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Step-by-step Solver for Transportation Problems 

 

 

Abstract 

 

The bachelor thesis aimed to show steps of the Transportation Problem and help 

students understand the transportation problem.  

Operations research is a method developed to find the optimal solution for a 

particular purpose in a situation where certain constraints exist. The transportation problem 

is a part of operations research and aims to move products from sources to destinations at 

the least cost. 

The theoretical part describes the transportation problem, its emergence and how it 

has developed until today. This part will also shed light on how it can be solved. 

The practical part will explain the Java programming language and where it is used, 

and show the development steps of the implementation. Application testing is included in 

the section that follows the implementation. 

 

Keywords: transportation problem; step-by-step solution; application 
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Řešení problémů s dopravou krok za krokem 

 

 

Abstrakt 

 

Bakalářská práce si kladla za cíl ukázat kroky dopravního problému a pomoci 

studentům pochopit dopravní problém. 

Operační výzkum je metoda vyvinutá k nalezení optimálního řešení pro konkrétní 

účel v situaci, kdy existují určitá omezení. Problém dopravy je součástí operačního výzkumu 

a jeho cílem je přesun produktů ze zdrojů do destinací s co nejnižšími náklady. 

Teoretická část popisuje dopravní problém, jeho vznik a jak se vyvíjel až do 

současnosti. Tato část také osvětlí, jak to lze vyřešit. 

Praktická část vysvětlí programovací jazyk Java a kde se používá a ukáže vývojové 

kroky implementace. Testování aplikace je zahrnuto v části, která následuje po 

implementaci. 

 

 

 

Klíčová slova: dopravní problém; řešení krok za krokem; aplikace 
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1. Introduction 

In its simplest  form, the goal of transportation models can be defined as achieving the 

most cost - effective distribution of goods from various sources to different destinations. The 

transportation model, a specific case of the linear programming model, can be solved using 

the simplex approach, but using the model's unique techniques to get there is far more time 

and effort efficient. Frank L. Hitchcock presented the first study, which is close to the current 

framework of the model, in 1941. In this work, a new mathematical model was created, and 

a solution was suggested. 

The transportation model can be applied not just to distribution planning problems, but 

also to problems that can be handled by the same techniques but are unrelated to 

transportation as a subject. The model also has several expansions, and with these 

extensions, the assignment of jobs to machines, people to jobs, or the path taken by a 

traveling salesman may be simply determined using special algorithms. The goal of the 

model, which generates such a diverse range of solutions, is to discover the lowest possible 

transportation cost and the distribution plan that achieves this lowest cost. 

Companies these days must pursue growth in order to adapt ever to competition 

conditions, and those who fail to do so are decreasing in size. It is critical for growing 

organizations to minimize their expenses, and the relevance of transportation costs, 

particularly for manufacturing companies, reaches critical levels for the company's survival. 

As a result of the usage of transportation model techniques in related industries, companies' 

transportation expenses are greatly lowered. 
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1 Objectives and Methodology 

1.1 Objectives 

This thesis aims to develop a user-friendly, straightforward computer tool that assists 

individuals in solving transportation problems. Businesses and educational institutions 

frequently work on transportation problems to determine the most cost-effective way to 

move items from one location to another. 

This thesis will first examine the nature of transportation problem in detail. It will 

discuss the history of these issues and their continued significance. This section will use 

books and articles to demonstrate how these issues have been resolved both historically 

and currently. 

Following that, using the computer language Java, the thesis's primary objective is to 

create a program. This program will guide you through solving a transportation issue step-

by-step. It will employ many approaches to problem-solving and demonstrate which one 

works best. 

The work will also assess the program's usability and effectiveness. It seeks to ensure 

that students studying these topics can utilize the curriculum to improve their 

understanding and work through the issues independently. 

By doing all of this, the thesis hopes to help students and others learn more about 

transportation problems and make it easier for them to find solutions. 

1.2 Methodology 

In operational research, the transportation problem is an important concept that centers 

on the effective distribution of resources to move things between several origins and 

various destinations. It involves decreasing transportation expenses while meeting 

requirements related to supply and demand. 

While individuals may encounter challenges in comprehending this subject matter, 

often finding the learning process time-consuming, the primary objective of this thesis is to 

streamline and facilitate a more accessible understanding of transportation problems. 

To achieve this, the study will consist of two parts for better understanding. In the first 

part, a literature review will be conducted on transportation problems, enabling individuals 

to understand both the historical and theoretical aspects of transportation problems. This 

will be achieved by consulting necessary sources and experiments, providing examples 

from them to facilitate a clearer understanding of the topic. At the end of the first part, the 

second part will explain the Java programming language to be used in the practical section 

and why it is chosen. 

In the second part, the necessity of the application and the areas in which it will be 

used will be explained, along with the stages involved in creating the application. 

Following this, analyses will be conducted in the second part to emphasize the aspects that 

can be improved and the adequate sections. The resulting application will assist users in 

understanding transportation problems easily and solving them, while also explaining the 

solution steps in detail." 
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2   Transportation Models 

 

Leonid Vitalyevich Kantorovich completed first study on transportation models in 

history in 1939. In this study, which examines the assignment of work to machines, costs 

vary based on the distribution of jobs and machines. Kantorovich has presented an 

incomplete algorithm for similar issues, despite its utility. Maybe this explains why his 

work at the time managed to garner little attention. In 1942 and 1948, he conducted 

research into the continuous states of transportation models. (Dantzig, 2016) 

In his article titled "The Distribution of a Product from Several Sources to Numerous 

Localities," Frank L. Hitchcock for the first time constructed the mathematical model and 

proposed a solution in 1941. Tjalling C. Koopmans later dealt with the subject  in his 1949 

work "Optimum Utilization of the Transportation System," independently of Hitchcock's 

study and in greater detail. Following the release of George B. Dantzig's article titled 

"Application of the Simplex Method to a Transportation Problem," the most significant 

improvement in the transportation model was achieved. A. Charnes and W.W. Cooper 

devised the Stepping Stone Method in 1953, which provides a more methodical approach 

to Dantzig's solution. R.O. Ferguson created the Modi Method in 1955 as an alternative to 

the Stepping Stone Method. 

Transportation models are a part of linear programming models. The model's goal is to 

move commodities from origin to destination at the lowest possible cost. In order to 

achieve this goal, the supply in the sources must be thoroughly distributed, and the demand 

in the targets must be totally met. 

The simplex method is commonly used to solve linear programming models. Because 

the transportation model is a part of linear programming, it can be solved using this 

method. Nevertheless, if a transportation problem with m supply and n demand centers is 

to be handled using the simplex approach, artificial variables must be added to the model, 

resulting in numerous variables and operations with a huge number of rows and columns in 

the simplex table. This will result in a lot of effort as well as a wasted amount of time. 

Due to their unique characteristics, some linear programming problems can be handled 

using techniques that are more effective than the simplex method. The transportation 

model's special structure has led to the development of distinct solution methods. The 

problem can be solved more quickly thanks to these different solutions.  
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The simplex method can handle every transportation issue, despite taking a lot of time 

and effort. However, since the assumptions of the transportation model are more restrictive 

than the linear programming assumptions, not every linear programming problem solved 

by the simplex method can be solved by the transportation algorithm (Özkan, 2005). 

2.1 The Mathematical Form of Transportation Problem  

The components of a transportation model are m sources that provide ai (i=1,2,...,m) 

unit of homogenous commodities and n destinations that need bj (j=1,2,....,n) unit goods. In 

this case, ai and bj are represented by positive integer numbers. Cij stands for the amount of 

products delivered from the ith source to the jth destination, and this value must be known 

for both i and j. 

Creating an integer distribution plan with the lowest total transportation cost is the 

goal of the model. 

When defining the model, it is assumed that total supply equals total demand; 

 

 
∑ 𝑎𝑖 ≡ ∑ 𝑏𝑗 

𝑛

𝑗=1

𝑚

𝑖=1

 

 

               …(1) 

                          

Where: 

• ai  represents the amount provided by the ith source 

• bj represents the amount required by the jth destination 

If total balance and total demand is equal as shown in equation the model is called 

balanced model. If total balance and total demand is not equal model called unbalanced 

model. When a problem came up with an unbalanced model, the model must first be 

converted to a balanced model before solving it (Operations Research: Principles and 

Practice, 1976). 

The simplex method, hence the simplex table, is used in solving linear programming 

problems. In the solution of transportation models, the transportation table should be 

prepared first. The intended use of the transportation table is the same as that of the simplex 

table; It is to ensure that all information and data related to the problem are seen together in 

the same frame (Kirkpatrick, 1965). In other words, the purpose of the table is to facilitate 

the solution steps by summarizing all the necessary data related to the problem in a suitable 

way (Render & Stair, 2016).  
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2.2 Solution of the Transportation Model 

The simplex method and the transportation problem's solution logic are similar. The 

iteration phases of the transportation model are essentially a simplified version of the 

iteration stages of the simplex technique, despite the fact that this parallelism is not very 

obvious due to the difference in the table that was constructed. This ease of use is a benefit 

of the unique structure of the transportation concept. In transportation problems, the corner 

points corresponding to the fundamentally appropriate solutions are explored, and the corner 

points are navigated until the ideal solution is found, just like in the simplex technique. 

 For the solution of any transportation problem, first the transportation table is 

prepared, and the data is placed in the table. The supply and demand totals in the table are 

checked. If there is no equality between aggregate supply and aggregate demand, equality 

should be achieved at this stage. That is, if an unbalanced model is encountered, the model 

should be converted to a balanced model (Ignizio et al., 1983). 

In the balanced model, taking into account the row and column equivalences, the initial 

basic feasible solution is obtained by distributing 𝑚 + 𝑛 − 1 cells (Kara, 1991). 

After finding the initial basic suitable solution, an optimality test should be used to 

determine whether the answer is the best. If the ideal answer is not found, iterations should 

be repeated again while applying other procedures until the ideal result is found. The delivery 

table's empty cells are looked at in order to determine whether or not the initial basic suitable 

solution achieved here is ideal. In order to determine whether or not the solution may be 

improved, each empty cell is examined to see if a better solution than the initial basic suitable 

answer can be found in the event that any empty cell is loaded. 
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2.2.1 Nort-West Corner Method 

This approach is one of several that methodically looks for answers to transportation 

model problems. The solution of the problem is called the North-West Corner Method 

because it starts from the cell in the northwest corner of the prepared delivery 

table(Tulunay,1987). George B. Dantzig introduced the method, while Charnes and Cooper 

gave it a name. 

The steps of this method can basically be listed as follows: 

 

1. Assign as many as possible to the chosen box, then subtract this number from the 

supply and demand quantities before making the required changes. 

2. Cancel a row or column that has zero supply or demand as a result of subtraction to 

prevent future reassignment. If both the row and column are zero at the same time, 

choose one and ignore the zero supply (demand) in the non-cancelled row (column). 

3. Stop at the row or column that has not been canceled. Otherwise, if the column was 

canceled in the previous operation, move to the right box, if the row is canceled, 

move to the next box. Return the first step. 

 

Image 2 : Solution with North-West Method  

 

(Source: https://www.linearprogramming.info/northwest-corner-method-

transportation-algorithm-in-linear-programming/) 

2.2.2 Least Cost Method 

Despite the fact that the lowest cost cell method is not optimum because of its use of 

costs, it is possible to achieve a lower cost solution compared to the north-west corner 

method. Therefore, the results to be obtained with this method will be encountered with 

fewer iterations at the optimality test stage compared to the north-west corner 

method(Levin et al., 1993). 

 

 

https://www.linearprogramming.info/northwest-corner-method-transportation-algorithm-in-linear-programming/
https://www.linearprogramming.info/northwest-corner-method-transportation-algorithm-in-linear-programming/
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The steps of this method can basically be listed as follows: 

1. Pick the cell with the lowest unit cost cij and assign as much as possible to it, 

i.e. 

2. Reduce this minimum value from the supply and demand. If the supply si is 0 

and the demand dj is 0, cross off that row and column, respectively. If the 

minimum unit cost cell is not unique, select the cell with the highest allocation 

potential. 

3. Continue these steps for each uncrossed row and column until all supply and 

demand values are equal to zero. 

2.2.3 Vogel’s Approximation Method 

The VAM Method, which was proposed by William R. Vogel in 1958, gives a much 

better initial basis suitable solution than the north-west and lowest cost cell methods, and 

sometimes even the optimal solution (especially the direct optimal solution for small-sized 

problems) (Kara, 1991). 

In general, the VAM Method is based on the idea of determining the missed 

opportunities per unit and avoiding missing the greatest opportunity, if loading is not 

performed in the lowest cost cell but in the second lowest cost cell throughout the table. 

