analysis using freely available
CORINE Land Cover data (http://land.copernicus.eu/pan-european/corine-land-cover/).

Input data
The main data source was a pair of high resolution images taken by the Landsat 8 OLI on
August 3rd, 2013 and August 27th, 2016. The images downloaded from the US Geological

Klouček et al. (2018), PeerJ, DOI 10.7717/peerj.5487 4/20

https://peerj.com
https://doi.org/10.7717/peerj.5487/fig-1
http://land.copernicus.eu/pan-european/corine-land-cover/
http://dx.doi.org/10.7717/peerj.5487


Figure 2 An example of used datasets. Landsat 8 images, NDVI vegetation index, and (no-)change
grassland to cropland plots (LPIS database) from 2013 and 2016. (A) Landsat 8 image from 2013.
(B) Landsat 8 image from 2016. (C) NDVI RGB composite (R= NDVI 2013, G= NDVI 2016, B= NDVI
2013). (D) (No-)change grassland to cropland plots from LPIS database.

Full-size DOI: 10.7717/peerj.5487/fig-2

Survey (http://earthexplorer.usgs.gov/) contain 9 spectral bands with a resolution of 30 m
(multi-spectral) and 15 m (panchromatic), respectively. Detailed specifications of the OLI
sensor can be found in Roy et al. (2014). At the time of the image selection, the chosen
images were the only one’s available for a pair of scenes that, besides being almost cloudless,
also met the other criteria including the suitable extent, the sufficient temporal distance
between the imaging data, and acquisition at the suitable phenological stage. The most
suitable period for the grassland to cropland change detection is the period shortly after
harvest (late summer, early autumn) (Esch et al., 2014).

As a source of reference data on the use of the agricultural land, we used the Land
Parcel Identification System and its vector database containing the land use data for the
entire territory of the Czech Republic from 2004. The basic unit of LPIS is a group of
adjacent plots representing a continuous area farmed by a single farmer with a single crop
plant. The database classifies the agricultural land into 11 land use categories. Data from
years corresponding with the Landsat images, i.e., 2013 and 2016, was used, see Fig. 2. In
accordance with LPIS classification, cropland is defined as a ‘‘farmed land producing crop
plants requiring annual replanting, which is not grassland’’ in this study. Grassland, on the
other hand, is defined as a ‘‘farmed land under permanent pasture or, where appropriate,
contiguous vegetation dominated by grass, used predominantly for feeding or technical
purposes’’ (The Ministry of Agriculture of the Czech Republic, 2016).
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Figure 3 A scheme of the study methods describing data processing workflow. For validation of models
was used multi-temporal change detection based on object-based classification using Support Vector Ma-
chine algorithm.

Full-size DOI: 10.7717/peerj.5487/fig-3

Images and data pre-processing
Landsat 8 OLI images were obtained at a Level-1T processing level, which includes standard
radiometric, geometric and terrain correction using Ground Control Points and the Digital
Elevation Model. The results of this step were visually inspected for accuracy with regard to
the geometric overlay of the images and the LPIS database. No additional image to image
registration was needed. The raw Digital Number data was converted to surface reflectance
(Song et al., 2001) using FLAASH (Fast Line-of-sight Atmospheric Analysis of Hypercubes)
in ENVI software (version 5.4), and any areas obscured by clouds were manually removed
from the image.

From the LPIS database, both plots with grassland to cropland change and those on
which the grassland remained were extracted. Plots detected as croplands in both time
points (information acquired from LPIS also) were removed from the calculation. In the
area of interest, 570 changed LPIS plots and 33,196 no-change LPIS plots were identified.
To minimise the mixed pixel effect, only plots larger than 1 hectare with a non-elongated
shape were selected. A non-elongated shape was defined as the proportion between the
shape area (ha) and the shape length (m), which had to be greater than 0.045. This threshold
value was expertly set based on the visual inspection and knowledge of the LPIS database.
On the acquired sample, a visual check that focused on the homogeneity of the selected
plots was carried out based on the freely available orthophotos of the Czech Republic. See
Fig. 3 for data processing workflow.

Selection and calculation of the variables
For each scene, 59 LULC change detection variables were calculated. Specifically, the
calculated variables included 36 vegetation indices, 10 textural characteristics, 7 components
of Principal Component Analysis, and 6 Tasselled Cap components (Table 1). The numbers
of variables represent, in our opinion, potentially used spectral and spatial indicators
for change detection in the ENVI software by a common user. The calculation of the
variables was performed by algorithms implemented in ENVI. Spectral-based variables
were calculated from pre-processed spectral bands, while textural variables were calculated
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Table 1 59 change detection variables used in the study for detection of (no-)change from grassland to
cropland. Specifically, 36 vegetation indices, 10 texture characteristics, 7 components of Principal Compo-
nent Analysis and 6 components of Tasseled Cap were used. Numbers represent almost all available vari-
ables in ENVI software. For details see external links.

Group Change detection variables

Vegetation Indices Atmospherically Resistant Vegetation Index, Burn Area
Index, Clay Minerals, Difference Vegetation Index,
Enhanced Vegetation Index, Ferrous Minerals, Global
Environmental Monitoring Index, Green Atmospherically
Resistant Index, Green Difference Vegetation Index,
Green Normalized Difference Vegetation Index, Green
Ratio Vegetation Index, Green Vegetation Index,
Infrared Percentage Vegetation Index, Iron Oxide, Leaf
Area Index, Modified Non Linear Index, Modified
Normalized Difference Water Index, Modified Simple
Ratio, Modified Triangular Vegetation Index, Modified
Triangular Vegetation Index, Improved Non-Linear Index,
Normalized Burn Ratio, Normalized Difference Built Up
Index, Normalized Difference Snow Index, Normalized
Difference Vegetation Index, Optimized Soil Adjusted
Vegetation Index, Red Green Ratio Index, Renormalized
Difference Vegetation Index, Simple Ratio, Soil Adjusted
Vegetation Index, Structure Insensitive Pigment Index,
Sum Green Index, Transformed Difference Vegetation
Index, Visible Atmospherically Resistant Index, WorldView
Improved Vegetative Index, WorldView Water Index

Texture Contrast, Correlation, Data Range, Dissimilarity, Entropy,
Homogeneity, Mean, Skewness, Second Moment, Variance

Principal Component Analysis PCA 1, PCA 2, PCA 3, PCA 4, PCA 5, PCA 6, PCA 7
Tasseled Cap Brightness, Greenness, Wetness, Fourth, Fifth, Sixth

Notes.
For more information about the variables visit http://www.harrisgeospatial.com/docs/alphabeticallistspectralindices.html or
http://www.harrisgeospatial.com/docs/backgroundtexturemetrics.html.

from the panchromatic band (see ENVI help in Table 1). For each variable, the mean value
for every plot of the LPIS-acquired database was obtained using the ArcGIS (version 10.4)
Zonal Statistics tool for both 2013 and 2016.

Statistical assessment
To determine the optimal set of variables for grassland to cropland change detection, we
first excluded the highly correlated ones (r > 0.9) from the full correlation matrix (see
Supplemental Information 1). Where correlations were detected, only the variable most
frequently used in the available literature was included into the subsequent analysis. From
the original set of 59 variables, 41 were eliminated in preselection due to high correlation
and the uncorrelated variables are presented in Table 2.

The best set of variables was found using logistic regression specifically based on the
lowest AIC (Akaike Information Criterion) (deLeeuw, 1992) using Generalised Linear
Models (GLM) with a defined binominal distribution of errors (more about GLM can be
found, e.g., in Dobson & Barnett, 2008). Models, from one to seven members, were found
by permutation of all the combinations of variables with the ‘glmulti’ package in R (version
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Table 2 Non-correlated variables used for detecting grassland to cropland (no-)changes.