The steps of this method can basically be listed as follows: 

1. Determine the two lowest expenses in each column and row. Determine the 

row and column differences. 

2. Select the row or column with the greatest cost difference and assign the 

maximum possible number of units to the least cost route in that row or 

column. 

3. If the assignment in step two meets the requirement at that destination, the 

related column is deleted. Otherwise, delete the corresponding row when the 

supply at the origin is cleared. 

4. If every supply is spent and every demand met stop. Or, return to step 1. 

2.2.4 Russel’s Approximation Method 

With the RAM Method - just like with the VAM Method - it is possible to arrive at a 

good initial solution, sometimes even a very close to optimal solution or directly to the 

optimal solution. 

This method includes more calculation processes than the VAM Method. Although 

there is no definite opinion as to which of the two methods gives the better solution, it is 

claimed in some sources that a better result is obtained with the RAM Method (G. B. 

Dantzig, n.d.). 

1. Determine the Ui for each source row remaining under evaluation (largest cost 

in row i). 

2. Determine the Vj value for each destination column still under consideration 

(largest cost in column j). 

3. For each variable, calculate 𝛥𝑖𝑗 = 𝑐𝑖𝑗 − (ˉ𝑈𝑖 + ˉ𝑉𝑗). 

4. Choose the variable with the highest negative value and arbitrarily break ties. 

5. Assign the maximum amount. Omit necessary cells from consideration. Turn 

back to Step-1. 
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2.3 Optimal Solution for Transportation Problem 

In transportation models, after obtaining the initial basic feasible solution, this 

solution is optimal; The lowest cost result should be tested under the same restrictive 

conditions. When performing the test, all empty cells—non-essential variables—should be 

examined first. If the total cost is lower when any empty cell is used, it is determined that 

the initial basic feasible solution is not the ideal solution, and the non-basic variable that 

gives the cost decrease should be used as the basis If none of the empty cells have a 

beneficial effect on the cost, the solution achieved with the original basic appropriate 

solution is optimal, it is the lowest cost. 

Two methods are used when testing optimality: 

• Stepping Stone Method 

• Modi Method 

There is a point to be considered before applying the optimality test with both 

methods. m=number of sources, n=number of targets, the number of cells involved in the 

initial basic solution should be m+n-1 (Meredith, 1994). 

If this equality is not met, it will be impossible to make some calculations while 

applying both methods. Therefore, in such a case, the imbalance should be eliminated first, 

and the optimality test should be applied after this correction process. 

2.3.1 Stepping Stone Method 

This method, which tests the optimality and provides the best solution step by step, 

was developed by A. Charnes and W.W.Cooper (Cinemre, 2004). 

The Stepping Stones method involves iterating through a set of calculations to identify 

the shortest path between each pair of nodes in the network. The algorithm starts by 

selecting a node as the starting point and assigns a distance of zero. It then examines all the 

adjacent nodes and assigns a distance equal to the cost of the path to reach them. The 

algorithm then selects the node with the lowest distance and repeats the process until all 

nodes have been visited. The result is a matrix of distances between all pairs of nodes, 

which can be used to identify the shortest path between any two points. 

One of the advantages of the Stepping Stones method is its ability to handle complex 

networks with multiple paths and constraints. For example, it can be used to optimize a 

transportation problem with different modes of transportation, such as air, sea, and land, 

and with different constraints, such as capacity limitations and time windows. By 

identifying the shortest path between all pairs of nodes, the Stepping Stones method can 

help transportation and logistics companies optimize their operations and reduce costs. 

Overall, the Stepping Stones method is a valuable tool for solving complex optimization 

problems in a wide range of industries. 

2.3.2 Modified Distribution Method 

The Modi Method, which was introduced with the creation of the stepping stone 

approach, reduced the number of solution stages and iterations, making it easier to find the 

ideal solution from the first solution (Roccaferrera, 1964). 

The Modi Method involves three main steps. The first step is to find the initial feasible 

solution using the northwest corner method or the least cost method. The second step is to 

calculate the penalties for each empty cell in the initial feasible solution.  
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The penalty for an empty cell is the difference between the two lowest costs in the row 

and column of that cell. The third step is to identify the cell with the highest penalty and 

add the corresponding unit to that cell. The process is repeated until an optimal solution is 

obtained. 

The Modi Method is an effective way to solve transportation problems because it 

allows for quick identification of the optimal solution. This is particularly useful in supply 

chain management, where time and efficiency are critical factors. The Modi Method has 

been used in a variety of industries, from manufacturing to healthcare, to optimize 

transportation and logistics. Overall, the Modi Method is a valuable tool for businesses 

looking to streamline their operations and reduce costs. 

2.4 Special Cases of the Transportation Problem 

2.4.1 Degenerate Cases 

If there are m+n-1 number of fully occupied cells in any transportation model, a 

closed loop line may be created for each unoccupied cell, and the variables ui and vj can be 

determined for the modi method. In other words, the optimality test can only be applied to 

a transportation problem with 𝑚 + 𝑛 − 1 task cells, and iterations can be repeated until the 

optimal solution is found. However, in any issue where the number of cells in charge is 

less than m+n-1, "deterioration," also known as "corruption" or "degeneration," is observed 

and must be fixed. This scenario can be encountered in two ways; 

 

1.  The scenario in which the number of existing cells is more than        

𝑚 + 𝑛 − 1: Such a scenario is only faced when finding the initial basic 

feasible solution. Existence of the degenerate situation in this way is a 

precursor to an error made in the creation of the mathematical model or 

the application of solution techniques. As a result, the inaccuracy should 

be repaired by validating the model's accuracy and applying the solution 

technique to equate the number of filled cells to 𝑚 + 𝑛 − 1. 

 

2.  When there are fewer incumbent cells than 𝑚 + 𝑛 − 1 This kind of 

disruption can occur during iterations as the problem approaches 

optimality as well as when establishing the initial basic optimal solution. 

The corruption should be fixed with certain specialized procedures 

because it will be impossible to construct a closed loop line with an 

insufficient number of assigned cells or to compute the dual variables of 

the modi method(Levin et al., 1993).  

 

3. 𝑁 =  𝑚 + 𝑛 − 1 and 𝑀 < 𝑁; If the number of cells that should take 

part is N and the number of cells that have taken part is M, the 

degeneration level of the solution is “𝑁 − 𝑀”(L.S.Goddard.,1963). 

As stated, the second type of degeneration can occur while obtaining the initial 

basis feasible solution or in the iteration stages. In both methods, the tool used to eliminate 

the degeneration situation is the same.  

It is placed in empty cells until the number of cells that need to take charge Ε(epsilon), 

which represents a small and positive value very close to zero, is 𝑚 + 𝑛 − 1. However, 

after this correction process, the solution stages can be continued. (Thierauf, 1978). 
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 In transportation models, Ε is subject to the following hypotheses: 

   

a. 𝛦 < 𝑥𝑖𝑗 , 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥𝑖𝑗 > 0 

 

b. 𝛦 + 0 = 𝛦 

 

c. 𝑋𝑖𝑗 ± 𝛦 = 𝑥𝑖𝑗 , 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥𝑖𝑗 > 0 

 

d. If there are two or more Ε's in the solution and Ε is in a row higher 

than 𝛦;  𝛦 <  𝛦′. If  Ε and Ε' are on the same line and Ε is further 

left, the rule 𝛦 <  𝛦' is valid. 

2.4.2 Unbalanced Cases 

In order to apply the solution technique of the unbalanced transportation model to 

any problem, the problem must be transformed into a balanced model with a simple 

technique. In order to ensure the equality of aggregate supply and aggregate demand, 

dummy production or consumption centers with zero transportation costs should be added 

to the problem.  

The first step in turning an unbalanced model into a balanced model is to look at the 

discrepancy between aggregate supply and aggregate demand. Two instances show an 

imbalance between total supply and total demand. Either the aggregate supply exceeds the 

aggregate demand, or the aggregate demand exceeds the aggregate supply. 

2.4.3 Empty Cells 

In the context of the transportation problem, empty cells refer to a situation where 

the available supply and demand do not match, leaving some cells in the transportation 

matrix unoccupied. These empty cells can arise due to a variety of reasons, such as 

incomplete information about the supply and demand, or constraints that limit the 

maximum amount of goods that can be transported from one location to another. It is 

important to handle empty cells effectively to ensure that the transportation problem can be 

solved optimally. 

One common method of dealing with empty cells is to introduce dummy variables 

to balance the supply and demand. Dummy variables are fictitious locations that do not 

exist in reality, but allow for the transportation matrix to be balanced. For example, if there 

is a shortage of supply at a particular location, a dummy location can be added with a 

supply equal to the difference between the demand and supply. Similarly, if there is excess 

supply at a location, a dummy location can be added with a demand equal to the excess 

supply. The introduction of dummy variables allows for the transportation problem to be 

solved optimally, even in the presence of empty cells. 

Another approach to handling empty cells is to use a heuristic method, such as the 

Vogel's approximation method. This method involves identifying the two smallest costs in 

each row and column of the transportation matrix and calculating the difference between 

them. The cell with the largest difference is then selected for allocation. This process is 

repeated until all supply and demand have been allocated. The Vogel's approximation 

method can be effective in solving transportation problems with empty cells, but may not 

always produce the optimal solution. 
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In conclusion, empty cells in the transportation problem can arise due to various 

reasons and need to be handled effectively to ensure that the problem can be solved 

optimally. The use of dummy variables and heuristic methods such as Vogel's 

approximation method are some of the approaches that can be used to handle empty cells 

in transportation problems. 

2.4.4 Multiple Allocations 

In transportation problems, multiple allocations can occur when a source has more 

supply than a single transportation route can handle, or when a destination has more 

demand than can be satisfied by a single transportation route. It's a common challenge that 

must be handled effectively to find the optimal transportation plan that minimizes the 

overall cost. 

One way to address multiple allocations is by using the stepping stone method. It's 

a time-consuming approach but ensures the optimal solution is found. It involves 

identifying an empty cell in the transportation matrix, calculating the cost of allocating one 

unit of the shipment to that cell, and comparing it to the costs of the existing allocations 

along the routes that pass through the cell. If the cost of the allocation is lower, the 

allocation is updated, and the process is repeated for the next empty cell. 

Another approach is the MODI method, which is more efficient than the stepping 

stone method as it involves fewer calculations. It identifies the cells with the highest 

opportunity cost, which represent the optimal cells for re-allocating the shipment. This 

method is great when you need to find the optimal solution when multiple allocations are 

present. 

The northwest corner method is another method that is less complex than the 

others. It starts from the top left corner of the transportation matrix and allocates as much 

supply as possible to the destination along the first row. It then moves to the next row and 

allocates the remaining supply along the row until all supply has been allocated. This 

process is repeated for the remaining columns until the demand has been satisfied. It may 

not produce the optimal solution but can serve as a starting point for further optimization 

using the stepping stone or MODI method. 

To sum up, multiple allocations in transportation problems require careful 

consideration to find the optimal transportation plan. The choice of method depends on the 

complexity of the transportation problem and the available resources. Whether you choose 

the stepping stone, MODI, or northwest corner method, the goal is to minimize the overall 

cost while allocating resources along multiple routes. 

2.5 Transportation Problem in a Network  

2.5.1 Optimal Path Problem 

Finding the shortest route between two graph vertices (or nodes) is the goal of the 

shortest path problem. The shortest path problem is solved using algorithms like the Floyd-

Warshall algorithm and several iterations of Dijkstra's algorithm. Road networks, logistics, 

communications, electrical design, power grid contingency analysis, and community 

detection are just a few examples of where the shortest path problem is applied. 
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We differentiate many versions of the shortest path problem: 

 

• In the Single-Pair Shortest Path problem, we must determine the shortest 

path between two vertices. 

 

• The shortest pair between two vertices must be found in the single-source 

shortest path problem. 

 

• Find the shortest pair between a pair of vertices in the Single-Destination 

Shortest Path problem. 

 

• The All-Pairs Shortest Path problem requires us to identify the shortest 

pathways between every pair of vertices in the graph. 

 

The following are the most significant algorithms for resolving the shortest path 

problem: 

 

• For unweighted graphs, a Breadth-first search identifies the shortest pathways. 

 

• For a network with non-negative edge weights, Dijkstra's algorithm resolves the 

single-source shortest path problem. 

 

• For a graph with potential negative edge weights, the Bellman-Ford algorithm 

resolves the single-source shortest path problem. 

 

• The single-pair shortest path problem is solved by the A* algorithm utilizing 

heuristics to expedite the search. 

 

• For a graph with potential negative edge weights, the Floyd-Warshall algorithm 

finds the all-pairs shortest path problem. 

2.5.2 Maximal Flow Problem 

The Maximum Flow Problem is a sort of transportation problem that includes 

finding the maximum amount of flow that may be sent across a network from a source 

node to a destination node. The problem occurs in a variety of real-world applications, 

including communication networks, water distribution, and traffic flow. 

 

The maximum flow problem can be expressed as a network flow problem, where 

each network edge represents a pipe or channel with a specific flow capacity. Finding the 

maximum amount of flow that can be transmitted from the source node to the destination 

node while respecting the capacity restrictions of each edge and making sure that the flow 

conservation law is satisfied at each node is the objective. 

 

The Ford-Fulkerson algorithm, the Edmonds-Karp algorithm, and the Dinic's 

algorithm can all be used to solve the maximum flow problem. These methods utilize 

different approaches to discover the maximum flow, but they all rely on the concept of 

augmenting paths, which are paths in the network that can transport additional flow. 
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The Ford-Fulkerson algorithm is a straightforward algorithm that repeatedly finds an 

augmenting path in the network and raises the flow along that path until no more 

augmenting paths can be located. After it reaches its maximum flow, the algorithm stops, 

but in the worst situation, it can take an exponentially long time. 

The Edmonds-Karp algorithm is a Ford-Fulkerson version that does a breadth-first 

search to identify the shortest augmenting path in the network. This technique assures that 

the algorithm executes in polynomial time, namely O(V^2 E), where V is the number of 

nodes and E is the number of edges in the network. 

The more sophisticated Dinic's algorithm employs a tiered method to discover the 

augmenting pathways. It generates a layered graph, where each layer represents the nodes 

that may be reached from the source node with a specified amount of edges. The 

augmenting paths are then discovered by the algorithm using a depth-first search on the 

layered graph. Dinic's algorithm has a temporal complexity of O(E V^2) in the worst case, 

but it is often faster in reality than the Edmonds-Karp algorithm. 

 

3 Java 

When the first computers were made, there were no high-level programming 

languages like FORTRAN, COBOL, Pascal, C/C++, or Java. Different machines have 

different hardware structures, so the machine languages of different brands and models of 

computers are also different. Because of this, the first programmers could only make the 

computer work by using the machine's own language. Machine language is hard to learn, 

and what you learn for one brand or model of machine doesn't work for another brand or 

model. Assembly language and then high-level languages emerged as a solution to this 

problem. Programmers found considerable comfort in high-level languages. Because the 

programmer could write the source code in any language he wanted without thinking about 

the operating system and the machine. For example, a C source program could be compiled 

and run on any machine and operating system with the right compiler(Roller, 2023). 

High-level languages like FORTRAN, COBOL, Pascal, Modula, and C, which are 

now referred to as procedural languages, have been useful to programmers for a long time 

and still are. But there was a problem. A source program that was compiled on a certain 

kind of computer using a certain operating system could only be run on that kind of 

computer using that operating system. When the operating system and/or machine type 

changes; for example, when the platform changed, the program couldn't run there; it had to 

be recompiled with a compiler appropriate for the new platform. We shorten this to 

"platform dependency." What we mean by "platform dependency" is that a source program 

can only run on certain kinds of computers because it was compiled using a certain 

compiler and an operating system. For example, you cannot run a computer program that 

was written on a PC with Windows operating system on a Macintosh or Linux 

computer((GeeksforGeeks, 2023). 

The problem has been made worse by the market's proliferation of various operating 

systems and hardware types, the growth of computer networks, and the fact that the 

devices linked to a network are made up of computers of various makes and models that 

use various operating systems. 

A platform-independent language had to be developed in order to solve the problem. 

Java, a language created by Sun, was used to complete this task. The Sun firm, however, 

did not set out to address this significant problem; rather, they had a simpler goal in mind. 

He sought to create a language that would facilitate the usage of electrical equipment. He 

quickly saw that this task could only be completed on a shared platform.  
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The Java programming language, which works on any platform, was developed in 

1995 by James Gosling, a programmer for Sun. 

Gosling created a brilliant, straightforward invention. He created a generic virtual 

machine that can be set up on various hardware and operating systems. Free copies of this 

virtual machine, known as JVM (Java Virtual Machine), were made available. Any 

platform can easily install JVM. The Java compiler transforms source Java programs into a 

form of machine language that can be executed on the JVM. The JVM interprets and runs 

this program, which is known as Java Bytecode. Java bytecode serves a similar purpose to 

source code created and compiled in procedural languages. 

The JVM can be installed on any computer by anyone who wishes to use Java 

programs. Downloading and installing the Java Runtime Environment (JRE) application 

from the internet will enough for this. The JRE is only installed once on the PC. After that, 

this computer may execute any Java application. The JRE automatically generates the JVM 

virtual machine when a Java application is executing on the system. The JVM is a program 

that executes as needed and, like all programs, is removed from main memory once it has 

served its purpose. As a result, the machine cannot be damaged. Most modern browsers 

may now automatically download and install the JRE when they run into Java apps((The 

Editors of Encyclopaedia Britannica, 2024). 

Java is a straightforward, contemporary, object-oriented, type-protected language with 

all the positive traits of C and C++. Also, it can operate on any platform. He was able to 

use this talent to find a variety of uses for computers, the internet, mobile devices, game 

consoles, and household goods. Java can therefore be viewed as both a programming 

language and an environment. The operating system, networks, internet programming, 

databases, and all middleware technologies are all included in this ecosystem.  
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4 Practical Part 

4.1 Application idea 

The main idea of the application is the help students with their studies and lectures, 

the application will solve transportation problem step-by-step. The results will be shown in 

detail at the end of the solution. For example, when a student wants to solve a 

transportation problem whose dimensions are determined by him/her, he/she can create 

his/her own transportation table. Once created, they can fill the table with their own data 

and see the results in every detail. After seeing the results and explanations, students can 

understand the solutions more easily and increase their success in their lessons. 

4.1.1 Target Audience Analysis 

 There are thousands of students are joining the Czech University of life science 

every year. These students can include many nationalities, languages, ways of life and 

levels of intelligence. For helping the students who needs or students which want to 

understand better the Transportation problem can use the application. The application will 

help them to understand better the transportation problem and they can succeed and get 

better grades in their field. 

4.1.2 Application Overview 

In this thesis, Java application named "Step-by-step Solver for Transportation 

Problems" is developed. It's designed for students, especially those studying operations 

research and logistics. The app makes learning about transportation problems easier. You 

can enter different values like costs, supply, and demand, and then choose a method to 

solve the problem. It's a practical tool that brings theory to life, helping you understand 

how to apply classroom knowledge to real-world situations. This app aims to make 

complex concepts more accessible and engaging for students. 

4.1.3 Alternative Solutions 

There some applications for solving Transportation Problem but there is a need for 

another applications in this field. The applications which are used for solving 

Transportation problem can have additional steps. They can be expensive and some of 

them can be hard to install. The main problem is that the user can not see the steps. 

One of the applications which is used for solving Transportation Problem is Excel 

but solving transportation problem with excel is can be challenging sometimes. The user 

should make additionals settings and the user should know how to use Excel for reaching 

the solution. Even if the user knows how to use Excel, it takes time to get to the result and 

the user may encounter an error. The user will lose time trying to find that error again. 

The another app is used for solving Transportation Problem is Qm for Windows. 

This application is better as a user experience and it is easy to use.This application is more 

preferable for users because it is also easy to install and also because Excel, for example, is 

a paid application.  
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If the user is a student, they can use Microsoft's 365 service, but it is more difficult to 

install than QM for Windows. At the same time, once installed, the user can create the 

table and get the solution by selecting the Transportation section from the left without the 

need for new settings, but the missing part of this application for the user is that it does not 

write how the solutions are obtained. This makes it difficult for the user to understand the 

solutions. 

There are some another Transportation Problem solvers app and those are created for 

mobile infrastructure but those applications have limited abilities. In those applications 

user can not create bigger transportation tables and the applications don’t show how the 

solution is reached. 

4.1.4 Requirement Analysis 

 SWOT analysis 

Strength: Comprehensive Implementation 

Strength Detail: The code includes a variety of methods for solving transportation 

problems, such as the North West Corner Method, Least Cost Method, Vogel's 

Approximation Method, Russell's Approximation Method, MODI Method, and Stepping 

Stone Method. This diverse range of options demonstrates an extensive understanding of 

the domain, providing flexibility for different problem scenarios. 

 

Weakness: Lack of Modularity 

Weakness Detail: The code is written as a single, monolithic structure, lacking modular 

design. This approach makes maintenance, updates, and extensions challenging, and 

reduces readability and accessibility for new developers or educators. 

 

Opportunity: Refactoring for Modularity 

Opportunity Detail: The current structure of the code offers an opportunity for significant 

improvement through refactoring. By breaking down the code into modules or classes, it 

can be made more maintainable, extendable, and easier to test and debug (Author, Year). 

 

Threat: Technological Advancements 

Threat Detail: The field of operations research and logistics is rapidly evolving, with new 

algorithms and methods being developed continually. If the code does not evolve with 

these advancements, it risks becoming obsolete and less relevant in both practical and 

educational applications. 
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Use Case Analysis 

Use Case Title: Streamlining Warehouse Distribution 

 

Primary Actor: Distribution Manager 

 

Stakeholders and Interests: 

 

• Distribution Manager: Aims to optimize warehouse distribution routes to minimize 

costs and improve efficiency. 

• Warehouse Staff: Require a clear and efficient distribution plan to streamline their 

workflow. 

• Retail Outlets: Expect timely and cost-efficient delivery of products. 

• Customers: Benefit indirectly from efficient distribution through faster product 

availability and potential cost savings. 

•  

Preconditions: 

• The Distribution Manager has functional knowledge of the software. 

• Data regarding warehouse locations, retail outlet locations, and transportation costs 

are ready and accurate. 

 

Main Success Scenario: 

 

1. Entering Data: The Distribution Manager inputs data about warehouse locations, 

retail outlets, and associated transportation costs. 

2. Selecting Optimization Technique: The Manager chooses a suitable optimization 

technique, like the Vogel's Approximation Method, based on specific distribution 

needs. 

3. Computing Distribution Plan: The software calculates the most cost-effective and 

efficient distribution routes and strategies. 

4. Analyzing Proposed Plan: The Manager examines the proposed distribution plan 

for feasibility and practicality. 

5. Plan Execution: The distribution plan is rolled out for implementation in actual 

warehouse-to-retail outlet deliveries. 

6. Monitoring and Evaluating: The effectiveness of the implemented plan is 

monitored and evaluated for future adjustments. 

 

Extensions: 

• Data Errors: If any errors are found in the input data, the software alerts the 

Manager for immediate correction. 

• Adjusting to Seasonal Variations: The software can accommodate different 

scenarios, like seasonal demand spikes, by adjusting the distribution plan 

accordingly. 

Special Requirements: 

• The system should be capable of handling multiple warehouse and outlet data 

simultaneously. 

• The software must provide an intuitive and informative graphical representation of 

distribution routes. 
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Technology and Data Variations: 

 

• Compatibility with various data formats for easy integration with existing 

warehouse management systems. 

• Mobile accessibility for on-the-go monitoring by the Distribution Manager. 

Frequency of Use: Used extensively during strategic planning phases and periodically for 

route optimization. 

 

Open Issues: 

• Incorporating real-time traffic data to dynamically adjust distribution routes. 

• Expansion of the system to integrate with global positioning systems (GPS) for 

real-time tracking of shipments. 

Conclusion: 

This use case outlines how the transportation problem-solving software can be employed to 

enhance the efficiency of warehouse distribution systems. It underscores the need for a 

versatile system capable of adapting to different data inputs and scenarios. Future 

enhancements could include real-time data integration and expanded tracking capabilities 

to further streamline distribution processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 3: Step-by-Step Transportation Solver Use Case Model(Source: Own material) 
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4.2 Implementation 

4.2.1 IntelliJ IDEA Installation 

 

To begin building the Transportation Problem-Solving application, the IntelliJ 

IDEA Community Edition was chosen for its straightforward setup and solid support for 

Java. The Community Edition is free and can be downloaded from the JetBrains website. 

After the download, the installation process is initiated by running the downloaded file. 

 

The installer provides clear instructions, guiding through the steps of installation. You can 

accept the default configurations which are suitable for most Java projects. Once installed, 

opening IntelliJ IDEA will prompt you to configure the initial settings or import existing 

projects if you have any. 

4.2.2  IntelliJ IDEA Configuration 

When IntelliJ IDEA starts for the first time, it checks to ensure the Java Development Kit 

(JDK) is installed. The JDK is necessary for Java development, and if it isn't found, the 

IDE provides instructions for downloading and installing it. 