Group Not correlated variables

Vegetation indices Normalized Difference Vegetation Index, Simple Ratio,
Sum Green Index

Texture Contrast, Data Range, Entropy, Homogenity, Mean, Second
Moment, Skewness

Principal component analysis PCA 1, PCA 2, PCA 3, PCA 4, PCA 7
Tasseled cap Brightness, Wetness, Fifth

3.3.2). Models with a higher number of variables than seven were best found by AIC in a
Stepwise Algorithm in R because of the time-consuming nature of the previous method.
The calculated AIC values for the models based on two - fourteen variables were very
similar (only one-variable model using AIC values was significantly different), so only the
models, where the AIC values are at least slightly changed (one, three, five, seven, fourteen),
were chosen for the accuracy assessment.

Classification and accuracy assessment
A practical accuracy assessment of the created models and the Landsat 8 images only
(Table 3) was undertaken using the object-based multi-temporal change detection. The
variables of the models from both years were merged, based on statistic calculation, into a
single image (Layer stacking tool). The training data for classificationwas selected fromall of
the 33,766 plots frompre-prepared LPIS database (‘Images and data pre-processing’). Based
on stratified random sample design, 300 plots with change and 1200 without change were
chosen (Congalton & Green, 2009). Borders of selected plots from LPIS database were used
as the segments of the object-based classification. Using slides consisting of variables and
training data, changemaps were created in ENVI software. Due to non-normal distribution
of the input data, the non-parametric Support Vector Machine (SVM) classifier (Lu &
Weng, 2007) was used for classification. The settings of the SVM algorithm was set as the
default. The Kernel type: Radial Basic Function; Gamma in Kernel Function: the inverse
of the number of bands in the input image; The Penalty Parameter: 100; The Pyramid
Levels: 0; and the Classification Probability Threshold: 0. The same methodology was used
for the change detection based only on the Landsat 8 images (the amount of training and
validation samples, classification algorithm, etc.).

Finally, the accuracy of the change maps was calculated by comparison with stratified
random validation (testing) samples extracted from the pre-prepared LPIS database
(excluding the training data) using an confusion matrix. The sampling design was inspired
by Zhen et al. (2013) and Olofsson et al. (2014). The assessment was based on evaluating
the number of correctly classified 200 change and 800 no-change plots into change maps
with validation plots from the LPIS database. A 95% confidence interval was calculated
from the overall accuracy of the models. The models accuracy has been tested with a
homogeneity test of binominal distribution. The models have been tested against each
other using Holm’s p-value adjustment for multiple comparisons.
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Table 3 Summary of the validated models for the grassland to cropland change detection based on dif-
ferent set of variables. The value of AIC specifies the information potential of models.

No. of variables Change detection model AICa

One Normalized Difference Vegetation Index 5,633.39
Three Normalized Difference Vegetation Index, Wetness, Fifth 4,592.41
Five Normalized Difference Vegetation Index, Wetness, Fifth,

Brightness, Sum Green Index
4,263.74

Seven Normalized Difference Vegetation Index, Wetness, Fifth,
Brightness, Sum Green Index, Second Moment, PCA 2

4,060.35

Fourteen Normalized Difference Vegetation Index, Wetness, Fifth,
Brightness, Sum Green Index, Second Moment, PCA
2, PCA 1, PCA 3, PCA 4, PCA 7, Data Range, Contrast,
Skewness

3,950.90

Notes.
aAIC (Akaike Information Criterion).

Table 4 The accuracy of models (%) calculated based on different sets of variables by non-parametric
classifiers Support Vector Machine (SVM).

No. of
variables/model

Change
PA

No-change
PA

Change
UA

No-change
UA

OA 95%CI

One 46.00 98.63 89.32 87.96 88.10 86.09–90.11
Three 49.50 98.88 91.67 88.68 89.00 87.07–90.94
Five 46.50 99.00 92.08 88.10 88.50 86.52–90.48
Seven 52.00 98.25 88.14 89.12 89.00 87.06–90.94
Fourteen 55.50 98.38 89.52 89.84 89.80 87.93–91.68
Landsat image 59.00 98.25 89.39 90.55 90.40 88.57–92.23

RESULTS
Models for change detection
The lowest AIC was obtained from the model with fourteen variables (3950.90), the highest
from the model using a single variable (5633.39). The single most significant variable
was the NDVI (Normalised Difference Vegetation Index), which was represented in all
the models. In the models with a lower number of variables, variables based on spectral
information were predominantly used. The separability of the model with one variable
(NDVI) is demonstrated by Fig. 4. With additional variables, textural variables began
to play a greater role, see Table 3. The summary of calculated models can be found in
Supplemental Information 2.

Change maps evaluation
The overall accuracy of the change maps generally increases with the increasing number
of variables in the models. The best change map was created from the highest number of
variables (89.80% accuracy, Kappa 0.63), however classification based on a single variable
provided only slightly inferior results (88.10% accuracy, Kappa 0.55) as illustrated in
Table 4. These findings were statistically confirmed by the homogeneity test for binominal
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Figure 4 2D scatter plot created fromNDVI average values of change and no-change plots. Points rep-
resent training data (300 change, 1,200 no-change plots). X-axis belongs to NDVI 2016 and Y -axis be-
longs to NDVI 2013 (one-variable model).

Full-size DOI: 10.7717/peerj.5487/fig-4

distribution. So, we cannot conclude (on a 95% confidence level), that one of the models
is more accurate, see Fig. 5.

Looking more closely, the improvement in accuracy with an increasing number of
variables is associated only with the increasing Producer’s Accuracy (PA) of the change
class (one-variable model 46.00% and fourteen-variable model 55.50%). As shown in
Table 4, there is an improvement in the change class PA quality of the model between the
models using one and three variables. The rest of the confusion matrix parameters (User’s
Accuracy, Commission and Omission) were very similar in all the cases. Contrary, the
no-change detection did not show any notable improvement with an increasing number
of variables (PA 98.25–99.00%). All change maps, however, underestimated the number
of change plots and overestimated the number of grassland to cropland no-change plots
(Fig. 6). The results indicate that classification of the change and no-change plots has
achieved sufficient accuracy. If we compare the accuracy of the change maps based on a
statistically selected set of variables with change maps created from the Landsat images
(OA 90.40%, Kappa 0.66), there is not any significant difference. The detailed confusion
matrices are available in Supplemental Information 3.

DISCUSSION
In accordancewith the results, it is possible to use statistically selected variables for detection
of grassland to cropland land cover changes. At first sight, it could be apparent that it is
sufficient to only use the NDVI vegetation index for this type of analysis. However, based
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Figure 5 Overall accuracy (%) of calculated models with 95% confidence intervals.
Full-size DOI: 10.7717/peerj.5487/fig-5

on the visual inspection of the misclassification in all the change maps and the confusion
matrix (Supplemental Information 3), it is clear that the largest change detection inaccuracy
is in a case when differentiating grassland and cropland plots with green plants. The largest
number of these plots were poorly classified in the case of using only a one-variable model
based on NDVI (the lowest Producer’s Accuracy). This result is not surprising because
the surface reflectance of both categories is, in the spectral range of the Landsat 8 bands,
almost identical and the NDVI index even uses two spectral bands (Red and Near Infrared).
Only the NDVI variable can be used in the situation, when almost all plots are in the same
phenological phase. However, this is not the case of our study and it is not common in the
most of analyses, where some parts of the area (mountains vs. lowlands) are in different
phenological phases. Therefore, the addition of some variables based on another spectral
band is needed.