 

For general use, the default settings of IntelliJ IDEA work well. However, should you need 

to handle larger projects with more complex calculations, you might consider increasing 

the memory allocation. This is done by adjusting the VM options in IntelliJ IDEA: 

 

1. From the main menu, select 'Help'. 

2. Choose 'Edit Custom VM Options'. 

3. If prompted, confirm you want to create a custom VM options file. 

4. Once the file is open, you can change the -Xmx value to increase the maximum 

heap size. 

 

4.2.3 Starting a New IntelliJ IDEA Project 

Creating a new project in IntelliJ IDEA is straightforward: 

1. Click on 'File' in the menu bar, then 'New', and select 'Project'. 

2. In the New Project window, make sure 'Java' is selected on the left side. 

3. Choose a project SDK (IntelliJ should automatically detect the installed JDK). 

4. Click 'Next', then 'Finish' after naming your project, such as 'Transportation'. 

The project window will show the src folder where you can create new Java classes. To 

add a new class: 

 

1. Right-click on the src folder. 

2. Select 'New', then 'Java Class'. 

3. Name your class, for example, 'Main'. 

 

This Main class will be where you write the methods to solve transportation problems. You 

can input data, invoke solving methods, and print out results in this class. 
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To run the application, right-click on the Main class in the Project Explorer and 

select 'Run Main.main()'. The IntelliJ IDEA will compile and execute your Java code, 

displaying the results in the built-in console at the bottom of the IDE. 

IntelliJ IDEA makes Java development accessible and less intimidating for 

beginners. With its integrated tools and user-friendly environment, you can focus on 

solving the transportation problem without worrying too much about the complexities of 

the development setup. 

4.2.4 Implementation of Project 

Transportation Class 

The Transportation class, a pivotal component of a Java program, is designed to 

address a classic problem in logistics: optimizing the distribution of goods from multiple 

supply points to various demand points. This document aims to provide a comprehensive 

breakdown of the class, making it accessible to students and novice programmers. 

Class Structure and Its Components 

At its core, the ‘Transportation’ class revolves around solving the transportation 

problem using various methods, with a focus on user interaction and algorithmic 

implementation. 

Graphical User Interface (GUI) 

The class employs Swing, a robust Java library for creating graphical user 

interfaces. The GUI's design is user-centric, focusing on ease of use and clarity. 

Window Setup 

• Initialization: The method createAndShowGUI() kickstarts the GUI process. It 

initializes a JFrame - the main window titled "Transportation Problem".  

• Window Specifications: The frame is set to a size of 1400x750 pixels, providing 

ample space for inputs and visualization. The default close operation is set to 

EXIT_ON_CLOSE, ensuring the application terminates correctly when the user 

closes the window. 

Layout and Components 

• Panel Layout: A JPanel named mainPanel is created and added to the frame. It uses 

a null layout, meaning components are positioned absolutely, giving precise control 

over their placement. 

• Label Addition: Labels like "Number of Suppliers" and "Number of Demands" are 

added. They guide the user on where to input respective data. 

• Text Field Dynamics: The methods addMultipleTextFields1() and 

addMultipleTextFields2() dynamically generate text fields within the main panel. 

These fields are where users input supply, demand, and cost data. 

Interactivity and Data Retrieval 

• Buttons for Action: Two buttons, "Set Input Area" and "Solve the Problem", are 

added. The 'Set Input Area' button triggers the creation or adjustment of input fields 

based on the user's specification of supply and demand points. The 'Solve the 

Problem' button initiates the problem-solving process. 
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• Event Handling: The application listens for actions like button clicks. For instance, 

upon clicking 'Set Input Area', the program fetches values from the relevant text 

fields and adjusts the GUI accordingly. 

 

User Experience 

• User Input Facilitation: The GUI is designed to be intuitive, with clearly marked 

areas for entering data. Error messages are displayed through dialog boxes to guide 

the user in case of invalid inputs. 

• Visual Feedback: As the user interacts with the GUI, immediate visual feedback, 

such as the appearance of text fields and error dialogs, keeps the user informed and 

engaged. 

 

Data Collection 

The class employs a user-friendly Graphical User Interface (GUI) for data input, which is a 

cornerstone for its functionality. 

GUI - The Gateway to Data Collection 

• Intuitive Interface Design: The class leverages Swing components to construct an 

interface that is both intuitive and responsive. The use of JTextField arrays 

(textFields1 and textFields2) is particularly noteworthy. These text fields serve as 

the primary means for the user to input data, dynamically adjusting to the size of 

the transportation problem based on user input. 

• Dynamism in GUI Elements: The dynamic creation of these text fields through 

methods like addMultipleTextFields1() and addMultipleTextFields2() is an elegant 

solution to cater to varying problem sizes. This adaptability enhances user 

experience and ensures that the GUI can handle a range of transportation problems. 

The Art of Data Collection 

• Initial Setup - Defining the Problem Size: The initial user inputs, namely the 

number of supply and demand points, are pivotal. They determine the scale of the 

data entry grid, setting up the structure for the detailed input that follows. 

• Detailed Data Input - Crafting the Problem: Post the initial setup, users enter 

specific data – the costs associated with transportation, and the quantities of supply 

and demand. This detailed data is the backbone of the transportation problem to be 

solved. 

Ensuring Data Integrity 

• Robust Input Validation: The class doesn't just passively collect data; it actively 

validates it. This validation includes checks for numeric values, adherence to 

predefined constraints (like maximum points), and logical consistency in the data 

provided. 

• Error Messaging - Guiding the User: The application employs informative error 

messages to guide users through correct data entry. This feature is crucial in 

enhancing user experience and ensuring the reliability of the data collected. 

Data Processing - The Core of the Application 

• Data as the Driving Force: The collected data is the fuel for the class's algorithms. 

These include methods like the North West Corner Method, Least Cost Method, 

Vogel's Approximation Method, and others. Each piece of data directly influences 

the behavior and outcome of these algorithms. 

• Adaptive Algorithms: A notable aspect of these algorithms is their adaptability. 

They adjust their computational paths based on the input data, ensuring that the 

solution is tailored to the specific problem posed by the user. 
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Beyond Data Collection  

• Integration with Algorithms: The seamless integration of the GUI for data 

collection with the computational logic of the algorithms is a hallmark of the 

Transportation class. This integration ensures that the transition from data input to 

problem-solving is smooth and efficient. 

• Visual Feedback and Results: Post computation, the application provides visual 

feedback to the user. This feedback includes not just the solution to the 

transportation problem but also insights into the workings of the algorithms used. 

Solving The Problem 

The solveProblem method in the Transportation class is a comprehensive function 

designed to address the transportation problem using a variety of problem-solving 

algorithms. Each algorithm has its unique approach to finding the most cost-effective way 

to distribute goods from several suppliers to numerous consumers while adhering to supply 

and demand constraints. This detailed exploration will cover key methodologies including 

the North West Corner method, Least Cost method, Vogel's Approximation method, and 

others, focusing on their implementation and significance in solving the transportation 

problem. 

 

North West Corner Method 

The North West Corner method serves as a straightforward, initial feasible solution 

approach. This method starts at the north-west corner of the cost matrix (top left) and 

allocates supplies to demands in a manner that moves either down or right in the matrix, 

hence the name. It emphasizes simplicity and speed over achieving the least cost, making it 

an excellent starting point for iterative improvement methods. 

 

In the solveProblem method, the implementation begins by iterating over the matrix, 

assigning the minimum of supply and demand to the current position. The allocations 

continue until either the supply or demand is exhausted. If a row's supply is depleted, the 

method moves to the next row (downwards); if a column's demand is satisfied, it proceeds 

to the next column (rightwards). This process repeats until all supplies and demands are 

allocated. Although not guaranteed to be optimal, it provides a baseline for comparison 

with more sophisticated methods. 

 

Least Cost Method 

The Least Cost method improves upon the North West Corner by considering the 

costs associated with each transportation route. It selects the route with the lowest cost for 

allocation first, aiming to minimize the overall cost from the outset. This method iterates 

through the cost matrix to identify the minimum cost cell that hasn't been allocated yet. 

The allocation is the minimum of the corresponding supply or demand, after which the 

method zeroes out either the row or column to prevent further allocation to that route. 

This strategy is more refined than the North West Corner method, as it directly targets cost 

reduction from the initial solution. However, it doesn't always result in the optimal solution 

due to its 'greedy' nature—making local optimum choices at each step without considering 

the overall problem structure. 

 

Vogel's Approximation Method (VAM) 

Vogel's Approximation Method offers a more sophisticated approach by 

considering the penalty of not using the cheapest route. It calculates the difference between 
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the two lowest costs in each row and column, known as the penalty, and prioritizes the 

allocation for the row or column with the highest penalty. This method aims to minimize 

the regret of not choosing the least expensive option, thereby providing a closer 

approximation to the optimal solution. 

VAM's implementation in the “solveProblem” method involves a loop that 

calculates penalties, identifies the row or column with the highest penalty, and then 

allocates supply or demand based on the least cost in that row or column. This process is 

repeated until all allocations are complete. Vogel's method is particularly effective for 

providing a good initial solution that can be further optimized or used as a standalone 

solution in many practical scenarios. 

 

Other Methods 

The “solveProblem” function also introduces other sophisticated methods such as 

the Modi Method and the Stepping Stone Method for optimizing the initial solutions 

provided by the aforementioned algorithms. These methods iteratively adjust the solution 

by examining potential improvements along closed loops or paths within the cost matrix, 

ensuring that each move towards optimization reduces the overall cost. 

 

The Modi Method uses the concept of opportunity cost to identify less costly 

routes, while the Stepping Stone Method systematically searches for potential cost-saving 

routes through an iterative process. Both methods require a feasible initial solution, which 

can be provided by any of the initial solution methods discussed above. 

4.3 Parts of the Coding 

Packages and Imports 

The application is encapsulated within the transportation package, serving as a unique 

namespace that facilitates the organization of classes and prevents naming conflicts 

with other parts of the program or external libraries. 

 

To support its functionality, the program imports several Java packages: 

 

javax.swing.*: This package is essential for creating the graphical user interface 

(GUI), including elements like windows, buttons, labels, and text fields, providing the 

user with a visual and interactive experience. 

 

java.util.ArrayList: The ArrayList class is utilized for its dynamic array capabilities, 

allowing for the flexible storage and management of JTextField components that users 

interact with. 

 

java.io.*: This package includes classes necessary for input and output operations, 

such as FileWriter for writing to files and FileReader and BufferedReader for reading 

from files, facilitating data persistence and retrieval. 

 

java.awt.*: The Abstract Window Toolkit (AWT) package provides classes for more 

foundational GUI components and desktop integration, such as opening files with the 

system's default applications. 
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static java.lang.Math.min: The static import of the min method is a convenience for 

mathematical operations, allowing for the straightforward determination of the 

minimum between two numbers, a frequently needed calculation in optimization 

routines. 

 

The Transportation Class 

Central to the application is the Transportation class, which contains all the logic and 

infrastructure required to solve the transportation problem. 

 

Fields 

The class defines several static variables and arrays to hold GUI components, such as 

JTextField instances, and numerical data representing supply and demand points, 

costs, and the arrays used for computing the solution. 

 

Main Method 

The main method acts as the application's entry point. It initializes the GUI within the 

event dispatch thread, a critical step for ensuring that the application is thread-safe and 

operates smoothly. 

 

GUI Methods 

createAndShowGUI(): This method sets up the main window and its components, 

including the frame, panels, labels, and buttons. It also handles the assignment of 

action listeners to buttons, enabling user interaction with the application. 

addMultipleTextFields1() and addMultipleTextFields2(): These methods are 

responsible for dynamically adding text fields to the GUI. These fields allow users to 

input data related to supply and demand points, which are vital for formulating the 

transportation problem. 

 

Problem Solving Methods 

solveProblem(): This method orchestrates the resolution of the transportation problem. 

It involves initializing data structures with user input, applying various solution 

strategies, and presenting the results. 

 

fillInitialArrays(): Prepares the arrays with supply, demand, and cost data as entered 

by the user, setting the stage for the application of solution algorithms. 

 

printTable(): A utility for formatting the current state of the problem and the solutions 

into a string, which can be logged or displayed to the user. 

 

Solution Algorithms 

The class implements a variety of methods to solve the transportation problem, each 

employing a distinct heuristic or optimization approach. These methods include the 

north-west corner method, least cost method, Vogel's approximation method, Russell's 

approximation method, and others, all aimed at efficiently distributing supplies to 

demands at minimum cost. 
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Utility Methods 

 

writeToFile(): Saves the detailed solution and any relevant logs to a file, providing a 

permanent record of the application's output. 

dummyCheck(): Ensures the total supply matches total demand by potentially adding 

dummy rows or columns, a necessary adjustment for certain solution techniques. 

sumProduct(): Calculates the total cost of the transportation plan, a key outcome of the 

problem-solving process. 

GUI Components 

The application makes extensive use of GUI components to create an interactive user 

experience. These include: 

 

JFrame: The main window where the application's GUI is displayed. 

JPanel: Containers within the main window that organize other GUI components. 

JLabel: Text labels that provide information to the user. 

JTextField: Fields where users can enter data. 

JButton: Buttons that users can click to trigger specific actions, such as solving the 

problem or adding input fields. 
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4.3.1 Example Solution with Transportation Solver App 

1. First we open the application step by step solver. In the main page we can write 

number of supplies and number of demands 

 

 
Image 4: Entrance page of step-by-step solver(Source: Own Source) 

 

2. For the example 2 supplies and 2 demands were chosen. The spaces were written 

according to chosen numbers. After the right click to the button Set Input Arena  

the user has got 2x2 size transportation table. 

 
 

Image 5: Creation of 2x2 Transportation table in the application(Source: own source) 

 

 

3. The User fullfill the table according the his choices when the user right clicked 

Solve the Problem button there will be shown a message and message will be 

“Problem solved. “ 

 

 
 

Image 6: Filling the transportation table in the application(Source: own source) 
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Image 7:Problem solved message in the Step-by-Step solver of application.(Source:own 

Source) 

 

 

4. In the final step OK button will be clicked by user and the solution.txt will be 

opened. In this txt file solution will be shown. 
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Image 8: Northwest Corner Method solution in the application(Source: Own Source) 
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Image 9: Solution of Least Cost Method in the application( Source: own source) 
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Image 10: Solution of Vogel’s Approximation Method in the application 
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Image 11: Solution of Russels’s Approximation method in the application.(Source: Own 

Source) 
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5 Conclusion 

This thesis has embarked on an exploration of the transportation problem, a staple in 

the field of operations research and optimization, through both theoretical frameworks and 

practical application. The culmination of this investigation is embodied in a Java 

application designed to not only illustrate the complexities inherent in the transportation 

problem but also to offer a tangible solution through computational means. 

The theoretical foundation of the thesis illuminated the historical evolution and 

mathematical formulations of the transportation problem. By delving into methodologies 

such as the North-West Corner Method, Least Cost Method, Vogel's Approximation 

Method, and others, it offered a comprehensive overview of the strategies devised to 

approach the problem efficiently. This exploration not only highlighted the complexity of 

achieving optimal solutions but also underscored the significance of such models in 

practical, cost-sensitive decision-making processes. 

 It suggests enriching the theoretical foundation of the transportation problem by 

weaving in advanced technologies such as artificial intelligence and machine learning. The 

integration of these technologies is seen as a pivotal advancement, potentially transforming 

the conventional methodologies used to solve transportation problems.. This approach 

significantly bolsters the relevance and applicability of transportation models to real-world 

scenarios. 
Moreover, the utility of the Java-based application developed as part of this thesis, 

while invaluable as an educational resource, presents opportunities for further refinement 

to enhance its practical application. Future development could focus on incorporating more 

sophisticated algorithms that adjust to variations in supply and demand, thereby offering a 

more nuanced tool for problem-solving. Additionally, improvements in user interface 

design and feedback mechanisms would increase efficency and enrich the user experience. 

Through these proposed improvements, the application could serve as a bridge between 

academic learning and practical application, offering a deeper, more nuanced 

understanding of the transportation problem to students and individuals. 

In conclusion, while this thesis and its associated application mark a significant step 

towards making the transportation problem more accessible, they also open avenues for 

future research and development. By marrying theoretical insights with practical 

applications and embracing the potential of emerging technologies, the study contributes to 

the ongoing dialogue in operations research and lays the groundwork for future innovations 

in the field. 
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Appendix 

Source Code: 

 
package transportation; 

 

import javax.swing.*; 

import java.util.ArrayList; 

import java.io.FileWriter; 

import java.io.IOException; 

import static java.lang.Math.min; 

import java.io.BufferedReader; 

import java.io.FileReader; 

import java.awt.*; 

import java.io.File; 

 

public class Transportation 

{ 

 

    private static ArrayList<JTextField> textFields1 = new ArrayList<>(); 

    private static ArrayList<JTextField> textFields2 = new ArrayList<>(); 

 

    static int supplyPoints; 

    static int demandPoints; 

    static int numberOfRows; 

    static int numberOfColumns; 

 

    static int[] supply = new int[40]; 

    static int[] demand = new int[40]; 

    static int[] rowPenalty = new int[40]; 

    static int[] colPenalty = new int[40]; 

 

    static int[][] cost = new int[40][40]; 

    static int[][] problemArray = new int[41][41]; 

    static int[][] solutionArray = new int[40][40]; 

 

    static String allMessage = ""; 

 

    public static void main(String[] args) 

    { 

        SwingUtilities.invokeLater(() -> createAndShowGUI()); 

    } 

 

    private static void createAndShowGUI() 

    { 

        JFrame frame = new JFrame("Transportation Problem"); 

        JPanel mainPanel = new JPanel(); 

        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

        frame.setSize(1400, 750); 

 

        // Set layout for the mainPanel 

        mainPanel.setLayout(null); // For simplicity, using absolute 

positioning 
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        // Add the mainPanel to the frame 

        frame.add(mainPanel); 

        frame.setVisible(true); 

 

        ///start from here 

 

        // Add a new label to the mainPanel 

        JLabel newLabel = new JLabel("Number of Suppliers"); 

        newLabel.setBounds(30, 15, 200, 30); // Set the position and size 

of the label 

        mainPanel.add(newLabel); 

 

        // Add a new label to the mainPanel 

        JLabel newLabe2 = new JLabel("Number of Demands"); 

        newLabe2.setBounds(210, 15, 200, 30); // Set the position and 

size of the label 

        mainPanel.add(newLabe2); 

 

        frame.setVisible(true); 

        frame.setVisible(true); 

 

        //end here 

        // Call the addTextField method to add the JTextField dynamically 

        addMultipleTextFields1(mainPanel); 

 

        JButton retrieveButton = new JButton("Set Input Area"); 

        retrieveButton.setBounds(390, 20, 150, 18); 

        mainPanel.add(retrieveButton); 

 

        JButton solveButton = new JButton("Solve the Problem"); 

        solveButton.setBounds(550, 20, 150, 18); 

        mainPanel.add(solveButton); 

 

        retrieveButton.addActionListener(e -> 

        { 

            JTextField textFieldToGetValue1 = textFields1.get(0); 

            JTextField textFieldToGetValue2 = textFields1.get(1); 

 

            if (textFieldToGetValue1.getText().equals("")) 

            { 

                JOptionPane.showMessageDialog(null, "Enter a valid value 

for supply points!"); 

            } 

            else if (textFieldToGetValue2.getText().equals("")) 

            { 

                JOptionPane.showMessageDialog(null, "Enter a valid value 

for demand points!"); 

            } 

            else if (Integer.parseInt(textFieldToGetValue1.getText())>40 

|| Integer.parseInt(textFieldToGetValue2.getText())>40) 

            { 

                JOptionPane.showMessageDialog(null, "Allowed problem size 

is exceeded!"); 

            } 

            else 

            { 
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                supplyPoints = 

Integer.parseInt(textFieldToGetValue1.getText()); 

                demandPoints = 

Integer.parseInt(textFieldToGetValue2.getText()); 

 

                int listSize = textFields2.size(); 

 

                if (listSize!=0) 

                { 

                    for (int i=0; i<listSize;i++) 

                    { 

                        JTextField textFieldToRemove = 

textFields2.get(i); // Remove the first textField from the list 

                        mainPanel.remove(textFieldToRemove); // Remove 

the textField from the panel 

                    } 

                    mainPanel.revalidate(); 

                    mainPanel.repaint(); 

                    textFields2.clear(); 

                    

addMultipleTextFields2(mainPanel,(supplyPoints+1),(demandPoints+1), 30, 

50); 

                } 

                else 

                { 

                    

addMultipleTextFields2(mainPanel,(supplyPoints+1),(demandPoints+1), 30, 

50); 

                } 

            } 

        }); 

 

        solveButton.addActionListener(e -> 

        { 

            int listSize = textFields2.size(); 

            if (listSize==0) 

            { 

                JOptionPane.showMessageDialog(null, "Please create a 

input table!"); 

            } 

            else 

            { 

                int myCheck=0; 

                for(int i=0;i<listSize;i++) 

                { 

                    JTextField textFieldToGetValue = textFields2.get(i); 

                    if (textFieldToGetValue.getText().equals("")) 

                    { 

                        myCheck = 1; 

                        break; 

                    } 

                } 

 

                if (myCheck==1) 

                { 
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                    JOptionPane.showMessageDialog(null, "Please fill 

entire input table!"); 

                } 

                else 

                { 

                    solveProblem(); 

                } 

            } 

        }); 

    } 

 

    public static void addMultipleTextFields1(JPanel panel) 

    { 

        int x = 160; 

        int y = 20; 

        int textFieldWidth = 35; 

        int textFieldHeight = 20; 

        int horizontalSpacing = 180; 

 

        for (int i = 0; i < 2; i++) 

        { 

            JTextField textField = new JTextField(); 

            textField.setBounds(x, y, textFieldWidth, textFieldHeight); 

            textFields1.add(textField); 

            panel.add(textField); 

            x += horizontalSpacing; // Increment y-coordinate for the 

next textField 

        } 

        panel.revalidate(); 

        panel.repaint(); 

    } 

 

    public static void addMultipleTextFields2(JPanel panel, int count1, 

int count2, int x, int y) 

    { 

        int xx = x; 

        int yy = y; 

        int textFieldWidth = 35; 

        int textFieldHeight = 20; 

        int verticalSpacing = 20; 

        int horizontalSpacing = 40; 

 

 

        for (int i = 1; i <= count1; i++) { 

            for (int j = 1; j <= count2; j++){ 

                if (i==count1 && j==count2) 

                    continue; 

 

                JTextField textField = new JTextField(); 

                textField.setBounds(xx, yy, textFieldWidth, 

textFieldHeight); 

                textFields2.add(textField); 

                panel.add(textField); 

                xx += horizontalSpacing; 

            } 

            yy += verticalSpacing; 
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            xx=x; 

        } 

        panel.revalidate(); 

        panel.repaint(); 

    } 

 

    public static void solveProblem() 

    { 

        fillInitialArrays(); 

 

        allMessage = " ----------------------------------\n"; 

        allMessage+= "|     NORTHWEST CORNER METHOD      |\n"; 

        allMessage+= " ----------------------------------\n"; 

        allMessage+= "\nThe initial problem is\n"; 

 

        printTable(); 

        dummyCheck(); 

        printTable(); 

        northWestCornerMethod(); 

 

        fillInitialArrays(); 

 

        allMessage +="\n\n\n"; 

        allMessage += " ----------------------------------\n"; 

        allMessage += "|       LEAST COST METHOD          |\n"; 

        allMessage += " ----------------------------------\n"; 

        allMessage += "\nThe initial problem is\n\n"; 

 

        printTable(); 

        dummyCheck(); 

        printTable(); 

        leastCostMethod(); 

 

        fillInitialArrays(); 

 

        allMessage +="\n\n\n"; 

        allMessage+= " ----------------------------------\n"; 

        allMessage+= "|  VOGEL'S APPROXIMATION METHOD    |\n"; 

        allMessage+= " ----------------------------------\n"; 

        allMessage+= "\nThe initial problem is\n"; 

 

        printTable(); 

        dummyCheck(); 

        printTable(); 

        vogelsApproximationMethod(); 

 

        fillInitialArrays(); 

 

        allMessage +="\n\n\n"; 

        allMessage+= " ----------------------------------\n"; 

        allMessage+= "|  RUSSELL'S APPROXIMATION METHOD  |\n"; 

        allMessage+= " ----------------------------------\n"; 

        allMessage+= "\nThe initial problem is\n"; 

 

        printTable(); 

        dummyCheck(); 
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        printTable(); 

        russellsApproximationMethod(); 

 

        /*fillInitialArrays(); 

 

        allMessage +="\n\n\n"; 

        allMessage+= " ----------------------------------\n"; 

        allMessage+= "|            MODI METHOD           |\n"; 

        allMessage+= " ----------------------------------\n"; 

        allMessage+= "\nThe initial problem is\n"; 

 

        printTable(); 

        dummyCheck(); 

        printTable(); 

        modiMethod(); 