In our study, almost all vegetation indices were significantly correlated. The NDVI
variable was chosen as the most appropriate because of its frequency of use in research.
The statistical evaluation, however, indicates that very similar results would be achieved
with any of the other vegetation indices closely correlated with the NDVI one, see the
correlation matrices in Supplemental Information 1.

A good compromise among improving the accuracy of detection, the demands for
computational time and complications of the interpretation of the obtained results,
seems to be supplied by NDVI with the Wetness and Fifth components of Tasselled
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Figure 6 Comparison of created change maps with Landsat 8 images and LPIS database. (A) One-
variable model. (B) Three-variable model. (C) Fourteen-variable model. (D) Landsat 8 images only
model. (E) Landsat 8 image from 2013. (F) Landsat 8 image from 2018 with (no-)change plots from LPIS
database.

Full-size DOI: 10.7717/peerj.5487/fig-6

Cap (three-variable model in the study). These variables are more sensitive to different
conditions of the grassland plots and cropland plots with the green plants. The advantage
of the three-variable model is also the relatively small number of variables, allowing the
utilisation ofmethods based on the determination of an optimal change detection threshold
(Chen & Rao, 2008; Otukei & Blaschke, 2010). These findings related to crop phenology,
besides other conclusions, point an importance of appropriate time acquisition of satellite
images. It also confirms the hypothesis about an importance of this aspect for the grassland
to cropland change detection.

The suitability of NDVI for the classification and change detection has been
demonstrated in several studies (Lunetta et al., 2006; Wardlow, Egbert & Kastens, 2007;
Pu et al., 2008; Bhandari, Kumar & Singh, 2012; Esch et al., 2014; Aleksandrowicz et al.,
2014; Gandhi et al., 2015; Nagendra et al., 2015) as well as in those studies successfully
combining NDVI with Tasselled Cap (e.g., Chen & Rao, 2008).

Introducing too many variables into a model does not necessarily lead to achieving
better results (Lu &Weng, 2007), which underlines the importance of selecting the most
appropriate variables for change detection. In this case, the best accuracy was achieved
by using directly bands of Landsat image instead of calculated models due to almost all
variables (outside the spatial variables) were based on similar spectral bands.

The study results could have been, theoretically, influenced by a number of uncertainties
that we, however, strived to eliminate, e.g., through the pre-processing of the satellite images
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(atmospheric correction, registration of images and its visual verification). No object is
shifted by more than 1/2 a pixel between two frames (Dai, 1998). The selection of the
Landsat 8 OLI pairs was predominantly limited by the launch of the satellite mission
(2013) and by the cloud cover. Still, a suitable pair of pictures in a suitable phenological
phase according to the recommendations (Coppin et al., 2004; Hájková et al., 2012; Esch
et al., 2014; Tarantino et al., 2016) was found. The selection of the suitable acquisition
period depends on the geographical conditions (especially longitude, latitude or altitude)
of the observed area. From this point of view, the presented methods and results are
relevant for similar environmental conditions in central Europe. Another uncertainty is
a possible error in the LPIS reference database as the land use data is entered directly by
the farmers themselves. Also, the information in the LPIS differs slightly from the date
of acquisition of the satellite imagery, as it refers to the end of the particular year. No
better reference database covering the entire territory of the Czech Republic on such a
detailed scale is available however. Moreover, using such a high number of individual
plots combined with suitable statistical methods ensured that even if the information was
inaccurate by a small fraction, it should not have any significant impact on the results
of our study. The accuracy of the resulting change maps could have been affected by
selection of the change detection method also. An object-based classification was used
in the multi-temporal change detection as it is, according to literature, a more suitable
approach for high resolution data, when the pixels are significantly smaller than the object.
In this case, grouping pixels into segments is needed (Blaschke, 2010). The ratio of change
to no-change units in our study is approximately 1:50 and, therefore, the stratified random
sampling design with a proportion of 1:4 (change vs. no-change) for the training and
validation data was used.

LULC change detection most commonly employs Post-Classification Comparison
(PCC) (Otukei & Blaschke, 2010), it is, therefore, rather a classification than a pure change
detection task. For many applications, it is important to describe the trajectory of the
change. On the other hand, the knowledge about the occurrence of (no-)change (so-called
pre-classification, or bi-temporal change detection Coppin et al., 2004) is sufficient for
many other tasks. If this is the case, the choice of suitable variables is the key to acquiring
quality results, and this is where the contribution of our study can be deemed significant.
The methods used here can be applied to CDs of other LULC categories as well. It is a
well-known fact that finding suitable variables streamlines analyses, while at the same time
improves the results (Lu, Li & Moran, 2014).

Our results indicate that we are nearing a maximum accuracy of the grassland to
cropland change detection achievable from a pair of high resolution multi-spectral images.
Possible improvements could be brought about by implementing new data into themodels.
Examples of such supplementary data could include a time series of high resolution images,
e.g., Landsat or Sentinel-2 (Esch et al., 2014), very high resolution data (Tarantino et al.,
2016), data with a different resolution (Lu, Batistella & Moran, 2008; Turker & Ozdarici,
2011), data captured by other RS methods (Smith & Buckley, 2011), for example radar
(Sentinel-1) and thermal data (Landsat 8 TIRS) or the incorporation of an existing GIS
database (Hussain et al., 2013). Hussain et al. (2013) and Lu et al. (2003) both state that
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hybrid methods of change detection combining multiple approaches can increase the
accuracy of change detection.

The variables selected in this study can be used with sufficient precision as a source
of data for updating existing LULC databases or as a tool for setting agricultural subsidy
policies and their implementation. As the reference dataset used in the presented study was
quite large, it is relatively safe to assume the applicability of using the results for other studies
addressing this change detection problem in the whole of Central Europe. The results are
relevant for areas with similar geographical conditions, especially regarding the latitude.
However, the selected statistical methods and classification algorithms should be robust
due to the used images (full scene of Landsat 8) covered a large area with topographical
variable conditions (lowlands, highlands, mountains).

CONCLUSIONS
This study provides an analysis of the utilisation of selected remote sensing variables
(vegetation indices, textures, Principal Component Analysis, and Tasselled Cap analysis)
for grassland to cropland change detection based on a pair of Landsat 8 OLI images and
the Land Parcel Identification System (LPIS) vector database. The results confirm the
principal hypotheses that (1) there are suitable variables usable for grassland to cropland
change detection; (2) increasing the number of variables used in a model leads to increased
accuracy of the change detection, but to achieve the highest accuracy, it is necessary to use
original Landsat 8 bands; (3) spectral variables play a more important role than textural
variables in the change detection; (4) the appropriate time of the acquisition satellite images
is important for grassland to cropland change detection. In view of the accuracy of the
created change maps, which was verified using the reference database, we consider a model
utilising three variables (namely NDVI, Wetness and Fifth components) the most suitable.
Incorporation of additional variables into the model does not significantly improve the
accuracy of the change map. By analogy, the methods used in this study can be applied
for the CD of other LULC categories than solely those based on grassland to cropland
change. The models prepared in this way can serve as data sources for updating the current
LULC databases or as a tool for creating agricultural subsidy policies. As the selection of
variables was based on a large dataset of reference data on grassland to cropland change
detection, the applicability for other studies can be safely assumed. Our conclusions are
valid for analyses on a regional scale in Central Europe using high resolution data. To
further improve the grassland to cropland change detection using RS, research combining
our variables with spatial data acquired using other RS techniques is needed.
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Abstract: 

While modelling habitat suitability and species distribution, ecologists must 
deal with issues related to the spatial resolution of species occurrence and 
environmental data. Indeed, given that the spatial resolution of species 
and environmental of datasets range from centimeters to hundreds of 
kilometers, it underlines the importance of choosing the optimal 
combination of resolutions to achieve the highest possible modelling 

prediction accuracy. We evaluated how the spatial resolution of land 
cover/waterbody datasets (meters to 1 km) affect waterbird habitat 
suitability models based on atlas data (grid cell of 12 × 11 km). We 
hypothesized that area, perimeter and number of waterbodies computed 
from high resolution datasets would explain distributions of waterbirds 
better because coarse resolution datasets omit small waterbodies affecting 
species occurrence. Specifically, we investigated which spatial resolution of 
waterbodies better explain the distribution of seven waterbirds nesting on 
ponds/lakes of area 0.1 ha to hundreds of hectares. Our results show that 
the area and perimeter of waterbodies derived from high resolution 
datasets (raster data with 30 m resolution, vector data corresponding with 
map scale 1:10,000) explain the distribution of the waterbirds better than 

those calculated using less accurate datasets despite the coarse grain of 
the species data. Taking into account the spatial extent (global vs regional) 
of the datasets, we found the Global inland waterbody dataset to be the 
most suitable for modelling distribution of waterbirds. In general, we 
recommend using land cover data of a sufficient resolution to be able to 
capture the smallest patches of the habitat suitable for given species 
presence for both fine and coarse grain habitat suitability and distribution 
modelling. 
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Abstract 32 

While modelling habitat suitability and species distribution, ecologists must deal with issues 33 

related to the spatial resolution of species occurrence and environmental data. Indeed, given 34 

that the spatial resolution of species and environmental of datasets range from centimeters to 35 

hundreds of kilometers, it underlines the importance of choosing the optimal combination of 36 

resolutions to achieve the highest possible modelling prediction accuracy. We evaluated how 37 

the spatial resolution of land cover/waterbody datasets (meters to 1 km) affect waterbird 38 

habitat suitability models based on atlas data (grid cell of 12 × 11 km). We hypothesized that 39 

area, perimeter and number of waterbodies computed from high resolution datasets would 40 

explain distributions of waterbirds better because coarse resolution datasets omit small 41 

waterbodies affecting species occurrence. Specifically, we investigated which spatial 42 

resolution of waterbodies better explain the distribution of seven waterbirds nesting on 43 

ponds/lakes of area 0.1 ha to hundreds of hectares. Our results show that the area and 44 

perimeter of waterbodies derived from high resolution datasets (raster data with 30 m 45 

resolution, vector data corresponding with map scale 1:10,000) explain the distribution of the 46 

waterbirds better than those calculated using less accurate datasets despite the coarse grain of 47 

the species data. Taking into account the spatial extent (global vs regional) of the datasets, we 48 

found the Global inland waterbody dataset to be the most suitable for modelling distribution 49 

of waterbirds. In general, we recommend using land cover data of a sufficient resolution to be 50 

able to capture the smallest patches of the habitat suitable for given species presence for both 51 

fine and coarse grain habitat suitability and distribution modelling. 52 
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Introduction 62 

Habitat suitability models (HSMs), also known as species distribution models (SDMs) or 63 

ecological niche models, are used to model the relationship between geographical occurrences 64 

of species with environmental variables (Guisan et al. 2013, 2017). While modelling habitat 65 

suitability and species distribution, ecologists must deal with the problem of spatial 66 

resolutions, both resolution of data on species occurrence entering the models as a dependent 67 

variable (species data) and resolution of environmental predictors (McPherson et al. 2006, 68 

Guisan et al. 2007, 2017, Gottschalk et al. 2011, Rocchini et al. 2011, Moudrý and Šímová 69 

2012, Pradervand et al. 2013, Lecours et al. 2015). Spatial resolution of species data can vary 70 

from centimeters to tens or hundreds kilometers depending on a wide range of underlying 71 

factors such as data collecting method, time (e.g. recent data collected using modern 72 

technologies versus historical records), species characteristics (e.g. mobile versus sedentary 73 

species) among others (Elith et al. 2006, Guisan et al. 2007, Osborne and Leitão 2009, Reside 74 

et al. 2011, Moudrý and Šímová 2012). Similarly, spatial resolution of environmental 75 

predictors can range from centimeters to hundreds of kilometers, depending on the method of 76 

data acquisition (e.g. satellite remote sensing versus imaging with unmanned aerial vehicles 77 

or detailed ground mapping) and of data processing (e.g. classification of multispectral 78 

imagery into land cover classes with or without aggregating classified pixels into greater 79 

patches). The aggregation can be based for instance on minimal mapping unit (MMU) 80 

defining the smallest patch in the landscape that is captured in a land cover layer. MMU  is 81 

usually much larger than the pixel size (for example MMU of 25 ha applied on 30 m Landsat 82 

image pixel in CORINE land cover (Büttner et al. 2004)) and size is often set arbitrary (Saura 83 

2002, Lechner et al. 2012a). Given such wide range of spatial datasets and resolution (Figures 84 

1 and 2, Table 1),  it is important to find the optimal spatial resolution of environmental 85 

predictors to match the species data available in order to achieve the highest possible HSM 86 

prediction accuracy (Guisan et al. 2007, Gottschalk et al. 2011, Lechner et al. 2012a,b, Cord 87 

et al. 2014, Mertes and Jetz 2018).  88 

Although several studies have examined the effect of changing grain on prediction 89 

accuracy of HSMs, no definite guidelines can be drawn on the basis of their results. For 90 

example, Guisan et al. (2007) tested the effects of a 10-fold coarsening of grain size, namely 91 

from 100 m to 1 km and 1 km to 10 km. They concluded that changing grain size did not 92 

consistently affect models’ accuracy across regions, modelling techniques, and species types. 93 

Gottschalk et al. (2011) started at 1 m pixel size and coarsened it to 1 km in seven increments, 94 

where they found that model performance for the most of 13 bird species under study 95 
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degraded continuously with coarsening resolution but two species were best modelled at 3 m 96 

and one species at 32 m grain size. Moreover, it is important to add that these studies were not 97 

specifically focused on the effect of environmental predictors pixel size (and thus on changing 98 

the predictors’ pixel size while keeping grain of species data constant) but, at the same time, 99 

the grain of analysis was also coarsened (Figure 1). In such multi-scale (sensu McGarigal et 100 

al., 2016) approach, the effect of the quality of the environmental datasets on HSMs 101 

prediction accuracy cannot be separated from the other scaling aspects such as modifiable 102 

areal unit problem (Jelinski and Wu 1996, Lechner et al. 2012b) and from a possible finding 103 

of a spatial scale matching the strongest species’ response to the environment (Jackson and 104 

Fahrig 2015, McGarigal et al. 2016, Lipsey et al. 2017). Here, we investigate the effect of the 105 

environmental predictors resolution separately, using a priori single scale study (as defined 106 