 

        fillInitialArrays(); 

 

        allMessage +="\n\n\n"; 

        allMessage+= " ----------------------------------\n"; 

        allMessage+= "|      STEPPING STONE METHOD       |\n"; 

        allMessage+= " ----------------------------------\n"; 

        allMessage+= "\nThe initial problem is\n"; 

 

        printTable(); 

        dummyCheck(); 

        printTable(); 

        steppingStoneMethod();*/ 

 

        writeToFile(); 

        JOptionPane.showMessageDialog(null, "Problem solved!"); 

 

        String filePath = "solution.txt"; 

        try { 

            File file = new File(filePath); 

            if (!Desktop.isDesktopSupported()) { 

                System.out.println("Desktop not supported"); 

                return; 

            } 

 

            Desktop desktop = Desktop.getDesktop(); 

            if (file.exists()) { 

                desktop.open(file); 

            } else { 

                System.out.println("File doesn't exist"); 

            } 

        } catch (IOException e) { 

            System.out.println("Error opening the file: " + 

e.getMessage()); 

        } 

        //testerPrinter(); 

    } 

 

    public static void fillInitialArrays() 

    { 

        numberOfRows = supplyPoints + 1; 
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        numberOfColumns = demandPoints + 1; 

 

        int listSize = textFields2.size(); 

 

        int i=0; 

        int j=0; 

 

        for (i=0; i<=40; i++) 

        { 

            if(i!=40) 

            { 

                supply[i]=0; 

                demand[i]=0; 

            } 

 

 

            for (j=0; j<=40; j++) 

            { 

                if(j!=40 && i!=40) 

                { 

                    cost[i][j]=0; 

                    solutionArray[i][j]=0; 

                } 

                problemArray[i][j]=0; 

 

            } 

        } 

 

        i=0; 

        j=0; 

        for (int k=0;k<listSize;k++) 

        { 

            JTextField textFieldToGetValue = textFields2.get(k); 

 

            if ((k+1)%numberOfColumns==0) 

            { 

                supply[i] = 

Integer.parseInt(textFieldToGetValue.getText()); 

                problemArray[i][j] = supply[i]; 

                i++; 

                j=0; 

            } 

            else if((k+1)>(numberOfRows-1)*numberOfColumns) 

            { 

                demand[j] = 

Integer.parseInt(textFieldToGetValue.getText()); 

                problemArray[i][j] = demand[j]; 

                j++; 

            } 

            else 

            { 

                cost[i][j] = 

Integer.parseInt(textFieldToGetValue.getText()); 

                problemArray[i][j] = cost[i][j]; 

                j++; 

            } 
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        } 

    } 

 

    public static void printTable() 

    { 

        allMessage +="\n"; 

        for (int i=0; i<numberOfRows;i++) 

        { 

            for (int j=0;j<numberOfColumns;j++) 

            { 

                if (i!=numberOfRows-1 || j!=numberOfColumns-1) 

                { 

                    allMessage += problemArray[i][j]; 

                    if (solutionArray[i][j] != 0) 

                    { 

                        allMessage += "(" + solutionArray[i][j] + ")"; 

                    } 

                    allMessage += "\t\t"; 

                } 

            } 

            allMessage +="\n"; 

        } 

        allMessage +="\n"; 

    } 

 

    public static void dummyCheck() 

    { 

 

        int totalSupply, totalDemand; 

 

        totalSupply = 0; 

        totalDemand = 0; 

 

        for (int i=0; i<supplyPoints;i++) 

        { 

            totalSupply += supply[i]; 

        } 

 

        for (int i=0; i<demandPoints;i++) 

        { 

            totalDemand += demand[i]; 

        } 

 

        if (totalSupply>totalDemand) 

        { 

            numberOfColumns++; 

            demand[numberOfColumns-2]=totalSupply-totalDemand; 

        } 

        else if (totalSupply<totalDemand) 

        { 

            numberOfRows++; 

            supply[numberOfRows-2]=totalDemand-totalSupply; 

        } 

 

        for (int i=0; i<numberOfRows;i++) 

        { 
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            for (int j=0;j<numberOfColumns;j++) 

            { 

                if (i==numberOfRows-1 && j==numberOfColumns-1) 

                { 

                    continue; 

                } 

                else if (i==numberOfRows-1) 

                { 

                    problemArray[i][j]=demand[j]; 

                } 

                else if (j==numberOfColumns-1) 

                { 

                    problemArray[i][j]=supply[i]; 

                } 

                else 

                { 

                    problemArray[i][j]=cost[i][j]; 

                } 

            } 

        } 

 

        if (totalSupply>totalDemand) 

        { 

            allMessage +="Total supply is " + totalSupply + " unit and 

total demand is " + totalDemand + " unit\n"; 

            allMessage +="Thus, total supply > total demand. We add dummy 

demand point!\n"; 

        } 

        else if (totalSupply < totalDemand) 

        { 

            allMessage +="Total supply is " + totalSupply + " unit and 

total demand is " + totalDemand + " unit\n"; 

            allMessage +="Thus, total supply < total demand. We add dummy 

supply point!\n"; 

        } 

        else 

        { 

            allMessage +="Total supply is " + totalSupply + " unit and 

total demand is " + totalDemand + " unit\n"; 

            allMessage +="Thus, total supply = total demand. No need for 

dummy point.\n"; 

        } 

    } 

 

    public static void northWestCornerMethod() 

    { 

        int i=0; 

        int j=0; 

 

        while (i<(numberOfRows-1) && j<(numberOfColumns-1)) 

        { 

 

            allMessage +="Supply point " + (i+1) + " has " + supply[i] + 

" unit free capacity and demand point " + (j+1) + " has " + demand[j] + " 

unit unsatisfied demand\n"; 

            int quantity = min(supply[i], demand[j]); 
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            allMessage += "Minimum is " + quantity + "\n"; 

 

            solutionArray[i][j] = quantity; 

            problemArray[i][(numberOfColumns-1)] -= quantity; 

            problemArray[(numberOfRows-1)][j] -= quantity; 

            supply[i] -= quantity; 

            demand[j] -= quantity; 

 

            if (supply[i]==0 && demand[j]==0) 

            { 

                allMessage += "This exhausts the capacity of supply point 

" + (i+1) + " and meets the complete demand of demand point " + (j+1) + 

"\n"; 

                printTable(); 

                i++; 

                j++; 

                if (i<(numberOfRows-1) && j<(numberOfColumns-1)) 

                    allMessage +="We go diagonal!\n"; 

            } 

            else if (supply[i]==0) 

            { 

                allMessage += "This exhausts the capacity of supply point 

" + (i+1) + " and leaves " + (demand[j]) + " unit demand of demand point 

" + (j+1) + "\n"; 

                printTable(); 

                i++; 

                if (i<(numberOfRows-1) && j<(numberOfColumns-1)) 

                    allMessage +="We go vertically!\n"; 

            } 

            else 

            { 

                allMessage += "This meets the complete demand of demand 

point " + (j+1) + " and leaves " + (supply[i]) + " unit supply of supply 

point " + (i+1) + "\n"; 

                printTable(); 

                j++; 

                if (i<(numberOfRows-1) && j<(numberOfColumns-1)) 

                    allMessage +="We go horizontally!\n"; 

            } 

 

        } 

 

        allMessage +="Solution with Northwest Corner Method is "; 

        sumProduct(); 

    } 

 

    public static void sumProduct() 

    { 

 

        int totalCost = 0; 

 

        for (int i=0; i<numberOfRows-1;i++) 

        { 

            for (int j=0; j<numberOfColumns-1;j++) 

            { 

                totalCost += problemArray[i][j] * solutionArray[i][j]; 
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            } 

        } 

 

        allMessage += totalCost + "\n"; 

    } 

 

    public static void writeToFile() 

    { 

        try 

        { 

            FileWriter myWriter = new FileWriter("solution.txt"); 

            myWriter.write(allMessage); 

            myWriter.close(); 

        } 

        catch (IOException e) 

        { 

            System.out.println("An error occurred."); 

            e.printStackTrace(); 

        } 

    } 

 

    public static void leastCostMethod() 

    { 

 

        int minI, minJ; 

        minI = -2; 

        minJ = -2; 

        while(minI != -1 && minJ != -1) 

        { 

            int minCost = -1; 

            int maxAllocation = 0; 

            minI = -1; 

            minJ = -1; 

 

            for (int i=0;i<(numberOfRows-1);i++) 

            { 

                if (supply[i]==0) 

                    continue; 

 

                for (int j=0;j<(numberOfColumns-1);j++) 

                { 

                    if (demand[j]==0) 

                        continue; 

 

                    if (solutionArray[i][j]==0 && minCost==-1) 

                    { 

                        minCost = cost[i][j]; 

                        minI = i; 

                        minJ = j; 

                        maxAllocation = min(supply[i], demand[j]); 

                    } 

                    else if (solutionArray[i][j]==0 && cost[i][j] < 

minCost) 

                    { 

                        minCost = cost[i][j]; 

                        minI = i; 
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                        minJ = j; 

                        maxAllocation = min(supply[i], demand[j]); 

                    } 

                    else if(solutionArray[i][j]==0 && cost[i][j]==minCost 

&& maxAllocation < min(supply[i], demand[j])) 

                    { 

                        minCost = cost[i][j]; 

                        minI = i; 

                        minJ = j; 

                        maxAllocation = min(supply[i], demand[j]); 

                    } 

                } 

            } 

 

            if (minI == -1 || minJ == -1) 

            { 

                break; 

            } 

 

            int quantity = min(supply[minI], demand[minJ]); 

            allMessage += "Min cost is " + minCost + " at supply point " 

+ (minI+1) + " and demand point " + (minJ+1) + " with maximum allocation 

amount " + quantity + "\n"; 

            solutionArray[minI][minJ] = quantity; 

            supply[minI] -= quantity; 

            demand[minJ] -= quantity; 

            problemArray[minI][numberOfColumns-1] -= quantity; 

            problemArray[numberOfRows-1][minJ] -= quantity; 

            if (supply[minI]==0 && demand[minJ]==0) 

            { 

                allMessage += "This exhausts the capacity of supply point 

" + (minI+1) + " and meets the complete demand of demand point " + 

(minJ+1) + "\n"; 

            } 

            else if (supply[minI]==0) 

            { 

                allMessage += "This exhausts the capacity of supply point 

" + (minI+1) + " and leaves " + (demand[minJ]) + " unit demand of demand 

point " + (minJ+1) + "\n"; 

            } 

            else 

            { 

                allMessage += "This meets the complete demand of demand 

point " + (minJ+1) + " and leaves " + (supply[minI]) + " unit supply of 

supply point " + (minI+1) + "\n"; 

            } 

            printTable(); 

        } 

 

        allMessage +="Solution with Least Cost Method is "; 

        sumProduct(); 

    } 

 

    public static void vogelsApproximationMethod() 

    { 
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        int myCheck=1; 

        int rowMin1, rowMin2, colMin1, colMin2; 

        int maxPenalty, maxAllocation, minCost, selectedI, selectedJ; 

        int maxAllocation2, minCost2, selectedI2, selectedJ2; 

 

        while (myCheck!=0) 

        { 

            maxPenalty =-1; 

            maxAllocation = -1; 

            minCost=-1; 

            selectedI=-1; 

            selectedJ=-1; 

 

            for (int i=0;i<numberOfRows-1;i++) 

                rowPenalty[i]=-1; 

 

            for (int i=0; i<numberOfColumns-1;i++) 

                colPenalty[i]=-1; 

 

            for (int i=0; i<numberOfRows-1;i++) 

            { 

                if (supply[i]==0) 

                    continue; 

 

                rowMin1=-1; 

                rowMin2=-1; 

 

                for (int j=0; j<numberOfColumns-1;j++) 

                { 

                    if (demand[j]==0) 

                        continue; 

 

                    if (rowMin1==-1) 

                    { 

                        rowMin1=cost[i][j]; 

                    } 

                    else if (cost[i][j]<=rowMin1) 

                    { 

                        rowMin2=rowMin1; 

                        rowMin1=cost[i][j]; 

                    } 

                    else if(rowMin2==-1) 

                    { 

                        rowMin2=cost[i][j]; 

                    } 

                    else if (cost[i][j]<rowMin2) 

                    { 

                        rowMin2=cost[i][j]; 

                    } 

                } 

 

                if (rowMin2==-1) 

                { 

                    rowPenalty[i]=rowMin1; 

                } 

                else 
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                { 

                    rowPenalty[i]=rowMin2-rowMin1; 

                } 

            } 

 

            for (int j=0; j<numberOfColumns-1;j++) 

            { 

                if (demand[j]==0) 

                    continue; 