McGarigal et al., 2016). 107 

It is essential to know if a given spatial resolution can describe details of the 108 

environmental phenomena important for distribution of a given species. For instance, low 109 

resolution land cover data may poorly describe a potentially suitable habitat, simply due to 110 

omitting the minor landscape features (Gottschalk et al. 2011). It is possible, for example, that 111 

small patches (e.g. hectares or smaller) of waterbodies are sufficient for the presence of a 112 

waterbird species, and thus environmental predictors such as area or perimeter of waterbodies 113 

derived from datasets with a MMU of tens of hectares or a pixel size of square kilometer(s) 114 

would explain the species distribution less than predictors based upon high resolution 115 

datasets, such as land cover layers based on aerial photographs, very high resolution satellite 116 

data (e.g. IKONOS, QuickBird, WorldView) or detailed field mapping. 117 

Such high resolution datasets pre-processed to a form suitable for HSMs, however, 118 

might not be readily available for the study area, could be prohibitively expensive (especially 119 

for studies conducted in a large extent) and their use for modelling could be inadequately 120 

demanding on data processing time. Hence, researchers are faced with a decision of a trade-121 

off between potential pros and cons of using high resolution environmental datasets 122 

describing habitats probably better than the coarser ones. A logical solution could be to use 123 

high resolution predictors only for fine grain analyses, together with high resolution species 124 

data, such as birds’ presence/absence sampled using point or transect methods. Similarly, we 125 

can assume that low resolution environmental predictors could be sufficient for coarse grain 126 

modelling, and therefore, that continental or global habitat data such as CORINE Land cover 127 

(Büttner et al. 2004) or Global Consensus Land cover (Tuanmu and Jetz 2014) are sufficient 128 
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for the use in combination with species data with positional uncertainties in the order of 129 

kilometers. However, if small but potentially sufficient patches of suitable habitats are 130 

missing in a coarse resolution land cover dataset, the use of a high resolution one could be 131 

beneficial even for the studies based on coarse grain species data such as atlases’ data.  132 

One of the likely reasons why especially models combining high resolution 133 

environmental data with coarse grain species data have not been sufficiently investigated so 134 

far is because environmental data with declared high resolution are usually not readily 135 

available or are prohibitively expensive for extents of states or continents (extent of species 136 

atlases). As inland waterbodies are undoubtedly an important predictor of waterbird presence 137 

and a high resolution layer of waterbodies for the Czech Republic is freely available, we 138 

compared the effect of spatial resolution of five land cover/waterbody datasets on accuracy of 139 

HSMs based on atlas data. We hypothesized that (i) high resolution waterbodies datasets 140 

would explain distribution of waterbird species better than those calculated using coarser 141 

datasets because the presence of relatively small water bodies in the atlas mapping grid cell 142 

can be sufficient for species presence (and higher resolution datasets thus describe ecological 143 

requirements of the species more accurately), and (ii) area and perimeter of waterbodies 144 

predict the presence of the species requiring open water surface and/or water edge habitats 145 

better than the simple number of waterbodies. We predicted that higher resolution datasets 146 

representing inland waterbodies would lead to more accurate HSMs. We tested this 147 

hypothesis using seven waterbird species that utilize waterbodies of area varying from 148 

approximately 0.1 ha to several square kilometers  (Šťastný et al. 2006) in the Czech Republic 149 

and land cover/waterbody datasets varying in spatial resolution (from the high resolution layer 150 

corresponding with a map scale 1:10,000 and MMU in the order of several square meters to  151 

low resolution data of pixel size 1 × 1 km). The species data originated from the Atlas of 152 

Breeding Birds in the Czech Republic (Šťastný et al. 2006) with grain (grid cell of species 153 

presence mapping) of approximately 11 × 12 km. The explanatory variables were based on a 154 

fine scale water body layer from the Czech spatial database DIBAVOD and continent-wide 155 

and world-wide land cover datasets CORINE Land Cover (CLC), Global Inland Water 156 

(GIW), Global Consensus Land Cover (GCL), and Open Street Map (OSM). As crowd-157 

sourced datasets (OSM) could be on the one hand a valuable source of environmental 158 

predictors for HSM but, on the other hand, their spatial resolution is uncertain, an additional 159 

data-oriented objective was to evaluate the suitability OSM for modelling waterbirds’ 160 

distribution in the study area.  161 
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Materials and Methods 162 

Study area and species data 163 

The study area (approx. 68.000 km2) covers the entire Czech Republic. We used species data 164 

from the Atlas of Breeding Birds in the Czech Republic 2001–2003 (Šťastný et al. 2006) with 165 

grid cell of species presence mapping of 10' east longitude and 6' north latitude 166 

(approximately 12 × 11 km) with 679 grid cells covering the entire country. As the species 167 

data in grid cells intersecting country’s border can be inconsistent, we used only 507 grid cells 168 

belonging completely to the Czech Republic (Figure 3).  169 

Birds’ presence was mapped by hundreds of ornithologists over three years 170 

specifically for the purpose of the atlas. Bird mapping in every grid cell was undertaken by at 171 

least one person, most cells were however mapped by several people. The ornithologists 172 

systematically and repeatedly (usually several times a year over the period of 2-3 years) 173 

searched for evidence of breeding occurrence of each species in all habitats present in the 174 

particular grid cell. In accordance with standards used in Europe (Hagemeijer and Blair 1997), 175 

the occurrences were recorded in three categories defining probability of breeding as possible 176 

breeding, probable breeding, and confirmed breeding while the highest category found for a 177 

given grid cell is recorded in the atlas. As the detection probability of the waterbird species 178 

(ducks and grebes, see below) used in this study is very high, we used all three breeding 179 

categories (possible, probable and confirmed breeding) as presences while remaining squares 180 

were considered as absences in habitat suitability modelling (but see Moudrý et al. 2017 for 181 

possible effect of the breeding category selection on prediction accuracy).  182 

We selected waterbird species on the basis of habitat preferences and spatial pattern of 183 

species’ breeding occurrence in the study area. We focused on the species utilizing open water 184 

surface for feeding and water edges (and their close proximity) for hiding and nesting, the 185 

occurrence of which within the study area is at the same time not restricted to a narrow range 186 

of elevation only. Rare species (breeding in less than 20 % of atlas grid cells), species with 187 

only local, strongly clustered occurrence, and species breeding in an overwhelming majority 188 

of cells (more than 75 %) were excluded because their distribution is obviously strongly 189 

affected by more factors than just the presence of waterbodies in the grid cell (for example, 190 

the breeding occurrence for some species is obviously strongly linked with large fishpond 191 

systems covering several contiguous squares with low elevation). As a result, we selected 192 

seven waterbird species: three grebes – the little grebe (Tachybaptus ruficollis), great crested 193 

grebe (Podiceps cristatus) and black-necked grebe (Podiceps nigricollis); two swimming 194 

ducks – the gadwall (Anas strepera) and common teal (Anas crecca); and two diving ducks – 195 
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the common pochard (Aythya ferina) and tufted duck (Aythya fuligula). From the habitat 196 

characteristics and feeding strategies view point, species preferring both shallow and deeper 197 

waterbodies with various amounts of littoral or floating vegetation, species preferring various 198 

ranges of elevation, as well as predominantly herbivorous, carnivorous and omnivorous 199 

species foraging both on the water surface and by diving are included. An important factor for 200 

our analysis is the size of preferred waterbodies. Most of these species (in the Czech 201 

Republic) nest at ponds/lakes of various sizes ranging from approx. 0.1 ha up to several 202 

square kilometers, without a particular preference for small or larger ones. The only 203 

exceptions are Anas crecca preferring smaller ponds and Podiceps cristatus  preferring larger 204 

(2 ha and above) ponds/lakes (Šťastný et al. 2006). 205 

 206 

Environmental predictors 207 

We derived area, perimeter and number of water bodies from five datasets with varying 208 

resolution, differing in methods of acquisition of the information about the water surface 209 

presence, and with extent ranging from regional (covering the Czech Republic only) to world-210 

wide (see Table 1 for overview). (1) As a reference (most accurate) dataset, the vector layer of 211 

water bodies covering the entire Czech Republic was used; it is a part of a hydrological 212 

database DIBAVOD (www.dibavod.cz) administered by the T. G. Masaryk Water Research 213 

Institute. Data detail in DIBAVOD is in accordance with a cartographical ratio of 1:10,000, 214 

the smallest polygons are in the order of several square meters and data are based on field 215 

mapping and aerial orthophotos. (2) Second dataset, also focused primarily on water surfaces, 216 

was a global (world-wide extent), 30 m resolution inland waterbody dataset (GIW) derived 217 

from Landsat satellite data by Feng et al. (2016). Other three datasets were land cover layers 218 

from which only water bodies were extracted. We used (3) a European database CORINE 219 

Land Cover (CLC), that is based on Landsat satellite data with 30 m resolution just as GIW, 220 

however, its MMU is 25 ha (Büttner et al. 2004), which obviously leads to a substantial 221 

generalization of water bodies in comparison with GIW. (4) The Global Consensus Land 222 

Cover (GCL) database created by (Tuanmu and Jetz 2014) for biodiversity and ecosystem 223 

modelling uses an even lower spatial resolution (1 km). GCL integrates four global land cover 224 

datasets to maximize accuracy and reduce errors of omissions (Tuanmu and Jetz 2014). (5) 225 

The last dataset was the Open Street Map (http://www.openstreetmap.org), a free crowd-226 

sourced spatial database. 227 
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Based on the methods of creating the datasets and a simple comparison using GIS 228 

overlay analysis, we assumed the following accuracy ranking from: GCL (the most 229 

generalized) < CLC < GIW < OSM < DIB (the most accurate). Area, perimeter and number of 230 

water bodies within each mapping square were calculated using CLC, GIW, OSM and DIB 231 

layers. Calculation of perimeter and number of geographical entities from a continuous raster 232 

(GCL) is irrelevant and, therefore, only the area of waterbodies was calculated for GCL using 233 

cell values, cell size and mapping square area. We used ArcGIS 10.3 software (ESRI, USA) 234 

for all GIS analyses. See Table 1 for details of datasets, Figure 2 for an example of dataset 235 

quality and Table 2 for mean values of the variables. 236 

Statistical analysis 237 

We assessed effects of environmental variables using generalized linear models (GLMs) and 238 

generalized additive models (GAMs) (Guisan et al. 2002) within the free statistical software 239 

environment R 3.2.2 (R Core Development Team 2017). We adopted the univariate modelling 240 

approach to compare the predictive performance of individual variables (number, perimeter 241 

and area of water bodies) derived from GLC, CLC, GIW, OSM and DIB as data of different 242 

resolution (see also Guisan and Hofer 2003, Venier et al. 2004, Lassueur et al. 2006). We 243 

built 91 individual univariate models (five datasets x seven bird species for area and four 244 

datasets x seven species for perimeter and number). In order to evaluate the models and assess 245 

the difference in terms of predictive performance between the datasets and individual 246 

calculated variables, we used 5-fold cross validation. To compare the predictions, we used the 247 

area under the curve (AUC) of the receiver operating characteristic plot (Fielding and Bell 248 

1997) and true skill statistics (TSS) (Allouche et al. 2006). We calculated the mean values of 249 

AUC and TSS across all 5-folds using the PresenceAbsence R package (Freeman and Moisen 250 

2008). According to an arbitrary guideline presented in BIOMOD manual (Thuiller et al. 251 

2009), fail/null model (TSS ≤ 0.4; 0.5 ≤ AUC < 0.7), fair model  (0.40 < TSS < 0.6; 0.70 ≤ 252 

AUC < 0.8); good model (0.60 < TSS < 0.8; 0.80 ≤ AUC < 0.9), and excellent/high model 253 

(0.80 < TSS < 1; 0.90 ≤ AUC < 1) can be distinguished. 254 

We used repeated measures ANOVA to test the effect of (1) waterbody dataset (i.e. 255 

input data resolution) and (2) used explanatory variable (total area, or total perimeter, or 256 

number of waterbodies) on values of TSS and AUC, respectively. Due to satisfactory 257 

normality of the data, it was possible to use the standard parametric version. If the ANOVA 258 

test was significant, we followed up with the paired Tuckey post-hoc tests to test the 259 
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significance of differences between pairs of datasets/variables. STATISTICA 12 software was 260 

used for these analyses. 261 

 262 

Results 263 

As GLM yielded very similar results to the GAM, we only present the latter. Mean TSS and 264 

AUC values of all univariate models varied between 0.25 - 0.59 and 0.62 - 0.84, respectively 265 

(Table 3), i.e. accuracy of individual univariate models varied between poor and fair. 266 

Accuracy of some models was good but only according to AUC. Simple color visualization of 267 

TSS and AUC values in Table 3 indicates, in general, that models based on higher resolution 268 

datasets performed better than models based on low resolution datasets and that area and 269 

perimeter of waterbodies are more appropriate predictors of occurrence of the group of 270 

waterbirds than the number of waterbodies.   271 

According to ANOVA results (Figure 4, Table 4), the effect of a dataset on HSMs 272 

accuracy (measured by TSS and AUC) was significant, as well as the effect of variables 273 

(area, perimeter and number of water bodies). Area and perimeter showed similar trends of 274 

dependence of HSM accuracy on dataset resolution (Figure 4), given both by TSS and AUC 275 

scores. For area and perimeter, CLC-based models performed significantly (p<0.0001) worse 276 

than models based on GIW, OSM and DIB. Analysis conducted separately for Area with GCL 277 

showed that GCL performed significantly (p<0.001) worse than CLC. Thus, HSMs accuracy 278 

was lower for low resolution datasets (GCL, CLS) while higher for high resolution datasets 279 

(GIW, OSM and DIB). In comparison, accuracy of models based on Number of water bodies 280 

did not show any dependency on the dataset resolution, with GIW-based models performing 281 

significantly better than those based on OSM, DIB and CLC (TSS scores) or significantly 282 

better than OSM, DIB and similarly as CLC (AUC scores). See Table 4 for significance levels 283 

and for differences between TSS and AUC. 284 

 285 

Discussion 286 

Our results show that the area and perimeter of waterbodies derived from high resolution land 287 

cover datasets (raster data with 30 m resolution and vector data corresponding with 288 

cartographic ratio 1:10,000) explain the distribution of waterbirds under study better than 289 

those calculated using less accurate water datasets despite the coarse grain of the species data. 290 

In spite of the previously published findings and opinions that using detailed land cover maps 291 
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can only improve models based on a corresponding level of detail in the species data 292 

(Gottschalk et al. 2011), our results indicate that utilizing fine scale land cover data can be in 293 

some instances beneficial even in combination with coarse grain species data. As suggested 294 

by several studies (Šťastný et al., 2006, Sebastián-González and Green, 2014), the presence of 295 

waterbodies of only a few hectares (3 ha) or even less then 1 ha  is sufficient to support 296 

occurrence of many waterbirds. However, the minimum mapping unit of CLC is 25 ha and 297 

GCL uses a percentage of land cover class in a 1 × 1 km pixel size (despite building upon data 298 

with resolution of 1 km, 500 m and 300 m) and small waterbodies are therefore not correctly 299 

recorded in these datasets or are missing altogether. As shown in Table 2, more than 45% 300 

atlas cells in the Czech Republic are completely without water surfaces according to GCL 301 