 

                colMin1=-1; 

                colMin2=-1; 

 

                for (int i=0; i<numberOfRows-1;i++) 

                { 

                    if (supply[i]==0) 

                        continue; 

 

                    if (colMin1==-1) 

                    { 

                        colMin1=cost[i][j]; 

                    } 

                    else if (cost[i][j]<=colMin1) 

                    { 

                        colMin2=colMin1; 

                        colMin1=cost[i][j]; 

                    } 

                    else if(colMin2==-1) 

                    { 

                        colMin2=cost[i][j]; 

                    } 

                    else if (cost[i][j]<colMin2) 

                    { 

                        colMin2=cost[i][j]; 

                    } 

                } 

 

                if (colMin2==-1) 

                { 

                    colPenalty[j]=colMin1; 

                } 

                else 

                { 

                    colPenalty[j]=colMin2-colMin1; 

                } 

            } 

 

            for (int i=0; i<numberOfRows-1;i++) 

            { 

                if (supply[i]==0) 

                    continue; 

 

                if(maxPenalty==-1 || rowPenalty[i]>maxPenalty) 

                { 

                    for (int j=0;j<numberOfColumns-1;j++) 

                    { 
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                        if (demand[j] == 0) 

                            continue; 

 

                        if ((minCost==-1) || (rowPenalty[i]>maxPenalty) 

|| (cost[i][j]<minCost) || (minCost==cost[i][j] && 

maxAllocation<min(supply[i], demand[j]))) 

                        { 

                            maxPenalty = rowPenalty[i]; 

                            maxAllocation = min(supply[i], demand[j]); 

                            minCost = cost[i][j]; 

                            selectedI=i; 

                            selectedJ=j; 

                        } 

                    } 

 

                } 

                else if (maxPenalty == rowPenalty[i]) 

                { 

                    minCost2=-1; 

                    maxAllocation2=-1; 

                    selectedI2=-1; 

                    selectedJ2=-1; 

                    for (int j=0;j<numberOfColumns-1;j++) 

                    { 

                        if (demand[j] == 0) 

                            continue; 

                        if ((minCost2==-1) || (cost[i][j]<minCost2) || 

(minCost2==cost[i][j] && maxAllocation2<min(supply[i], demand[j]))) 

                        { 

                            maxAllocation2 = min(supply[i], demand[j]); 

                            minCost2 = cost[i][j]; 

                            selectedI2=i; 

                            selectedJ2=j; 

                        } 

 

                    } 

 

                    if (maxAllocation2>maxAllocation) 

                    { 

                        maxAllocation = maxAllocation2; 

                        minCost = minCost2; 

                        selectedI = selectedI2; 

                        selectedJ = selectedJ2; 

                    } 

 

                } 

            } 

 

            for (int j=0; j<numberOfColumns-1;j++) 

            { 

                if (demand[j]==0) 

                    continue; 

 

                if(colPenalty[j]>maxPenalty) 

                { 

                    for (int i=0;i<numberOfRows-1;i++) 
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                    { 

                        if (supply[i] == 0) 

                            continue; 

 

                        if ((colPenalty[j]>maxPenalty) || 

(cost[i][j]<minCost) || (minCost==cost[i][j] && 

maxAllocation<min(supply[i], demand[j]))) 

                        { 

                            maxPenalty = colPenalty[j]; 

                            maxAllocation = min(supply[i], demand[j]); 

                            minCost = cost[i][j]; 

                            selectedI=i; 

                            selectedJ=j; 

                        } 

                    } 

 

                } 

                else if (maxPenalty == colPenalty[j]) 

                { 

                    minCost2=-1; 

                    maxAllocation2=-1; 

                    selectedI2=-1; 

                    selectedJ2=-1; 

                    for (int i=0;i<numberOfRows-1;i++) 

                    { 

                        if (supply[i] == 0) 

                            continue; 

 

                        if ((minCost2==-1) || (cost[i][j]<minCost2) || 

(minCost2==cost[i][j] && maxAllocation2<min(supply[i], demand[j]))) 

                        { 

                            maxAllocation2 = min(supply[i], demand[j]); 

                            minCost2 = cost[i][j]; 

                            selectedI2=i; 

                            selectedJ2=j; 

                        } 

 

                    } 

 

                    if (maxAllocation2>maxAllocation) 

                    { 

                        maxAllocation = maxAllocation2; 

                        minCost = minCost2; 

                        selectedI = selectedI2; 

                        selectedJ = selectedJ2; 

                    } 

                } 

            } 

 

            int quantity = min(supply[selectedI], demand[selectedJ]); 

            allMessage+="Max penalty is " + maxPenalty; 

 

            if (rowPenalty[selectedI]==maxPenalty) 

                allMessage+=" in row " + (selectedI+1) + "\n"; 

            else 

                allMessage+=" in column " + (selectedJ+1) + "\n"; 
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            allMessage += "Min cost is " + minCost + " at supply point " 

+ (selectedI+1) + " and demand point " + (selectedJ+1) + " with maximum 

allocation amount " + quantity + "\n"; 

            solutionArray[selectedI][selectedJ] = quantity; 

            supply[selectedI] -= quantity; 

            demand[selectedJ] -= quantity; 

            problemArray[selectedI][numberOfColumns-1] -= quantity; 

            problemArray[numberOfRows-1][selectedJ] -= quantity; 

 

            if (supply[selectedI]==0 && demand[selectedJ]==0) 

            { 

                allMessage += "This exhausts the capacity of supply point 

" + (selectedI+1) + " and meets the complete demand of demand point " + 

(selectedJ+1) + "\n"; 

            } 

            else if (supply[selectedI]==0) 

            { 

                allMessage += "This exhausts the capacity of supply point 

" + (selectedI+1) + " and leaves " + (demand[selectedJ]) + " unit demand 

of demand point " + (selectedJ+1) + "\n"; 

            } 

            else 

            { 

                allMessage += "This meets the complete demand of demand 

point " + (selectedJ+1) + " and leaves " + (supply[selectedI]) + " unit 

supply of supply point " + (selectedI+1) + "\n"; 

            } 

            printTable2(); 

 

            myCheck = 0; 

            for (int i=0;i<numberOfRows-1;i++) 

            { 

                if (supply[i]>0) 

                { 

                    myCheck=1; 

                    break; 

                } 

            } 

        } 

        allMessage +="Solution with Vogel's Approximation Method is "; 

        sumProduct(); 

 

    } 

 

    public static void printTable2() 

    { 

        allMessage +="\n"; 

        for (int i=0; i<numberOfRows;i++) 

        { 

            for (int j=0;j<numberOfColumns;j++) 

            { 

                if (i!=numberOfRows-1 || j!=numberOfColumns-1) 

                { 

                    allMessage += problemArray[i][j]; 

                    if (solutionArray[i][j] != 0) 
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                    { 

                        allMessage += "(" + solutionArray[i][j] + ")"; 

                    } 

                    allMessage += "\t\t"; 

                } 

            } 

            if (i<numberOfRows-1) 

                allMessage +=rowPenalty[i]+ "\n"; 

            else 

                allMessage +="\n"; 

        } 

 

        for (int j=0;j<numberOfColumns-1;j++) 

        { 

            allMessage += colPenalty[j]; 

            allMessage += "\t\t"; 

        } 

        allMessage +="\n\n"; 

    } 

 

    public static void russellsApproximationMethod() 

    { 

        int myCheck=0; 

        int minCost; 

        int selectedI, selectedJ; 

        selectedI=0; 

        selectedJ=0; 

 

        while(myCheck!=-1) 

        { 

 

            for (int i=0;i<numberOfRows-1;i++) 

                rowPenalty[i]=-1; 

 

            for (int i=0; i<numberOfColumns-1;i++) 

                colPenalty[i]=-1; 

 

            for (int i=0;i<numberOfRows-1;i++) 

            { 

                if (supply[i]==0) 

                    continue; 

 

                for (int j=0; j<numberOfColumns-1;j++) 

                { 

                    if (demand[j]==0) 

                        continue; 

 

                    if (rowPenalty[i]<cost[i][j]) 

                        rowPenalty[i] = cost[i][j]; 

 

                } 

            } 

 

            for (int j=0;j<numberOfColumns-1;j++) 

            { 

                if (demand[j]==0) 
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                    continue; 

 

                for (int i=0; i<numberOfRows-1;i++) 

                { 

                    if (supply[i]==0) 

                        continue; 

 

                    if (colPenalty[j]<cost[i][j]) 

                        colPenalty[j] = cost[i][j]; 

                } 

            } 

 

            minCost = 1; 

 

            for (int i=0;i<numberOfRows-1;i++) 

            { 

                if (supply[i]==0) 

                    continue; 

 

                for (int j=0; j<numberOfColumns-1;j++) 

                { 

                    if (demand[j]==0) 

                        continue; 

 

                    allMessage+="Delta(" + (i+1) + "," + (j+1) + ")=c(" + 

(i+1) + "," + (j+1) + ")-(U(" + (i+1) + ")+V(" + (j+1) + ")=" + 

cost[i][j] + "-(" + rowPenalty[i] + "+" + colPenalty[j] + ")=" + 

(cost[i][j]-(rowPenalty[i] + colPenalty[j])) + "\n"; 

 

                    if (minCost>(cost[i][j]-(rowPenalty[i] + 

colPenalty[j]))) 

                    { 

                        minCost = (cost[i][j]-(rowPenalty[i] + 

colPenalty[j])); 

                        selectedI = i; 

                        selectedJ = j; 

                    } 

                } 

            } 

 

            int quantity = min(supply[selectedI], demand[selectedJ]); 

            allMessage+="Min delta is " + minCost + " at supply point " + 

(selectedI+1) + " and demand point " + (selectedJ+1) + " with maximum 

allocation amount " + quantity + "\n"; 

 

            solutionArray[selectedI][selectedJ] = quantity; 

            supply[selectedI] -= quantity; 

            demand[selectedJ] -= quantity; 

            problemArray[selectedI][numberOfColumns-1] -= quantity; 

            problemArray[numberOfRows-1][selectedJ] -= quantity; 

 

            if (supply[selectedI]==0 && demand[selectedJ]==0) 

            { 

                allMessage += "This exhausts the capacity of supply point 

" + (selectedI+1) + " and meets the complete demand of demand point " + 

(selectedJ+1) + "\n"; 
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            } 

            else if (supply[selectedI]==0) 

            { 

                allMessage += "This exhausts the capacity of supply point 

" + (selectedI+1) + " and leaves " + (demand[selectedJ]) + " unit demand 

of demand point " + (selectedJ+1) + "\n"; 

            } 

            else 

            { 

                allMessage += "This meets the complete demand of demand 

point " + (selectedJ+1) + " and leaves " + (supply[selectedI]) + " unit 

supply of supply point " + (selectedI+1) + "\n"; 

            } 

            printTable2(); 

            myCheck=-1; 

 

            for (int i=0;i<numberOfRows-1;i++) 

            { 

                if (supply[i]>0) 

                { 

                    myCheck=0; 

                    break; 

                } 

            } 

        } 

 

        allMessage +="Solution with Russell's Approximation Method is "; 

        sumProduct(); 

    } 

 

    public static void modiMethod() 

    { 

        int myControl=1; 

        int myControl2=1; 

        int rowOrCol=-1; 

        int maxNumAllocation=0; 

        int currentAllocation=0; 

        int relatedRowOrCol=-1; 

        int i1,j1,i2,j2,i3,j3,i4,j4; 

        int mindij; 

        int minAllocation=0; 

        i1=-1; 

        j1=-1; 

        i2=-1; 

        j2=-1; 

        i3=-1; 

        j3=-1; 

        i4=-1; 

        j4=-1; 

 

        allMessage+="First, we find an initial basic feasible solution by 

using Vogel's Approximation Method \n"; 

        vogelsApproximationMethod(); 

        allMessage+="\n"; 

 

        while (myControl==1) 
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        { 

            maxNumAllocation=0; 

 

            for (int i=0;i<numberOfRows-1;i++) 

            { 

                currentAllocation=0; 

 

                for (int j=0; j<numberOfColumns-1;j++) 

                { 

                    if (solutionArray[i][j]>0) 

                    { 

                        currentAllocation++; 

                    } 

                } 

 

                if (currentAllocation>maxNumAllocation) 

                { 

                    maxNumAllocation = currentAllocation; 

                    rowOrCol = 1; 

                    relatedRowOrCol=i; 

                } 

            } 

 

            for (int j=0; j<numberOfColumns-1;j++) 

            { 

                currentAllocation=0; 

 

                for (int i=0;i<numberOfRows-1;i++) 

                { 

                    if (solutionArray[i][j]>0) 

                    { 

                        currentAllocation++; 

                    } 

                } 

 

                if (currentAllocation>maxNumAllocation) 

                { 

                    maxNumAllocation = currentAllocation; 

                    rowOrCol = 2; 

                    relatedRowOrCol=j; 

                } 

            } 

 

            allMessage+="Maximum number of allocation is "; 

            if(rowOrCol==1) 

                allMessage+="in row "; 

            else 

                allMessage+="in column"; 

            allMessage+=" " + (relatedRowOrCol+1) + " thus, substituting 

"; 

            if(rowOrCol==1) 

                allMessage+="u(" + (relatedRowOrCol+1) + ")=0, we 

get:\n"; 

            else 

                allMessage+="v(" + (relatedRowOrCol+1) + ")=0, we 

get:\n"; 
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            for (int i=0;i<numberOfRows-1;i++) 

                supply[i]=0; 

 

            for(int j=0;j<numberOfColumns-1;j++) 

                demand[j]=0; 

 

            if (rowOrCol==1) 

            { 

                rowPenalty[relatedRowOrCol]=0; 

                supply[relatedRowOrCol]=1; 

            } 

            else 

            { 

                colPenalty[relatedRowOrCol]=0; 

                demand[relatedRowOrCol]=1; 

            } 

 

            myControl2=1; 

            while (myControl2==1) 

            { 

                for (int i=0;i<numberOfRows-1;i++) 

                { 

                    if (supply[i]==0) 

                        continue; 

 

                    for (int j=0; j<numberOfColumns-1;j++) 

                    { 

                        if (demand[j]==1) 

                            continue; 

 

                        if(solutionArray[i][j]>0 && demand[j]==0) 

                        { 

                            colPenalty[j]=cost[i][j]-rowPenalty[i]; 

                            demand[j]=1; 

                            allMessage +="v(" + (j+1) + ") = c(" + (i+1) 

+ "," + (j+1) + ") - u(" + (i+1) + ")--> " + cost[i][j] + " - " + 

rowPenalty[i] + " = " + colPenalty[j] + "\n"; 

                        } 

                    } 

                } 

 

                for (int j=0;j<numberOfColumns-1;j++) 

                { 

                    if (demand[j]==0) 

                        continue; 

 

                    for (int i=0; i<numberOfRows-1;i++) 

                    { 

                        if (supply[i]==1) 

                            continue; 

 

                        if(solutionArray[i][j]>0) 

                        { 

                            rowPenalty[i]=cost[i][j]-colPenalty[j]; 

                            supply[i]=1; 
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                            allMessage +="u(" + (i+1) + ") = c(" + (i+1) 

+ "," + (j+1) + ") - v(" + (j+1) + ")--> " + cost[i][j] + " - " + 

colPenalty[j] + " = " + rowPenalty[i] + "\n"; 

                        } 

                    } 

                } 

 

                myControl2=0; 

                for (int i=0; i<numberOfRows-1;i++) 

                { 

                    if(supply[i] == 0) 

                    { 

                        myControl2=1; 

                        break; 

                    } 

                } 

 

                if (myControl2==0) 

                { 

                    for (int j=0;j<numberOfColumns-1;j++) 

                    { 

                        if(demand[j]==0) 

                        { 

                            myControl2=1; 

                            break; 

                        } 

                    } 

                } 

            } 

 

            printTable2(); 

 

            myControl=0; 

            mindij=0; 

            for (int i=0;i<numberOfRows-1;i++) 

            { 

                for (int j=0;j<numberOfColumns-1;j++) 

                { 

                    if (solutionArray[i][j]==0) 

                    { 

                        allMessage+="d(" + (i+1) + "," + (j+1) + ") = c(" 

+ (i+1) + "," + (j+1) + ") - (u(" + (i+1) + ") + v(" + (j+1) + ")) = " + 

cost[i][j] + " - (" + rowPenalty[i] + " + " + colPenalty[j] + ") = " + 

(cost[i][j] - rowPenalty[i] - colPenalty[j]) + "\n"; 

                    } 

 

                    if (cost[i][j] - rowPenalty[i] - colPenalty[j]<0) 

                    { 

                        myControl=1; 

                        if (mindij>cost[i][j] - rowPenalty[i] - 

colPenalty[j]) 

                        { 

                            mindij = cost[i][j] - rowPenalty[i] - 

colPenalty[j]; 

                            i1=i; 

                            j1=j; 
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                        } 

                    } 

                } 

            } 

 

            if (myControl==0) 

            { 

                allMessage+="All d(i,j) values are non-negative. The 

solution is optimal.\n"; 

                printTable(); 

                continue; 

            } 

 

            allMessage+="The minimum negative value from all d(i,j) 

(opportunity cost) = d(" + (i1+1) + "," + (j1+1) + ") = " + mindij + 

"\n"; 

 

            for (int i=0; i<numberOfRows-1;i++) 

            { 

                if(solutionArray[i][j1]!=0) 

                { 

                    for(int j=0; j<numberOfColumns-1;j++) 

                    { 

                        if(solutionArray[i1][j]!=0 && 

solutionArray[i][j]!=0) 

                        { 

                            i2=i1; 

                            i3=i; 

                            i4=i; 

                            j2=j; 

                            j3=j1; 

                            j4=j; 

                            minAllocation = min(solutionArray[i2][j2], 

solutionArray[i3][j3]); 

                        } 

                    } 

                } 

            } 

 

            allMessage+="The closed loop is S" + (i1+1) + "D" + (j1+1) + 

" - S" + (i2+1) + "D" + (j2+1) + " - S" + (i4+1) + "D" + (j4+1) + " - S" 

+ (i3+1) + "D" + (j3+1) + "\n"; 

            allMessage+="We can allocate " + minAllocation + " unit from 

S" + (i2+1) + "D" + (j2+1) + " and S" + (i3+1) + "D" + (j3+1) + " to S" + 

+ (i1+1) + "D" + (j1+1) + " and S" + (i4+1) + "D" + (j4+1) + "\n"; 

            solutionArray[i1][j1] += minAllocation; 

            solutionArray[i2][j2] -= minAllocation; 

            solutionArray[i3][j3] -= minAllocation; 

            solutionArray[i4][j4] += minAllocation; 

            allMessage+="New solution is: \n"; 

            printTable(); 

            allMessage+="We continue with the next iteration!\n"; 

        } 

 

        allMessage +="Optimal solution with MODI Method is "; 

        sumProduct(); 
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    } 

 

    public static void steppingStoneMethod() 

    { 

        int myControl=1; 

        int minCost=0; 

        int maxAllocation = 0; 

        int totalCost = 0; 

 

        int i1=-1; 

        int i2=-1; 

        int i3=-1; 

        int i4=-1; 

 

        int j1=-1; 

        int j2=-1; 

        int j3=-1; 

        int j4=-1; 

 

        int fi1=-1; 

        int fi2=-1; 

        int fi3=-1; 

        int fi4=-1; 

 

        int fj1=-1; 

        int fj2=-1; 

        int fj3=-1; 

        int fj4=-1; 

 

        allMessage+="First, we find an initial basic feasible solution by 

using Vogel's Approximation Method \n"; 

        vogelsApproximationMethod(); 

        allMessage+="\n"; 

 

        while (myControl==1) 

        { 

            myControl = 0; 

            minCost = 0; 

            allMessage += "Create closed loop for unoccupied cells, we 

get:\n"; 

 

            for (int i=0;i<numberOfRows-1;i++) 

            { 

                for (int j=0; j<numberOfColumns-1;j++) 

                { 

                    if (solutionArray[i][j]==0) 

                    { 

                        i1=i; 

                        j1=j; 

 

                        for (int ii=0; ii<numberOfRows-1;ii++) 

                        { 

                            if(solutionArray[ii][j1]!=0) 

                            { 

                                for(int jj=0; jj<numberOfColumns-1;jj++) 

                                { 
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                                    if(solutionArray[i1][jj]!=0 && 

solutionArray[ii][jj]!=0) 

                                    { 

                                        i2=i1; 

                                        i3=ii; 

                                        i4=ii; 

 

                                        j2=jj; 

                                        j3=j1; 

                                        j4=jj; 

 

                                        totalCost = cost[i1][j1] - 

cost[i2][j2] - cost[i3][j3] + cost[i4][j4]; 

 

                                        allMessage+="S" + (i1+1) + "D" + 

(j1+1) + " - S" + (i2+1) + "D" + (j2+1) + " - S" + (i4+1) + "D" + (j4+1) 

+ " - S" + (i3+1) + "D" + (j3+1) + " with total cost " + totalCost + 

"\n"; 

 

                                        if (totalCost<minCost) 

                                        { 

                                            myControl=1; 

                                            fi1=i1; 

                                            fi2=i2; 

                                            fi3=i3; 

                                            fi4=i4; 

                                            fj1=j1; 

                                            fj2=j2; 

                                            fj3=j3; 

                                            fj4=j4; 

                                            minCost = totalCost; 

                                        } 

                                    } 

                                } 

                            } 

                        } 

                    } 

                } 

            } 

 

            if (myControl==0) 

            { 

                allMessage+="All cost values are non-negative. The 

solution is optimal.\n"; 

                printTable(); 

                continue; 

            } 

 

            maxAllocation = min(solutionArray[fi2][fj2], 

solutionArray[fi3][fj3]); 

 

            allMessage+="We have negative cost, thus the solution is not 

optimal.\n"; 

            allMessage+="The min cost closed loop is S" + (fi1+1) + "D" + 

(fj1+1) + " - S" + (fi2+1) + "D" + (fj2+1) + " - S" + (fi4+1) + "D" + 

(fj4+1) + " - S" + (fi3+1) + "D" + (fj3+1) + "\n"; 
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            allMessage+="We can allocate " + maxAllocation + " unit from 

S" + (fi2+1) + "D" + (fj2+1) + " and S" + (fi3+1) + "D" + (fj3+1) + " to 

S" + + (fi1+1) + "D" + (fj1+1) + " and S" + (fi4+1) + "D" + (fj4+1) + 

"\n"; 

            solutionArray[fi1][fj1] += maxAllocation; 

            solutionArray[fi2][fj2] -= maxAllocation; 

            solutionArray[fi3][fj3] -= maxAllocation; 

            solutionArray[fi4][fj4] += maxAllocation; 

            allMessage+="New solution is: \n"; 

            printTable(); 

            allMessage+="We continue with the next iteration!\n"; 

 

        } 

        allMessage +="Optimal solution with Stepping Stone Method is "; 

        sumProduct(); 

    } 

 

 

 

    public static void testerPrinter() 

    { 

        String s1=""; 

        String s2=""; 

        String s3=""; 

        String s4=""; 

        String s5=""; 

        String s6=""; 

        String s7=""; 

        String s8=""; 

        String s9=""; 

 

        s1 = "Number of supply points is " + supplyPoints; 

        s2 = "Number of demand points is " + demandPoints; 

        s3 = "Number of rows " + numberOfRows; 

        s4 = "Number of columns " + numberOfColumns; 

 

        s5 = "Supply array ["; 

        for (int i=0; i<numberOfRows-1;i++) 

        { 

            s5 += supply[i] + " "; 

        } 

        s5 += "]"; 

 

        s6 = "Demand array ["; 

        for (int i=0; i<numberOfColumns-1;i++) 

        { 

            s6 += demand[i] + " "; 

        } 

        s6 += "]"; 

 

        s7 = "Cost array ["; 

        for (int i=0; i<numberOfRows-1;i++) 

        { 

            for (int j=0; j<numberOfColumns-1;j++) 

            { 

                s7 += cost[i][j] + " "; 
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            } 

            s7 += "\n"; 

        } 

        s7 += "]"; 

 

        s8 = "Problem array ["; 

        s9 = "Solution array ["; 

        for (int i=0; i<numberOfRows;i++) 

        { 

            for (int j=0; j<numberOfColumns;j++) 

            { 

                s8 += problemArray[i][j] + " "; 

                s9 += solutionArray[i][j] + " "; 

            } 

            s8 += "\n"; 

            s9 += "\n"; 

        } 

        s8 += "]"; 

        s9 += "]"; 

 

        JOptionPane.showMessageDialog(null, s1); 

        JOptionPane.showMessageDialog(null, s2); 

        JOptionPane.showMessageDialog(null, s3); 

        JOptionPane.showMessageDialog(null, s4); 

        JOptionPane.showMessageDialog(null, s5); 

        JOptionPane.showMessageDialog(null, s6); 

        JOptionPane.showMessageDialog(null, s7); 

        JOptionPane.showMessageDialog(null, s8); 

        JOptionPane.showMessageDialog(null, s9); 

    } 

} 

 

 

 