(232 cells) and CLC (230 cells). A more detailed DIB and OSM dataset, however, states that 302 

water surfaces are present in each cell, which corresponds to the reality. Thus, it is logical that 303 

the variables area and perimeter based on DIB datasets perform better. The accuracies 304 

obtained with GIW and DIB were similar for the area and perimeter variables. When 305 

compared to DIB, GIW omits the smallest waterbodies (according to GIW, waterbodies are 306 

missing in 27, i.e. in 5.4%, of atlas cells), however, its 30 × 30 m resolution allows a good 307 

capture of waterbodies from approx. 0.1 ha, i.e., the size sufficient for species preferring or 308 

capable of utilizing small waterbodies (Šťastný et al. 2006). The fact that small waterbodies 309 

(which are not captured in the coarser datasets such as GCL) are sufficient for the occurrence 310 

of numerous waterbird species may be one of the reasons why Tuanmu and Jetz (2014) found 311 

GCL performing less accurately for studied water species than for species that require other 312 

types of environment. Although CLC and GCL are utilized in habitat suitability and 313 

distribution modelling (Krojerová-Prokešová et al. 2008, Šímová et al. 2015, Valerio et al. 314 

2016, Vallecillo et al. 2016), our results imply that using higher resolution datasets could 315 

yield higher prediction accuracy. 316 

Unlike the area and perimeter variables, performance of the number of waterbodies 317 

was unpredictable. Number produced significantly less accurate models than those for area 318 

and perimeter when extracting it from the high resolution datasets DIB and OSM (the most 319 

accurate ones). This corresponds with the assumption that area and perimeter are better 320 

predictors of waterbird distribution than number. On the other hand, however, all three 321 

variables performed similarly in the case of GIW and CLC, respectively (in case of CLC, the 322 

number of waterbodies performed even better than their area and perimeter according to 323 

AUC). In the case of GIW, we suspect that the result is more likely an artefact of deriving a 324 
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number of patches from the raster data than the number of waterbodies being an equally good 325 

predictor of the occurrence of waterbirds as the area or perimeter. Although raster land cover 326 

datasets are commonly used to calculate the number of patches of a land cover class and even 327 

the software most widely used for calculations of landscape metrics (Fragstats; McGarigal, 328 

2015), is based on raster data, determining the number of patches from a raster is problematic. 329 

While the number of entities (polygons) in a vector dataset is explicitly given, their 330 

calculation from a grid depends on the method of joining individual pixels into a patch 331 

(Figure 1. For example, each pixel in a 3×3 pixels kernel can be considered as part of the 332 

patch in some methods while in others, only pixels sharing sides are included and diagonal 333 

neighbors are omitted (McGarigal, 2015). In CLC, where small water bodies are not captured 334 

and the average performances of models are generally lower than those of more detailed 335 

datasets, values of all three variables (area, perimeter, number) are significantly affected 336 

(Figures 1 and 2). It is therefore tricky to consider any of the predictors better than the others 337 

and the result should be only considered as an artefact of data used to derive the explanatory 338 

variables. These findings therefore imply that the use of high resolution environmental data 339 

cannot substitute a thorough selection of predictors for habitat suitability modelling as fine 340 

scale environmental predictors can still lead to inaccurate models if the wrong environmental 341 

predictor is chosen. 342 

As AUC was criticized by some authors (Lobo et al. 2008, Moudrý 2015), we used 343 

also TSS. According to the arbitrary scale (Thuiller et al. 2009), AUC tends to rate the results 344 

better than TSS, particularly in models based on high resolution datasets (see Table 3). As 345 

shown in Figure 4, the general trends of the response on predictor resolutions are similar for 346 

both AUC and TSS. For some individual species, however, the AUC value leads to different 347 

conclusions than that of TSS. For example, the average accuracy of models from the high 348 

resolution datasets (GIW, OSM and DIB) using area predictor for Anas crecca was the worst 349 

according to TSS while it was the second best according to AUC. On the other hand, the 350 

models of occurrence of Aythia ferina and Aythia fuligula perform better according to TSS 351 

than according to AUC when compared to the other species.  352 

As far as the sizes of the waterbodies preferred for nesting by individual species are 353 

concerned, it would be difficult to draw any conclusions. Models for Anas crecca, which is 354 

the only of our model species clearly preferring small ponds, yielded the lowest TSS values of 355 

all species for area, using CLC as well as high resolution datasets. Contrary, the performance 356 

of models for Podiceps cristatus, which is the only species avoiding the small ponds (less 357 

Page 11 of 42 Ecography



For Review Only

12 

 

than 2 ha), is according to TSS the best of all species throughout CLC as well as high 358 

resolution datasets. The probable causes may include effects of topographical and climatic 359 

factors (Moudrý and Šímová 2013) as well as the fact that no species preferring really large 360 

waterbodies (25 ha and larger, corresponding to the MMU of CLC) nest in the study area. 361 

In conclusion, comparing models derived from the tested datasets, the best results 362 

were acquired using area and perimeter variables, specifically those calculated from high 363 

resolution Global Inland Water, DIBAVOD and Open Street Map datasets. National datasets 364 

such as DIBAVOD could provide the best spatial information about the waterbodies, they are 365 

however only available for smaller extents and their form and availability usually depend on 366 

the policies of state institutions. The Open Street Map could be, despite the potential 367 

inconsistencies or inaccuracies caused by its crowd-sourced character (Haklay et al. 2010, 368 

Mooney et al. 2010), a high quality input for HSM; however, its accuracy and completeness 369 

can significantly vary from region to region. Hence, taking into account the spatial extent 370 

(world-wide vs regional) and the methods utilized for creating these datasets (remote sensing, 371 

field mapping, crowd sourcing), we found the Global Inland Water dataset to be the most 372 

suitable source of values on the area and perimeter of waterbodies for modelling distribution 373 

of waterbird species. In general, we recommend using land cover data of a sufficient 374 

resolution to be able to capture the smallest patches of the habitat suitable for given species 375 

presence for both fine and coarse grain habitat suitability and distribution modelling; the use 376 

of high resolution environmental data, however, cannot substitute a thorough selection of 377 

explanatory variables to be used for modelling. 378 
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Tables 499 

 500 

Table 1. Description of the sources of waterbody data. Waterbodies are represented for the 501 

different types of GIS representation: Continuous raster – each cell value is the percent of the 502 

cell area that is covered by water; Boolean raster – each cell value is the binomial presence or 503 

absence of waterbodies within the cell; Vector – the size and shape of each waterbody is 504 

outlined in detail corresponding with the map scale of the data. 505 

 Global 

Consensus 

Land 

Cover 

CORINE Land 

Cover 

Global 

Inland Water 

Open Street 

Map 

Dibavod 

Acronym  GCL CLC GIW OSM DIB 

GIS 

representation 

continuous 
raster 

vector Boolean raster vector vector 

Extent global Europe global global Czech 

Resolution 1 km 1:100,000 
(MMU 25 ha) 

30 m N/A 1:10,000 
(MMU several 
metres) 

Time relevance 1999-2006 2000 2000 2007-15 2004 

Categories used Open water 511 Water 
courses, 
512 Waterbodies 

Inland water Water Waterbodies 

Reference (Tuanmu 
and Jetz 
2014) 

(Büttner et al. 
2004) 

(Feng et al. 
2016) 

(Haklay 2010) T. G. Masaryk 
Water Research 
Institute 
www.dibavod.cz 

 506 

Table 2. Area, perimeter and number of water bodies within atlas grid cells (Mean ± Std 507 

within the entire dataset). NoWater denotes the number of grid cells with no waterbody 508 

captured within the dataset. 509 

 AREA [km
2
] PERIMETER [km] NUMBER NoWater 

GCL 0.43 ± 1.07 N/A N/A 230 
CLC 0.85 ± 1.08 7.05 ± 12.52 1.24 ± 2.04 232 
GIW 0.96 ± 1.67 22.13 ± 26.08 26.43 ± 26.81 27 
OSM 1.19 ± 1.72 32.37 ± 26.51 129.19 ± 82.31 0 
DIB 1.35 ± 2.03 33.85 ± 29.51 124.39 ± 80.42 0 
 510 

  511 
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 512 

Table 3. Mean TSS and AUC values based on a 5-fold cross validation for each of the seven 513 

water bird species for the five waterbody predictor datasets among the three versions of the 514 

predictor (area, perimeter, or total number of water bodies) and its simple visualization. 515 

Legend  Fail/null model: TSS ≤ 0.4; 0.5 ≤ AUC < 0.7;  Fair model (lower half of the 516 

interval): 0.40 < TSS < 0.5; 0.70 ≤ AUC < 0.75;   Fair model (upper half of the interval): 517 

0.50 < TSS < 0.6; 0.75 ≤ AUC < 0.80;  Good model 0.60 ≤ TSS; 0.8 ≤ AUC (Thuiller et al. 518 

2009). 519 

 AREA 

GCL CLC GIW OSM DIB 

SPECIES TSS AUC TSS AUC TSS AUC TSS AUC TSS AUC 
Tachybaptus 

ruficollis 
0.253 0.672 0.331 0.683 0.445 0.734 0.490 0.756 0.473 0.749 

Podiceps cristatus 0.419 0.669 0.455 0.695 0.541 0.781 0.550 0.816 0.590 0.817 

Podiceps nigricollis 0.369 0.664 0.416 0.688 0.436 0.781 0.430 0.811 0.441 0.813 

Anas strepera 0.322 0.683 0.387 0.710 0.493 0.812 0.517 0.841 0.516 0.837 

Anas crecca 0.331 0.712 0.341 0.737 0.412 0.816 0.444 0.830 0.423 0.836 

Aythya ferina 0.334 0.696 0.402 0.713 0.517 0.739 0.539 0.760 0.540 0.751 

Aythya fuligula 0.353 0.624 0.406 0.666 0.548 0.759 0.590 0.780 0.592 0.769 

   
PERIMETER 

CLC 
 

GIW 
 

OSM 
 

DIB 
 

SPECIES TSS AUC TSS AUC TSS AUC TSS AUC 

Tachybaptus ruficollis 0.343 0.673 0.463 0.720 0.479 0.754 0.472 0.743 

Podiceps cristatus 0.459 0.697 0.507 0.776 0.474 0.817 0.497 0.818 

Podiceps nigricollis 0.408 0.693 0.409 0.784 0.403 0.811 0.376 0.811 

Anas strepera 0.391 0.704 0.477 0.800 0.549 0.825 0.545 0.821 

Anas crecca 0.340 0.728 0.407 0.791 0.427 0.784 0.416 0.791 

Aythya ferina 0.389 0.715 0.514 0.725 0.527 0.732 0.515 0.718 

Aythya fuligula 0.408 0.666 0.534 0.760 0.543 0.779 0.566 0.776 

           NUMBER 

CLC 
 

GIW 
 

OSM 
 

DIB 
 

SPECIES TSS AUC TSS AUC TSS AUC TSS AUC 

Tachybaptus ruficollis 0.330 0.717 0.490 0.717 0.390 0.680 0.383 0.680 

Podiceps cristatus 0.448 0.740 0.425 0.771 0.390 0.751 0.404 0.756 

Podiceps nigricollis 0.415 0.728 0.369 0.763 0.268 0.738 0.277 0.737 

Anas strepera 0.397 0.727 0.462 0.787 0.429 0.746 0.446 0.754 

Anas crecca 0.448 0.758 0.425 0.742 0.390 0.693 0.404 0.701 

Aythya ferina 0.399 0.744 0.461 0.713 0.438 0.637 0.430 0.641 

Aythya fuligula 0.391 0.685 0.532 0.772 0.448 0.703 0.439 0.709 
 520 

Page 17 of 42 Ecography



For Review Only

18 

 

Table 4. Significance of the dataset effect on HSMs accuracy according to TSS/AUC values 521 

(Repeated measures ANOVA, Tuckey post-hoc tests). **** p<0.0001, *** p<0.001, ** 522 

p<0.01, - non-significant. Where results for TSS differed from those for AUC, the cells are 523 

highlighted in pink. 524 

Variabl

e Area Perimeter Number 
Statisti

cs Dataset 

GC
L 

CL
C 

GI
W 

OS
M 

DI
B 

CL
C 

GI
W 

OS
M 

DI
B 

CL
C 

GI
W 

OS
M 

DI
B 

TSS CLC 
***

*  
***

* 
***

* 
***

*  
***

* 
***

* 
***

*  
*** - - 

  GIW 
***

* 
***

*  
- - 

***
*  

- - *** 
 

*** ** 

  OSM 
***

* 
***

* 
- 
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***
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- - *** 
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  DIB 
***

* 
***

* 
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***

* 
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- ** - 

 

AUC CLC 
***

*  
***

* 
***

* 
***

*  
***

* 
***

* 
***

*  
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***

* 
***

*  
** - 

***
*  

- - - 
 

***
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***
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***

* 
***

* 
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***
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- - 
***
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***
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***
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***
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- - 

 
- 

***
* 
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Figures 527 

 528 

Figure 1. Examples of different resolutions of land cover data classified as preferred/non-529 

preferred habitat (a – d; preferred habitat is in blue) and grain of species data (A, B; grain of 530 

species data is in green). For instance, patches of 1 ha are sufficient for a species presence. (a)  531 

Pixel size 100 m. (b) Coarsening pixel size to 200 m. (c, d) Minimal mapping unit 64 ha is 532 

applied while original pixel size is kept. (c) Diagonal neighbors are considered as members of 533 

the same patch. (d) Only side neighbors are considered as members of the same patch. We can 534 

see substantial changes in amount and shape of the preferred habitat. If only patches of 1 ha 535 

are present, no preferred habitat will be in b – d. (A) HSM without changing grain of species 536 

data can be conducted with a, b, c or d, or (B) HSM with a change of scalar can be applied 537 

with a, b, c, or d. 538 

 539 

 540 

 541 

Figure 2. Example of datasets resolution and the amount of waterbodies within an atlas grid 542 

cell (12 × 11.2 km) according to individual datasets in order of increasing resolution: (a) 543 

GCL, (b) CLC, (c) GIW, (d) OSM, (e) DIB. Solid fill indicates raster datasets while vector 544 

datasets are indicated by outlines of waterbodies. GCL dataset is represented by 1 km pixels, 545 

darker pixel color means a higher proportion of inland water within the pixel. 546 

 547 
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 548 

Figure 3. The Czech Republic as the study area. Grid of 10' east longitude × 6' north latitude 549 

(approximately 12 × 11.2 km) as used in the breeding birds atlases of the Czech Republic. 550 

Grid cells used for this study (n=507) are white, cells intersecting country border (hatched) 551 

were excluded. 552 

 553 

 554 

 555 

  556 

Page 20 of 42Ecography



For Review Only

21 

 

 557 

 558 

Figure 4. Comparison of mean TSS (left) and AUC (right) values among datasets (excluding 559 

GCL where only area could be calculated due to the continuous nature of the dataset) and 560 

variables (blue – area, red – perimeter, green – number). The datasets are listed on the x-axis 561 

in the order of increasing resolution, from coarse scale (left) to fine scale (right). 562 
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